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Abstract

A three-time scale singular perturbation control is applied to an autonomous helicopter model on a

platform to regulate its vertical position. Two singularly perturbation time-scale analysis approaches

are presented, the Top-Down (TD), and the Bottom-Up (BU ), which permit to analyze multi-time scale

systems. These methodologies are based in a sequential application of the general two-time-scale singular

perturbation formulation, allowing to decouple the helicopter three-time-scale problem into two simpler

two-time-scale models.

The TD and BU methodologies provide a step-by-step procedure that allows to design the proper

control laws that allows to achieve the desired helicopter’s altitude by either actuating on both the

collective pitch angle and the angular velocity of the blades. In addition, the same methodology, provides

a tool to select an appropriate composite Lyapunov function for the complete singularly perturbed system,

and to demonstrate the asymptotic stability for the resulting closed-loop nonlinear singularly perturbed

system for sufficiently small singular perturbation parameters using Lyapunov stability methods, and

everything in an all-in-one step-by-step methodology.

The equivalency between both the TD and BU methodologies, permits the designer to choose which

direction is to be used, depending on the structure of the system to be studied, and in special cases,

determine which combination of both methodologies is the most appropriate according to the natural

flow of the variables.

The validity of the methodology has been proved by obtaining the stability upper bound limits for

the three-time-scale boundary layers, ε1 and ε2, and ensuring that the selected parasitic constants for

the proposed control law satisfy ε1 ≤ ε∗1 and ε2 ≤ ε∗2 for both the helicopter and the simplified model

here employed. The stability results have also presented a closed form solution for the proper selection

of the stability parameters such that fulfill the required growth requirements among different singularly

perturbed subsystem, providing asymptotic stability for the helicopter ΣSFU full system with prescribed

upper bounds on the parasitic parameters.

The TD and BU time scale analysis is also extended to the more general N th-time-scale analysis using

a 4th-time-scale general example. The sequential strategy of decomposing the 4th-time-scale system,

into simpler two-time-scale subsystems provides valuable tools for both the analysis of time-scale singu-

larly perturbed systems, and the stability properties of any general singularly perturbed N th-time-scale

system.
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ŷ quasi-steady-state fast error dynamics, ŷ , ỹ − g̃(x̃)

z ultra-fast state variable

z̃ ultra-fast error dynamics, z̃ , z − z∗
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Chapter 1

Introduction

1.1 Motivation

Control of rotary wing aircrafts represents a very challenging task due to the nonlinearities and inherent

instabilities present in such systems. The versatility of rotorcrafts allows them to perform almost any

task that no conventional aircraft can do, but this ability is ultimately associated to the control of its

stability characteristics, which are generally obtained via automatic control design (Curtiss Jr., 2003).

These stability and control properties come at the price of requiring complex control designs in order to

deal with these highly nonlinear aerospace systems.

Historically, classical linear control techniques have been sufficient to obtain reasonable control

responses of these type aerospace systems (Curtiss Jr., 2003). The evolution of the aerospace in-

dustry, and the consequent improvement of technologies, have increased the performance require-

ments of all systems in general, which has called for better control designs that can deal with more

complex systems, making linear control techniques insufficient to cope with these performance re-

quirements. Specifically, in the area of aerospace systems, a wide range of different nonlinear con-

trol techniques have been studied to deal with the nonlinear dynamics of such systems, from sin-

gular perturbation (Kokotović et al., 1999), feedback linearization (Brockett, 1978; Meyer et al., 1984;

Hunt et al., 1983), dynamic inversion (Buffington et al., 1993; Bugajski et al., 1990; Reiner et al., 1995;

Snell et al., 1992), sliding mode control (Sira-Ramı́rez et al., 1994), or backstepping control methods

(Khalil, 1996; Lee and Kim, 2001), to name a few. Neural Networks (NN ) are also included within

the realm of nonlinear control techniques, and seem to provide improved robustness properties under

system uncertainties.

Focusing in the system being treated in this thesis, in the past, helicopter control has been solved using

mechanical stabilizers, which has been demonstrated to be sufficient to perform simple stabilization

control tasks. Some of those mechanical systems are still in use in the majority of small helicopters,

but have been proved to be insufficient to cope with the more demanding and agile maneuvers that

are expected in the always expanding roles and missions of helicopters. Complex maneuvers such aerial

refueling, landing on small ships, decelerating approaches in poor weather conditions, to name few, would

be difficult, if not impossible to perform without the aid of stabilization and control augmentation, and the

use of high-gain, full authority systems (Tischler, 1987; Tischler, 1989). As the helicopter performance

requirements increased, it was necessary to introduce electronic stabilization, digital systems or high-gain

controls (Curtiss Jr., 2003) in order to generate adequate control responses, which in return require the

obtention of more detailed and sophisticated dynamic mathematical models.

1
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These same requirements of more detailed models represent a basic problem in control design, which is

to determine the mathematical modeling complexity required to adequately describe a physical system.

The modeling of many systems calls for high-order dynamic equations, which for the case of rotorcraft

systems, represents a unique challenge due to the involved rotatory parts. Generally, the presence of

parasitic parameters, such as small time constants, is often the source of an increased order and stiffness

of these systems (Naidu and Calise, 2001). The stiffness, attributed to the simultaneous occurrence of

slow and fast phenomena, gives rise to time scales, and the suppression of the small parasitic variables

results in degenerated, reduced order systems, that can be stabilized separately, thus simplifying the

burden of control design of high-order systems. The use of singular perturbation methods to simplify

the control burden parts from the assumption that the associated subsystem are each asymptotically

stable, but such assumption needs additional conditions that will guarantee the asymptotical stability

of the original nonlinear singular perturbed system for sufficient small singular perturbation parasitic

constants, which will have bounded in order to guarantee the stability properties among the different

time-scale subsystems.

This time-scale separation phenomena is quite common in aerospace systems, thus being usual the

use of singular perturbation methodologies to both provide control and analyze the analyze the stability

properties of such systems. Naidu and Calise (Naidu and Calise, 2001) give an extended survey of the

use of singular perturbed and time-scale control methods for aerospace systems which serves as the basis

for the literature review of singular perturbation and time-scale control methods in aerospace systems

that is conducted in section 1.3.2.

As will be described in later sections,several works have been conducted towards demonstrat-

ing the asymptotic stability properties of singularly perturbed systems (Saberi and Khalil, 1984;

Saberi and Khalil, 1985; Khalil, 1987), and all of them show a high degree of complexity required to

demonstrate the stability properties of the different time-scale subsystems. Some of them approach

the multi-parameter asymptotic stability analysis (Abed, 1985c; Abed, 1986; Desoer and Shahruz, 1986;

Kokotović et al., 1987) using similar composite stability methods of large scale dynamical systems

(Michel and Miller, 1977; Araki, 1978) based in Lyapunov stability methods, which will also be em-

ployed in this thesis, but without some of the restrictions encountered in the literature. For instance

Araki (Araki, 1978) presents a composite method for analyzing the stability of large-scale systems focus-

ing on the quadratic-order theorems using M-matrices, where the large-scale system is decomposed into

smaller subsystems, and proceed to make a two-step analysis, in which the resulting subsystems are first

analyzed, and secondly the obtained results are combined to reduce the property of the whole system,

by using Lyapunov stability theories, with the restriction that the presented theorems, although elegant

and easy to apply, suffer from the drawback that they can assure stability only for the systems with weak

interconnections. The asymptotic stability procedure here presented do not depend on the nature of the

interconnection properties among the reduced subsystems, and asymptotic stability properties are not

inferred from the asymptotic stability of the different reduced systems, but demonstrating the asymptotic

stability of the full singularly perturbed system by itself following the proposed step-by-step time-scale

methodology.

The work presented in this thesis approaches the problem of multi-parameter asymptotic stability anal-

ysis by extending the procedures defined by Kokotović (Kokotović et al., 1999) for the two-time-scale

singular perturbation problems, to the three-time-scale singular perturbation problem of an autonomous

helicopter on a platform, although the methodology here presented can be extended to any general non-

linear singular perturbed dynamical system, as it is demonstrated in the results presented in Appendix

C, where the asymptotic stability analysis is also demonstrated for more general three-time-scale model.

The main contribution of the thesis is that the proposed Top-Down and Bottom-Up methodology allows
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to determine, in a all-in-one simple step-by-step process, the control laws that guarantee desired closed

loop dynamics, provides also a methodology that constructs a composite Lyapunov function for the gen-

eral resulting closed-loop singularly perturbed system, which is also use to demonstrate the asymptotic

stability properties of the origin. These properties are also extended to semiglobal stability, by the defini-

tion in (Kokotović, 1992; Sussmann and Kokotović, 1991; Braslavsky and Miidleton, 1996), by providing

upper bounds on the parasitic singularly perturbed parameters for the entire range of admissible state

values, thus extending the domain of attraction to that same rage of admissible states.

The original motivation to this thesis comes from the work conducted by Sira-Ramirez

(Sira-Ramı́rez et al., 1994) that used a dynamical multivariable discontinuous sliding mode control strat-

egy for the stabilization of a nonlinear helicopter model in vertical flight which includes the dynamics

of the collective pitch actuators, and the work conducted by the authors over the past years towards

deriving a suitable control law, and the asymptotical stability analysis that demonstrates the validity

of the proposed control laws (Esteban et al., 2005a; Esteban et al., 2008a; Esteban et al., 2008b). The

use of singular perturbation methods to simplify the control system structure of helicopter models has

been considered in the past as seen in (Heiges et al., 1992; Njaka et al., 1994; Prasad and Lipp, 1993;

Hamidi and Ohta, 1995; Avanzini and de Matteis, 2001; López-Mart́ınez et al., 2007), to name few, but

to the knowledge of the author, the work conducted here, along with that conducted by Bertrand, Hamel

and Piet-Lahanier (Bertrand et al., 2008), that presented a stability analysis of a hierarchical controller

for an unmanned Aerial Vehicle, are the only investigations that theoretically address stability issues

for VTOL UAVs using singular perturbations theory, which is necessary to guarantee the bounds of the

selected parasitic constants. Is that necessity to demonstrate the asymptotic stability properties of the

selected helicopter model using singular perturbation formulation (Esteban et al., 2005a), that presents

the principal motivation for the work here conducted.

Due to the nature of the selected helicopter model, which represents a three-time-scale model, highly

coupled system structure, as seen in Figure 2.30, and the complexity involved in applying the exist-

ing multiparameter stability analysis tools for singularly perturbed multiparameter systems, which al-

though extensive and quite documented (Saberi and Khalil, 1984; Saberi and Khalil, 1985; Khalil, 1987;

Abed, 1985c; Abed, 1986; Kokotović et al., 1987), are mainly theoretic formulations, with a high degree

of complexity involved in the demonstrations that provide stability properties of the different time-scale

subsystems, it was clear that a simpler and easier strategy was to be sought. In addition to the com-

plex demonstrations, the available methods required the existence of appropriate Lyapunov function

candidates for each of the time-scale subsystem, which are extremely difficult to derive since they are

obtained at the same time that the fulfillment of the growth requirements among the time-scale subsys-

tems, that is, depending on the complexity of the system being analyzed, and the growth requirement

that must satisfy, thus making the selection of the Lyapunov function dependent of the selection of the

comparison functions that demonstrate the stability and interconnection properties among the time-scale

subsystems, that is the more complex the demonstrations, the more complex the Lyapunov functions

need to be, and thus more difficult to derive as seen in the example provided in (Kokotović et al., 1986;

Kokotović et al., 1987).

This motivated the author to pursue an analysis strategy that helped to analyze the asymptotic stability

analysis of multiple time-scale systems in a straight step-by-step procedure, that do not relay on obtaining

complex Lyapunov functions, since the Lyapunov structure is fixed a priori, and based on the natural

desired closed loop response of each resulting subsystem, as selected during the control design that used

the same philosophy, therefore making simpler to tackle the fulfillment of the growth requirements among

the different time-scale subsystems that guarantee the asymptotic stability of the full singularly perturbed

system, that is providing bounds on the singularly parasitic constants that guarantee the stability among
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the tim-scale subsystems. This methodology is not only limited to the three-times-scale problem here

treated, both for the helicopter model and the more general example, but to any N th-time-scale singularly

perturbed system as it will shown in later chapters.

This thesis is structured as follows: Chapter 1 provides a brief introduction to the motivation, and a

review of the literature for nonlinear control and in special to singular perturbation control in aerospace

systems; Chapter 2 provides a general description to helicopter dynamics, including the derivation of

the selected helicopter model; Chapter 3 describes the extension conducted from the general two-time-

scale singular perturbation formulation to a general multi-time-scale system by introducing the proposed

Top-Down and Bottom-Up Time-Scale Analysis; the proposed time-scale control strategy is developed

in chapter 4, which includes sensitivity analysis simulation results for the proposed control laws; the

stability analysis for the general case is conducted in chapter 5. Chapter 6 applies the derived stability

analysis to the model here studied; the considerations of unmodeled dynamics to the proposed control

laws is studied in Chapter 7; the conclusions are summarized in chapter 8, and the recommended lines

for the future work in chapter 9.

For conciseness of the thesis, a series of Appendices are presented in which relevant material for the

thesis is presented: the proposed test bench helicopter axial flight models are presented in Appendix A;

Appendix B presents the control strategy selected for the simplified example, while Appendix C presents

the asymptotic stability analysis for the simplified model, and finally some results for the asymptotic

stability analysis for the helicopter model are presented in Appendix D. The work presented in this

Appendixes, in special the work presented in Appendices B and C, have been very valuable to provide

the necessary generality to the methodology here presented, which can be applied to a wide range of

singularly perturbed systems.

1.2 Nonlinear Control in Aerospace Systems

This section provides a background to some of the different control theory approaches that are available

for nonlinear problems, from classical control methods to non-classical methods. This section does not

pretend to be a compilation of all existing control techniques that are applied to the aerospace systems,

but rather being a compilation of some of the techniques that the author has been exposed over the past

years.

1.2.1 Classical Control

Many approaches have been used over the years to solve the problem of automated control. Classic control

techniques try to obtain feedback control laws by conducting comprehensive analysis of the system model.

Some of these classic control techniques include design via root locus techniques, frequency response

techniques and state space techniques to name a few. Nise gives a detailed definition of all the classical

controllers described above in his reference book Control Systems Engineering (Nise, 1995). The author

will try to recap some of the definitions contained in (Nise, 1995) in the next paragraphs.

In the design via root locus, the designer is able to choose the proper loop gain to meet a transient

response specification by graphically analyzing both the transient and the stability information provided

by the root locus. Since the transient response is dictated by the poles at a point in the root locus,

this technique is limited to the transient responses and the steady-state error represented by points

along where the root locus are available. In order to improve these limitations, cascade compensators

are introduced in the form of ideal integral, or proportional-integral (PI ) controller, ideal derivative or
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proportional derivative (PD) controller, proportional-plus-integral-plus-derivative (PID) controller, lag

compensators, lead compensators, lag-lead compensators and feedback compensation.

Steady-state design compensators are implemented via PI controllers or lag compensators. PI con-

trollers add a pole at the origin, thereby increasing the system type. Lag compensators, usually imple-

mented with passive networks, do not place the pole at the origin but near it. Both methods add a zero

very close to the pole in order not to affect the transient response.

The transient response design compensators are implemented through PD controllers or lead com-

pensators. PD controllers add a zero to compensate the transient response, while lead compensators

add a pole along with the zero. Lead compensators are usually passive networks. We can correct both

transient response and steady-state error with a PID or lag-lead compensator. Both of these are simply

combinations of the previously described compensators.

Feedback compensation can also be used to improve the transient response, where the compensator is

placed in the feedback path. The feedback gain is used to change the compensator zero or the system’s

open-loop poles, giving the designer a wide choice of various root loci. The system gain is then varied to

move along the selected root locus to the design point. An advantage of feedback compensation is the

ability to design a fast response into a subsystem independently of the system’s total response. Other

classical approach is the design via frequency response. This approach follows the same lines of root locus

via gain adjustment with the difference that the tools used do not require a computer. Instead Bode

plots and Nyquist diagrams are used along side each other to provide stability and transient information

about the system that is used to design a desirable controller (Nise, 1995). Nyquist criterion is used to

determine if a system is stable by looking at the magnitude of the frequency response. Increasing the

phase margin reduces the percent of overshoot of the response, decreasing the bandwidth increases the

speed of the response, and the steady-state error is improved by increasing the low-frequency magnitude

responses.

Another classical method is the state-space design, in which the desired system’s pole locations are

specified and then a controller consisting of state-variable feedback gains is designed to meet these re-

quirements. Controller design consists of feeding back the state variables to the input of the system

through specified gains that were found by matching the coefficients of the system’s characteristic polyno-

mial with the coefficients of the desired characteristic polynomial. If the state variables are not available,

an observer is designed to emulate the plant and provide estimated state variables that will be used to

obtain the gains.

Today systems operate in wider regimes than those in which they were originally designed and therefore

the controllers need to be much more robust to be able to operate beyond the design envelope. Classic

control techniques lack the robustness that is necessary to approach the extreme situations that define

problems like the helicopter’s altitude regulation problem that has motivated this study. The classic linear

control techniques that were once sufficient to obtain reasonable control responses, fall short of today’s

industry requirements, in special when regulating the highly nonlinear and rotating mechanisms involved

in helicopters. Following sections describe some of the nonlinear tools employed to solve aerospace control

problems.

1.2.2 Nonlinear Control Methods in Aerospace

This section describes some of tools used in nonlinear control. Khalil (Khalil, 2002) lists in his Nonlinear

Systems textbook various common tools used for nonlinear design, such as linearization, integral control,

gain scheduling, feedback linearization, sliding mode control, Lyapunov redesign, backstepping, passivity-
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based control, and high gain observers. A brief description of each one of the methods without getting

into the details of the formulation is provided by (Khalil, 2002) and summarized below.

In the design via linearization, the controller is guaranteed to work over the neighborhood of the single

operating point that was used for the linearization. This limitation is extended to a wider range of

operating points with the gain scheduling method, by parameterizing several operating points by one or

more variables. The system is then linearized at the chosen points, and linear feedback controllers are

designed and implemented at each point. This creates a series of linear controllers that are activated by

monitoring the scheduling variables and hence being able to operate at different points of the envelope.

This is one of the most commonly used design tools in the aviation industry today, due to the simplicity

of the design and its capability to work at different operating points.

The integral control approach ensures asymptotic regulation under all parameters that do not destroy

the stability of the closed-loop. The integral action is introduced by integrating the regulation error

between the measured and desired states. By regulating the integrated error to be zero at equilibrium,

the feedback controller creates an asymptotically stable equilibrium point.

Feedback linearization is one of the most widely used methods when trying to control nonlinear systems

by taking a different perspective to linearization of the systems. The idea behind the feedback linearization

problem consists in the stabilization of the nonlinear state equation into a controllable linear state equation

by introducing terms in the controller to reduce or cancel the nonlinearities. Feedback linearization can

be divided in full-state linearization, where the state equation is completely linearized, and input-output

linearization, where the input-output map is linearized, and the state equation may be only partially

linearized.

In the sliding mode control approach, trajectories are forced to reach a sliding manifold in finite time

and to stay on the manifold for all future time. Motion on the manifold is independent of matching

uncertainties. By using a lower order model, the sliding manifold is designed to achieve the control

objective. The Lyapunov redesign uses a Lyapunov-like function of a nominal system to design an

additional control component that makes the design robust to large matched uncertainties. Both the

sliding mode control and the Lyapunov redesign produce discontinuous controllers, which could suffer

from chattering in the presence of delays or unmodeled high-frequency dynamics.

Backstepping is a recursive procedure that interlaces the choice of Lyapunov function with the design

feedback control. It breaks a design problem for the full system into a sequence of design problems

for low order subsystems, using this extra flexibility between the lower order and scalar subsystems

to solve stabilization, tracking and robust control problems under less restrictive conditions. Passivity

based controllers exploit passivity of the open-loop system in the design of feedback control by damping

injection. High-gain observers consider the fact that state feedback might not be available in many

practical problems and extends previous control techniques to output feedback.

These are some of the most important nonlinear methods that are available in the academic litera-

ture, but many other methods have emerged through the years by merging the best parts and pieces of

the above methods described with the power of Neural Networks (NN ) (Balakrishnan and Biega, 1996;

Jagannathan and Lewis, 1996; Kim and Calise, 1997; Prasad et al., 1999; Soloway and Haley, 2001),

fuzzy logic (Hartana and Sasiadek, 2002), Genetic Algorithms (GA) (Holland, 1975; Rechenberg, 1973),

State Dependent Riccati Equation methods (SDRE ) (Cloutier et al., 1996a; Cloutier et al., 1996b), or

θ − D methodologies (Xin and S.N., 2008; Xin et al., 2004), which all yielding very powerful methods

that are able to solve some of the more complex nonlinear problems. A brief description of some of these

methods is presented bellow.

Neural Networks have gained a lot of attention in the field of control over the last twenty years. Optimal
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control formulations often lead to two point boundary value problems (Bryson and Ho, 1975). For this

reason, except for a very special class of problems, like Linear Quadratic Regulator roblems (LQR), it

is quite difficult to solve for the controller in state feedback form. Moreover for nonlinear problems, the

solution depends on the initial conditions. In real-life problems, however, it is difficult to predict the

initial conditions a priori. Hence, it is necessary to obtain control functions that apply to an entire range

of initial conditions to retain the feedback nature of the solution. The method of dynamic programming

handles this problem by producing a family of optimal paths, or what is known as the field of extremals

(Bryson and Ho, 1975). One great drawback of the dynamic programming approach, however, is that

it requires a prohibitive amount of computation and storage in producing this entire field of extremals

(Bryson and Ho, 1975). NN provides a solution to the problem of covering the entire field of extremals.

This section intends to introduce some of the work done in the area of NN towards solving the highly

demanded nonlinear control problems.

NN have been used extensively in the control of lumped parameter systems, which includes control

of nonlinear plants. Various studies have realized neural network assisted controllers based on feed-

back linearization, dynamic inversion, reinforcement learning etc., in many fields like robotics, flight

vehicles, chemical processes, motors, automobiles etc. A survey paper (Hunt et al., 1983) is cited for

reference.

One of the most successful NN approaches is Adaptive Critic Neural Network (ACNN ) method

presented in Balakrishnan and Biega (Balakrishnan and Biega, 1996) and Balakrishnan and Saini

(Saini et al., 1997). Balakrishnan and Viega focus on the use of the Adaptive Critic Neural Networks

(ACNN ) architecture to obtain an optimal neurocontroller based in the dual network architecture formed

by an action neural network (ANN ) and a critic neural network (CNN ). The ANN maps the states of a

system to the control, while the second network, the CNN, captures the mapping between the states of a

dynamical system and the co-states that arise in an optimal control problem. The equations that satisfy

the optimality of the problem are solved with the help of NN. This makes it possible to synthesize the

closed loop controllers for this complex process. It also allows the philosophy of dynamic programming

to be carried out without the need for near impossible computation and storage requirements. Another

advantage of this neural network approach include the fact that no a priori assumptions about the form

of the feedback control are needed; i.e., one need not assume the control expressed in any particular form.

The consequence of this off-line computational method is that the resulting control is available to be used

as on-line state-feedback control for an entire envelope of initial conditions.

Balakrishnan and Saini (Saini et al., 1997) use the ACNN architecture to design a controller for auto

landing an aircraft. Balakrishnan and Han (Balakrishnan and Han, 2002) extend the ACNN formu-

lation to solve a terminal constraint optimal control problem using an expanded form of the ACNN

architecture where the optimization goal is for a trajectory in minimum time to reach a set of final

state constraints. The approach taken for the terminal constrain problem is to reformulate the state

and optimal control equations to change the independent variable to that of one of the former states,

generating a fixed final condition with respect to the independent variable. This sets a hard constraint

on the Hamiltonian equations so that the final conditions are met exactly through the one-dimensional

state equation, which is no longer invariant to the independent variable. This implies that a series of

ACNN pairs are used in sequence along the trajectory to account for the variance. This methodology has

been applied to a wide range of aerospace problems, from aircraft optimal control, helicopter control, or

high-angle of attack fighter maneuvers (Balakrishnan and Biega, 1996; Huang and Balakrishnan, 2005;

Balakrishnan and Esteban, 2001). The author conducted his Master Thesis in Aerospace Engineering in

this last topic, controllers for high angle of attack fighter airplanes (Esteban-Roncero, 2002) using ACNN

under the supervision of Professor S.N. Balakrishnan.
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Other NN methodology by Plummer (Plumer, 1996) touches a family of terminal control problems in

which he extends one of the most popular training algorithms for feed forward NN, backpropagation-

through-time, to address the limitation that the feedforward NN algorithms have when dealing with the

family of problems in which the cost function includes the elapsed trajectory-time. He approaches these

limitations by reforming the controller design as a constraint optimization problem defined over the entire

field of extremals for which the set of trajectory-times is incorporated into the cost which correspond

to standard backpropagation-through-time with the addiction of certain transversality conditions. The

new gradient algorithm based on these conditions, called time-optimal backpropagation-through-time, is

tested on two benchmark minimum-time control problems.

Jagannathan and Lewis (Jagannathan and Lewis, 1996) introduced a family of novel multilayer

discrete-time neural-net controllers for the control of a class of multi-input multi-output dynamical sys-

tems. The neural net controller includes modified delta rule weight tuning and exhibits an on-line learning

instead of an off-line, so that control is immediate with no explicit learning phase needed. The structure

of the neural network controller is derived using a filtered error/passivity approach in which the linear-

ity in the parameters is not required and certainty equivalence is not used, hence overcoming several

limitations of standard adaptive control. The stability analysis of the neurocontroller is done using the

Lyapunov’s direct method to guarantee the performance and the stability of the weight tuning algorithms

of the neural nets. They make use of the passivity based controller properties described above despite the

original system having not passivity properties, by using the neurocontroller to make the closed-loop sys-

tem passive. This allows that the additional unknown bounded disturbances do not destroy the stability

and tracking performance of the system.

Calise and Kim (Kim and Calise, 1997) demonstrated the power of the neural network within the realm

of nonlinear control systems, with specific focus on aircraft control. The strength of their design lays in

the implementation of feedback linearization along with NN as an alternative to gain scheduling, which

simplifies the problem of designing complex flight control system for high-performance fighter aircrafts.

Their design consists of a command and stability augmentation control system based on the feedback

linearization, that uses an off-line trained network to invert the nonlinearities, while an online trained

neural network is used to compensate for imperfections in the inversion and changes to the original

dynamics and/or failures in the controls surfaces. A stable weight adjustment rule for the weights of the

on-line neural network is also presented using a Lyapunov-like function.

Calise’s effort to demonstrate the power of merging nonlinear control theory with the NN ability to

model nonlinearities has yielded an extensive series of papers for a wide range of problems, the aerospace

realm being the one with the most contributions. From helicopters to reusable launch vehicles, Calise

and many more other authors have dedicated an incredible amount of work and resources to design

neurocontrollers that would be able to approach the reconfigurable control problem in an innovative and

efficient approach. Some of these novel works are introduced below.

In Calise (Prasad et al., 1999) shows, in an actual flight system of an unmanned helicopter, the po-

tential benefits of neural network direct adaptive control by designing an outer loop trajectory-tracking

controller. Calise, Johnson and Rysdyk (Johnson et al., ), use the X-33 Reusable Launch Vehicle tech-

nology demonstrator model to demonstrate a version of Calise’s neurocontroller. The specific adaptive

control method, called Pseudo-Control Hedging, is based in the concept of modifying a reference model

to prevent an adaptation law from adapting to saturation of the vehicle input characteristic such as

actuator position limits, actuator position rate limits and linear input dynamics. The same methodology

is applied by Calise and Johnson (Calise and Johnson, 2001) to a type of failures that led to a reduction

in total control authority of the X-33 model. They accomplish this by preventing the outer loop dynam-

ics to adapt to the inner-loop dynamics while operating at the control limits. Calise, Lee, and Sharma
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(Calise et al., 1998; Calise et al., 2000) show the approach taken to the RFC problem using a model of a

tailless fighter aircraft configured with multiple and redundant control actuation devices, which is later

tested in both a piloted simulation and in flight test on the X-36 aircraft.

A different NN approach is presented by Haley and Soloway (Soloway and Haley, 2001) in which they

propose a Neural Generalized Predictive Control (NGPC ) algorithm capable of real-time control law

reconfiguration, model adaptation, and the ability to identify failures in control effectiveness by using an

innovative user define cost function that can be associated to either the aircraft outputs or to the control

inputs. The NGPC algorithm operates in two modes, prediction mode, in which uses the aircraft model

to predict the aircraft’s response, and control mode in which the control input that minimized the user

specified function is passed to the aircraft as actuator position commands which then produce the desired

aircraft response. When failure simulations are introduced, such as frozen elevator, the NGPC algorithm

learns the changed dynamics and reconfigures to use alternative controllers, like symmetric ailerons to

stabilize the aircraft.

Bull, Kaneshige, and Totah (Kaneshige et al., 2000) introduce an innovative generic neural flight con-

trol and autopilots system to provide adaptive flight control, without requiring extensive gain-scheduling

or explicit system identification. The autopilot system is applied to a wide range of vehicle systems and

is formed by a generic autopilot, a neural flight controller and a mode control panel, and a flight director.

The generic guidance system performs automatic gain-scheduling using frequency separation, based upon

the neural flight control system’s specified reference model. The neural flight control architecture is based

on the augmented model inversion controller developed by Calise and Rysdyk (Calise and Rysdyk, 1998),

which is a direct adaptive tracking controller that integrates feedback linearization theory with both pre-

trained and on-line learning NN. Pre-trained NN provide estimates of the aerodynamics stability and

control characteristics required for model inversion. The on-line learning NN are used to generate com-

mand augmentation signals to compensate for the errors in the estimates and from the model inversion.

The online learning NN also provide additional potential for adapting to changes in aircraft dynamics

due to damage or failure. The mode control panel is the pilots’ interface with the generic autopilot, and

the flight directors, provide guidance commands to the pilot through the graphical display of pitch and

bank errors.

Reference (Idan et al., 2002) describes an intelligent fault tolerant flight control system that blends

aerodynamic and propulsion actuation for safe flight operation in the presence of actuators failures.

Fault tolerance is obtained by a nonlinear adaptive control strategy based on on-line learning NN and

actuator relocation scheme. The adaptive control block incorporates a recently developed technique

for adaptation in the presence of actuator saturation, rate limits and failure. The proposed integrated

aerodynamic/propulsion flight control system is evaluated in a nonlinear flight simulation.

Kim and Lee (Lee and Kim, 2001) propose a nonlinear flight control system using back-stepping and

a NN controller that is tested in a non-linear six-degree-of-freedom simulation for an F-16 aircraft. The

back-stepping controller is used to stabilize all state variables simultaneously without separating the fast

dynamics from the slow dynamics, while the adaptive NN controller is used to compensate for the effect

of the aerodynamic modeling errors, by assuming that the aerodynamic coefficients include uncertainty.

The Lyapunov stability theorem is used to demonstrate that the tracking errors and weights of NN

exponentially converge to a compact set under mild assumptions on the aerodynamic uncertainties and

nonlinearities.

Ferrari and Stengel (Ferrari and Stengel, 2002) take the approach of designing a nonlinear control

system that takes advantage of priori knowledge and experience gained from linear controllers, while

capitalizing in the broader capabilities of adaptive, nonlinear control theory and computational NN. The

importance of this novel approach lies in the fact that the gradients of the nonlinear control law represents
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the gain matrices of the equivalent locally linearized controllers by using a set of hypersurfaces expressed

as NN that represent satisfactory linear controllers designed over the plant’s operating range.

Other areas like fuzzy logic, originally introduced by Zadeh (Zadeh, 1965) in 1965, have demonstrated

innovative approaches combining information classification concepts in binary patterns, so that decisions

can be made using the reasoning associated to the complex human behavior, allowing high levels of

autonomy and adaptability, and being applied in a wide range of applications (Boverie et al., 1997).

Hartana and Sasiadek (Hartana and Sasiadek, 2002) present a sensor fusion for dead-reckoning mobile

robot navigation. Odometry and sonar measurement signals are fused together using extended Kalman

filter (EKF ) and Adaptive Fuzzy Logic System (AFLS ). Two different methods are used to adapt EKF,

the first uses two exponential data weighting functions to estimate the process and white noise covariance,

while the second method only uses the white noise covariance. The paper shows that the fused signal

of odometry and sonar measurements along with the EKF and the AFLS is more accurate than any of

the original signals considered separately, and the enhanced, more accurate signal, is used to successfully

guide and navigate the robot.

Green and Sasiadek (Green and Sasiadek, 2002) show the comparison results for tracking of a square

trajectory by a two-link flexible robot manipulator, using as comparison an inverse dynamics control

(IDC ) and fuzzy logic control (FLC ). A repetitive control technique is used to train a robot on the premise

that it must execute periodic motions so that its performance improves after each iteration. The results

show that while the repetitive learning inverse dynamics control (RLIDC ) achieves no improvement in

tracking, repetitive learning fuzzy logic control (RLFLC ) achieves greater precision where cyclic tracking

enables the fuzzy inference system to self-adapt and further reduce tracking errors.

Another point of view that uses natural selection of the species, are the Genetic Algorithms (GA), and

the Evolutionary Strategies, that were originally introduced by Holland in 1975 (Holland, 1975) and by

Rechenberg in 1973 (Rechenberg, 1973). Genetic algorithms take advantage of evolution and mutation

in order to solve technical optimization problems.

Optimal control techniques have been also used in the realm of aerospace system, but one of the main

problems encountered is that the optimal feedback control depends on the solution to the Hamilton-

Jacobi-Bellman (HJB) equation (Bryson and Ho, 1975). The HJB equation is extremely difficult to solve

in general, rendering optimal control techniques of limited use for nonlinear systems. Multiple suboptimal

control techniques for nonlinear control problems have been investigated in the past decades. A widely

used technique solves the nonlinear regulator problem in the State Dependent Riccati Equation (SDRE )

(Cloutier et al., 1996a; Cloutier et al., 1996b) method. This method turns the nonlinear equations of

motion into a linear-like structure, and therefore permitting the designer to use linear optimal control

method like LQR and H∞ design techniques in order to synthesis the associated control laws. This

methodology requires extensive online computation since it is necessary to solve the associated algebraic

Riccati equation at each sample time, which makes it difficult to implement in a real system. Some

alternative methodologies use Taylor series expansions based methods to solve the associated Riccati

equation, thus simplifying the online computational cost, but these techniques have problems related

with the initial required control efforts when the initial states are also large. An extended survey on

SDRE based techniques is presented in (Çimen, 2008).

An alternative control methodology to the Taylor series expansion based methodologies is the θ −D

approximation which was originally derived by Balakrishnan and Xin (Xin and Balakrishnan, 2002), and

extended to several aerospace systems (Xin and S.N., 2008; Xin et al., 2004). This control approach ob-

tains a closed-form solution based on approximations to the HJB equation and solves the large-control-

for-large-initial-states problem that occurs in some Taylor series expansion based models. In this article,

the singular perturbation methods are compared with a nonlinear controller synthesis (θ − D approx-
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imation) technique based on the approximate solution to the Hamilton-Jacobi-Bellman equation. The

author has also conducted some work with the θ − D methodology (Esteban et al., 2008b) using the

same helicopter problem here studied, by comparing the singular perturbation methodologies presented

in this thesis with the results obtained with the θ−D methodology, and comparable results were obtained

although further work will be conducted in the future

On the realm of helicopter control, many different nonlinear techniques have been employed trying to

cope with the challenging task of regulating the inherent instabilities present in such systems, although

some of these nonlinear control techniques have been already described in the review conducted above.

Pallet and Ahmad (Pallett and Ahmad, 1993) use an online two-layer adaptive neural networks to control

a miniature helicopter during hover. The on-line control learns and adapt to changes in the plant on-line.

Sira-Ramirez et al. (Sira-Ramı́rez et al., 1994) use a dynamical multivariable discontinuous feedback

control strategy of the sliding mode to regulate the altitude of a nonlinear helicopter model in vertical

flight. The proposed control strategy retaining the basic robustness features associated with sliding mode

control policies, and in addition results non-chattering input trajectories and controlled state variable

responses. Balakrishnan and Huang (Huang and Balakrishnan, 2005) use the adaptive critic method

ACNN previously defined, in a helicopter platform equivalent to the one used in this thesis.

Kaloust et al. (Kaloust et al., 2002) presents a robust control scheme for application to helicopters in

vertical flight mode to guarantee altitude stabilization. A nonlinear helicopter model similar to the use in

this thesis is used to derive the proposed control in which Lyapunov’s direct method is used to establish

the overall system stability. Tee et al. (Tee et al., 2008) propose a robust adaptive neural network (NN )

control for helicopters in vertical flight, similar to the one used in this thesis, with dynamics in single-

input-single-output (SISO) nonlinear nonaffine form. Based on the use of the implicit function theorem

and the mean value theorem, they propose a constructive approach for adaptive NN control design with

guaranteed stability. They consider both full-state and output feedback cases, in which it is shown that

the output tracking error converge to a small neighborhood of the origin, while the remaining closed-loop

signals remain bounded. Recall that these five helicopter control strategies, (Pallett and Ahmad, 1993;

Sira-Ramı́rez et al., 1994; Huang and Balakrishnan, 2005; Kaloust et al., 2002; Tee et al., 2008), use a

nonlinear helicopter model in vertical flight equivalent to one used in this thesis, and all of them propose

diverse solutions for the control strategy employed to regulat the vertical position of the helicopter model

mounted on a stand.

Frazzoli et al. (Frazzoli et al., 2000) present a tracking controller for an underactuated small helicop-

terdynamics, based on a backstepping procedure. The control design provides asymptotic tracking for an

approximate model of small helicopters, and bounded tracking when more complete models are consid-

ered. The control strategies are simulated in both point stabilization and aggressive maneuver tracking.

Shim et al. (Shim et al., 1998) compare three different control methodologies for helicopter autopilot

design: linear robust multivariable control, fuzzy logic control with evolutionary tuning, and nonlinear

tracking control. The control design is based on nonlinear dynamic model with a simplified thrust-torque

generation model which is valid for hovering and low velocity flight.

Koo and Sastry (Koo and Sastry, 2002) present an output tracking controllers based on exact and

approximate input-output linearization of a rigid body helicopter based on the Newton-Euler equations.

By neglecting the couplings between moments and forces, they show that the approximated system with

dynamic decoupling is full state linearizable by choosing positions and heading as outputs, and bounded

tracking is achieved by applying the approximate control.

Walker et al. (Walker et al., 1999), and Walker (Walker, 2003), describe the design and testing of

longitudinal and lateral controllers for the Bell 205 helicopter. The controllers are designed using H∞

optimization in conjunction with low order linearizations taken from a non-linear flight mechanic model.
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Flight test results are also included in which decoupled responses were obtained, and desired handling

qualities achieved, and the bandwidths achieved in flight were close to those predicted by the linear

analysis.

Kim and Shim (Kim and Shim, 2003) present a hierarchical flight control system for unmanned aerial

vehicles, where the proposed system executes high-level mission objectives by progressively substantiating

them into machine-level commands. The acquired information from various sensors is propagated back to

the higher layers for reactive decision making. These control strategies have been successfully implemented

on a number of small helicopters.

Isidori et al. (Isidori et al., 2003) consider the problem of controlling the vertical motion of a nonlinear

model of a helicopter, while stabilizing the lateral and horizontal position and maintaining a constant

attitude. The controller is tested under a situation in which is required to synchronize the vehicle motion

with that of an oscillating platform, such as the deck of a ship in high seas. This is achieved by providing

a reference to be tracked of sinusoidal nature, and assuming that the tracking reference is not to be

available to the controller. Simulation results show the effectiveness of the method and its ability to cope

with uncertainties on the plant and actuator model.

Dzul et al. (Dzul et al., 2004) design and implement a controller of a Lagrangian based small-scale heli-

copter which is mounted on a vertical platform. The control is obtained by classical pole-placement tech-

niques for the yaw dynamics and adaptive pole-placement for the altitude dynamics. Mahony and Hamel

(Mahony and Hamel, 2004) approach the control of an idealized model of a scale model autonomous he-

licopter, by first obtaining an a priori bound on the tracking performance, for an arbitrary trajectory.

The control strategy uses backstepping techniques using an approximate model in which the small body

forces that cannot be directly incorporated into the control design are neglected. The closed-loop perfor-

mance of the full system, including the small body forces, is analyzed with a derived Lyapunov function,

which provides a priori bounds on initial error and the trajectory parameters that guarantees acceptable

tracking performance of the system.

Marconi and Naldi (Marconi and Naldi, 2007) consider the problem of controlling the vertical, lateral,

longitudinal and yaw attitude motion of a helicopter along desired arbitrary trajectories with only re-

strictions on the time derivatives imposed by the functional controllability of the system. The nonlinear

control strategy presented use a combination of feedforward control actions and high-gain and nested

saturation feedback laws, which succeeds in enforcing the desired trajectories robustly with respect to

uncertainties characterizing the physical and aerodynamical parameters of the helicopter.

1.3 Singular Perturbation Literature Review

1.3.1 Singular Perturbation in General

As described by Naidu and Calise (Naidu and Calise, 2001) one of the most important problems found

in the theory of systems and control is the mathematical modeling of a physical system. The realistic

representation of many systems calls for high-order dynamic equations. The presence of some parasitic

parameters, such as small time constants, masses, resistances, inductances, capacitances, moments of

inertia, Reynolds number, etc, is often the source for the increased order and stiffness of these systems.

The presence of these small parasitic parameters appear multiplying time derivatives or, in more disguised

form, due to the presence of large feedback gains and weak coupling.

The principal purpose of the singular perturbation approach is to provide an analysis and design tool

that alleviates the high dimensionality and ill-conditioning resulting from the interaction of slow and
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fast dynamic modes. Is this simultaneous occurrence of slow and fast phenomena, produces both the

stiffness in the dynamical systems, and gives rise to time scales. The systems in which the suppression of

a small parameter is responsible for the degeneration (or reduction) of dimension (or order) of the system

are labeled as singularly perturbed systems, which are a special representation of the general class of

time scale systems. The curse of dimensionality coupled with stiffness poses formidable computational

complexities for the analysis and design of multiple time scale systems. This time-scale approach is

asymptotic, that is, exact in the limit as the ratio ε of the speeds of the slow versus the fast dynamics

tends to zero. When ε is small, approximations are obtained from reduced-order models in separate time

scales (Saksena et al., 1984), and this separation of time scales helps to reduce the order of complexity

of the systems being controlled.

In the realm of control, two difficult task must be accomplished by a control engineer in order to

guarantee the design of a proper control strategy that will regulate the system being studied. The first

problem deals with the modeling of the system to be controlled. Modeling of systems having in mind

that these systems are pursued to be controlled, have the peculiarity that the model should not be

more detailed than required by the specific control task, while at the same time, the extent of necessary

detail is not known before the control task is accomplished. Some of the common control tasks are

optimal regulation, tracking and guidance, which are generally accomplished in the presence of unknown

disturbances, parameter variations and other uncertainties, therefore, the control system must possess

a sufficient degree of insensitivity and robustness (Kokotović, 1984). Singular perturbation techniques

tackles this problem by legitimizing the long time used ad hoc simplifications of dynamic models among

the control engineers by allowing to neglect the parasitic parameters which, in return, increase the

dynamic order of the model, but at the same time, the proposed time-scale analysis tool must help to

improve the oversimplified design by dividing the analysis in two steps. The first step provides a simplified

design which captures the dominant phenomena, while the disregarded phenomena, if important, is to

be treated in the second step.

The known asymptotic expansions into reduced (outer) and boundary layer (inner) series, becomes the

main characteristic of singular perturbation techniques. In general, most control systems are dynamic,

and the decomposition into stages is dictated by a separation of time scales, where the reduced model

represents the slowest phenomena which in most applications are dominant, and Boundary layer models

evolve in faster time scales and represent deviations from the predicted slow behavior. The goal of

the second, third, and later design stages is to make the boundary layers and sublayers asymptotically

stable, so that the deviations rapidly decay. The separation of time scales also eliminates stiffness

difficulties and prepares for a more efficient hardware and software implementation of the controller

(Kokotović, 1984).

Singular perturbation theory represents a traditional tool of fluid dynamics and nonlinear mechanics,

which embraces a wide variety of dynamic phenomena possessing slow and fast modes. Singular Pertur-

bations in Mathematics and Fluid Dynamics Singular perturbations has its birth in the boundary layer

theory in fluid dynamics due to Prandtl (Prandtl, 1904). In a paper, given at the Third International

Congress of Mathematicians in Heidelberg in 1904, he pointed out that, for high Reynolds numbers, the

velocity in incompressible viscous flow past an object changes very rapidly from zero at the boundary

to the value as given by the solution of the Navier-Stokes equation. This change takes place in a region

near the wall, which is called the boundary layer, the thickness of which is proportional to the inverse

of the square root of the Reynolds number. Boundary-layer theory was further developed into an im-

portant topic in fluid dynamics (van Dyke, 1975; Kaplun et al., 1967). The term singular perturbations

was first introduced by Friedrichs and Wasow in the 1940s (Friedrichs and Wasow, ). In Russia, mainly

at Moscow State University, research activity on singular perturbations for ordinary differential equa-
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tions, originated and developed by Tikhonov in the 1950s (Tikhonov, 1952) and his students, especially

Vasil’eva (Vasil’eva, 1963), continues to be vigorously pursued even today (Vasil’eva et al., 1995). An

excellent survey of the historical development of singular perturbations is found in a book by O’Malley

(O’Malley Jr, 1991). Other historical surveys concerning the research activity in singular perturbation

theory at Moscow State University and elsewhere can are found (Vasil’Eva, 1976; Vasil’Eva, 1994).

Singular perturbation and time-scale methods have been applied to a wide range scientific branches,

from aerospace systems, to electrical systems and electronics, structures and mechanics, robotics, chemi-

cal reactors, soil mechanics, celestial mechanics, quantum mechanics, thermodynamics, thermoelasticity,

elasticity, lubrication, vibrations, renewal processes, agricultural engineering, ecology, biology, and the

list could continue, where (Naidu, 2002) can be consulted for a detailed survey on the use of singular per-

turbations and time scales. Among all these areas, it is quite interesting the use of singular perturbations

in the realm of biology modeling, in special the research conducted to analyze the predator-prey theory

by Deng et al. (Deng, 2001) where considerations are given to a basic food chain model satisfying the

trophic time diversification hypothesis which translates the model into a singularly perturbed system of

three time scales that it is used to provide rigorous but dynamical explanations as to why basic food chain

dynamics can be chaotic. Later works of the same authors (Deng and Hines, 2002), provide that assum-

ing that the reproduction rate ratio of the predator over the prey is sufficiently small thus resulting in a

basic tri-trophic food chain model. The use of singular perturbation time-scale analysis permit to study

the different interactions among the well established predator pray models, in which the top-predator

is considered the slowest of the three time-scales, the predator model is faster than the top-predator,

and slower than the prey, which represents the fastest of the three-time-scale models, and where the

reproduction ratio rates are considered as the parasitic constants that define the time-scales. The use

of such singularly perturbed models allows them to demonstrate that a singular Shilnikov’s saddle-focus

homoclinic orbit can exist as the reproduction rate ratio ε of the top-predator over the predator is greater

than a modest value. In a sequel of his work, Deng and Hines, the singular perturbation and time-scale

analysis allows them to investigate a new chaos generating mechanism in a basic food chain model and

determine the ecological parameter ranges in which this type of chaos occurs, which otherwise, without

the existence of these three-time-scale singularly perturbed methods, will be extremely difficult to analyze

(Deng and Hines, 2003).

In the realm of biology is also interesting the study by Krupa et al (Krupa et al., 2008) of mixed-

mode dynamics that represent a complex type of dynamical behavior that has been observed both,

numerically, and experimentally, in numerous prototypical systems in the natural sciences. They use

the compartmental Wilson-Callaway model for the dopaminergic neuron as an example of a system that

exhibits a wide variety of mixed-mode patterns upon variation of a control parameter. By using singular

perturbation and time-scales, the problem can be analyzed from a geometrical point of view, which permits

to observe that the mixed-mode dynamics is caused by a slowly varying canard structure. Similarly,

Krupa et al (Jalics et al., 2010) present a mathematical study of some aspects of mixed-mode oscillation

(MMOs) dynamics in a three time scale system of ODEs as well as analyze related features of a biophysical

model of a neuron from the entorhinal cortex, which, thanks to the use of singular perturbation, allows

them to reduce the dimensionality of the neuronal model from six to three dimensions which permits

them to investigate a regime in which MMOs are generated, which motivates the three-time-scale model

system used.

The assimilation of singular perturbation techniques in control theory is more recent that in the field of

fluid dynamics, and is rapidly developing, as seen by the large amount of surveys conducted, where

for completeness only few of them are here referenced (Kokotović et al., 1976; Saksena et al., 1984;

Kokotović, 1984; Kokotović, 1985; Naidu, 2002). Singular perturbation techniques have been widely
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used in many control problem areas, from open loop optimal control (Kelley, 1973; Cliff et al., 1992), to

closed-loop optimal control which has provided some very elegant results for linear systems leading to a

matrix Riccati differential or algebraic equations (Moerder and Calise, 1984; Moerder and Calise, 1985b;

Moerder and Calise, 1985a), to high-gain feedback problems, observers, stochastic systems, H∞, adap-

tive control, or sliding-mode control, to name few. Singular perturbation and time-scale analysis can be

therefore viewed more like an analysis and design tool that alleviates the high dimensionality and ill-

conditioning resulting from the interaction of slow and fast dynamic modes, therefore allowing to reduce

the dynamic order of the studied models, thus permitting the use of control strategies that otherwise

would difficult, if not impossible, to implement. Some of the control strategies used with singularly

perturbation and time-scale analysis are described bellow.

Saberi and Khalil propose a composite control designed for stabilization and regulation of a class of non-

linear singularly perturbed systems by establishing well-posedness of the full regulator problem, providing

explicit upper and lower bounds on a cost function, and upper bounds on the perturbation parameter ε are

also provided (Saberi and Khalil, 1985; Saberi and Khalil, 1984). Khorasani and Pai addresses feedback

linearization of full order nonlinear system via that of reduced-order systems, and show improvements for

estimating the upper bound of the perturbation parameter and the region of attraction while studying

the asymptotic stability properties of multiparameter singularly perturbed systems by introducing high

order corrections on the in the model (Khorasani and Pai, 1984; Khorasani and Pai, 1985)

Oh and Khalil (Oh and Khalil, 1997) stabilize a class of nonlinear systems using singular perturbation

by using a globally bounded output-feedback variable structure controller with a high gain observer for

a feedback-linearizable minimum-phase nonlinear system in the presence of unknown disturbance. The

high-gain observer is used to estimate derivatives of the tracking error while rejecting the effect of the

disturbances. The results is the design of a globally bounded output-feedback variable structure controller

that ensures tracking of the reference signal in the presence of unknown time-varying disturbances and

modeling errors.

Chen (Chen, 2002) proposes a globally exponentially stabilizing composite feedback control for a general

class of nonlinear singularly perturbed systems, where the chosen design manifold becomes an exact

integral manifold and the trajectories of the closed-loop systems, starting from any initial states, are

steered along the integral manifold to the origin for all sufficiently small singular perturbation parameters

ε. Two appropriate Lyapunov functions are chosen, one for the reduced-order system, and the other for

boundary layer system and then forming a composite Lyapunov function to investigate the stability for

the full-order nonlinear system.

Abed has conducted an extensive amount of work related to demonstrate the stability

properties of multiparameter systems (Abed, 1985a; Abed, 1985d; Abed, 1985e; Abed, 1985b;

Abed and Silva-Madriz, 1988; Abed, 1986). In (Abed, 1985b) presents time-scale separation and sta-

bility of linear time-varying and time-invariant multiparameter singular perturbation problems, in which

derives upper bounds on the small parasitic parameters ensuring the existence of an invertible, bounded

transformation exactly separating fast and slow dynamics. The study of the time-varying case it is re-

quired the two-time-scale methodology introduced by (Khalil and Kokotović, 1979b), which yields that

the mutual ratios of the small parameters are bounded by known positive constants. Abed also derives the

parameter bounds ensuring that the system in question is uniformly asymptotically stable, which permit

to facilitate the derivation of these latter bounds. The concept of strong D-stability is also introduced and

shown to greatly simplify the stability analysis of time-invariant multiparameter problems. The concept

is extended in (Abed, 1986) where Abed defines that a system F is said to be D-stable if the eigenvalues

of DF have negative real parts for any diagonal matrix D with positive diagonal elements. Abed also

defines that a matrix is strongly D-stable if it is D-stable and if every sufficiently small perturbation of
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the matrix is also D-stable. The concept proves a stability theorem for time-invariant multiparameter

singular perturbation problems applied to two time scale as well as multiple time scale systems, regardless

of the relative magnitudes of the singular perturbation parameters, assuming strong block D-stability of

an associated boundary layer system. He also shows that for linear time-invariant systems the bounded

mutual ratios assumption can be lifted, and typically less conservative parameter estimates are obtained

(Abed, 1985e).

Robustness analysis has been extensively studied to cope with the uncertainty of parameters, where

for instance, in (Khorasani, 1989), robustness is studied for a feedback stabilization of a nonlinear sys-

tem subject to two sources of uncertainties, uncertainty of parameters and unmodeled high frequency

dynamics, while in (Shi et al., 1998) presents the results for robust stability and robust disturbance

attenuation with norm-bounded parameter uncertainties in both state and output relations. Ioannou

(Ioannou and Tsakalis, 2002) proposes a new direct adaptive control algorithm which is robust with re-

spect to additive and multiplicative plant unmodeled dynamics. The algorithm is designed based on the

reduced order plant, which is assumed to be minimum phase and of known order and relative degree,

but is analyzed with respect to the overall plant which, due to the unmodeled dynamics, may be non

minimum phase and of unknown order and relative degree.

More recent robustness results using singular perturbation techniques can be seen in

(Christofides, 2000), where Christofides et al. consider nonlinear singularly perturbed systems with

time-varying uncertain variables, for which the fast subsystem is asymptotically stable and the slow

subsystem is input/output linearizable and possesses input-to-state stable (ISS ) inverse dynamics. They

propose a robust output feedback controller that ensures boundedness of the state and enforces robust

asymptotic output tracking with attenuation of the effect of the uncertain variables on the output of the

closed-loop system. Chakrabortty et al. (Chakrabortty and Arcak, 2007; Chakrabortty and Arcak, 2008;

Chakrabortty and Arcak, 2009) propose also a robust redesign technique which recovers the trajectories

of a nominal control design in the presence of additive input uncertainties by using a high-gain filter

and employing the fast variables arising from this filter in the feedback control law to cancel the effect

of the uncertainties in the plant. Singular perturbation and time-scale analysis is used to prove that

the trajectories of the redesigned system approach those of the nominal system when the filter gain is

increased.

The high-gain feedback is a source for singular perturbation behavior of any physical sys-

tem. In (Saberi, 1987), a stabilizing high-gain dynamic output feedback controller with almost-

disturbance-decoupling property is designed for a class of square-invertible and minimum phase

systems. See reference (Dragan and Halanay, 1987) for stabilizing a linear system by using high-

gain feedback using procedures similar to the stabilization of singularly perturbed systems. See

(Alvarez-Gallegos and Silva-Navarro, 1997; Heck, 1991; Ahmed et al., 2005) for addressing robust

asymptotic stability of a class of nonlinear singularly perturbed systems using sliding-mode control tech-

niques.

The use of singular perturbation and time-scale analysis although is generally applied to two-time-

scale models, it is not limited to these systems, and many more works in the literature are ori-

ented towards large scale or multiparameter singularly perturbed systems. Khalil and Kokotović

(Khalil and Kokotović, 1979a) extended the singularly perturbed theory to systems with several small

parameters which can change the system order, and discussed the difficulties that arise when testing the

boundary layer stability in multiparameter linear problems, and test their theories to linear quadratic op-

timal control and Nash game problems. Winkelman et al. (Winkelman et al., 1980), present a time-scale

separation procedure which is applied to a three machine interconnected power system modeled with flux

linkage and voltage regulator dynamics, that provided reduced models which yielded good eigenvalue and
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time response approximations of the original system.

Kotovic (Kokotović, 1981) extended the singular perturbation and time-scales philosophy to the analysis

of large-scale systems, in which historically it was assumed that the model studied had some known

diagonal dominance properties which permitted eliminate the burden of properly modeling these large-

scale systems. These assumptions are only acceptable for small size systems, loosing too much of the

information that appears in the large-scale systems, therefore proposing the use of the standard singular

perturbation theory, such that instead of assuming the existence of N diagonally dominant blocks, it is

possible to justify one strongly coupled slow core and N weakly coupled fast subsystems.

Khalil (Khalil, 1981) extends the study of the stability of nonlinear, multiparameter, singularly per-

turbed systems, recalling that the stability properties of reduced-order and boundary-layer systems can

be used to obtain a Lyapunov function for the singularly perturbed system and an estimate of its do-

main of attraction by deriving sufficient conditions that guarantee the asymptotic stability of a class

of nonlinear singularly perturbed systems with several perturbation parameters of the same order, and

provide estimates of the region of attraction and bounds on the small parameters.

Ladde and Šiljak (Ladde and Siljak, 1983) propose a scheme for order-decomposition and hierarchial

aggregation of small parameters according to their order, for multiparameter singular perturbation of

linear systems, when dealing with singular perturbation models in which, due to the fact that there are

more than one small parasitic parameter representing physical constants, becomes necessary the use of

multiple time-scales assumptions.

Abed (Abed, 1985c) derives the recursive formulae which yield asymptotic expansions for the eigen-

values of multiparameter singular perturbation problems, where the formulae follow readily from an

exact expression for the eigenvalues which involves an implicit matrix function. The resulting implicit

function satisfies an algebraic matrix Riccati equation reminiscent of a similar equation of the single

parameter theory, and also demonstrate the block D-stability criterion concept for asymptotic stability

(Khalil and Kokotović, 1979b) for multiparameter singularly perturbed systems.

Wang et al. (Wang et al., 1994) propose a series of perturbation techniques for the decomposition of

near-optimal regulators for linear systems with multiparameter and multi-time scale singular perturba-

tions. These near-optimal regulators have no knowledge of the perturbation parameters, which reduces

the computation in regulator synthesis. For the case of multiparameter singular perturbations, the near

optimal control is a cascade connection of separately designed slow and fast subregulators, while for the

case of multitime scale singular perturbations, the near-optimal control is hierarchically composed of

N + 1 subregulators, in which a parallel algorithm is provided for designing the different subregulators

separately.

Pan and Başar (Pan and Başar, 1995) obtain the necessary and sufficient conditions for the existence

of approximate saddle-point solutions in linear-quadratic zero-sum differential games when the state

dynamics are defined on three time scales. They shown that under perfect state measurements, the

original game can be decomposed into three subgames, denoted as slow, fast and fastest. The composite

saddle-point solution of the resulting three subgames make up the approximate saddle-point solution of

the original game. The conditions are obtained for the minimizing and maximizing player goals, and

for both the finite and infinite-horizon cases, providing direct applications in the H∞-optimal control of

three-time scale singularly perturbed linear systems under perfect state measurements.

Mukaidani et al. (Mukaidani et al., 2003) consider the linear quadratic optimal control problem for

multiparameter singularly perturbed systems in which N lower-level fast subsystems are interconnected

through a higher-level slow subsystem, and develop a new method to design a near-optimal controller

which does not depend on the unknown small parameters. They show that the resulting controller
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achieves an O ‖ µ ‖2 approximation to the optimal cost of the original optimal control problem.

Grammel (Grammel, 2004) presents an order reduction procedure for nonlinear control systems with

multiple time scales. A limit system for the slowest motion describing the situation that all singular

perturbation parameters vanish is constructed using a refined two-scale averaging method in a way that

allows a re-iteration. It is shown that for the case in which the control range vanishes, the results reduce

to the well-known Tychonoff theorem on order reduction for singularly perturbed ODEs.

1.3.2 Singular Perturbation in Aerospace Systems

Trying to conduct n review of the literature of singular perturbation methods applied to aerospace

systems becomes a challenging task due to the extensive work conducted, that can be traced back to

the early works of Prandtl (Prandtl, 1904) the early 20th century, to the work conducted by the author

(Esteban et al., 2005a; Esteban et al., 2008a; Esteban et al., 2008b) and by Bertrand, Hamel and Piet-

Lahanier (Bertrand et al., 2008), related to the theoretically addressing of stability issues for VTOL

UAVs using singular perturbations theory. Trying to compile a complete review would be an impossible

task, that would not match the great literature reviews that have been already conducted, in special

the one by Naidu and Calise (Naidu and Calise, 2001), which provides an extended and excellent survey

on the use of singular perturbed and time-scale control methods for aerospace systems. This section,

rather than trying to create new literature reviews of the methods employed in this thesis, is based

on the excellent existing reviews (Naidu and Calise, 2001; Naidu, 2002) and tries only to summarized

them, making special emphasis on those works that have specially influenced, and helped, the author

throughout the work conducted in these past years, and furthermore, have raised enough interest and

suggested many ideas that have not been covered in this thesis, for obvious time and space limitations,

but that will surely be tackled in future works of the author.

The application of singular perturbation to aerospace systems was first applied to solve complex flight

optimization problems in the late 1960s. An excellent account of the ”historical development of techniques

for flight path optimization of high performance aircraft” is found in the NASA report by Mehra et al.

(Mehra et al., 1979) in the late 1970s, that provides an extensive account of the ”historical development

of techniques for flight path optimization of high performance aircraft”. The report starts with the

introduction of the work conducted by Kaiser (Kaiser, 1944) on the vertical-plane minimum-time problem

and reviews other works conducted by Miele (Miele, 1950), and Kelley (Kelley, 1959). In the horizontal-

plane, minimum-time problem, the report reviews the works of Connor (Connor, 1967) which extends

the existing closed-form solution of the optimal straight-line trajectories within the atmosphere to the

case of a lateral maneuver at constant height, and Bryson and Lele (Bryson Jr and Lele, 1969) that

present the thrust, bank angle, and angle-of-attack control laws for an aircraft to turn through a desired

heading angle using minimum fuel, while staying at constant altitude, and starting and ending with

specified velocities. In the three-dimensional, minimum-time problem, important contributions were

made by Kelley and Edelbaum (Kelly and Edelbaum, 1986), Hedrick (Hedrick and Bryson, 1971) and

Bryson (Bryson, 1971), in which solve supersonic airplane minimum time turns at constant altitude,

determining thrust, bank angle and angle of attack programs with optimal control theory. Kelley and

Lefton et al. (Kelley and Lefton, 1972) present a family of variable-altitude turns obtained by numerical

integration in the reduced-order approximation for a hypothetical supersonic aircraft, including the effects

of constraints on altitude, dynamic pressure, Mach number, lift coefficient, and normal load factor.

As described by Naidu and Calise (Naidu and Calise, 2001), singular perturbation analysis in flight

mechanics is intimately connected with the concept of energy-state approximation, first introduced by

Kaiser (Kaiser, 1944), to deal with the vertical-plane minimum-time problem. Kaiser introduced the
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notion of resultant height, which is today called energy height or specific energy, as the sum of an

aircraft’s potential and kinetic energy per unit weight. An excellent account of the connection of Kaiser’s

(Kaiser, 1944) early work and that of singular perturbation analysis of aircraft energy climbs can be

found in the revisited article by Merritt et al. (Merritt et al., 1985), where minimum-time and distance-

climb trajectories are compared with the original results for both the minimum-time calculations and the

distance climbs.

It can be seen by the extensive literature, that the use of energy-state approximation in both two- and

three-dimensional optimal trajectory analysis was extensively used until the late 1960s as it can be seen in

the works of Rutowski (Rutowski, 1954), and later by Bryson et al. (Bryson, 1968), in which energy state

approximation for supersonic aircraft performance optimization with extension to maximum range prob-

lems, and Hedrick and Bryson (Hedrick and Bryson Jr, 1972) which apply energy-state approximation

to minimum-time three-dimensional turns for a particular aircraft capable of speeds up to Mach number

two for a series of maneuvers where the change in heading-angle and/or final energy are specified.

The specific investigation on the application of the theory of singular perturbation and time-scales to

aerospace systems began in the early 1970s with Kelley (Kelley, 1970b) which considers the use of sin-

gular perturbations to obtain simplest variational problems that can be solve approximately in terms of

a reduced-order solution plus boundary layers at each end, therefore proposing this as an alternative to

asymptotical expansions used to obtain approximate solution of optimal trajectory and control problems.

Mehra et al. (Mehra et al., 1979) indicated in his study of the application of singular perturbation the-

ory to develop a hierarchical real-time algorithm for optimal three-dimensional aircraft maneuvers that

Kelley and his associates (Kelley, 1970b; Kelley, 1973; Kelly and Edelbaum, 1986) in the early 1970s,

were the first to apply the theory of singular perturbations to aircraft trajectory optimization problems

(Naidu and Calise, 2001). Kelley (Kelley, 1973) also extended the energy type of approximation to air-

craft flight in terms of singular perturbation theory to three-dimensional maneuvers by first studying

differential equations arising in optimal control of fairly general form but low order, and then extend the

results to the attitude dynamics for optimal flight of a rocket in vacuum. Finally, optimal aircraft flight

in various reduced-order approximations is investigated thus demonstrating that the use of reduced-order

approximation facilitates numerical computations by reducing the number of multiplier initial values that

must be determined simultaneously and by improving the conditioning of the differential equations.

Kelley was the first to suggest the use of an artificial small parameter to provide a singular perturbation

structure. This analysis was later called forced singular perturbation analysis by Shinar and Farber

(Shinar and Farber, 1984), where they analyzed the time-optimal pursuit-evasion game in the horizontal

plane between two airplanes by applying the technique of forced singular perturbations (FSPT ). They

show that by assuming multiple time scale separation, a zeroth-order closed-form solution is obtained,

which permits the use of realistic aerodynamic and propulsion data, which otherwise, without the time-

scale separation, would be extremely difficult to include. Kelley (Kelley, 1971a) also uses multiple time-

scales to conduct flight path optimization, discussing decoupling of high order three dimensional aircraft

flight problem into several low order problems.

Ashley (Ashley, 1967) first suggested the use of multiple time scales in vehicle dynamic analysis by

proposing multiple scaling as a systematic means for determining when motions occurring with distinctly

different characteristic times can be decoupled during the analytical study of flight vehicle performance

and dynamic behavior (Naidu and Calise, 2001). Ashley presented the basis for separating the problems

of performance and dynamic response by identifying slowly varying control inputs and high lift-to-drag

ratio, which results in temporarily omission of damping terms, thus defining a simple parameter whose

smallness permits the short-period and phugoid modes to be separated, thus yielding approximate solu-

tions for the frequency and decay rate of the short period.
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In (Kelly and Edelbaum, 1986) three-dimensional maneuvers, both energy climbs and energy turns

are addressed via singular perturbation by Kelly, and later theoretical works addressed problems for a

two-state system (Kelley, 1970b) and horizontal plane control (Kelley, 1970a) of a rocket vehicle flight

optimization using a model that includes rigid body degrees of freedom in boundary layer approxima-

tion to attitude transients. Other problems considered by Kelley were energy state models with turns

(Kelley, 1971b) which considered flight path optimization with multiple time scales by discussing decou-

pling of high order three dimensional aircraft flight problem into several low order problems. Kelley

(Kelley, 1973) also derives an alternate third-order model featuring instantaneously variable speed by

means of time-scale separation, which provides an alternative to more complex particle-dynamics model

that comprise three velocity and three position components.

Ardema (Ardema, 1976) applied the method of matched asymptotic expansions (MAE ) to obtain an

approximate solution to the vertical plane minimum time-to-climb problem, by obtaining outer, boundary-

layer, and composite solutions for zeroth and first orders, although the zeroth-order solution proves to

be a poor approximation, but the first-order solution gives a good approximation for both the trajectory

and the minimum time-to-climb, which in addition shows that the computational cost of the singular

perturbation solution is considerably less than that of a steepest descent solution

Breakwell (Breakwell, 1977) identified the vertical plane minimum-time problem where the dependence

of drag (D) on lift (L) is suppressed by calculating the induced drag corresponding to the assumption

that the lift is equal to the weight (W ), that is L = W , therefore allowing to obtain the minimum-

time climb path, which obtained by using either using the energy state analysis or by Green’s Theorem,

leads to discontinuities in the flight-path angle (γ). By considering the vertical plane minimum-time

problem where D is much less than L, thus defining a natural singular perturbation parameter as of

D/L dependent on Mach number, and demonstrating that the discontinuities in γ can be replaced by

transitional boundary layers on time scales of the same order the value of the perturbation parameter

D/L at the moment of the γ discontinuities. An extension of this work (Breakwell, 1978) show that the

transitions satisfy, on an appropriate time scale, the identical fourth order system, not only when mass

loss is taken into account in a minimum-time climb but also if the problem is changed, for example, to

the maximum-altitude climb for given mass expenditure, and time being free.

All the works conducted until this point applied the theory of singular perturbation and time scales

for aerospace systems to obtain open-loop optimal controls (Naidu and Calise, 2001). Calise, in a series

of papers, focused on complete time scale separation and obtained closed-loop (feedback) controls. In

particular, Calise (Calise, 1977b; Calise, 1978) developed a singular perturbation approach to extend

existing energy management (EM ) methods by outlining a procedure for modeling altitude and flight

path angle dynamics which were previously ignored in EM solutions of the vertical plane minimum-

time problem. Calise show that feedback solutions can be obtained, even for EM problem formulations

which currently result in a two-point boundary value problem. The proposed methodology is general

and applicable to solving a wide class of optimal control problems, which solves the matching problem

that exists when applying singular perturbation theory to nonlinear problems, resulting in asymptotically

stable boundary layer solutions as natural results of the presented approach.

Mehra et al. (Mehra et al., 1979) provide an excellent study devoted entirely to the application of

singular perturbation theory to a variety of aerospace problems with special emphasis on real-time com-

putation of nonlinear feedback controls for optimal three-dimensional minimum time long range intercept

problem for an F-4 aircraft model given by six state, three control variable, and assuming a point mass

model. Nonlinear feedback laws are presented for computing the optimal control variables, throttle, bank

angle, and angle-of-attack, as a function of target and pursuer aircraft states and desired terminal condi-

tions. These advances created a continuous and steady interest in this area of the application of singular
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perturbation and time scales to aerospace problems (Naidu and Calise, 2001).

Among others are Ardema (Ardema, 1983), which assesses the applicability and usefulness of sev-

eral classical and other methods for solving the two-point boundary-value problem which arises in non-

linear singularly perturbed optimal control by analyzing and comparing the computational requirements

associated with the studied algorithms (Picard, Newton and averaging types). Ardema and Rajan

(Ardema and Rajan, 1985a), in which proposed two methods for time-scale separation analysis of dy-

namic systems, thus closing the existent gap of a nonexistent systematic application of singular per-

turbation methods for casting complex (high-order, highly coupled, highly nonlinear) aircraft trajectory

optimization problems in a singular perturbation. The proposed methods are based on the concept of

state variable speed and require knowledge only of the dynamical equations and bounds on state and

control variables.

Kelley et al.(Kelley et al., 1986), review the minimum-time climbs in the energy approximation giving

further consideration to the choice of variables, presenting a pair of variables which seems to offer an at-

tractive replacement for altitude and air-speed in singular-perturbation procedures. Naidu and Price

(Naidu and Price, 1988) present the results of applying the Singular Perturbations and Time Scales

(SPATS ) methodology to the control of digital flight systems. A block diagonalization method is de-

scribed to decouple a full order, two time (slow and fast) scale, discrete control system into reduced order

slow and fast subsystems.

Naidu and Price present a composite, closed-loop, suboptimal control from the sum of the slow and fast

optimal feedback controls, and show that numerical results obtained for an aircraft model showed very

close agreement between the exact (optimal) solution and the composite (suboptimal) solution which is

computationally simpler and implies a considerable reduction in the overall computational requirements

for obtaining the closed-loop, optimal control laws of digital flight systems.

In the area of flight mechanics, in order to provide appropriate performance analysis and develop

precise guidance and control strategies, it is necessary the use of complex nonlinear equations, which are

further complicated by the presence of aerodynamic and propulsive forces that are dependent on flight

conditions in the form of stability derivatives which are often given in the form of tabular data. This

resulted from the very beginning of the studies of aircraft performance analysis and design, in the use of

simplified analysis models based on quasi-steady approximations. In a natural manner, the necessity of

using these simplified examples translated into an increasing interest in singular perturbation methods

in flight dynamics, which permitted an approximate analysis of an otherwise complicated optimization

problem (Naidu and Calise, 2001).

The use of these simplified models and approximations provided an invaluable tool at the time they

were originally introduced, when the use of high-speed digital computation and powerful numerical opti-

mization algorithms based on either the calculus of variations or nonlinear programming were not avail-

able to solve optimal control problems in flight mechanics (Ashley, 1967; Kelley, 1971a; Kelley, 1970b;

Kelley, 1973; Kelly and Edelbaum, 1986; Shinar and Farber, 1984). Despite the increase of computa-

tional power of today’s computers, the development of simplified models, order reduction, and per-

turbation methods of analysis continue to play an important role since these methods lead to the

development of near-optimal, closed-loop solutions, which in addition provide an insight view into

the physics of the problem which is much harder to identify when analyzing the complete problem

(Naidu and Calise, 2001).

Singular perturbation and time-scale analysis provide a mathematical realization of the inherent and

intuitive analysis approach to simplified models obtained via order reduction, and probably, what it is

most important the theory of singular perturbation and time scales provides a mechanism for correcting
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the solutions for the neglected dynamics that is essential to the development of guidance and control

strategies for many aerospace systems such the slow phugoid mode and a fast short-period mode, which

are well-know time-scale characteristics of the longitudinal motion of an airplane to any aerospace engineer

(Naidu and Calise, 2001). This translates to the fact that singular perturbation and time scale analysis

has been applied in almost all possible branches in aerospace control design, ranging from atmospheric

flight control problems, pursuit-evasion and target interception problems, digital flight control systems,

atmospheric reentry, satellite and interplanetary trajectories, missiles, launch vehicles and hypersonic

flight, or orbital transfer to name few of the areas (Naidu and Calise, 2001).

In the area of atmospheric flight, Chen and Khalil (Chen and Khalil, 1990) use singular perturbation

and time-scale analysis to obtain lower-order slow (phugoid) and fast (short-period) models. The accuracy

of these models in approximating eigenvalues is demonstrated using typical numerical data for stable as

well as unstable airplanes, and the slow and fast models are employed in a sequential design procedure

to design a two-time-scale compensator for an unstable transport airplane (F-8 aircraft) by using a fast

compensator first using the fast model; then a slow compensator is designed using a modified slow model.

Menon et al. (Menon et al., 1987) design flight test trajectory control systems that enable the pilot

to follow complex trajectories for valuating an aircraft within its known flight envelope and to explore

the boundaries of its capabilities by using singular perturbation theory and the theory of prelinearizing

transformations.

Ridgely and Banda (Ridgely et al., 1984) present a control system design that produces the tracking

of command inputs and the decoupling of outputs of high-gain multivariable control systems applied to

fighter/military aircraft (an experimental vertical/standard takeoff and landing aircraft) performing a

number of maneuvers. Vian and Moore (Vian and Moore, 1989) present an interesting application of the

singular perturbation method in time-controlled optimal flight trajectory involving a military aircraft that

include the effects of risk from a threat environment by considering the horizontal plane aircraft motion

using lateral equations, with the slow variables identified as the downrange position and aircraft mass,

whereas cross-track position, energy height, and heading angle are identified as fast variables. Lateral

and vertical algorithms are developed with the intent of near real-time application. A constant altitude,

lateral flight-trajectory generation method is developed that optimizes with respect to time, fuel, final

position, and risk exposure by using singular perturbation methods that obtain reduced-order airplane

models that allow static rather than dynamic optimization. Pontryagin’s Minimum Principle is used with

a Fibonacci search method to minimize the cost functional.

Cliff et al. (Cliff et al., 1982) uses a simple singularly perturbed energy approximation point-mass

three-dimensional aircraft model that incorporate thrust-vector control in aircraft optimization where for

certain boundary conditions there are two families of extremal solutions giving rise to a Darbout locus. For

aircraft with static thrust in excess of weight, a spectacular improvement in maneuverability is realized at

energies low enough to permit hover, which in energy approximation, this amounts to instantaneous turn

capability. Reiner et al. (Reiner et al., 1996) presents a robust linear controller with nonlinear feedback

linearization to design robust dynamic inversion controllers. This methodology is applied to an angle-

of-attack command system for longitudinal control of a high performance aircraft(model of the NASA

high-angle-of-attack research vehicle) using feedback linearization coupled with structured singular value

µ synthesis. Nonlinear simulations demonstrate that the controller satisfies handling quality requirements,

provides good tracking of pilot inputs, and exhibits excellent robustness over a wide range of angles-of-

attack and Mach numbers.

Ardema and Yang (Ardema and Yang, 1988) consider interior transition layers in vertical-plane climb

path optimization. They treat the interior layer associated with the transonic energy state discontinuity

as two boundary layers, one in forward time and the other in backward time. The initial states of the
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two boundary layers are matched to give continuous composite solutions at the point of reduced solution

discontinuity. They show that the transition maneuver is relatively tolerant in terms of deviations from

reduced solution values of load factor and flight path angle.

Avanzini et al. (Avanzini et al., 1999) present a method for the inverse simulation that is based on the

idea of timescale separation (TSS ). The proposed control strategy is based in the integration method,

which has been extensively applied in the inverse simulation of aircraft motion where control inputs are

determined once a maneuver or flight task is assigned, and where the concept of timescale separation is

merged into an integration technique and a constrained optimization method, which solves some of the

problems of accuracy and stability in the numerical algorithm that introduce the presence of multiple

timescales and right half-plane transmission zeros in aircraft dynamics. The application of singular

perturbation theory results in two subscale problems that are solved separately for the slow and fast

timescales and a numerical algorithm is devised that presents significant advantages in terms of numerical

efficiency and robustness, and that also deal with control saturation. Simulation results show that has

improved performances of the proposed control strategy in comparison with an integration method that

is based on the local optimization concept.

Many trajectory optimization problems, however, have discontinuous reduced-order solutions. Typical

situations are the vertical-plane optimal climb problem when posed so that energy E is the single slow

variable (Ardema, 1976; Ardema, 1977) and altitude h and velocity V are modeled as slow variables

(Breakwell, 1977). For supersonic aircraft, the outer solution, that is, the energy climb path, is typically

discontinuous in the transonic region (Rajan and Ardema, ; Weston et al., 1983). These discontinuities,

which occur at interior points, give rise to instantaneous jumps called interior transition layers and have

the nature of boundary (initial and final) layers.

In the area of optimal control control navigation and guidance (Ardema, 1980) presented a third-

order, nonlinear, singularly perturbed optimal control problem defined by assumptions that define the

full problem as a singular one, while the reduced problem becomes nonsingular. The separation scales

resulted in the separation between the singular arc of the full problem and the optimal control law for the

reduced problem which become hypersurfaces in state space. The boundary solutions are constructed such

that are stable and reach the outer solution in a finite time, and a uniformly valid composite solution is

then formed from the reduced and boundary-layer solutions and applied to obtain an approximate solution

of a simplified version of the aircraft minimum time-to-climb problem. Calise (Calise, 1976) approached

the solution of variational problems by singular perturbation methods, by provided the necessary tools to

treat the singularities arising in problems where the control appears linearly and/or in state-constrained

control problems, and also allowing to derive approximate feedback solutions for problem formulations

if not treated with singular perturbation methods resulted in a nonlinear two-point boundary value

problems that are applied to a three-dimensional minimum time turns for an F-106 and an F-4E aircraft.

Calise (Calise, 1979; Calise, 1977a) also approaches the navigational guidance problem using singular

perturbation methods to obtain optimal aerodynamic and thrust control laws. In (Calise, 1979) the use

the application of singular perturbation methods to optimal thrust magnitude control and optimal lift

control is applied to missiles restricted to the horizontal plane dynamics. The multiple time scaling

procedure employed avoided the problems of selecting unknown adjoints to suppress unstable modes in

the boundary layer when using asymptotic methods, and therefore permitting to reduce the two-point

boundary value problems to a series of pointwise function extremizations, thus resulting in an analytic

and algebraic optimal control solution

On the realm of helicopter singular perturbation control control, although the use of singular per-

turbation theory has been employed to simplify the control system structure (Heiges et al., 1992;

Njaka et al., 1994; Prasad and Lipp, 1993; Hamidi and Ohta, 1995; Avanzini and de Matteis, 2001;



24 CHAPTER 1. INTRODUCTION

López-Mart́ınez et al., 2007), to the knowledge of the author, the work conducted in this thesis,

along with the articles presented by the author and his thesis co-directors in (Esteban et al., 2005b;

Esteban et al., 2005b; Esteban et al., 2007; Esteban et al., 2008a), along with the work of Bertrand,

Hamel and Piet-Lahanier (Bertrand et al., 2008), that presented a stability analysis of a hierarchical

controller for an unmanned Aerial Vehicle, are the only works that theoretically addresses stability issues

for VTOL UAVs using singular perturbation theory.

Heiges et al. (Heiges et al., 1992) use forced singular perturbation theory to reduced the order of a

6-DOF helicopter model, thus reducing the twelfth-order nonlinear system of equations by separating

the position (slow) and attitude (fast) dynamics, which leads to simpler transformations that are used to

design a full-authority controller separately for each of the reduced order systems. The control strategy

is developed analytically on the basis of nonlinear transformation theory. They provide details of the

inverse transformation and the solution of the inverse kinematics problem, along with the description of

the transformed linear feedback controller. The control strategy is simulated using the NASA AMES

TMAN program (Lewis and Aiken, 1985) to simulate one-on-one Helicopter Air Combat at NOE (Nap-

of-the-Earth).

Njaka et al. (Njaka et al., 1994) proposed singular perturbation theory as an alternative to common he-

licopter flight control strategies that rely heavily on plant models which have been linearized about various

operating set points, and that translate into the use of linear controllers that are designed and scheduled

to cover the operational flight envelope. Simplification of the control design process are conducted by

dividing the rotorcraft dynamics into multiple time scales using the singular perturbation theory that

results in a two-time-scale controller in which the fast dynamics of the rotational state components appear

decoupled from the slower state components associated with translational dynamics. The controllers for

the two resulting reduced-order dynamic systems are then designed separately, with commanded attitude

output from the slow-time-scale system providing the necessary coupling between the controllers. The

use of the fast-time-scale control law provides rotorcraft attitude stability augmentation while imparting

the desired handling qualities, which alleviates the pilot’s work load.

Prasad and Lipp (Prasad and Lipp, 1993) proposed a helicopter full authority flight controller using an

approximate inversion of the nonlinear model of the vehicle, which is derived by recognizing the natural

time scale separation between position and attitude dynamics of the helicopter. This translates into

that the helicopter’s attitudes are treated as pseudo-command variables. The controller is simplified

by assuming approximations to the body axes forces, neglecting first the cyclic and pedal control force

terms, and in a second approximation neglecting the body x- and y-axis force components in the controller

calculations. Simulations are conducted to evaluate the control strategies in a nonlinear simulation model

of the Apache helicopter, and tested using typical command maneuvers.

Hamidi and Ohta (Hamidi and Ohta, 1995) used singular perturbation theory to simplify the control

system structure, which is based in nonlinear transformation theory to represent nonlinearities in the

model of the system, yielding a new algorithm for the inverse nonlinear transformation of the control

terms. They investigate the unmodeled system errors with nonlinear inverse dynamics theory, and show,

via simulations, that the control system could track commanded values under the presence of modeling

errors and disturbances.

Avanzini and de Matteis (Avanzini and de Matteis, 2001) developed and evaluated a fast and reliable

multiple-timescale algorithm for the inverse simulation of rotorcraft maneuvering tasks. Avanzini used

his own previous work (Avanzini et al., 1999) based on a two-timescale approach to the solution of inverse

problems of aircraft motion represents the background for devising a technique that accounts for specific

issues of rotorcraft dynamics such as the large effects of the fast, primary moment generating controls

on the slow dynamics associated to the vehicle trajectory and the system being frequently non minimum
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phase. The inverse simulations provide accurate solutions of the fast and slow reduced-order systems due

to the fact that the quasi-steady-state values of the fast controls are considered in the slow timescale.

They identify non observable motions that are ruled out by the multiple timescale approach, and via

simulations show that the expected computer time reduction is realized, that the well-known difficulties

of inverse methods for finding feasible solutions at convergence are practically eliminated, and, finally,

that steady-state flight conditions are accurately recovered at the end of the prescribed maneuvers.

López et al. (López-Mart́ınez et al., 2007) presented the problem of a nonlinear L2-disturbance rejection

design for a laboratory twin-rotor system, in which control is only achieved via rotor speed, since the

collective pitch angle is fixed for both rotors. The control strategy is derived considering a reduced order

model of the rotors obtained by application time-scale separation, which also includes integral terms on

the tracking error to deal with persistent disturbances. An explicit suboptimal solution to the associated

partial differential (HJBI ) equation is applied, which yields global asymptotical stability for the reduced

system, where the control is of the form of a partial feedback linearization with an external nonlinear

PID, which is tested in a experimental laboratory twin rotor.

Bertrand et al. (Bertrand et al., 2008) presented the stability analysis of a hierarchical controller of a

two-time-scale VTOL UAV using singular perturbation theory. Control laws are derived using time-scale

separation between the translational dynamics and the orientation dynamics of a six degrees of freedom

VTOL UAV model to regulate both position and attitude control. They assume that the linear velocity

is not measured, and thus a partial state feedback control law is proposed, based on the introduction

of virtual states in the translational dynamics of the system. They also identify that although reduced-

order subsystems can be considered for control design, the stability must be analyzed by considering the

complete closed loop system, which in the realm of VTOL aircraft systems, to the knowledge of the author,

has only been addressed by Bertrand et al. (Bertrand et al., 2008) and the work conducted by Esteban

et al. (Esteban et al., 2005b; Esteban et al., 2005b; Esteban et al., 2007; Esteban et al., 2008a).

This concludes the review of the literature section, which only intended to touch the surface of gen-

eral control strategies in aerospace systems, specially in helicopter, and how singular perturbations

and time-scale methods have been applied to both general aerospace systems and helicopter. Exten-

sive reviews on the singular perturbation and time-scale methods in aerospace systems can be found in

(Naidu and Calise, 2001), and literature reviews in singular perturbation and time-scales in general can be

found in (Kokotović et al., 1976; Vasil’Eva, 1976; Saksena et al., 1984; Kokotović, 1984; Kokotović, 1985;

O’Malley Jr, 1991; Vasil’Eva, 1994; Naidu, 2002).
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Chapter 2

Helicopter Dynamics

2.1 Introduction to the Helicopter System

The principle objective of this chapter is to provide an insight view that helps to understand the dynamics

of the problem here investigated, rather than treating the problem as just a plant. From a control designer

perspective, having a priori knowledge of the physics of the plant is not a requirement, but it helps to

ensure that the chosen control strategy is pushing in the same direction as the natural behavior of the

system being analyzed. Furthermore, the aerospace background of the author has provided an additional

edge in determining the natural times-scales appearing in the helicopter, which, as it will be seen in

section 3.5, although the mathematics does generally provide criteria to determine the existence and the

determination of time-scales, the physics of the problem, and knowledge of the natural behavior of the

system, makes time-scale identification and selection of appropriate singularly perturbed parameters that

determine the different boundary layers a much simpler task.

This chapter also derives the necessary tools to obtain the dynamics of the helicopter model here

studied, making special emphasis on the modelization of the thrust force that drives the helicopter in

axial flight. Some of the proposed models will reproduce with higher fidelity the helicopter dynamics in

axial flight by using discontinuous functions, but, due to restrictions on the proposed control strategy,

and the stability methodology, both the system being studied, and the selected control, being required

to be continuously differentiable at every point, only one of the proposed models will be selected. The

selected model represents a degeneration of the axial flight, which is the condition of hovering flight, but

it will be demonstrated that will be a valid approximation model due to the characteristic maneuvers of

the helicopter being studied. The rest of the models, which include the more precise and discontinuous

models, will be used as test bench models to test both validity of the proposed control strategy, and

robustness under unmodeled dynamics.

Many definitions of what is a helicopter can be found on the literature, being one of these the definitions

the one that appears in (McLean, 1990) ”helicopters are a type of aircraft known as rotorcraft, for they

produce the lift needed to sustain flight by means of a rotating wing, the rotor”. A more technical defi-

nition is provided by The International Civil Aviation Organization (ICAO) which defines the helicopter

as a ”heavier-than-air aircraft supported in flight chiefly by the reactions of the air on one or more power-

driven rotors on substantially vertical axes” (The International Civil Aviation Organization, 2009), or a

more general definition such the one that states that the helicopter is a type of rotorcraft in which the

necessary forces to maintain flight, lift and thrust, are supplied by one or more engine driven rotors. All

these definitions focus on the unique feature that helicopters have the possibility of directing the thrust
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vector in any selected direction. Is this unique feature that permits the helicopter to take off and land

vertically, to hover, and to fly forwards, backwards and laterally, which makes them much more versatile

than the fixed-wing aircraft. But this flexibility comes at the price of the complexity of the dynamics

that govern such systems.

The model definition will be done by first giving an introduction to all the systems that compose the

helicopter and a basic introduction of how they work in section 2.2. This can be extended to any single

rotor helicopter, from an Radio-Control (R/C ) helicopter, to a multi-purpose military helicopter; section

2.3 provides an introduction to the helicopter dynamics and the reference coordinate system employed,

while section 2.4 introduces the non-linear six-degrees-of-freedom (6-DOF ) models, and the simplified

helicopter models that are historically used to study in more detail the decoupled longitudinal, lateral-

directional, and axial flight dynamics. Section 2.5 describes the perturbed state equation that leads to

the axial flight model that will be derived in detail in section 2.6 with the definition of the proposed

thrust/lift models for a rotor, the proposed closed-form solutions for the thrust coefficient model CT are

presented in 2.7, and finally the derivation of the proposed helicopter model is given in section 2.8, while

the derivations of the alternative and more precise models are sent to Appendix A for completeness of

the thesis since the derivations might become cumbersome for the reader. It is also advised to the reader

that for easiness of the reading process, if only interested in the selected model that is studied in this

thesis, and not with the mathematical derivation process, proceed to section 2.8.

2.2 Helicopter Systems

Although there are many types of helicopters depending on number and configuration of the rotors,

from single rotor, to tandem, intermeshing, transverse or coaxial helicopters, this thesis focuses only

on the single main rotor type. Figure 2.1 describes the types of helicopter regarding the type of ro-

tors, where the one that is the focus of this document is the center one, the single main rotor. A

single main rotor helicopter, and in general most helicopters, are formed primarily by a main rotor,

tail rotor, fuselage, engine, fuel tank, transmission, mast, tail rotor drive shaft, tail fin, horizontal fin,

and landing skid. Figure 2.2 in a more simple way, and Figure 2.3 with a little more detail show the

schematic representation of the major components of a helicopter, which are described in more detail

bellow (Federal Aviation Administration, 2000).

The principal element that makes helicopters such a versatile aircraft is the rotor system. The rotor

system is the rotating part of a helicopter which generates main component of lift. A rotor system may

be mounted horizontally as main rotors are, providing lift vertically, or it may be mounted vertically,

such as a tail rotor, to provide lift horizontally as thrust to counteract torque effect. A helicopter main

rotor, is a type of fan that is used to generate both the aerodynamic lift force that supports the weight

of the helicopter, and the thrust force which counteracts the aerodynamic drag in forward flight. Each

main rotor is mounted on a vertical mast over the top of the helicopter, as opposed to a helicopter tail

rotor, which is connected through a combination of drive shaft(s) and gearboxes along the tail boom. A

helicopter’s rotor is generally made up of two or more rotor blades. The amount of lift generated by the

rotor can be varied by either the blade pitch or the angular velocity of the main rotor, which is ultimately

connected with the engine’s RPM. The blade pitch is typically controlled by a swash plate connected to

the helicopter flight controls.

The swash plate is a device that translates input via the helicopter flight controls into motion of the

main rotor blades, which effectively modify the forces and moments acting on the helicopter. Because

the main rotor blades are spinning, the swash plate is used to transmit three of the pilot’s commands

from the non-rotating fuselage to the rotating rotor hub and main blades. These three commands can
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be seen in Figure 2.4 denoted with the black link for the collective pitch, the yellow for the longitudinal

cyclic, and the pair pink and blue for the lateral cyclic. The following section describes in more detail

each of the control actions. The swash plate consists of two main parts: a stationary swash plate and a

rotating swash plate, which can be better observed in a typical swash plate of a R/C helicopter in Figure

2.5, where the blue component, denoted with the number 1, represents the non-rotating outer ring or

swash plate, while the turning inner ring is denoted in silver, denoted with the number 2. The stationary

(outer) swash plate is mounted on the main rotor mast and is connected to the cyclic and collective

controls by a series of pushrods. The swash plate is able to tilt in all directions and move vertically.

The rotating (inner) swash plate is mounted to the stationary swash plate by means of a bearing and is

allowed to rotate with the main rotor mast. An anti-rotation link prevents the inner swash from rotating

independently of the blades, which would apply torque to the actuators. The outer swash typically has

an anti-rotation slider as well to prevent it from rotating. Both swash plates tilt up and down as one

unit. The rotating swash plate is connected to the pitch horns by the pitch links, which are denoted in

silver and with the number 6, as seen in Figure 2.5. The outer non-rotating swash plate receives the pilot

commands through the control links as it can seen in Figure 2.4 with the black, yellow, and the pair pink

and blue control links.

The mast is a cylindrical metal shaft which extends upwards from and is driven by the transmission. At

the top of the mast is the attachment point for the rotor blades, also called the hub. The rotor blades are

then attached to the hub by a number of different methods. Main rotor systems are classified according

to how the main rotor blades are attached and move relative to the main rotor hub. There are three

basic classifications: rigid, semirigid, or fully articulated, although some modern rotor systems use an

engineered combination of these types.

The tail rotor, or anti-torque rotor, is a smaller rotor mounted so that it rotates vertically or near-

vertically at the end of the tail of a traditional single-rotor helicopter. The tail rotor’s position and

distance from the center of gravity allow it to develop thrust in the same direction as the main rotor’s

rotation which in results serves as to counter the torque effect created by the main rotor as seen in Figure

2.6. Tail rotors are simpler than main rotors since they require only collective changes in pitch to vary

the amount of thrust. The pitch of the tail rotor blades provides also directional control by allowing the

pilot to rotate the helicopter around its vertical axis.

The tail rotor drive system consists of a shaft powered from the main transmission and a gearbox

mounted at the end of the tail boom. The drive shaft may consist of one long shaft or a series of shorter

shafts connected at both ends with flexible couplings, that allow the drive shaft to flex with the tail

boom. The gearbox at the end of the tailboom provides an angled drive for the tail rotor, and may

also include gearing to adjust the output to the optimum rotational speed for the tail rotor. Figure

2.7 shows a conventional helicopter rotor drive system. For more details see references (Prouty, 1986;

Leishman, 2006; López and Valenzuela, 2010; Cuerva et al., 2009).

2.2.1 Helicopter Flight Controls

A helicopter pilot manipulates the helicopter flight controls in order to achieve controlled aerodynamic

flight (Gablehouse, 1967; Gablehouse, 1969). The changes made to the flight controls are transmitted

mechanically to the rotor, producing aerodynamic effects on the helicopter’s rotor blades which allow the

helicopter to be controlled. For tilting forward and back (pitch), or tilting sideways (roll), the angle of

attack of the main rotor blades is altered cyclically during rotation, creating different amounts of lift at

different points in the cycle. For increasing or decreasing the overall lift, the angle of attack for all the

blades is collectively altered by equal amounts at the same time resulting in ascents, descents, acceleration
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and deceleration.

A helicopter has four flight control inputs. These are the cyclic, the collective, the tail rotor collective,

and the throttle. The first control input is called the cyclic because it changes the pitch of the rotor

blades cyclically. Cyclic controls are used to change a helicopter’s roll and pitch. Push rods or hydraulic

actuators tilt the outer swash in response to the pilot’s commands. The swash plate, depending in the

mode in which the links are connected, moves in the intuitively expected direction, tilting forwards to

tilt the rotor ”disc” forwards, for instance, but ”pitch links” on the blades transmit the pitch information

ahead of the blade’s actual position, giving the blades time to ”fly up” or ”fly down” to reach the desired

position which creates a difference of lift around the blades, and the helicopter will tilt towards the side

with lower lift (Federal Aviation Administration, 2000).

This results in that the pitch angle of the rotor blades changes depending upon their position as

they rotate around the hub so that all blades will change their angle the same amount at the same

point in the cycle. The change in cyclic pitch has the effect of changing the angle of attack and

thus the lift generated by a single blade as it moves around the rotor disk. This in turn causes the

blades to fly up or down in sequence, depending on the changes in lift affecting each individual blade

(Federal Aviation Administration, 2000).

The net result is that, for conventional swash place combinations as the one treated in this thesis, when

tilting the rotor disk in a particular direction, the main rotor forces tilt also in that direction. If the

pilot pushes the cyclic forward, the rotor disk tilts forward, and the rotor produces a thrust vector in the

forward direction as seen in Figure 2.8 while if the pilot pushes the cyclic rearward, the rotor disk tilts

rearward, and the rotor produces a thrust vector in the rearward direction as seen in Figure 2.9. If the

pilot pushes the cyclic to the right, the rotor disk tilts to the right and produces thrust in that direction,

causing the helicopter to move sideways and roll in a hover, or to roll into a right turn during forward flight

as seen in Figure 2.10, much as in a conventional aircraft (Federal Aviation Administration, 2000).

On any rotor system there is a delay between the point in rotation where a change in pitch is introduced

by the flight controls and the point where the desired change is manifest in the rotor blade’s flight. While

often discussed as gyroscopic precession (Department of the Army, 2007), this phase lag varies with the

geometry of the rotor system it can be defined as the time it takes for the blade to change its flapped

position after a change in lift. The lag is an example of a dynamic system in resonance but is never more

than ninety degrees.

The collective pitch control, or collective, changes the pitch angle of all the main rotor blades collectively

(i.e. all at the same time) and independently of their position. Therefore, if a collective input is made,

all the blades change equally, and the result is the helicopter increasing or decreasing in altitude due to

a change in vertical velocity if in hover, as seen in Figure 2.11 (Federal Aviation Administration, 2000),

and an additional increase in forward speed if the helicopter was moving forward.

To control the collective pitch of the main rotor blades, the entire swash plate must be moved up or

down along its axis without changing the orientation of the cyclic controls. Conventionally, the entire

swash plate is moved along the main shaft by a separate actuator. However, some newer model helicopters

remove this mechanically complex separation of functionalities by using three interdependent actuators

that can each move the entire swash plate, as seen by the three control links in Figure 2.4, number 3.

When the three control links are moved uniformly up or down, they actuate as collective pitch, and when

they move with a prescribed combination of the control links provide the cyclic longitudinal and lateral

motions. This is called cyclic/collective pitch mixing (Federal Aviation Administration, 2000).

The collective tail rotor provide control in the direction in which the nose of the aircraft is pointed.

The application of the collective tail rotor changes the pitch of the tail rotor blades, which increases or
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reduces the thrust produced by the tail rotor, thus causing the nose to yaw in the opposite direction

in which the thrust is increased. Helicopter rotors are designed to operate at a specific RPM, which is

actually proportional to the main rotor RPM, implying that a change in the main rotor angular velocity

translates in a change in the thrust produced by the tail rotor, that is a yawing moment that needs to

be compensated. And finally, the throttle controls the power produced by the engine, which is connected

to the rotor by a transmission. The purpose of the throttle is to maintain enough engine power to

keep the rotor RPM within allowable limits in order to keep the rotor producing enough lift for flight

(Federal Aviation Administration, 2000).
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Single Rotor

Tandem Rotors

Coaxial Rotors

Intermeshing Rotors

Transverse Rotors

Figure 2.1: Types of helicopters according to the Type of Rotor

Figure 2.2: Major helicopter components (Federal Aviation Administration, 2000).
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Figure 2.3: Schematic representation of the major components of a helicopter ((Zephyris), 2005)

34 2 42

51 6

3 3

Figure 2.4: Flight controls on a helicopter
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Figure 2.5: Swashplate on a radio-controlled helicopter (Gruss Guido Büscher, RC-Discount, 2006)

Figure 2.6: Description of helicopter torque effect (US DoT - FAA, 2006b)
(Federal Aviation Administration, 2000).
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Figure 2.7: Helicopter rotor drive system (US DoT - FAA, 2006a)
(Federal Aviation Administration, 2000).
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Figure 2.8: Helicopter forward flight (Federal Aviation Administration, 2000).

Figure 2.9: Helicopter Rearward Flight (Federal Aviation Administration, 2000).
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Figure 2.10: Helicopter sideward flight (Federal Aviation Administration, 2000).

Figure 2.11: Helicopter axial flight (Federal Aviation Administration, 2000).
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2.3 Helicopter Dynamics

The relative movement of some of the helicopter components such the main or the tail rotor, or the

moving parts of its engines, can be taken into account in the equations of motion in many different ways,

such as external forces, inertial actions associated to the change in momentum, or angular momentum

due to the relative motion of these components. The acting external forces can be divided into aerody-

namic, propulsive and gravitational forces, and the estimation of these forces represents one of the most

challenging tasks when dealing with helicopter modeling.

The stabilization of a helicopter requires that the sum of the external forces acting on the system to be

identically zero, where, in these conditions, the movement of the center of mass with respect to a selected

inertial reference system is uniform and rectilinear, and the position of the space axes with respect to the

inertial reference system does not change with time (López Ruiz, 1993). In order to better understand the

problem of helicopter stabilization, it is necessary to define the dynamics of the helicopter with respect

to a inertial reference coordinate system, where the dynamics of the helicopter, and in general of any

aerospace system is decomposed in two parts:

• The movement of its center of mass, which is considered fixed in the helicopter, although the fuel

consumption or the shift of onboard masses might induce slight center of mass variations with respect

to its reference system

• The movement of the rigid solid or the characteristic three-axes-system with respect to a parallel

inertial reference system.

The two dynamics decomposition refer to distinct problems, where the first one represents the dynamics

associated to a point-mass (the center of mass) which is subject to external forces, while the second type

of dynamics represents the dynamics of a rigid solid with a fixed point subject to the external forces which,

at the same time produce a moment with respect to the fixed point. Both problems are quite similar

since the aerodynamic forces acting on the helicopter depend both on the rotational and translational

velocities of the elements that generate those external forces, i.e. the main and tail rotor. In addition,

the forces acting on the helicopter can also be modified by acting on the geometry itself through the

rotor actuators, although both dynamic problems are studied separately. Following sections describe the

reference coordinate system that will help in the task of defining the appropriate dynamic model.

2.3.1 Reference Coordinate Systems

In order to better understand the model that will be used in the formulation for the nonlinear sin-

gular perturbation helicopter model, which is introduced in section 2.8, it is necessary to define the

equations that govern the motion of a rigid helicopter. Several references (Padfield, 2007; Prouty, 1986;

Cooke et al., 2002; López Ruiz, 1993; Cuerva et al., 2009) will be used throughout the reminder of this

section, to define the helicopter’s equations of motion, and the reference system where these equations

are valid. Figure 2.12 shows the two systems used to define the equations that govern the motion of a

rigid airplane, the Earth-fixed system and the airplane body-fixed system. The Earth-fixed system is

denoted by X
′

Y
′

Z
′

, which will be considered the inertial reference frame in which the Newton’s laws of

motion are valid. This model reference neglects rotational velocity of the Earth. The helicopter body

fixed system is defined by XY Z.

The XY Z helicopter body fixed system is fixed relative to the helicopter, where the positive X axis is

along the fuselage, the positive Y axis is along the starboard (right) side of the fuselage, and the positive

Z axis is directed downward, perpendicular to the XY plane as shown by the directions of the arrows
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in Figure 2.12. The origin is located at the geometric center of gravity. The translational motion of

the helicopter is given by the components of the velocity: forward velocity (U), side-slip velocity (V ),

and downward velocity (W ) which are directed along the X , Y , and Z directions, respectively. The free

stream velocity, V∞, represents the vector sum resultant of the velocity components, U , V , and W . The

rotational motion is given by the angular velocity components: roll rate (P ), pitch rate (Q), and yaw rate

(R), about the X ,Y , and Z axes respectively. These rotational velocities are due to the moments about

the helicopter body-fixed system: roll moment (L), pitch moment (M), and yaw moment (N) about the

X ,Y , and Z axes, respectively.

The helicopter is assumed to consist of continuum mass elements, dm, as seen in Figure 2.12, that

are kept track by a series of vectors, r , which connect the origin X
′

Y
′

Z
′

with each mass element.

Each mass element is subject to the acceleration of gravity, g, which is assumed to be oriented along

the positive Z ′-axis of the Earth-fixed coordinate system, thus assuming that the Earth is flat. This

creates a gravitational force acting in each element mass equal to ρHgdv = gdm, where ρH represents

the local mass density of the helicopter and dv is a helicopter volume element. The elements that are

located in the surface of the helicopter are also subject to combined aerodynamic and thrust forces per

unit area denoted by F. These aerodynamic and thrust-combined forces will be expanded in the next

section.

The orientation of the aircraft relative to the Earth-fixed coordinate system X
′

Y
′

Z
′

, is obtained by

introducing three sequential rotations over the Euler angles: heading angle (Ψ), the pitch attitude angle

(Θ), and the bank o roll angle (Φ). In order to keep track of the three sequential rotations, the Earth-

fixed coordinate system X
′

Y
′

Z
′

is redefined with X1Y1Z1. The first rotation is produced by rotating

the coordinate system X1Y1Z1 over an angle Ψ so that the helicopter is taken to its heading angle after

which the coordinate system is re-labeled X2Y2Z2. Figure 2.13 shows the first rotation. The change of

coordinates between the Earth-fixed coordinate system X1Y1Z1 and the new coordinate system X2Y2Z2

is given by the transformation matrix










X2

Y2

Z2











=







cosΨ sinΨ 0

− sinΨ cosΨ 0

0 0 1

















X1

Y1

Z1











. (2.1)

The second rotation is produced by rotating the coordinate system X2Y2Z2 over a pitch attitude angle

Θ after which the coordinate system is re-labeled X3Y3Z3. Figure 2.14 shows the second rotation, where

the change of coordinates between the coordinate system X2Y2Z2 and the coordinate system X3Y3Z3 is

given by the transformation matrix given by










X3

Y3

Z3











=







cosΘ 0 − sinΘ

0 1 0

sinΘ 0 cosΘ

















X2

Y2

Z2











, (2.2)

and a third, and final, rotation is conducted about a roll angle Φ to reach the body-fixed coordinate system

XY Z. Figure 2.15 shows the final rotation, where the change of coordinates between the coordinate

system X3Y3Z3 and the body-fixed coordinate system XY Z is given by the transformation matrix given

by










X

Y

Z











=







1 0 0

0 cosΨ sinΨ

0 − sinΨ cosΨ

















X3

Y3

Z3











. (2.3)

Figure 2.16 shows the three sequential rotations from the point of view of an observer far away from

the reference coordinate systems. With this in mind, the relation between the Earth fixed coordinate
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system and the helicopter body fixed system can be defined as

X = X
′

cosΘ cosΨ + YT cosΘ sinΨ− Z
′

sinΘ, (2.4)

Y = X
′

(sinΦ sinΘ cosΨ− cosΦ sinΨ) +

Y
′

(sinΦ sinΘ sinΨ + cosΦ cosΨ) + Z
′

sinΦ cosΘ, (2.5)

Z = X
′

(cosΦ sinΘ cosΨ + sinΦ sinΨ) +

Y
′

(cosΦ sinΘ sinΨ− sinΦ cosΨ) + Z
′

cosΦ cosΘ, (2.6)

where, equations (2.4), (2.5) and (2.6) describe the three rotations that generate the body-fixed axis

kinematic equations given by

Φ̇ = P + (Q sinΦ +R cosΦ) tanΘ, (2.7)

Θ̇ = Q cosΦ−R sinΦ, (2.8)

Ψ̇ =
Q sinΦ +R cosΦ

cosΘ
, (2.9)

which can also be expressed as

P = Φ̇− Ψ̇ sinΘ, (2.10)

Q = Θ̇ cosΦ + Ψ̇ cosΘ sinΦ, (2.11)

R = Ψ̇ cosΘ cosΦ− Θ̇ sinΦ. (2.12)
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Figure 2.12: Earth-fixed and body-fixed coordinate systems.

1
X

1
U

1
Y

1
V

2
Y

2
V

2
X

2
U

P
V

Figure 2.13: Rotation over a heading angle of Ψ about Z1.
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Figure 2.14: Rotation over a pitch angle of Θ about Y2.
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Figure 2.15: Rotation over a roll angle of Φ about X3.
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(a) Rotación 1

(b) Rotación 2

(c) Rotación 3

Figure 2.16: Relation between the Earth-fixed system and the helicopter(López Ruiz, 1993).
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2.4 Non-linear Six-Degrees-of-Freedom Model

This section describes the non-linear six-degrees-of-freedom (6−DOF ) equations for the helicopter model

by employing the general aircraft formulation (Roskam, 2001). By applying the Newton’s second law to

Figure 2.12, such as the linear and angular momentum are equal to the externally applied forces and

moments respectively, the results are the creation of the vector-integral form of the equations of motion

for the linear momentum which given by

d

dt

∫

v

ρH
dr

′

dt
dv =

∫

v

ρHgdv +

∫

S

Fds, (2.13)

where the left-hand side of Eq. (2.13) represents the linear momentum, and the right-hand side represents

the applied forces. The angular momentum given by

d

dt

∫

v

r× ρH
dr

dt
dv =

∫

v

r× ρHgdv +

∫

S

r× Fds, (2.14)

where the left-hand side of Eq. (2.14) represents the angular momentum, and the right-hand side repre-

sents the applied moments. The integrals
∫

v
and

∫

s
represent volume and surface integrals for the entire

helicopter. The total mass of the helicopter is then given by the expression

m =

∫

v

ρHdv, (2.15)

where it is assumed that the total mass of the helicopter remains constant with time

dm

dt
= 0. (2.16)

This last assumption is justified as long as the mass change is sufficiently small over a period of 30− 60

seconds, which is the typical time period over which the aircraft responses are evaluated (Roskam, 2001).

It is also assumed that the mass distribution is also constant with time, that is, the center of gravity

stays in the same place during the same interval of time, 30− 60 seconds.

Recall from Figure 2.12 that all the helicopter mass elements are tracked with the help of vector r
′

,

but it is most convenient to use the vectors r and r
′

P , being the relation between the three vector given

by the expression

r
′

= r
′

P + r. (2.17)

Recall also that as observed in Figure 2.12, PCM is assumed to be the center of mass of the helicopter,

therefore the body-fixed coordinate system XY Z has its origin at PCM . If PCM is the center of mass,

then the following relation must be satisfied
∫

v

rρHdv = 0, (2.18)

therefore resulting in

r
′

P =
1

m

∫

v

ρHr
′

dv, (2.19)

thus rewriting the left-hand side of the linear momentum, Eq (2.13), as

d

dt

d

dt

∫

v

ρH

(

r
′

P + r
′

)

dv =
d

dt

d

dt
mr

′

P = m
dVP

dt
, (2.20)

where VP represents the velocity vector of the helicopter center of mass and given by

VP =
dr

′

P

dt
. (2.21)
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The right-hand side of the linear momentum Eq. (2.13) can be rewritten as
∫

v

ρHgdv +

∫

s

Fds = mg+ F, (2.22)

where F represent the vector form of the external forces acting on the helicopter, which can be written

as the sum of the contributions from the different aircraft components such as

F = FR + FTR + Ff + Ftp + Ffn, (2.23)

where the subscripts refer to the different elements of the helicopter, R for the rotor, TR for the tail

rotor, f for the fuselage, tp for the horizontal plane, and fn for the vertical fin (Padfield, 2007). Using

Eqns. (2.20) and (2.22) into the linear momentum Eq. (2.13) results in

m
dVP

dt
= mg+ F, (2.24)

where Eq. (2.24) implies that the time rate of change of linear momentum, mVP , is equal to the sum

of the externally applied forces in the helicopter. In a similar manner as for the linear momentum, the

angular momentum can be rewritten by substituting Eq. (2.17) into Eq. (2.14), and accounting for Eqns.

(2.18) and (2.14) leading to

d

dt

∫

v

r× ρH
dr

dt
dv =

∫

s

r× Fds = M, (2.25)

where M represent the external moments vector acting on the helicopter, which can be written as the

sum of the contributions from the different aircraft components such as

M = MR +MTR +Mf +Mtp +Mfn, (2.26)

and lR, lTR, lf , ltp, and lfn represent the arms from the helicopter center of mass to the point where

the forces of the different elements, FR, FTR, Ff , Ftp, and Ffn, are applied. Equation (2.25) implies

that the time rate of change of angular momentum,
∫

v
r× ρH

dr
dt dv, is equal to the sum of the externally

applied moments in the helicopter. It is important to note that the estimation of the external forces and

moments acting on a helicopter, and in general in any aircraft, is one of the most challenging issues since if

they are not modeled correctly, it is quite difficult, if not impossible, to precisely predict the performance

characteristics, and therefore making almost impossible to design proper control laws.

The approach of decoupling the different constitutive elements of a helicopter and obtain the forces,

Eq. (2.23), and moments, Eq. (2.25), of each of the different helicopter components separately, and

sum them all together in the right hand side of the linear and angular momentum, Eqns. (2.24) and

(2.25), respectively, is a very extended practice on the world of helicopter modeling and simulation

(Padfield, 2007; Theodore, 2000; Gavrilets et al., 2002b; Gavrilets et al., 2001). This can be better seen

in Figure 2.17.

The definition of the angular momentum implies that the volume integral in the left-hand side of Eq.

(2.25) is a time dependent function, which it is really difficult to work with, therefore, and to eliminate

the time-dependance, a switch of coordinate system is introduced, such that the linear momentum and

angular momentum equations, Eqns. (2.24) and (2.25), respectively, are rewritten with respect to the

body-fixed coordinate system, that is XY Z, instead of X
′

Y
′

Z
′

. This translates in that the volume

integral is not longer time-dependent. This raises a new problem, and it is the fact that the coordinate

system XY Z is a rotating (non-inertial) coordinate system, where the Newton’s Laws do not apply as

they were used earlier. This can be ssolved by using a vector transformation relationship given by

dA

dt
=

dA

dt
+ ω ×A = Ȧ+ ω ×A, (2.27)

where A represents any vector which is to be transformed, therefore dA
dt represents the fixed coordinate
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system X
′

Y
′

Z
′

, and dA
dt + ω ×A the rotating coordinate system XY Z. With this in mind, the trans-

formation formula, Eq. (2.27), is applied to the left-hand side of both (2.24) and (2.25), where for the

linear momentum is given by

m
dVP

dt
= m

(

dVP

dt
+ ω ×VP

)

, (2.28)

therefore rewriting Eq. (2.13) as

m

(

dVP

dt
+ ω ×VP

)

= mg + F, (2.29)

while for the angular momentum is given by

d

dt

∫

v

r× ρH
dr

dt
dv =

∫

v

r× d

dt

dr

dt
ρHdv =

∫

v

r× d

dt
(ṙ+ ω × r) ρHdv

=

∫

v

r× (r̈+ ω̇ × r+ 2ω × r+ ω × (ω × r)) ρHdv. (2.30)

The angular momentum, Eq. (2.30), can be simplified by assuming that all the mass elements stay

together, and that there are no spinning rotors in the aircraft, therefore it is easily recognized that

ṙ = r̈ = 0 and therefore permitting to rewrite Eq. (2.30) as
∫

v

r× (ω̇ × r+ ω × (ω × r)) ρHdv = M. (2.31)

Since vector ω̇ is a property of system XY Z, that is, the angular acceleration of the axis system XY Z

relative to axis X
′

Y
′

Z
′

is equal to the angular acceleration of the aircraft relative to the earth, it can

be taken outside the volume integral, which makes the volume integral time-independent. For the case

in which the existence of spinning rotors cannot be neglected, the gyroscopic moments due to spinning

rotors can be taken into account by a simple addition to the angular momentum equation (2.25) given

by

d

dt

∫

v

r× dr

dt
ρHdv +

dh

dt
=

∫

s

r× Fds = M, (2.32)

where h is the total angular momentum of spinning rotors given by

h = Σi=n
i=1hi, (2.33)

where the rotor is assumed to have a moment of inertia IRi
about its spinning axis, and it is also assumed

that the rotor spins with angular velocity ωRi
, therefore permitting to rewrite Eq. (2.33) as

h = Σi=n
i=1 IRi

ωRi
, (2.34)

or in its component for

h = ihx + jhy + khz, (2.35)

where i, j and k are unit vectors along the X , Y and Z axes respectively. The total angular momentum

due to the spinning rotors is generally neglected since the mass of the blades represents typically less

than 5 % of the total mass of the helicopter, thus neglecting the mass shift and its effects of the flapping

and lagging motion of the rotor (Padfield, 2007). In addition, the rotor is assumed to be a fixed force

and moment generating device (Cooke et al., 2002), and furthermore, since the changes in the inertia

tensor with time are small when compared with the perturbing forces and moments, it is customary and

acceptable to simply drop the terms involving time derivatives of the mass properties (Dreier, 2007).

Therefore, the volume integral in the angular momentum Eq. (2.31) is conducted solely over the fuselage

of the helicopter, which is treated like a rigid body, in which the structural distortions are neglected

(Cooke et al., 2002). This reduces Eq. (2.32) to Eq. (2.31), which can now be rewritten in state space
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form as

m

(

dVP

dt
+ ω ×VP

)

= mg + F, (2.36)

and where the angular momentum is given by

I ts

dω

dt
+ ω × Iω = M, (2.37)

where F and M have been previously defined in Eqns. (2.23) and (2.27), respectively, and as seen

previously, VP is the velocity of the helicopter center of mass and given in vector form by

VP =
[

U V W
]T

, (2.38)

with U , V andW being the velocity components ofVP alongX , Y , and Z components respectively of the

body-fixed coordinate system XY Z. The angular rotation vector of the helicopter ω is given by

ω =
[

P Q R
]T

, (2.39)

with P , Q and R being the helicopter angular velocity components of ω along X , Y , and Z components,

respectively. The inertia tensor of the helicopter is given by

I ts =







Ixx 0 −Ixz
0 Iyy 0

−Ixz 0 Izz






, (2.40)

where it is considered that the moments of inertia Ixy = Iyz = 0. Finally, g is the gravitation vector and

given in vector form by

g = g
[

− sinΘ cosΘ sinΘ cosΘ cosΦ
]T

. (2.41)

Recalling the operations between vectors and tensors, where

I tsω =







Ixx 0 −Ixz
0 Iyy 0

−Ixz 0 Izz

















P

Q

R











=











IxzP − IxzR

IyyQ

−IxzP + IzzR











, (2.42)

and

ω× =







0 −R Q

R 0 −P
−Q P 0






, (2.43)

therefore substituting Eqns. (2.38–2.41), and using Eq. (2.43) and (2.42) into Eqns. (2.36) and (2.37),

results in the helicopter dynamic equations in state space form

F = m







U̇ +WQ− V R

V̇ + UR−WP

Ẇ + V p− UQ






−mg







− sinΘ

cosΘ sinΦ

cosΘ cosΦ






, (2.44)

M =







IxxṖ − IxzṘ+ (Izz − Iyy)RQ− IxzPQ

IyyQ̇+ (Ixx − Izz)PR+ Ixz
(

P 2 −R2
)

IzzṘ − IxzṖ + (Iyy − Ixx)PQ+ IxzQR






, (2.45)

where Eq. (2.44) represents the force equations, and where Eq. (2.45) represents the moment equations

with

F =
(

Fx Fy Fz

)

, (2.46)

M =
(

Mx My Mz

)

, (2.47)
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where Fx, Fy, and Fz being the external forces applied to the helicopter on the X , Y , and Z axis,

respectively. Recalling Eq. (2.23), the forces can be expressed as

Fx = FxR
+ FxTR

+ Fxf
+ Fxtp

+ Fxfn
, (2.48)

Fy = FyR
+ FyTR

+ Fyf
+ Fytp

+ Fyfn
, (2.49)

Fz = FzR + FzTR
+ Fzf + Fztp + Fzfn

, (2.50)

where again, the subscripts stand for: rotor, R, tail rotor, TR, fuselage, f , horizontal plane tp, and vertical

fin, fn, and where Mx, My, and Mz represent the external moments being applied to the helicopter on

the X , Y , and Z axis respectively, and expanded as

Mx = MxR
+MxTR

+Mxf
+Mxtp

+Mxfn
, (2.51)

My = MyR
+MyTR

+Myf
+Mytp

+Myfn
, (2.52)

Mz = MzR +MzTR
+Mzf +Mztp +Mzfn

. (2.53)

With this in mind, Eq. (2.44) is rewritten as

U̇ = V R−WQ− g sinΘ +
Fx

m
, (2.54)

V̇ = WP − UR+ g sinΦ cosΘ +
Fy

m
, (2.55)

Ẇ = UQ− V P + g cosΦ cosΘ +
Fz

m
, (2.56)

and Eq. (2.45) is rewritten as

IxxṖ = (Iyy − Izz)RQ+ Ixz

(

Ṙ+ PQ
)

+Mx, (2.57)

IyyQ̇ = (Izz − Ixx)RP + Ixz
(

R2 − P 2
)

+My, (2.58)

IzzṘ = (Ixx − Iyy)PQ+ Ixz

(

Ṗ −QR
)

+Mz. (2.59)

The force and the moments equations, Eqns. (2.54–2.56) and (2.57–2.59), respectively, are comple-

mented with the kinematic equations, Eqns. (2.7-2.9), that connect the components of the angular

rotation vector, ω, with the aircraft’s bank velocity, Φ, the pitch attitude velocity, Θ, and the heading

velocity, Ψ. This results in the nine differential equations that permit to determine the evolution with

respect to time of the state vector X given by

X =
[

U V W P Q R Φ Θ Φ
]T

. (2.60)

Generally, vectors F and M, Eqns. (2.46) and (2.47) are complex functions of the state variables and

the control signals such

F = F
(

U, V,W, P,Q,R, U̇, V̇ , Ẇ , Ṗ , Q̇, Ṙ, θc, θ1s , θ1c , θtr, θ̇c, θ̇1s , θ̇1c , θ̇tr

)

, (2.61)

M = M
(

U, V,W, P,Q,R, U̇, V̇ , Ẇ , Ṗ , Q̇, Ṙ, θc, θ1s , θ1c , θtr, θ̇c, θ̇1s , θ̇1c , θ̇tr

)

, (2.62)

with θc being the collective pitch angle signal for the main rotor, θ1s is the longitudinal cyclic control

signal, θ1c is the lateral cyclic control signal, and θtr is the collective pitch angle of the tail rotor. The

nine differential equations are therefore given by

U̇ = V R −WQ− g sinΘ +
Fx

m
, (2.63)

V̇ = WP − UR+ g sinΦ cosΘ +
Fy

m
, (2.64)

Ẇ = UQ− V P + g cosΦ cosΘ +
Fz

m
, (2.65)
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IxxṖ = (Iyy − Izz)RQ+ Ixz

(

Ṙ+ PQ
)

+Mx, (2.66)

IyyQ̇ = (Izz − Ixx)RP + Ixz
(

R2 − P 2
)

+My, (2.67)

IzzṘ = (Ixx − Iyy)PQ+ Ixz

(

Ṗ −QR
)

+Mz, (2.68)

P = Φ̇− Ψ̇ sinΘ, (2.69)

Q = Θ̇ cosΦ + Ψ̇ cosΘ sinΦ, (2.70)

R = Ψ̇ cosΘ cosΦ− Θ̇ sinΦ. (2.71)

The navigation equations that determine the location of the aircraft at any given time are given by

(Lewis and Stevens, 2003)

˙pN = U cosΘ cosΨ + V (− cosΦ sinΨ + sinΦ sinΘ cosΨ) +

W (sinΦsinΨ+ cosΦ sinΘ cosΨ), (2.72)

˙pE = U cosΘ sinΨ + V (cosΦ cosΨ + sinΦ sinΘ sinΨ) +

W (− sinΦ cosΨ + cosΦ sinΘ sinΨ), (2.73)

ḣ = U sinΘ− V sinΦ cosΘ−W cosΦ cosΘ, (2.74)

where ˙pN , ˙pE and ḣ are, respectively, the north, east, and vertical components of the helicopter velocity

in the local level geographic frame on the surface of the Earth. This concludes the nonlinear 6 −DOF

model, and the following section presents the perturbed state equations of motion that will lead to the

axial flight model that will be used in this thesis.
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Figure 2.17: Modeling Components of a Helicopter (Padfield, 2007).
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2.5 Perturbed State Equations of Motion

In order to simplify the highly nonlinear equations of motion defined in Eqns. (2.63–2.71), two special

flight conditions, are considered in more detail:

• Steady state flight condition.

• Perturbed state flight condition.

Only the second flight condition will be discussed in this thesis, yielding the equations that form the

basis for the helicopter model that will be used in this study. The perturbation state equations decouples

the highly non-linear 6−DOF problem into the longitudinal and the lateral-directional problems, while

the work conducted in this thesis will focus on a special case of the first problem, the axial flight condition,

which is further discussed in section 2.8. Prior to start with the decoupling let recall Roskam’s definition

(Roskam, 2001) of perturbed state flight given as

A perturbed state flight condition is defined as one for which ALL motion variables are defined

relative to a known steady state flight condition.

For that case, the substitutions are applied to all motion variables, forces and moments in the original

Eqns. of motion (2.63)-(2.71). For example, the forward velocity state, U , uses the substitution U =

U1 + u, where the subscript in U1 defines a perturbed motion about a general trim condition, and the

lower case variable, u, defines the perturbed state flight condition, where a trim condition is considered

state that provides moment equilibrium at a given flight regime. Similar substitutions are conducted for

the rest of the states as seen bellow

U = U1 + u, V = V1 + v, W =W1 + w , (2.75)

P = P1 + p, Q = Q1 + q, R = R1 + r , (2.76)

Φ = Φ1 + φ, Θ = Θ1 + θ, Ψ = Ψ1 + ψ , (2.77)

and the same is done with the forces and moments resulting in

Fx = Fx1
+ fx, Fy = Fy1

+ fy, Fz = Fz1 + fz , (2.78)

Mx =Mx1
+mx, My =My1

+my, Mz =Mz1 +mz . (2.79)

Using Eqns. (2.75–2.77) and (2.78–2.79) into the non-linear equations of motion (2.63–2.71) results in

the perturbation equations of motion defined as

u̇ = (V1 + v)(R1 + r) − (W1 + w)(Q1 + q)− g sin(Θ1 + θ) +
Fx

m
+
fx
m
, (2.80)

v̇ = −(U1 + u)(R1 + r) + (W1 + w)(P1 + p) + g sin(Φ1 + φ) cos(Θ1 + θ)

+
Fy

m
+
fy
m
, (2.81)

ẇ = (U1 + u)(Q1 + q)− (V1 + v)(P1 + p) + g cos(Φ1 + φ) cos(Θ1 + θ)

+
Fz

m
+
fz
m
, (2.82)

Ixxṗ = Ixz ṙ + Ixz(P1 + p)(Q1 + q)− (Izz − Iyy)(R1 + r)(Q1 + q) +Mx +mx, (2.83)

Iyy q̇ = −(Ixx − Izz)(P1 + p)(R1 + r) − Ixz
[

(P1 + p)2 − (R1 + r)2
]

+My +my, (2.84)

Izz ṙ = Ixz ṗ− (Iyy − Ixx)(P1 + p)(Q1 + q)− Ixz(Q1 + q)(R1 + r) +Mz +mz, (2.85)

P1 + p = (Φ̇1 + φ̇)− (Ψ̇1 + ψ̇) sin(Θ1 + θ), (2.86)

Q1 + q = (Θ̇1 + θ̇) cos(Φ1 + φ) + (Ψ̇1 + ψ̇) cos(Θ1 + θ) sin(Φ1 + φ), (2.87)

R1 + r = (Ψ̇1 + ψ̇) cos(Θ1 + θ) cos(Φ1 + φ)− (Θ̇1 + θ̇) sin(Φ1 + φ), (2.88)
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where fx, fy, and fz represent the external perturbed forces being applied to the helicopter on the X ,

Y , and Z axis respectively, where

fx = fxR
+ fxTR

+ fxf
+ fxtp

+ fxfn
, (2.89)

fy = fyR
+ fyTR

+ fyf
+ fytp

+ fyfn
, (2.90)

fz = fzR + fzTR
+ fzf + fztp + fzfn

, (2.91)

and where lx, my, and mz represent the external perturbed moments being applied to the helicopter on

the X , Y , and Z axis respectively, where

mx = mxR
+mxTR

+mxf
+mxtp

+mxfn
, (2.92)

my = myR
+myTR

+myf
+mytp

+myfn
, (2.93)

mz = mzR +mzTR
+mzf +mztp +mzfn

, (2.94)

although for simplicity, the force and moment equations will be kept in their non-expanded form. After

some trigonometric manipulations and approximations, which include some restrictions to the allowable

magnitude of the motion perturbations, see reference (Roskam, 2001) for further details, Eqns. (2.80–

2.88) are simplified by eliminating the small perturbations and neglecting the nonlinear terms compared

with the linear terms, thus reducing to

u̇ = V1r +R1v −W1q −Q1w − gθ cosΘ1 +
fx
m
, (2.95)

v̇ = −U1r −R1u+W1p+ P1w − gθ sinΦ1 sinΘ1 + gφ cosΦ1 cosΘ1 +
fy
m
, (2.96)

ẇ = U1q +Q1u− V1p− P1v − gθ cosΦ1 sinΘ1 − gφ sinΦ1cosΘ1 +
fz
m
, (2.97)

Ixxṗ = Ixz ṙ + Ixz(P1q +Q1p)− (Izz − Iyy)(R1q +Q1r) +mx, (2.98)

Iyy q̇ = −(Ixx − Izz)(P1r +R1p)− Ixz(2P1p− 2R1r) +my, (2.99)

Izz ṙ = Ixz ṗ− (Iyy − Ixx)(P1q +Q1p)− Ixz(Q1r +R1q) +mz, (2.100)

p = φ̇− Ψ̇1θ cosΘ1 − ψ̇ sinΘ1, (2.101)

q = −Θ̇1φ sinΦ1 + θ̇ cosΦ1 + Ψ̇1φ cosΘ1 cosΦ1 − Ψ̇1θ sinΘ1 sinΦ1

+ ψ̇ cosΘ1 sinΦ1, (2.102)

r = −Ψ̇1φ cosΘ1 sinΦ1 − Ψ̇1θ sinΘ1 cosΦ1 + ψ̇ cosΘ1 cosΦ1 − Θ̇1φ cosΦ1

− θ̇ sinΦ1, (2.103)

which form the nine perturbed equations of motion relative to a very general steady state in which all

motion variables are allowed to have non-zero steady state values. It can be shown that the aircraft

kinematic Eqns. (2.101–2.103) can be rewritten as

φ̇ = p+
(

q sinΦ1 + r cosΦ1 + φΘ̇1

)

tanΘ1 + θΨ̇1 secΘ1, (2.104)

θ̇ = q cosΦ1 − r sinΦ1 − φ cosΘ1Ψ̇1, (2.105)

ψ̇ =
(

q sinΦ1 + r cosΦ1 + φΘ1 + θ sinΘ1Ψ̇1

)

secΘ1. (2.106)

With the nine perturbed equations of motion, Eqns. (2.95–2.100) and (2.104–2.106), the next step

towards the definition of the axial flight model shifts towards the linearization of the force and moments.

Recall from reference (Padfield, 2007) that:

A fundamental assumption of linearization is that the external forces Fx, Fy and Fz and moments

Mx, My and Mz can be represented as analytic functions of the disturbed motion variables and

their derivatives. Taylor’s theorem for analytic functions then implies that if the force and moment

functions (i.e., the aerodynamic loadings) and all its derivatives are known at any one point (the trim
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condition), then the behavior of that function anywhere in its analytic range can be estimated from an

expansion of the function in a series about the known point. The requirement that the aerodynamic

and dynamic loads be analytic functions of the motion and control variables is generally valid, but

features such as hysteresis and sharp discontinuities are examples of non-analytic behaviour where

the process will break down. Linearization amounts to neglecting all except the linear terms in the

expansion. The validity of linearization depends on the behaviour of the forces at small amplitude,

i.e., as the motion and control disturbances become very small, the dominant effect should be a linear

one.

With this in mind, the perturbed forces can then be written in the approximate form by recalling the

forces and moments dependencies, as seen in Eqns. (2.61) and (2.62), resulting in

fx = fx1
+
∂fx
∂u

u+
∂fx
∂v

v +
∂fx
∂w

w + · · ·+ ∂fx
∂θc

θc + . . . etc, (2.107)

fy = fy1
+
∂fy
∂u

u+
∂fy
∂v

v +
∂fy
∂w

w + · · ·+ ∂fy
∂θc

θc + . . . etc, (2.108)

fz = fz1 +
∂fz
∂u

u+
∂fz
∂v

v +
∂fz
∂w

w + · · ·+ ∂fz
∂θc

θc + . . . etc, (2.109)

and the same can be applied to the perturbed moments, which are given by

mx = mx1
+
∂mx

∂u
u+

∂mx

∂v
v +

∂mx

∂w
w + · · ·+ ∂mx

∂θc
θc + . . . etc, (2.110)

my = my1
+
∂my

∂u
u+

∂my

∂v
v +

∂my

∂w
w + · · ·+ ∂my

∂θc
θc + . . . etc, (2.111)

mz = mz1 +
∂mz

∂u
u+

∂mz

∂v
v +

∂mz

∂w
w + · · ·+ ∂mz

∂θc
θc + . . . etc. (2.112)

The linear approximation will therefore contain terms in the rates of change of motion and control

variables with time (i.e. u̇, v̇, . . . , θ̇c, . . . , etc.), but initially they will be neglected. The partial nature of

the derivatives indicates that they are obtained with all the other degrees-of-freedom held fixed, which is

simply another manifestation of the linear assumption (Padfield, 2007). For simplification, the derivatives

are written in the form, where the derivatives for the force in the X axis are given by

∂fx
∂u

= Xu,
∂fx
∂v

= Xv,
∂fx
∂w

= Xw, (2.113)

∂fx
∂p

= Xp,
∂fx
∂q

= Xq,
∂fx
∂r

= Xr, (2.114)

∂fx
∂θc

= Xθc ,
∂fx
∂θ1s

= Xθ1s ,
∂fx
∂θ1c

= Xθ1s ,
∂fx
∂θTR

= XθTR
, (2.115)

and the force derivatives in the Y axis are given by

∂fy
∂u

= Yu,
∂fy
∂v

= Yv,
∂fy
∂w

= Yw, (2.116)

∂fy
∂p

= Yp,
∂fy
∂q

= Yq,
∂fy
∂r

= Yr, (2.117)

∂fy
∂θc

= Yθc ,
∂fy
∂θ1s

= Yθ1s ,
∂fy
∂θ1c

= Yθ1s ,
∂fy
∂θTR

= YθTR
, (2.118)

and the force derivatives in the Z axis are given by

∂fz
∂u

= Zu,
∂fz
∂v

= Zv,
∂fz
∂w

= Zw, (2.119)

∂fz
∂p

= Zp,
∂fz
∂q

= Zq,
∂fz
∂r

= Zr, (2.120)

∂fz
∂θc

= Zθc ,
∂fz
∂θ1s

= Zθ1s ,
∂fz
∂θ1c

= Zθ1s ,
∂fz
∂θTR

= ZθTR
. (2.121)
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Similarly, with the perturbed moment derivatives in the X axis being written as

∂mx

∂u
= Lu,

∂mx

∂v
= Lv,

∂mx

∂w
= Lw, (2.122)

∂mx

∂p
= Lp,

∂mx

∂q
= Lq,

∂mx

∂r
= Lr, (2.123)

∂mx

∂θc
= Lθc ,

∂mx

∂θ1s
= Lθ1s ,

∂mx

∂θ1c
= Lθ1s ,

∂mx

∂θTR
= LθTR

, (2.124)

and the force derivatives in the Y axis are given by

∂my

∂u
= Mu,

∂my

∂v
=Mv,

∂my

∂w
=Mw, (2.125)

∂my

∂p
= Mp,

∂my

∂q
=Mq,

∂my

∂r
=Mr, (2.126)

∂my

∂θc
= Mθc ,

∂my

∂θ1s
=Mθ1s ,

∂my

∂θ1c
=Mθ1s ,

∂my

∂θTR
=MθTR

. (2.127)

Finally the force derivatives in the Z axis are given by

∂mz

∂u
= Nu,

∂mz

∂v
= Nv,

∂mz

∂w
= Nw, (2.128)

∂mz

∂p
= Np,

∂mz

∂q
= Nq,

∂mz

∂r
= Nr, (2.129)

∂mz

∂θc
= Nθc ,

∂mz

∂θ1s
= Nθ1s ,

∂mz

∂θ1c
= Nθ1s ,

∂mz

∂θTR
= NθTR

. (2.130)

Therefore, with the use of the force and moment stability derivatives, the linearized equations of motion

for the full six degrees of freedom, Eqns. (2.95–2.100), and (2.104–2.106), describing perturbed motion

about a general trim condition can be written as (Padfield, 2007)

˙̂
X = AX̂ +BU(t), (2.131)

whereA and B are the so called system and control matrices which are formed by the partial derivatives of

the non-linear 6−DOF , Eqns. (2.63–2.71), with X̂ being just the state vector X , Eq. (2.60), reorganized

such that the perturbed longitudinal dynamic variables and the lateral directional variables are grouped

as

X̂ =
[

X̂long X̂lat

]T

=
[

u w q θ v p φ r ψ
]T

, (2.132)

with

X̂long =
[

u w q θ
]T

, (2.133)

X̂lat =
[

v p φ r ψ
]T

, (2.134)

resulting in

A =

(

∂F

∂X̂

)

X̂=X̂1

, (2.135)

and

B =

(

∂F

∂U

)

X̂=X̂1

, (2.136)

with F being the vector function that includes the complete 6 − DOF model, Eqns. (2.63–2.71), and

where U being the control vector and given by

U =
[

Ulong Ulat

]T

, (2.137)
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with the longitudinal and lateral-directional control signals given by

Ulong = [θc, θ1s ]
T , (2.138)

Ulat = [θ1c , θtr]
T
. (2.139)

In order to simplify the stability and control analysis of any aircraft in general, the perturbed equations

of motion are generally decoupled into longitudinal and lateral-directional modes, therefore lets make

the distinction between pure longitudinal, pure lateral-directional, and coupled longitudinal and lateral

directional stability derivatives by reorganizing the system and control matrices, A and B such

A =

(

Along Along−lat

Alat−long Alat

)

, (2.140)

where Along is a 4 × 4 matrix that represents the pure longitudinal dynamics of the helicopter, and

where Alat is a 5 × 5 matrix that represents the pure lateral dynamics of the helicopter, Along−lat is

a 4 × 5 matrix that defines the lateral-directional coupling of the longitudinal equations of motion, and

Alat−long is a 5 × 4 matrix that defines the longitudinal coupling of the lateral-directional equations of

motion. A similar reorganization is conducted for the control matrix yielding

B =

(

Blong Blong−lat

Blat−long Blat

)

, (2.141)

where similarly, Blong is a 4 × 2 matrix that represents the control signals for the pure longitudinal

dynamics, that is the collective pitch angle of the main rotor θc, and the longitudinal cyclic θ1s , while

Blat is a 5 × 2 matrix that represents the control signals for the pure lateral-directional dynamics, that

is the lateral cyclic θ1c , and the tail rotor collective pitch θTR. In its expanded form, Eq. (2.140) can be

defined as (Leishman, 2006)

Along =













Xu Xw −Q1 Xq −W1 −g cosΘ1

Zu +Q1 Zw Zq + U1 −g cosΦ1 sinΘ1

Mu Mw Mq 0

0 0 cosΘ1 0













, (2.142)

and

Along−lat =













Xv +R1 Xp 0 Xr + V1 0

Zp − P1 Zp − V1 −g sinΦ1 cosΘ1 Zr 0

Mv Along−lat
1

0 Along−lat
2

0

0 0 −Ψ̇1 cosΘ1 − sinΦ1 0













. (2.143)

For simplicity the constants are defined as

Along−lat
1
=Mp − 2P1

Ixz
Iyy

−R1
Ixx − Izz
Iyy

, (2.144)

Along−lat
2
=Mr + 2R1

Ixz
Iyy

+ P1
Ixx − Izz
Iyy

, (2.145)

and

Alat−long =

















Yu −R1 Yw + P1 Yq −g sinΦ1 sinΘ1

L
′

u − P1 L
′

w L
′

q + k1P1 − k2R1 0

0 0 sinΦ1 tanΘ1 Ψ̇1 secΘ1

N
′

u N
′

w N
′

q − k1R1 − k3P1 0

0 0 sinΦ1 secΘ1 Ψ̇1 tanΘ1

















, (2.146)
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and

Alat =

















Yv Yp −W1 g cosΦ1 cosΘ1 Yr − U1 0

L
′

v L
′

p + k1Q1 0 L
′

r − k2Q1 0

0 1 Θ̇1 tanΘ1 cosΦ1 tanΘ1 0

N
′

v N
′

p − k3Q1 0 N
′

r − k1Q1 0

0 0 Θ̇1 secΘ1 cosΦ1 secΘ1 0

















. (2.147)

Recall that the X , Y and Z derivatives are written in a semi-normalized form with respect to the mass

of the aircraft, m, i.e.

X∗ =
X∗

m
, (2.148)

Y∗ =
Y∗
m
, (2.149)

Z∗ =
Z∗

m
, (2.150)

and where also the longitudinal moment derivatives are normalized with the moment of inertias

such

M∗ =
M∗

Iyy
, (2.151)

and the lateral-directional moment derivatives are normalized with respect to the moment inertias re-

sulting in

L
′

∗ =
Izz

IxxIzz − I2xz
L∗ +

Ixz
IxxIzz − I2xz

N∗, (2.152)

N
′

∗ =
Ixz

IxxIzz − I2xz
L∗ +

Ixx
IxxIzz − I2xz

N∗, (2.153)

where Ixx and Izz are the roll and yaw moments of inertia, and Ixz is the roll/yaw product of inertia.

The k∗ constants in Eqns. (2.146–2.147) are given by the expressions

k1 =
Ixz (Izz + Ixx − Iyy)

IxxIzz − I2xz
, (2.154)

k2 =
Izz (Izz − Iyy) + I2xz

IxxIzz − I2xz
, (2.155)

k4 =
Ixx (Iyy − Ixx)− I2xz

IxxIzz − I2xz
. (2.156)

In their expanded form, (2.141) is defined as

Blong =













Xθc Xθ1s

Zθc Zθ1s

Mθc Mθ1s

0 0













, (2.157)

Blong−lat =













Xθ1c Xθtr

Zθ1c Zθtr

Mθ1c Mθtr

0 0













, (2.158)

Blat−long =

















Yθc Yθ1s
L

′

θc
L

′

θ1s

0 0

N
′

θc
N

′

θ1−s

0 0

















, (2.159)
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Blat =

















Yθ1c Xθtr

L
′

θ1c
L

′

θtr

0 0

N
′

θ1c
N

′

θtr

0 0

















. (2.160)

Recall that in addition to the linearized aerodynamic forces and moments, the state and control ma-

trices, Eqns. (2.140) and (2.141) respectively, also contains perturbation inertial, gravitational and kine-

matic effects linearized about the trim conditions defined by

Φ1, Θ1, Ψ1, U1, V1, W1, P1, Q1, R1. (2.161)

The coefficients in the different state and control matrices represents the slope of the forces and moments

at the trim point reflecting the strict definition of the stability and control derivatives.

2.5.1 Longitudinal Linearized Model

In order to simplify the stability and control analysis problems for aircrafts, it is customary, as seen in

the literature (Etkin and Reid, ; Roskam, 2001; Padfield, 2007), to decouple the perturbed equations of

motion into its longitudinal and lateral-directional modes, where the first one is given by

X̂long = AlongX̂long +BlongUlong(t), (2.162)

with X̂long, Along , Blong , and Ulong being defined by Eqns. (2.133), (2.142), (2.157), and (2.138)

respectively. Only the longitudinal model will be developed in this section, since the work described here

only looks at a degenerated case of the longitudinal dynamics. This longitudinal linearized approximate

model permits a small amplitude stability analysis of the helicopter motion, which recalling the linear

system theory (Chen, 1998) implies that the helicopter motion can be described as a linear combination

of the natural modes, each having its own unique frequency damping and distribution of the response

variables (Leishman, 2006).

Without getting in detail into the linear system theory, the analysis of the dynamic response of the

longitudinal state-space model can be conducted via modal or eigenvector analysis, which shows that by

analyzing the characteristic equation of the longitudinal linearized model for helicopters, (2.162), it can

be differentiated three modes. The characteristic equation (CE), when solved, will show the nature of the

controls fixed response of the helicopter to a disturbance (Cooke et al., 2002), which is given by

det(sI −Along) = 0, (2.163)

where I is a 4× 4 identity matrix, and where expanding (2.163) results in

CE =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣













s 0 0 0

0 s 0 0

0 0 s 0

0 0 0 s













−













Xu Xw −Q1 Xq −W1 −g cosΘ1

Zu +Q1 Zw Zq + U1 −g cos Φ1 sin Θ1

Mu Mw Mq 0

0 0 cosΘ1 0













∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

= 0, (2.164)

this results in

CE =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

s−Xu −Xw −Q1 −(Xq −W1) g cosΘ1

−(Zu +Q1) s− Zw −(Zq + U1) g cosΦ1 sinΘ1

−Mu −Mw s−Mq 0

0 0 − cosΘ1 s

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

= 0, (2.165)

where the determinant of Eq. (2.165) is of the form As4 + Bs3 + Cs2 + Ds + E = 0. The coefficients
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in the polynomial can be expressed in terms of aerodynamics derivatives, see (Bramwell et al., 2001) for

mode details. For helicopters, in most cases, the equation can be factorized into

(T1s+ 1) (T2s+ 1)
(

s2 + 2ζωns+ ω2
n

)

= 0, (2.166)

which represent the three helicopter modes in longitudinal flight. These there modes can be summarized

as (Cooke et al., 2002):

1. Vertical Velocity Mode: The vertical velocity mode, which is described by the first factorization

(T1s+ 1) = 0, is a stable, heavily damped subsidence in the vertical velocity. The motion is decoupled

from the speed and pitch and has a time constant of the order of 1 to 2 seconds.

2. Forward Speed Mode: The forward speed mode, which is described by the second factorization

(T2s+ 1) = 0, is a stable heavily damped subsidence in speed. The motion is coupled with pitch

attitude and pitch rate. It has a short time constant of the order of 0.5 seconds.

3. Pitching Oscillation: The stability of the pitching oscillation is both speed and flight condition de-

pendent. In the climb or at high speed the oscillation can be unstable, possibly generating to an

exponential divergence at high speed. The oscillation couples with the forwards speed mode and is

mainly due to the rotor flapping caused by speed changes.

With this in mind, and in order to justify the proposed model in vertical flight, and recalling that only

the first of the modes, the vertical velocity mode, is the mode of interest for this thesis, the following

section focuses only on this mode.

2.5.2 Simplified Vertical Displacement Model

As shown above, the vertical velocity mode is decoupled from the speed and pitch modes. In order to

obtain an axial flight model, the original longitudinal simplified model has to be studied for the hover

flight condition, in which U1 =W1 = Q1 = Θ1 = Ψ1 = 0 and also can be assumed that some derivatives

are approximately zero (López Ruiz, 1993; Cooke et al., 2002), that is Xw = Xθc = Zu = Zq = Zθ1s =

Mw =Mθc = 0, therefore reducing Eq. (2.162) to

X̂long = AlongH
X̂long +BlongH

Ulong(t), (2.167)

with the hovering state and control matrices being given by

AlongH
=













Xu 0 Xq −g
0 Zw 0 0

Mu 0 Mq 0

0 0 1 0













, (2.168)

BlongH
=













0 Xθ1s

Zθc 0

Mθc Mθ1s

0 0













. (2.169)

This permits to separate the longitudinal dynamics in hover into the axial displacement and the com-

bined forward speed and pitch attitude movement of the helicopter (López Ruiz, 1993) resulting in

u̇ = Xuu+Xqq − gθ +Xθ1s θ1s , (2.170)

ẇ = Zww + Zθcθc, (2.171)

q̇ = Muu+Mqq − gθ +Mθcθc +Mθ1s θ1s , (2.172)
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θ̇ = q. (2.173)

Focusing on Eq. (2.171), it can be seen that the analysis of the vertical velocity mode, yields that it

has a real root given by s − Zw = 0, so that its eigenvalue is given by s = Zw. This presents a heavily

damped subsidence, which translates to the fact that if a helicopter is disturbed, by a vertical gust for

example, the subsequent heave (vertical) motion is quickly damped out (Cooke et al., 2002). As seen in

(2.171), this motion is a pure convergence with no oscillation and confirms that the vertical motion is

completely decoupled from the pitching and the forward motions as seen in Eq. (2.171).

The performance of a helicopter in axial flight near the hover condition can be predicted by analyzing

(2.171), where Zw is the vertical force due to vertical speed, and Zθc is the vertical force due to the

collective control signal θc. Therefore, in order to have a feasible model that can approximately predict

the performance of a helicopter in axial flight, and considering the resulting simplified axial dynamics

(2.171), is it necessary to derive a model that can accurately predict both vertical forces derivatives,

Zw and Zθc , along with some other significate contributions in vertical flight that are not considered in

this simplified vertical motion model. In order to do so, the following sections approach the problem by

defining nonlinear models that can both, predict in a precisely manner the performance characteristics

of a helicopter rotor in axial flight.

This implies that the selected model has to be able to collect the most significate nonlinear dynamics

of the problem, but also be simply enough that can be tackled down from a control perspective. Section

2.6 will define such models, and section 2.8 will define the proposed model definition for a miniature

helicopter in axial flight which is the main focus of this thesis. The proposed mathematical model will

include the nonlinear vertical motion of the helicopter, the nonlinear dynamics of the collective pitch

actuators, but also a nonlinear model for the combustion engine which permits the rotational velocity of

the blades. The use of collective pitch dynamics will increases considerably the complexity of the model,

but will also depict a more realistic system, with views of being able to implement in the future the

control and stability analysis results here obtained in the GCNL real autonomous platform with a higher

rate of success.

2.6 Helicopter Aerodynamics in Axial Flight

This section is dedicated to define the basis of the theory that will be employed to determine the dynamic

equations of a helicopter in axial flight. The correct understanding of the vertical flight of helicopters

requires an in depth analysis and study of the two main theories that explain rotor performance: mo-

mentum theory (MT ) and blade element theory (BE). A dynamic model of the thrust coefficient of

the main rotor for a helicopter in hover or axial flight can be obtained through a combination of these

two theories. The momentum theory provides a direct explanation of how vertical flight is obtained

through a global analysis, but it is unable to provide alone the required tools to predict the performance

of rotors. On the other side, blade element theory provides this required in depth look into the physics

that permits to predict the rotor performance, but unfortunately at the cost of added complexity. This

in-depth analysis is out of the scope of this thesis, and the author encourages the reader to solve any

doubts with some of the references employed in this section (Payne, 1959; Johnson, 1994; Layton, 1984;

Prouty, 1986; Leishman, 2006; Padfield, 2007; Cuerva et al., 2009).

In this section, the author tries to resume the most important parts of the two theories that lead to

the axial flight model that is employed in the thesis by using the available literature (Johnson, 1994;

Prouty, 1986; Leishman, 2006). Although several axial flight models are employed in certain parts of

this thesis, this section focuses on describing solely the axial flight model that will be selected, which is
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based on the momentum theory with the assumption of the existence of uniform inflow and hover flight

condition, where for completeness this model will be referred as MTH model from now on. The MTH

model is based on the proposed model selected by Pallet and Ahmad, which presented in several technical

reports written at the University of Purdue (Pallet et al., 1991; Pallet and Ahmad, 1991), although with

some modifications regarding some of the aerodynamic parameters that were not completely defined

in the original work. The resulting model describes the vertical motion of an autonomous helicopter

mounted on a stand, along with the dynamics of the rotational speed of the blades, and the dynamics of

the collective pitch actuators.

Although the selected model implies a series of hypothesis, such that the inflow ratio along the blades is

constant and equal to that of a hovering helicopter, it can be demonstrated (Johnson, 1994) that for small

enough axial velocities the simplification is valid and permits to have quite precise predictions of the rotor

performance. This thrust model is based in the sum of the blade element (BE) and the moment theory

(MT ) at the hover flight condition and assuming uniform inflow along the blade. The author contribution

to the original model, in addition to the definition of some of the coefficients by relating them to the

aerodynamic parameters of the MTH model, includes also the use of a more realistic thrust coefficient

models that are easily implemented in the MTH model which considers axial flight and non-uniform

inflow along the blades. The use of these more realistic, and therefore much more complex models, will

permit to test the validity of the hypothesis that the selection of simplified models around the hovering

condition is still valid for small vertical axial velocities, as it will be shown in the simulations. The use of

these models, which are described in detail in Appendix A, is limited to test the robustness of the control

laws that will be derived in this thesis by considering that these more accurate and complex models can

be used to account for unmodeled dynamics not being accounted for in the original model.

Although these models, described in detail in Appendix A, are widely used in the literature, and are

known to describe in higher detail, and with much more fidelity, the axial flight forces generated by a rotor

in axial flight, due to the discontinuities of these models, as previously described, are not implementable

models for the proposed control and analysis strategies which require continuously differentiable models,

thus will serve as test bench models where to test the robustness of the proposed control laws. Prior to

define the MTH model, the basis for both the BE and MT are presented so that they provide an insight

view of the mathematics of the problem.

2.6.1 Momentum Theory Analysis

Momentum theory applies the basic conservation laws of fluid mechanics (conservation of mass, momen-

tum, and energy) to the rotor and flow as a whole to estimate the rotor performance. It is a global

analysis, relating the overall flow velocities and the total rotor thrust and power (Johnson, 1994). The

rotor disk supports a thrust created by the action of the air on the blades. By Newton’s law there must

be an equal and opposite reaction of the rotor on the air. As a result, the air in the rotor wake acquires

a velocity increment directed opposite to the thrust direction. It follows that there is kinetic energy in

the wake flow field which must be supplied by the rotor. In order to simplify the analysis let consider the

control volume defined in Figure 2.18.

To simplify the dynamics of the rotor in the momentum theory, the rotor is modeled as an actuator

disk, which is a circular surface of zero thickness that can support a pressure difference, while accelerating

the air through the disk, and with the loading assumed to be steady, although it can vary over the surface

of the disk. The actuator disk may also support a torque, which imparts angular momentum to the fluid

as it passes through the disk. The actuator disk model is only an approximation to the actual rotor

that provides a simplification by assuming that the distribution of the rotor blade loading over a disk is
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equivalent to considering an infinite number of blades, in which pressure and velocity can be measured

along the control volume. Let also be assumed that the flow through the rotor is one-dimensional, quasi-

steady, incompressible and inviscid (Leishman, 2006). To help understand the momentum theory, let

define four relevant positions in the vicinity of the rotor model being:

• Station 0: in a position far upstream,

• Station 1: in a position right before the rotor blades,

• Station 2: in a position right after rotor blades,

• Station ∞: in a position far downstream.

The location of the stations can be seen in Figure 2.18, and where the velocity of the mass of air at

station 0 is given by v0 = 0, the velocities of the mass of air at station 1 and station 2 are the same,

and are given by vi, which represents the induced velocity, or the velocity imparted to the mass of air

contained in the control volume at the rotor disk, and the velocity of the mass of air at station 2 is

given by given by w. Following sections describe the momentum theory on two important helicopter

flight conditions: the hover and the axial flight. The first one, the hover condition, it is associated with

a equilibrium condition of the dynamic model employed in this thesis. The second flight condition, the

axial flight, represents the means by which the helicopter moves from one equilibrium point to another.

These two flight conditions are the basis for the control strategy adopted in this thesis of moving from

equilibrium to equilibrium in order to regulate the desired altitude of a helicopter. The controller must

be able to change its altitude from any prescribed initial altitude to any selected final altitude, always

taking into account that at the initial altitude the helicopter is already in equilibrium flight, that is,

maintaining the hover condition at that initial altitude, and that both, the initial and final altitudes are

limited by the physics of the problem, that is, the helicopter is restricted by the stand.

2.6.1.1 Momentum Theory Analysis in Hovering Flight

Let first consider the hover problem, where the control volume surrounding the rotor and its wake has

surface area S, as seen in Figure 2.18. Let dS be the unit normal area vector which by convention always

points out of the control volume across the surface S. The general equation governing the conservation

of fluid mass applied to this finite control volume can be written as
∫

S

ρV · dS = 0, (2.174)

where V is the local velocity and ρ is a scalar function of the density of the fluid. This equation states

that the mass flow into the control volume must equal the mass flow of the control volume. Similarly,

the equation governing the conservation of fluid momentum can be written as

F =

∫

ρVVdS. (2.175)

For unconstrained flow, the net pressure force on the fluid inside the control volume is zero, therefore

the net force on the fluid, F, is simply equal to the rate of change with time of the fluid momentum across

the control surface, S. Although Eq. (2.175) is a vector equation, it is simplified with the assumption

of quasi-dimensional flow. Because the force of the fluid is supplied by the rotor, by Newton’s third law

the fluid must exert an equal and opposite force on the rotor, which is the rotor thrust T . Finally the

conservation laws of aerodynamics are completed with the equation governing the conservation of energy

in the flow given by

W =

∫

S

1

2
(ρV · dS) |V|2, (2.176)
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which states simply that the work done on the fluid by the rotor is a scalar function that can be identified

as a gain in kinetic energy of the fluid in the rotor slipstream per unit time. These general equations

of mass, momentum, and energy conservation are applied to the specific problem of a hovering rotor

following the standardized procedures (Glauert, 1935; Johnson, 1994; Leishman, 2006). Following the

assumption that the flow is quasi-steady and by the principle of conservation of mass, Eq. (2.174), the

mass flow rate, ṁ, must be contained within the boundaries of the rotor wake, therefore resulting in the

flow rate which is given by

ṁ =

∫

∞

ρV · dS =

∫

2

ρV · dS, (2.177)

which implies that the mass flow rate at station 2, see Figure 2.18, must be the same that the mass flow

rate at station ∞. The mass flow rate model can be simplified by rewriting Eq. (2.177) can be rewritten

for one-dimension (1−D) incompressible flow as

ṁ = ρA∞w = ρAvi. (2.178)

The conservation of fluid momentum, Eq. (2.175), gives the relationship between the rotor thrust, T ,

and the net time rate-of-change of fluid momentum out of the control volume, obeying Newton’s second

law. Therefore resulting in that the rotor thrust is equal and opposite to the force on the fluid, which is

given by

− F = T =

∫

∞

ρ (V · dS)V −
∫

0

ρ (V · dS)V. (2.179)

Because in hovering flight the velocity far upstream of the rotor, station 0 in Figure 2.18, is quiescent,

the second term on the right-hand side of Eq. (2.179) is zero, therefore, for the hover problem, the rotor

thrust reduces to

T =

∫

∞

ρ (V · dS)V = ṁw. (2.180)

From the principle of conservation of energy, the work done on the rotor is equal to the gain in energy

of the fluid per unit time, where the work done per unit time, or power consumed by the rotor is, Tvi,

therefore having that

Tvi =

∫

∞

1

2
ρ (V · dS)V2ρ−

∫

0

1

2
ρ (V · dS)V2ρ, (2.181)

where in hover, the second term in (2.181) is zero reducing to

Tvi =

∫

∞

1

2
ρ (V · dS)V2ρ =

1

2
ṁw2. (2.182)

Using Eqns. (2.180) and (2.182) it can be easily seen that

vi =
1

2
w, (2.183)

therefore obtaining a direct relationship between the induced velocities at the rotor and far downstream

of the rotor

w = 2vi. (2.184)

It is also important to define the induced velocity at the rotor disk. As seen previously in Eq. (2.180),

the momentum theory is used to relate the rotor thrust to the induced velocity a the rotor disk by using

the relations previously derived resulting in

T = ṁw = ṁ(2vi) = 2(ρAvi)vi = 2ρAv2i , (2.185)
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which can be rearranged and solved for the induced velocity at the plane of the rotor disk by the

expression

vh ≡ vi =

√

T

2ρA
, (2.186)

where note that the induced inflow velocity at the rotor disk, vi, can be written as

vh ≡ vi = λhΩR, (2.187)

where the nondimensional quantity λh is called the induced inflow ration in hover and is defined by

λh =
vi
ΩR

, (2.188)

where Ω represents the angular rotational speed of the rotor, and R is the rotor radius, and the product

ΩR is just the blade tip speed Vtip. The inflow ratio is a very important parameter which is preferable

used when comparing results from different rotors because it is a nondimensional quantity. For rotating-

wing aircraft (i.e. helicopters), it is convention to nondimensionalize all velocities with the blade tip

speed (i.e. by Vtip = ΩR) (Leishman, 2006). In helicopter analysis it is also customary to define formally

the rotor thrust coefficient as

CT =
T

ρAV 2
tip

=
T

ρAΩ2R2
, (2.189)

where the reference area is the rotor disk area, A, and the reference speed is the blade tip speed, ΩR.

The inflow ratio (λi) is related to the thrust coefficient in hover by using the expression

λh ≡ λi =
vi
ΩR

=
1

ΩR

√

T

2ρA
=

√

T

2ρA (ΩR)
2 =

√

CT

2
, (2.190)

where Eq. (2.190) is the result of the assumption that the flow is a one-dimensional flow, which implies

that this value of inflow is assumed to be distributed uniformly over the disk. This relation is quite

important and it is used in following sections as a reference when describing the momentum theory for

the axial flight both the ascend and descend regimes.

2.6.1.2 Induced Tip Loss

Prior to describe the blade element theory, it is important to first introduce a physical real effect that

can be easily implemented in both the momentum theory, and as it will be demonstrated later, also in

the blade element theory, and in the subsequent proposed closed-form solutions for the thrust coefficient

models. The formation of a trailed vortex at the tip of each blade produces a high local inflow over the

tip region and effectively reduces the lifting capability there, this results in that the lifting-line theory is

not strictly valid near wing tips. When the chord at the tip is finite, blade element theory gives a nonzero

lift all the way out to the end of the blade. In reality, the blade loading drops to zero at the tip and at

the root, or hub of the blade because of three-dimensional flow effects. This translates into that, unless

these effects are accounted for in the modeling of the thrust forces, will result in an overestimated overall

thrust coefficient that will make the R/C helicopter to behave different that expected. These tip-losses

can be better seen in Figure (2.19).

The dynamic pressure loading for a rotary wing, which is proportional to r2, is concentrated at the tip

and drops off even faster than that for fixed wings. The loss of lift at the tip is an important factor in

calculating the rotor performance. If this loss is neglected, the rotor thrust for a given power or collective

will be significantly overestimated. A rigorous treatment of the tip loading would require a lifting surface

analysis. One way to take this effect into account is to integrate the incremental lift from some r0 to BR
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where r0 is radius of the root cut-out, and BR is the effective outer radius, Re < R. These values are

chosen such that the area under the theoretical curve out to BR is the same as the area under the actual

lift curve out to R. this resulting in that the tip loss corresponds to a reduction in the rotor disk area by

a factor B2, that is

Ae = πR2
e = π(BR)2 = B2(πR2) = B2A. (2.191)

Recalling that r0 is defined as the nondimensional radius of the cut-out, then the effective area of the

hovering rotor for momentum theory purposes becomes

Ae = πB2R2 − πr20R
2, (2.192)

which can be written in terms of an area ratio as

Ae

A
=
πB2R2 − πr20R

2

πR2
= B2 − r20 . (2.193)

Both, the root cutout, and the tip loss effects, can be included into an empirical equation for B that

was first derived by Prandtl and Betz (Betz, 1919) which gives good correlation to numerical method de-

terminations (Glauert, 1935; Johnson, 1994; Prouty, 1986; Leishman, 2006). Prandtl showed that when

accounting for the tip loss, the effective blade radius, Re is given by

Re

R
≈ 1−

(

1.386

Nb

)

λi
√

1 + λ2i
, (2.194)

where Nb being the number of blades. For helicopter rotors λi is typically less than 0.07 (Leishman, 2006),

therefore λ2i is small and Eq. (2.194) can be simplified into

Re

R
≈ 1−

(

1.386

Nb

)

λi, (2.195)

therefore resulting in a more general tip-loss equation given by

B = 1− 1.386λi
Nb

. (2.196)

Recall that the inflow ratio is given by

λi =
Vc + vi
ΩR

, (2.197)

where Vc is the climb velocity, and that for the hovering flight condition with the assumption of uniform

inflow, it has already been demonstrated in Eq. (2.190) that the inflow ratio can be assumed to be given

by

λi =

√

CT

2
, (2.198)

therefore the tip-loss factor can be approximated by

Re

R
= B = 1−

(

1.386

Nb

) √
CT

Nb
≈ 1−

√
CT

Nb
. (2.199)

Values for helicopter rotors are found to range from about 0.95 to 0.98, depending on the

number of blades (Leishman, 2006). Other empirical tip-loss factors are derived in the literature

(Gessow and Myers, 1985) based on blade geometry alone where

B = 1− c

R
, (2.200)

where c is the tip chord, but this result is limited to rectangular blade tips. Another alternative method
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(Sissingh, 1939; Sissingh, 1941) provides an expression for the tip-loss factor given by

B = 1− c0(1 + 0.7τr)

1.5R
, (2.201)

where c0 is the root chord of the main blade, and τr is the blade taper ratio. The tip-loss factor will be used

in the different proposed closed-form solutions for the thrust coefficient models described in Appendix

A.3. The following section describes the blade element theory which provides the needed physical insight

to understand how the collective, θc, and the rotational speed, Ω, affect the developed thrust.

2.6.2 Blade Element Theory

In order to obtain a mathematical model of how a helicopter in vertical flight generates thrust, it is

necessary investigate the blade element theory (BET ) (Johnson, 1994; Prouty, 1986; Padfield, 2007;

Leishman, 2006; Cuerva et al., 2009; López and Valenzuela, 2010). This theory will provide a closer

look of how the thrust force is generated. Blade element theory calculates the forces on the blade due

to its motion through the air, and hence the forces and the performance of the entire rotor. Basically,

blade element theory is a lifting-line theory applied to the rotating wing. It is assumed that each blade

section acts as a two-dimensional airfoil to produce aerodynamic forces, with the influence of the wake

and the rest of the rotor contained entirely in an induced angle of attack at the section. Basically the

thrust at the blade element is the same as the lift at a wing section. Several works (Anderson Jr., 1989;

Anderson Jr., 1991; Bertin and Smith, 2002) can be referenced for further explanations on the lifting line

theory, since discussing such theory is out of the scope of this thesis.

Blade element theory is the foundation of almost all analysis of helicopter aerodynamics because it deals

with the detailed flow and loading of the blade, and hence relates the rotor performance and other charac-

teristics to the detailed design parameters. In contrast, momentum theory, or any actuator disk analysis,

is a global analysis, which provides useful results but cannot alone be used to design the rotor. Again,

similarly as in the momentum theory analysis, the blade element theory analysis here conducted follows

closely the work done in the literature (Payne, 1959; Bramwell et al., 2001; Johnson, 1994; Prouty, 1986)

which is greatly compiled and developed by Leishman (Leishman, 2006) and serves as the main basis for

all derivations conducted in this chapter.

Prior to start with the BET analysis, it is important to define the incident velocities and the aero-

dynamics environment at a typical blade element as given in Figure 2.20, where it can be seen that the

resultant local flow velocity at any blade element at a radial distance y from the rotational axis has an

out-of-plane component UP = Vc + vi normal to the rotor as a result of climb and induced inflow, an

in-plane component UT = Ωy parallel to the rotor because of the blade rotation relative to the disk plane,

and also a radial component UR. This last component is generally assumed negligible, thus the resultant

velocity at the blade element is given by

U =
√

U2
T + U2

P , (2.202)

where the relative inflow angle, or also called induced angle of attack, at the blade element is given

by

φi = tan−1

(

UP

UT

)

, (2.203)

which for small angles reduces to

φi = tan−1

(

UP

UT

)

≈ UP

UT
. (2.204)

If the blade pitch angle at the blade element is θc, the aerodynamic or effective angle of attack is given
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by

α = θc − φi = θc −
UP

UT
, (2.205)

therefore the resultant increment lift dL and drag dD per unit span on this blade element are given

by

dL =
1

2
ρU2cCldy, (2.206)

dD =
1

2
ρU2cCddy, (2.207)

where Cl and Cd are the lift and drag coefficients, respectively. The lift (dL) and drag (dD) act perpen-

dicular and parallel to the resultant flow velocity, respectively, and where c is the local bade chord. The

forces can be resolved perpendicular and parallel to the rotor disk plane by using the diagram in Figure

2.20, resulting in

dFz = dL cosφi − dD sinφi, (2.208)

dFx = dL sinφi + dD cosφi, (2.209)

thus the contribution to the thrust, torque and power at the rotor are given by

dT = NbdFz, (2.210)

dQ = NbdFxy, (2.211)

dP = NbdFxΩy, (2.212)

where Nb is the number of blades that form the rotor. Substituting Eqns. (2.208–2.209) into Eqns.

(2.210-2.212) results in

dT = Nb (dL cosφi − dD sinφi) , (2.213)

dQ = Nb (dL sinφi + dDcosφi) y, (2.214)

dP = Nb (dL sinφi + dDcosφi) Ωy. (2.215)

A series of assumptions for helicopter rotors can be made (Leishman, 2006) to simplify the analysis,

such that the out of plane velocity UP is much smaller than the in-plane velocity UT , and this allowing

to rewrite Eq. (2.202) as

U =
√

U2
T + U2

P ≈ UT , (2.216)

which is a valid approximation except near the blade root, where the aerodynamics forces are small

anyway due to the low local velocity. The induced angle φi is small so that it can be rewritten as

φi = tan−1

(

UP

UT

)

≈ UP

UT
, (2.217)

and also using the following trigonometric approximations

sinφi ≈ φi, (2.218)

cosφi ≈ 1. (2.219)

Finally, since the drag for aerodynamic surfaces is at least one order of magnitude less than the lift, it

can be assumed that

dD sinφi ≪ dL cosφi ≈ 0. (2.220)
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Using Eqns. (2.216–2.220) into Eqns. (2.213–2.215) results in

dT = NbdL, (2.221)

dQ = Nb (φidL + dD) y, (2.222)

dP = NbΩ (φidL + dD) y. (2.223)

Let introduce the nondimensional quantities by dividing lengths by R and velocities by ΩR thus resulting

in

r =
y

R
, (2.224)

U

ΩR
=

Ωy

ΩR
=
y

R
= r, (2.225)

and also rewriting Eqns. (2.221–2.223)

dCT =
dT

ρA (ΩR)
2 , (2.226)

dCQ =
dQ

ρA (ΩR)
2
R
, (2.227)

dCP =
dP

ρA (ΩR)
3 . (2.228)

The inflow ratio can therefore be written as

λ =
Vc + vi
ΩR

=
Vc + vi
Ωy

(

Ωy

ΩR

)

=
UP

UT

( y

R

)

= φir, (2.229)

therefore the increment in thrust coefficient is given by

dCT =
NbdL

ρA (ΩR)
2

=
1

2

(

Nbc

πR

)

Cl

( y

R

)2

d
( y

R

)

=
1

2

(

Nbc

πR

)

Clr
2dr. (2.230)

Let also recall that for a rectangular blade (c = constant) the ratio of the rotor area to the rotor disk

area is known as solidity ratio and is given by

σ =
Blade area

Disk area
=
Ab

A
=
NbcR

πR2
=
Nbc

πR
, (2.231)

therefore the rotor thrust coefficient in Eq. (2.230) is reduced to

dCT =
1

2
σClr

2dr. (2.232)

Equation (2.232) is one of the most fundamental equations for rotating-wing analysis by means of the

BET. Similarly, it can be shown that the rotor-torque coefficient increment is given by

dCQ ≡ dCP =
dQ

ρA (ΩR)2R
=
Nb (φidL + dD) y

ρ (πR2) (ΩR)2R
=

1

2

(

Nbc

πR

)

(φiCl + Cd) r
3dr

=
1

2
σ (φiCl + Cd) r

3dr, (2.233)

which represents the sum of an induced part and a profile part. To find the total CT and CQ, the

incremental thrust, Eq. (2.232), and the incremental power, Eq. (2.233), must be integrated along the

blade from the root to the tip. For a rectangular blade the thrust coefficient is given by

CT =
1

2
σ

∫ 1

0

Clr
2dr, (2.234)
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where the limits of integration are r = 0 at the root to r = 1 at the tip. For the corresponding torque or

power coefficient

CQ ≡ CP =
1

2
σ

∫ 1

0

(φiCl + Cd) r
3dr =

1

2
σ

∫ 1

0

(

λClr
2 + Cdr

3
)

dr, (2.235)

To evaluate CT it is necessary to predict the span-wise variation in the inflow ratio, λ, as well as the sec-

tional aerodynamic force coefficients, CT and CD. Assuming 2-D aerodynamics, then Cl = Cl(α,Re,M)

and Cd = Cd(α,Re,M), where Re and M are the local Reynolds number and Mach number, respectively,

and α = α(Vc, θc, vi) and vi = vi(r). Because these effects cannot, in general, be expressed as simply ana-

lytic results, it is necessary to numerically solve the integrals for CT . However, with certain assumptions

and approximations, it is possible to find closed-form analytical solutions.

These solutions are very useful because they serve to illustrate the fundamental form of the results in

terms of the operational and geometric parameters of the rotor, and also provide exact check cases for

the numerical solutions to the blade element theory (Leishman, 2006). With this in mind, in order to

obtain a closed form solution of CT (2.234) it is necessary to define the form of the local lift coefficient

Cl. Based on steady linearized aerodynamics, the local blade lift coefficient can be written as

Cl = Clα(α− α0) = Clα(θc − α0 − φi), (2.236)

where Clα is the 2-D lift-curve-slope of the airfoil section comprising the rotor and α0 is the corresponding

zero-lift angle. For an incompressible flow, Clα would have a value close to the thin-airfoil result of 2π

per radian (Leishman, 2006). Although Clα , will take a different values at each blade station because it

is a function of local incident Mach number and Reynolds number, an average value for the rotor can

be assumed without by selecting Clα = 5.73 per radian, which will be the value used throughout the

remainder of the thesis. Also it will be assumed that α0 can be combined into collective pitch angle θc,

reducing Eq. (2.236) to

Cl = Clα(θc − α0 − φi) = Clα(θc − φi). (2.237)

Therefore, due to the assumption that Clα does not depend on r, it can be taken outside of the integral

sign, allowing to rewrite (2.234) as

CT =
1

2
σ

∫ 1

0

Clr
2dr =

1

2
σ

∫ 1

0

Clα(θc − φi)r
2dr =

1

2
σClα

∫ 1

0

(θc − φi)r
2dr, (2.238)

which can be rewritten by recalling the definition of the inflow angle φi = λ/r resulting in

CT =
1

2
σClα

∫ 1

0

(θcr
2 − λr)dr. (2.239)

Similarly to the thrust approximation, torque-power approximations can be obtained by recognizing

that Eq. (2.233) can be rewritten by using also the definition of the inflow angle resulting in

dCQ ≡ dCP =
σ

2
φiClr

3dr +
σ

2
+ Cdr

3dr

=
σ

2
Clλr

2dr +
σ

2
+ Cdr

3dr

= dCPi
+ dCP0

, (2.240)

where dCPi
is the induced power and dCP0

is the profile power. Recalling from the definition of the

incremental thrust Eq. (2.232), the induced power can be written as

dCPi
= λdCT , (2.241)
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which can be used to rewrite Eq. (2.240) as

dCP = λdCT + dCP0
, (2.242)

and the total power coefficient is given

CP =

∫ r=1

r=0

λdCT +

∫ 1

0

σ

2
Cdr

3dr. (2.243)

By assuming uniform inflow and Cd = Cd0
= constant, then after integration it is obtained

CP = λCT +
σ

8
Cd0

, (2.244)

which can be simplified by assuming hover condition and uniform inflow, Eq. (2.190) resulting in

CP ≡ CQ =
C

3/2
T√
2

+
σ

8
Cd0

, (2.245)

where the first term reduces to the simple momentum theory, while the second term in Eq. (2.245) is the

extra power predicted by the BET that is required to overcome profile drag of the rotor blades. This

concludes the BET analysis, which results in an integral form, Eq. (2.239) that can be used to obtain the

thrust coefficient, CT (λ), which depends on the model used to obtain λ. The following section provides

the proposed closed-form solution for the selected thrust coefficient.



70 CHAPTER 2. HELICOPTER DYNAMICS

Figure 2.18: Induced velocities in the vicinity of hovering rotor (Leishman, 2006; Cuerva et al., 2009).
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Figure 2.19: Theoretical and realistic lift distribution (Prouty, 1986).
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Figure 2.20: Incident velocities and aerodynamic environment at a typical blade element (Leishman, 2006;
Cuerva et al., 2009).
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2.7 Proposed Closed-Form Solutions for the Thrust Coefficient

Model

The previous sections have described separately both the momentum theory (MT ) and the blade element

theory (BET ). The momentum theory provided some good insight into how the helicopter hovers by

providing definitions for the inflow ratio depending on the flight condition, while blade element theory

provide physical explanations at how the collective pitch and rotational speed affect the developed thrust,

but lack to provide closed-form solutions since the integral form, Eq. (2.239), depends on the inflow angle.

Therefore it is necessary to combine both theories in order to obtain closed-form solutions of the thrust

coefficient which can be used in the proposed axial flight dynamic model for this thesis.

Four closed-form solutions will be proposed for the thrust coefficient CT which depends on the flight

condition that it is assumed, the type of blade, and the assumed flow distribution along the blade of the

rotor. These models, all of them available in the literature (Leishman, 2006), will be denoted, following

the standard literature nomenclature, and are given by:

• Moment theory for uniform inflow in hover flight condition MTH

• Moment theory for uniform inflow in axial flight condition MTC

• Combined blade element theory and momentum theory (BEMT )

• Combined blade element theory and momentum theory with Prandtl’s Tip-Loss Model (BEMTTL)

The first proposed model, the MTH model, will be the selected model to implement the helicopter

dynamics presented in this thesis, and although the model implies a series of hypothesis, it can be

demonstrated (Johnson, 1994; Leishman, 2006) that for maneuvers in which the climb and descent ve-

locities are low enough, the MTH is a really good approximation without any loss of generality, as it will

be demonstrated in the simulations. Also, and most important, the first model is the only closed-form

continuous model of the four proposed models, therefore, becoming a good candidate, if not the only

candidate, that can be used for a control strategy of the continuous type.

Although there are much more precise, and also much more complex thrust coefficient models in the

literature (Cuerva et al., 2006a; Cuerva et al., 2006b; Theodore, 2000), the author has chosen the MTC,

BEMT and the BEMTTL models as significate models that are both, much more complex than the

selected thrust model MTH , but are also easily implemented in the simulation platform defined by the

author. These ”alternative” models will serve as great test-bench problems where to test the robustness

of the proposed control strategies under model uncertainties, and for conciseness of the thesis will be

described Appendix A, and only a resumed version of the MTC , BEMT , and BEMTTL models will be

presented in this section.

2.7.1 Proposed Closed-Form Solution for the Thrust Coefficient Model -

The Moment Theory For Uniform Inflow in Hover Flight Condition

MTH

In order to obtain a closed-form blade element and moment theory model for uniform inflow let recall

the integral form of the thrust coefficient obtained in the BET analysis, Eq. (2.239). The closed-form

solution is obtained by solving the integral along the entire blade, from root to tip, but prior to do so, it

is important to introduce the blade-twist concept. For structural purposes, it is desirable to have blades

that produce equal amount of thrust along the entire blade, but recalling that the amount of lift of a

blade element at a given rotational speed increases with the square of the radius, this implies that the
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amount of lift generated for a given pitch angle is much greater at the tip, than at the root of the blade,

and in return, the structural rigidity of the blade at the tip must be much greater than that at the root

of the blade. In order to avoid such construction complexity, most common blades are twisted such that

the pitch at the tip is less than the pitch at the rotor. Ideally, it is desired that the twist of the blade be

given by the expression

θc =
θt
r
, (2.246)

where θt is the pitch at the blade tip. This distribution is known as the ideal twist (Johnson, 1994;

Prouty, 1986; Leishman, 2006). Due to the complexity associated to the construction of the blades with

ideal twist, generally the blades present a linear twist which is defined as

θc = θ0 + rθtw , (2.247)

where θ0 is the pitch that the blade would have if it extended into the center of rotation, and θtw is

the negative angle of twist or washout between the center of rotation and the tip. This negative angle

makes possible that the pitch angle of the blade, as it moves toward the tip of the blade, is effectively

reduced, which in return, also implies that the amount of lift generated is also reduced from the root to

the tip.

Although the ideal twist produces better performance than any other type of twist, the margin between

both blades is relatively small, and the simplicity in the manufacturing of the linear twist blades, results

in that most helicopters use blades with linear twist. It is important to note that for small radio control

(R/C) helicopters, it it easier to construct blades that are rigid enough that there is no need to use twist.

With this in mind, and considering first the case in which the blade is untwisted, that is θ = θ0 = constant,

recall that, for uniform inflow ratio, which is assumed in simple momentum theory, λ = constant, and

therefore not dependant on the location of the blade, the thrust coefficient, Eq. (2.239), can be rewritten

as

CT =
1

2
σClα

∫ 1

0

(θcr
2 − λr)dr =

1

2
σClα

[

θ0r
3

3
− λr2

2

]1

0

=
1

2
σClα

[

θ0
3

− λ

2

]

. (2.248)

To find the direct relationship between CT and the blade pitch, we can use the relationship between

CT and λ introduced in the momentum theory section for hover flight, Eq. (2.190), therefore reducing

Eq. (2.239) such

CT =
1

2
σClα

[

θ0
3

− 1

2

√

CT

2

]

. (2.249)

Equation (2.249) can be solved to find CT for a given value of θ0. Alternatively, Eq. (2.239) can be

solved directly for the pitch angle, θ0, in terms of an assumed thrust resulting in

θ0 =
6CT

σClα

+
3

2

√

CT

2
, (2.250)

where the first term in Eq. (2.250) is the blade pitch required to produce thrust, and the second term

is the additional pitch required to compensate for the inflow resulting from that thrust (Johnson, 1994;

Leishman, 2006). It can be shown that by either solving Eq. (2.249) or (2.250), an expression of CT as

a function of θc can be obtained resulting in (Pallet and Ahmad, 1991)

CT =

[

σClα

12

(

− 3

2
√
2
+

√

9

8
+

24θc
σClα

)]2

. (2.251)
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Recalling the previously defined thrust coefficient and solidity ration in Eqns. (2.189) and (2.231),

respectively, then the thrust force for a given rectangular blade can be rewritten as

T = ρNbc(ΩR)
2R

CT

σ
, (2.252)

and substituting Eq. (2.251) into Eq. (2.252) results in a relation to obtain the thrust force as a function

of the angular rotational speed of the blades and its pitch angle given by

T = ρNbc(ΩR)
2R

σC2
lα

144

(

− 3

2
√
2
+

√

9

8
+

24θc
σClα

)2

. (2.253)

Since the blade of A R/C helicopter is untwisted, and the control signal associated to the collective

pitch angle has been defined as θc, yielding

T = ρNbc(ΩR)
2R

σC2
lα

144

(

− 3

2
√
2
+

√

9

8
+

24θc
σClα

)2

. (2.254)

It can be shown from experimental results (Leishman, 2006) that the agreement between Eq. (2.249)

for a given rotor, and the measurements for the same rotor is found to be good, although there is a slight

overprediction of the thrust because the nonuniformity of the inflow and nonideal effects, such as tip-loss

which have not been taken into account. Considering now the case for linearly twisted blades, that is

θc(r) = θ0 + rθtw, where θtw, as seen previously, is the blade twist rate per radius of the rotor (i.e., in

degrees per rotor radius or the equivalent in degrees per unit length of blade). Using this variation in

θc(r), in Eq. (2.239) gives

CT =
1

2
σClα

∫ 1

0

(θcr
2 − λr)dr

=
1

2
σClα

∫ 1

0

[

(θ0 + rθtw) r
2 − λr

]

dr

=
1

2
σClα

[

θ0r
3

3
+
θtwr

4

4
− λr2

2

]1

0

=
1

2
σClα

[

θ0
3

+
θtw
4

− λ

2

]

. (2.255)

If the reference blade-pitch angle (or collective pitch) is taken at 3/4-radius (also referred as θ0.75 ),

then θc(r) = θ0.75 + (r − 0.75)θtw and Eq. (2.255) can be rewritten as

CT =
1

2
σClα

∫ 1

0

(θcr
2 − λr)dr

=
1

2
σClα

∫ 1

0

[

[θ0.75 + (r − 0.75)θtw] r
2 − λr

]

dr

=
1

2
σClα

∫ 1

0

(

θ0.75r
2 + θtwr

3 − 0.75θtwr
2 − λr

)

dr

=
1

2
σClα

[

θ0.75
3

+
θtw
4

− θtwr
4

4
− λ

2

]

=
1

2
σClα

[

θ0.75
3

− λ

2

]

, (2.256)

which shows that it is equivalent with Eq. (7.2), therefore showing an interesting result, namely that a

blade with linear twist has the same thrust coefficient as one of constant pitch when θc is set to the pitch

the twisted blade defined at the 3/4-radius (Gessow and Myers, 1985; Johnson, 1994; Leishman, 2006).

In a similar manner as for the untwisted analysis, an expression of CT as a function of θc can be obtained
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resulting in

CT =

[

σClα

12

(

− 3

2
√
2
+

√

9

8
+

24θ0.75
σClα

)]2

, (2.257)

and similarly, the thrust force is given by

T = ρNbc(ΩR)
2R

σC2
lα

144

(

− 3

2
√
2
+

√

9

8
+

24θ75
σClα

)2

. (2.258)

2.7.2 Proposed Thrust Coefficient Model

This section presents the different proposed thrust coefficient models, the MTC , the BEMT and the

BEMTTL models that will be used as bench models to test the robustness of the proposed control

strategies under unmodelled dynamics since they provide more accurate CT modes than the selected

MTH . These three models are described in detail in the Appendix section A.3.

For the first model, the MTC , the thrust coefficient for the three flight axial conditions are given

by

CTMTC
= −ρAσCLα

RΩ (−3σCLα
RΩ+ T1 − 32RθcΩ+ 24Vc)

192ρAΩ2R2
, (2.259)

CTMTD
=

TMTD

ρAΩ2R2
, (2.260)

CTMTWM
= −ρAσCLα

RΩ (3σCLα
RΩ− T2 − 32RθcΩ+ 24Vc)

192ρAΩ2R2
, (2.261)

where T1 and T2 are described in Eqns. (A.45) and (A.49), respectively, and where

Vc/vh ≥ 0 → CTMTC
, (2.262)

−2 ≤ Vc/vh ≤ 0 → CTMTD
, (2.263)

−2 ≥ Vc/vh → CTMTWM
. (2.264)

For the second model, the BEMT , the thrust coefficient in axial ascent is given by integrating along

the entire blade of the integral dCT given by

dCT =
σClα

2

(

θcr
2 − λr

)

dr, (2.265)

with the inflow ratio given by

λ(r, λc) =

√

(

σClα

16
− λc

2

)2

+
σClα

8
θcr −

(

σClα

16
− λc

2

)

, (2.266)

and where for the particular case in which the hover flight condition is considered, thus λc = 0, Eq.

(2.266) simplifies to

λ(r) ≡ λi(r) =
σClα

16

(√

1 +
32

σClα

θcr − 1

)

, (2.267)

while for the axial descent is given by

CTMTD
=

TMTD

ρAΩ2R2
, (2.268)

CTMTWM
= −ρAσCLα

RΩ (3σCLα
RΩ− T2 − 32RθcΩ+ 24Vc)

192ρAΩ2R2
, (2.269)
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where

− 2 ≤ Vc/vh ≤ 0 → CTMTD
, (2.270)

−2 ≥ Vc/vh → CTMTWM
. (2.271)

And finally, for the fourth model, the BEMTTL, the thrust coefficient is also given by integrating along

the entire blade of the integral dCT given as

dCT =
σClα

2

(

θcr
2 − λr

)

dr (2.272)

with the inflow ratio given by

λ(r) =

√

(

σClα

16F (r, λ(r))
− λc

2

)2

+
σClα

8F (r, λ(r))
θcr −

(

σClα

16F (r, λ(r))
− λc

2

)

, (2.273)

and where for the particular case in which the hover flight condition is considered, thus λc = 0, Eq.

(2.273) simplifies to

λ(r) ≡ λi(r) =
σClα

16F (r, λ(r))

(
√

1 +
32F (r, λ(r))

σClα

θcr − 1

)

, (2.274)

while again, for the axial descent is given by

CTMTD
=

TMTD

ρAΩ2R2
, (2.275)

CTMTWM
= −ρAσCLα

RΩ (3σCLα
RΩ− T2 − 32RθcΩ+ 24Vc)

192ρAΩ2R2
, (2.276)

where

− 2 ≤ Vc/vh ≤ 0 → CTMTD
, (2.277)

−2 ≥ Vc/vh → CTMTWM
. (2.278)

Recall that bothMTH andMTC produce close-form solutions for the thrust coefficient CT , Eq. (2.248),

which are both explicit functions of the collective pitch angle θc and the inflow angle. Recall also that while

for the MTH model, the hover flight condition, the inflow angle is a function of CT , resulting in a con-

tinuous closed-form solution for the thrust coefficient. The proposed MTC model presents nonlinearities

depending on the nature of the climb flight region, and therefore being unfeasible to integrate into a set of

continuous differential equations if the goal is to design continuous and differentiable control laws.

On the other side, for both blade element theory models, BEMT and BEMTTL, it is required numerical

integration at each instant in order to obtain the thrust coefficient, therefore making impossible to obtain

a closed-form solution to which be able to design a proper control law to regulate the amount of thrust

generated, but they will serve as a great bench-mark problems where to test the validity of the selected

model, and to test the robustness of the proposed control laws under model uncertainties.

With this in mind, this makes MTH the only implementable thrust coefficient model CT , and will be

the model employed for the helicopter dynamics proposed in section 2.8, which, once integrated into the

proposed dynamics for axial flight, it will be tested against the rest of models, and it will be shown,

via simulations, that the MTH model, although much more simpler, it reproduces the dynamics of the

more detailed and complex models (MTC , BEMT and BEMTTL) without loss of generality for the

low vertical speeds at which the R/C helicopter is to be operated, thus corroborating the validity of its

selection (Johnson, 1994; Leishman, 2006).

Nevertheless, the validity of the MTH model is subject to the series of hypothesis that have been

exposed throughout the previous derivations, and are exposed in the following sections to justify that the
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selected model can be implemented in the R/C helicopter model that will be derived in detail in A.4.

These hypothesis are standard and well established hypothesis, which are necessary in order to be able

to obtain reduced empirical models that are able to model, to a certain degree, the highly complex and

non linear behavior of rotating blades (Leishman, 2006).

As it will be described in section 2.8, the dynamics of the helicopter in axial flight will consist in three

distinct dynamics, the axial flight dynamics, that is, the dynamics that define the axial displacement

and velocity of the helicopter, the combustion engine and rotational velocity dynamics, which define the

rotational angular velocity of the blades, and the collective pitch dynamics, which describe the collective

pitch angle of the blades. All three dynamics are somehow affected, in one way or another, by the above

mentioned hypothesis.

The author believes that it is important to note that the solution adopted, although is not the only

possible solution, and maybe not the optimal solution, it is a feasible solution that has been adopted

previously in (Pallett and Ahmad, 1993; Sira-Ramı́rez et al., 1994; Huang and Balakrishnan, 2005;

Kaloust et al., 2002; Tee et al., 2008) with great success. The proposed methodology employed to model

the dynamics of the helicopter in axial flight, and the methodology proposed to determine the re-

quired parameters being involved in the different dynamic models, both presented in (Pallet et al., 1991;

Pallet and Ahmad, 1991), follow a logic process that is consistent with the blade element and momentum

theory previously presented, making this a feasible methodology, and, what it is probably more important,

a suitable methodology for both the actual goals, and the near future goals of this thesis.

The first one, the actual goal, is having a helicopter model where to test the proposed control laws,

and the second, the near future goals, is to have a step-by-step process that can be used to identify the

parameters that are used in the presented model since ultimately it is desired to be able to validate the

results here presented in a real R/C helicopter platform, and a theoretical model is only good if it serves

the purposes for which it was created, and in this case it was selected having in mind that had to be

implemented. With this in mind, it is expected that when trying to implement the obtained control laws

into the real R/C helicopter, some of the proposed identification methods (Pallet and Ahmad, 1991)

will need to be revised and/or improved, as it has been already done with some of the aerodynamic

parameters, to account for some lost dynamics, but this is out of the scope of this thesis, and throughout

the remainder will be assumed that the proposed methods are the proper ones.

2.8 Proposed Model Definition for a Miniature Helicopter in

Axial flight

This section proposes a model for a miniature helicopter, which will be used throughout the remainder

of this thesis, and it is based on the technical reports that were written at the University of Purdue

(Pallet et al., 1991; Pallet and Ahmad, 1991), that describe the vertical motion of an autonomous heli-

copter mounted on a stand as seen in Figure 2.23. This model is used to derive the control laws that will

be implemented in the future in a similar platform to (Pallet and Ahmad, 1991), which can be seen in

Figures 2.24 and 2.25.

The model is based in the MTH model previously derived in section 2.6, which includes the helicopter

dynamics in the axial flight condition, and also includes some of the losses that were introduced in

the hypothesis presented in section A.4, and that were not accounted for in the proposed MTH model.

It is important to note that although miniature helicopters are functionally similar to their full-scale

counterparts, there are a few differences (mainly in rotor construction) which require modification to the

normal thrust equations used to model full-scale helicopters. For example, as noted in the hypothesis
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A.4.8, the model helicopter has straight rotor blades instead of linearly twisted blades as is the case for real

helicopters. Another significant difference between a miniature RC helicopter and full-scale helicopter is

that, generally, RC helicopters compensate for the lack of a flapping and lead-lag hinges (Layton, 1984;

Prouty, 1986) by using a teetering hinge which produces the same effect.

The teeter system works around a central hinge. The position of the blades is due to the balance

between centrifugal force which is trying to hold the blades ”straight out”, versus lift which is trying to

make them fold straight up. The balance of the forces will cause the blades to fly at some angle. If one

blade starts to develop more lift, while the other blade starts to develop less lift, one blade will want to

climb while the other will want to descend. The result will be that the rotor head will teeter, allowing

one blade to go up while the other goes down. Figure 2.21 shows the main rotor of a Bell 206 where it

can be distinguished the teeter hinge, and Figure 2.22 shows the teetering movement on a Robinson 22.

The use of a teetering rotor will not be a concern for modeling the hovering of the RC helicopter and

will not introduce any changes.

The helicopter model here presented, although constrained to vertical flight with the selected thrust

coefficient model, theMTH model, it also includes the nonlinear dynamics of the collective pitch actuators,

which increases considerably the complexity of the model, but also depicts a more realistic model. The

helicopter dynamics in vertical flight will be initially separated into three equations: vertical position of

the helicopter, collective pitch of the blades, and rotational velocity of the main rotor. The following

sections describe in more detail each of the governing equations, with each of the parameters of the

equations being described and justified using the proposed methods in (Pallet and Ahmad, 1991). After

the models have been defined, methods to determine the unknown constants of the proposed models will

be presented also derived from (Pallet and Ahmad, 1991).

2.8.1 Proposed Model for the Vertical Displacement Equations

Recalling the resulting simplified vertical displacement dynamics, Eq. (2.171), the vertical force that

provides the axial displacement can be modeled by considering the differential set of equations that

describes the vertical motion of a model miniature helicopter given by:

ξ̈ =
T

m
(1 +Geff )− gz − Fdamping − Tloss − Fdrag, (2.279)

where Ω (radians) is the rotational speed of the rotor blades, ξ (meters) is the height of the helicopter

above the ground, gz (m/s2) is the gravitational acceleration, and Geff models the ground effect, but

during the remainder of this thesis it will be considered negligible (Geff = 0), since at it can be seen

in Figure 2.24, the constructed setup for the flying helicopter stand is elevated more than one rotor

diameter, which as previously discussed, is the distance required so that the ground effect does not have

any significate influence the helicopter’s performance. In Eq. (2.279), T is the thrust force defined in Eq.

(7.2) which for completeness is written as:

T = ρNbc(ΩR)
2R

CT

σ
, (2.280)

where CT is the thrust coefficient of the helicopter model, which was defined by the MTH derived model,

Eq. (7.1), and for completeness of the section rewritten again as:

CT =

[

σClα

12

(

− 3

2
√
2
+

√

9

8
+

24θc
σClα

)]2

, (2.281)

where recall that σ is the solidity ratio, Clα is the blade lift slope, and θc is the collective pitch angle of the

rotor blades. For simplification purposes in the parameter determination process, the thrust coefficient



2.8. PROPOSED MODEL DEFINITION FOR A MINIATURE HELICOPTER 79

can also be expressed as:

CT =

(

−KC1 +
√

K2
C1 +KC2θc

)2

, (2.282)

where:

KC1 =
σClα

8
√
2
, (2.283)

KC2 =
2σClα

12
. (2.284)

With this in mind Eq. (2.279) can be expanded as:

ξ̈ = ρNbc(ΩR)
2R

σC2
lα

144m

(

− 3

2
√
2
+

√

9

8
+

24θc
σClα

)2

m(1 +Geff )− gz (2.285)

− Fdamping − Tloss − Fdrag.

The first term on the right-hand side of (2.290), can be rewritten as K1CT (1 +Geff ) with

K1 =
ρNbcR

3

σm
. (2.286)

This term represents the main thrust/lift term which is based on the MTH model previously derived.

The second term, gz, is the acceleration due to gravity acting on the helicopter. The third term in (2.290),

Fdamping, represents the damping in the flight test stand especially due to the piston mounted to offset

the weight of the helicopter and the structure itself, and can be defined as K2ξ̇. The fourth term, Tloss,

represents the resistance to motion of the helicopter as seen in section A.4.5, where this term represents

the parasitic drag that will result in losses to the generated thrust, when moving the helicopter through

the air. Recalling that the loss in thrust that will be appreciated as the helicopter moves through the

air, the Tloss was defined as of the form:

Tloss =
1

2m
ρV 2

c f
fus
z , (2.287)

where ffus
z is the equivalent flat plate area of the fuselage in the z-axis direction, also defined as ffus

z =

SfusCDf
, with Sfus being the maximum fuselage cross area in the x-y plane, and CDf

the drag of the

fuselage, and Vc is the climb velocity of the helicopter, where ξ̇ ≡ Vc. Equation 2.288 can be defined

as:

Tloss = K3V
2
c , (2.288)

with K3 of the form:

K3 =
1

2m
ρffus

z , (2.289)

where although ffus
z can be initially estimated using simple equivalent skin friction methods

used for aircraft design (Raymer, 2006; Roskam and Lan, 1997), methods trends for helicopter

(Cheeseman and Bennett, 1957; Yeo et al., 2004; Leishman, 2006), or even due to the limitation of these

last, use estimations for similar RC helicopters (Gavrilets, 2003) which has been extensively used in the

literature (Gavrilets et al., 2002a; Ng et al., 2006; Budiyono et al., 2008; Garratt, 2007), and resembles

the helicopter model here selected as it will be seen in section 2.8.4.1. The obtention of the proper

equivalent flat plate area is out of the scope of this thesis, and will be assumed that it is obtained via ex-

perimentation. The values employed in this thesis for K3 will be the ones described in (Pallet et al., 1991;

Pallet and Ahmad, 1991), ans as it will be seen in section 2.8.4.1, don’t differ from the predicted values

existing in the literature.

Finally, the last term, Fdrag is the normalized constant drag, Fdrag = Dconst/m. The constant drag,
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which will be represented by parameter K4, is due mainly to the fact that the area taken up by the

helicopter body itself will reduce the amount of lift force that can be produced from the blades. The

helicopter body takes up area through which the blades would push air through if the helicopter body

was not present. This drag loss should be small, since the majority of the thrust is produced in the

middle of the blade instead of at the root or the tip of the blade. With all this in mind, the original

vertical position equation (2.290) can be written as:

ξ̈ = K1CT (1 +Geff )Ω
2 − gz −K2ξ̇ −K3ξ̇

2 −K4, (2.290)

which can be reduced if it is assumed that the helicopter is at an altitude in which ground effects are

negligible, as seen in Figures 2.24 and 2.25, thus reducing Eq. (2.290) to:

ξ̈ = K1CTΩ
2 − gz −K2ξ̇ −K3ξ̇

2 −K4. (2.291)

The model proposed in (Pallet et al., 1991; Pallet and Ahmad, 1991) does not provide a detailed de-

scription of each of the presented constants, and it leaves their estimation to the experiments. This

section has provided mathematical expression for K1 and K3, Eqns. (2.286) and (2.289) that will help

in the modelization process, and in future improvements of the existing theoretical 2−D models.

2.8.2 Proposed Model for the Combustion Engine and Rotational

Velocity

The dynamics of the angular velocity of the blades can be modeled as:

Ω̇ = −K5Ω−K6Ω
2 −K7Ω

2 sin θc + f(uth), (2.292)

with:

f(uth) = (K8uth +K9) , (2.293)

where f(uth) is the input to the throttle servo, uth. It is assumed that the time delay is negligible

(Pallet et al., 1991; Pallet and Ahmad, 1991), and therefore not modeled thus resulting in:

Ω̇ = −K5Ω−K6Ω
2 −K7Ω

2 sin θc +K8uth +K9. (2.294)

Note that all of the five unknown constants have been divided by the rotor’s effective inertia, Ir. which

includes the inertia of the motor reflected through the gears. The first term on the right-hand side of

Eq. (2.292), K5Ω, is a damping term that opposes the motion of the rotor blades due to the friction

within the rotor gears and the gasoline engine that produces an opposing torque that will tend to slow

the rotational speed. The second term in Eq. (2.292), K6Ω
2, are considered in (Pallet et al., 1991;

Pallet and Ahmad, 1991) as a drag term that is constant with respect to the collective pitch. This drag

can be thought as the drag on the blade when the collective pitch angle is zero, that is θc = 0. Pallet

et al. (Pallet et al., 1991; Pallet and Ahmad, 1991) does not provide a mathematical expression for K6,

and again leaves its calculation to the experimentation. A mathematical model can be proposed by

considering BET theory presented previously in section 2.6.2, thus it can be assumed that K6 is of the

form:

K6 =
Nb

Ir
fQprofile

, (2.295)

where Nb is the number of blades, and fQprofile
is a function of the profile torque, which in addition it can

be assumed to be a function of the equivalent flat plate area, f blade, of the blade, which can be defined

as f blade = SbladeCD0
, with Sblade being the blade area, and CD0

the profile drag of the blade. Similarly,

the third term in Eq. (2.292), K7Ω
2 sin θc, is considered in (Pallet et al., 1991; Pallet and Ahmad, 1991)
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as an air drag loss for the rotational speed of the blades, which is proportional to the drag area of the

blades. This air drag loss will oppose the rotation of the blades, and it varies as the effective area of the

blades cutting through the air. It is assumed that the induced drag term, the third term in Eq. (2.292), is

approximated by observing the projected blade surface area perpendicular to the rotation of the blades,

as seen in Figure 2.26, it can be seen that the effective drag area of the main rotor blades can be defined

as:

AFe
= NbRc sin θc = NbA sin θc, (2.296)

with R being the radius of the blade, and c the chord, and A the area blade if it is assumed that the

blade is not tapered in planform, i.e. rectangular blade, that is A = Rc, therefore it can be assume that

K7 is of the form:

K7 =
NbA

Ir
fQinduced

, (2.297)

where fQinduced
is a function of the induced torque. A better modelization of these two terms can be

obtained by recalling the MT and BET presented in Chapter 2.6, and recognizing that they represent

the induced torque and the profile torque losses of the main rotor, or what it is the same the extra power

required to overcome the induced drag and the profile drag of the rotor blades. By considering BET the

second and third term in Eq. (2.292) can be replaced resulting in:

Ω̇ = −K5Ω− Q

Ir
+ f(uth, Td), (2.298)

with Q being the sum of the profile and induced rotor torque, and defined by BET as:

Q =
1

2
ρNb (ΩR)

2
ΩRACQ =

1

2
ρNb (ΩR)

2
ΩRA (CQi

+ CQ0
) , (2.299)

where CQ is formed by the induced torque coefficient, CQi
, and the profile torque coefficient, CQ0

, which

can be approximated for uniform inflow and constant profile drag by using Eq. (2.245) resulting in:

Q =
1

2
ρNb (ΩR)

2 ΩRA

(

C
3/2
T√
2

+
σ

8
Cd0

)

=
1

2
ρNb (ΩR)

2
ΩRA

C
3/2
T√
2

+
1

2
ρNb (ΩR)

2
ΩRA

σ

8
Cd0

, (2.300)

where the main rotor inertia, Ir is a difficult parameter to determine. Gavrilets (Gavrilets, 2003;

Gavrilets et al., 2001) has proposed a highly nonlinear complete 6-DOF helicopter model that has been

extensively used in the literature due to the available complete model and the values of all parameters.

The success of such model relays in that the helicopter modeled is a X-Cell 60 RC helicopter, with a

hingeless main rotor equipped with a Bell-Hiller stabilizer bar (Bramwell et al., 2001), which provides

lagged rate feedback and augments the servo torque with aerodynamic moment to change the cyclic pitch

of the blades, of approximately 11 lbs (4,98 kg), which has been a commonly available UAV platform,

and used by many university and research institutions. This model is equivalent in size to the R/C

model helicopter used in (Pallet et al., 1991; Pallet and Ahmad, 1991), and used throughout this thesis,

an X-Cell 50, which is equivalent in size and with the only difference affecting the engine plant. For

that reason, the geometrical parameter estimations presented in (Gavrilets, 2003) provide valuable data

that can be used in the more precise modelization presented in this section. With this in mind, and

due to the difficulty associated in determining the main rotor inertia, the process presented by Gavrilets

(Gavrilets, 2003) is used where:

Ir = 2Iβmr
+ Iesn

2
es + 2Iβtr

n2
tr, (2.301)

where Iβmr
and Iβtr

represent the main rotor and the tail rotor blade inertias, respectively, Ies is the
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inertia of the engine shaft and all components rotating at the engine speed, ntr is the tail rotor gear ratio,

and nes is the engine gear ratio. As defined in (Gavrilets, 2003), the most important contribution comes

from the main rotor blades. The tail rotor inertia, after scaling with the gear ratio squared, amounts to

5% percent of the main rotor inertia. The rotating inertia referenced to the engine speed is harder to

estimate, but an upper bound can be found by estimating the total mass of rotating components for the

X-Cell 0.2 kg, and its effective radius of inertia, 0.04 m. They arrive to an estimate for Irot equal to 2.5

inertias of the main rotor blade, where from (Gavrilets, 2003), for the X-Cell 60, Iβmr
= 0.038kgm2, this

resulting in Ir = 0.095kgm2.

The final term f(uth) is due to the throttle servo input. The exact dependance of the throttle input to

the rotational speed of the blades and the engine is quite difficult to predict precisely since the dynamics

of the engine’s thermal process are not well understood in terms of linear or nonlinear models which could

be simply derived. However, an approximate model is selected (Pallet and Ahmad, 1991) by observing

that the angular acceleration near the typical hovering rotation velocities is affected by the throttle input

in a linear manner, and defined by Eq. (2.293).

Despite the differences between the theoretical models presented by Pallet et al. (Pallet et al., 1991;

Pallet and Ahmad, 1991), Eq. (2.292), and the proposed alternative angular velocity model here

presented, which is based in the BET , Eq. (2.298), the first model will be the one selected

throughout the remainder of this thesis, since it has been widely used in the literature as a test

bench problem (Pallett and Ahmad, 1993; Sira-Ramı́rez et al., 1994; Huang and Balakrishnan, 2005;

Kaloust et al., 2002; Tee et al., 2008).

The alternative, and more precise angular velocity model will be used in future related works as a

test bench model to test the robustness for the selected engine-throttle control strategy, although in the

work conducted in this thesis, the robustness to unmodeled dynamics will only be studied on the thrust

coefficient modelization.

The parameter estimation process developed in section 2.8.4.1 will define a process that allows to

determine the proposed throttle input models and also the rest of the parameters in Eq. (2.292) based in

(Pallet and Ahmad, 1991). It is important to note that many other external factors can affect the engine

performance, and that the proposed model does not take into account, like the air condition, the fuel or

lubrication employed which can modify engine performance, to name few.

The above mentioned will result in that the helicopter’s performance will change from day to day, and

even from experiment to experiment. With this in mind, the parameter estimation experiments will be

used to obtain a set of nominal values about which the engine is expected to be operated. It is therefore

recommended to try to replicate the external conditions of the experiments, both during the identification

experiments, and through the testing process, to ensure the validity of the proposed model.

2.8.3 Proposed Model for the Collective Pitch Dynamics

The dynamics of the collective pitch angle can be defined as:

θ̈c = K10f(uθc , θc)−K11θ̇c −K12Ω
2 sin θc, (2.302)

where f(uθc , θc) in a function that defines the collective servomechanism input, uθc and is given by:

f(uθc , θc) = Aθc1
uθc +Aθc2

− θc, (2.303)

therefore resulting in:

θ̈c = K10

(

Aθc1
uθc +Aθc2

− θc
)

−K11θ̇c −K12Ω
2 sin θc. (2.304)
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The first term in Eq. (2.302), K10f(uθc , θc), represents the force input produced by the collective

pitch servo actuating the collective pitch mechanism to the desired position. The second term in

Eq. (2.302), K11θ̇c, is a damping term due to the linkages and the built in servo gear ratio, which

generally can be demonstrated that this type of servomechanisms will have naturally some damping

(Pallet and Ahmad, 1991).

The third term in Eq. (2.302), K12Ω
2 sin θc, represents the drag/resistence to motion due to the blade

striking the air. Since the RC helicopter will always be operating with a positive collective pitch, the

blade will naturally tend to move towards a position of least resistance. Note, that all of the three

unknown constants include a divide by the inertia of the blades and mechanical linkages about the

collective pitch axis, Ia, and also due to the difficulty on its difficult calculation, its value will be left

for the identification experiments, and for the model employed in this thesis, the estimates presented in

(Pallet and Ahmad, 1991) will be used.

2.8.4 Proposed Methods for Parameter Determination and Model

Verification

This section describes the proposed methods for parameter determination and model verification which

are based on the works of (Pallet et al., 1991; Pallet and Ahmad, 1991) and described the parameter

determination process for the three proposed dynamics, the axial flight dynamics, the engine actuation

and the rotational velocity of the blades, and the collective pitch actuators dynamics. The determination

of the parameters for each of the three dynamics is described bellow.

2.8.4.1 Parameter Determination For Axial Flight Dynamics

The proposed methodology to determine the different parameters for the axial flight dynamics (2.305),

that is K1, K2, K3, and K4, can be divided in two parts (Pallet and Ahmad, 1991). In a first part, the

main objective is to determine empirically the coefficients that do not depend on the axial velocity, ξ̇,

and this can be done by conducting several experiments is which the RC helicopter if flown at the hover

flight condition, this resulting in that the terms involving the axial velocity cancel out, since at hover

ξ̇ = 0 therefore reducing (2.305) to:

ξ̈ = K1CTΩ
2 − gz −K4. (2.305)

This flight condition reduces the axial flight dynamics to a equation with the thrust/lift term, the

gravitational force, and the constant drag term. Although K1 has been defined in (2.286), it is necessary

to determine its value through experiments to account for possible losses. This is done by conducting

several experiments in which known amounts of weight are added to the helicopter for a given fixed

rotational speed, Ω1, and a fixed collective pitch angle, θc, until the helicopter is able to hover at a fixed

position.

Once the helicopter is able to sustain that hover flight condition, and assuming that the thrust coefficient

model, MTH is an accurate model, the weight is recorded, W1, and a new experiment is conducted, for

different fixed rotational speed, Ω2, the same fixed collective pitch angle, θc, and in a similar manner,

different weights are added until the helicopter is able to hover at a fixed altitude, which will again

be associated to a new weight, W2. For the different loading test the constant drag term, K4 will be

constant, and the value of both K1 and K4 can be determined empirically. The process could be defined

like:

W1 = K1CT1
Ω2

1 − K̂4, (2.306)
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W2 = K1CT1
Ω2

2 − K̂4, (2.307)

where K̂4 = gz + K4. Let solve K1 in Eq. (2.306) as a function of constant drag term, K̂4 resulting

in:

K1 =
W1 + K̂4

CT1
Ω2

1

, (2.308)

and substitute Eq. (2.308) into Eq. (2.307) resulting in:

W2 =
W1 + K̂4

CT1
Ω2

1

CT1
Ω2

2 − K̂4

= (W1 + K̂4)
Ω2

2

Ω2
1

− K̂4, (2.309)

which can be solved for K̂4 resulting in:

K̂4 =
W2 −W1

Ω2

2

Ω2

1

Ω2

2

Ω2

1

− 1
, (2.310)

thus recalling K̂4 = gz +K4 results in:

K4 = K̂4 − gz

=
W2 −W1

Ω2

2

Ω2

1

Ω2

2

Ω2

1

− 1
− gz, (2.311)

and substituting Eq. (2.311) back into Eq. (2.306) results in:

W1 = K1CT1
Ω2

1 −
W2 −W1

Ω2

2

Ω2

1

Ω2

2

Ω2

1

− 1
, (2.312)

which can be solved for K1 resulting in:

K1 =
1

CT1
Ω2

1



W1 −
W2 −W1

Ω2

2

Ω2

1

Ω2

2

Ω2

1

− 1
+ gz



 , (2.313)

thus resulting in an empirical equation for both K1 andK4. It is convenient to run the experiment several

times to reduce the error associated to bias measurements. The second part of the identification process

deals with the constants that depend on the axial velocity, ξ̇, that is K2 and K3.

Once determined K1 and K4, the determination of the parameters shifts towards step responses in

throttle and collective pitch, (uθc , θc) which will result in vertical motion of the helicopter. From this

data it is able to determine the damping constant, K2 , and the parasitic drag constant, K3, by fitting

the step response data curves.

2.8.4.2 Parameter Determination for Rotational Speed Dynamics

The proposed methodology to determine the different parameters in (2.294), that is K5, K6, K7, K8, and

K9, uses also a series of experiments described bellow (Pallet and Ahmad, 1991). The rotational speed

equation constants may turn out to be the most difficult to determine as a result of the variations in

plant output from day to day as mentioned above.

First, and in a similar manner as for the vertical velocity equation, the identification process can be

simplified by canceling terms by taking use of the available control signals, that is, let cancel the collective

pitch angle terms by selecting θc = 0, and by running the helicopter at a constant rotational velocity.
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This will results in an equation with K5, K6, K8 and K9 terms resulting in:

0 = −K5Ω−K6Ω
2 +K8uth +K9, (2.314)

which can be rewritten to obtain an expression for the throttle input servo uth resulting in:

uth = K̄5Ω + K̄6Ω
2 − K̄9, (2.315)

with:

K̄5 =
K5

K8
, (2.316)

K̄6 =
K6

K8
, (2.317)

K̄9 =
K9

K8
. (2.318)

The determination process for the constants K̄5, K̄6, K̄9 is conducted by selecting steady state pairs

of measured rotational angular speeds, Ω, and input to the throttle servo, uth, for the given range of

rotational speed during the hover flight condition, resulting in a set of linear equations:

uthi
= K̄5Ω1 + K̄6Ω

2
1 − K̄9, (2.319)

uth2
= K̄5Ω2 + K̄6Ω

2
2 − K̄9, (2.320)

uth3
= K̄5Ω3 + K̄6Ω

2
3 − K̄9, (2.321)

...

uthn
= K̄5Ωn + K̄6Ω

2
n − K̄9. (2.322)

The steady state pairs obtained in the experiments , that is (Ωiuthi
)i=1,n , can be used to solve for the

constants K̄5, K̄6, K̄9 by rewriting the linear equations (2.319–2.322) as:













Ω2
1 Ω1 −1

Ω2
2 Ω2 −1
...

...
...

Ω2
n Ωn −1



















K̄5

K̄6

K̄9






=













uth1

uth2

...

uthn













, (2.323)

where Eq. (2.323) can be expressed in a more simple manner as AΩxK = Buth
with:

AΩ =













Ω2
1 Ω1 −1

Ω2
2 Ω2 −1
...

...
...

Ω2
n Ωn −1













, (2.324)

xK =







K̄5

K̄6

K̄9






, (2.325)

Buth
=













uth1

uth2

...

uthn













, (2.326)

therefore, Eq. (2.323) can be solved for K̄5, K̄6, and K̄9 by using a Moore-Penrose left pseudo-inverse
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method to obtain the least square error fit as:

xK =







K̂5

K̂6

K̂9






=
(

AT
ΩAΩ

)−1

Buth
, (2.327)

where K̂5, K̂6, and K̂9 represents the obtained results of the constants using the Moore-Penrose left

pseudo-inverse method. Also recall that in order to determine K5, K6 and K9 it is necessary to determine

also K8. This can be done by recalling Eq. (2.315) and using the values obtained in (2.327) into the

proposed rotational velocity assuming that the collective pitch angle is zero resulting in:

Ω̇ = −K5Ω−K6Ω
2 −K7Ω

2 sin θc +K8uth +K9

= K8

(

−K̂5Ω− K̂6Ω
2 + uth − K̂9

)

, (2.328)

where K8 can be obtained by looking into the step response data obtained using throttle step responses

with zero pitch angle, θc = 0, and conducting a parameter adjustment on K8 until the simulated step

responses match the data from actual flight data. The determination of the term associated to the air

drag loss for the rotational speed of the blades, K7, is conducted by running a series of steady-state

experiments for pairs of pitch angles, θci , and throttle settings, uthi
for hovering flight conditions. From

the different experiment flight data, and using the results obtained for the degenerated rotational speed

of the blades Eq. (2.328), a fit analysis can be conducted to obtain the K7 that best fits the flight results.

With K8 obtained, constants K5, K6 and K9 can be determined using Eqns. (2.316–2.318).

2.8.4.3 Parameter Determination for Collective Pitch Dynamics

In order to determine the unknown constants, K10, K11, and K12 a potentiometer needs to be mounted

on the collective pitch servo to measure the exact magnitude of the pitch as seen in Figure 2.28. Figure

2.28 reproduces the installation of the potentiometer in the collective pitch angle for the selected solution

in the ESI RC helicopter (Navarro-Collado, 2010).

Ideally, it would be desirable to mount the potentiometer directly to the blades but given the physical

limitations, it can only be measured the servo position. This set up has the limitations that possible

flexing in the drive links from the servo to the blades will not be taken into account, but if the links

are rigid enough, this flexing can be negligible which is the case in all the RC helicopter main rotor

heads. Effects of backlash will also be ignored. The first term in (2.304) is determined by comparing the

collective servomechanism input, uθc , to the measured pitch, θc as measured by the collective pitch with

the helicopter at rest, which reduces (2.304) to:

K10f(uθc , θc) = 0, (2.329)

This allows to determine the structure of the f(uθc , θc) which is obtained after comparing the

servo inputs to the measured collective pitch angles. After experimentation (Pallet et al., 1991;

Pallet and Ahmad, 1991) it is observed that the resulting collective pitch seems to behave in a linear

fashion with respect to the collective pitch servo input uθc , therefore it is selected to determine the

structure of f(uθc , θc) by using a least squares fit for a model of the form:

f(uθc , θc) = Aθc1
uθc +Aθc2

− θc, (2.330)

which can be determine employing a methodology similar to the one conducted for the rest of unknown

parameters by conducting a series of experiments in which a series of state pairs of collective pitch angles,

θci , and servo control inputs, uθci are obtained to try to model the actuator dynamics. The sets of pairs
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can be written in the form:












uθc1 1

uθc2 1
...

...

uθcn 1













[

Aθc1

Aθc2

]

=













θc1

θc2
...

θcn













, (2.331)

Equation (2.331) can be solved for Aθc1
and Aθc2

by using a Moore-Penrose left pseudoinverse and

therefore identifying the original model, Eq. (2.304), as:

θ̈c = K10f(uθc , θc)−K11θ̇c −K12ω
2 sin θc

= K10

(

Aθc1
uθc +Aθc2

− θc
)

−K11θ̇c −K12ω
2 sin θc. (2.332)

Once defined the collective pitch actuator dynamics, let proceed to determine constants K10 and K11

which is done by considering the helicopter at rest. In this situation the angular velocity of the blades is

zero, Ω = 0, therefore reducing Eq. (2.332) to:

0 = K10

(

Aθc1
uθc +Aθc2

− θc
)

−K11θ̇c, (2.333)

where both K10 and K11 can be obtained by looking into the step response data obtained using collective

step responses for zero angular velocity, Ω = 0, and conducting a parameter adjustment on K10 and K11

that provide the best fit to the curves. The last term to be accounted for is the collective pitch angle

behavior while the blades are in motion, that is the third term in Eq. (2.302), K12. This term relates

the rotational speed of the rotor with the pitch position of the blades. Experiments are conducted with

the same pair of conditions used to determine the actuator dynamics, Eq. (2.330), but with varying

rotational angular velocity of the blades, Ω, and therefore adjusting the coefficient K12 until matches

the actual results obtained with Ω = 0. It is expected that K12 will be small since due to the nature

of RC servomotors, the internal position control loop of the servo subsystems keeps the collective pitch

at a constant position even in the presence of resistance up to the torque at which they are rated

(Wikipedia, the free encyclopedia, 2010b; Wikipedia, the free encyclopedia, 2010a).

Although in (Pallet et al., 1991; Pallet and Ahmad, 1991) the term including K12 is neglected from

experimental results and for simplicity, in the two control papers that originally motivated the work

presented in this thesis (Huang and Balakrishnan, 2005; Sira-Ramı́rez et al., 1994), the different control

strategies used in both works leave the K12 term and therefore for control purposes, since the existence

of this term increases the degree of complexity of the model. It is left for future work the adjusted of the

presented model with the real RC helicopter, since this is out of the scope of this thesis.

The servo motors that will be used in the RC helicopter are standardized RC servos as seen in Figure

(2.29) where it can be seen that the servo consist of an output spline where the arm that converts the

angular motion to linear motion is attached, the drive gears that allows to convert the produced rotational

speed of the motor to the desired rotational speed and torque, the motor, the potentiometer that allows

to determine the actual position of the servo, and a electric motor which by using the read from the

potentiometer, ensures that the servo is at the commanded position.

RC servos are composed of an electric motor mechanically linked to a potentiometer

(Wikipedia, the free encyclopedia, 2010b; Wikipedia, the free encyclopedia, 2010a). Pulse-width mod-

ulation (PWM) signals which are sent to the servo, and are translated into position commands by the

electronics inside the servo. When the servo is commanded to rotate, the motor is powered until the

potentiometer reaches the value corresponding to the commanded position. The servo is usually con-

trolled by three wires: ground, power, and control. The servo will move based on the pulses sent over the

control wire, which set the angle of the actuator arm. The servo expects a pulse every 20 ms in order to
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gain correct information about the angle. The width of the servo pulse dictates the range of the servo’s

angular motion. A servo pulse of 1.5 ms width will typically set the servo to its ”neutral” position or

45◦, a pulse of 1.25 ms could set it to 0◦ and a pulse of 1.75 ms to 90◦.

The physical limits and timings of the servo hardware varies between brands and models, but a general

servo’s angular motion will travel somewhere in the range of 90◦ − −120◦ and the neutral position is

almost always at 1.5 ms. This is the ”standard pulse servo mode” used by all hobby analog servos. When

these servos are commanded to move they will move to the position and hold that position. If an external

force pushes against the servo while the servo is holding a position, the servo will resist from moving out

of that position. The maximum amount of force the servo can exert is the torque rating of the servo.

Servos will not hold their position forever though; the position pulse must be repeated to instruct the

servo to stay in position.

A hobby digital servo is controlled by the same ”standard pulse servo mode” pulses as an analog

servo (of Robots, 2008). Some hobby digital servos can be set to another mode that allows a robot

controller to read back the actual position of the servo shaft. Some hobby digital servos can optionally

be set to another mode and ”programmed”, so it has the desired PID controller characteristics when

it is later driven by a standard pulse servo receiver (Hitec, 2007). The way in which servos work is

out of the scope of this thesis, so for further detail refer to (Wikipedia, the free encyclopedia, 2010b;

Wikipedia, the free encyclopedia, 2010a; of Robots, 2008).

2.8.5 Final Helicopter Model

The proposed helicopter model is defined by identifying that Eqns. (2.305), (2.294), and (2.332) can be

written into a set of first order nonlinear equations of motion by defining the state space vector as:

χ ,







x

y

z






, (2.334)

where x represents angular velocity of the blades, that is x , Ω, y represent the state vector for the

vertical motion of the helicopter, that is y1 , ξ, and is given by:

y ,

[

y1

y2

]

,

[

ξ

ξ̇

]

, (2.335)

and z represents the state vector for the collective pitch angle dynamics, that is z1 , θc and is given

by:

z ,

[

z1

z2

]

,

[

θc

θ̇c

]

. (2.336)

The control vector is given by:

u ,

[

u1

u2

]

=

[

K8uth

Aθc1
K10uθc

]

, (2.337)

with u1 being the normalized input to throttle servo signal (uth), and u2 being the normalized input to

collective pitch servo signals (uθc). This results in the nonlinear equations of the form:

ẋ = f(x, y , z , u1),

ẏ = g(x, y , z ), (2.338)

ż = h(x, y , z , u2),
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resulting in

ẋ = a8x+ a10x
2 sin z1 + a9x

2 + a11 + u1, (2.339)

ẏ1 = y2, (2.340)

ẏ2 = x2(a1 + a2z1 −
√
a3 + a4z1) + a5y2 + a6y

2
2 + a7, (2.341)

ż1 = z2, (2.342)

ż2 = a13z1 + a14x
2 sin z1 + a15z2 + a12 + u2, (2.343)

where the constants are given by in table 2.1. Recall that g(x, y , z ) denotes the vector function that

describe the vertical displacement dynamics of the helicopter given by

ẏ =

[

ẏ1

ẏ2

]

= g(x, y , z ) =

[

g1(x, y , z )

g2(x, y , z )

]

, (2.344)

(2.345)

with g1 and g2 given by Eqns. (2.340) and (2.341), respectively, and h(x, y , z ) denotes the vector function

that describes the collective pitch dynamics of the helicopter given by

ż =

[

ż1

ż2

]

= h(x, y , z , u2) =

[

h1(x, y , z )

h2(x, y , z , u2)

]

, (2.346)

(2.347)

with h1 and h2 given by Eqns. (2.342) and (2.343), respectively. Figure 2.30 depicts a simplified block

diagram that helps to understand the high degree of coupling and the dependence between the three

subsystems in which are organized the five differential equations of time (2.339–2.343). These subsystems

correspond to the vertical position and velocity of the helicopter y , the main rotor angular velocity x,

and the collective pitch dynamics z .

This concludes the definition of the model that will be used through the remainder of this thesis. The

following subsections are dedicated to an in depth analysis of the equilibrium equations, the definition

of the available ranges of the states variables, which will be used to determine the semi-global stability

properties in future sections, and a performance analysis of the selected model against the more complex

thrust models previously presented to justify the validity of the proposed model which is presented in

Appendix A. The constants in table 2.1 used throughout the remainder of this thesis are defined in table

2.2 which are slightly different from the original techreport (Pallet and Ahmad, 1991). See A.5 for further

details on the derivation of the coefficients.

a1 = K1
σ2C2

Lα

64 a2 = K1
σCLα

6 a3 = 3(2K1)
2
(

σCLα

4

)4

a4 = 2K2
1
(σCLα )3

4 a5 = −K2

a6 = −K2 a7 = −gz −K4 a8 = −K5 a9 = −K6 a10 = −K6

a11 = K9 a12 = Aθc2
K10 a13 = −K10 a14 = −K12 a15 = −K11

Table 2.1: Relation between the helicopter estimated physical coefficients K∗ and the helicopter normal-
ized physical coefficients a∗ - Eqns. (2.339–2.343).

a1 = 5.19791× 10−4 a2 = 1.51992× 10−2 a3 = 2.70183× 10−7 a4 = 1.58009× 10−5

a5 = −0.1 a6 = −0.1 a7 = −17.67 a8 = −0.7
a9 = −0.0028 a10 = −0.0028 a11 = −13.92 a12 = 434.88
a13 = −800 a14 = −0.1 a15 = −65

Table 2.2: Values of the normalized physical coefficients a∗.
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2.8.5.1 Equilibrium Points Analysis for the Helicopter Model

In order to better understand the behavior of the helicopter system, an analysis of its equilibrium points

is conducted. The equilibrium points are obtained by setting all the derivatives of the system Eqns.

(2.339–2.343) to zero, thus yielding the equilibrium equations:

ẋ = 0 = a8x̄+ a10x̄
2 sin z̄1 + a9x̄

2 + a11 + ū1, (2.348)

ẏ1 = 0 = ȳ2, (2.349)

ẏ2 = 0 = x̄2(a1 + a2z̄1 −
√
a3 + a4z̄1) + a5ȳ2 + a6ȳ

2
2 + a7, (2.350)

ż1 = 0 = z̄2, (2.351)

ż2 = 0 = a13z̄1 + a14x̄
2 sin z̄1 + a15z̄2 + a12 + ū2, (2.352)

where the symbol �̄ denotes that the variable is at an equilibrium condition. As seen by the equilibrium

equations, the system is formed by five state variables, and two control signals. It can be seen that

the altitude variable y1 does not appear in any of the equilibrium equations, which implies that any

of the equilibrium points of the helicopter system can be attained at any altitude, always taking into

consideration the physical limitations of the problem. This implies that there exists an infinitely number

of equilibrium points, and one of the variables needs to be fixed in order to determine a single equilibrium

point. This also implies that the system is an underactuated one, which will increase the degree of

complexity involved in trying to regulate the helicopter vertical motion, in special considering that the

vertical displacement dynamics have no direct control action, and in order to effect in both the vertical

position and velocity of the helicopter will be required to provide the proper control signals to both the

angular velocity and the collective pitch angle of the blade. This will provide an excellent nonlinear frame

where to test the validity of the proposed control strategies.

Equations (2.349) and (2.351) yield the solutions for the equilibrium vertical velocity of the helicopter

(ȳ2 = 0), and the equilibrium collective pitch rate of the blades (z̄2 = 0). Equation (2.350) defines

the equilibrium space of configuration by selecting a desired value for either x̄ or z̄1, such that an

expression can be determined as a function of the selected desired variable, defined from now on as

x∗ or z∗1 respectively. Equations (2.348) and (2.352), define the control signals required to achieve the

selected equilibrium points. This implies that in order to determine the equilibrium points, it will be first

necessary to select between x or z1 as the desired initial value, which will in return provide a relation to

determine the equilibrium for the other variable. If the collective pitch angle is selected as the desired

fixed variable z∗1 , the expressions that determine the rest of the variables at the equilibrium points are

given by:

x̄(z∗1) = ±
√

− a7

a1 + a2z∗1 −
√

a3 + a4z∗1
, (2.353)

ū1(z
∗
1) = −a8x̄− a10x̄

2 sin z∗1 − a9x̄
2 − a11, (2.354)

ū2(z
∗
1) = −a13z∗1 − a14x̄

2 sin z̄1 − a12. (2.355)

On the other side, if the angular velocity of the blades is selected as the desired variable x∗, the

expressions become:

z̄1(x
∗) =

a4x
∗ ±

√

Cax∗
2 + Cb

2a22x
∗

+ Cc +
Cd

x∗2
, (2.356)

ū1(x
∗) = −a8x∗ − x∗

2

(a10 sin z̄1 + a9)− a11 (2.357)

ū2(x
∗) = −a13z̄1 − a14x

∗
2

sin z̄1 − a12, (2.358)
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being the constants defined by:

Ca = a24 − 4a2a1a4 + 4a22a3, (2.359)

Cb = −4a2a7a4, (2.360)

Cc = −a1
a2
, (2.361)

Cd = −a7
a2
. (2.362)

It can be observed that Eq. (2.353) has two solutions for the equilibrium rotational speed of the blades

x̄, but constrained by the physical nature of the problem, that is, the clockwise rotation of the blades,

only the positive solution is considered. It is observed that Eq. (2.356) has also two solutions for the

equilibrium collective pitch angle of the blades z̄1, but it can be demonstrated substituting both solutions

in the original equilibrium Eqns. (2.348)–(2.352), that the solution corresponding to the minus sign in

front of the square root is a spurious solution introduced in the previous computations, therefore only

the positive solution is considered in the sequel.

From the physics of axial helicopter flight, is is customary, for both RC and full size helicopters, to

maintain the engine’s RPM constant, and use collective pitch angle to provide the differential thrust

required to regulate the helicopter’s vertical position, since the collective pitch angle effect in the amount

of vertical force is much faster than the effect that has the angular velocity of the blades on the generation

of thrust. This translates that Eq. (2.356) will be used instead of Eq. (2.353).

Taking into consideration the physical restrictions of the proposed model, it is necessary to define the

range of the reachable states, and also their reachable desired final conditions (y∗1 , y
∗
2 , x

∗, z∗1 and z∗2).

These reachable states and equilibrium points are defined by the physical limits of the state variables.

The altitude limits are defined by the limitations of the platform in which the helicopter is mounted,

0 < y1 < 2 m.; the vertical velocity limitations for the descent phase are defined by the velocity at which

the effects of vertical velocity cannot be neglected, which can be approximated by the induced velocity of

the helicopter at the rotor disk in the hover flight condition (Leishman, 2006), that is −vi < y2, and where

vi (meter/second) represents the induced velocity at the rotor disk, and is defined as seen previously

by:

vi =
T

2ρA
,

where T (Newton) is the necessary thrust force to maintain the hover flight condition, and given by

T = mgz, where m (kg.) is the mass of the helicopter, ρ (kg/m3) is the air density, and A (m2) is the

rotor disk area, that is A = πR2, with R (meter), being the radius of the helicopter blade. For the

helicopter case discussed through the thesis it is assumed that m = 3.1488 kg, ρ = 1.225 kg/m3, and

R = 0.7025 m. Refer to A.5 for further details. The maximum ascend velocity is fixed as 2vi thus

yielding the limits for the vertical velocity as −2.8505 < y2 < 5.7010 m/s; the limits on the angular

speed of the motor comes defined by the physical limitations of the rotorcraft engine, xmax = 180 rads/s,

(approximately 1718 RPM’s), while the lower boun is fixed by assuming that the idle speed of the

engine is set at xmin = 74.25 rads/s; the limits on the angular velocity of the pitch is modeled after

the specifications of a high speed servo, Futaba S9250 Servo Digital Heli, which has a speed of 9.51

rads/s (Futabar, 2006). For the range of collective pitch angles, a maximum collective pitch angle

of z1max
= 0.35 rads ≈ 20.05◦ is considered; the minimum collective pitch angle can be determined

analyzing the selected modelization of the thrust coefficient, as seen in Eq. (2.282), where it can be

observed that due to the nature of the square root in the thrust coefficient equation, only collective

pitch angles greater than z1 > −K2
C1
/KC1

= −a3/a4 will be defined. Analysis of x̄(z∗1) and z̄1(x
∗), Eqs.

(2.353) and (2.356) respectively, show that there is a region within the considered collective pitch angle
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range that it is not defined as an attainable desired final condition, thus defining two distinctive regions

of reachable collective pitch angles:

z1lim1
> z∗1 > −a3

a4
, and z1max

> z∗1 > z1lim2
, (2.363)

being z1lim1
and z1lim2

the roots of the denominator of Eq. (2.353) given as:

z1lim1
=

a4 − 2a1a2 −
√

a24 − 4a4a1a2 + 4a22a3
2a22

,

z1lim2
=

a4 − 2a1a2 +
√

a24 − 4a4a1a2 + 4a22a3
2a22

, (2.364)

for the constants defined in this problem, the collective pitch angle equilibrium points are given by

−0.3992× 10−3 rads > z∗1 > −0.1727× 10−1 rads and 0.25 rads > z∗1 > 0.4138× 10−3 rads. Analyzing

in detail the relation between the equilibrium states and the range of the desired states, it is concluded

that, despite that the entire range of desired final conditions generate defined equilibrium points, it is not

feasible to consider desired collective pitch angle values smaller than z1 < 4.87◦, which as it can be seen

in Figure 2.31, in order to provide the thrust force required to maintain an equilibrium position, that is

generating the same amount of thrust for a given weight, it requires angular velocities x > 180 radians,

which is not possible due to the limitations on the engines’s RPM.

For safety purposes and to avoid ranges of angle of attack in which the airfoil might be operating in

a near stall region, the maximum value of the collective pitch angle is restricted to 14◦ > z1 therefore

resulting that the range of desired collective pitch angles is limited to 14◦ > z∗1 > 4.87◦. Refer to

(Esteban et al., 2005a) for more details. Figure 2.31 represents the relation of x̄(z∗1), z̄1(x
∗), Eqns. (2.353)

and (2.356) respectively, for the ranges of considered desired collective pitch angle and angular velocity

of the blades.

2.8.5.2 Error Dynamics and Range of Variables for the Helicopter Model

As it is shown later, one of the requirements for the analysis of the asymptotic stability of a singular

perturbed system is the necessity to ensure that the closed loop system has an isolated equilibrium at

the origin. To satisfy this requirement we introduce a change of variables that define the new system in

terms of its error dynamics as:

χ̃ = χ− χ∗, (2.365)

where χ is defined in Eq. (2.334), and χ∗ represents the desired values of the state vector defined in the

previous section. This translates into:

x̃ = x− x∗, (2.366)

ỹ = y − y∗ =

[

ỹ1

ỹ2

]

=

[

y1 − y∗1

y2 − y∗2

]

, (2.367)

z̃ = z − z ∗ =

[

z1

z2

]

=

[

z1 − z∗1

z2 − z∗2

]

, (2.368)

where constants x∗, y∗1 , y
∗
2 , z

∗
1 , z

∗
2 represent the desired values of the states variables, and as discussed

previously in the equilibrium analysis section, in order to have the helicopter at a given equilibrium

position, that is, maintaining a stationery hover position, it is required that the vertical speed of the

helicopter, y∗2 , and the pitch angular velocity of the blades to be y∗2 = z∗2 = 0, and z∗1 can be obtained

as a function of the selected angular velocity of the blades, x∗, by using Eq. (2.356), resulting in

z∗1 = z∗1(x
∗, y∗2). The limits of all the state variables are defined in Table 2.3. Using (2.366–2.368) into
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(2.339–2.343) results in the error dynamics of the problem given by:

˙̃x = a8(x̃+ x∗) + a10(x̃+ x∗)2 sin (z̃1 + z∗1)

+ a9(x̃+ x∗)2 + a11 + ũ1 + ū1,

˙̃y1 = ỹ2,

˙̃y2 = (x̃+ x∗)2
(

a1 + a2(z̃1 + z∗1)−
√

a3 + a4(z̃1 + z∗1)

)

(2.369)

+ a5ỹ2 + a6ỹ
2
2 + a7

˙̃z1 = z̃2,

˙̃z2 = a13(z̃1 + z∗1) + a14(x̃+ x∗)2 sin (z̃1 + z∗1) + a15z̃2 + a12 + ũ2 + ū2,

where:

ũ ,

[

ũ1

ũ2

]

= u − ū ,

[

u1 − ū1

u2 − ū2

]

, (2.370)

where ū1 and ū2 are given by Eqns. (2.354) and (2.355) or Eqns. (2.357) and (2.358) respectively, but

as mentioned in the previous section, due to the physics of flight selected, and, as it is shown later, due

to the time-scale selection, only Eqns. (2.357) and (2.358) are used. This resulting in the limits of the

real variables defined by:

χMIN ≤ χ ≤ χMAX . (2.371)

From analysis of the maximum allowable state variables and desired final states it can therefore be defined

the ranges of the error-dynamics given by:

χ̃MIN ≤ χ̃ ≤ χ̃MAX , (2.372)

with the minimum values of the error dynamic variables being given by:

χ̃MIN = χMIN − χMAX , (2.373)

and the maximum values of the error dynamic variables being given by

χ̃MAX = χMAX − χMIN . (2.374)

Table 2.3 resumes the limits for the helicopter variables, for the actual values, the desired and the error

dynamics. Note that for safety purposes, the desired values for the angular velocity of the blades and

the collective pitch angle, are limited an additional 10% on both the minimum and maximum allowable

desired values. Similarly, the desired values on the altitude are limited 10 cm. on both the minimum and

maximum possible altitudes.

States χMIN χMAX χ∗

MIN χ∗

MAX χ̃MIN χ̃MAX

x [rad/s] 74.25 180 81.675 162 87.75 98.325
y1 [m] 0 2 0.1 1.9 −1.9 1.9
y2 [m/s] −2.8505 5.7009 0 0 −2.8505 5.7009
z1 [rad] 0.0175 0.2443 0.0935 0.2199 −0.2025 0.1508
x5 [rad/s] −9.52 9.52 0 0 −9.52 9.52

Table 2.3: Error-Dynamic Limits for the Helicopter Variables.
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Figure 2.21: Teeter mechanism in Bell 206 rotor head

Figure 2.22: Teeter movement in a Robinson 22
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Figure 2.23: Helicopter stand (Pallet et al., 1991; Pallet and Ahmad, 1991)

Figure 2.24: Grupo de Control Nolineal autonomous helicopter platform
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Figure 2.25: Grupo de Control Nolineal autonomous helicopter platform

Figure 2.26: Effective drag area of the rotor blades (Pallet and Ahmad, 1991)
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Figure 2.27: Aerodynamic characteristics for a NACA 0012 airfoil (Prouty, 1986).

Figure 2.28: Potentiometer installed in the helicopter collective pitch servo for the Grupo de Control
Nolineal RC helicopter (Navarro-Collado, 2010)
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Figure 2.29: Standard servo breakdown (ServoCity, 2008).

Figure 2.30: Block diagram of the helicopter dynamics.
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Figure 2.31: Relation between x̄(z∗1) y z̄1(x
∗).
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2.9 Conclusions

A model for a miniature helicopter in axial flight mounted on a platform has been presented. The model

will be used throughout the remainder of the thesis to design the proper control laws that regulate

the vertical position of the helicopter, and to demonstrate the asymptotic stability properties of the

resulting autonomous system. The model is based in the MTH model previously derived in section 2.6,

which includes the helicopter dynamics in the axial flight condition, and also includes some of the losses

presented in section A.4, and that were not accounted for in the original proposed MTH model. The

presented model

The helicopter model, although mainly focuses on the nonlinear vertical displacement, which is based

on the selected thrust model, the MTH model, it also includes the nonlinear dynamics of the col-

lective pitch actuators, which increases considerably the degree of complexity of the model, but also

depicts a more realistic model, and also includes the nonlinear dynamics of the rotational velocity

of the main rotor. Although the model is based on an existing model that has been quite used

in the literature (Pallett and Ahmad, 1993; Sira-Ramı́rez et al., 1994; Huang and Balakrishnan, 2005;

Kaloust et al., 2002; Tee et al., 2008), the author has proposed some changes, mainly in the definition of

some of the variables in vertical displacement and angular velocity of the blades dynamics, taking into

account the derived BE and MT derivations conducted in section 2.6 and Appendix A.

The author has also proposed three alternative thrust coefficient models,MTc, BEMT , and BEMTTL,

described in detail in Appendix A, that will serve as test bench to test the validity of the selected model for

axial flight, and to test the robustness of the proposed control strategy under unmodeled dynamics.

This chapter also introduces the range of reachable values for the states, the desired values and the

error dynamics according to the real physic limitations of the model here presented. The definition of

the ranges of the reachable values will be of great importance when conducting the stability analysis for

the resulting closed-loop system, and will provide the tools to infer semi-global stability by extending the

asymptotic stability properties of the selected control strategy not only to the origin, but extending the

domain of attraction to the entire domain of reachable states.



Chapter 3

Singular Perturbation Analysis:

Top-Down and Bottom-Up

Approaches

3.1 Introduction

This chapter focuses on the time-scale analysis of singularly perturbed systems. Singular perturbation

analysis of complex nonlinear systems provide a valuable tool that simplifies the burden of both, designing

appropriate control laws, and guaranteing the asymptotic stability of the original nonlinear system. As

noted in the introduction, section 1.3, singular perturbation techniques permit to deal with the complexity

and nonlinearities present in many aerospace systems, and of many systems in general, by identifying

the existence of times-scale behaviors among the different dynamics that are used to model the systems.

This time-scale separation permits to describe the different aspects of the dynamic phenomena of each

of the different time-scale subsystems with respect to each of the defined time-scales and, therefore,

allowing to express the full problem as a composite description of the complex dynamics of each of the

subsystems. This time-scale decomposition permits to easily understand the behavior of each of the

resulting subsystems when being analyzed with respect to their new time-scales, something that would

be quite difficult when trying to accomplish for the full system.

A priori, this can be thought as a process to decouple complex dynamics into lower order dynamics, and

then apply the respective controls, where the power and the success of singular perturbation and time-

scales philosophy lies on the use of approximate theory and, in particular, on the concept of asymptotic

analysis that needs to be conducted to guarantee that the resulting time-scale subsystems satisfy the so

called boundary layer requirements among the different resulting time-scales (Ramnath, 2010).

The time-scale analysis that will be here presented is based in a extension from the general two-time-

scale singular perturbation formulation, to a three-time-scale singularly perturbed system, and as it

will be shown also extended to a more general N th-time-scale singular perturbation formulation. These

methodologies will be employed throughout the reminder of this thesis, and applied to both a general

three-time-scale model and a three-time-scale helicopter model. The use of a more general three-time-

scale example will serve to extend the formulation described in this thesis to any N th-time-scale singularly

perturbed system in general.

The methodologies presented in this thesis provide an approach in which, for a specific class of singularly

101
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perturbed nonlinear systems, a step-by-step procedure can be used, such that allows to design the proper

control laws that guarantee a desired degree of stability, select an appropriate composite Lyapunov

function for the complete singularly perturbed system, and demonstrate the asymptotic stability for the

resulting closed-loop nonlinear singularly perturbed system for sufficiently small singular perturbation

parameters, and everything in an all-in-one step-by-step process.

These step-by-step methodologies will be denoted as Top-Down (TD) and Bottom-Up (BU )

methodologies, and receive their names from the direction in which the singular perturbation parameters

are considered, which in return result in different time-scales subsystem. For example, for a three-time

scale singularly perturbed system, see Figure 3.1, the Top-Down methodology analyzes the time-scales

in a descending manner, considering first the top singularly perturbed parameter, ε1, resulting in a sim-

plified two-time-scale problem formed by a one-dimension subsystem, and a two-dimension subsystem,

denoted both by the red dashed boxes; in a second instance, and following the descending direction, the

bottom singularly perturbed parameter is applied, ε2, such that simplifies the second-order subsystem

into another two-time-scale problem formed this time by two one-dimension subsystems, denoted both

by the blue dashed-dotted boxes. A similar methodology is applied in the Bottom-Up methodology, but

in an ascending manner as seen in Figure 3.2. This ascending or descending philosophy will be discussed

in more detail in future sections.

The strategy analysis of the TD or BU methodologies here presented, consists on treating the different

N th-time-scales as N − 1 distinct two-time-scale singular perturbed problems, using sequential analysis,

and using the standard two-time-scale analysis (Kokotović et al., 1986) for each of the N−1 resulting two-

time-scale subproblems. This singularly perturbed strategy becomes the main pillar of the methodology

employed in this thesis and, as will be demonstrated in the following chapters, unifies in one simple

process, the ability to solve the main problems treated on this thesis

1. Define a control design strategy that permits to select the desired degree of stability of each of the

time-scale subsystems.

2. Define a methodology that permits to demonstrate the asymptotic stability properties of the resulting

closed loop full system, by selecting the Lyapunov functions for each of the singularly perturbed

subsystems, and construct the associated composite Lyapunov function for the full system.

The TD and BU methodologies simplify the burden of satisfying the requirements that guarantee the

stability between the different time-scale subsystems by defining natural Lyapunov functions based on

the desired dynamics for each of the time-scale subsystems resulting from applying the sequential TD

and BU methodologies, and using these functions to demonstrate the requirements, rather than trying

to obtain Lyapunov functions that satisfy the requirements for each of the subsystems, which proves to

be a complex and difficult task, in special when the dynamics of the systems present a high degree of

complexity (Kokotović et al., 1986; Kokotović et al., 1987; Kokotović et al., 1987).

The TD and the BU methodologies here proposed are introduced by first describing the general two-

time-scale singular perturbation formulation in which are based, described in section 3.2; the extension

to a three-time-scale formulation is derived in section 3.3, along with the methodology employed for the

proper time-scale selection; section 3.4 describes in detail both the TD and the BU time-scale analysis,

and section 3.5 introduces an intuitive description of the three-time-scale decomposition that will help to

understand the time-scale evolution of a general three.time-scale system.

The TD and the BU methodologies are presented as two different, but equivalent approaches that

help to analyze the three-time-scale singularly perturbed systems here studied. The selection of the

TD, or the BU methodologies, will be taken by the designer, since depending on the structure of the

system being analyzed, it might be more desirable to select one or another methodology, as it will be
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shown in later sections. The results obtained in this chapter will lead to the derivation of the proposed

control strategy, which will be described in detail in chapter 4, and an extension of the standard two-time

scale methodology to demonstrate the asymptotic stability of the three-time-scale autonomous systems

obtained also using this same methodology, which will be also described in more detail in chapter 5.
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Figure 3.1: Top-Down methodology

Figure 3.2: Bottom-Up methodology
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3.2 General Two-Time Scale Singular Perturbation Formula-

tion

The general two-time scale singular perturbation model formulation, that represents the basis for the

N th-time-scale and singular perturbation formulation here presented, has been extensively studied in

the literature (Tikhonov, 1952; Tikhonov, 1948; Levinson, 1950; Vasil’eva, 1963; O’Malley Jr, 1971), to

name few, and was also one of the first to be used in control and systems theory (Kokotović et al., 1986).

The general two-time-scale singularly perturbed model, that it is the basis for the strategy conducted

in this thesis, is in the explicit state-variable form in which the derivatives of some of the states are

multiplied by a small positive scalar, ε, that is

ẋ = f(x, z, ε, t), x(t0) = x0, x ∈ Rn, (3.1)

εż = h(x, z, ε, t), z(t0) = z0, z ∈ Rm, (3.2)

where a dot denotes a derivative with respect to time t, and f and h are functions that are assumed

to be sufficiently many times continuously differentiable functions of their arguments x, z, ε, t. Let

also Bx ⊂ Rm and Bz ⊂ Rn denote closed sets. The scalar ε represents all the small parameters to

be neglected. In control and systems theory, the model defined by Eqns. (3.1–3.2) is a step towards

reduced order modeling, a common engineering task (Kokotović et al., 1986). The order reduction is

converted into a parameter perturbation, called singular. When setting the singular parameter ε = 0,

the dimension of the state space of Eqns. (3.1–3.2) reduces from n + m to n because the differential

equation (3.2) degenerates into the algebraic or transcendental equation given by

0 = g(x̄, z̄, 0, t), (3.3)

where the bar denotes that the variables belong to a system with ε = 0. Equation (3.3) can also be defined

as the quasi-steady-state equilibrium of the fast-subsystem. The new model is considered in standard

form if and only if, in a domain of interest, Eq. (3.3) has k ≥ 1 distinct and unique real roots such

z̄ = h̄(x̄, t), i = 1, 2, ..., k, (3.4)

where h̄(x̄, t) represents the quasi-steady-state equilibrium of the fast-subsystem. This assumption assures

that a well defined n-dimensional reduced model will correspond to each root of Eq. (3.4). To obtain the

ith reduced model, Eq. (3.4) is substituted into Eq. (3.1) resulting in

˙̄x = f(x̄, z̄, 0, t), x̄(t0) = x0, (3.5)

which keeps the same initial conditions for the state variable x̄(t) as for x(t). This model is called a quasi-

steady-state model (Kokotović et al., 1987; Kokotović et al., 1986) because z, whose velocity ż = g/ε can

be large when ε is small, may rapidly converge to a root of Eq. (3.3), which is the quasi-steady-state

form of Eq. (3.2). The slow response is approximated by the reduced model defined in Eq. (3.5), while

the discrepancy between the response of the reduced model, Eq. (3.5), and that of the full model, Eqns.

(3.1) and (3.2), is the fast transient. These relations between both the reduced model, Eq. (3.5), and

the quasi-steady-state equilibrium of the fast subsystem, Eq. (3.4) represents the basis for powerful tools

that singular perturbation provides to the analysis of systems. For simplicity, in future derivations the

dependance of the functions in ε and t will be omitted. Additionally, to reduce the complexity of the

nomenclature the bar denoting that the variables belong to a system with ε = 0 will be also omitted,

which will be easily identified through the context.

Singular perturbation techniques simplify considerably the complexity of coupled dynamics such those

present in aerospace systems (Naidu and Calise, 2001; Naidu, 2002) and, as described in the introduc-

tion, singular perturbation techniques are used in this thesis as a methodology that permits to perform a
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complete analysis of nonlinear systems, by providing control law strategies for the singularly perturbed

systems, and also demonstrate the asymptotic stability properties of the resulting closed-loop system.

This approach permits to create nonlinear control laws that can be derived directly from the original

nonlinear systems without the need of making unreasonable simplifications, being only required to guar-

antee the interconnection properties between the different time-scale subsystems. Following sections will

extend these tools to more general time-scale systems.

3.3 Extension to the Multi-Time Scale Singular Perturbation

Model Formulation

For simplicity, rather than dealing with a generalN th-time-scale singularly perturbed system, the analysis

conducted in this chapter will be simplified to a three-time-scale model, which will aid through the

remainder of this chapter to visualize the different time-scale strategies. With this in mind, this section

provides the extension conducted from the general two-time-scale singular perturbation formulation, to

the three-time-scale singular perturbation formulation which will be employed throughout the reminder

of this thesis. This extension was originally motivated by the type of problems being dealt in this thesis,

singularly perturbed three time-scale problems.

The extension from two to three time-scale analysis is conducted by first introducing the basis for the

time-scale selection employed in this thesis, both related to a simplified example, and later to the more

complex three-time-scale helicopter model previously presented in section 2.8. The simplified model will

help the reader to understand the proposed singular perturbation methods that will be later used on the

more complex helicopter model.

3.3.1 Simplified Three-Time-Scale Model

As stated previously, a simplified three-time-scale model is proposed in this section in order to simplify

the burden of understanding the proposed time-scale analysis methodology. The use of the simplified

model throughout the thesis can be used by the reader as an alternative to understand the proposed

solutions to the three-time-scale problems here presented. This simplification can be taken up to the

extreme point by the reader so that the proposed strategies for the control design, the Lyapunov function

selections and the asymptotic stability analysis for the helicopter model can be initially omitted by the

reader, since they only represent the application of the same methodologies to a much more complex

model, allowing the reader to focus on the simplified model, and only deal with the helicopter problem

once the methodologies have been fully understood.

For completeness of the thesis, all the derivations regarding the proposed TD control strategies, and the

stability analysis for the simplified example are moved to appendixes B and C respectively. It is advised

to the reader, that if, while reading the respective control strategy, and asymptotic stability analysis for

the helicopter model, chapters 4 and 6, respectively, the complexity associated to the problem makes the

understanding troublesome, start with the respective strategies for the simplified example in Appendixes

B and C, and only proceed with the helicopter derivations if wants to get further into the details.

The selected simplified model has been defined possessing many similarities with the helicopter model

that is the main focus of this thesis, i.e. the simplified model possesses three distinct variables, x, y, and

z, which can be defined as three distinct time-scales, and has the same control authority as the helicopter

model, that is, the control signal is only present on two of the dynamics, becoming an underactuated

system, in which the objective is to regulate the dynamics that does not have any control signal, this
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becoming a distinctive challenge when trying to regulate the underactuated variable. Similarly as in Eq.

(2.338), the selected model is of the form

ẋ = f(x, y, z, u1) = −ρ1
(

x+ x2z + 1
)

+ u1, (3.6)

ẏ = g(x, y, z) = −ρ2 (y + xz + 1) , (3.7)

ż = h(x, y, z, u2) = −ρ3
(

z + x2 + y
)

+ u2, (3.8)

where ρ1 = 0.001, ρ2 = 0.1 and ρ3 = 100, which will be referred as parasitic constants. It will be seen

in later chapters that this model simplifies considerably the understanding of the time-scale dependance

between each of the different dynamics by observing the magnitude of the associated parasitic constants

of each of the three systems (ρ1, ρ2, ρ3).

3.3.1.1 Error Dynamics Formulation for the Simplified Model

Similarly as conducted for the helicopter model in section 2.8.5.2, the simplified example state variables

are expressed in their error dynamics form by defining

x̃ = x− x∗, (3.9)

ỹ = y − y∗, (3.10)

z̃ = z − z∗, (3.11)

where x∗, y∗, and z∗ represent the desired values of the states variables, and

ũ1 = u1 − ū1, (3.12)

ũ2 = u2 − ū2, (3.13)

with ū1 and ū2 represent the steady-state control signals, thus becoming the error-dynamics of the

simplified model, Eqns. (3.6–3.8), defined by

˙̃x = −ρ1
(

(x̃+ x∗) + (x̃+ x∗)
2
(z̃ + z∗) + 1

)

+ ũ1 + ū1, (3.14)

˙̃y = −ρ2 ((ỹ + y∗) + (x̃+ x∗) (z̃ + z∗) + 1) , (3.15)

˙̃z = −ρ3
(

(z̃ + z∗) + (x̃+ x∗)
2
+ (ỹ + y∗)

)

+ ũ2 + ū2. (3.16)

3.3.1.2 Range of Variables for the Simplified Model

In order to define the admissible range of the proposed error-dynamics variables, it is necessary to

determine first the maximum range for both, the state variables, and the desired final states. For the

problem here studied, the state variables are bounded and given from the physics of the problem, although

for the proposed simplified model, since it has no physical significance, the definition of the ranges are

determined from simulations, and imposed by the author, therefore, different ranges could be employed

which in return, and due to the dependance of the stability analysis on the physics of the problem, could

vary the obtained results. For the problem here discussed, and throughout the remainder of this thesis,

the range limits for the states variable for the simplified example, and its associated desired values, are

defined in Table 3.1 where, similarly as in the helicopter model, the vector that represents the variables

is defined as

χ =







x

y

z






, (3.17)
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therefore being the limits of the ranges defined as

χMIN ≤ χ ≤ χMAX , (3.18)

where the range of the error-dynamics is defined by

χ̃MIN ≤ χ̃ ≤ χ̃MAX , (3.19)

with

χ̃MIN = χMIN − χMAX , (3.20)

χ̃MAX = χMAX − χMIN , (3.21)

where the selected limits for the simplified example can be seen in Table 3.1.

States (χ) χMIN χMAX χ∗

MIN χ∗

MAX χ̃MIN χ̃MAX

x 50 140 60 135 −90 90
y 0 3 0.1 2.9 −3 3
z −1 1 −1 +1 −2 +2

Table 3.1: Error-Dynamic Limits for the Simplified Model Variables.

3.3.2 Time-Scale Selection

This section describes one of the most challenging issues when dealing with singularly perturbed

systems: identifying the presence of time-scales, and once identified, select the appropriate mag-

nitude of the small parameters that guarantee the asymptotic properties of the different boundary

layers. The appropriate selection of time scales is an important aspect of the singular perturba-

tion and time-scales theory (Ardema and Rajan, 1985a; Ardema and Rajan, 1985b; Calise et al., 1994;

Mehra et al., 1979; Naidu and Calise, 2001), and, as described in section 1.3.2, can be categorized into

three approaches:

• direct identification of small parameters such small time constants, moments of inertia, high Reynolds

numbers, and so on.

• transformation of state equations.

• linearization of the state equations.

The first of the three approaches is the one employed to determine the different time scales in this thesis.

The challenge comes in identifying those time-scales. Naidu and Calise (Naidu and Calise, 2001) define

singular perturbation time-scale characteristics for aerospace systems, and for any system in general, as

often associated with small parameter multiplying the highest derivative of the differential equation, or

multiplying some of the state equations describing a physical system. They also state that often occurs

that the parasitic constant does not appear in the desired form, or the small parameter may not be

identifiable at all, and only the physical insight, and past experiences of the behavior of the systems in

question, might give clues of how to identify the small parameters. In this thesis, the later proposed

method, experience of the behavior of the systems, is the principal methodology employed to identify

the parasitic constants, but in addition, mathematical reasoning is also employed during the time-scale

identification process. In order to identify the type of systems that will be dealt in this thesis, let first

define the general three-time-scale model description used throughout this thesis is given by

ẋ = f(x, y, z), (3.22)

ẏ = g(x, y, z), (3.23)
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ż = h(x, y, z), (3.24)

where x, y, and z are the state variables. The general three-time-scale singular perturbed model used

throughout the thesis is required to possess three different time-scales that can be written as

ẋ = f(x, y, z), (3.25)

ε1ẏ = ĝ(x, y, z), (3.26)

ε1ε2ż = ĥ(x, y, z), (3.27)

being x the slow state variable, y the fast state variable, and z the ultra-fast state variable, and holding

that 0 < ε1ε2 << ε1 << 1, thus ε2 << 1. Let also define the relationship between the original nonlinear

dynamics and the singularly perturbed dynamics through the relationship given by

ĝ(x, y, z) = ε1g(x, y, z), (3.28)

ĥ(x, y, z) = ε1ε2h(x, y, z). (3.29)

Equations (3.25–3.27) represent the singularly perturbed full system, and for simplicity will be denoted

as ΣSFU full system throughout the reminder of this thesis. The following sections will describe the

time-scale selection process employed for the simplified and the helicopter model. For simplicity, and

completeness of the thesis, the notation to denote the different time-scale subsystems it is defined as Σ(·),

where the subindex denotes the different subsystems, that is: ΣS for the slow subsystem, ΣF for the fast

subsystem, and the ΣU for the ultra-fast subsystem.

In the (slow) ΣS-subsystem the fast and ultra-fast state variables, y and z, respectively, are assumed to

evolve in their configuration spaces, given by y = g(x) and z = h(x, y), respectively, where g(x) represents

the quasi-steady-state equilibrium of Eq. (3.26) when setting ε1 = 0 that is ĝ(x, y, z) = 0 → y = g(x),

and where h(x, y) represents the quasi-steady-state equilibrium of Eq. (3.27) when setting ε2 = 0 that is

ĥ(x, y, z) = 0 → z = h(x, y). Note that for completeness, throughout the remainder of this thesis, while

the functions will be denoted with italic lower case, i.e.: g and h, the associated quasi-steady-equilibrium

for the same functions will be denoted in Roman lower case g and h.

In the (fast) ΣF -subsystem, it is assumed that the ultra-fast state variable z evolve on its configuration

space, that is z = h(x, y), while the slow state variable x is treated like a fixed parameter, and finally,

in the (ultra-fast) ΣU -subsystem, both x and y are treated like constants. Refer to Figure (3.9) for

completeness, although it will be described in detail in section 3.5.

3.3.2.1 Time-Scale Selection for the Simplified Example

The simplified three-time-scale singular perturbed model that is employed in this thesis can be rewritten

in a three-time-scale structure similar to Eqns. (3.25–3.27), and defined as

ẋ = f(x, y, z, u1), (3.30)

ε1ẏ = ĝ(x, y, z), (3.31)

ε1ε2ż = ĥ(x, y, z, u2), (3.32)

being x the slow variable, y the fast variable, and z the ultra-fast variable, and also holding that 0 <

ε1ε2 << ε1 << 1, thus ε2 << 1 where

ĝ(x, y, z) = ε1g(x, y, z), (3.33)

ĥ(x, y, z, u2) = ε1ε2h(x, y, z, u2). (3.34)

Equations (3.30–3.32) represent the singularly perturbed full system, and for simplicity, as noted
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previously, it will be also denoted as ΣSFU full system throughout the reminder of the simplified model

analysis. These equations differ from the general three-time-scale singularly perturbed Eqns. (3.25–3.27),

in the inclusion of the control signals.

The time scales of the simplified model can be identified by analyzing the mathematics of the problem.

Observing the nature of the coefficients multiplying the original Eqns. (3.6–3.8), ρ1, ρ2, ρ3, it can be

identified the existence of small and large parameters that multiply the highest derivative of the differential

Eqns. (3.6–3.8), where recalling that ρ1 = 0.001, ρ2 = 0.1 and ρ3 = 100, thus ρ1 ≪ ρ2 ≪ ρ3, being

obvious the choice of x as the slow variable, y as the fast variable, and z as the ultra-fast variable.

In order to express the original set of time differential Eqns. (3.6–3.8) in the proper three time-

scale singular perturbation formulation, Eqns. (3.30–3.32), a series of algebraic modifications, using the

identified time constants that multiply the original equations (ρ1, ρ2, ρ3), are introduced re-writing the

equations in the form

Ixẋ = Ixf(x, y, z, u1) = f̂(x, y, z, u1), (3.35)

Iy ẏ = Iyg(x, y, z) = ĝ(x, y, z), (3.36)

Iz ż = Izh(x, y, z, u2) = ĥ(x, y, z, u2), (3.37)

where Ix, Iy and Iz represent the perturbation parameters of each of three time-scales, and can be thought

as inertias multiplying the time-derivatives, and are given by

Ix =
1

ρ1
, (3.38)

Iy =
1

ρ2
, (3.39)

Iz =
1

ρ3
. (3.40)

It can be seen that Ix >> Iy >> Iz , therefore in order to express Eqns. (3.35–3.37) in the correct

multi-time singular perturbation formulation, Eqns. (3.30–3.32), all the perturbation parameters are

normalized with respect to the slowest coefficient, that is, Ix, yielding the parasitic constants selected for

this problem as

ε1 =
Iy
Ix

=
ρ1
ρ2

= 0.01, (3.41)

ε2 =
Iz
Iy

=
ρ2
ρ3

= 0.001, (3.42)

ε1ε2 =
Iz
Ix

=
ρ1
ρ3

= 0.00001, (3.43)

satisfying that 0 < ε2 << ε1 << 1, and that 0 < ε1ε2 << ε1 << 1, thus ε2 << 1, and therefore, allowing

to rewrite the three-time-scale ΣSFU simplified model as

ẋ = −ρ1
(

x+ x2z + 1
)

+ u1, (3.44)

ε1ẏ = −η1 (y + xz + 1) , (3.45)

ε1ε2ż = −η2
(

z + x2 + y
)

+ η3u2, (3.46)

where

η1 = ε1ρ2, (3.47)

η2 = ε1ε2ρ3, (3.48)

η3 = ε1ε2. (3.49)
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3.3.2.2 Time-Scale Selection for the Helicopter Model

The three-time-scale singular perturbed helicopter model that will be employed in this thesis also possess

the same structure as Eqns. (3.30–3.32). Both the simplified, and the helicopter model, will use the

same nomenclature to refer to each of the subsystems being analyzed, and this will be the common

trend throughout the remainder of this thesis, since the context will be sufficient condition to identify

if the nomenclature is referring to the simplified or the helicopter model. The author believes that by

maintaining the same nomenclature, it is going to be easier for the reader to benefit from the simplified

example when trying to understand how the proposed singular perturbed methodologies apply to the

more complex helicopter model, otherwise, the use of different nomenclature will confuse and distract the

reader from understanding the proposed methodologies.

As previously described, the time scales can be identify by analyzing the mathematics of the problem,

and observing the existence of small and large parameters that multiply the highest derivative of the

differential equations. The identification of the three-time-scales for the helicopter model is obtained

conducted from initial inspection of the helicopter dynamics, Eqns. (2.339–2.343), and recalling the

helicopter modeling process described in section 2.8, it can be deduced that a three-time-scale model is

more suitable than a two-time-scale one. From a physical point of view it is clear that z1 and z2 are

much faster than the rest, since they represent the collective pitch and its actuator dynamics, which

are generally treated as a control input, and here are treated as state variables. The vertical motion

of the helicopter, variables y1 and y2, are much faster than the angular velocity of the blades, x, and

as is shown in later sections, through the design of appropriate control laws, we can modify both the

vertical maneuverability of the helicopter and its engine behavior to adequate their reactions to the

desired transient responses.

After identifying the time scales from a physical perspective, it is necessary to identify them from a

mathematical point of view. Analyzing the mathematics of the problem it can be identified the existence

of small and large parameters that multiply the highest derivative of the differential equations such

that the higher order dynamics of the angular speed of the blades in Eq. (2.339), terms in x2, are

multiplied by a9 = a10 = −0.0028; the higher order dynamics of the vertical motion of the helicopter in

(2.340), terms in y2 and y22 , are multiplied by a5 = a6 = −0.1; and the higher order dynamics of the

collective pitch angle in (2.343), z1 and z2, are multiplied by a13 = −800 and a15 = −65 respectively.

The mathematical characteristics of the system corroborate the three time-scale selection based on the

physical point of view, and by observing that the parameters that multiply the highest derivatives of the

differential equations. Therefore, let proceed to select x as the slow variable, y , [y1 y2]
T as the fast

state vector, and z , [z1 z2]
T
as the ultra-fast state vector.

In order to express the original set of differential Eqns. (2.339–2.343) in the standard three time-

scale singular perturbation formulation, Eqns. (3.30–3.32), and similarly as in the simplified example,

a series of algebraic modifications using the identified large and small parameters that multiply the

original equations are introduced, re-writing the equations similarly as in Eqns. (3.35–3.37), where the

perturbation parameters of each of three time-scales, Ix, Iy and Iz , are given by

Ix =
1

a9
, (3.50)

Iy =
1

a5
, (3.51)

Iz =
1

a13
. (3.52)

It can also be seen that Ix >> Iy >> Iz , therefore in order to express the equations of the three

time-scales in the correct multi-time singular perturbation formulation, all the perturbation parameters
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are normalized with respect to the slowest coefficient, that is Ix, yielding the parasitic constants selected

for this problem given by

ε1 =
Iy
Ix

=
a9
a5

= 2.8× 10−2, (3.53)

ε2 =
Iz
Iy

=
a5
a13

= 1.25× 10−4, (3.54)

ε1ε2 =
Iz
Ix

=
a9
a13

= 3.5× 10−6, (3.55)

satisfying that 0 < ε2 << ε1 << 1, and that 0 < ε1ε2 << ε1 << 1, thus ε2 << 1, thus rewriting Eqns.

(2.339–2.343) as

ẋ = a8x+ a10x
2 sin z1 + a9x

2 + a11 + u1, (3.56)

ε1ẏ1 = c1y2 (3.57)

ε1ẏ2 = x2(c2 + c3z1 −
√
c4 + c5z1) + a9y2 + a9y

2
2 + c6, (3.58)

ε1ε2ż1 = c7z2 (3.59)

ε1ε2ż2 = a9z1 + c8x
2 sin z1 + c9z2 + c10 + c11u2, (3.60)

being the helicopter singular perturbation normalized physical coefficients defined as

c1 =
a9
a5

= 0.028, c2 =
a1a9
a5

= c1a1 = 1.2229× 10−5

c3 =
a2a9
a5

= c1a2 = 3.9011× 10−4, c4 =

(

a9
a5

)2

= c21a3 = 1.4956× 10−10

c5 =

(

a9
a4

)2

a5 = c21a4 = 9.5418× 10−9, c6 =
a7a9
a5

= c1a7 = −4.9476× 10−1

c7 = c11 =
a9
a13

= 3.500× 10−6, c8 =
a9a14
a13

= c7a14 = −3.500× 10−7

c9 =
a9a15
a13

= c7a15 = −2.2750× 10−4, c10 =
a9a12
a13

= c7a12 = 1.52208× 10−3.

3.4 Top-Down and Bottom-Up Time-Scale Analysis

The strategy presented in this thesis for the analysis of three-time-scale singular perturbed problems

consists on treating the three different time-scales as two distinct two-time-scale singular perturbed prob-

lems using the standard two-time-scale analysis (Kokotović et al., 1986) for each of the two obtained

subproblems as seen in Figures 3.1 and 3.2. Each one of the two resulting two-time-scale singularly

perturbed sub-problems is considerably simplified, and thus permitting to easily obtain the appropriate

control laws that stabilize each of the resulting subsystems, or in the case in which the proposed method-

ology is employed to analyze the stability properties, it will ease the complexity associated to guarantee

the interconnection properties among the different time-scale subsystems. Each one of the two-time-

scale singularly perturbed sub-problems consists of a slow and a fast subsystem, and by the selection

of the appropriate control laws, it is ensured that the associated subsystems are each asymptotically

stable.

The importance of the proposed Top-Down (TD) and Bottom-Up (BU ) time-scale analysis presented

in this section will be understood realizing that the problems addressed in this thesis, the control design

strategy, the obtention of the associated Lyapunov functions, and the demonstration of the asymptotic

stability properties of the closed-loop system, are all based on the TD, the BU, or a combination of

both methodologies. This section tries to describe in detail the generic methodology that will serve

throughout the rest of this thesis as a basis for selecting the proper control laws, and guaranteeing that
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the resulting closed-loop systems are asymptotically stable. The strategy employed can be conducted by

either selecting the TD approach, or the BU approach, depending in the direction in which the time-scales

are applied, being both approaches equivalent for the analysis of the time-scale properties. This results

in that either strategy can be selected depending in the direction in which the time-scales are desired

to be applied, that is, according to the complexity of the nonlinear systems being treated, it might be

desirable to use either direction.

The strategy of treating the three different time-scales as two distinct two-time-scale singular per-

turbed problems using the standard two-time-scale analysis for each of the two sub-problems is based on

sequentially considering the different time scales appearing on the original three-time-scale system, Eqns.

(3.25–3.27), that is, selecting the time scales associated to the small parasitic constants ε1 and ε2. For

the general three-time-scale problems here described, the use of either the TD or the BU methodologies

produce equivalent results, although for conciseness and completeness, the BU methodology will be se-

lected as the principal analysis methodology, although, as it will be seen in chapter 4, the selected control

strategy will use the TD methodology. Following sections described in much more detail both the TD

and BU time-scale analysis.

3.4.1 Top-Down Time-Scale Analysis

The first presented methodology, denoted as Top-Down (TD), deals with the subsystems that result when

considering first the time-scale defined by the Top condition, that is, applying the stretched time scale

given by τ1 = t/ε1, to the original ΣSFU system, Eqns. (3.25–3.27). This results in a two-time-scale

subproblem where the reduced (slow) subsystem is defined by

ẋ = f(x, g(x), h(x, g(x))), (3.61)

and where the boundary layer (fast) subsystem for the TD subproblem is defined by

dy

dτ1
= ĝ(x, y(τ1), z(τ1)), (3.62)

ε2
dz

dτ1
= ĥ(x, y(τ1), z(τ1)), (3.63)

where τ1 = t/ε1, and where the expressions g(x) and h(x, g(x)) in Eq. (3.61) represent the quasi-steady-

state equilibria of the boundary layer, Eqns. (3.62–3.63), when ε1 = 0, that is

0 = ĥ(x, y, z) → z = h(x, y) = h(x, g(x)), (3.64)

0 = ĝ(x, y, h(x, y)) → y = g(x), (3.65)

where both g(x) and h(x, y) evolve on their own configuration spaces. The reduced order (slow) sub-

system, Eq. (3.61), resulting from the Top-condition analysis will be denoted as ΣS-subsystem, while

the boundary layer (fast) subsystem resulting from the same Top-condition analysis, Eqns. (3.62-3.63),

will be referred as ΣFU -subsystem for simplicity. Recall that in the space of configuration of the bound-

ary layer ΣFU -subsystem, Eqns. (3.62-3.63), x is treated like a fix parameter. Figure 3.3 depicts the

Top-sequence of the Top-Down methodology.

The second sequence of the TD time-scale analysis, the Down sequence, permits to analyze the behavior

of the boundary layer ΣFU -subsystem, Eqns. (3.62-3.63). It can be identified that the resulting ΣSF -

subsystem can be treated again like a two-time-scale singular perturbation problem by analyzing the

subsystem that results when applying the stretched time scale given by τ2 = τ1/ε2 = t/ε1ε2. This results

in a new reduced (slow) subsystem, denoted as ΣF -subsystem for simplicity, and defined by

dy

dτ1
= ĝ(x, y(τ1), h(x, y(τ1))), (3.66)
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and where the new boundary layer (fast) subsystem is given by

dz

dτ2
= ĥ(x, y, z(τ2)). (3.67)

The boundary layer, Eq. (3.67), will be denoted as ΣU -subsystem for simplicity. The function

h(x, y(τ1)) in the reduced order ΣF -subsystem, Eq. (3.66), represents the quasi-steady-state of the

boundary layer ΣU -subsystem, Eq. (3.67), when setting ε2 = 0, that is

0 = ĥ(x, y, z) → z = h(x, y), (3.68)

where x and y are treated like fix parameters. This concludes the Top-Down methodology (TD).

The following section describes the Bottom-Up methodology, which in a similar manner to the TD

methodology, analyzes the three time-scale system by decomposing it into two distinct two-time-scale

singular perturbed problems. Figure 3.5 depicts the complete Top-Down time-scale analysis.

3.4.2 Bottom-Up Time-Scale Analysis

The Bottom-Up methodology (BU ), uses a philosophy similar to TD methodology presented in the

previous section, but the analysis is conducted considering the time-scale defined by first the Bottom

condition, that is, applying the stretched time scale given by τ2 = t/ε2, and secondly the Up condition,

that is the stretched time scale τ1 = t/ε1. Applying first the Bottom stretched time-scale condition to

the ΣSFU full system yields the new reduced (slow) subsystem defined by

ẋ = f(x, y, h(x, y)), (3.69)

ε1ẏ = ĝ(x, y, h(x, y)), (3.70)

and denoted as ΣSF -subsystem, and where the new boundary layer (fast) subsystem is given by

dz

dτ2
= ĥ(x, y, z(τ2)), (3.71)

and denoted also as ΣU -subsystem. The function h(x, y) in the reduced order ΣSF -subsystem, Eqns.

(3.69–3.70), represents the quasi-steady-state of the boundary layer, Eq. (3.71) when ε2 = 0, that

is

0 = ĥ(x, y, z) → z = h(x, y), (3.72)

where h(x, y) evolves on its own configuration space. Recall that Eq. (3.67) in the TD time-scale

analysis, and Eq. (3.71) in the BU are equivalent and both denoted as ΣU -subsystem. Figure 3.4 depicts

the Bottom-sequence of the BU methodology. Let also recall that, in the boundary layer ΣU -subsystem,

the variables x and y are treated like fixed parameters. The analysis of the BU methodology is continued

by identifying that the reduced order ΣSF -subsystem, Eqns. (3.69-3.70), can be treated again like a

two-time-scale singular perturbed problem, by dealing with the subsystem that results when applying

the Up condition, that is, applying the stretched time scale given by τ1 = t/ε1, where the new reduced

(slow) subsystem, denoted as ΣS-subsystem for simplicity, is now defined by

ẋ = f(x, g(x), h(x, y)), (3.73)

and the new boundary layer is defined by

dy

dτ1
= ĝ(x, y(τ1), h(x, y(τ1))), (3.74)

where g(x) represents the quasi-steady-state of the boundary layer, Eq. (3.74), when ε1 = 0, that is

0 = ĝ(x, y, z) = ĝ(x, y, h(x, y)) → y = g(x), (3.75)
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where g(x) and h(x, y) evolve on their own configuration spaces. Figure 3.6 depicts the complete analysis

of the Top-Down subproblem.

3.4.3 Top-Down and Bottom-Up Interconnection Properties

It is important to clarify the interconnection properties between the TD and BU time-scale analysis are of

great importance to help understanding the equivalencies between both strategies. These interconnection

properties guarantee that the presented strategy for treating the three different time-scales as two dis-

tinct two-time-scale singular perturbed problems, result in that the two-different two-time-scale resulting

problems are both complementary.

The resulting ΣS , ΣF , and ΣU subsystems obtained in the TD methodology, Eqns. (3.61), (3.66), and

(3.67), respectively, are equivalent to the ones obtained in the BU methodology, Eqns. (3.73), (3.74), and

(3.71), respectively. For simplicity, throughout the remainder of this thesis, in the boundary-layer ΣF -

subsystem, Eq. (3.74), state variable y(τ1) will be denoted as y, and in the boundary-layer ΣU -subsystem,

Eq. (3.71), the state variable z(τ2) will be denoted as z

These complementary interconnection properties can be better identified when considering the

similarities between both the TD two-time-scale sequential decomposition seen in Fig. 3.5, and the BU

two-time-scale sequential decomposition seen in Fig. 3.6. These similarities can be resumed as:

• The reduced order ΣS-subsystem of the TD analysis is also the slow movement of the ΣSF -subsystem

obtained in the BU analysis, Eqns. (3.61) and (3.73) respectively.

• The ΣF -subsystem is the slow movement of the ΣFU -subsystem from the TD analysis and the fast

movement of the ΣSF -subsystem from the BU analysis, becoming the interconnected subsystem be-

tween both the TD and BU methodologies, Eqns. (3.66) and (3.74) respectively.

• The ΣU -subsystem is the fast movement of the ΣFU -subsystem from the TD analysis, and also the

boundary layer for the BU analysis, and the ultra-fast movement of ΣSFU , Eqns. (3.67) and TD and

(3.71) respectively.

These similarities can be further understood by analyzing Figure 3.7, which depicts these interconnec-

tions among the different subsystems by merging both sequential time-scale decompositions defined in

Figs. 3.5 and 3.6. It can be clearly identified the interconnected subsystems where the labels 1A and

1B denote the BU and TD reduced order ΣS-subsystems, labels 2A and 2B denote the BU and TD

ΣF -subsystems, and finally, labels 3A and 3B denote the boundary layer BU and TD ΣU -subsystems,

therefore becoming both approaches complementary, and equivalent.

For three-time-scale singularly perturbed systems, one of the two methodologies is sufficient to con-

duct the stability analysis, the control design, and the selection the appropriate Lyapunov functions for

each of the singularly perturbed subsystems. The equivalency between each of the two analysis strate-

gies is guaranteed by the superposition principle, which despite the combination of the TD and BU

methodologies, the final results will be equivalent.

For the more general N th-time-scale system, the same methodologies are applicable, with the exception

that, after each obtained subsystem reduction, the designer can continue with the time-scale decomposi-

tion using either the TD or the BU methodologies, depending on the system structure of the resulting

reduced order and boundary layer subsystems, and what suits better in order to proceed with the time-

scale decomposition.
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Figure 3.3: Top-sequence of the Top-Down methodology.

Figure 3.4: Bottom-sequence of the Bottom-Up subproblem.
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Figure 3.5: Top-Down Two-time-scale sequential decomposition.
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Figure 3.6: Bottom-Up Two-time-scale sequential decomposition.
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Figure 3.7: Interconnection between Top-Down and Bottom-Up methodologies.
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3.5 Intuitive Description of the Three-Time-Scale Decomposi-

tion

The TD and BU methodologies previously presented can be used separately for analysis purposes, pro-

ducing equivalent results, and when combined can be used to determine the appropriate control laws,

and the Lyapunov function for each of the ΣS , ΣF , and ΣU -subsystems as it will be shown in later chap-

ters. The understanding of the natural evolution of a generic three-time-scale model, can be achieved by

focusing only on the BU sequential methodology, which will help to describe how the ultra-fast, fast and

slow variables of a stable system evolve through their own configuration spaces, or manifolds.

In order to better understand how a three-time-scale singularly perturbed systems behaves, it is im-

portant to first understand how a stable two-time-scale singularly perturbed system behaves. In such

systems, the fastest variable of the system evolves towards its equilibrium through its fast manifold, while

the slowest variable remains almost unchanged until the fastest variable reaches its configuration space.

At that point, the slowest variable evolves towards its equilibrium through the slow manifold while the

fast variable moves through its configuration space. This two-time-scale evolution can be easily observed

in Fig. 3.8, where z represents the fast variable, while x represents the slow variable of the system.

For a three-time-scale singularly perturbed system, the evolution is a bit more complex than the two-

time-scale behavior, but shows lots of resemblances, and can be described considering the BU time-scale

analysis. In order to be able understand the evolution of a generic three-time-scale model let recall

that the generic three-time-scale ΣSFU model, Eqns. (3.25–3.27), can be sequentially decomposed into

two different two-time-scale models. The first two-time-scale model considers the time-scale defined by

τ2 = t/(ε1ε1), where the reduced (slow) ΣSF -subsystem was given in Eqns. (3.69–3.70), and where the

boundary layer of the ΣSFU system is given by the ΣU -subsystem, Eq. (3.71). This first two-time-scale

decomposition represents the Bottom sequence previously defined in the BU analysis as seen in Fig.

3.4. The reduced order ΣSF -subsystem, Eqns. (3.69–3.70), can be treated again like a two-time-scale

singular perturbation problem by considering the time scale defined by τ1 = t/ε1, where the reduced ΣS-

subsystem is given by Eq. (3.73), and where the new boundary layer for the ΣSF -subsystem, denoted as

ΣF -subsystem, is given by Eq. (3.74). This second time-scale decomposition represents the Up-sequence

of the BU, and can be better appreciated in the right-hand-side of Figure 3.6.

In order to have a better understanding of the evolution of the different time-scales Figure 3.9 shows

the complete evolution of a generic stable three-time-scale model. Figure 3.9(a) shows the evolution

of the ultra-fast variable z as it moves through the configuration space of the boundary layer, ΣU -

subsystem, towards the surface that defines the quasi-steady-state equilibrium of the ΣU -subsystem,

given by ĥ(x, y, z) = 0, that is z = h(x, y), while x and y behave as fixed parameters.

Figure 3.9(b) shows the evolution of the fast state variable y as it moves on the configuration space of the

boundary layer of the ΣSF -subsystem towards the surface that defines the quasi-steady-state equilibrium

of ΣF -subsystem given by ĝ(x, y, h(x, y)) = 0, that is y = g(x), while the slow variable x behaves as a

fixed parameter, and z = h(x, y) evolves also on its manifold. Finally, Figure 3.9(c) shows the evolution

of the slow variable x as it moves in the manifold of the ΣS-subsystem, which is given by the intersection

between the planes ĝ(x, y, h(x, y)) = 0 and ȟ(x, y, z) = 0.
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Figure 3.8: Example of slow and fast manifolds.
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(a) ΣU -subsystem movement

(b) ΣF -subsystem movement

(c) ΣS -subsystem movement

Figure 3.9: Generic three-time-scale Evolution
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3.6 Top-Down and Bottom-Up Analysis Extension for N
th-

Time-Scale System

The same presented time-scale analysis methodologies are applicable for a more general N th-time-scale

system, with some significate differences that provide an additional degree of freedom to the designer.

For the three-time scale analysis previously described, the direction in which the singular perturbation

parameters are analyzed is maintained, that is, once selected either the TD or the BU time-scale analysis,

it is continued until the end of the time scale analysis, as it can be seen in Figure 3.1.

Figure 3.1 shows that the TD analysis is selected by first considering the Top singularly perturbed pa-

rameter, ε1, and secondly considers the Down singularly perturbed parameter ε2, following the descending

direction as indicated by the arrow. In a similar manner, Figure 3.2 shows that for the BU time-scale

analysis, the same philosophy is applied but with an ascending direction as indicated by the arrow.

For the general singularly perturbed N th-time-scale system, the major difference, when comparing

with the three-time-scale TD and BU time-scale analysis, consists in the fact that after each subsystem

reduction that results when applying the selected stretched time scale, the designer can continue with

the time-scale decomposition using either the TD or the BU methodologies, depending on the system

structure of the resulting reduced order and boundary layer subsystems, and what suits better in order

to proceed with the time-scale decomposition. This results in, assuming that the first time-scale de-

composition is conducted only on the Top or Bottom singularly perturbed parameter, in 2N−2 possible

combinations, that is, for he 4th-time-scale system, will result in 24−2 = 4 possible combinations, or for a

5th-time-scale system, will result in 25−2 = 8 combinations. What it is most important, the combinations

are all equivalent as it will be shown for the 4th-time-scale system.

In order to help understanding the extension of the TD and BU strategies here proposed for a more

general N th-time-scale system, the author has chosen a general 4th-time-scale system, that will used

throughout the remainder of the thesis when extending the obtained results to a more general N th-time-

scale system. The proposed 4th-time-scale system, denoted as ΣSFU2
for simplicity, is of the form given

by

ẋ = f(x, y, z, w) (3.76)

ε1ẏ = ĝ(x, y, z, w) (3.77)

ε1ε2ż = ĥ(x, y, z, w) (3.78)

ε1ε2ε3ẇ = î(x, y, z, w). (3.79)

Figure 3.10 presents a schematic of the four possible solutions for the 4th-time-scale analysis, and

where for conciseness, only the first one will be briefly described in this section since uses the same

philosophy employed for the three-time-scale analysis previously presented. The analysis for the first

possible combination of Figure 3.10 starts by applying the Top stretched time-scale condition to the

4th-time-scale original system, Eqns. (3.76–3.79), and identified as a solid green line in Figure 3.10. The

application of the first stretched time-scale condition results in the reduced order ΣS-subsystem, given

by

ẋ = f (x, g(x), h(x), i(x)) , (3.80)

where the boundary layer (fast), denoted as ΣUτ1
-subsystem for simplicity, and denoted by the short-

dashed red line in Figure 3.10, is given by

dy

dτ1
= ĝ (x, y(τ1), z(τ1), w(τ1)) , (3.81)
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ε2
dz

dτ1
= ĥ (x, y(τ1), z(τ1), w(τ1)) , (3.82)

ε2ε3
dw

dτ1
= î (x, y(τ1), z(τ1), w(τ1)) , (3.83)

where τ1 = t/ε1, and where the expressions g(x), h(x) and i(x) in Eq. (3.80) represent the quasi-steady-

state equilibria of the boundary layer ΣUτ1
-subsystem, Eqns. (3.81–3.83), when ε1 = 0, that is

0 = î(x, y, z, w) → w = i(x, y, z) = i(x, g(x), h(x, g(x))) ≡ i(x), (3.84)

0 = ĥ(x, y, z, i(x, y, z)) → z = h(x, y) = h(x, g(x)) ≡ h(x), (3.85)

0 = ĝ(x, y, h(x, y), i(x, y, h(x))) → y = g(x), (3.86)

where g(x), h(x), and i(x) evolve on their own configuration spaces. Recall that in the space of configura-

tion of the boundary layer given by the stretched time scale τ1 = t/ε1, Eqns. (3.81–3.83), x is treated like

a fixed parameter. This is the point at which the N th-time-scale analysis differs from the three-time-scale

analysis previously presented, by providing with the additional degree of freedom which permits to select

either the TD or BU time scale analysis.

For the first of the four cases here described, the time scale analysis continues by applying the BU

strategy to the ΣUτ1
-subsystem, which implies selecting the stretched time scale given by τ3 = τ1/(ε2ε3) =

t/(ε1ε2ε3). This results in a new reduced (slow) subsystem, denoted as ΣFU -subsystem for simplicity

and identified with the dashed-dotted blue line, and defined by

dy

dτ1
= ĝ (x, y(τ1), z(τ1), i(x, y(τ1), z(τ1))) , (3.87)

ε2
dz

dτ1
= ĥ (x, y(τ1), z(τ1), i(x, y(τ1), z(τ1))) , (3.88)

and where the new boundary layer (fast) subsystem, denoted as ΣU2
-subsystem for simplicity, is given

by

dw

dτ3
= î (x, y, z, w(τ3)) . (3.89)

The function i(x, y(τ1), z(τ1)) in the reduced order ΣFU -subsystem, Eqns. (3.87–3.88), represents the

quasi-steady-state of the boundary layer ΣU2
-subsystem, Eq. (3.89), when setting ε3 = 0, that is

0 = î(x, y, z, w) → w = i(x, y, z), (3.90)

where x, y,and z are treated like fixed parameters. Finally, it can be recognized that the ΣFU -subsystem

can be decomposed again into another two-time-scale singularly perturbed problem by considering the

last stretched time scale given by applying τ2 = τ1/ε2 = t/(ε1ε2). This results in a new reduced (slow)

subsystem, denoted as ΣF -subsystem for simplicity, and defined by

dy

dτ1
= ĝ (x, y(τ1), h(x, y(τ1)), i(x, y(τ1))) , (3.91)

and where the new boundary layer (fast) subsystem is given by

dz

dτ2
= ĥ (x, y, z(τ2), i(x, y, z(τ2))) . (3.92)

The boundary layer, Eq. (3.92), will be denoted as ΣU -subsystem for simplicity. The function

h(x, y(τ1)) in the reduced order ΣF -subsystem, Eq. (3.91), represents the quasi-steady-state of the

boundary layer ΣU -subsystem, Eq. (3.92), when setting ε2 = 0, that is

0 = ĥ(x, y, z, i(x, y, z)) → z = h(x, y), (3.93)

where x and y are treated like fixed parameters, and w it is assumed that is moving through its con-
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figuration space. Both the reduced order ΣF -subsystem, and the boundary layer ΣU1
-subsystem for the

first combination, are identified with the yellow long-spaced-dashed lines. Note that the color code for

the lines of the four different approaches do not imply the same reduced order subsystem, but the same

order in the sequential model order reduction.

This concludes the first of the four possible combinations that appear in Figure 3.10. It can be seen by

analyzing the rest of the four possible combinations appearing in Figure 3.10, that despite the combination

of TD and BU strategies, all the one-dimension final reduced order subsystems obtained using any of

the four possible TD and BU combinations are equivalent. This can be appreciated in Figure 3.10 when

comparing the different resulting reduced order subsystem, where the ΣS-subsystem is denoted with the

circle, the ΣF -subsystem is denoted with a star, the ΣU1
-subsystem is denoted with a pentagon, and

finally, the ΣU2
-subsystem is denoted with a square. This demonstrates the equivalency among all four

possible combinations of theTD and BU time-scale analysis.

The extension to the N th-time scale can easily be identified from the analysis of the 4th-time-scale

example above described. The sequential strategy of decomposing the 4th-time-scale system, into simpler

two-time-scale subsystems provides a valuable tool that will help in analyzing any general singularly

perturbed N th-time-scale system, and, as it will be seen in the sequel, provide powerful tools for both

selecting proper control strategies, and determining the stability properties of the resulting singularly

perturbed N th-time-scale system.
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Figure 3.10: 4th-time-scale Top-Down and Bottom-Up analysis strategy.
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3.7 Conclusions

Two singularly perturbation time-scale analysis approaches, the Top-Down (TD), and the Bottom-Up

(BU ), have been presented. These methodologies are based in a sequential application of the general

two-time-scale singular perturbation formulation, allowing to decouple a general N th-time-scale problem

into N−1 simpler reduced order two-time-scale models that simplify considerably the burden of designing

appropriate control strategies, and demonstrate the asymptotic stability properties of the resulting closed-

loop systems, as it will be shown in later chapters.

The equivalency between the use of the TD and BU time-scale strategies, permits to reduced the order

of complexity of the original system, thus becoming a tool that can be employed by the designer to select

the order in which the strategies are applied depending on the complexity of the original system being

analyzed.

The TD and BU time scale analysis is also extended to the more generalN th-time scale analysis using a

4th-order time-scale general example. The sequential strategy of decomposing the 4th-time-scale system,

into simpler two-time-scale subsystems provides a valuable tool that will help in analyzing any general

singularly perturbed N th-time-scale system, and provide additional tools for the time-scale analysis of

singularly perturbed systems.

In conclusion, the TD and BU singularly perturbed strategy here presented becomes the main pillar

of the methodology employed in this thesis and, as shown in following chapters, provides, in one simple

step-by-step process, the ability to solve the main problems treated on this thesis:

1. Define a control design strategy that permits to select the desired degree of stability of each of the

time-scale subsystems.

2. Define a methodology that permits to demonstrate the asymptotic stability properties of the resulting

closed loop full system, by selecting the Lyapunov functions for each of the singularly perturbed

subsystems, and construct the associated composite Lyapunov function for the full system.
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Chapter 4

Control Strategy

4.1 Introduction

Generally, feedback control designs for systems resulting from the interaction of slow and fast dynamic

modes, suffer from the higher dimensionality and ill-conditioning. The time-scale control strategies

taken advantage of these stiffness properties by decomposing the original ill-conditioned system into

two subsystems with separate time scales, the reduced order (slow) and the boundary layer (fast)

(Kokotović et al., 1986). This chapter takes advantage of this strategy by introducing two singular-

perturbation-based control strategies that are employed in this thesis.

Both control strategies take advantage from the methodology previously derived, the TD and the BU

methodologies, in which the control laws that stabilize the full problem are obtained by sequentially

applying the selected methodology. Although both methodologies are valid for the general time-scale

system, for the underactuated model here used, in which the main purpose of the control strategy is to

regulate the underactuated fast subsystem, ΣF , it is necessary to employ the TD control strategy.

The sequential application of TD time-scale analysis methodology results in two distinctive degenerated

two-time-scale subproblems considerably simplified, this permitting to easily obtain appropriate control

laws that stabilize each of the subsystems. In addition, each one of the two-time-scale singular perturbed

subproblems will consist of a slow and fast subsystems, and, by selecting the appropriate control laws, it

will be ensured that the associated subsystems are asymptotically stable. The two proposed control laws

that will be used to regulate the dynamics of both the simplified model, and the helicopter model, will

be referred as

• Top-Down Control Design (TD).

• Composite Feedback Top-Down Control Design (CF-TD).

For completeness of the thesis, although both control strategies have been applied to both the simplified

and the helicopter three-time scale models, the control strategy for the simplified model has been moved to

Appendix B as a reference tool. Again, it is advised to the reader to use the derivations for the simplified

model as a reference and reinforcing tool to help understanding the proposed control strategies.

The first control strategy, the Top-Down (TD) control design, uses sequentially the different stretched-

time-scales to stabilize the intermediate ΣF -subsystem with a desired degree of stability, and once has

been stabilized, and assuming the ultra-fast ΣU -subsystem becomes inherently stable with the control

signal selected to stabilize the ΣF -subsystem, then proceeds to stabilize the slowest ΣS-subsystem with

also a desired degree of stability by using the second stretched time-scale.
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The second proposed control strategy, the Composite Feedback Top-Down control design (CF -TD), uses

a similar sequential application of the TD control design, with the particularity that this methodology

allows the user to select also a prescribed degree of desired stability for the ultra-fast subsystem, ΣU ,

therefore not being necessary to assume that the closed-loop ultra-fast subsystem has inherent stable

properties. Both control strategies are based in the approximations introduced by singular perturbation

theory, and the stability of the resulting closed-loop systems will be studied in later chapters.

As previously noted, for simplicity, and completeness of the thesis, the author has chosen to keep the

same nomenclature presented in chapter 3 for the different time-scale subsystems for both the simplified

example, and the helicopter model, since the context will be significate enough to determine to which

model is referring, and maintaining the same nomenclature will help in the process of using the simplified

example as a reference tool.

Similarly, the different time-scale subsystems will be defined as a function of the form Σ(·), where the

subindex denotes the different subsystems, that is, ΣS for the slow subsystem, ΣF for the fast subsystem,

and finally, ΣU for ultra-fast subsystem, where x̃ and ỹ are treated like constants.

The following sections describe in further detail both control designs by first deriving them for a generic

three-time-scale singularly perturbed model, and then extending the results to the helicopter model. Prior

the selected control strategies employed in this chapter for a class of underactuated nonlinear systems, a

brief description of what would be the natural control strategy for a general nonlinear three-time-scale

singularly perturbed system is introduced.

4.2 Top-Down and Bottom-Up Control Design Strategies for

General Three-Time-Scale Systems

Prior to derive the selected TD control strategy for the underactuated system analyzed in this thesis,

this section presents a general description of both the TD and BU control strategies for a general three-

time-scale system of the form

ẋ = f(x, y, z, u1), (4.1)

ε1ẏ = ĝ(x, y, z, u2), (4.2)

ε1ε2ż = ĥ(x, y, z, u3). (4.3)

Similarly as in the time-scale analysis, both the TD and BU control strategies will produce equivalent

results as it is shown in the following sections.

4.2.1 Top-Down Control Design Strategy for General Three-Time-Scale Sys-

tems

The TD control strategies for the general three-time-scale system follows the same philosophy as the

TD time scale analysis described in section 3.4.1, where the control strategy employed is quite simple,

since each subsystem in the ΣSFU system has sufficient control authority such that the control signal

associated to each subsystem will be sufficient to stabilize the system to whom it belongs. The TD control

strategy starts by first considering the time-scale defined by the Top condition, yielding the reduced (slow)

ΣS-subsystem defined by

ẋ = f(x, g(x), h(x), u1), (4.4)
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and where the boundary layer (fast) ΣFU -subsystem for the TD subproblem is defined by

dy

dτ1
= ĝ(x, y, z, u2). (4.5)

ε2
dz

dτ1
= ĥ(x, y, z, u3). (4.6)

Recall that in the ΣS-subsystem, g and h are the quasi-steady-state equilibria for the boundary layer

ΣFU -subsystem, Eqns. (4.5–4.6), when setting ε1 = 0 and being solved simultaneously yielding

0 = ĝ(x, y, z, u2) → y = g(x, u2), (4.7)

0 = ĥ(x, y, z, u3) → z = h(x, u3). (4.8)

The reduced order ΣS-subsystem will not be stabilized until the boundary layer ΣFU -subsystem is stabi-

lized, which is done by recognizing that can be treated again like a two-time-scale singularly perturbed sys-

tem by applying the Down condition, that is applying the stretched time constant τ2 = ε1/ε2 = t/(ε1ε2),

which results in a new reduced (slow) subsystem, denoted as ΣF -subsystem for simplicity, defined

by

dy

dτ1
= ĝ(x, y, h(x, y), u2), (4.9)

and where the new boundary layer (fast) ΣU -subsystem is defined by

dz

dτ2
= ĥ(x, y, z, u3), (4.10)

The ΣU -subsystem, Eq. (4.10), is stabilized by selecting a control signal u3(x, y, z) such that provides

a desired prescribed performance given by

dz

dτ2
= −b̃z(z − z∗), (4.11)

where b̃z represents the desired time response of the ultra-fast dynamics. Once stabilized the ΣU -

subsystem, its quasi-steady-state equilibrium is obtained by setting ε2 = 0 yielding

0 = ĥ(x, y, z) → z = h(x, y), (4.12)

with h(x, y) evolving on its own configuration space on the boundary layer ΣU -subsystem, where both x

and y are being treated like fixed parameters. With the ΣU -subsystem stable, the strategy shifts towards

stabilizing the ΣF -subsystem, (4.9), which is achieved by selecting the control signal u2(x, y) such that

stabilizes the ΣF -subsystem with a desired prescribed performance given by

dy

dτ1
= −b̃y(y − y∗), (4.13)

where b̃y represents the desired time response of the fast dynamics. Once stabilized both the ΣF and

ΣU -subsystems, their quasi-steady-state equilibria can be obtained recalling Eqns. (4.7–4.8), resulting

in

0 = ĝ(x, y, z, u2) → u2(x, y) → y = g(x), (4.14)

0 = ĥ(x, y, z, u3) → u3(x, y, z) → z = h(x, y) = h(x, g(x)) = h(x). (4.15)

which are used to define the ΣS-subsystem, Eq. (4.4). With the functions g(x) and h(x), Eqns. (4.14) and

(4.15), respectively, evolving on their own configuration spaces, the control signal u1(x) in the resulting

reduced order ΣS-subsystem, Eq. (4.4), is selected such that stabilizes the ΣS-subsystem with a desired

degree of stability given by

ẋ = −bx(x − x∗), (4.16)
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where b̃y represents the desired time response of the fast dynamics. This concludes the general Top-Down

control design with all three subsystems being stabilized with a desired prescribed degree of stability.

Figure 4.1 depicts the complete TD control design sequence for a general three-time-scale singularly

perturbed problem.

4.2.2 Bottom-Up Control Design Strategy for General Three-Time-Scale

Systems

The BU control strategies for the general three-time-scale system follows the same philosophy as the BU

time scale analysis described in section 3.4.2. Similarly as for the TD control design, the control strategy

employed is quite simple, since the control signal of each subsystem in Eqns. (4.1–4.3), is sufficient to

stabilize the system to whom it belongs. This translates to that, following the natural and logical flow of

the states, as seen in intuitive description of the three-time-scale decomposition, described in section 3.5,

the Bottom-Up analysis is first applied to the general system, Eqns. (4.1–4.3), by first considering the

time-scale defined by the Bottom condition, yielding the reduced (slow) ΣSF -subsystem defined by

ẋ = f(x, y, h(x, y), u1), (4.17)

ε1ẏ = ĝ(x, y, h(x, y), u2), (4.18)

and where the boundary layer (fast) ΣU -subsystem for the BU subproblem is defined by

dz

dτ2
= ĥ(x, y, z, u3). (4.19)

The boundary layer ΣU -subsystem, Eq. (4.19), is stabilized by selecting the control signal u3(x, y, z)

such that stabilizes the ΣU -subsystem with a desired prescribed performance as

dz

dτ2
= −b̃z(z − z∗), (4.20)

where b̃z represents the desired time response of the ultra-fast dynamics. Once stabilized the ΣU -

subsystem, its quasi-steady-state equilibrium is obtained by setting ε2 = 0 yielding

0 = ĥ(x, y, z) → z = h(x, y), (4.21)

with h(x, y) evolving on its own configuration space on the boundary layer ΣU -subsystem, where both

x and y are being treated like fixed parameters. The ΣSF -subsystem is completed after substituting

h(x, y) into the Eqns. (4.17–4.18). With ΣU -subsystem being stable, the control strategy continues

by recognizing that the ΣSF -subsystem can be treated again like a two-time-scale singularly perturbed

system by dealing with the subsystem that results when considering the time-scale defined by the Up

condition, that is the second stretched time scale of the BU control design, and given by τ1 = t/ε1, where

the new reduced (slow) ΣS-subsystem is now defined by

ẋ = f(x, g(x), h(x, g(x)), u1), (4.22)

and where the new boundary layer ΣF -subsystem is given by

dy

dτ1
= ĝ(x, y, h(x, y), u2). (4.23)

The new boundary layer ΣF -subsystem, Eq. (4.23), is first stabilized by selecting the control signal

u2(x, y) such that provides a desired prescribed performance given by

dy

dτ1
= −b̃y(y − y∗), (4.24)
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where b̃y represents the desired time response of the fast dynamics. Once stabilized the ΣF -subsystem,

its quasi-steady-state equilibrium is obtained by setting ε1 = 0 such

0 = ĝ(x, y, h(x, y)) → y = g(x). (4.25)

With the functions g(x) and h(x, y) = h(x, g(x)) = h(x), Eqns. (4.25) and (4.21), respectively, the

control signal u1(x) in the resulting reduced order ΣS-subsystem, Eq. (4.22), is selected such that

stabilizes the slow subsystem with a desired degree of stability given by

ẋ = −bx(x − x∗), (4.26)

where b̃x represents the desired time response of the slow dynamics. This concludes the generalBU control

design with all three subsystems being stabilized with a desired prescribed degree of stability. Figure

4.2 depicts the complete BU control design sequence for a general three-time-scale singularly perturbed

problem. The following section deals with the control strategy for a non-general underactuated system,

in which the control strategy is required to be more elaborated in order to solve the problem of controlling

an underactuated system.

4.3 Top-Down Control Strategy for Underactuated Singular

Perturbed Systems

Due to the nature of the dynamics of the selected helicopter problem, Eq. (2.338), in which the con-

trol signals are allocated only in two of the singularly perturbed subsystems, therefore becoming an

underactuated system with a structure of the form

ẋ = f(x, y, z, u1), (4.27)

ε1ẏ = ĝ(x, y, z), (4.28)

ε1ε2ż = ĥ(x, y, z, u2). (4.29)

in which the variable that it is desired to be regulated is the underactuated one, i.e.: it is desirable to

regulate the y variable, implies that only the TD control strategy above presented can be employed. The

selected control strategy, needs to deal with the underactuated structure defined in Eqns. (4.27–4.29),

and does so by proposing a control design based in the TD strategies.

The TD control design strategy for the three-time scale singular perturbation formulation consists

on treating the three-different time scales as two-distinct two-time-scale singular perturbed problems.

Following the logic flow in a control process, in which the fastest variables are stabilized first, the TD

control strategy uses a two stage process to stabilize the full ΣSFU system. The first stage focusses on

the Down sequence of the TD control design by applying, in a sequential manner, first the stretched

time scales τ1 = t/ε1, yielding the reduced order ΣS-subsystem, and the boundary layer ΣFU -subsystem,

and secondly, applying the stretched time-scale τ2 = t/ε1ε2 to the ΣFU -subsystem, to accomplish the

stabilization of the ΣFU -subsystem, with the proper u2, and once stabilized, the second stage focuses

on the Top sequence by using the first time-scale decomposition, along with the obtained results in the

first time-scale decomposition, and proceeds to stabilize the slow ΣS-subsystem with the proper u1. The

following subsections describe in detail both stages of the TD control design strategies.
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4.3.1 Control Design for u2: 1st Stage of the Top-Down Control Design

The first stage of the Top-Down subproblem applies first the stretched time-scale τ1 = t/ε1 to the original

ΣSFU (4.27–4.29), resulting in the reduced (slow) subsystem defined by

ẋ = f(x, g(x, u2), h(x, g(x), u2), u1), (4.30)

and where the boundary layer (fast) ΣFU -subsystem for the TD subproblem is defined by

dy

dτ1
= ĝ(x, y, z), (4.31)

ε2
dz

dτ1
= ĥ(x, y, z, u2), (4.32)

where the quasi-steady-state equilibria of the boundary layer ΣFU -subsystem, Eqns. (4.31–4.32), are

obtained when setting ε1 = 0, and solving simultaneously resulting in

0 = ĥ(x, y, z, u2) → z = h(x, y, u2) = h(x, g(x), u2), (4.33)

l
0 = ĝ(x, y, z) = ĝ(x, y, h(x, y, u2)) → y = g(x, u2), (4.34)

Note that on the boundary layer ΣFU -subsystem, the variable x is treated like a fixed parameter. Note

that in order to completely determine the reduced order ΣS-subsystem, it is necessary to completely

define the equilibria of the ΣFU subsystem, that is, defining h(x, g(x), u2) and g(x, u2), Eqns. (4.33–4.34),

therefore being necessary to define the control signal u2, which implies to complete the Down-sequence

of the TD control strategy, and this is achieved by first stabilizing the ΣFU -subsystem using singular

perturbation time-scale analysis.

The stabilization of the ΣFU -subsystem is accomplished by identifying that the boundary layer ΣFU -

subsystem, Eqns. (4.31–4.32), can be decomposed into a two-time-scale singular perturbed problem

by dealing with the subsystem that results when applying the second stretched time-scale τ2 = τ1/ε2 =

t/(ε1ε2), where the new reduced (slow) subsystem, denoted as ΣF -subsystem for simplicity, is now defined

by

dy

dτ1
= ĝ(x, y, h(x, y, u2)), (4.35)

and where the new boundary layer (fast) ΣU -subsystem is defined by

dz

dτ2
= ĥ(x, y, z, u2), (4.36)

and where the quasi-steady-state equilibrium of the boundary layer ΣU -subsystema, Eq. (4.36), when

setting ε2 = 0, resulting in

0 = ĥ(x, y, z, u2) → z = h(x, y, u2). (4.37)

Note that the control signal is embedded in the quasi-steady-state equilibrium z = h(x, y, u2), Eq.

(4.37), which, once substituted back into the reduced order ΣF -subsystem, Eq. (4.35), will be chosen

such that stabilizes the ΣF -subsystem with a desired degree of stability, i.e. the control signal is selected

such that guarantees to match a selected degree of performance. It is assumed that the boundary layer

ΣU -subsystem is stable after selecting the control signal that stabilizes the ΣF -subsystem.

In the contrary, if the boundary layer ΣU -subsystem is not stable, or does not have the desired perfor-

mance, the control strategy can be modified to account for the desired stable behavior of the ΣU boundary

layer by introducing a modification in the control strategy that will be addressed in the CF-TD control

design developed in section 4.5.1.
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The first stage of the TD control strategy finalizes with the selected control strategy u2 that guarantees

a desire degree of stability for the underactuated ΣFU -subsystem. The control strategy for the complete

ΣSFU system continues with the second stage of the TD control strategy, in which will be addressed the

stabilization of the ΣSF -subsystem. Figure 4.3 depicts the complete first stage of the TD control design

sequence.

4.3.2 Control Design for u1: 2nd Stage of the Top-Down Control Design

The second stage of the Top-Down subproblem focuses on the control design for u1 for the stabilization

of the ΣS-subsystem. For that purpose, recall first that after selecting the control signal u2(x, y, z), the

ΣFU -subsystem, Eqns. (4.31–4.32), can be rewritten as

dy

dτ1
= ĝ(x, y, z), (4.38)

ε2
dz

dτ1
= ĥ(x, y, z), (4.39)

In order to determine the equilibria that will define the ΣS-subsystem, Eq. (4.30), the ΣFU -subsystem,

Eqns. (4.38–4.39), can be decomposed by applying the stretched time scale τ2 resulting in the ΣF -

subsystem given by

dy

dτ1
= ĝ(x, y, h(x, y)), (4.40)

and where the new boundary layer (fast) ΣU -subsystem is defined by

dz

dτ2
= ĥ(x, y, z), (4.41)

with their equilibria being now completely determined resulting in

0 = ĥ(x, y, z) → u2(x, y) → z = h(x, y), (4.42)

0 = ĝ(x, y, h(x, y)) → y = g(x), (4.43)

with this in mind, the reduced order (slow) ΣS-subsystem, Eq. (4.30) reduces to

ẋ = f(x, g(x), h(x, g(x)), u1). (4.44)

The control signal (u1) is selected such that stabilizes the ΣS-subsystem with a desired degree of

stability. This concludes the TD control design. Figure 4.4 depicts the complete TD control design

sequence, including both the Top and Down sequences, control design for u2 and u1, respectively.

4.3.3 Conclusions for the Top-Down Control Design

Due to the underactuated structure of the system being controlled, a sequential application of the TD

has allowed to control the full ΣSFU system, by stabilizing separately first the ΣFU -subsystem, and once

stable, and using the results obtained in this first stabilization, proceed with the ΣS-subsystem, which

follows the logic flow of the dynamics of a singular perturbed time scale system, as described in Figure

3.9.

The complete evolution of a generic stable three-time-scale model is described in Figure 3.9(a), where

it can be seen the evolution of the ultra-fast variable z as it moves through the configuration space of

the boundary layer, ΣU -subsystem, Eq. (4.41), towards the surface that defines the quasi-steady-state

equilibrium of the ΣU -subsystem, given by the first part of the first stage of the TD control strategy, Eq.

(4.42), while x and y behave as fixed parameters.
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The end of the first stage of the TD control strategy is observed in Figure 3.9(b), which depicts the

evolution of the fast variable y as it moves on the configuration space of the reduced order of the ΣFU -

subsystem, which is equivalent to the boundary layer of the ΣSF -subsystem, Eqns. (4.38) and (4.39),

respectively, towards the surface that defines the quasi-steady-state equilibrium of ΣF -subsystem given

by Eq. (4.40), while the slow variable x behaves as a fixed parameter, and z = h(x, y) evolves also on its

manifold.

The second stage of the TD control strategy can be seen in Figure 3.9(c), which shows the evolution of

the slow variable x as it moves in the manifold of the ΣS-subsystem, which is given by the intersection

between the planes ĝ(x, y, h(x, y)) = 0 and ĥ(x, y, z) = 0, which results in the manifold of the ΣS-

subsystem given by Eq. (4.44). The following subsections will extend this formulation to both the

three-time-scale singularly perturbed helicopter model, while the control strategies for the simplified

model are moved to Appendix .
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Figure 4.1: Top-Down control design sequence for a general three-time-scale system
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Figure 4.2: Bottom-Up control design sequence for a general three-time-scale system
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Figure 4.3: 1st Stage of the Top-Down control design sequence.
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Figure 4.4: Complete Top-Down control design sequence.
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4.4 Top-Down Control Design for the Helicopter Model

The control strategy for the nonlinear underactuated three-time-scale singularly perturbed helicopter

model, Eqns. (3.56–3.60), with a structure equivalent to Eqns. (4.27–4.29), is the same as the one

defined in section 4.3, which consists on treating the three different time scales as two-distinct two-time-

scale singular perturbed problems. The TD control strategy is divided in two stages, being each stage

dedicated to design each of the two control signals.

The first stage of the TD control strategy, applies sequentially the Top and Down time constant condi-

tions, to select the control law that stabilizes the ΣFU -subsystem using singular perturbation time-scale

analysis to obtain the appropriate control law (u2) that stabilizes the vertical position of the helicopter

(y1) by taking the helicopter to a desired altitude (y∗), and therefore, regulating its vertical velocity

(y2).

The second stage of the TD control strategy focuses on the Top sequence by using the first time-scale

decomposition, along with the obtained results in the second time-scale decomposition, and proceeds to

stabilize the angular velocity of the blades with the proper u1. The following sections describe in detail

both stages of the TD control formulation applied to the helicopter model.

4.4.1 Control Design for u2: 1st Stage of the Top-Down Control Design for

the Helicopter Model

The TD control strategy applies the Top stretched-time-scale, resulting in the reduced order (slow)

ΣS-subsystem, given by

ẋ = a8x+ a10x
2 sin h1(x, u2) + a9x

2 + a11 + u1, (4.45)

with h1(x, u2) being the equilibria of the ΣFU -subsystem, as it will be seen bellow, and where the resulting

boundary layer (fast) ΣFU -subsystem is given by

dy1
dτ1

= c1y2 (4.46)

dy2
dτ1

= x2(c2 + c3z1 −
√
c4 + c5z1) + a9y2 + a9y

2
2 + c6, (4.47)

ε2
dz1
dτ1

= c7z2 (4.48)

ε2
dz2
dτ1

= a9z1 + c8x
2 sin z1 + c9z2 + c10 + c11u2. (4.49)

Recall that neither the angular velocity of the blades dynamics, Eq. (4.45), nor the collective pitch

dynamics, Eqns. (4.48–4.49), depend on the helicopter vertical movement dynamics, therefore, only

the quasi-steady-state equilibria of the collective pitch dynamics, h(x, y , u2), is substituted into Eq.

(4.45) to obtain the reduced order ΣS-subsystem, where h1(x, u2) represents the collective pitch angle

quasi-steady-state equilibrium. Recall that the Roman boldbace quasi-steady-state equilibria denotes a

vector.

Recall also that, for completeness, and simplicity, throughout the remainder of the thesis, when dealing

with the helicopter model, the vector state denoting the vertical displacement dynamics will be written

in italic bold font, y = [ y1 y2 ]T , and the vector state denoting the collective pitch dynamics will be

written in italic bold font, z = [ z1 z2 ]T .

The control strategy employed obtains the associated control law u2 that stabilizes the ΣFU -subsystem,

Eqns. (4.46–4.49), assuming that the slow variable, the angular velocity of the blades (x) is constant, and
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that the fast variables have reached their quasi-steady-state equilibria and evolve on it. In order to do

so, the boundary layer ΣFU -subsystem can be treated again like a two-time-scale singular perturbation

problem by applying the Down stretched time-scale condition resulting in the new reduced (slow) ΣF -

subsystem given by

dy1
dτ1

= c1y2 (4.50)

dy2
dτ1

= x2
(

c2 + c3h1(x, y , u2)−
√

c4 + c5h1(x, y , u2)
)

+ a9y2 + a9y
2
2 + c6, (4.51)

and with the new boundary layer ΣU -subsystem given by

dz1
dτ2

= c7z2 (4.52)

dz2
dτ2

= a9z1 + c8x
2 sin z1 + c9z2 + c10 + c11u2, (4.53)

where the quasi-steady-state vector equilibria of the boundary layer ΣU -subsystem is given by

h(x, y , u2) =

[

h1(x, y , u2)

h2(x, y , u2)

]

. (4.54)

Prior to define in detail the quasi-steady-state equilibria (4.54), and therefore the control law, a feedback

transform is introduced in Eq. (4.53) to guarantee that the ΣU -subsystem is stable by selecting the

function

v2 = c8x
2 sin z1 + c10 + c11u2, (4.55)

thus rewriting Eqns. (4.52–4.53) such

dz1
dτ2

= c7z2 (4.56)

dz2
dτ2

= a9z1 + c9z2 + v2. (4.57)

The appropriate selection on v2, and the inherit nature of the actuator dynamics, results in a stable

ΣU -subsystem, and also faster than the rest of the time scales. This can be proven by analyzing the

open-loop eigenvalues of the ΣU -subsystem, Eqns. (4.56–4.57), given by λ1 = −0.5772 × 10−4 and

λ2 = −0.1697× 10−4. This ensures that the response of the ΣU -subsystem dynamics is stable and much

faster than the rest of the dynamics, but with the limitation that the current control strategy cannot

provide desired transient response for the ultra-fast variables.

To tackle such limitation, the author has also proposed an alternative control law (Esteban et al., 2008b)

to the one here used, based in the Composite Feedback control for singular perturbed systems

(Kokotović et al., 1999), in which using additional feedback control strategies permit the selection of

the desired target dynamics for the ΣU -subsystem, therefore, ensuring that if the boundary layer system

is unstable, or that the response is stable but not adequate, it can be made stable via control design.

This alternative control strategy will be dealt with in section 4.5.1, and for the time being, it will be

assumed that for the TD control design, the ΣU -subsystem is inherently stable after substituting the

derived control signal u2, and with a sufficient transient response.

Once introduced the feedback transform, the quasi-steady-state equilibria of the ΣU -subsystem, Eqns.

(4.56–4.57), is obtained by setting ε2 = 0, yielding

0 = ĥ(x, y , z , v2) → z = h(x, y , v2), (4.58)
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resulting in

z = h(x, y , v2) =

[

h1(x, y , v2)

h2(x, y , v2)

]

, (4.59)

with

h1 = z1 = c13v2, (4.60)

h2 = z2 = 0, (4.61)

where h1(v2) and h2 represent the quasi-steady-state equilibria of the ΣU -subsystem, and with c13 = − 1
a9
.

Substituting the equilibria (4.60–4.61) into Eqns. (4.50–4.51), results in the reduced order (slow) ΣF -

subsystem is given by

dy1
dτ1

= c1y2 (4.62)

dy2
dτ1

= x2
(

c2 + c3h1(v2)−
√

c4 + c5h1(v2)
)

a9y2 + a9y
2
2 + c6 (4.63)

= x2
(

c2 + c3c13v2 −
√
c4 + c5c13v2

)

+ a9y2 + a9y
2
2 + c6.

The control law that stabilizes the fast subsystem is obtained after a series of algebraic substitutions.

Let first introduce the transformation given by

w2 = c4 + c5 (c13v2) , (4.64)

where an expression of v2, as a function of w, can be obtained from Eq. (4.64) such

v2 =
w2 − c4
c5c13

, (4.65)

where substituting Eqns. (4.64) and (4.65) into Eq. (4.63) yields

dy1
dτ1

= c1y2

dy2
dτ1

= x2
(

c2 + c3

(

w2 − c4
c5

)

− w

)

+ a9y2 + a9y
2
2 + c6, (4.66)

which can be simplified into

dy1
dτ1

= c1y2

dy2
dτ1

= x2
(

c12w
2 − w +Ka

)

+ a9y2 + a9y
2
2 + c6, (4.67)

being the constants given by

c12 =
c3
c5
, (4.68)

Ka = c2 − c4c12. (4.69)

After choosing

v = c12w
2 − w +Ka, (4.70)

Eq. (4.67) becomes

dy1
dτ1

= c1y2, (4.71)

dy2
dτ1

= x2v + a9y2 + a9y
2
2 + c6. (4.72)
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In order to select a proper control law, let choose a stable target system of the form given by

dy1
dτ1

= c1y2 (4.73)

dy2
dτ1

= −b̃y1
(y1 − y∗1)− b̃y2

y2, (4.74)

where y∗1 represents the desired altitude of the helicopter, and b̃y1
, and b̃y2

are control design parameters

that determine the desired transient response of the fast dynamics, and given by selecting the natural

frequency (ωny∗
) and the damping ratio (ζy∗) such as

b̃y1
= ε1by1

, (4.75)

b̃y2
= ε1by2

, (4.76)

with

by1
= ω2

ny∗
, (4.77)

by2
= 2ωny∗

ζny∗
, (4.78)

where ωny∗
and ζny∗

are the desired natural frequency and damping ratio for the fast-dynamics on the

stretched time-scale given by τ1 = t/ε1. The control problem can be solved if a control signal v is chosen

such that the ΣF -subsystem , Eqns. (4.71–4.72), behaves like the selected target system defined in Eqns.

(4.73–4.74). The control signal v is therefore chosen to be

v(x, y) = −
a9y

2
2 +

(

a9 + b̃y2

)

y2 + b̃y1
(y1 − y∗1) + c6

x2
, (4.79)

where it should be noted that this control law is not defined for zero angular velocity of the blades, x = 0,

but this will not be a problem since the blades of the helicopter will always have an angular velocity

x > xMIN > 0. The control law u2 can be obtained by tracking back the algebraic feedback transform

substitution presented in Eq. (4.55), resulting in

u2 =
v2 − c8x

2 sin z1 − c10
c11

, (4.80)

where x is treated, at the moment, as a constant, and v2 is given by the expression defined in Eq. (4.65),

and w can be obtained solving for the roots of the quadratic polynomial of Eq. (4.70), yielding

w =
1±

√

1− 4c12(Ka − v(x, y))

2c12
. (4.81)

It can be proven, by substituting into the equilibria Eqns. (2.349)–(2.348), that the solution

corresponding to the minus sign in front of the square root is a spurious solution introduced in the

previous computations. In the following, only the positive root will be considered. The control law is

therefore defined as

u2(x, y , y
∗
1 , z1) = Kb

(

1 +
√

1− 4c12 (Ka − v(x, y))
)2

+Kc +Kdx
2 sin z1

= Kb

(

1 +
√

s3v(x, y)
)2

+Kc +Kdx
2 sin z1, (4.82)

with v(x, y) being given by

v(x, y) = −
a9y

2
2 +

(

a9 + b̃y2

)

y2 + b̃y1
(y1 − y∗1) + c6

x2
, (4.83)
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and the coefficients of the control law being given by

Ka = c2 − c4c12 =
a1a9
a5

− a2a3a
2
9

a25a7
, (4.84)

Kb =
1

4c5c11c212c13
= −a5a7a13

4a22a9
, (4.85)

Kc = − c4
c5c11c13

− c10
c11

=
a3a9a13
a5a7

− a12, (4.86)

Kd = − c8
c11

= −a14, (4.87)

s3 = 4c12 = 4
c3
c5

= 4
a2c1
a4c21

=
a2a5
a4a9

. (4.88)

It should be noted that due to the nature of the derived control law u2, Eq. (4.82), it needs to be ensured

that the control law is defined for all possible conditions, which is done by selecting the appropriate control

design variables b̃y1
and b̃y2

. It is assumed that the boundary layer is stable after selecting the control

signal that stabilizes the ΣF -subsystem.

4.4.2 Control Design for u1: 2nd Stage of the Top-Down Control Design for

the Helicopter Model

The second stage of the TD subproblem focuses on the control design for u1 for the stabilization of the

ΣS-subsystem. For that purpose, recall first that after selecting the control signal u2(x, y , y
∗
1 , z1), the

ΣFU -subsystem, Eqns. (4.46–4.49), can be rewritten as

dy1
dτ1

= c1y2, (4.89)

dy2
dτ1

= x2(c2 + c3z1 −
√
c4 + c5z1) + a9y2 + a9y

2
2 + c6, (4.90)

ε2
dz1
dτ1

= c7z2 (4.91)

ε2
dz2
dτ1

= a9z1 + c9z2 + J2

[

(

1 +
√

s3v(x, y )
)2

− 1

]

, (4.92)

where the constat J2 is given by

J2 =
a9
a13

Kb = −a3a9
a4

. (4.93)

In order to determine the equilibria that will define the ΣS-subsystem, Eq. (4.45), the ΣFU -subsystem,

Eqns. (4.89–4.92), can be decomposed by applying the stretched time scale τ2 resulting in the ΣF -

subsystem given by

dy1
dτ1

= c1y2, (4.94)

dy2
dτ1

= x2(c2 + c3h1(x, y)−
√

c4 + c5h1(x, y) + a9y2 + a9y
2
2 + c6, (4.95)

and where the new boundary layer (fast) ΣU -subsystem is defined by

dz1
dτ2

= c7z2 (4.96)

dz2
dτ2

= a9z1 + c9z2 + J2

[

(

1 +
√

s3v(x, y )
)2

− 1

]

. (4.97)

The new ΣU -subsystem quasi-steady-state equilibria is given by setting ε2 = 0, resulting in

0 = ĥ(x, y , z ) → z = h(x , y) =

[

h1(x, y)

h2(x, y)

]

, (4.98)
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that is

0 = c7z2 → z2 = h2(x, y), (4.99)

0 = a9z1 + c9z2 + J2

[

(

1 +
√

s3v(x, y)
)2

− 1

]

→ z1 = h1(x, y), (4.100)

therefore yielding

h1(x, y) = z1 = s2

[

(

1 +
√

s3v(x, y)
)2

− 1

]

, (4.101)

h2(x, y) = z2 = 0, (4.102)

where the constant s2 is given by

s2 = −J2
a9
. (4.103)

With the quasi-steady-state equilibria of the ΣU -subsystem, Eqns. (4.101–4.102), the reduced order

ΣF -subsystem, Eqns. (4.94–4.95) is therefore given by

dy1
dτ1

= c1y2, (4.104)

dy2
dτ1

= x2(c2 + c3h1(x, y)−
√

c4 + c5h1(x, y) + a9y2 + a9y
2
2 + c6

= −b̃y1
(y1 − y∗1)− b̃y2

y2. (4.105)

Recall that when substituting the quasi-steady-state equilibria of the ΣU -subsystem, Eqns. (4.101–

4.102) into Eqns. (4.94–4.95), they degenerate into the selected ΣF target dynamics, Eqns. (4.73–4.74).

Setting the perturbation parameter ε1 = 0, reduces the dimension of the ΣF -subsystem because the

differential equations (4.104–4.105) degenerate into the equation that determine the roots of the fast

manifold, defined as

0 = ĝ(x, y ,h(x, y)) → y = g(x) =

[

g1(x)

g2(x)

]

, (4.106)

that is

0 = c1y2 → y2 = g2(x), (4.107)

0 = −b̃y1
(y1 − y∗1)− b̃y2

x2 → y1 = g1(x), (4.108)

therefore yielding the equilibria for the vertical motion of the helicopter given by

g1(x) = y1 = y∗, (4.109)

g2(x) = y2 = 0, (4.110)

where Eq. (4.109) represents that the equilibrium altitude position is the desired altitude, while Eq.

(4.110), provides that, as expected, the equilibrium vertical position must be zero in order to achieve

a vertical equilibrium point. The control law u1 that stabilizes the slow ΣS-subsystem is obtained by

substituting the ΣF and ΣU -subsystem equilibria, Eqns. (4.109–4.110), and (4.101–4.102), respectively,

into Eq. (4.45), yielding the reduced order ΣS-subsystem given by

ẋ = a8x+ a10x
2 sin h1SS(x,g(x)) + a9x

2 + a11 + u1, (4.111)

where h1SS(x,g(x)) represents the quasi-steady-state equilibrium of the collective pitch angle, Eq. (4.101)

when substituting the quasi-steady-state equilibria for the vertical displacement dynamics, Eqns (4.109–
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4.110), resulting in

h1SS(x,g(x)) = h1(x, y)|y=g(x) = s2

[

(

1 +
√

s3vSS(x,g(x))
)2

− 1

]

, (4.112)

with vSS(x,g(x)) is the results of substituting Eqns. (4.109) and (4.110) into Eq. (4.83), yielding

vSS(x,g(x)) = v(x, y)|y=g(x) = − c6
x2
. (4.113)

The control law is selected by defining a target system of the form

ẋ = −bx(x − x∗), (4.114)

where bx is a control design parameter that defines the desired transient response of the collective pitch

angular velocity of the blades. The associated control law that stabilizes the ΣS-subsystem is therefore

selected as

u1(x, x
∗) = −a8x− a10x

2 sin (h1SS(x,g(x))) − a9x
2 − a11 − bx(x− x∗)

= −a8x− a10x
2 sin (h1SS(x)) − a9x

2 − a11 − bx(x− x∗). (4.115)

This concludes the TD control design.

4.4.3 Closed-Loop of the Helicopter Model

After substituting the selected control laws, Eqns. (4.82) and (4.115), into the original nonlinear equations

of the helicopter, Eqns. (2.339–2.343), the closed-loop system is given by

ẋ = a10x
2 [sin(z1 − sin h1SS(x))] − bx(x− x∗) (4.116)

ẏ1 = y2 (4.117)

ẏ2 = x2
(

a1 + a2z1 −
√
a3 + a4z1

)

+ a5y2 + a6y
2
2 + a7 (4.118)

ż1 = z2 (4.119)

ż2 = a13z1 + a15z2 +Kb

[

(

1 +
√

s3v(x, y)
)2

− 1

]

, (4.120)

The equilibria of the closed-loop system are obtained by setting all derivatives of Eqns. (4.116–4.120) to

zero, thus yielding the equilibrium equations, where the equilibria of ultra-fast dynamics, Eqns. (4.119–

4.120), results in the quasi-steady-state equilibria given by

0 = ĥ(x, y , z ) → z = h(x, y) =

[

h1(x, y)

h2(x, y)

]

, (4.121)

that is

0 = z2 → z2 = h2(x, y), (4.122)

0 = a13z1 + a15z2 +Kb

[

(

1 +
√

s3v(x, y)
)2

− 1

]

→ z1 = h1(x, y), (4.123)

therefore yielding

h1(x, y) = z1 = −Kb

a13

[

(

1 +
√

s3v(x, y)
)2

− 1

]

= s2

[

(

1 +
√

s3v(x, y)
)2

− 1

]

, (4.124)

h2(x, y) = z2 = 0, (4.125)

Recall that observing the closed-loop ultra-fast dynamics, Eqns. (4.119–4.120), can be expressed as a
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function of a pseudo error dynamics by using the definition of the quasi-steady-state equilibrium h1(x, y),

Eq. (4.124), resulting in

ż1 = z2 (4.126)

ż2 = a13z1 + a15z2 +Kb

[

(

1 +
√

s3v(x, y)
)2

− 1

]

= a13 (z1 − h1(x, y)) + a15z2, (4.127)

which provides the transient response of the ultra-fast dynamics given by a second order time response

of the form

z̈1 = −ω2
nz

(z1 − h1(x, y))− 2ωnz
ζz ż1, (4.128)

with ωnz
being the natural frequency of the closed-loop ultra-fast system, and ζz being the damping ratio

of the ultra-fast dynamics, which can be defined as

ωnz
=

√−a13, (4.129)

ζz =
−a15
2ωnz

=
−a15

2
√−a13

, (4.130)

Substituting the equilibria of the ultra-fast subsystem, Eqns. (4.124-4.125), into the equilibrium equa-

tions of the fast dynamics, Eqns. (4.117-4.118), results in

0 = y2 (4.131)

0 = x2
(

a1 + a2h1(x, y)−
√

a3 + a4h1(x, y)
)

+ a5y2 + a6y
2
2 + a7

= −by1
(y1 − y∗1)− by2

(y2 − y∗2) , (4.132)

yielding the equilibrium of the fast dynamics

y1 = y∗1 , (4.133)

y2 = y∗2 = 0. (4.134)

The transient response of the fast dynamics is given by a second order time response of the form

ÿ1 = −by1
y1 − by2

ẏ1

= −ω2
ny∗

y1 − 2ωny∗
ζy∗ ẏ1, (4.135)

with ωny∗
being the desired natural frequency of the closed-loop ultra-fast system, and ζy∗ being the

desired damping ratio of the ultra-fast dynamics, which can be defined as

ωny∗
=

√

by1
, (4.136)

ζy∗ =
by2

2ωny∗

=
by2

2
√

by1

, (4.137)

and finally, substituting the equilibria of the ultra-fast subsystem, Eqns. (4.124-4.125), and the fast

subsystem, Eqns. (4.133-4.134), into the equilibrium equation of the slow dynamics (4.116) results

in

0 = a10x
2

[

sin

(

s2

[

(

1 +
√

s3v(x, y )
)2

− 1

])

− sin h1SS(x)

]

− bx(x − x∗) (4.138)

= −bx(x − x∗), (4.139)

yielding the equilibrium of the slow dynamics

x = x∗, (4.140)

with bx being the transient response for the slow system. This satisfies that the resulting equilibria of the
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closed-loop ΣSFU system are those selected in the TD control design. The asymptotic stability analysis

of the resulting closed-loop system will be conducted in future sections. Simulations are conducted to

test the proposed control laws on the helicopter model, and significate results are presented in section

4.8.

4.5 Composite Feedback Control Design

This section proposes an alternative singularly perturbed based control methodology to the TD control

design proposed in section 4.3. This control strategy follows a similar philosophy as the TD control

design, with the peculiarity that benefits from the properties of the well-known Composite Feedback (CF)

control for two-time-scale singularly perturbed models (Kokotović et al., 1986).

Generally, feedback control designs for systems resulting from the interaction of slow and fast dynamic

modes, suffer from the higher dimensionality and ill-conditioning, while in the two-time-scale CF control

approach, these stiffness properties are taken advantage of by decomposing the original ill-conditioned

system into two subsystems in separate time scales(Kokotović et al., 1986). These properties of the

feedback control design in conjunction with the properties of the two-time-scale singularly perturbed

problems are joined in the CF control design defined in (Kokotović et al., 1986).

The general two-time-scale CF design proceeds to stabilize each lower-order subsystem, and then com-

bines the obtained results yielding the composite state-feedback control for the original system. At the

same time, the composite controller is required to achieve an asymptotic approximation to the closed-

loop system performance that would have been obtained had a state-feedback controller been designed

without the use of singular perturbation methods. The composite-feedback control design proposed in

this section extends the general two-time-scale CF control design, to a three-time-scale control design by

merging its properties with the TD control strategy previously proposed.

The main difference between the two proposed control strategies is that, the CF control design permits

to stabilize the boundary layer ΣU -subsystem if becomes unstable after substituting the control law that

stabilizes the ΣF -subsystems, which occurs at the end of the TD subproblem. It could also happen that

the resulting closed-loop boundary layer ΣU -subsystem does not have the desired degree of prescribed

stability, therefore, would require a different control strategy in order to provide that same desired degree

of stability to the ΣU -subsystem. In any of the two possible scenarios in which the TD control design lacks

to provide the sufficient stability properties to the ΣU -subsystem, the CF control design, adapted to the

three-time-scale singularly perturbed problem, will satisfy these stability requirements on the ultra-fast

ΣU -subsystem.

This section will first describe the general two-time-scale CF control formulation, then extend the

formulation to the generic three-time-scale CF-TD control design, and finally applies the resulting control

strategy to the helicopter model, and again, as a reference, the application the control strategy to the

simplified model is moved to the Appendix B.

4.5.1 General Two-Time-Scale Composite Feedback Control Formula-

tion

The general two-time-scale CF control method for nonlinear autonomous systems

(Kokotović et al., 1986), is defined for a model of the form

ẋ = f(x, z, u), x ∈ Rn (4.141)
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εż = g(x, z, u), z ∈ Rm, (4.142)

where u ∈ Rr is a control input. Assuming that the open-loop system, Eqns. (4.141-4.142), is a standard

singular perturbation system for every u ∈ Bu ⊂ Rr, or what it is the same

0 = g(x, z, u), (4.143)

has a unique root z = h(x, u) in Bx × Bz ×Bu. The CF control method seeks the control u as the sum

of slow and fast controls, given by

u = us + uf , (4.144)

where us is a feedback function of x, given by

us = Γs(x), (4.145)

and uf is a feedback function of x and z, given by

uf = Γf (x, z). (4.146)

The fast feedback function Γf (x, z) is designed to satisfy two crucial requirements. First, when the

feedback control, Eq. (4.145), is applied to the singularly perturbed system, Eqns. (4.141-4.142), the

closed-loop system should remain a standard singular perturbed system, given by

0 = g(x, z,Γs(x) + Γf (x, z)), (4.147)

should have a unique root given by z = h(x) in Bx ×Bz . This requirement assures that the choice of Γf

will not destroy this property of the function g in the open-loop system. The second requirement on the

fast feedback function Γf (x, z) is that it be ”inactive” for z = h(x, us), that is

Γf (x, h(x,Γs(x))) = 0. (4.148)

The importance of the results in Eq. (4.148) can be seen from the resulting closed-loop equation, given

by

ẋ = f(x, z, us + uf), (4.149)

εż = g(x, z, us + uf). (4.150)

The requirement in Eq. (4.148) guarantees that z = h(x,Γs(x)) is a root of

0 = g(x, z,Γs(x) + Γf (x, z)). (4.151)

Recalling Eq. (4.147), it can be seen that Eq. (4.151) has a unique root z = h(x). With this in mind,

and considering Eqns. (4.147) and (4.148), the quasi-steady-state equilibrium of the boundary layer is

given by

h(x) = h(x,Γs(x)), (4.152)

which holds as an identity. With Eqns. (4.148) and (4.152), the reduced order model of the closed-loop

system, Eqns. (4.149-4.150) is given by

ẋ = f(x, h(x, us), us), (4.153)

which is independent of Γf and is the same reduced model obtained from the open loop system, that is,

Eqns. (4.141-4.142), when u is taken as us. Therefore, it can be seen that the design of the slow control

us = Γs(x) can be carried out independently of the fast design Γf . Once Γs(x) has been chosen, the
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boundary layer model of the closed-loop system is defined as

dz

dτ
= g(x, z,Γs(x) + uf), (4.154)

where x is treated as a fixed parameter. The requirement in Eq. (4.148) is now interpreted as a require-

ment on the feedback control uf = Γf (x, z) not to shift the equilibrium z = h(x,Γs(x)) of the boundary

layer system, Eq. (4.154). The design of uf must guarantee that z = h(x,Γs(x)) is an asymptotically

stable equilibrium of Eq. (4.154) uniformly in x. Following sections extend this formulation to the

three-time-scale model.

4.6 Composite Feedback-Top-Down Control Strategy for Un-

deractuated Singular Perturbed Systems

The Composite Feedback Top-Down (CF -TD) control formulation for the three-time-scale underactuated

model presented in section 4.3, Eqns. (4.27–4.29), follows a control strategy similar to that for the

TD control design, with the principal difference that the control signal in the ultra-fast subsystem, Eq.

(4.157), is divided into a slow and a fast control component, i.e. u2c = u2s + u2f , therefore rewriting the

model as

ẋ = f(x, y, z, u1), (4.155)

ε1ẏ = ĝ(x, y, z), (4.156)

ε1ε2ż = ĥ(x, y, z, u2c) = ĥ(x, y, z, u2s + u2f ). (4.157)

The control strategy for the three-time scale CF singular perturbation formulation consists on treating

the three different time scales as two distinct two-time-scale singular perturbed problems similarly as in

the TD control design, where following the logic flow in a control process, in which the fastest variables

are stabilized first, the TD control strategy uses a two stage process to stabilize the full ΣSFU system,

where following the same control logic as in the TD control strategy, the full ΣSFU system is stabilized

in a two stage process in which the fastest variables are stabilized first.

The first stage of the CF -TD subproblem applies sequentially first the stretched time scale τ1 = t/ε1

and right after the stretched time-scale τ2 = t/ε1ε2, thus obtaining the associated control law u2c . This

control law is formed by the sum of a slow (u2s) and a fast control signal (u2f ). The slow control signal

u2s is used to stabilize the ΣF -subsystem, and once stabilized, the fast control law u2s is used to stabilize

the ΣU -subsystem, or in the case that already stable, provide the desired response. The selected fast

control signal has to satisfy certain conditions in order to guarantee that the properties of the singularly

perturbed system remains unchanged, as it will be seen.

The second stage of the CF -TD, focuses on the Top sequence by using the first time-scale decomposition,

along with the obtained results in the first time-scale decomposition, and proceeds to stabilize the slow

ΣS-subsystem with the proper u1. Following sections describe in detail the general CF-TD control

design.

4.6.1 Control Design for u2: 1st Stage of the Composite Feedback Top-Down

Control Design

The first stage of the CF -TD considers the subsystem that results when considering the time-scale defined

by the Top condition to the original ΣSFU , Eqns. (4.155–4.157), where the reduced (slow) subsystem is
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defined by

ẋ = f(x, g(x, u2c), h(x, g(x), u2c), u1), (4.158)

and where the boundary layer (fast) ΣFU -subsystem for the TD subproblem is defined by

dy

dτ1
= ĝ(x, y, z), (4.159)

ε2
dz

dτ1
= ĥ(x, y, z, u2c), (4.160)

where g(x, u2c) and h(x, u2c) in the reduced order ΣS-subsystem, Eq. (4.158), represent the quasi-steady-

state equilibria of the boundary layer ΣFU -subsystem, Eqns. (4.159–4.160), which are obtained when

setting ε1 = 0,

and solving simultaneously resulting in

0 = ĥ(x, y, z, u2c) → z = h(x, y, u2c) = h(x, g(x), u2), (4.161)

l
0 = ĝ(x, y, z) = ĝ(x, y, h(x, y, u2c)) → y = g(x, u2), (4.162)

Note that on the boundary layer ΣFU -subsystem, the variable x is treated like a fixed parameter. It

is important to note the difference between this method and the one previously presented in section 4.3,

since the Composite Feedback control method seeks the control signal of the ΣU -subsystem as the sum of

the slow and fast control that is

u2c = u2s + u2f , (4.163)

where u2s is a feedback function of slow variables, x and y, given by

u2s = Γs(x, y), (4.164)

that stabilizes with the desired degree of stability the intermediate fast ΣF -subsystem, and u2f is a

feedback function of x, y, and z, given by

u2f = Γf (x, y, z), (4.165)

that stabilizes the ultra-fast ΣU -subsystem with the desired degree of stability, thus rewriting the ΣFU -

subsystem as

dy

dτ1
= ĝ(x, y, z), (4.166)

ε2
dz

dτ1
= ĥ(x, y, z,Γs(x, y) + Γf (x, y, z)), (4.167)

where x is treated like a fixed parameter, and τ1 = t/ε1. Recall that as noted in the general two-time-

scale Composite Feedback formulation, the fast feedback function Γf (x, y, z) is designed to satisfy two

crucial requirements. First, when the feedback control, Eq. (4.163), is applied to Eqns. (4.166–4.167),

the closed-loop system should remain a standard singularly perturbed system. This translates to that

the equilibrium of the boundary layer

0 = ĥ(x, y, z,Γs(x, y) + Γf (x, y, z)), (4.168)

should have a unique root given by z = h(x, y) in Bx×By×Bz. This requirement assures that the choice

of Γf will not destroy this property of the function ĥ in the open-loop system. The second requirement

on Γf (x, y, z) is that it be inactive for z = h(x, y, u2s), that is

Γf [x, y, h(x, y,Γs(x, y))] = 0. (4.169)
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The control strategy continues by identifying that the ΣFU -subsystem, Eqns. (4.166–4.167), can be

treated again like a two-time-scale singularly perturbed system by applying the Down time-scale decom-

position, τ2, where the new reduced order ΣF -subsystem is given by

dy

dτ1
= ĝ(x, y, h(x, y, u2s)) (4.170)

and the new boundary layer ΣU -subsystem is given by

dz

dτ2
= ĥ(x, y, z, u2c) = ĥ(x, y, z, u2s + u2f ), (4.171)

where x and y are treated like fix parameters. The function h(x, y, u2s) represents the quasi-steady-state

equilibrium of the boundary layer Eq. (4.171) when ε2 = 0, yielding

0 = ĥ(x, y, z, u2c) → z = h(x, y, u2c) = h(x, y, u2s + u2f ). (4.172)

Recall that according to Eq. (4.169), Eq. (4.173) reduces to

z = h(x, y, u2s) = h(x, y,Γs(x, y)). (4.173)

The substitution of the quasi-steady-state equilibrium, Eq. (4.173), back into the reduced order ΣF -

subsystem, Eq. (4.171), permits to obtain the associated slow control law u2s that stabilizes the ΣF -

subsystem. Once the design of the slow control u2s = Γs(x, y) has been conducted, the strategy shifts

towards selecting the fast control law u2f that permits to select the desired degree of stability of the

boundary layer ΣU -subsystem which is given by after substituting the slow control, u2s = Γs(x, y), back

into Eq. (4.171), resulting in

dz

dτ2
= ĥ(x, y, z, u2s + u2f ), (4.174)

where x and y are treated as fixed parameters, and with u2s defined by the previously obtained slow

control law that stabilizes the ΣF -subsystem. The fast control u2f = Γs(x, y, z) needs to satisfy the

requirement described in Eq. (4.169), which is now interpreted as a requirement on the feedback control

u2f = Γf (x, y, z) not to shift the equilibrium z = h(x, y,Γs(x, y)), Eq. (4.173), of the boundary layer

system, Eq. (4.174).

The design of u2f must also guarantee that z = h(x, y,Γs(x, y)) is an asymptotically stable equilibrium

of Eq. (4.174) uniformly in x and y. This concludes the first stage of the CF -TD control design, and the

results obtained are used to solve the second stage which is described in detail in the following section.

Figure 4.5 depicts the first stage of the CF -TD control design sequence.

4.6.2 Control Design for u1: 2nd Stage of the Composite Feedback Top-Down

Control Design

The second stage of theCF -TD subproblem focuses on the control design for u1 for the stabilization of the

ΣS-subsystem. For that purpose, recall first that after selecting the control signal u2(x, y, z) = u2s +u2f ,

the ΣFU -subsystem, Eqns. (4.159–4.160), can be rewritten as

dy

dτ1
= ĝ(x, y, z), (4.175)

ε2
dz

dτ1
= ĥ(x, y, z), (4.176)

Similarly as in the TD control design, in order to determine the equilibria that will define the ΣS-

subsystem, (4.158), the ΣFU -subsystem, Eqns. (4.175–4.176), can be decomposed by applying the
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stretched time scale τ2 resulting in the ΣF -subsystem given by

dy

dτ1
= ĝ(x, y, h(x, y)), (4.177)

and where the new boundary layer (fast) ΣU -subsystem is defined by

dz

dτ2
= ĥ(x, y, z), (4.178)

with their equilibria being now completely determined resulting in

0 = ĥ(x, y, z) → u2(x, y) → z = h(x, y), (4.179)

0 = ĝ(x, y, h(x, y)) → y = g(x), (4.180)

with this in mind, the reduced order (slow) ΣS-subsystem, Eq. (4.158) reduces to

ẋ = f(x, g(x), h(x, g(x)), u1). (4.181)

The control signal u1 is selected such that stabilizes the resulting ΣS-subsystem (4.181) to ensure that

guarantees the desired degree of stability.

4.6.3 Conclusions for the CF-Top-Down Control Design

This concludes the CF -TD control design. Following sections will extend this formulation to the helicopter

model, and in Appendix B to the simplified model. Again, and similarly as in the TD control design,

due to the underactuated structure of the system being controlled, a sequential application of the TD

has allowed to control the full ΣSFU system, by stabilizing separately first the ΣFU -subsystem, and once

stable, and using the results obtained in this first stabilization, proceed with the ΣS-subsystem, which

follows the logic flow of the dynamics of a singular perturbed time scale system, as described in Figure

3.9. For better understanding of the complete CF -TD, it can be refer the Figure in the TD control

strategy Figure 4.6.
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Figure 4.5: 1st Stage of the Composite Feedback -Top-Down control design sequence.
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Figure 4.6: Complete Composite Feedback -Top-Down control design sequence.
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4.7 Composite Feedback Top-Down Control Design for the

Helicopter Model

The CF-TD control strategy for the nonlinear underactuated three-time-scale singularly perturbed he-

licopter model, Eqns. (3.56–3.60), follows a similar strategy to the one used for the TD control design,

with the main difference that the control signal in the ultra-fast dynamics is divided into a slow and a fast

component, u2c = u2s +u2f , which permits to select the desired transient behavior for the ΣU -subsystem,

hence becoming the full ΣSFU system defined by

ẋ = a8x+ a10x
2 sin z1 + a9x

2 + a11 + u1, (4.182)

ε1ẏ1 = c1y2, (4.183)

ε1ẏ2 = x2(c2 + c3z1 −
√
c4 + c5z1) + a9y2 + a9y

2
2 + c6, (4.184)

ε1ε2ż1 = c7z2, (4.185)

ε1ε2ż2 = a9z1 + c8x
2 sin z1 + c9z2 + c10 + c11

(

u2s + u2f
)

. (4.186)

The CF-TD control strategy, similarly as the TD control strategy, consists on treating the three different

time scales as two-distinct two-time-scale singular perturbed problems. The CF-TD control strategy is

also divided in two stages, being each stage dedicated to design each of the two control signals.

In the first stage, the control strategy focuses on defining a control signal, u2s = Γs(x, y), that stabilizes

the intermediate fast ΣF -subsystem with the desired degree of stability, while u2f = Γf (x, y , z ) is a

feedback function of x, y, and z, that stabilizes the ultra-fast ΣU -subsystem with the desired degree of

stability. Once stabilized the ΣFU -subsystem, the control strategy shifts towards obtaining the control

signal u1 that stabilizes the ΣS-subsystem. The following subsections describe in detail each one of the

CF-TD control methods for the helicopter problem.

4.7.1 Control Design for u2: 1st Stage of the Composite Feedback Top-Down

Control Design for the Helicopter Model

The first stage of the CF -TD starts by decomposing the ΣSFU , Eqns. (4.182–4.186), into a two-time-scale

subsystem by applying the Top condition, resulting in the reduced order (slow) ΣS-subsystem

ẋ = a8x+ a10x
2 sin [h1c(x, u2c)] + a9x

2 + a11 + u1, (4.187)

and where the resulting boundary layer (fast) ΣFU -subsystem is given by

dy1
dτ1

= c1y2, (4.188)

dy2
dτ1

= x2(c2 + c3z1 −
√
c4 + c5z1) + a9y2 + a9y

2
2 + c6, (4.189)

ε2
dz1
dτ1

= c7z2, (4.190)

ε2
dz2
dτ1

= a9z1 + c8x
2 sin z1 + c9z2 + c10 + c11

(

u2s + u2f
)

. (4.191)

Similarly as in the TD control design, the proposed control strategy obtains the associated control

law u2c that stabilizes the ΣFU -subsystem by recognizing that ΣFU -subsystem, Eqns. (4.188–4.190), can

be treated again like a two-time-scale singular perturbation problem by applying the Down condition,

but prior to proceed with the time-scale decomposition, and similarly as conducted in the TD control

design section, a feedback transform is introduced to guarantee that the ΣU -subsystem is stable by
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selecting

v2s = c8x
2 sin z1 + c10 + c11u2s , (4.192)

thus rewriting Eqns. (4.190–4.191) such

ε2
dz1
dτ1

= c7z2, (4.193)

ε2
dz2
dτ1

= a9z1 + c9z2 + v2s . (4.194)

As demonstrated in the TD control design, with the appropriate selection on v2s , and taking into

account the inherit nature of the actuator dynamics, the ΣU -subsystem dynamics become stable, and

faster than the rest of the time scales and with open loop eigenvalues given by λ1 = −0.5772× 10−4 and

λ2 = −0.1697× 10−4.

Recall that the main difference between the CF-TD control strategy presented in this section, and the

TD control strategy previously presented in section 4.3, is the liberty of modifying the resulting transient

response of the ΣU -subsystem after obtaining the slow control signal (u2s), therefore allowing to modify

both λ1 and λ2 to a desired transient response as it will be shown in the second part of the CF -TD control

design. Using a similar control strategy as the one employed in the TD control design in section 4.4, and

recalling that the requirement on Γf (x, y , z ) is that it be inactive for z = h(x, u2s), that is

Γf (x, y ,h(x, y ,Γs(x, y))) = 0, (4.195)

the control law that stabilizes the vertical displacement of the helicopter is therefore defined as

u2s = Kb

(

1 +
√

1− 4c12(Ka − vs(x, y))
)2

+Kc +Kdx
2 sin z1

= Kb

(

1 +
√

s3vs(x, y)
)2

+Kc +Kdx
2 sin z1, (4.196)

with

vs(x, y) = −
a9y

2
2 +

(

a9 + b̃y2

)

y2 + b̃y1
(y1 − y∗1) + c6

x2
, (4.197)

and Ka, Kb, Kc, Kd, and s3 being defined in Eqns. (4.84–4.88). Recall that the control law obtained in

the TD control design, (4.82), is equivalent as the slow component control law u2s , therefore, being also

equivalent the closed loop ΣU -subsystem from the TD control design, and dz/dτ2 = ĥ(x, y , z ,Γs(x, u2c)),

this resulting in equivalent quasi-steady-state equilibria, given by

z = hc(x, y) =

[

h1c(x, y),

h2c(x, y),

]

, (4.198)

with

h1c(x, y) = z1 = s2

[

(

1 +
√

s3vs(x, y)
)2

− 1

]

(4.199)

h2c(x, y) = z2 = 0, (4.200)

and with s2 defined in Eq. (4.103). Once the design of the slow control u2s = Γs(x, y), that stabilizes

the ΣF -subsystem has been selected, the strategy shifts towards selecting the desired degree of stability

of the boundary layer ΣU -subsystem by selecting the appropriate fast control signal u2f = Γf (x, y , z ).

The selection of u2f needs to be done taken into consideration that has to fulfill the requirement that

assures that the choice of Γf will not destroy the property that the boundary layer ΣU -subsystem will

only have a unique root z = h(x, y) in Bx×By ×Bz of the function ĥ in the open-loop system, and that
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Γf (x, y , z ) it be inactive for z = h(x, y ,Γs(x, y)), that is

dz1
dτ2

= c7z2, (4.201)

dz2
dτ2

= a9z1 + c8x
2 sin z1 + c9z2 + c10 + c11(u2s + u2f )

= a9z1 + c8x
2 sin z1 + c9z2 + c10 + c11u2s

= a9z1 + c9z2 + J2

[

(

1 +
√

s3vs(x, y)
)2

− 1

]

, (4.202)

which reduces to the closed loop of the TD control design, and with with h(x, y ,Γs(x, y)) given in Eq.

(4.198).

The requirement (4.195) is now interpreted as a requirement on the feedback control u2f = Γf (x, y , z )

not to shift the equilibrium z = h(x, y ,Γs(x, y)), Eq. (4.198), of the boundary layer system (4.201–

4.202), such that the design of u2f must guarantee that z = h(x, y,Γs(x, y)) is an asymptotically stable

equilibrium of Eqns. (4.201–4.202) uniformly in x and y . Therefore, in order to obtain the fast control

law, u2f , let first substitute the control law u2s , Eq. (4.196), into the ΣU -subsystems resulting in

dz1
dτ2

= c7z2 (4.203)

dz2
dτ2

= a9z1 + c8x
2 sin z1 + c9z2 + c10 + c11

(

u2s + u2f
)

= a9z1 + c9z2 + J2

[

(

1 +
√

s3vs(x, y)
)2

− 1

]

+ c11u2f . (4.204)

Let select a desired target dynamics for the boundary layer of the form

dz1
dτ2

= c7z2, (4.205)

dz2
dτ2

= −b̃z1(z1 − h1c(x, y))− b̃z2z2, (4.206)

where b̃z1 , and b̃z2 are control design parameters that determine the desired time response for the actuator

dynamics of the stretched time-scale τ2 = t/ε1ε2 and selected as

b̃z1 = ε1ε2bz1 (4.207)

b̃z2 = ε1ε2bz2 , (4.208)

with

bz1 = ω2
nz∗

, (4.209)

bz2 = 2ωnz∗
ζz∗ , (4.210)

where ωnz∗
represents the selected natural frequency, and ζz∗ the selected damping ratio of the desired

transient response of the boundary layer ΣU -subsystem. By selecting the desired target dynamics for the

boundary layer on the form above described in Eqns. (4.205–4.206), the requirement that the feedback

control u2f = Γf (x, y , z ) not to shift the equilibrium z = h(x, y ,Γs(x, y)) of the boundary layer system

is satisfied.

The design of u2f must also guarantee that z = h(x, y ,Γs(x, y)) is an asymptotically stable equilibrium

of Eqns. (4.203–4.204) uniformly in x and y . The control problem can be solved if a control signal u2f is

chosen such that Eqns. (4.203–4.204) behave like the target system defined in Eqns. (4.205–4.206). The

control signal u2f is therefore chosen to be of the form

u2f = − 1

c11

(

a9z1 + c8x
2 sin z1 + c9z2 + c10 + c11u2s + b̃z1(z1 − h1c(x, y)) + b̃z2z2

)

, (4.211)
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where u2s is defined in Eq. (4.196). The fast u2f control law can be rewritten by expanding the slow

control signal u2s , and recalling the definition of z1 = h1c(x, y , u2s) in Eq. (4.101), thus resulting in

u2f = − 1

c11

(

a9z1 + c8x
2 sin z1 + c9z2 + c10 + c11u2s

)

− 1

c11

(

b̃z1(z1 − h1c(x, y)) + b̃z2z2

)

= − 1

c11

(

b̃z1(z1 − h1c(x, y)) + b̃z2z2

)

− 1

c11
(a9 (z1 − h1c(x, y)) + c9z2)

= − 1

c11

[(

b̃z1 + a9

)

(z1 − h1c(x, y)) +
(

b̃z2 + c9

)

z2

]

, (4.212)

where it can be observed that the fast control law u2f satisfies both requirements. The CF -TD control

signal u2c is therefore defined as the sum of the slow and the fast control signals, resulting in

u2c(x, y, z1, y
∗) = u2s + u2f = Kb

(

1 +
√

s3v(x, y )
)2

+Kc +Kdx
2 sin z1

− 1

c11

[(

b̃z1 + a9

)

(z1 − h1c(x, y)) +
(

b̃z2 + c9

)

z2

]

. (4.213)

The following section continues with the CF -TD control methodology for the helicopter model by

conducting the CF -BU methodology that stabilizes the ΣS-subsystem.

4.7.2 Control Design for u1: 2nd Stage of the Composite Feedback Top-Down

Control Design for the Helicopter Model

The second stage of the CF-TD control design focuses on the selection of u1 such that stabilizes the

ΣS-subsystem. For that purpose, recall first that, after selecting the control signal u2c(x, y, z1, y
∗), Eq.

(4.213), the ΣFU -subsystem, Eqns. (4.188–4.190) can be rewritten as

dy1
dτ1

= c1y2, (4.214)

dy2
dτ1

= x2(c2 + c3z1 −
√
c4 + c5z1) + a9y2 + a9y

2
2 + c6, (4.215)

ε2
dz1
dτ1

= c7z2, (4.216)

ε2
dz2
dτ1

= a9z1 + c9z2 + J2

[

(

1 +
√

s3v(x, y )
)2

− 1

]

−
(

b̃z1 + a9

)

(z1 − h1c(x, y)) +
(

b̃z2 + c9

)

z2, (4.217)

where Eq. (4.217) can be rewritten by considering the definition of z1 = h1c(x, y , u2s), Eq. (4.199),

resulting in

ε2
dz2
dτ1

= a9z1 + c9z2 + J2

[

(

1 +
√

s3v(x, y )
)2

− 1

]

−
(

b̃z1 + a9

)

(z1 − h1c(x, y)) +
(

b̃z2 + c9

)

z2

= a9

(

z1 − s2

[

(

1 +
√

s3v(x, y)
)2

− 1

])

+ c9z2

−
(

b̃z1 + a9

)

(z1 − h1c(x, y)) +
(

b̃z2 + c9

)

z2

= a9 (z1 − h1c(x, y)) + c9z2 −
(

b̃z1 + a9

)

(z1 − h1c(x, y)) +
(

b̃z2 + c9

)

z2

= −b̃z1 (z1 − h1c(x, y)) − b̃z2z2, (4.218)

therefore rewritting the ΣFU -subsystem as

dy1
dτ1

= c1y2, (4.219)
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dy2
dτ1

= x2(c2 + c3z1 −
√
c4 + c5z1) + a9y2 + a9y

2
2 + c6, (4.220)

ε2
dz1
dτ1

= c7z2, (4.221)

ε2
dz2
dτ1

= −b̃z1 (z1 − h1c(x, y)) − b̃z2z2. (4.222)

In order to determine the equilibria that will define the ΣS-subsystem, Eq. (4.187), the ΣFU -subsystem,

Eqns. (4.214–4.217), can be decomposed into a two.time-scale system by applying the stretched time scale

τ2 resulting in the ΣF -subsystem given by

dy1
dτ1

= c1y2, (4.223)

dy2
dτ1

= x2(c2 + c3h1c(x, y)−
√

c4 + c5h1c(x, y) + a9y2 + a9y
2
2 + c6, (4.224)

and where the new boundary layer (fast) ΣU -subsystem is defined by

dz1
dτ2

= c7z2, (4.225)

dz2
dτ2

= −b̃z1 (z1 − h1c(x, y))− b̃z2z2. (4.226)

where the quasi-steady-state equilibrium of the ΣU -subsystem is given when ε2 = 0, that is

0 = ĥ(x, y , z ) → z = hc(x, y), (4.227)

where

z = hc(x, y) =

[

h1c(x, y)

h2c(x, y)

]

, (4.228)

with

h1c = z1 = h1(x, y) = s2

[

(

1 +
√

s3vs(x, y)
)2

− 1

]

, (4.229)

h2c = z2 = h2c(x, y) = 0, (4.230)

where recall that satisfies the requirement for the design of the fast control law u2f that the closed-

loop system should remain a standard singularly perturbed system with a unique equilibrium given by

z = h(x, y), that is h(x, y) ≡ hc(x, y), therefore being equivalent to the quasi-steady-state resulting

from the first stage of the CF-TD control strategy, Eqns. (4.199–4.200).

Recall that when substituting the quasi-steady-state equilibria of the ΣU -subsystem, Eqns. (4.229–

4.230) into Eqns. (4.225–4.226), they degenerate into the selected ΣF target dynamics, Eqns. (4.73–4.74).

Therefore, setting the perturbation parameter ε1 = 0, degenerate into the equation that determine the

roots of the fast manifold, defined as

0 = ĝ(x, y ,h(x, y)) → y = g(x) =

[

g1(x)

g2(x)

]

, (4.231)

that is

0 = c1y2 → y2 = g2(x), (4.232)

0 = −b̃y1
(y1 − y∗1)− b̃y2

x2 → y1 = g1(x), (4.233)

therefore yielding the equilibria for the vertical motion of the helicopter given by

g1(x) = y1 = y∗, (4.234)

g2(x) = y2 = 0, (4.235)
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where Eq. (4.234) represents that the equilibrium altitude position is the desired altitude, while Eq.

(4.235), provides that, as expected, the equilibrium vertical position must be zero in order to achieve

a vertical equilibrium point. Similarly as in the TD control design, the control law u1 that stabilizes

the slow ΣS-subsystem is obtained by substituting the ΣF and ΣU -subsystem equilibria, Eqns. (4.234–

4.235), and (4.229–4.230), respectively, into Eq. (4.187), yielding the reduced order ΣS-subsystem given

by

ẋ = a8x+ a10x
2 sin h1SS(x,g(x)) + a9x

2 + a11 + u1, (4.236)

where h1SS(x,g(x)) represents the quasi-steady-state equilibrium of the collective pitch angle, Eq. (4.229),

when substituting the quasi-steady-state equilibria for the vertical displacement dynamics, Eqns (4.234–

4.235), resulting in

h1SS(x,g(x)) = h1(x, y)|y=g(x) = s2

[

(

1 +
√

s3vSS(x,g(x))
)2

− 1

]

, (4.237)

with vSS(x,g(x)) being the result of substituting the ΣF equilibria, Eqns. (4.234) and (4.235), into Eq.

(4.83), yielding

vSS(x,g(x)) = v(x, y)|y=g(x) = − c6
x2
. (4.238)

Similarly as in the TD control design, the control law is selected by defining a target system of the

form

ẋ = −bx(x − x∗), (4.239)

where bx is a control design parameter that defines the desired transient response of the collective pitch

angular velocity of the blades. The associated control law that stabilizes the ΣS-subsystem is therefore

selected as

u1(x, x
∗) = −a8x− a10x

2 sin (h1SS(x,g(x))) − a9x
2 − a11 − bx(x− x∗)

= −a8x− a10x
2 sin (h1SS(x)) − a9x

2 − a11 − bx(x− x∗). (4.240)

This concludes the CF -TD control design.

4.7.3 Closed-Loop Composite Feedback Dynamics

After substituting the selected control laws, Eqns. (4.213) and (4.240), into the original nonlinear equa-

tions of motion, Eqns. (2.339–2.343), the closed loop system is given by

ẋ = a10x
2 (sin z1 − sin h1SS(x)) − bx (x− x∗) , (4.241)

ẏ1 = y2, (4.242)

ẏ2 = x2
(

a1 + a2z1 −
√
a3 + a4z1

)

+ a5y2 + a6y
2
2 + a7, (4.243)

ż1 = z2, (4.244)

ż2 = −b̃z1 (z1 − h1c(x, y))− b̃z2z2, (4.245)

where

h1c(x, y) = s2

[

(

1 +
√

s3vs(x, y)
)2

− 1

]

, (4.246)
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vs(x, y) = −a9y
2
2 + (a9 + b̃y2

)y2 + b̃y1
(y1 − y∗1) + c6

x2
, (4.247)

h1SS(x,g(x)) = s2

[

(

1 +
√

s3vSS(x,g(x))
)2

− 1

]

, (4.248)

vSS(x̃, G(x̃)) = − c6
(x̃+ x∗)2

. (4.249)

The transient response of the ultra-fast dynamics is given by a second order time response of the

form

z̈1 = −ω2
nz∗

(z1 − h1c(x, y))− 2ωnz∗
ζz∗ ż1, (4.250)

with ωnz∗
being the desired natural frequency of the closed-loop ultra-fast system, and ζz∗ being the

desired damping ratio of the ultra-fast dynamics, which can be defined as

ωnz∗
=

√

bz1 , (4.251)

ζz =
bz2

2ωnz∗

=
bz2

2
√

bz1
, (4.252)

which differ from those obtained in the TD control strategy, Eqns. (4.129–4.130), since the CF -TD allows

to select the desired transient response. The equilibria of the closed-loop system for CF -TD is equivalent

to those obtained with the TD control strategy, Eqns. (4.124–4.125) for the ultra-fast collective pitch

dynamics, Eqns. (4.133–4.134) for the fast vertical displacement dynamics, and Eq. (4.140) for the

slow angular velocity of the blades dynamics, with the only difference between both control strategies,

being the transient response of the ultra-fast-dynamics, Eqns (4.251–4.252) vs. Eqns (4.129–4.130). The

asymptotic stability analysis of the resulting closed-loop system will be conducted in future sections.

Simulations are conducted to test the proposed control laws on the helicopter model, and significate

results are presented in the following section.

4.8 Numerical Results

This section describes the sensitivity analysis conducted for the proposed control laws. The simulations

are conducted using a fourth order Runge-Kutta fixed step integration method with an integration step of

0.01 seconds, and written in theMATLAB interface r. The study is performed for the helicopter model,

by conducting a sensitivity study for different conditions. For completeness, the conducted analysis of

the closed-loop systems is only presented for the helicopter problem and organized as

• Results for the TD control design.

• Results for the Composite Feedback TD control design.

Similar as the performance analysis of the thrust coefficient models conducted in Appendix A, in order

to evaluate the performance of the TD control laws, and the CF TD control design for the helicopter

model, a sensibility analysis is conducted by performing the same four distinctive maneuvers that include

all possible helicopter maneuvers

1. Ascent flight with increasing engine RPM.

2. Ascent flight with decreasing engine RPM.

3. Descent flight with increasing engine RPM.

4. Descent flight with decreasing engine RPM.

where once again, for completeness of the thesis, despite the extensive sensitivity analysis conducted, only

four significate cases are presented, which correspond to a simulation that includes all four distinctive



164 CHAPTER 4. CONTROL STRATEGY

maneuvers in one simulation, and that are defined by the bellow conditions

1. y1(0) = 1.85 m, y∗1 = 0.5 m, x(0) = 120 rad/sec, and x∗ = 140 rad/sec.

2. y1(0) = 0.5 m, y∗1 = 1 m, x(0) = 140 rad/sec, and x∗ = 120 rad/sec.

3. y1(0) = 1 m, y∗1 = 1.5 m, x(0) = 120 rad/sec, and x∗ = 170 rad/sec.

4. y1(0) = 1.5 m, y∗1 = 0.75 m, x(0) = 170 rad/sec, and x∗ = 140 rad/sec.

Needs to be noted that starting with the second maneuver, it is assumed that the helicopter has reached

the desired target altitude and angular rotation of the blades, implying that the initial conditions for the

second, third, and fourth maneuver, are the selected as desired target conditions of the previous maneuvers

respectively. For the case in which the helicopter has not reached the assigned target condition, the new

maneuver will start at whenever condition the helicopter is at the moment of the change in set point.

Each maneuver is lapsed with an interval of twenty seconds, and after that time, it is assigned the new

set points independently if the helicopter has reached or not the desired set point.

Figures 4.7 and 4.11 show the time evolution of the vertical position (y1), axial velocity (y2), and vertical

acceleration (ay) of the helicopter, for both the TD and the CF-TD control strategies respectively. Figures

4.8 and 4.12 show the time evolution of the remainder states, the angular velocity of the blades (x), the

collective pitch angle (z1), and the collective pitch rate of the blades (z2) for both the TD and the CF -TD

control strategies respectively. Figures 4.9 and 4.13 show the time evolution of the control signals u1 and

u2 for both the TD and the CF-TD control strategies respectively. And finally, Figures 4.10 and 4.14

show the time evolution of significate aerodynamic parameters, the trust coefficient (CT ), the normalized

vertical speed (V/Vi9 ), and the climb inflow (λc), for both the TD and the CF -TD control strategies

respectively. All simulations demonstrate that both control strategies are able to drive the helicopter

model to de desired set points with reasonable time response.
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Figure 4.7: States history for the TD control strategy.
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Figure 4.8: States history for the TD control strategy.
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Figure 4.9: Control signals history for the TD control strategy.
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Figure 4.10: Significate aerodynamic parameters history for the TD control strategy.
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Figure 4.11: States history for the CF-TD control strategy.
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Figure 4.12: States history for the CF-TD control strategy.
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Figure 4.13: Control signals history for the CF -TD control strategy.
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Figure 4.14: Significate aerodynamic parameters history for the CF -TD control strategy.
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4.9 Conclusions

The two presented control strategies, the Top-Down Control Design (TD), and the Composite Feedback

Top-Down Control Design (CF-TD), take advantage of the TD time-scale methodologies presented in

chapter 3.

Both control strategies tackle the underactuated problem here studied by using a two-stage sequential

strategy of the TD methodology, which results in two distinctive degenerated two-time-scale subproblems

considerably simplified, that permits to easily obtain the appropriate control laws that stabilize each of

the subsystems, the ΣFU first, and the ΣS secondly.

The first stage in the TD control strategy uses a sequential analysis to stabilize first the intermediate

ΣF -subsystem with the desired degree of stability, through the means of the control signal from the ΣU -

subsystem, and once has been stabilized, and assuming the ultra-fast ΣU -subsystem becomes inherently

stable with the control signal selected to stabilize the ΣF -subsystem, then proceeds to stabilize the slowest

ΣS-subsystem with also a desired degree of stability by using the TD philosophy.

The CF-TD control strategy uses a similar sequential application of the TD time-scale analysis, with

the particularity that this methodology allows the user to define a prescribed degree of desired stability

for the ultra-fast ΣU -subsystem, therefore not being necessary to assume that the closed-loop ultra-fast

subsystem has inherent stable properties. Following chapter will address the stability properties of the

resulting closed-loop systems.
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Chapter 5

Stability Analysis for the General

Three-Time-Scale Singularly

Perturbed System

5.1 Introduction

The three-time-scale helicopter problem here discussed, was previously identified as a three time-scale

singular perturbation problem, chapter 3, and the appropriate control laws were designed using a sequen-

tial combination of two different time-scale problems using the proposed TD methodology, as seen in

chapter 4. This chapter analyzes the properties that guarantee the asymptotic stability of the resulting

autonomous systems for sufficiently small singular perturbation parameters, ε1 and ε2.

This is obtained by considering composite stability methods of large scale dynamical systems

(Michel and Miller, 1977; Araki, 1978; Kokotović et al., 1986; Kokotović et al., 1987), which consider

that the associated three-time-scale subsystems ΣS , ΣF , and ΣU are each asymptotically stable, which

is satisfied by the control design strategy described in chapter 4. This chapter derives the additional

requirements that prove the asymptotic stability properties for the three-time-scale systems here studied

by extending the well-known standard asymptotic stability requirements for the two-time-scale singular

perturbation problems (Kokotović et al., 1987; Kokotović et al., 1986) to the three-time-scale problems

here discussed.

The selected strategy, using a similar step-by-step process to the control strategy, obtains the associ-

ated Lyapunov functions for each of the subsystems based on the natural desired closed loop response

of each of the resulting subsystem. This methodology, much simpler that the one employed in the exist-

ing multiparameter time-scale analysis (Abed, 1985d; Abed, 1985e; Abed, 1985b; Kokotović et al., 1987;

Kokotović et al., 1986), permits to have Lyapunov function candidates for each of the defined subsystems

a priori of starting the stability analysis, and with a simple structure, which differs from the alternative

procedures, which derive the Lyapunov functions for the reduced order and boundary layer subsystems

according to the fulfillment of the growth requirements that guarantee the asymptotic stability properties

of the full system.

This translates to the fact that depending in the complexity of the growth requirements that need to

satisfy the reduced order and boundary layer subsystems, the designer has to find appropriate Lyapunov

functions for each of the subsystems, task that when encountering highly nonlinear problems like the

175
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one treated in this thesis, becomes an arduous task, which adds to the complexity of selecting proper

comparison functions. The asymptotic stability analysis here presented does not relay on obtaining

complex Lyapunov functions, since the Lyapunov structure is fixed a priori, reducing the fulfillment of

the growth requirements among the different time-scale subsystems to obtain the appropriate comparison

functions and demonstrating the growth requirements among the different subsystems.

The contents of this chapter include the general formulation for the asymptotic stability analysis of

the two-time-scale singular perturbation problem, which is described in section 5.2; a description of the

different three-time scale autonomous systems to be analyzed, is presented in section 5.3; the method

proposed to derive the associated Lyapunov function is presented in section 5.4; and finally, the extension

of the stability analysis to the general three-time-scale singular perturbation problem is presented in

section 5.5, which is also extended to a more general N th-order singular perturbed time-scale system in

section 5.6.

For conciseness, this chapter only focusses on the asymptotic stability analysis of the general three-

time-scale singularly perturbed autonomous system, and is left for Chapter 6, the asymptotic stability

analysis for the three-time-scale helicopter model, while the stability analysis for the three-time-scale

simplified model is left as a reference in Appendix C.

Also, for simplicity, and completeness of the thesis, the notation that indicates the different time-scale

closed-loop subsystems is defined similarly as in the control design sections, that is, as a function of the

form Σ(·), where the subindex denotes the different subsystems. Note also that the state variables are

now defined with the symbol �̃, which denotes that the stability analysis will be conducted using their

error dynamics formulation, as it will be defined in section 5.3.

5.2 Asymptotic Stability Analysis of a Two-Time-Scale Singu-

larly Perturbed Autonomous System

The asymptotic stability analysis formulation for the general two-time-scale singular perturbation system

outlined in this section, follows the well know theory of asymptotic stability analysis for two-time-scale

singular perturbation problems (Kokotović et al., 1987; Kokotović et al., 1986). The general two-time-

scale asymptotic stability analysis formulation serves as the basis for the proposed stability analysis for

three-time-scale models. Although the two-time-scale formulation is a well established formulation, the

author believes that by dedicating a section to recall the main important points of such theory, it will

be easier for the reader to understand the extension to the three-time-scale asymptotic analysis that is

conducted in the following sections. In order to start the general two-time-scale asymptotic formulation,

let first recall the nonlinear autonomous two-time-scale singular perturbed system defined previously in

Eqns. (3.1–3.2) and given by

ẋ = f(x, z), x ∈ Rn, (5.1)

εż = g(x, z), z ∈ Rm, (5.2)

which has an isolated equilibrium at the origin (x = 0, z = 0). Let also Bx ⊂ Rn and Bz ⊂ Rm denote

closed sets. It is assumed throughout the formulation that f and g are smooth to ensure that for specified

initial conditions, system (5.1-5.2) has a unique solution. The stability of the equilibrium is investigated

by examining the reduced (slow) system given by

ẋ = f(x, h(x)), (5.3)
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where z = h(x) is an associated root of 0 = g(x, z), and the boundary-layer (fast) system, which is given

by

dz

dτ
= g(x, z(τ)), τ =

t

ε
, (5.4)

where x is treated as a fixed parameter, and ε is the parasitic constant that defines the stretched time

scale of the fast subsystem. The asymptotic stability properties of the singularly perturbed system can

be defined by considering that if x = 0 is an asymptotically stable equilibrium of the reduced system, Eq.

(5.3), z = h(x) is an asymptotically stable equilibrium of the boundary layer system, Eq. (5.4), uniformly

in x, that is, the ε− δ definition of Lyapunov stability and convergence such that z → h(x) are uniform

in x (Vidyasagar, 2002), and if f(·, ·) and g(·, ·) satisfy certain growth conditions, then the origin is an

asymptotically stable equilibrium of the singularly perturbed system defined by Eqns. (5.1–5.2).

These asymptotic stability requisites on the reduced and boundary-layer systems are expressed by

requiring the existence of Lyapunov functions for both, the slow subsystem, and the fast subsystem,

Eqns. (5.3) and (5.4), respectively, that satisfy certain growth conditions. The growth requirements of

f and g take the form of inequalities that must be satisfied by the proposed Lyapunov functions. The

following section describes in detail these growth requirement for the general two-time-scale singularly

perturbed system.

5.2.1 Growth Requirements for the General Two-Time-Scale Singular

Perturbation System

Prior to start defining the growth requirements, it is imperative to prove that the origin is a unique isolated

equilibrium, which is presented in Assumption 5.2.1. The growth requirements of both the reduced and

boundary layer system, separately, are addressed in Assumptions 5.2.2 and 5.2.3 respectively, while

the growth requirements that combine both reduced and boundary layer system, called interconnection

conditions, are defined in Assumptions 5.2.4 and 5.2.5, respectively. These assumptions are all described

in detail bellow in their general two-time-scale formulation, which will be the basis for the extension to

the three-time-scale formulation addressed in section 5.5.

Assumption 5.2.1 Isolated Equilibrium at the Origin

The origin (x = 0, z = 0) is a unique and isolated equilibrium of Eqns. (5.1-5.2), i.e.

0 = f(0, 0), and 0 = g(0, 0), (5.5)

moreover, z = h(x) is the unique root of the form given by

0 = g(x, z, 0), (5.6)

in Bx ×Bz, i.e.

0 = g(x, h(x)), (5.7)

and there exists a class κ function p(·) such that

‖ h(x) ‖≤ p (‖ x ‖) . (5.8)

To construct a Lyapunov function candidate for the singular perturbed system, Eqns. (5.1-5.2), let

consider first each of the two systems separately. Let first consider the system in Eq. (5.1) by adding

and subtracting f(x, h(x)) to the right-hand side of Eq. (5.1) yielding

ẋ = f(x, h(x)) + f(x, z)− f(x, h(x)), (5.9)
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where the term f(x, z)− f(x, h(x)) can be viewed as a perturbation of the reduced order system is given

by

ẋ = f(x, h(x)). (5.10)

It is therefore natural to first satisfy the growth requirements for (5.10) and then consider the effect

of the perturbation term f(x, z)− f(x, h(x)). Therefore let proceed to define the reduced order growth

condition.

Assumption 5.2.2 Reduced Order System Condition

There exists a positive-definite an decreasing Lyapunov function candidate V (x) such that for all x ∈ Bx,

satisfying that

0 < q1 (‖ x ‖) ≤ V (x) ≤ q2 (‖ x ‖) , (5.11)

for some class κ function q1(·) and q2(·) that satisfies the following inequality

∂V

∂x
f(x, h(x)) ≤ −α1ψ

2(x), (5.12)

where ψ(·) is a scalar function of vector arguments which vanishes only when its argument are zero, and

satisfying that x = 0 is a stable equilibrium of the reduced order system. Condition (5.12) guarantees that

x = 0 is an asymptotically stable equilibrium of reduced order system (5.10).

Assumption 5.2.3 Boundary-Layer System Condition

There exists a positive-definite an decreasing Lyapunov function candidate W (x, z) such that for all

(x, z) ∈ Bx ×Bz, satisfying

0 < q3 (‖ z − h(x) ‖) ≤W (x, z) ≤ q4 (‖ z − h(x) ‖) , (5.13)

for some class κ function q3(·) and q4(·), that satisfies

W (x, z) > 0, ∀z 6= h(x) and W (x, h(x)) = 0, (5.14)

and results in the following inequality

∂W

∂z
g(x, z) ≤ −α2φ

2(z − h(x)), α2 > 0 (5.15)

where W (x, z) is a Lyapunov function of the boundary layer system (5.4), in which x is treated as a fixed

parameter, and φ(·) is a scalar function of vector arguments which vanishes only when its argument are

zero, and satisfying that z − h(x) is a stable equilibrium of the boundary layer system.

Both ψ(·) and φ(·) are scalar functions of vector arguments that vanish only when their arguments are

zero, i.e., ψ(x) = 0 if and only if x = 0. Both ψ(·) and φ(·), will be referred as comparison functions.

Assumption 5.2.4 First Interconnection Condition

V (x) and W (x, z) must satisfy the so called interconnection conditions. The first interconnection con-

dition is obtained by computing the time derivative of V (x) along the solution of Eq. (5.9), resulting

in

V̇ =
∂V

∂x
f(x, h(x)) +

∂V

∂x
[f(x, z)− f(x, h(x))]

≤ −α1φ
2(x) +

∂V

∂x
[f(x, z)− f(x, h(x))] , (5.16)

where assuming that

∂V

∂x
[f(x, z)− f(x, h(x))] ≤ β1φ(x)φ(z − h(x)). (5.17)
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so that

V̇ ≤ −α1φ
2(x) + β1φ(x)φ(z − h(x)). (5.18)

Inequality (5.17) determines the allowed growth of f in z, and, in typical problems, verifying Assumption

5.2.4 reduces to verifying the following inequality

‖f(x, z)− f(x, h(x))‖ ≤ φ(x)φ(z − h(x)), (5.19)

which implies that the rate of growth of f cannot be faster than the rate of growth of the comparison

function φ(·).

Assumption 5.2.5 Second Interconnection Condition

The second interconnection condition is defined by

∂W

∂x
f(x, z) ≤ γφ2(z − h(x)) + β2φ(x)φ(z − h(x)), (5.20)

where ψ(·) and φ(·) are both scalar functions previously derived when satisfying Assumptions 5.2.2 and

5.2.3.

If assumptions 5.2.1, 5.2.2, 5.2.3, 5.2.4, and 5.2.5 are all satisfied, then the growth requirements of

f and g are satisfied, and with the Lyapunov functions V (x) and W (x, z) obtained, a new Lyapunov

function candidate ν(x, z) is considered and defined by the weighted sum of V (x) and W (x, z), and given

by

ν(x, z) = (1 − d)V (x) + dW (x, z), (5.21)

for 0 < d < 1. The newly defined function ν(x, z) becomes the Lyapunov function candidate for the

singular perturbed system (5.1-5.2). To explore the freedom when choosing the weights, let take d as

an unspecified parameter (0, 1). From the properties of V (x) and W (x, z) and inequality (5.8) it follows

that ν(x, z) is positive-definite and decreasing. Computing the derivative of ν(x, z) along the trajectories

of Eqns. (5.1) and (5.2), results in

ν̇ = (1− d)
∂V

∂x
f(x, z) +

d

ε

∂W

∂z
g(x, z) + d

∂W

∂x
f(x, z)

= (1− d)
∂V

∂x
f(x, h(x)) + (1− d)

∂V

∂x
[f(x, z)− f(x, h(x))] (5.22)

+
d

ε

∂W

∂z
g(x, z) + d

∂W

∂x
f(x, z).

Using inequalities (5.12), (5.15), (5.17), and (5.20), permits to express Eq. (5.22) as

ν̇ ≤ −(1− d)α1ψ
2(x) + (1− d)β1ψ(x)φ(z − h(x))

− d

ε
α2φ

2(z − h(x)) + dγφ2(z − h(x)) + dβ2ψ(x)φ(z − h(x))

= −
[

ψ(x)

φ(z − h(x))

]T




(1− d)α1 − 1
2 (1 − d)β1 − 1

2dβ2

− 1
2 (1− d)β1 − 1

2dβ2 d
(α2

ε
− γ
)





×
[

ψ(x)

φ(z − h(x))

]

. (5.23)

The right-hand side of inequality Eq. (5.23) is a quadratic form in the comparison functions ψ(x) and

φ(z − h(x)), where the quadratic form is negative-definite when

d(1 − d)α1

(α2

ε
− γ
)

>
1

4
[(1− d)β1 + dβ2]

2
, (5.24)
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which is equivalent to

1

ε
>

1

α1α2

[

α1γ +
1

4(1− d)d
[(1 − d)β1 + dβ2]

2

]

. (5.25)

Inequality (5.25) shows that for any choice of d, the corresponding ν(x, z) is a Lyapunov function for the

singularly perturbed system (5.1–5.2) for all ε satisfying Eq. (5.25). Inequality (5.25) can be rewritten

as

ε <
α1α2

α1γ +
1

4(1− d)d
[(1 − d)β1 + dβ2]

2
≡ εd. (5.26)

The dependance on the right-hand side of Eq. (5.26) on the unspecified parameter d is sketched in

Figure 5.1. It can be easily checked that the maximum value of εd occurs at

d∗ =
β1

β1 + β2
, (5.27)

being therefore

ε∗ =
α1α2

α1γ + β1β2
. (5.28)

Therefore it can be inferred that the equilibrium point of the singularly perturbed original system

(5.1–5.2) is asymptotically stable for all ε < ε∗. The number ε∗ is the best upper bound on ε that

can be provided by the above presented stability analysis. The asymptotic stability analysis presented

(Kokotović et al., 1986; Kokotović et al., 1987) can be summarizes in Theorem 5.2.1.

Theorem 5.2.1 : Let inequalities (5.12), (5.15), (5.17), and (5.20) be satisfied. Then the origin is an

asymptotically stable equilibrium of the singularly perturbed system (5.1–5.2) for all ε ∈ (0, ε∗), where ε∗

is given by (5.28). Moreover, for every number d ∈ (0, 1)

ν(x, z) = (1 − d1)V (x) + d1W (x, y), (5.29)

is a Lyapunov function for all ε(0, εd), where εd ≤ ε∗ is given by (5.26).

Theorem 5.2.1 can be summarized by understanding that if x = 0 is an asymptotically stable equilib-

rium of the reduced system, Eq. (5.3), z = h(x) is an asymptotically stable equilibrium of the boundary-

layer system, Eq. (5.4), uniformly in x, that is, the ε − δ definition of Lyapunov stability and the

convergence z → h(x) are uniform in x (Vidyasagar, 2002), and if f(·, ·) and g(·, ·) satisfy the growth

conditions on the reduced and boundary-layer systems, then the origin is an asymptotically stable equilib-

rium of the singularly perturbed system, Eqns. (5.1-5.2), for sufficiently small ε (Kokotović et al., 1986;

Kokotović et al., 1987).

This concludes the asymptotic stability analysis for the general two-time-scale system. The extension to

the three-time-scale systems is conducted in the following sections, and it is based in a double application

of the two-time-scale asymptotic stability analysis employing either the Top-Down or the Bottom-Up

time-scale analysis previously defined, although for the three-time-scale stability analysis conducted in

this thesis is selected the Bottom-Up time-scale analysis.
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Figure 5.1: Stability upper bounds on ε (Kokotović et al., 1986).
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5.3 Closed-Loop Error-Dynamics Model

As introduced in section 5.2.1, one of the requirements for the asymptotic stability analysis, is to guarantee

that there exist asymptotic stability of the origin, which is expressed in Assumption 5.2.1. This translates

to ensure that the boundary layer does not shift from its original equilibrium. Since the systems here

studied present equilibria different from zero, in order to satisfy this requirement, a change of variables

is introduced such that defines the new system in terms of its error-dynamics. For the three-time-scale

helicopter model, the error dynamics are defined by introducing:

x̃ = x− x∗, (5.30)

ỹ = y − y∗ =

[

ỹ1

ỹ2

]

=

[

x1 − x∗1
x2 − x∗2

]

, (5.31)

z̃ = z − z ∗ =

[

z1

z2

]

=

[

z1 − z∗1

z2 − z∗2

]

, (5.32)

where constants x∗, y∗1 , y
∗
2 , z

∗
1 , z

∗
2 represent the desired values of the states variables. Recall that,

as discussed previously in the equilibrium analysis section, in order to have the helicopter at a given

equilibrium position, that is, maintaining a stationery hover position, it is required that the vertical

speed of the helicopter, y∗2 , and the collective pitch angular velocity of the blades, z∗2 , to be defined by

y∗2 = z∗2 = 0. The desired collective pitch angle, z∗1 , can be obtained as a function of the selected angular

velocity of the blades, x∗ by using the equilibrium equation of the summation of the vertical forces, Eq.

(2.356), therefore z∗1 = z∗1(x
∗, y∗1). It is proven in later sections that, both z∗1 and z∗2 , correspond with the

solutions of quasi-steady-state equilibria of the ultra-fast dynamics, that is:

z∗1 = h1(x
∗, y∗), (5.33)

z∗2 = h2(x
∗, y∗) = 0. (5.34)

5.3.1 Singularly Perturbed Closed-Loop for the Helicopter Model

Recalling the three-time-scale helicopter model given by:

ẋ = a8x+ a10x
2 sin z1 + a9x

2 + a11 + u1, (5.35)

ε1ẏ1 = c1y2, (5.36)

ε1ẏ2 = x2(c2 + c3z1 −
√
c4 + c5z1) + a9y2 + a9y

2
2 + c6, (5.37)

ε1ε2ż1 = c7z2, (5.38)

ε1ε2ż2 = a9z1 + c8x
2 sin z1 + c9z2 + c10 + c11u2, (5.39)

the closed-loop dynamics are obtained substituting the control laws obtained in the TD control design

section 4.4. Recall that the selected control laws for the TD control design, that is u1 and u2, are defined

by

u1 = −
(

a8x+ a10x
2 sin h1SS(x,g(x)) + a9x

2 + a11 + bx(x − x∗)
)

, (5.40)

and

u2 = Kb

(

1 +
√

s3v(x, y)
)2

+Kc +Kdx
2 sin z1, (5.41)

with

v(x, y) = −
a9y

2
2 +

(

a9 + b̃y2

)

y2 + b̃y1
(y1 − y∗1) + c6

x2
, (5.42)



5.4. LYAPUNOV FUNCTION CANDIDATES 183

and the coefficients of the control law are given by Eqns. (4.84–4.88). Therefore, after substituting the

selected control laws, Eqs. (5.40) and (5.41), into the original nonlinear equations of motion, Eqs. (5.35

– 5.39), the closed loop system is given by:

ẋ = a10x
2 [sin(z1)− sin h1SS(x)]− bx(x− x∗), (5.43)

ε1ẏ1 = c1y2, (5.44)

ε1ẏ2 = x2(c2 + c3z1 −
√
c4 + c5z1) + a9y2 + a9y

2
2 + c6, (5.45)

ε1ε2ż1 = c7z2, (5.46)

ε1ε2ż2 = a9z1 + c9z2 + J2

[

(

1 +
√

s3v(x, y)
)2

− 1

]

. (5.47)

These closed-loop equations can be rewritten into its error dynamics formulation recalling the intro-

duced error dynamics state vector (5.30–5.32) thus defining the closed-loop error dynamics as:

˙̃x = a10(x̃+ x
∗)2
[

sin(z̃1 + z
∗

1)− sin h̃1SS
(x̃)
]

− bxx̃, (5.48)

ε1 ˙̃y1 = c1ỹ2, (5.49)

ε1 ˙̃y2 = (x̃+ x
∗)2
(

c2 + c3(z̃1 + z
∗

1)−
√

c4 + c5(z̃1 + z∗
1
)
)

+ a9ỹ2 + a9ỹ
2

2 + c6, (5.50)

ε1ε2 ˙̃z1 = c7z̃2, (5.51)

ε1ε2 ˙̃z2 = a9(z̃1 + z
∗

1) + c9z̃2 + J2

[

(

1 +
√

s3ṽ(x, y)
)2

− 1

]

, (5.52)

where

Ke = Kc − a12 = − c4
c5c11c13

, (5.53)

and

h̃1SS(x̃,g(x̃)) = s2

[

(

1 +
√

s3v(x, y)
)2

− 1

]

, (5.54)

ṽSS(x̃,g(x̃)) = − c6
(x̃+ x∗)2

, (5.55)

ṽ(x̃, ỹ) = −a9ỹ
2
2 + (a9 + b̃y2

)ỹ2 + b̃y1
ỹ1 + c6

(x̃+ x∗)2
. (5.56)

5.4 Lyapunov Function Candidates

The selection of proper Lyapunov functions to study the asymptotic stability properties of an autonomous

system is one of the most challenging issues that a control engineer has to be faced with. The asymptotic

stability analysis of the different time-scales requires the existence of Lyapunov functions for each one

of the singularly perturbed subsystems, that is the ΣS , ΣF , and ΣU -subsystems. The fulfillment of

certain growth requirements between each of the Lyapunov functions, and the use of composite stability

methods (Kokotović et al., 1999; Kokotović et al., 1987; Michel and Miller, 1977) ensures the existence

of a composite Lyapunov function for the entire ΣSFU system.

This sections describes the methods proposed in this thesis to determine the associated composite Lya-

punov function that proves the asymptotic stability properties of the full ΣSFU system. The philosophy

employed to determine the Lyapunov functions for the associated time-scale subsystems uses the TD and

BU time-scale decomposition philosophy, derived in chapter 3.

The strategy to determine the Lyapunov function candidates for each one of the singularly perturbed

ΣS , ΣF , and ΣU subsystems, consists on treating the three different time scales as two-distinct two-

time-scale singular perturbed problems. The proposed methodology obtains the associated Lyapunov

functions for each of the subsystems by taking advantage of the same properties that were exploited in
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the time-scale analysis, that is, the sequential application of both the TD and BU methodologies, which

in return translates to a considerably simplification of the Lyapunov function selection.

The following sections describe in more detail the procedure to obtain the associated Lyapunov func-

tion candidates for a generic three-time-scale singularly perturbed system, and later extending the

methodology to obtain the associated Lyapunov functions for the simplified example, and the helicopter

model.

5.4.1 General TD-BU Lyapunov Function Candidate Selection

This section describes the general Lyapunov TD and BU, (L-TD-BU ), function candidate selection for

the three-time-scale singularly perturbed closed-loop systems.

The strategy to determine the Lyapunov candidates for each one of the singularly perturbed ΣS , ΣF ,

and ΣU subsystems, consists on treating the three different time-scales as two distinct two-time-scale

singular perturbed problems. The following subsections describe in detail the two-distinct two-time-

scale singularly perturbed subproblems, the L-TD and L-BU, that help in the selection of the Lyapunov

function candidates for each of the singularly perturbed subsystems ΣS , ΣF , and ΣU .

5.4.1.1 General Lyapunov Function Candidate for the ΣS-Subsystem

The Lyapunov function candidate for the ΣS-subsystem is obtained by applying the Lyapunov-BU (L-
BU ) methodology, which, in a similar manner as the BU time-scale analysis, section 3.4.2, analyzes the

subsystem resulting when considering the time-scale obtained when applying the stretched time-scale

τ2 = t/ε1ε2, which in return results in the reduced (slow) ΣSF -subsystem, Eqns. (3.69–3.70), and the

associated boundary layer (fast) ΣU -subsystem, Eq. (3.71), with the boundary layer ΣU -subsystem’s

associated quasi-steady-state given by Eq. (3.72).

The associated Lyapunov function for the ΣS-subsystem is obtained by recognizing that the boundary

layer ΣSF -subsystem, Eqns. (3.69–3.70), can be treated again like a two-time-scale singular perturbation

problem by applying the stretched time-scale τ1 = t/ε1, resulting in the new reduced (slow) ΣS-subsystem,

Eq. (3.73), and the associated new boundary layer (fast) ΣF -subsystem, Eq. (3.74), and with the ΣF -

subsystem quasi-steady-state equilibrium given by Eq. (3.75).

Recall that following the control design strategy, the control signal u1 was selected such that stabilizes

the ΣS-subsystem with a prescribed desired target dynamics, therefore being easy to define the Lyapunov

function for the slow ΣS-subsystem as the natural Lyapunov function of the selected target dynamics,

denoted as VS(x̃).

5.4.1.2 General Lyapunov Function Candidate for the ΣF -Subsystem

To obtain the Lyapunov function candidate for the ΣF -subsystem let use the Lyapunov-TD (L-TD)

methodology, which, in a similar manner as in the TD time-scale analysis, section 3.4.1, analyzes the

subsystem resulting when considering the time-scale defined by applying the stretched time-scale given

by τ1 = t/ε1, yielding the reduced order (slow) ΣS-subsystem, Eq. (3.61), and the boundary layer (fast)

ΣFU -subsystem, Eqns. (3.62–3.63), with the associated quasi-steady-state equilibria of the boundary

layer ΣFU -subsystem being given by Eqns. (3.65–3.65).

The associated Lyapunov function for the ΣF -subsystem is obtained by exploiting the fact that the

boundary layer ΣFU -subsystem, Eqns. (3.65–3.65), can be treated again like a two-time-scale singular
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perturbation problem, by applying the stretched time-scale given by τ2 = τ1/ε2 = t/ε1ε2, resulting in

a new reduced (slow) ΣF -subsystem, Eq. (3.66), and a new boundary layer (fast) ΣU -subsystem, Eq.

(3.67), with its associated quasi-steady-state equilibrium defined by Eq. (3.68).

Recalling that following the control strategy methodology, the control signal u2 is selected such that

stabilizes the ΣF -subsystem with a prescribed desired target dynamics, therefore, when substituting the

equilibrium of the ΣU -subsystems into Eq. (3.66), that is, substituting h̃(x̃, ỹ), yields the ΣF -subsystem

defined by the selected desired target dynamics, therefore being easy to define the Lyapunov function for

the intermediate ΣF -subsystem as the natural Lyapunov of the selected target dynamics, VF (ỹ). The

ΣF -subsystem serves as both the boundary layer of the ΣSF -subsystem, and the reduced order of the

ΣFU -subsystem, becoming the interconnection subsystem between the ΣSF and ΣFU -subsystems.

5.4.1.3 General Lyapunov Function Candidate for the ΣU -Subsystem

The natural Lyapunov function candidate for the ΣU -subsystem is obtained by recalling and analyzing

the boundary layer of the ΣU -subsystem resulting from the Down sequence of the L-TD and given by Eq.

(3.67). Recall that it is necessary to ensure that the boundary layer ΣU -subsystem does not to shift from

the equilibrium z̃ = h̃(x̃, ỹ), since it is the equilibrium that defines the nature of the different reduced

order subsystems, ΣS and ΣF -subsystems. It is therefore necessary to introduce a change of variables

so that the equilibrium of this boundary-layer system is centered at zero, and thus permitting to select

a natural Lyapunov function candidate that maintains the equilibrium z̃ = h̃(x̃, ỹ). This is obtained

by introducing a change of variables defined by the error dynamics between the fast variable, and its

quasi-steady-state equilibrium that is

ẑ = z̃ − h̃(x̃, ỹ). (5.57)

The change of variables permits to express the boundary layer subsystem, Eq. (3.67), as a linear

function of ẑ, thus being quite easy to select its natural associated Lyapunov function VU (z̃ − h̃(x̃, ỹ)).

The following sections extend this general formulation of the appropriate Lyapunov function candidates

for all three subsystem for the three-time-scale singularly perturbed helicopter model.

5.4.2 Lyapunov Top-Dow and BU Function Candidate Selection for the

Helicopter Model

This section determines the associated Lyapunov functions for the closed-loop three-time-scale singular

perturbed helicopter model which is defined by Eqns. (5.48–5.52), where, similarly as for the general case,

it is assumed that the system is an autonomous stable system with a prescribed stability properties given

by the selection of appropriate control laws. The strategy to determine the Lyapunov candidates for each

one of the singularly perturbed ΣS , ΣF , and ΣU subsystems, consists on treating the three different time

scales as two distinct two-time-scale singular perturbed problems. The following sections describe the

selection of the Lyapunov function candidates for each of the singularly perturbed subsystems ΣS , ΣF ,

and ΣU .

5.4.2.1 Lyapunov Function Candidate for the Helicopter Model ΣS-Subsystem

The Lyapunov function candidate for the ΣS-subsystem, uses the Lyapunov-BU (L-BU ) methodology

previously presented, where by applying the stretched time-scale given by τ2 = t/ε1ε2, yields the reduced
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(slow) ΣSF -subsystem defined by

˙̃x = a10(x̃+ x∗)2(sin(h̃1(x̃, ỹ) + z∗1)− sin h̃1SS)− bxx̃, (5.58)

ε1 ˙̃y1 = c1ỹ2, (5.59)

ε1 ˙̃y2 = (x̃+ x∗)2
(

c2 + c3(h̃1(x̃, ỹ) + z∗1)−
√

c4 + c5(h̃1(x̃, ỹ) + z∗1)

)

+ a9ỹ2

+ a9ỹ
2
2 + c6, (5.60)

and the boundary layer (fast) subsystem for the BU subproblem is defined by the ΣU -subsystem

dz̃1
dτ2

= c7z̃2, (5.61)

dz̃2
dτ2

= a9(z̃1 + z∗1) + c9z̃2 + J2

[

(

1 +
√

s3ṽ(x̃, ỹ)
)2

− 1

]

, (5.62)

with the quasi-steady-state equilibria being given by

0 = ĥ(x̃, ỹ , z̃ ) → z̃ = h̃(x̃, ỹ) =

[

h̃1(x̃, ỹ)

h̃2(x̃, ỹ)

]

, (5.63)

with

h̃1(x̃, ỹ) = z̃1 = s2

[

(

1 +
√

s3ṽ(x̃, ỹ)
)2

− 1

]

− z∗1 (5.64)

h2(x̃, ỹ) = z̃2 = 0, (5.65)

and with s2 defined in Eq. (4.103). The associated Lyapunov function for the ΣS-subsystem is obtained

by recognizing that the boundary layer ΣSF -subsystem, Eqns. (5.58–5.60) can be treated again like a

two-time-scale singular perturbation problem by applying the stretched-time-scale given by τ1 = t/ε1,

resulting in the new reduced (slow) ΣS-subsystem, which is now defined by

˙̃x = f̃(x̃, g̃(x̃), h̃(x̃, ỹ)) = a10(x̃+ x∗)2
[

sin(h̃1(x̃, ỹ) + z∗1)− sin h̃1SS

]

− bxx̃, (5.66)

and where the new boundary layer (fast) ΣF -subsystem is defined as

dỹ1
dτ1

= c1ỹ2, (5.67)

dỹ2
dτ1

= (x̃+ x∗)2
[

c2 + c3(h̃1(x̃, ỹ) + z∗1)−
√

c4 + c5(h̃1(x̃, ỹ) + z∗1)

]

+ a9ỹ2 + a9ỹ
2
2 + c6. (5.68)

After substituting the ΣU -subsystem equilibria, Eqns. (5.64–5.65), into the ΣF -subsystem, Eqns. (5.67–

5.68), reduces to

dỹ1
dτ1

= c1ỹ2, (5.69)

dỹ2
dτ1

= −b̃1ỹ1 − b̃2ỹ2, (5.70)

where it can be identified that the resulting ΣF -subsystem can be expressed in state space form as

dỹ

dτ1
= AF ỹ, (5.71)

being

AF =

(

0 c1

−b̃y1
−b̃y2

)

, (5.72)
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therefore being the quasi-steady-state equilibria for the ΣF -subsystem, G̃(x̃), being given by

0 = ĝ(x̃, ỹ , z̃ ) → ỹ = g̃(x̃) =

[

g̃1(x̃)

g̃2(x̃)

]

, (5.73)

with the equilibria defined by

g̃1(x̃) = y∗1 , (5.74)

g̃2(x̃) = 0, (5.75)

therefore reducing the ΣS-subsystem, Eq. (5.66), as

˙̃x = f̃(x̃, g̃(x̃), h̃(x̃, g̃(x))) = −bxx̃. (5.76)

With this in mind, it is easy to define the associated Lyapunov function for the slow ΣS-subsystem as

the natural quadratic Lyapunov function of the selected target dynamics, that is

VS (x̃) =
1

2
PS x̃

2, (5.77)

where PS is the solution of the associated Lyapunov function for the selected target dynamics and given

by

PSAS +ASPS +QS = 0, (5.78)

where QS is also a positive constant, AS = −bx, and PS is given by

PS =
QS

2bx
, (5.79)

where QS is a positive constant. Note that for completeness, and to avoid confusion due to the use of

similar parameters that defined the Lyapunov functions, V(·), the elements of the associated Lyapunov

function, P(·) and Q(·), the closed-loop state-space systems, A(·), and other parameters throughout the

rest of the thesis, the subindexes of these parameters will identify to which model is referring, that is,

the parameters that deal with the simplified model, will be denoted with lower case, i.e. Vs, while for the

helicopter model will be denoted with capital letters, i.e. VS .

5.4.2.2 Lyapunov Function Candidate for the Helicopter Model ΣF -Subsystem

The Lyapunov function candidate for the ΣF -subsystem is obtained using the Lyapunov-TD (L-TD)

methodology, by applying the Top-condition, which results in the reduced order (slow) ΣS-subsystem

defined by Eq. (5.66), and the boundary layer (fast) ΣFU -subsystem given by

dỹ1
dτ1

= c1ỹ2, (5.80)

dỹ2
dτ1

= (x̃+ x∗)2
(

c2 + c3(z̃1 + z∗1)−
√

c4 + c5(z̃1 + z∗1)

)

+ a9ỹ2 + a9ỹ
2
2 + c6, (5.81)

ε2
dz̃1
dτ1

= c7z̃2, (5.82)

ε2
dz̃2
dτ1

= a9(z̃1 + z∗1) + c9z̃2 + J2

[

(

1 +
√

s3ṽ(x̃, ỹ)
)2

− 1

]

. (5.83)

The associated Lyapunov functions for the ΣF -subsystem is obtained by recognizing that the boundary

layer ΣFU -subsystem, Eqns. (5.80-5.83), can be decoupled into a two-time-scale singular perturbation

problem by applying the stretched time-scale given by τ2 = τ1/ε2 = t/ε1ε2, where the new reduced (slow)

ΣF -subsystem for the helicopter model is defined by Eqns. (5.69–5.70), which reduces to the selected
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target fast-dynamics

dỹ1
dτ1

= c1ỹ2

dỹ2
dτ1

= −b̃y1
ỹ1 − b̃y2

ỹ2, (5.84)

which can be rewritten in state-space as seen in Eq. (5.71). and where the new boundary layer ΣU -

subsystem of the ΣFU -subsystem is given by Eqns. (5.61–5.62). It is therefore easy to select a natural

Lyapunov function VF (ỹ) of the form

VF (ỹ) =
1

2
ỹTPF ỹ , (5.85)

with PF is a positive definite matrix that solves the associated Lyapunov equation

PFAF +AT
FPF +QF = 0, (5.86)

where QF and PF are a positive definite matrices of the form

QF =

(

qf1 0

0 qf2

)

, (5.87)

PF =

(

pf1 pf3

pf3 pf2

)

, (5.88)

where PF = PT
F . Solving Eq. (5.86) yields the Lyapunov function for the ΣF -subsystem

VF (ỹ) =
1

2
ỹTPF ỹ =

1

2
pf1 ỹ

2
1 +

1

2
pf3 ỹ

2
2 + pf2 ỹ1ỹ2, (5.89)

with the solutions to the associated Lyapunov Eq. (5.86) given as

pf1 =
qf1(b̃y1

c1 + b̃2y2
) + b̃2y1

qf2

2b̃y1
b̃y2
c1

= Cf1qf1 + Cf2qf2 , (5.90)

pf2 =
qf1

2b̃y1

= Cf3qf1 , (5.91)

pf3 =
qf1c1 + qf2 b̃y1

2b̃y1
b̃y2

= Cf4qf1 + Cf5qf2 . (5.92)

with

Cf1 =
b̃y1
c1 + b̃2y2

2b̃y1
b̃y2
c1

, (5.93)

Cf2 =
b̃2y1

2b̃y1
b̃y2
c1
, (5.94)

Cf3 =
1

2b̃y1

, (5.95)

Cf4 =
c1

2b̃y1
b̃y2

, (5.96)

Cf5 =
b̃y1

2b̃y1
b̃y2

. (5.97)

The ΣF -subsystem, as seen previously, serves as both the boundary layer of the ΣSF -subsystem, and

the reduced order of the ΣFU -subsystem, becoming the interconnection subsystem between both the ΣSF

and ΣFU -subsystems.
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5.4.2.3 Lyapunov Function Candidate for the Helicopter Model ΣU Subsystem

The associated Lyapunov functions for the ΣU -subsystem is obtained by recognizing that the ΣFU -

subsystem, Eqns. (5.80–5.83), can be treated again like a two-time-scale singular perturbation problem

by applying the stretched time-scale given by τ2 = τ1/ε2 = t/ε1ε2, where the new reduced (slow) ΣF -

subsystem reduces to the target fast dynamics, Eqns. (5.69–5.70), and and where the boundary layer

ΣU -subsystem is given by Eqns. (5.61–5.62).

Recall that it is necessary to ensure that the boundary layer ΣU -subsystem does not to shift from

the equilibrium z̃ = h̃(x̃, ỹ), since it is the equilibrium that defines the nature of the different reduced

order subsystems, ΣS and ΣF -subsystems. It is therefore necessary to introduce a change of variables so

that the equilibrium of this boundary-layer system is centered at zero, and thus permitting to select a

natural Lyapunov function candidate to maintain the given equilibrium z̃ = h̃(x̃, ỹ). This is obtained by

introducing a change of variables defined by

ẑ = z̃ − h̃(x̃, ỹ), (5.98)

=

[

ẑ1

ẑ2

]

=

[

z̃1 − h̃1(x̃, ỹ)

z̃2 − h̃2(x̃, ỹ)

]

, (5.99)

with h̃1(x̃, ỹ), and h̃2(x̃, ỹ) being defined in Eqns. (5.64) and (5.65) respectively. This change of variables

permits to express the boundary layer subsystem, Eqns. (5.61–5.62), as a linear function of ẑ, which can

be viewed as the true error dynamics vector for the ultra-fast dynamics, therefore rewriting the ΣU -

subsystem as

dz̃1
dτ2

= c7z̃2, (5.100)

dz̃2
dτ2

= a9(z̃1 + z∗1) + c9z̃2 + J2

[

(

1 +
√

s3ṽ(x̃, ỹ)
)2

− 1

]

= a9

(

z̃1 − h̃1(x̃, ỹ)
)

+ c9

(

z̃2 − h̃2(x̃, ỹ)
)

= a9ẑ1 + c9ẑ2. (5.101)

It can be recognized that the ΣU can be rewritten in state space form as

dz̃

dτ2
= AU ẑ , (5.102)

where

AU =

(

0 c7

a9 c9

)

. (5.103)

With this in mind, it is easy to define the associated Lyapunov function for the ultra-fast dynamics

ΣU -subsystem as the natural quadratic Lyapunov function of the error-dynamics, that is

VU (x̃, ỹ , z̃ ) = VU (ẑ ) =
1

2
ẑ
T
PU ẑ , (5.104)

where PU is a positive definite matrix that solves the associated Lyapunov equation

PUAU +AT
UPU +QU = 0, (5.105)

where QU and PU are positive definite matrices of similar structure as PF and QF , that is

QU =

(

qu1
0

0 qu2

)

, (5.106)

PU =

(

pu1
pu3

pu3
pu2

)

, (5.107)
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with PU = PT
U being the solution of Eq. (5.105). This yields an associated Lyapunov function of the

form

VU (ẑ) =
1

2
ẑ
T
PU ẑ =

1

2
pu1

ẑ21 +
1

2
pu3

ẑ22 + pu2
ẑ1ẑ2, (5.108)

with the solutions to the associated Lyapunov Eq. (5.105) given as

pu1
=

qu2
a29 + c29qu1

− a9c7qu1

2a9c7c9
= Cu1

qu1
+ Cu2

qu2
, (5.109)

pu2
= − qu1

2a9
= Cu3

qu1
, (5.110)

pu3
=

c7qu1
− qu2

a9
2a9c9

= Cf4qu1
+ Cu5

qu2
. (5.111)

with

Cu1
=

c29 − a9c7
2a9c7c9

, (5.112)

Cu2
=

a29
2a9c7c9

, (5.113)

Cu3
= − 1

2a9
, (5.114)

Cu4
=

c7
2a9c9

, (5.115)

Cu5
= − a9

2a9c9
. (5.116)

5.5 Stability Analysis for General Three-Time-Scale

Systems

Following with the philosophy of the proposed three-time-scale analysis methodologies employed up to

this point, the proposed three-time-scale asymptotic stability analysis takes advantage of this same phi-

losophy by employing a sequential time-scale analysis in order to prove the asymptotic stability properties

of the resulting autonomous three-time-scale system. This stability analysis is based on a double appli-

cation of the standard two-time-scale stability analysis (Kokotović et al., 1999; Kokotović et al., 1986;

Kokotović et al., 1987) on the ΣSFU full system, which is given by

˙̃x = f̃(x̃, ỹ, z̃), x̃ ∈ Rx̃, (5.117)

ε1 ˙̃y = ĝ(x̃, ỹ, z̃), ỹ ∈ Rỹ , (5.118)

ε1ε2 ˙̃z = ĥ(x̃, ỹ, z̃), z̃ ∈ Rz̃ , (5.119)

with Bx̃ ⊂ Rx̃, Bỹ ⊂ Rỹ , Bz̃ ⊂ Rz̃ denoting closed sets of the variables x̃, ỹ and z̃, respectively. It is

assumed that Lyapunov function candidates are available for all three subsystems, which were derived

and proposed in section 5.4. Up to this point, the obtention of the control laws, and the associated

Lyapunov function candidates required the use of a combination of both the TD and BU methodologies

in order to create the necessary interconnection properties among the TD and the BU subproblems.

These interconnection properties between the ΣSF -subsystem from the BU methodology and the ΣFU -

subsystem from the TD methodology, are signified through the interconnectivity playing role of the

intermediate ΣF -subsystem which serves, as indicated previously, as both the reduced order subsystem

of the ΣFU -subsystem, and also as the boundary layer for the ΣSF -subsystem. These interconnection

properties are better depicted in Figure 3.9.

In the control design, the pursued strategy is to select the appropriate control law that first stabilize

the ΣFU -subsystem, by applying the TD time-scale analysis, which ultimately provide the control signal
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that stabilizes the ΣF -subsystem, and once stable, and using the ΣF -subsystem as the interconnection

subsystem, proceed with the design of the control law that stabilizes the ΣS-subsystem. This control

design philosophy is required in order to satisfy the natural flow required to design a stable three-time-scale

system, in which the stable ultra-fast variable z evolves through the configuration space of the boundary

layer ΣU -subsystem, as seen in Figure 3.9(a), towards the surface that defines the quasi-steady-state

equilibrium of the ΣU -subsystem, that is z̃ = h̃(x̃, ỹ), while x̃ and ỹ behave as fixed parameters.

This evolution of the ultra-fast variable is denoted by the BU time-scale analysis decomposition of the

full ΣSFU full system in section 3.4.2, which is obtained by applying first the stretched time-scale given

by τ2 = t/ε1ε2, thus becoming the reduced (slow) ΣSF -subsystem defined by Eqns. (3.69–3.70), while

the boundary layer ΣU -subsystem for the BU subproblem is given by Eq. (3.71), where the boundary

layer ΣU -subsystem represents the movement of the ultra-fast variable z through its configuration space,

given by ĥ(x̃, ỹ, z̃) = 0, which also provides its quasi-steady-state equilibrium, that is z̃ = h̃(x̃, ỹ).

As seen in Figure 3.9(a), during these first instants, the variables of the reduced order ΣSF -subsystem,

x̃ and ỹ, in Eqns. (3.69–3.70), remain almost unchanged. This movement is defined as the ultra-fast

movement. To understand what happens after the ultra-fast variable reaches its configuration space,

ĥ(x̃, ỹ, z̃) = 0, it can be recognized that the reduced order ΣSF -subsystem can be treated again like a two-

time-scale singular perturbation problem by applying the second stretched time scale of the BU analysis,

and given by τ1 = t/ε1, which results in a new reduced (slow) ΣS-subsystem defined by Eq. (3.73), and

a new boundary layer ΣF -subsystem given by Eq. (3.74) where the new boundary layer ΣF -subsystem,

Eq. (3.74), represents the movement of the fast variable ỹ as it moves on the configuration space of the

boundary layer ΣU -subsystem towards the surface that defines the quasi-steady-state equilibrium of the

ΣF -subsystem, and given by ĝ(x̃, ỹ, h̃(x̃, ỹ)) = 0, that is ỹ = g̃(x̃), as it can be seen in Figure 3.9(b).

It can also be observed that the slow variable x behaves as a fixed parameter, and z evolves on its

manifold. This movement is defined as the fast movement. Finally, the slowest movement is defined by

the evolution of the slow variable x as it moves in the manifold of the ΣS-subsystem, which is given

by the intersection between the planes ĝ(x̃, ỹ, h̃(x̃, ỹ)) = 0 and ĥ(x̃, ỹ, z̃) = 0. The slowest movement is

continued through ĝ(x̃, ỹ, h̃(x̃, ỹ)) ∩ ĥ(x̃, ỹ, z̃) until it reaches the equilibrium, which in Figure 3.9(c) is

depicted at the origin. This natural flow of the variables for a stable three-time-scale system, are best

described in the BU analysis, section 3.4.2, and is this analysis the one that serves as the basis to prove

the asymptotic stability properties of the resulting closed-loop system.

The presented asymptotic stability analysis for the general three-time-scale autonomous system,

similarly to the intuitively description of the three-time-scale decomposition above described, only the

BU methodology is employed through a double application of the standard two-time-scale asymptotic

stability analysis (Kokotović et al., 1986; Kokotović et al., 1987) similar as described in Figure 3.7. The

stability analysis focusses its attention on proving the evolution of the different time-scale subsystems of

the autonomous ΣSFU full system.

The stability analysis is divided in two stages. In the first stage the stability analysis focusses on

proving the stability properties of the degenerated ΣSF -subsystem, while in the second stage, and using

the results obtained, focuses on proving the stability properties for the full ΣSFU system. Thus the first

stage will be denoted as ΣSF Stability Analysis, while the second stage will be denoted as ΣSFU Stability

Analysis.

The first stage of the asymptotic stability analysis for the general three-time-scale system is applied,

by decomposing the ΣSFU full system into a two-time-scale subsystem by applying first the Bottom-

condition, that is, applying first the stretched time-scale given by τ2 = t/ε1ε2, and assuming that the ultra-

fast variable z̃ evolves on its quasi-steady-state equilibrium, that is, z̃ = h̃(x̃, ỹ). The resulting reduced
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order (slow) ΣSF -subsystem is given by Eqns. (3.69–3.70), while the boundary layer ΣU -subsystem for

the BU subproblem is given by Eq. (3.71), the quasi-steady-state of the boundary layer ΣU -subsystem

is given by h̃(x̃, ỹ), with h̃(x̃, ỹ) evolving on its own configuration space, and both x̃ and ỹ are considered

like fixed parameters. Figure 5.2 describes the Bottom-sequence of the BU time-scale decomposition,

where, the solid-line box represents the full ΣSFU system, while the ΣSF -subsystem is encapsulated with

the dotted-line box.

The asymptotic stability analysis of this first stage is continued by recognizing that the resulting ΣSF -

subsystem, Eqns. (3.69–3.70), can be treated again like a two-time-scale singular perturbation problem by

dealing with the subsystem that results after applying the stretched time-scale given by τ1 = t/ε1, where

the new reduced (slow) ΣS-subsystem is now defined by Eq. (3.73), and the new boundary layer (fast)

ΣF -subsystem is now given by Eq. (3.74), with ỹ = g̃(x̃) being an isolated root of 0 = ĝ(x̃, ỹ, h̃(x̃, ỹ)),

and with x̃ being treated like a constant. Figure 5.3 describes the Up-sequence of the BU time-scale

decomposition where, again, the solid line box represents the full ΣSFU system, the ΣSF -subsystem

is encapsulated with the dotted line box, and the ΣS-subsystem is depicted with the dash-dotted line

box.

The stability analysis of the ΣSF -subsystem, Eqns. (3.69–3.70), is performed assuming that the ΣU -

subsystem variables evolve in their own configuration space. The analysis of this first stage is performed

using the standard method for two-time-scale systems (Kokotović et al., 1986; Kokotović et al., 1987;

Kokotović et al., 1999), in which the associated Lyapunov functions for the ΣS and ΣF subsystems, must

satisfy certain growth requirements on f̃(x̃, ỹ, h̃(x̃, ỹ)) and ĝ(x̃, ỹ, h̃(x̃, ỹ)) by satisfying certain inequalities.

These growth requirements are described in detail in Section 5.5.1 for the general three-time-scale problem,

and extended to the helicopter model in Chapter 6. As a result of the fulfillment of these growth

requirements, a new Lyapunov function, V1(x̃, ỹ), is obtained for the singularly perturbed ΣSF -subsystem

as a weighted sum of the associated Lyapunov functions VS(x̃) and VF (x̃, ỹ), resulting in

V1(x̃, ỹ) = (1− d1)VS(x̃) + d1VF (ỹ), (5.120)

where 0 < d1 < 1. This concludes the ΣSF Stability Analysis. Figure 5.4 resumes this first stage of

the ΣSF Stability Analysis, including the growth requirements on f̃
(

x̃, ỹ, h̃(x̃, ỹ)
)

and ĝ
(

x̃, ỹ, h̃(x̃, ỹ)
)

which are described in detail in Section 5.5.1. In the second stage of the stability analysis, denoted as the

ΣSFU Stability Analysis, the standard two-time-scale stability analysis method is applied again taking

advantage of the results obtained in the previous stage.

The ΣSF Stability Analysis analyzed and proved the asymptotic stability properties of the resulting

reduced order ΣSF -subsystem, Eqns (3.69–3.70), which is treated like a two-time-scale system in which

the boundary layer ΣU -subsystem is assumed to be moving through it configuration space. The ΣSF

Stability Analysis yielded a Lyapunov function for the ΣSF -subsystem, V1(x̃, ỹ), that can now be used

to conduct the stability analysis for the complete ΣSFU system, which, for convenience, is rewritten

as

˙̃χ = F̃ (χ̃, z̃), χ̃ ∈ Rχ̃, (5.121)

ε1ε2 ˙̃z = ĥ(χ̃, z̃), z̃ ∈ Rz̃ , (5.122)

with Bχ̃ ⊂ Rχ̃, Bz̃ ⊂ Rz̃ denoting closed sets, and with F̃ (χ̃, z̃) being given by Eqs. (5.117) and (5.118),

that is given by

F̃ (χ̃, z̃) ,

[

f̃(χ̃, z̃)

ĝ(χ̃, z̃)

]

=

[

f̃(x̃, ỹ, z̃)

ĝ(x̃, ỹ, z̃)

]

, (5.123)
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where χ̃ represents the augmented state vector given by

χ̃ ,
[

x̃ ỹ
]T

. (5.124)

The Lyapunov function obtained in the first stage of the stability analysis, V1(x̃, ỹ) = V1(χ̃), becomes

the Lyapunov function for the F̃ (χ̃, z̃) system. The newly augmented singularly perturbed ΣSFU system,

Eqns. (5.121–5.122), can be treated like a two-time-scale singular perturbed system by applying again

the Bottom-condition, that is making ε2 = 0, yielding the reduced order ΣSF -subsystem, given by

˙̃χ = F̃ (χ̃, h̃(χ̃)) =

[

f̃(χ̃, h̃(χ̃))

ĝ(χ̃, h̃(χ̃))

]

, (5.125)

which is equivalent to the ΣSF -subsystem defined previously in the first stage of the stability analysis,

Eqns. (3.69–3.70), while the boundary layer ΣU -subsystem is defined by

dz̃

dτ2
= ĥ(χ̃, z̃), τ2 =

t

ε1ε2
, (5.126)

with the associated Lyapunov function for the ΣU -subsystem given by VU (χ̃, z̃) = VU (z̃− h̃(χ̃)) = VU (ẑ),

where h̃(χ̃) represents the equilibria of the boundary layer ΣU -subsystem, Eq. (5.126), which is given

by

0 = ĥ(χ̃, z̃) → z̃ = h̃(χ̃) = h̃(x̃, ỹ). (5.127)

Figure 5.5 describes ΣSFU stability analysis where again, the solid-line box represents the full ΣSFU

system, while the ΣSF -subsystem is encapsulated with the dotted-line box. In a similar analysis to the

one conducted in the first stage, the new Lyapunov functions must satisfy certain growth requirements

for F̃ (χ̃, z̃) and ĥ(χ̃, z̃) by satisfying certain inequalities. These growth requirements are described in

detail in Section 5.5.3, and as a result of the fulfillment of these growth requirements, a new Lyapunov

function, V2(χ̃, z̃), is obtained for the full ΣSFU system as a weighted sum of both V1(χ̃) and VU (ẑ),

resulting in

V2(χ̃, z̃) = (1− d2)V1(χ̃) + d2VU (χ̃, z̃), (5.128)

where 0 < d2 < 1. Figure 5.5 describes the complete ΣSFU asymptotic stability analysis, including the

growth requirements on F̃ (χ̃, z̃) and ĥ(χ̃, z̃) which are described in detail in Section 5.5.3, while Figure

5.6 depicts both the ΣSF and the ΣSFU asymptotic stability analysis for the generic three-time-scale

singularly perturbed system, where it can be observed the existing interconnection properties between

both stages, such that the composite Lyapunov function V1(χ̃) for the reduced order ΣSF -subsystem

in the ΣSFU Stability Analysis is the composite Lyapunov function that was obtained during the ΣSF

Stability Analysis. Recall that the Lyapunov function candidate for the entire singular perturbation

problem, V2(VS ,VF ,VU ), is defined as a weighted sum of the three Lyapunov functions of each of the

three singularly perturbed subsystems, VS , VF , and VU , respectively, and therefore can be rewritten

as

V2(x̃, ỹ, z̃) = α1VS(x̃) + α2VF (ỹ) + α3VU (x̃, ỹ, z̃), (5.129)

with

α1 = (1− d1)(1− d2) = 1− d1 − d2 + d1d2,

α2 = (1− d2),

α3 = d2.

The resulting ΣS , ΣF and ΣU -subsystems, defined by Eqns. (3.73), (3.74), and (5.126), respectively, ap-
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proximate the ΣSFU system according to the theory of singular perturbed systems (Kokotović et al., 1999;

Kokotović et al., 1986; Kokotović et al., 1987). Following sections describe the proposed three-time-scale

asymptotic stability analysis for a generic model. For completeness purposes only the asymptotic stabil-

ity analysis for the generic model is described in this chapter. The asymptotic stability analysis for the

helicopter model is left for chapter 6, while the asymptotic stability analysis for the simplified example,

is left, for completeness, to Appendix C.

5.5.1 General ΣSF Stability Analysis

This section describes in detail the general asymptotic stability requirements for the ΣSF -subsystem

by applying the BU -methodology. The stability analysis of the ΣSF -subsystem is performed assum-

ing that the ΣU -subsystem variables evolve in their own configuration space. The analysis of this

first stage is performed using the standard method for two-time-scale systems (Kokotović et al., 1986;

Kokotović et al., 1987; Kokotović et al., 1999), in which the previously derived Lyapunov functions for

the ΣS and ΣF subsystems, that is VS and VF , respectively, must satisfy certain growth requirements

on f̃(x̃, ỹ, h̃(x̃, ỹ)) and ĝ(x̃, ỹ, h̃(x̃, ỹ)) by fulfilling certain inequalities. These growth requirements for the

ΣSF -subsystem take the form of inequalities that must be satisfied by the Lyapunov functions, and can

be divided in three main groups:

• Reduced order growth requirements, if they refer to the properties that must posses the reduced order

subsystem, f̃(x̃, g̃(x̃), h̃(x̃, ỹ)) in Eq. (3.73).

• Boundary layer growth requirements, if they refer to the properties that must posses the boundary

layer subsystem, ĝ(x̃, ỹ, h̃(x̃, ỹ)) in Eq. (3.74).

• Interconnection growth requirements, if they refer to the properties that must posses both subsys-

tems in conjunction to prove the continuity between both the reduced order and the boundary layer

subsystems.

The properties for the isolated equilibrium at the origin are discussed in Assumption 5.5.1. The growth

requirements of both, the reduced, and boundary layer subsystem are addressed in Assumptions 5.5.2

and 5.5.3, respectively, while the growth requirements that combine both reduced and boundary layer

system requirements, called interconnection conditions, are defined in Assumptions 5.5.4 and 5.5.5. These

Assumptions are all described in detail bellow.

Assumption 5.5.1 Isolated Equilibrium of the Origin

The origin (x̃ = 0, ỹ = 0) is a unique and isolated equilibrium of the ΣSF -subsystem, Eqns. (3.69–3.70),

i.e.

0 = f̃(0, 0, h̃(x̃, ỹ)), (5.130)

0 = ĝ(0, 0, h̃(x̃, ỹ)), (5.131)

moreover, ỹ = g̃(x̃) is the unique root of

0 = ĝ
(

x̃, ỹ, h̃(x̃, ỹ)
)

, (5.132)

in Bx̃ ×Bỹ, i.e.

0 = ĝ(x̃, g̃(x̃), h̃(x̃, ỹ)), (5.133)
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and there exists a class κ function p1(·) such that

‖ g̃(x̃) ‖≤ p1 (‖ x̃ ‖) . (5.134)

The reduced order growth requirements are obtained by first considering the system given by Eq.

(3.69), and adding and subtracting f̃(x̃, g̃(x̃), h̃(x̃, ỹ)) to the right-hand side of Eq. (3.69), resulting in

the expression given by

˙̃x = f̃
(

x̃, g̃(x̃), h̃(x̃, ỹ)
)

+ f̃
(

x̃, ỹ, h̃(x̃, ỹ)
)

− f̃
(

x̃, g̃(x̃), h̃(x̃, ỹ)
)

, (5.135)

where the term f̃(x̃, x̃, h̃(x̃, ỹ))− f̃(x̃, g̃(x̃), h̃(x̃, ỹ)) can be viewed as a perturbation of the reduced order

ΣS-subsystem, Eq. (3.73). Being therefore natural to first satisfy the growth requirements for Eq. (3.69)

and then consider the effect of the perturbation term f̃(x̃, ỹ, h̃(x̃, ỹ)) − f̃(x̃, g̃(x̃), h̃(x̃, ỹ)). Therefore let

proceed to define first the reduced order growth condition.

Assumption 5.5.2 Reduced System Conditions

There exists a positive-definite and decreasing Lyapunov function candidate VS(x̃) that satisfies the

following inequality

(

∂VS(x̃)

∂x̃

)T

f̃
(

x̃, g̃(x̃), h̃(x̃, ỹ)
)

≤ −α1ψ
2
1(x̃), (5.136)

where ψ1(·) is a scalar function of vector arguments which vanishes only when its argument are zero, and

satisfying that x̃ = 0 is a stable equilibrium of the reduced order system.

Assumption 5.5.3 Boundary-Layer System Conditions

There exists a positive-definite and decreasing Lyapunov function candidate VF (x̃, ỹ) such that for all

(x̃, ỹ) ∈ Bx̃ ×Bỹ satisfies

VF (x̃, ỹ) > 0, ∀ỹ 6= g̃(x̃) and VF (x̃, g̃(x̃)) = 0, (5.137)

and
(

∂VF

∂ỹ

)T

ĝ
(

x̃, ỹ, h̃(x̃, ỹ)
)

≤ −α2φ
2
1(ỹ − g̃(x̃)), (5.138)

where VF (x̃, ỹ) is the Lyapunov function candidate of the boundary layer ΣF -subsystem, Eq. (3.74), in

which x̃ is treated as a fixed parameter, and φ1(·) is a scalar function of vector arguments which vanishes

only when its arguments are zero, and satisfying that ỹ − g̃(x̃) is a stable equilibrium of the boundary

layer system.

Both ψ1(·) and φ1(·) are scalar functions of vector arguments that vanish only when their arguments

are zero, i.e., ψ1(x̃) = 0 if and only if x̃ = 0, and will both be referred as comparison functions.

Assumption 5.5.4 First Interconnection Condition

The Lyapunov functions VS(x̃) and VF (x̃, ỹ) must satisfy the so called interconnection conditions. The

first interconnection condition is obtained by computing the derivative of VS(x̃) along the solution of Eq.

(5.135), yielding

V̇S(x̃) =
∂VS

∂x̃
f̃
(

x̃, g̃(x̃), h̃(x̃, ỹ)
)

+
∂VS

∂x̃

[

f̃
(

x̃, ỹ, h̃(x̃, ỹ)
)

− f̃
(

x̃, g̃(x̃), h̃(x̃, ỹ)
)]

≤ −α1ψ
2
1(x̃) +

∂VS

∂x̃

[

f̃
(

x̃, ỹ, h̃(x̃, ỹ)
)

− f̃
(

x̃, g̃(x̃), h̃(x̃, ỹ)
)]

, (5.139)
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thus assuming that

(

∂VS(x̃)

∂x̃

)T
[

f̃
(

x̃, ỹ, h̃(x̃, ỹ)
)

− f̃
(

x̃, g̃(x̃), h̃(x̃, ỹ)
)]

≤ β1ψ1(x̃)φ1(ỹ). (5.140)

so that

V̇S ≤ −α1ψ
2
1(x̃) + β1ψ1(x̃)φ1(ỹ − g̃(x̃)). (5.141)

Inequality (5.140) determines the allowed growth of f̃
(

x̃, ỹ, h̃(x̃, ỹ)
)

in ỹ, and in typical problems,

verifying Assumption 5.5.4 reduces to verifying the inequality
∥

∥

∥f̃
(

x̃, ỹ, h̃(x̃, ỹ)
)

− f̃
(

x̃, g̃(x̃), h̃(x̃, ỹ)
)∥

∥

∥ ≤ ψ1(x̃)φ1(ỹ − g̃(x̃)), (5.142)

which implies that the rate of growth of f̃
(

x̃, ỹ, h̃(x̃, ỹ)
)

cannot be faster than the rate of growth of the

comparison function φ1(·).

Assumption 5.5.5 Second Interconnection Conditions

The second interconnection condition is defined by the inequality

(

∂VF (ỹ)

∂x̃

)T

f̃
(

x̃, ỹ, h̃(x̃, ỹ)
)

≤ γ1φ
2
1(ỹ) + β2ψ1(x̃)φ1(ỹ), (5.143)

where ψ1(·) and φ1(·) have been both previously defined by satisfying Assumptions 5.5.2 and 5.5.2.

5.5.2 Fulfillment of the General ΣSF Stability Analysis

If assumptions 5.5.1, 5.5.2, 5.5.3, 5.5.4, and 5.5.5 are all satisfied, then the growth requirements of

f̃(x̃, ỹ, h̃(x̃, ỹ)) and ĝ(x̃, ỹ, h̃(x̃, x̃)) are satisfied, and with the Lyapunov functions VS(x̃) and VF (x̃, x̃)

defined, a new Lyapunov function candidate V1(x̃, ỹ) is considered and defined by the weighted sum of

VS(x̃) and VF (x̃, ỹ), results in

V1(x̃, ỹ) = (1− d1)VS(x̃) + d1VF (ỹ), d1 ∈ (0, 1), (5.144)

for 0 < d1 < 1. The newly defined function V1(x̃, ỹ) becomes the Lyapunov function candidate for the

singular perturbed ΣSF -subsystem, Eqns. (3.69–3.70). To explore the freedom in choosing the weights,

lets take d1 as an unspecified parameter in the interval (0, 1). From the properties of VS(x̃) and VF (x̃, ỹ)

and inequality (5.134), that is ‖ g̃(x̃) ‖≤ p1 (‖ x̃ ‖), where p1(·) is a κ function, it follows that V1(x̃, ỹ) is

positive-definite. Computing the time derivative of V1(x̃, ỹ) along the trajectories of f̃
(

x̃, ỹ, h̃(x̃, ỹ)
)

and

ĝ
(

x̃, ỹ, h̃(x̃, ỹ)
)

, resulting in

V̇1 = (1− d1)
∂VS

∂x̃
f̃
(

x̃, ỹ, h̃(x̃, ỹ)
)

+
d1
ε1

∂VF

∂ỹ
ĝ
(

x̃, ỹ, h̃(x̃, ỹ)
)

+ d1
∂VF

∂x̃
f̃
(

x̃, ỹ, h̃(x̃, ỹ)
)

= (1− d1)
∂VS

∂x̃
f̃
(

x̃, g̃(x̃), h̃(x̃, ỹ)
)

+ (1− d1)
∂VS

∂x̃

[

f̃
(

x̃, ỹ, h̃(x̃, ỹ)
)

− f̃
(

x̃, g̃(x̃), h̃(x̃, ỹ)
)]

+
d1
ε1

∂VF

∂ỹ
ĝ
(

x̃, ỹ, h̃(x̃, ỹ)
)

+ d1
∂VF

∂x̃
f̃
(

x̃, ỹ, h̃(x̃, ỹ)
)

. (5.145)

The fulfillment of inequalities defined in Assumptions 5.5.2, 5.5.3, 5.5.4 and 5.5.5, implies that Eq.

(5.145) can be expressed as

V̇1 ≤ −(1− d1)α1ψ
2
1(x̃) + (1− d1)β1ψ1(x̃)φ1(ỹ − g̃(x̃))

− d1
ε1
α2φ

2
1(ỹ − g̃(x̃)) + d1γ1φ

2
1(ỹ − g̃(x̃)) + d1β2ψ1(x̃)φ1(ỹ − g̃(x̃))
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= −
[

ψ1(x̃)

φ1(ỹ)

]T




(1− d1)α1 − 1
2 (1− d1)β1 − 1

2d1β2

− 1
2 (1− d1)β1 − 1

2d1β2 d1

(

α2

ε1
− γ1

)





×
[

ψ1(x̃)

φ1(ỹ)

]

. (5.146)

This translates into that the right hand side of Eq. (5.146) is a quadratic form in ψ1(x̃) and φ1(ỹ−g̃(x̃)),

where the quadratic form is negative-definite when

d1(1− d1)α1

(

α2

ε1
− γ1

)

>
1

4
[(1− d1)β1 + d1β2]

2
, (5.147)

which is equivalent to

1

ε1
>

1

α1α2

[

α1γ +
1

4(1− d)d
[(1− d)β1 + dβ2]

2

]

. (5.148)

It is important to note that in the above development only α1 and α2 are required by definition to be

positive. The other three parameters, β1, β2, and γ could, in general, be positive, negative or zero. In

most problems, however, when trying to satisfy the interconnection inequalities defined by Eqns. (5.140)

and (5.143), it is common to do so using norm inequalities, leading automatically to nonnegative values of

β1, β2, and γ1. Therefore, as suggested in the literature (Kokotović et al., 1986; Kokotović et al., 1987;

Kokotović et al., 1999) throughout the reminder of this thesis it is assumed that β1 ≥ 0, β2 ≥ 0, and

γ1 ≥ 0. Inequality (5.148) can be rewritten as

ε1 <
α1α2

α1γ1 +
1

4(1− d1)d1
[(1− d1)β1 + d1β2]

2
≡ ε1d . (5.149)

Inequality (5.149) shows that for any choice of d1, the corresponding V1 is a Lyapunov function for the

singular perturbed ΣSF -subsystem, Eqns. (3.69–3.70), for all ε1 satisfying Eq. (5.149). The dependance

on the right-hand side of Eq. (5.149) on the unspecified parameter d1 is sketched in Figure 5.7. It can

be easily seen that the maximum value of ε1d occurs at

d∗1 =
β1

β1 + β2
, (5.150)

yielding also the upper bounds on ε1 such

ε∗1 =
α1α2

α1γ1 + β1β2
. (5.151)

Therefore, it can be inferred that the equilibrium point of the singularly perturbed ΣSF -subsystem,

Eqns. (3.69–3.70), is asymptotically stable for all ε1 < ε∗1. The number ε∗1 is the best upper bound

on ε1 that can be provided by the above presented stability analysis. Assumptions 5.5.2, 5.5.3, 5.5.4

and 5.5.5 are summarized in Table 5.1, where it can be seen the similarities between the two-time-scale

growth requirements described in Section 5.2.1, and the three-time-scale growth requirements for the

ΣSF -subsystem. The asymptotic stability analysis presented can be summarizes in Theorem 5.5.1.

Theorem 5.5.1 : Let inequalities (5.136), (5.138), (5.140), and (5.143) be satisfied. Then the origin is

an asymptotically stable equilibrium of the singularly perturbed ΣSF -subsystem, Eqns. (3.69–3.70) for all

ε1 ∈ (0, ε∗1), where ε
∗
1 is given by Eq. (5.151). Moreover, for every number d1 ∈ (0, 1)

V1(x̃, ỹ) = (1− d1)VS(x̃) + d1VF (x̃, ỹ), (5.152)

is a Lyapunov function for all ε1 ∈ (0, ε1d), where ε1d ≤ ε∗1 is given by Eq. (5.149).

Theorem 5.5.1 can be summarized by understanding that x̃ = 0 is an asymptotically stable equilib-
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rium of the reduced ΣS-subsystem, Eq. (3.73), and ỹ = g̃(x̃) is an asymptotically stable equilibrium of

the boundary-layer ΣF -subsystem, Eq. (3.74), uniformly in x̃, that is, the ε − δ definition of Lyapunov

stability and the convergence ỹ → g̃(x̃) are uniform in x̃ (Vidyasagar, 2002), and if f̃
(

x̃, ỹ, h̃(x̃, ỹ)
)

and

ĝ
(

x̃, ỹ, h̃(x̃, ỹ)
)

satisfy certain growth conditions on the reduced and boundary-layer systems, Assump-

tions 5.5.2, 5.5.3, 5.5.4, and 5.5.5, then the origin is an asymptotically stable equilibrium of the sin-

gularly perturbed ΣSF -subsystem, Eqns. (3.69–3.70), for sufficiently small ε1. (Kokotović et al., 1986;

Kokotović et al., 1987; Kokotović et al., 1999).

Corollary 5.5.2 : Let assumptions of Theorem 5.5.1 hold for all x̃, ỹ ∈ Rn × Rm and let VS(x̃) and

VF (x̃, ỹ) be radially unbounded (i.e VS(x̃) → ∞ as ‖x̃‖ → ∞ and VF (x̃, ỹ) → ∞ as ‖ỹ − g̃(x̃)‖ → ∞).

Then, the equilibrium (x̃ = 0, ỹ = 0) is globally asymptotically stable for all ε1 < ε∗1.

Corollary 5.5.3 : Let all the assumptions of Theorem 5.5.1 hold with ψ1(x̃) = ‖x̃‖ and φ1(ỹ− g̃(x̃)) =

‖ỹ − g̃(x̃)‖ and suppose, in addition, that VS(x̃) and VF (x̃, ỹ) satisfy the inequalities

e1ψ
2
1(x̃) ≤ VS(x̃) ≤ e2ψ

2
1(x̃), ∀x̃ ∈ Bx̃, (5.153)

e3φ
2
2(ỹ − g̃(x̃)) ≤ VF (x̃, ỹ) ≤ e4φ

2
1(ỹ − g̃(x̃)), ∀(x̃, ỹ) ∈ Bx̃ ×Bỹ, (5.154)

where e1, ..., e4 denote positive constants. Then, the conclusions of Theorem 5.5.1 hold, with exponential

stability replacing asymptotic stability.

Corollary 5.5.4 : Let f̃
(

x̃, ỹ, h̃(x̃, ỹ)
)

, ĝ
(

x̃, ỹ, h̃(x̃, ỹ)
)

, and h̃(x̃, ỹ) be continuously differentiable. Sup-

pose that x̃ = 0 is an exponentially stable equilibrium of the reduced ΣS-subsystem, Eq. (3.73), and

ỹ = g̃(x̃) is an exponentially stable equilibrium of the boundary layer ΣF -subsystem, Eq. (3.74), uni-

formly in x̃, i.e.

‖ỹ(τ1)− g̃(x̃)‖ ≤ K1e
−ατ1‖ỹ(0)− g̃(x̃)‖, (5.155)

where α and K1 are independent of x̃. Then, the origin is an exponentially stable equilibrium of the

singularly perturbed ΣSF -subsystem, Eqns. (3.69–3.70), for sufficiently small ε1.

This concludes the first step of the asymptotic stability analysis, the ΣSF Stability Analysis. The

results obtained in this first step, the composite Lyapunov function for the ΣSF -subsystem, V1, and the

upper bounds, d∗1 and ε∗1, along with the demonstration that the singularly perturbed ΣSF -subsystem is

asymptotically stable for ε1 ∈ (0, εd1
), will be employed in the ΣSFU Stability Analysis that is conducted

in the following section.

5.5.3 General ΣSFU Stability Analysis

Once proven the asymptotic stability of the ΣSF -subsystem, Eqns. (3.69–3.70), the ΣSFU Stability

Analysis is conducted recalling that the ΣSF Stability Analysis provides with a composite Lyapunov

function, V1(x̃, ỹ), Eq. (5.144), that satisfies the growth requirements between both f̃(x̃, ỹ, h̃(x̃, ỹ)) and

ĝ(x̃, ỹ, h̃(x̃, ỹ)), therefore, and using these results, it can be continued to prove the asymptotic stability

properties of the full ΣSFU system, which for convenience is rewritten , as noted in Eqns. (5.121–5.122).

The asymptotic stability of the newly defined, but equivalent ΣSFU full system, is studied by treating

the system like a two-time-scale problem, whose reduced (slow) ΣSF -subsystem is given in Eq. (5.125),

and the boundary layer ΣU -subsystem given in Eq. (5.126).

The Lyapunov function obtained during the ΣSF Stability Analysis, V1, Eq. (5.144) becomes the Lya-

punov function for the F̃ (χ̃, z̃) system, while VU becomes the Lyapunov function for the ΣU -subsystem.

In a similar analysis to the one conducted in the first stage, the new Lyapunov functions must define the
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growth requirements for F̃ (χ̃, z̃) and ĥ(χ̃, z̃) by satisfying certain inequalities. These growth requirements

can be divided in three main groups:

• Reduced order growth requirements, if they refer to the properties that must posses the reduced order

subsystem, F̃ (χ̃, h̃(χ̃)) in Eq. (5.125).

• Boundary layer growth requirements, if they refer to the properties that must posses the boundary

layer subsystem, ĝ(χ̃, h̃(χ̃)) in Eq. (5.126).

• Interconnection growth requirements, if they refer to the properties that must posses both subsys-

tems in conjunction to prove the continuity between both the reduced order and the boundary layer

subsystems.

The properties for the isolated equilibrium at the origin are assumed in Assumption 5.5.6. The growth

requirements of both the reduced and boundary layer system separately are addressed in Assumptions

5.5.7 and 5.5.8 respectively, while the growth requirements that combine both reduced ΣSF and boundary

layer ΣU -subsystem requirements, called interconnection conditions, are defined in Assumptions 5.5.9 and

5.5.10. These Assumptions are all described in detail bellow.

Assumption 5.5.6 Asymptotic Stability of the Origin

The origin (χ̃ = 0, z̃ = 0) is a unique and isolated equilibrium of Eqns. (5.121–5.122), i.e.

0 = F̃ (0, 0), (5.156)

0 = ĥ(0, 0), (5.157)

moreover, z̃ = h̃(χ̃) is the unique root of

0 = ĥ(χ̃, z̃), (5.158)

in Bχ̃ ×Bz̃, i.e.

0 = ĥ(χ̃, h̃(χ̃)), (5.159)

and there exists a class κ function p2(·) such that

‖ h̃(χ̃) ‖≤ p2 (‖ χ̃ ‖) . (5.160)

The reduced order growth requirements are obtained by first considering the system given by Eq.

(5.121), and adding and subtracting F̃ (χ̃, h̃(χ̃)) to the right-hand side of Eq. (5.121) resulting in the

expression given by

˙̃x = F̃ (χ̃, h̃(χ)) + F̃ (χ̃, z̃)− F̃ (χ̃, h̃(χ̃)), (5.161)

where the term F̃ (χ̃, z̃)−F̃ (χ̃, h̃(χ̃)) can be viewed as a perturbation of the reduced order ΣSF -subsystem,

Eq. (5.125). Similarly, as in the ΣSF Stability Analysis, it is natural to first satisfy the growth require-

ments for Eq. (5.125), and then consider the effect of the perturbation term F̃ (χ̃, z̃) − F̃ (χ̃, h̃(χ̃)).

Therefore let proceed to define first the reduced order growth condition.

Assumption 5.5.7 Reduced System Conditions

There exists a positive-definite and decreasing Lyapunov function candidate V1(χ̃) that satisfies the fol-

lowing inequality

(

∂V1(χ̃)

∂χ̃

)T

F̃
(

χ̃, h̃(χ̃)
)

≤ −α3ψ
2
2(χ̃), (5.162)
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where ψ2(·) is a scalar function of vector arguments which vanishes only when its argument are zero, and

satisfying that χ̃ = 0 is a stable equilibrium of the reduced order system.

Assumption 5.5.8 Boundary-Layer System Conditions

There exists a positive-definite and decreasing Lyapunov function candidate VU (χ̃, z̃) such that for all

(χ̃, z̃) ∈ Bχ̃ ×Bz̃ satisfies

VU (χ̃, z̃) > 0, ∀z̃ 6= h̃(χ̃) and VU (χ̃, h̃(χ̃)) = 0, (5.163)

and
(

∂VU

∂z̃

)T

ĥ(χ̃, z̃) ≤ −α4φ
2
2(z̃ − h̃(χ̃)), α4 > 0, (5.164)

where VU (χ̃, z̃) is the Lyapunov function candidate of the boundary layer ΣU -subsystem, Eq. (5.126), in

which χ̃ is treated as a fixed parameter, and φ2(·) is a scalar function of vector arguments which vanishes

only when its arguments are zero, and satisfying that z̃ − h̃(χ̃) is a stable equilibrium of the boundary

layer ΣU -subsystem.

Both ψ2(·) and φ2(·) are scalar functions of vector arguments that vanish only when their arguments

are zero, i.e., ψ2(χ̃) = 0 if and only if χ̃ = 0, and both will be referred as comparison functions.

Assumption 5.5.9 : First Interconnection Condition

The Lyapunov functions V1(χ̃) and VU (χ̃, z̃) must satisfy the so called interconnection conditions. The

first interconnection condition is obtained by computing the derivative of VS(x̃) along the solution of Eq.

(5.161), yielding

V̇1(χ̃) =
∂V1

∂χ̃
F̃
(

χ̃, h̃(χ̃)
)

+
∂V1

∂χ̃

[

F̃ (χ̃, z̃)− F̃ (χ̃, h̃(χ̃))
]

(5.165)

≤ −α3ψ
2
2 χ̃+

∂V1

∂χ̃

[

F̃ (χ̃, z̃)− F̃
(

χ̃, h̃(χ̃)
)]

, (5.166)

thus assuming that

(

∂V1(χ̃)

∂χ̃

)T
[

F̃ (χ̃, z̃)− F̃
(

χ̃, h̃(χ̃)
)]

≤ β3ψ2(χ̃)φ2(z̃ − h̃(χ̃)). (5.167)

so that

V̇1 ≤ −α3ψ
2
2(χ̃) + β3ψ2(χ̃)φ2(χ̃− h̃(χ̃)). (5.168)

Inequality (5.167) determines the allowed growth of F̃ (χ̃, z̃) in z̃, and , similarly as in the ΣSF Stability

Analysis, in typical problems, verifying Assumption 5.5.9 reduces to verifying the inequality
∥

∥

∥F̃ (χ̃, z̃)− F̃
(

χ̃, h̃(χ̃)
)∥

∥

∥ ≤ ψ2(χ̃)φ2(z̃ − h̃(χ̃)), (5.169)

which implies that the rate of growth of F̃ (χ̃, z̃) cannot be faster than the rate of growth of the comparison

function φ2(·).

Assumption 5.5.10 : Second Interconnection Conditions

The second interconnection condition is defined by the inequality

(

∂VU (ẑ)

∂χ̃

)T

F̃ (χ̃, z̃) ≤ γ2φ
2
2(ẑ) + β4ψ2(χ̃)φ2(ẑ), (5.170)

where ψ2(·) and φ2(·) have been previously defined by satisfying assumptions 5.5.7, and 5.5.8.
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5.5.4 Fulfillment of the General ΣSFU Stability Analysis

If assumptions 5.5.6, 5.5.7, 5.5.8, 5.5.9, and 5.5.10 are all satisfied, then the growth requirements of F̃ (χ̃, z̃)

and ĝ(χ̃, z̃) are satisfied, and with the Lyapunov functions V1(χ̃) and VU (χ̃, z̃) defined, a new Lyapunov

function candidate V2(χ̃, z̃) is considered and defined by the weighted sum of V1(χ̃) and VU (χ̃, z̃), resulting

in

V2(χ̃, z̃) = (1− d2)V1(χ̃) + d2VU (ẑ), d2 ∈ (0, 1), (5.171)

for 0 < d2 < 1. The newly defined function V2(χ̃, z̃) becomes the Lyapunov function candidate for the

singular perturbed ΣSFU system, Eqns. (5.121–5.122). To explore the freedom in choosing the weights,

lets take d2 as an unspecified parameter in the interval (0, 1). From the properties of V1(χ̃) and VU (χ̃, z̃)

and inequality (5.160), that is ‖ h̃(χ̃) ‖≤ p2 (‖ χ̃ ‖), where p2(·) is a κ function, it follows that V2(χ̃, z̃) is

positive-definite. Computing the time derivative of V2(χ̃, z̃) along the trajectories of F̃ (χ̃, z̃) and ĝ (χ̃, z̃)

results in

V̇2 = (1− d2)
∂V1

∂x̃
F̃ (χ̃, z̃) +

d2
ε1ε2

∂VU

∂z̃
ĝ (χ̃, z̃) + d2

∂VU

∂χ̃
F̃ (χ̃, z̃)

= (1− d2)
∂V1

∂χ̃
F̃
(

χ̃, h̃(χ̃)
)

+ (1− d2)
∂V1

∂χ̃

[

F̃ (χ̃, z̃)− F̃
(

χ̃, h̃(χ̃)
)]

+
d2
ε1ε2

∂VU

∂z̃
ĝ (χ̃, z̃) + d2

∂VU

∂χ̃
F̃ (χ̃, z̃) . (5.172)

The fulfillment of inequalities in Assumptions 5.5.7, 5.5.8, 5.5.9 and 5.5.10, implies that Eq. (5.172)

can be expressed as

V̇2 ≤ −(1− d2)α3ψ
2
1(x̃) + (1− d2)β3ψ2(χ̃)φ2(χ̃− h̃(χ̃))

− d2
ε1ε2

α4φ
2
2(χ̃− h̃(χ̃)) + d2γ2φ

2
2(χ̃− h̃(χ̃)) + d2β4ψ2(χ̃)φ2(χ̃− h̃(χ̃))

= −
[

ψ2(χ̃)

φ2(z̃ − h̃(χ̃))

]T




(1− d2)α3 − 1
2 (1 − d2)β3 − 1

2d2β4

− 1
2 (1 − d2)β3 − 1

2d2β4 d2

(

α4

ε1ε2
− γ2

)





×
[

ψ2(χ̃)

φ2(z̃ − h̃(χ̃))

]

. (5.173)

The right hand side of Eq. (5.173) is a quadratic form in ψ2(χ̃) and φ2(χ̃− h̃(χ̃)), where the quadratic

form is negative-definite when

d2(1− d2)α3

(

α4

ε1ε2
− γ2

)

>
1

4
[(1− d2)β3 + d2β4]

2
, (5.174)

which is equivalent to

1

ε1ε2
>

1

α3α4

[

α3γ +
1

4(1− d)d
[(1− d)β3 + dβ4]

2

]

. (5.175)

It is important to note that in the above development only α3 and α4 are required by definition to be

positive. The other three parameters, β3, β4, and γ could, in general, be positive, negative or zero, and

similarly as in the ΣSF Stability Analysis, and throughout the reminder of this thesis, it is assumed that

β3 ≥ 0, β4 ≥ 0, and γ2 ≥ 0. Inequality (5.175) can be rewritten as

ε1ε2 <
α3α4

α3γ2 +
1

4(1− d2)d2
[(1− d2)β3 + d2β4]

2
≡ ε1dε2d . (5.176)
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Recalling that in the ΣSF Stability Analysis, ε1 was selected as ε1 ≤ ε∗1, therefore allowing to rewrite

inequality (5.176) as

ε2 <
α3α4

ε1

(

α3γ2 +
1

4(1− d2)d2
[(1− d2)β3 + d2β4]

2

) ≡ ε2d . (5.177)

Recall also that from the ΣSF Stability Analysis, the maximum value of ε1 was given by Eq. (5.151)

therefore, by selecting ε1 ≡ ε∗1, the smallest possible upper bound on ε2, and thus the most conservative

upper bound, becomes

ε2 <
α1γ1 + β1β2

α1α2

α3α4

α3γ2 +
1

4(1− d2)d2
[(1− d2)β3 + d2β4]

2
≡ ε2d . (5.178)

Inequality (5.178) shows that for any choice of d2, the corresponding V2 is a Lyapunov function for the

singular perturbed ΣSFU system, Eqns. (5.121–5.122), for all ε2 satisfying (5.178). The dependance on

the right-hand side of Eq. (5.178) on the unspecified parameter d2 is sketched in Figure 5.8. Therefore,

it can be easily seen that maximum value of ε2d occurs at

d∗2 =
β3

β3 + β4
, (5.179)

yielding a conservative upper bound on ε2

ε∗2 =
α1γ1 + β1β2

α1α2

α3α4

α3γ2 + β3β4
. (5.180)

Therefore, it can be inferred that the equilibrium point of the singularly perturbed ΣSFU full system,

Eqns. (5.121–5.122), is asymptotically stable for all ε2 < ε∗2. The number ε∗2 is the best upper bound

on ε2 that can be provided by the above presented stability analysis. Assumptions 5.5.7, 5.5.8, 5.5.9

and 5.5.10, are summarized in Table 5.2, where it can be seen the similarities between the two-time-scale

growth requirements described in Section 5.2.1, and the three-time-scale growth requirements for the full

ΣSFU system. The asymptotic stability analysis presented can be summarizes in Theorem 5.5.5.

Theorem 5.5.5 : Let inequalities (5.162), (5.164), (5.167), and (5.170) be satisfied. Then the origin is

an asymptotically stable equilibrium of the singularly perturbed ΣSFU full system, Eqns. (5.121–5.122)

for all ε2 ∈ (0, ε∗2), where ε
∗
2 is given by Eq. (5.180). Moreover, for every number d2 ∈ (0, 1)

V2(χ̃, z̃) = (1− d2)V1(χ̃) + d2VU (χ̃, z̃), (5.181)

is a Lyapunov function for all ε2 ∈ (0, ε2d), where ε2d ≤ ε∗2 is given by (5.176).

Theorem 5.5.5 can be summarized by understanding that χ̃ = 0 is an asymptotically stable equilibrium

of the reduced ΣSF -subsystem, Eq. (5.125), z̃ = h̃(χ̃) is an asymptotically stable equilibrium of the

boundary-layer ΣU -subsystem, Eq. (5.126) uniformly in χ̃, that is, the ε − δ definition of Lyapunov

stability and the convergence z̃ → h̃(χ̃) are uniform in χ̃ (Vidyasagar, 2002), and if F̃ (χ̃, z̃) and ĝ (χ̃, z̃)

satisfy certain growth conditions on the reduced and boundary-layer systems, assumptions 5.5.7, 5.5.8,

5.5.9 and 5.5.10, then the origin is an asymptotically stable equilibrium of the singularly perturbed

ΣSFU full system (5.121–5.122), for sufficiently small ε2. (Kokotović et al., 1986; Kokotović et al., 1987;

Kokotović et al., 1999).

Corollary 5.5.6 : Let assumptions of Theorem 5.5.5 hold for all χ̃, z̃ ∈ Rn × Rm and let V1(χ̃) and

VU (χ̃, z̃) be radially unbounded (i.e V1(χ̃) → ∞ as ‖χ̃‖ → ∞ and VU (χ̃, z̃) → ∞ as ‖ẑ − h̃(χ̃)‖ → ∞).

Then, the equilibrium (χ̃ = 0, z̃ = 0) is globally asymptotically stable for all ε2 < ε∗2.
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Corollary 5.5.7 : Let all the assumptions of Theorem 5.5.5 hold with ψ2(χ̃) = ‖χ̃‖ and φ2(χ̃− h̃(χ̃)) =

‖z̃ − h̃(χ̃)‖ and suppose, in addition, that V1(χ̃) and VU (χ̃, z̃) satisfy the inequalities

e5ψ
2
1(χ̃) ≤ V1(χ̃) ≤ e6ψ

2
1(χ̃), ∀χ̃ ∈ Bχ̃, (5.182)

e7φ
2
2(χ̃− h̃(χ̃)) ≤ VU (χ̃, z̃) ≤ e8φ

2
2(χ̃− h̃(χ̃)), ∀(χ̃, ẑ) ∈ Bχ̃ ×Bẑ, (5.183)

where e5, ..., e8 denote positive constants. Then, the conclusions of Theorem 5.5.5 hold, with exponential

stability replacing asymptotic stability.

Corollary 5.5.8 : Let F̃ (χ̃, z̃), ĝ (χ̃, z̃), and h̃(χ̃) be continuously differentiable. Suppose that χ̃ = 0

is an exponentially stable equilibrium of the reduced ΣSF -subsystem, Eq. (5.125), and z̃ = h̃(χ̃) is an

exponentially stable equilibrium of the boundary layer ΣU -subsystem, Eq. (5.126), uniformly in χ̃, i.e.

‖z̃(τ2)− h̃(χ̃)‖ ≤ K2e
−ατ2‖z̃(0)− h̃(χ̃)‖, (5.184)

where α and K2 are independent of χ̃. Then, the origin is an exponentially stable equilibrium of the

singularly perturbed system (5.121–5.122), for sufficiently small ε2.

This concludes the second and final step of the ΣSFU asymptotic stability analysis. The methodology

here presented is applied to the three-time-scale helicopter problem in chapter 6, and for completeness

and to help understanding the methodology, it is also applied to the simplified example and presented in

Appendix C. The following section extends the singularly perturbed stability analysis to a more general

N th-time scale system by proposing a 4th-order time-scale singularly perturbed system as an example,

as conducted in chapter 3, to describe the TD and BU time scale analysis for the general N th-time-scale

analysis.
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Assumption 5.5.2

Section 5.2 ∂V
∂x f(x, h(x)) α1 ψ(x)

ΣSF
∂VS(x̃)

∂x̃ f̃(x̃, g̃(x̃), h̃(x̃, ỹ)) α1 ≥ 0 ψ1(x̃)

Assumption 5.5.3

Section 5.2 ∂W
∂z g(x, z) α2 φ(z − h(x))

ΣSF

(

∂VF (ỹ)
∂ỹ

)T

ĝ(x̃, ỹ, h̃(x̃, ỹ)) α2 ≥ 0 φ1(ỹ − g̃(x̃))

Assumption 5.5.4

Section 5.2 ∂V
∂x f(x, z) f(x, h(x)) β1

ΣSF

(

∂VS(x̃)
∂x̃

)T

f̃(x̃, ỹ, h̃(x̃, ỹ)) f̃(x̃, g̃(x̃), h̃(x̃, ỹ)) β1 ≥ 0

Assumption 5.5.5

Section 5.2 ∂W
∂x f(x, z) γ1 β2

ΣSF

(

∂VF (ỹ)
∂x̃

)T

f̃(x̃, ỹ, h̃(x̃, ỹ)) γ1 ≥ 0 β2 ≥ 0

Table 5.1: Parameters for the Comparison Functions and Inequalities that Guarantee the Asymptotic
Stability Requirements for the ΣSF Subsystem.

Assumption 5.5.7

Section 5.2 ∂V
∂x f(x, h(x)) α3 ψ(x)

ΣSF
∂V1(χ̃)

∂χ̃ F̃ (χ̃, h̃(χ̃) α3 ≥ 0 ψ2(χ̃)

Assumption 5.5.8

Section 5.2 ∂W
∂z g(x, z) α4 φ(z − h(x))

ΣSF

(

∂VF (ẑ)
∂ẑ

)T

ĝ(χ̃, z̃) α4 ≥ 0 φ2(χ̃− h̃(χ̃))

Assumption 5.5.9

Section 5.2 ∂V
∂x f(x, z) f(x, h(x)) β3

ΣSF

(

∂V1(χ̃)
∂χ̃

)T

F̃ (χ̃, z̃) F̃ (χ̃, h̃(χ̃)) β3 ≥ 0

Assumption 5.5.10

Section 5.2 ∂W
∂x f(x, z) γ2 β4

ΣSF

(

∂VU (ẑ)
∂χ̃

)T

F̃ (χ̃, ẑ) γ2 ≥ 0 β4 ≥ 0

Table 5.2: Parameters for the Comparison Functions and Inequalities that Guarantee the Asymptotic
Stability Requirements for the ΣSF Subsystem.
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Figure 5.2: Bottom-sequence of the ΣSF Stability Analysis.

Figure 5.3: Up-sequence of the ΣSF Stability Analysis.
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Figure 5.4: ΣSF Stability Analysis.
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Figure 5.5: ΣSFU Stability Analysis.
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Figure 5.6: ΣSF and ΣSFU Stability Analysis.
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Figure 5.7: Stability upper bounds on ε1 (Kokotović et al., 1986).

Figure 5.8: Stability upper bounds on ε2 (Kokotović et al., 1986).
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5.6 Top-Down and Bottom-Up Stability Analysis Extension for

N
th-Time-Scale System

Similarly as conducted in section 3.6, in which the three-time-scale analysis was extended to a more

general N th-time-scale system, the ΣSFU Stability Analysis can be extended to a more general N th-

time-scale system, thus becoming a valuable tool that can be used to analyze the asymptotic stability

properties for any general singularly perturbed closed loop system. The major difference between the

three-time-scale ΣSFU Stability Analysis previously presented, and the N th-time-scale general stability

analysis, here resented, lies in the fact that after each subsystem reduction that results when applying the

selected stretched time scale, the designer can continue with the selected time-scale decomposition using

either the TD or the BU methodologies, depending on the system structure of the resulting reduced

order and boundary layer subsystems, and what suits better in order to proceed with the time-scale

decomposition. The methodology is divided in two steps

• In the first step the methodology defines the N − 1 decomposed two-time-scale subsystems that will

be used in the asymptotic stability analysis.

• In the second step, a stability analysis of the resulting N − 1 reduced order two-time-scale singularly

perturbed subsystem is conducted.

In the second step, the stability of each of resulting N − 1 reduced order two-time-scale singularly

perturbed subsystem is analyzed by starting with the smaller order reduced two-time-scale system, and

continues by using the obtained stability results to demonstrate the stability properties of the higher

order two-time-scale systems. Similarly as in section 3.6, to help in understanding the extension of the

N th-time-scale Stability Analysis, the author has chosen a general 4th-time-scale system similar to the

one previously defined in chapter 3, Eqns. (3.76–3.79), but expressed in error dynamics, that will allow to

simplify the proposed asymptotic stability methodology. The proposed 4th-time-scale system is rewritten

in its error dynamics form given by

˙̃x = f̃(x̃, ỹ, z̃, w̃), x̃ ∈ Rx̃, (5.185)

ε1 ˙̃y = ĝ(x̃, ỹ, z̃, w̃), ỹ ∈ Rỹ, (5.186)

ε1ε2 ˙̃z = ĥ(x̃, ỹ, z̃, w̃), z̃ ∈ Rz̃ , (5.187)

ε1ε2ε3 ˙̃w = î(x̃, ỹ, z̃, w̃), x̃ ∈ Rw̃. (5.188)

with Bx̃ ⊂ Rx̃, Bỹ ⊂ Rỹ, Bz̃ ⊂ Rz̃, and Bw̃ ⊂ Rw̃, denoting closed sets, and where for simplicity, Eqns.

(5.185–5.188) will be denoted as the ΣSFU2
full system. Recall also that, the error dynamics are defined

by

x̃ = x− x∗, (5.189)

ỹ = y − y∗, (5.190)

z̃ = z − z∗, (5.191)

w̃ = w − w∗, (5.192)

with x∗, y∗, z∗, and w∗ being the desired values of the state vectors x, y, z, and w, respectively. Figure

5.9 presents a schematic of the four possible solutions for the 4th-time-scale, similarly to Figure 3.10,

where the columns defined by A, B and C defined the three two-time-scale reduced order subsystems.

For conciseness, only the third of the combinations, Case 3, will be briefly described in this section since

uses a similar philosophy employed for the three-time-scale ΣSFU Stability Analysis presented in this

chapter.
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5.6.1 1st-Sequential Two-Time-Scale Decomposition for a 4th-Time-Scale

System

The first step, the sequential decomposition into the N − 1 two-time-scale system, is a simple algebraic

substitution in which the sequential order reduction is obtained after applying each of the three asso-

ciated stretched time scales. That is, for Case 3 that will be described in this section, the sequential

decomposition starts by first applying the stretched time scale given by

τ3 =
t

ε1ε2ε3
, (5.193)

resulting in the reduced order ΣSFU1
-subsystem given by

˙̃x = f̃
(

x̃, ỹ, z̃, ĩ(x̃, ỹ, z̃)
)

, (5.194)

ε1 ˙̃y = ĝ
(

x̃, ỹ, z̃, ĩ(x̃, ỹ, z̃)
)

, (5.195)

ε1ε2 ˙̃z = ĥ
(

x̃, ỹ, z̃, ĩ(x̃, ỹ, z̃)
)

, (5.196)

depicted with the short-dashed line box in Case A, Figure 5.9. The associated boundary layer system,

denoted as ΣUτ3
for simplicity, is given by

dw̃

dτ3
= î (x̃, ỹ, z̃, w̃) , (5.197)

with ĩ (x̃, ỹ, z̃) representing the quasi-steady-equilibrium of the ΣUτ3
-subsystem when setting ε3 = 0, that

is

0 = î (x̃, ỹ, z̃, w̃) → w̃ = ĩ(x̃, ỹ, z̃). (5.198)

The second sequential decomposition continues by applying the second stretched time scale given

by

τ2 =
t

ε1ε2
, (5.199)

to the ΣSFU1
-subsystem, Eqns. (5.194–5.196), resulting in the reduced order ΣSF -subsystem given

by

˙̃x = f̃
(

x̃, ỹ, h̃(x̃, ỹ), ĩ(x̃, ỹ)
)

, (5.200)

ε1 ˙̃y = ĝ
(

x̃, ỹ, h̃(x̃, ỹ), ĩ(x̃, ỹ)
)

, (5.201)

depicted with the dashed-dot line box in Case B, Figure 5.9. The associated boundary layer system,

denoted as ΣUτ2
for simplicity, is given by

dz̃

dτ2
= ĥ

(

x̃, ỹ, z̃, ĩ(x̃, ỹ, z̃)
)

, (5.202)

with h̃ (x̃, ỹ) representing the quasi-steady-equilibrium of the ΣUτ2
-subsystem when setting ε2 = 0, that

is

0 = ĥ
(

x̃, ỹ, z̃, ĩ(x̃, ỹ, z̃)
)

→ z̃ = h̃(x̃, ỹ). (5.203)

Finally, the third and last sequential decomposition is obtained by applying the last stretched time

scale given by

τ1 =
t

ε1
, (5.204)

to the ΣSF -subsystem, Eqns. (5.200–5.201), resulting in the reduced order ΣS-subsystem given by

˙̃x = f̃
(

x̃, g̃(x̃), h̃(x̃), ĩ(x̃)
)

, (5.205)
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and with the boundary layer system, denoted as ΣUτ1
for simplicity, is given by

dỹ

dτ1
= ĝ

(

x̃, ỹ, h̃(x̃, ỹ), ĩ(x̃, ỹ)
)

, (5.206)

with g̃ (x̃) representing the quasi-steady-equilibrium of the ΣUτ1
-subsystem when setting ε1 = 0, that

is

0 = ĝ
(

x̃, ỹ, h̃(x̃, ỹ), ĩ(x̃, ỹ, h̃)
)

→ ỹ = g̃(x̃), (5.207)

where both subsystems can be seen in Case C in Figure 5.9. The second step of the stability analysis starts

by analyzing the stability of the smallest two-time-scale subsystem which, for Case C, corresponds to the

ΣSF -subsystem, Eqns. (5.200–5.201), which is decomposed into the reduced order ΣS-subsystem, Eq.

(5.205), and the boundary layer ΣF -subsystem, Eq. (5.206). It is also assumed that the Lyapunov function

candidates are chosen following the same guidelines as in Section 5.4, in which they are derived considering

the natural Lyapunov functions for the associated equilibrium equations, resulting in Lyapunov functions

of the form

VS = VS(x̃), (5.208)

VF = VF (ỹ − g̃(x̃)) = VF (ŷ) , (5.209)

VU1
= VU1

(

z̃ − h̃(x̃, ỹ)
)

= VU1
(ẑ) , (5.210)

VU2
= VU2

(

w̃ − ĩ(x̃, ỹ, z̃)
)

= VU2
(ŵ) , (5.211)

with

ŷ = ỹ − g̃(x̃), (5.212)

ẑ = z̃ − h̃(x̃, ỹ), (5.213)

ŵ = w̃ − ĩ(x̃, ỹ, z̃), (5.214)

where ŷ, ẑ, and ŵ represent the error between the state vectors and the quasi-steady-state equilibria of the

associated boundary layer subsystem which they form part. In following sections, the stability analysis

of the resulting decomposed two-time-scale subsystems, the second step, is briefly described.

5.6.2 2nd-Sequential Two-Time-Scale Decomposition for a 4th-Time-Scale

System

The sequential stability analysis for the 3rd-order two-time-scale system, which for the Case C corresponds

to the ΣSF subsystem, is performed, similarly as in the generic three-time-scale asymptotic stability analy-

sis, using the standard method for two-time-scale systems (Kokotović et al., 1986; Kokotović et al., 1987;

Kokotović et al., 1999), in which the Lyapunov functions for the ΣS and ΣF subsystems, that is VS(x̃)

and VF (ỹ), Eqns. (5.208) and (5.208), respectively, must satisfy the growth requirements on f̃(x̃, ỹ, h̃, ĩ)

and ĝ(x̃, ỹ, h̃, ĩ) by satisfying similar inequalities to the one described in section 5.2.1, which are described

bellow:

• Reduced System Conditions 5.2.2.

• Boundary-Layer System Conditions 5.2.3.

• First Interconnection Condition 5.2.4.

• Second Interconnection Conditions 5.2.5.

Assumption 5.2.2, applied to the ΣSF -subsystem, Eqns. (5.200–5.201), is satisfied by recognizing

that there exists a positive-definite and decreasing Lyapunov function candidate VS(x̃) that satisfies the
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following inequality

(

∂VS(x̃)

∂x̃

)T

f̃(x̃, g̃(x̃), h̃(x̃), ĩ(x̃)) ≤ −α1ψ
2
1(x̃), (5.215)

where ψ1(·) is a scalar function of vector arguments which vanishes only when its argument are zero, and

satisfying that x̃ = 0 is a stable equilibrium of the reduced order system. Assumption 5.2.3 applied to the

ΣSF -subsystem, is satisfied by recognizing that there exists a positive-definite and decreasing Lyapunov

function candidate VF (x̃, ỹ) such that for all (x̃, ỹ) ∈ Bx̃ ×Bỹ satisfies the inequality given by

(

∂VF

∂ỹ

)T

ĝ(x̃, ỹ, h̃(x̃, ỹ), ĩ(x̃, ỹ)) ≤ −α2φ
2
1(ỹ − g̃(x̃)), (5.216)

where φ1(·) is a scalar function of vector arguments which vanishes only when its arguments are zero, and

satisfying that ỹ − g̃(x̃) is a stable equilibrium of the boundary layer system. The first interconnection

condition for the ΣSF -subsystem, Assumption 5.2.4, consist in satisfying the inequality given by

(

∂VS(x̃)

∂x̃

)T
[

f̃(x̃, ỹ, h̃(x̃, ỹ), ĩ(x̃, ỹ))− f̃
(

x̃, g̃(x̃), h̃(x̃), ĩ(x̃)
)]

≤ β1ψ1(x̃)φ1(ỹ), (5.217)

while the second interconnection condition for the ΣSF -subsystem, Assumption 5.2.5, consist in satisfying

the inequality given by

(

∂VF (ỹ)

∂x̃

)T

f̃
(

x̃, ỹ, h̃(x̃, ỹ), ĩ(x̃, ỹ)
)

≤ γ1φ
2
1(ỹ) + β2ψ1(x̃)φ1(ỹ). (5.218)

The fulfillment of assumptions 5.5.1, 5.5.2, 5.5.3, 5.5.4, and 5.5.5, applied to the helicopter ΣSF -

subsystem by the fulfillment of inequalities 5.215, 5.216, 5.217, and 5.218, proves that the growth re-

quirements of f̃(x̃, ỹ, h̃(x̃, ỹ), ĩ(x̃, ỹ)) and ĝ(x̃, ỹ, h̃(x̃, x̃), ĩ(x̃, ỹ)) are satisfied, and with the Lyapunov func-

tions VS(x̃) and VF (x̃, ỹ), a new Lyapunov function candidate V1(x̃, ỹ) is considered and defined by the

weighted sum of VS(x̃) and VF (x̃, ỹ), given by

V1(x̃, ỹ) = (1− d1)VS(x̃) + d1VF (ỹ), d1 ∈ (0, 1), (5.219)

for 0 < d1 < 1. The newly defined function V1(x̃, ỹ) becomes the Lyapunov function candidate for the sin-

gular perturbed system ΣSF -subsystem, Eqns. (5.200–5.201). Similarly, as conducted for the general two-

time-scale methodology, computing the derivative V1(x̃, ỹ) along the trajectories of f̃(x̃, ỹ, h̃(x̃, ỹ), ĩ(x̃, ỹ))

and ĝ(x̃, ỹ, h̃(x̃, ỹ), ĩ(x̃, ỹ)) results in the upper bounds for both d∗1 and ε∗1 given by

d∗1 =
β1

β1 + β2
, (5.220)

and

ε∗1 =
α1α2

α1γ1 + β1β2
. (5.221)

Therefore, it can be inferred that the equilibrium point of the singularly perturbed ΣSF -subsystem,

Eqns. (5.200–5.201), is asymptotically stable for all ε1 < ε∗1. The number ε∗1 is the best upper bound

on ε1 that can be provided by the above presented stability analysis. The asymptotic stability analysis

presented can be summarizes in Theorem 5.6.1.

Theorem 5.6.1 : Let inequalities (5.215), (5.216), (5.217), and (5.218) be satisfied. Then the origin

is an asymptotically stable equilibrium of the singularly perturbed system ΣSF -subsystem, Eqns (5.200–

5.201) for all ε1 ∈ (0, ε∗1), where ε
∗
1 is given by Eq. (5.221). Moreover, for every number d1 ∈ (0, 1),

the resulting Lyapunov function V1(x̃, ỹ), Eq. (5.219), is a Lyapunov function for all ε1(0, εd1
), where

ε1 ≤ ε∗1 is given by Eq. (5.221).
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Theorem 5.6.1 can be summarized by understanding that x̃ = 0 is an asymptotically stable equilib-

rium of the reduced ΣS-subsystem, Eq. (5.205), and ỹ = g̃(x̃) is an asymptotically stable equilibrium of

the boundary-layer ΣF -subsystem, Eq.(5.206) uniformly in x̃, that is, the ε − δ definition of Lyapunov

stability and the convergence ỹ → g̃(x̃) are uniform in x̃ (Vidyasagar, 2002), and if f̃(x̃, ỹ, h̃(x̃, ỹ)) and

ĝ(x̃, ỹ, h̃(x̃, ỹ)) satisfy certain growth conditions on the reduced and boundary-layer systems, assumptions

5.5.1, 5.5.2, 5.5.3, 5.5.4, and 5.5.5, then the origin is an asymptotically stable equilibrium of the singu-

larly perturbed ΣSF -subsystem, Eqns. (5.200–5.201), for sufficiently small ε1. (Kokotović et al., 1986;

Kokotović et al., 1987; Kokotović et al., 1999).

5.6.3 3rd-Sequential Two-Time-Scale Decomposition for a 4th-Time-Scale

System

Once demonstrated the asymptotic stability properties for the ΣSF -subsystem, Eqns. (5.200–5.201),

resulting in a valid Lyapunov function, Eq. (5.219), and with the upper bounds d∗1 and ε∗1 being given

by Eqns. (5.220) and (5.221), respectively, the strategy shifts towards, demonstrating the asymptotic

stability properties for the next higher order two-time-scale subsystem, which is given by Case B, that

is the ΣSFU1
, Eqns. (5.194–5.196).

Recall that as discussed previously, the ΣSFU1
-subsystem can be decomposed into a two-time-scale

subsystem by applying the stretched time scale given by τ2, Eq. (5.199), resulting in the reduced order

(slow) model given by the ΣSF -subsystem, Eq. (5.200–5.201), while the boundary (fast) layer is given

by the ΣUτ2
-subsystem, Eq. (5.202). Recall also that employing a methodology similar to the one used

in the ΣSFU Stability Analysis presented for the three-time-scale model in section 5.5.3, the stability

analysis for the ΣSFU1
-subsystem, Eq. (5.194–5.196), is conducted by considering the results obtained

in the previous step. These results provide the associated Lyapunov function for the reduced order ΣSF -

subsystem, V1(x̃, ỹ), and recalling that VU1
(ẑ), Eq. (5.210), is the associated Lyapunov function for the

ΣUτ2
-subsystem, Eq. (5.202), this permits to analyze the stability of the ΣSFU1

-subsystem. Prior to start

with the asymptotic stability analysis of the ΣSFU1
-subsystem, let first introduced a change of variables

that allows to rewrite the ΣSFU1
-subsystem, Eqns. (5.194–5.196) as

˙̃χ1 = F̃1(χ̃1, z̃, ĩ(χ̃1, z̃)), χ̃1 ∈ Rχ̃1 , (5.222)

ε1ε2 ˙̃z = ĥ(χ̃1, z̃, ĩ(χ̃1, z̃)), z̃ ∈ Rz̃ , (5.223)

with Bχ̃1
⊂ Rχ̃1 and Bz̃ ⊂ Rz̃ denoting closed sets, and where F̃1(χ̃1, z̃, ĩ(χ̃1, z̃)) represent the slow

dynamics of the ΣSFU1
-subsystem, when applying the stretched time scale τ2 = t/(ε1ε2), which is also

equivalent to the ΣSF -subsystem defined in Eqns. (5.200–5.201), therefore, resulting in

F̃1(χ̃1, z̃, ĩ(χ̃1, z̃)) ,

[

f̃(χ̃1, z̃, ĩ(χ̃1, z̃))

ĝ(χ̃1, z̃, ĩ(χ̃1, z̃))

]

=

[

f̃(x̃, ỹ, z̃, ĩ(χ̃1, z̃)

ĝ(x̃, ỹ, z̃, ĩ(χ̃1, z̃)

]

, (5.224)

where χ̃1 represents the augmented state vector given by

χ̃1 ,
[

x̃ ỹ
]T

. (5.225)

Therefore, the Lyapunov function V1(χ̃), Eq. (5.219), that was obtained in the previous stage of

the stability analysis, becomes the Lyapunov function for the F̃1(χ̃1, z̃, ĩ(χ̃1, z̃)) subsystem. Both Lya-

punov functions, V1(χ̃1) and VU1
(χ̃1, z̃), must fulfill certain growth requirements for F̃1(χ̃1, z̃, ĩ(χ̃1, z̃)),

and ĥ(χ̃1, z̃, ĩ(χ̃1, z̃)), by satisfying similar inequalities to the one described in section 5.2.1. Assump-

tion 5.2.2 applied to the ΣSFU1
-subsystem, Eqns. (5.194–5.196) is satisfied by recognizing that there

exists a positive-definite and decreasing Lyapunov function candidate V1(χ̃) that satisfies inequality given
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by

(

∂V1(χ̃1)

∂χ̃1

)T

F̃1(χ̃1, h̃(χ̃1), ĩ(χ̃1)) ≤ −α3ψ
2
2(χ̃1), (5.226)

where ψ2(·) is a scalar function of vector arguments which vanishes only when its argument are zero,

and satisfying that χ̃1 = 0 is a stable equilibrium of the reduced order system. Assumption 5.2.3 applied

to the ΣSFU1
-subsystem, is satisfied by recognizing that there exists a positive-definite and decreasing

Lyapunov function candidate VU1
(χ̃1, z̃) such that for all (χ̃1, z̃) ∈ Bχ̃1

× Bz̃ satisfies inequality given

by

(

∂VU1

∂z̃

)T

ĥ(χ̃1, z̃, ĩ(χ̃1, z̃) ≤ −α4φ
2
2(z̃ − h̃(χ̃1)), (5.227)

where φ2(·) is a scalar function of vector arguments which vanishes only when its arguments are zero, and

satisfying that z̃ − h̃(χ̃1) is a stable equilibrium of the boundary layer system. The first interconnection

condition for the ΣSFU1
-subsystem, Assumption 5.2.4, consist in satisfying the inequality given by

(

∂V1(χ̃1)

∂χ̃1

)T
[

F̃1(χ̃1, z̃, ĩ(χ̃1, z̃))− F̃1

(

χ̃1, h̃(χ̃1), ĩ(χ̃1)
)]

≤ β3ψ2(χ̃1)φ2(z̃ − h̃(χ̃1)), (5.228)

while the second interconnection condition for the ΣSFU1
-subsystem, Assumption 5.2.5, consist in satis-

fying the inequality given by

(

∂VU1
(χ̃1, z̃)

∂χ̃1

)T

F̃1

(

χ̃1, z̃, ĩ(χ̃1, z̃)
)

≤ γ2φ
2
2(z̃ − h̃(χ̃1)) + β4ψ2(χ̃1)φ2(z̃ − h̃(χ̃1)). (5.229)

The fulfillment of assumptions 5.5.1, 5.5.2, 5.5.3, 5.5.4, and 5.5.5, applied to the ΣSFU1
-subsystem

by the fulfillment of inequalities 5.226, 5.227, 5.228, and 5.229, proves that the growth requirements

of F̃1

(

χ̃1, z̃, ĩ(χ̃1, z̃)
)

and ĥ
(

χ̃1, z̃, ĩ(χ̃1, z̃)
)

are satisfied, and with the Lyapunov functions V1(χ̃1) and

VU1
(χ̃1, z̃), a new Lyapunov function candidate V2(χ̃1, z̃) is considered and given by

V2(χ̃1, z̃) = (1− d2)V1(χ̃1) + d2VU1
(χ̃1, z̃), d2 ∈ (0, 1), (5.230)

for 0 < d2 < 1. The newly defined function V2(χ̃1, z̃1) becomes the Lyapunov function candidate for the

singular perturbed ΣSFU1
-subsystem, Eqns. (5.194–5.196). Similarly as conducted for the general two-

time-scale methodology, by computing the derivative V2(χ̃1, z̃) along the trajectories of F̃1

(

χ̃1, z̃, ĩ(χ̃1, z̃)
)

and ĥ
(

χ̃1, z̃, ĩ(χ̃1, z̃)
)

results in the upper bounds for both d∗2 and ε∗2 given by

d∗2 =
β3

β3 + β4
, (5.231)

and

ε∗2 =
1

ε1

α3α4

α3γ2 + β3β4
, (5.232)

where recalling that the upper bound on ε1 was defined in Eq. (5.221), therefore, by selecting ε1 ≡ ε∗1,

the smallest possible upper bound on ε2, and thus the most conservative upper bound, becomes

ε∗2 =
α1γ1 + β1β2

α1α2

α3α4

α3γ2 + β3β4
, (5.233)

where it can also be observed that the upper bound on the ΣSFU1
-subsystem is a function of the previously

derived lower order stability analysis upperbounds. Therefore, it can be inferred that the equilibrium

point of the singularly perturbed ΣSFU1
-subsystem, Eqns. (5.194–5.196), is asymptotically stable for all

ε2 < ε∗2. The number ε∗2 is the best upper bound on ε2 that can be provided by the above presented

stability analysis. The asymptotic stability analysis presented can be summarizes in Theorem 5.6.2.

Theorem 5.6.2 : Let inequalities (5.226), (5.227), (5.228), and (5.229) be satisfied. Then the origin is
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an asymptotically stable equilibrium of the singularly perturbed system ΣSFU1
-subsystem, Eqns. (5.194–

5.196) for all ε2 ∈ (0, ε∗2), where ε
∗
2 is given by Eq. (5.232). Moreover, for every number d2 ∈ (0, 1),

the resulting Lyapunov function V2(χ̃1, z̃), Eq. (5.243), is a Lyapunov function for all ε2(0, εd2
), where

ε2 ≤ ε∗2 is given by Eq. (5.233).

Theorem 5.6.2 can be summarized by understanding that χ̃1 = 0 is an asymptotically stable equilibrium

of the reduced ΣSF -subsystem, Eqns. (5.200–5.201), and z̃ = h̃(χ̃1) is an asymptotically stable

equilibrium of the boundary-layer ΣUτ2
-subsystem, Eq. (5.202), uniformly in χ̃1, that is, the ε− δ defini-

tion of Lyapunov stability and the convergence z̃ → h̃(χ̃1) are uniform in χ̃1 (Vidyasagar, 2002), and if

F̃1

(

χ̃1, z̃, ĩ(χ̃1, z̃)
)

and ĥ
(

χ̃1, z̃, ĩ(χ̃1, z̃)
)

satisfy certain growth conditions on the reduced and boundary-

layer systems, assumptions 5.5.1, 5.5.2, 5.5.3, 5.5.4, and 5.5.5, then the origin is an asymptotically stable

equilibrium of the singularly perturbed ΣSFU1
-subsystem, Eqns. (5.194–5.196), for sufficiently small ε2.

(Kokotović et al., 1986; Kokotović et al., 1987; Kokotović et al., 1999).

5.6.4 4th-Sequential Two-Time-Scale Decomposition for a 4th-Time-Scale

System

Finally, once demonstrated the asymptotic stability properties for the ΣSFU1
-subsystem, Eqns. (5.194–

5.196), resulting in a valid Lyapunov function, Eq. (5.230), and with the upper bounds being given by

Eqns. (5.231) and (5.233), the strategy shifts towards, demonstrating the asymptotic stability properties

for the original higher order two-time-scale subsystem, which is given by Case A, that is the original

ΣSFU2
system, Eqns. (5.185–5.188).

As seen in Case A, Figure 5.9, the ΣSFU2
original system is decomposed into a two-time-scale subsystem

by applying the stretched time scale given by τ3, Eq. (5.193), resulting in the reduced order (slow) model

given by the ΣSFU1
-subsystem, Eqns. (5.194–5.196), while the boundary (fast) layer is given by the

ΣUτ3
-subsystem, Eq. (5.197).

The stability analysis for the ΣSFU2
system, Eqns. (5.194–5.196), is conducted by considering the

results obtained in the previous step. These results provide the associated Lyapunov function for the

reduced order subsystem, ΣSFU1
-subsystem, resulting when applying the stretched time scale given by

τ3, given by V2(χ̃, z̃), and recalling that VU3
(ŵ), Eq. (5.210), is the associated Lyapunov function

for the ΣUτ3
-subsystem, Eq. (5.197), which permits to analyze the stability of the full ΣSFU2

system.

Prior to start with the asymptotic stability analysis of the ΣSFU2
-subsystem, and similarly as previously

conducted, let extend the change of variables that allows to rewrite the ΣSFU2
-subsystem (5.185–5.188)

as

˙̃χ2 = F̃2(χ̃2, w̃, ), χ̃2 ∈ Rχ̃2 , (5.234)

ε1ε2ε3 ˙̃w = î(χ̃2, w̃), w̃ ∈ Rw̃, (5.235)

with Bχ̃2
⊂ Rχ̃2 and Bw̃ ⊂ Rw̃ denoting closed sets, and where F̃2(χ̃2, w̃) represents the slow dynamics

of the ΣSFU2
system, when applying the stretched time scale τ3 = t/(ε1ε2ε3), which is given by Eqns.

(5.194–5.196), that is

F̃2(χ̃2, w̃) ,

[

F̃1(χ̃2, w̃)

ĥ(χ̃2, w̃)

]

, (5.236)

where F̃1 was previously defined in Eq. (5.224) as

F̃1(χ̃2, w̃) ,

[

f̃(χ̃2, w̃)

ĝ(χ̃2, w̃)

]

, (5.237)
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with χ̃2 being the augmented state vector given by

χ̃2 =
[

χ̃1 z̃
]T

=
[

x̃ ỹ z̃
]T

, (5.238)

Therefore, the Lyapunov function V2(χ̃2) that was obtained in the previous stage of the stability analy-

sis, Eq. (5.230), becomes the Lyapunov function for the F̃2(χ̃2, w̃) subsystem. Both Lyapunov functions,

V2(χ̃2) and VU2
(χ̃2, z̃2), must fulfill the growth requirements for F̃2(χ̃2, w̃) and î(χ̃2, w̃) by satisfying cer-

tain inequalities. These growth requirements for the ΣSFU2
system take the form of inequalities which

are described bellow. Assumption 5.2.2 applied to the ΣSFU2
-subsystem, Eqns. (5.185–5.188), is satisfied

by recognizing that there exists a positive-definite and decreasing Lyapunov function candidate V2(χ̃)

that satisfies inequality given by

(

∂V2(χ̃2)

∂χ̃2

)T

F̃2(χ̃2, ĩ(χ̃2)) ≤ −α5ψ3
2(χ̃2), (5.239)

where ψ3(·) is a scalar function of vector arguments which vanishes only when its argument are zero,

and satisfying that χ̃2 = 0 is a stable equilibrium of the reduced order system. Assumption 5.2.3 applied

to the ΣSFU2
-subsystem, is satisfied by recognizing that there exists a positive-definite and decreasing

Lyapunov function candidate VU2
(χ̃, z̃) such that for all (χ̃2, w̃) ∈ Bχ̃2

×Bw̃ satisfies

(

∂VU2

∂w̃

)T

î(χ̃2, w̃) ≤ −α6φ3
2(w̃ − ĩ(χ̃2)), (5.240)

where φ3(·) is a scalar function of vector arguments which vanishes only when its arguments are zero, and

satisfying that w̃ − ĩ(χ̃2) is a stable equilibrium of the boundary layer system. The first interconnection

condition for the ΣSFU2
-subsystem, Assumption 5.2.4, consist in satisfying the inequality given by

(

∂V2(χ̃2)

∂χ̃2

)T
[

F̃2(χ̃2, w̃)− F̃2

(

χ̃2, ĩ(χ̃2)
)

]

≤ β5ψ3(χ̃2)φ3(w̃ − ĩ(χ̃2)), (5.241)

while the second interconnection condition for the ΣSFU2
-subsystem, Assumption 5.2.5, consist in satis-

fying the inequality given by

(

∂VU2
(χ̃2, w̃)

∂χ̃2

)T

F̃2 (χ̃2, w̃) ≤ γ3φ3
2(w̃ − ĩ(χ̃2)) + β6ψ3(χ̃2)φ3(w̃ − ĩ(χ̃2)). (5.242)

The fulfillment of assumptions 5.5.1, 5.5.2, 5.5.3, 5.5.4, and 5.5.5, applied to the helicopter ΣSF -

subsystem by the fulfillment of inequalities 5.239, 5.240, 5.241, and 5.242, proves that the growth require-

ments of F̃2 (χ̃2, w̃)) and î (χ̃2, w̃) are satisfied, and with the Lyapunov functions V2(χ̃2) and VU2
(χ̃2, w̃)

, a new Lyapunov function candidate V3(χ̃2, w̃) is considered and given by

V3(χ̃2, z̃) = (1− d3)V2(χ̃2) + d3VU2
(χ̃2, z̃), d3 ∈ (0, 1), (5.243)

for 0 < d3 < 1. The newly defined function V3(χ̃2, z̃2) becomes the Lyapunov function candidate for

the singular perturbed ΣSFU2
-subsystem, Eqns. (5.185–5.188). Similarly as conducted for the general

two-time-scale methodology, by computing the derivative V3(χ̃2, w̃) along the trajectories of F̃2 (χ̃2, w̃)

and î (χ̃2, w̃) results in the upper bounds for both d∗3 and ε∗3 given by

d∗3 =
β5

β5 + β6
, (5.244)

and

ε∗3 =
1

ε1ε2

α5α6

α5γ3 + β5β6
. (5.245)

Recalling that the selected upper bounds on ε1 and ε2 were defined in Eqns. (5.221), and (5.232),

respectively, therefore, by selecting ε1 ≡ ε∗1, and ε2 ≡ ε∗2, the smallest possible upper bound on ε2, and
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thus the most conservative upper bound, becomes

ε∗3 =
α1γ1 + β1β2

α1α2

α1α2

α1γ1 + β1β2

α3γ2 + β3β4
α3α4

α5α6

α5γ3 + β5β6

=
α3γ2 + β3β4

α3α4

α5α6

α5γ3 + β5β6
, (5.246)

where, again, it can be observed that the upper bound on the ΣSFU2
system is a function of the previously

derived lower order stability analysis upperbounds. Therefore, it can be inferred that the equilibrium

point of the singularly perturbed ΣSFU2
full system, Eqns. (5.185–5.188), is asymptotically stable for all

ε3 < ε∗3. The number ε∗3 is the best upper bound on ε3 that can be provided by the above presented

stability analysis. The asymptotic stability analysis presented can be summarizes in Theorem 5.6.3.

Theorem 5.6.3 : Let inequalities (5.239), (5.240), (5.241), and (5.242) be satisfied. Then the origin is

an asymptotically stable equilibrium of the singularly perturbed system ΣSFU2
-subsystem, Eqns. (5.185–

5.188) for all ε3 ∈ (0, ε∗3), where ε
∗
3 is given by Eq. (5.246). Moreover, for every number d3 ∈ (0, 1),

the resulting Lyapunov function V3(χ̃2, w̃), Eq. (5.243), is a Lyapunov function for all ε3(0, εd3
), where

εd ≤ ε∗3 is given by Eq. (5.246).

Theorem 5.6.3 can be summarized by understanding that χ̃2 = 0 is an asymptotically stable equilibrium

of the reduced ΣSFU1
-subsystem, Eqns. (5.194–5.196), and w̃ = ĩ(χ̃2) is an asymptotically stable

equilibrium of the boundary-layer ΣUτ3
-subsystem, Eq. (5.197), uniformly in χ̃2, that is, the ε − δ

definition of Lyapunov stability and the convergence w̃ → ĩ(χ̃2) are uniform in χ̃2 (Vidyasagar, 2002),

and if F̃2 (χ̃2, w̃) and î (χ̃2, w̃) satisfy certain growth conditions on the reduced and boundary-layer sys-

tems, assumptions 5.5.1, 5.5.2, 5.5.3, 5.5.4, and 5.5.5, then the origin is an asymptotically stable equi-

librium of the singularly perturbed ΣSFU2
full system, Eqns. (5.185–5.188), for sufficiently small ε3.

(Kokotović et al., 1986; Kokotović et al., 1987; Kokotović et al., 1999).

This concludes the Case 3 of the four possible combinations that appear in Figure 5.9. Despite all four

combinations should provide equivalent results, from the author’s experience point view, Case 3 represents

the more natural and simpler methods out of the possible TD and BU time-scale decompositions. The

selection of Case 3 represents the simpler out of the possible combinations for the 3rd-time-scale reduction,

since follows the natural flow of time scales, starting with the stability analysis of the slowest, and simpler

model, the ΣSF -subsystem, Eqns. (5.200–5.201), which has been considerably simplified due to the fact

that the quasi-steady-state equilibria of the associated boundary layer subsystems, h̃(x̃), and ĩ(x̃), have

been assumed to reach their space of configuration.

The extension to the N th-time scale can easily be identified from the analysis of the 4th-time-scale

example above described. The sequential strategy of decomposing the 4th-time-scale system, into simpler

two-time-scale subsystems provides a valuable tool that permits determining the stability properties of

any resulting singularly perturbed N th-time-scale systems.
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Figure 5.9: 4th-time-scale Top-Down and Bottom-Up analysis strategy
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5.7 Conclusions

A methodology that guarantee the asymptotic stability of the proposed control laws has been presented.

In order to do so, and after analyzing the complexity of the existing methods to demonstrate the asymp-

totic stability properties of multiple time-scale singularly perturbed system, understanding for multiple

time-scale systems those having at least three time-scales, a step-by-step sequential stability analysis

methodology for three-time-scale systems has been derived and presented.

The asymptotic stability analysis methodology is based on the TD and/or BU time-scales analysis here

presented, although for the system here analyze, and for completeness, only the BU asymptotic stability

analysis is considered. The asymptotic stability analysis provides the necessary tools to guarantee the

stability properties for any three-time-scale singularly perturbed autonomous systems, which permits

to simplify the burden associated with the analysis multiple time-scale systems employing the existing

stability methods.

The same philosophy that permits to analyze the asymptotical stability of an autonomous singular

perturbed subsystem, provides, in a step-by-step process similar to the control strategy methodol-

ogy, with the associated Lyapunov functions for each of the subsystems based on the natural desired

closed loop response of each of the resulting subsystem. This methodology, much simpler that the one

employed in the existing multiparameter time-scale analysis (Abed, 1985d; Abed, 1985e; Abed, 1985b;

Kokotović et al., 1987; Kokotović et al., 1986), permits to have Lyapunov function candidates for each

of the defined subsystems a priori of starting the stability analysis, and with a simple structure. The

Lyapunov structure is fixed a priori, reducing the fulfillment of the growth requirements among the differ-

ent time-scale subsystems to obtain the appropriate comparison functions and demonstrating the growth

requirements among the different subsystems.

The proposed stability analysis methodology permits to simplify the burden associated with the analysis

of non-autonomous singular perturbed systems by providing, in the same methodology, all the ingredients

needed to infer asymptotical stability to an autonomous singular perturbed subsystem. The proposed

sequential step-by-step two-step process allows to study the asymptotic stability properties of the closed

loop system, and also proposes a methodology to obtain Lyapunov function candidate for each of the

singularly perturbed subsystems. The validity of the methodology has been proved by obtaining the

stability upper bound limits on the boundary layers, ε1 and ε2, and ensuring that the selected parasitic

constants for the proposed three-time-scale model satisfy ε1 ≤ ε∗1 and ε2 ≤ ε∗2 for the three-time-scale

model.

The TD and BU time scale analysis is also extended to the more general N th-time scale analysis using

a 4th-time-scale general example. The sequential strategy of decomposing the 4th-time-scale system,

into simpler two-time-scale subsystems provides a valuable tool that will help in analyzing the stability

properties of any general N th-singularly perturbed time-scale system, and provide additional tools for

the time-scale analysis for singularly perturbed systems.



Chapter 6

Stability Analysis for the Helicopter

Model

6.1 Introduction

As noted in chapter 5, only the asymptotic stability analysis for helicopter problem is conducted in this

chapter, while, for completeness and conciseness of the thesis, the complete stability analysis for the three-

time-scale simplified model is left for Appendix C. The simplified example stability analysis can be used

by the reader for better understanding the scope of the presented three-time-scale asymptotic stability

analysis, following the same philosophy intended by the author throughout this thesis, which is to serve

as an instrument that will ease the comprehension of the presented stability analysis methodology.

It is important to note that the simplified example has been an active part to the development of the

selected strategies in both, the control and the asymptotic stability analysis, to the point that, in the final

stages of this thesis, the simplified example has been the tool employed by the author for both, generate

mathematical proofs, and validate the generality of the proposed strategies that have been later applied to

the helicopter model. Furthermore, in order to reduce the readers’s task, the simplified example stability

analysis, presented in Appendix C, can be used as the solely source for understanding the asymptotic

stability methodology here presented, and leave the asymptotic stability analysis for the helicopter model,

for later reading, once the methodology have been fully understood.

Also for simplicity and conciseness of the thesis, the asymptotic stability analysis is only conducted

on the TD control design for both the helicopter model in this chapter, and the simplified example

in Appendix C, while the stability analysis for the CF − TD control design, although it has also been

conducted with similar results to those obtained for the TD control design, are omitted to reduce the

length of the thesis.

Similarly as in the general three-time-scale asymptotic stability analysis, section 5.5, the asymptotic

stability analysis for the helicopter ΣSFU full system is based on a double application of the standard

two-time-scale stability analysis (Kokotović et al., 1999; Kokotović et al., 1986; Kokotović et al., 1987).

Following sections describe in detail the asymptotic stability analysis for the helicopter model, although

first, and for completeness of the chapter, a resumed description of the closed-loop helicopter model, with

the different reduced and boundary layer subsystems is presented.

221
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6.2 Helicopter Model for the Asymptotic Stability Analysis

This section describes the closed-loop error-dynamics for the helicopter model, which for conciseness,

as previously mentioned, is only analyzed for the closed-loop error dynamics of the TD control design.

Recall the original three-time-scale helicopter model given by Eqns. (3.56–3.60), and recall also that

the closed-loop dynamics are obtained using the laws derived in TD control design, Eqns. (4.82) and

(4.115),

Resulting in the three-time-scale closed-loop helicopter model given by

ẋ = a10x
2 [sin(z1)− sin h1SS(x)]− bx(x− x∗), (6.1)

ε1ẏ1 = c1y2, (6.2)

ε1ẏ2 = x2(c2 + c3z1 −
√
c4 + c5z1) + a9y2 + a9y

2
2 + c6, (6.3)

ε1ε2ż1 = c7z2, (6.4)

ε1ε2ż2 = a9z1 + c9z2 + J2

[

(

1 +
√

s3v(x, y)
)2

− 1

]

. (6.5)

These closed-loop equations can be rewritten into its error dynamics formulation recalling the in-

troduced error dynamics state vector, Eqns. (5.30–5.32), thus defining the closed-loop error dynamics

as

˙̃x = a10(x̃+ x
∗)2
[

sin(z̃1 + z
∗

1)− sin h̃1SS
(x̃)
]

− bxx̃, (6.6)

ε1 ˙̃y1 = c1ỹ2, (6.7)

ε1 ˙̃y2 = (x̃+ x
∗)2
(

c2 + c3(z̃1 + z
∗

1)−
√

c4 + c5(z̃1 + z∗
1
)
)

+ a9ỹ2 + a9ỹ
2

2 + c6, (6.8)

ε1ε2 ˙̃z1 = z̃2, (6.9)

ε1ε2 ˙̃z2 = a9(z̃1 + z
∗

1) + c9z̃2 + J2

[

(

1 +
√

s3ṽ(x̃, ỹ)
)

2

− 1

]

, (6.10)

where

Ke = Kc − a12 = − c4
c5c11c13

, (6.11)

and

ṽ(x̃, ỹ) = −a9ỹ
2
2 + (a9 + b̃ỹ2

)ỹ2 + b̃ỹ1
ỹ1 + c6

(x̃+ x∗)2
, (6.12)

ṽSS(x̃, g̃(x̃)) = − c6
(x̃+ x∗)2

, (6.13)

h̃1SS(x̃, g̃(x̃)) = s2

[

(

1 +
√

s3ṽ(x̃, ỹ)
)2

− 1

]

. (6.14)

See section 4.4 for further details in the control design. To help with the proof of the growth require-

ments that will be conducted in following sections, the following sections recap on the degenerated sub-

systems for the helicopter model, that is the ΣS , ΣF , ΣU , ΣSF , and ΣUF -subsystems. It also describes

the quasi-steady-state equilibria for the ΣF and ΣU -subsystems, that is ỹ = g̃(x̃) and z̃ = h̃(x̃, ỹ),

respectively, and also, the associated Lyapunov functions for the three degenerated subsystems, VS , VF

and VU . Recall that both ỹ = g̃(x̃) and z̃ = h̃(x̃, ỹ) are expressed as in vector form to account for

the equilibria of both the vertical displacement and collective pitch dynamics, Eqns. (6.35) and (6.23)

respectively.
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6.2.1 Degenerated Subsystems for the Helicopter Model

For completeness, and to help while reading the asymptotic stability analysis, this section collects the

different degenerated subsystems employed throughout the rest of the asymptotic stability analysis for

the helicopter model, that is the associated ΣS , ΣF , ΣU , ΣSF , and ΣUF -subsystems. The associated

quasi-steady-state equilibria for the ΣF and ΣU -subsystems are also collected. These subsystems were

previously derived to determine the appropriate Lyapunov functions, thus the complete derivations will

not be conducted again, and only a brief description is presented in this section. Further detains can be

found in section 5.4.2.

Recalling from section 5.4.2, the reduced order ΣSF -subsystem is given by

˙̃x = a10(x̃+ x∗)2(sin(h̃1(x̃, ỹ) + z∗1)− sin h̃1SS)− bxx̃, (6.15)

ε1 ˙̃y1 = c1ỹ2, (6.16)

ε1 ˙̃y2 = (x̃+ x∗)2
(

c2 + c3(h̃1(x̃, ỹ) + z∗1)−
√

c4 + c5(h̃1(x̃, ỹ) + z∗1)

)

+ a9ỹ2 + a9ỹ
2
2 + c6, (6.17)

therefore being f̃(x̃, ỹ , h̃(x̃, ỹ)) given by

˙̃x = a10(x̃+ x∗)2(sin(h̃1(x̃, ỹ) + z∗1)− sin h̃1SS)− bxx̃, (6.18)

and ĝ(x̃, ỹ , h̃(x̃, ỹ)) being defined by

ε1 ˙̃y1 = c1ỹ2, (6.19)

ε1 ˙̃y2 = (x̃+ x∗)2
(

c2 + c3(h̃1(x̃, ỹ) + z∗1)−
√

c4 + c5(h̃1(x̃, ỹ) + z∗1)

)

+ a9ỹ2 + a9ỹ
2
2 + c6. (6.20)

The boundary layer for the ΣSFU system is given after applying the stretched time-scale ΣU -

subsystem

dz̃1
dτ2

= c7z̃2, (6.21)

dz̃2
dτ2

= a9(z̃1 + z∗1) + c9z̃2 + J2

[

(

1 +
√

s3ṽ(x̃, ỹ)
)2

− 1

]

, (6.22)

with h̃(x̃, ỹ) being the quasi-steady-state equilibria of the boundary layer ΣU -subsystem, Eq. (6.21–

6.22),

h̃(x̃, ỹ) =

[

h̃1(x̃, ỹ)

h̃2(x̃, ỹ)

]

, (6.23)

with the quasi-steady-state equilibria given by

h̃1(x̃, ỹ) = z̃1 = s2

[

(

1 +
√

s3ṽ(x̃, ỹ)
)2

− 1

]

− z∗1 (6.24)

h̃2(x̃, ỹ) = z̃2 = 0. (6.25)

The ΣU -subsystem can be reorganized resulting in

dz̃1
dτ2

= c7z̃2, (6.26)

dz̃2
dτ2

= a9(z̃1 + z∗1) + c9z̃2 + J2

[

(

1 +
√

s3ṽ(x̃, ỹ)
)2

− 1

]

= a9

(

z̃1 − h̃1(x̃, ỹ)
)

+ c9

(

z̃2 − h̃2(x̃, ỹ)
)

. (6.27)
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The ΣU -subsystem is rewritten in state space form by considering the change of variables given by

ẑ = z̃ − h̃(x̃, ỹ), reducing to

dz̃

dτ2
= AU ẑ , (6.28)

where

AU =

(

0 c7

a9 c9

)

. (6.29)

The f̃(x̃, ỹ , h̃(x̃, ỹ)) subsystem reduces to

˙̃x = a10(x̃+ x∗)2
[

sin

(

s2

[

(

1 +
√

s3ṽ(x̃, ỹ)
)2

− 1

])

− sin h̃1SS

]

− bxx̃, (6.30)

and the ΣSF -subsystem, ĝ(x̃, ỹ , h̃(x̃, ỹ)), reduces to

dỹ1
dτ1

= c1ỹ2, (6.31)

dỹ2
dτ1

= −b̃ỹ1
ỹ1 − b̃ỹ2

ỹ2, (6.32)

The ΣF -subsystem can also be expressed in state space form as

dỹ

dτ1
= ĝ(x̃, ỹ , h̃(x̃, ỹ)) = AF ỹ , (6.33)

being

AF =

(

0 c1

−b̃y1
−b̃y2

)

. (6.34)

The quasi-steady-state equilibrium of the ΣF -subsystem, g̃(x̃), is given by

g̃(x̃) =

[

g̃1(x̃)

g̃2(x̃)

]

, (6.35)

with

g̃1(x̃) = y∗1 , (6.36)

g̃2(x̃) = 0. (6.37)

The ΣS-subsystem, f̃(x̃, g̃(x̃), h̃(x̃, ỹ)), is given by

˙̃x = f̃(x̃, g̃(x̃), h̃(x̃, ỹ)) = f̃(x̃, g̃(x̃), h̃(x̃, g̃(x̃)))

= a10(x̃+ x∗)2
[

sin(h̃1(x̃, g̃(x̃)) + z∗1)− sin h̃1SS

]

− bxx̃

= −bxx̃ = AS x̃. (6.38)

6.2.2 Lyapunov Function Candidates for the Helicopter Problem

This section recaps on the associated Lyapunov functions for the different degenerated subsystems ob-

tained in section 5.4, being the selected associated Lyapunov function for the slow ΣS-subsystem given

as

VS (x̃) =
1

2
PS x̃

2, (6.39)

with

PS =
QS

2bx
, (6.40)
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therefore resulting in

VS (x̃) =
1

2
PS x̃

2 =
QS

4bx
x̃2. (6.41)

The selected associated Lyapunov function candidate for the fast ΣF -subsystem is given by

VF (ỹ) =
1

2
ỹTPF ỹ =

1

2
pf1 ỹ

2
1 +

1

2
pf3 ỹ

2
2 + pf2 ỹ1ỹ2, (6.42)

with

pf1 =
qf1(b̃y1

c1 + b̃2y2
) + b̃2y1

qf2

2b̃y1
b̃y2
c1

= Cf1qf1 + Cf2qf2 , (6.43)

pf2 =
qf1

2b̃y1

= Cf3qf1 , (6.44)

pf3 =
qf1c1 + qf2 b̃y1

2b̃y1
b̃y2

= Cf4qf1 + Cf5qf2 , (6.45)

with

Cf1 =
b̃y1
c1 + b̃2y2

b̃y1
b̃y2
c1

, (6.46)

Cf2 =
b̃2y1

b̃y1
b̃y2
c1
, (6.47)

Cf3 =
1

2b̃y1

, (6.48)

Cf4 =
c1

2b̃y1
b̃y2

, (6.49)

Cf5 =
b̃y1

2b̃y1
b̃y2

. (6.50)

Finally, the selected associated Lyapunov function candidate for the ultra-fast ΣU -subsystem is given

by

VU (ẑ ) =
1

2
ẑ
T
PU ẑ =

1

2
pu1

ẑ21 +
1

2
pu3

ẑ22 + pu2
ẑ1ẑ2, (6.51)

with

ẑ = z̃ − h̃(x̃, ỹ), (6.52)

and with

pu1
= −a9c7qu1

− qu2
a29 − c29qu1

2a9c7c9
= Cu1

qu1
+ Cu2

qu2
, (6.53)

pu2
= − qu1

2a9
= Cu3

qu1
, (6.54)

pu3
=

c7qu1
− qu2

a9
2a9c9

= Cu4
qu1

+ Cu5
qu2

, (6.55)

with

Cu1
=

c29 − a9c7
2a9c7c9

, (6.56)

Cu2
= − a9

2c7c9
, (6.57)

Cu3
= − 1

2a9
, (6.58)

Cu4
=

c7
2a9c9

, (6.59)

Cu5
= − a9

2a9c9
. (6.60)
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6.3 ΣSF Stability Analysis for the Helicopter Model

This section provides the proof for the asymptotic stability requirements for the helicopter model ΣSF -

subsystem by applying the Bottom-Up-methodology using the same methodology as the one described

previously for the general three-time-scale model in chapter 5. These requirements are defined by applying

Assumptions, 5.5.1, 5.5.2, 5.5.3, 5.5.4, and 5.5.5, to the helicopter resulting autonomous system, Eqns.

(6.6–6.10).

Similarly as in the ΣSF general asymptotic stability analysis presented in section 5.5.1, the stabil-

ity analysis for the helicopter ΣSF Stability Analysis is performed assuming that the ΣU -subsystem

variables evolve in their own configuration space. The analysis of this first stage is performed us-

ing the standard method for two-time-scale systems (Kokotović et al., 1986; Kokotović et al., 1987;

Kokotović et al., 1999), in which the previously derived Lyapunov functions for the ΣS and ΣF -

subsystems, that is VS , and VF , Eqns. (6.41) and (6.42), respectively, must fulfill certain growth re-

quirements on f̃(x̃, ỹ , h̃(x̃, ỹ)) and ĝ(x̃, ỹ , h̃(x̃, ỹ)), Eqns. (6.30) and (6.31–6.32), respectively, satisfying

certain inequalities. The fulfillment of these inequalities for the ΣSF helicopter subsystem are described

bellow.

6.3.1 Isolated Equilibrium of the Origin for the Helicopter ΣSF -Subsystem:

Assumption 5.5.1

The origin (x̃ = 0, ỹ = 0) is a unique and isolated equilibrium of the ΣSF -subsystem, Eqns. (6.15–6.17),

i.e.

0 = f̃(0, 0, h̃(x̃, ỹ)), (6.61)

0 = ĝ(0, 0, h̃(x̃, ỹ)), (6.62)

moreover, ỹ = g̃(x̃) is the unique root of

0 = ĝ(x̃, ỹ , h̃(x̃, ỹ)), (6.63)

in Bx̃ ×Bỹ, i.e.

0 = ĝ(x̃, g̃(x̃), h̃(x̃, ỹ)), (6.64)

and there exists a class κ function p1(·) such that

‖ g̃(x̃) ‖≤ p1 (‖ x̃ ‖) . (6.65)

The reduced order growth requirements are obtained by first considering the system given by Eq.

(6.30), and adding and subtracting f̃(x̃, g̃(x̃), h̃(x̃, ỹ)), Eq. (6.38), to the right-hand side of Eq. (6.30)

yielding

˙̃x = f̃
(

x̃, g̃(x̃), h̃(x̃, ỹ)
)

+ f̃(x̃, ỹ , h̃(x̃, ỹ))− f̃
(

x̃, g̃(x̃), h̃(x̃, ỹ)
)

, (6.66)

where the term f̃(x̃, ỹ , h̃(x̃, ỹ))− f̃(x̃, g̃(x̃), h̃(x̃, ỹ)) can be viewed as a perturbation of the reduced order

ΣS-subsystem, f̃(x̃, g̃(x̃), h̃(x̃, ỹ)). It is therefore natural to first satisfy the growth requirements for

Eq. (6.38) and then consider the effect of the perturbation term f̃(x̃, ỹ , h̃(x̃, ỹ)) − f̃
(

x̃, g̃(x̃), h̃(x̃, ỹ)
)

.

Therefore let proceed to define first the reduced order growth condition.
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6.3.2 Proof of Assumption 5.5.2: Reduced System Conditions for the

Helicopter ΣSF -Subsystem

Recalling from Assumption 5.5.2, the ΣS-subsystem Lyapunov function candidate, VS(x̃), must be

positive-definite and decreasing, and must also satisfy the following inequality

(

∂VS(x̃)

∂x̃

)T

f̃
(

x̃, g̃(x̃), h̃(x̃, ỹ)
)

≤ −α1ψ
2
1(x̃), (6.67)

where ψ1(·) is a scalar function of vector arguments which vanishes only when its argument are zero, and

satisfying that x̃ = 0 is a stable equilibrium of the reduced order system. The left-hand side of inequality

(6.67) is given by recalling that

VS (x̃) =
1

2
PS x̃

2, (6.68)

being therefore easy to see that

(

∂VS(x̃)

∂x̃

)T

= PS x̃, (6.69)

therefore substituting f̃(x̃, g̃(x̃), h̃(x̃, ỹ)), Eqns. (6.38), and Eq. (6.69) (6.67), and recalling that PS =
QS

2bx
yields

(

∂VS(x̃)

∂x̃

)T

f̃(x̃, g̃(x̃), h̃(x̃, ỹ)) = −PSbxx̃
2 = −1

2
QS x̃

2, (6.70)

therefore assumption (6.67) can be satisfied by selecting α1 and ψ1(x̃) such

α1 ≤ 1, (6.71)

ψ1(x̃) =

√

Q̃S x̃2, (6.72)

with

Q̃S =
1

2
QS . (6.73)

6.3.3 Proof of Assumption 5.5.3: Boundary-Layer System Conditions for the

Helicopter ΣSF -Subsystem

Recalling from Assumption 5.5.3, the ΣF Lyapunov function candidate VF (x̃, ỹ) must be positive-definite

and decreasing, such that for all (x̃, ỹ) ∈ Bx̃ ×Bỹ satisfies inequality

VF (x̃, ỹ) > 0, ∀ ỹ 6= g̃(x̃) and VF (x̃, g̃(x̃)) = 0, (6.74)

and
(

∂VF
∂ỹ

)T

ĝ(x̃, ỹ , h̃(x̃, ỹ)) ≤ −α2φ
2
1(ỹ − g̃(x̃)), (6.75)

where φ1(·) is a scalar function of vector arguments which vanishes only when its arguments are zero,

and satisfying that ỹ − g̃(x̃) is a stable equilibrium of the boundary layer ΣF -subsystem. The left-hand

side of inequality (6.75) is defined after recalling that

VF (ỹ) =
1

2
ỹTPF ỹ , (6.76)
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where PF represents the solution to the associated Lyapunov function given by

PF =

(

pf1 pf2

pf2 pf3

)

, (6.77)

with pf1 , pf2 , and pf3 defined in Eqns. (6.43), (6.44), and (6.45) respectively, being therefore easy to see

that
(

∂VF
∂ỹ

)T

= (PF ỹ)
T
, (6.78)

and also recalling Eq. (6.33), results in

g̃(x̃, ỹ , h̃(x̃, ỹ)) = AF ỹ , (6.79)

and therefore, substituting Eqns. (6.78) and (6.79), into Eq. (6.75) results in

(

∂VF
∂ỹ

)T

ĝ(x̃, ỹ , h̃(x̃, ỹ)) = (PF ỹ)
T
AF ỹ = ỹTPFAF ỹ = ỹTM F ỹ , (6.80)

with M F defined by

M F = PFAF =

(

mF11
mF12

mF21
mF22

)

, (6.81)

being

mF11
= −pf2 b̃y1

, (6.82)

mF21
= pf1c1 − pf2 b̃y2

, (6.83)

mF12
= −pf3 b̃y1

, (6.84)

mF22
= pf2c1 − pf3 b̃y2

, (6.85)

where by substituting the solutions to the associated Lyapunov equation pf1 , pf2 , and pf3 , Eqns. (6.43),

(6.44), and (6.45), respectively, into Eq. (6.80) results in

(

∂VF
∂ỹ

)T

ĝ(x̃, ỹ , h̃(x̃, ỹ)) = ỹTM F ỹ = −1

2

(

ỹTQF ỹ
)

= −1

2

(

ỹ21qf1 + ỹ22qf2
)

, (6.86)

with QF being defined in Eq. (5.87), and let Q̃F = QF

2 and where

q̃f1 =
qf1
2
, (6.87)

q̃f2 =
qf2
2
, (6.88)

and therefore rewriting Eq. (6.80) as

(

∂VF
∂ỹ

)T

ĝ(x̃, ỹ , h̃(x̃, ỹ)) = −
(

ỹT Q̃F ỹ
)

= −
(

ỹ21 q̃f1 + ỹ22 q̃f2
)

, (6.89)

therefore, inequality (6.89) can be satisfied by selecting α2 and φ(ŷ − g̃(x̃)) such

α2 ≤ 1, (6.90)

φ1(ỹ − g̃(x̃)) =
(

ỹT Q̃F ỹ
)

1

2

=
(

q̃f1 ỹ
2
1 + q̃f2 ỹ

2
2

)
1

2 . (6.91)

For simplicity, from now on the comparison function φ1(ỹ − g̃(x̃)) it is refereed as φ1(ŷ).
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6.3.4 Proof of Assumption 5.5.4: First Interconnection Condition for the

Helicopter ΣSF -Subsystem

The Lyapunov functions VS(x̃) and VF (ŷ), Eqns. (6.41), and (6.42) respectively, must satisfy the so called

interconnection conditions. The first interconnection condition is obtained by computing the derivative

of VS(x̃) along the solution of Eq. (6.66), resulting in a expression similar to Eq. (5.139), which provides

the first interconnection inequality

(

∂VS(x̃)

∂x̃

)T
[

f̃(x̃, ỹ , h̃(x̃, ỹ))− f̃(x̃, g̃(x̃), h̃(x̃, ỹ))
]

≤ β1ψ1(x̃)φ1(ŷ), (6.92)

with the comparison function ψ1(x̃) and φ1(ŷ), being defined in Eqns. (6.72) and (6.91) respectively.

Inequality (6.92) determines the allowed growth of f̃(x̃, ỹ , h̃(x̃, ỹ)) in ỹ, and in typical problems, verifying

inequality (6.92) reduces to verifying the inequality
∥

∥

∥f̃(x̃, ỹ , h̃(x̃, ỹ))− f̃(x̃, g̃(x̃), h̃(x̃, ỹ))
∥

∥

∥ ≤ ψ1(x̃)φ1(ŷ), (6.93)

which implies that the rate of growth of f̃(x̃, ỹ , h̃(x̃, ỹ)) cannot be faster than the rate of growth of the

comparison function φ1(·). The left-hand side of inequality (6.92) is given by recalling the results of Eq.

(6.78), and recalling both f̃(x̃, g̃(x̃), h̃(x̃, ỹ)) and f̃(x̃, ỹ , h̃(x̃, ỹ)), Eqns. (6.38), and (6.30), respectively,

yielding

f̃(x̃, ỹ , h̃(x̃, ỹ))− f̃(x̃, g̃(x̃), h̃(x̃, ỹ)) = a10(x̃ + x∗)2(sin(h̃1(x̃, ỹ) + z∗1)− sin h̃1SS). (6.94)

Substituting Eqns. (6.78) and (6.94) into inequality (6.92) results in

(

∂VS (x̃)

∂x̃

)T
[

f̃(x̃, ỹ , h̃(x̃, ỹ))− f̃(x̃, g̃(x̃), h̃ (x̃, ỹ))
]

=
1

2

QS

bx
x̃
{

a10 (x̃+ x∗)
2
[

sin
(

h̃1 (x̃, ỹ) + z∗1

)

− sin h̃1SS

]}

≤ β1ψ1(x̃)φ1(ŷ). (6.95)

In order to obtain the comparison function ψ1(x̃) that satisfies inequality (6.95), a series of algebraic

and trigonometric manipulations are conducted. Let first introduce the expressions

A1 = h̃1(x̃, ỹ) + z∗1 = s2

[

(

1 +
√

s3ṽ(x̃, ỹ)
)2

− 1

]

, (6.96)

B1 = h̃1SS = s2

[

(

1 +
√

s3ṽSS

)2

− 1

]

, (6.97)

where ṽ and ṽSS are give in Eqns. (6.12–6.13), permitting therefore to rewrite Eq. (6.95) such

(

∂VS (x̃)

∂x̃

)T
[

f̃
(

x̃, ỹ , h̃(x̃, ỹ)
)

− f̃
(

x̃, g̃(x̃), h̃ (x̃, ỹ)
)]

=
1

2

QS

bx
x̃
[

a10 (x̃+ x∗)2 (sinA1 − sinB1)
]

≤ β1ψ1(x̃)φ1(ŷ). (6.98)

Recall the sum-to-product prosthaphaeresis trigonometric identity (Steele, 2004)

sin(a)− sin(b) = 2 sin

(

a− b

2

)

cos

(

a+ b

2

)

, (6.99)

which can be used to rewrite the left-hand side of inequality (6.98) as

(

∂VS (x̃)

∂x̃

)T
[

f̃
(

x̃, ỹ , h̃(x̃, ỹ)
)

− f̃
(

x̃, g̃(x̃), h̃ (x̃, ỹ)
)]

=
1

2

QS

bx
x̃
[

a10 (x̃+ x∗)2 (sinA1 − sinB1)
]
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=
1

2

QS

bx
x̃

[

a10 (x̃+ x∗)
2
2 sin

(A1 − B1

2

)

cos

(A1 + B1

2

)]

. (6.100)

Due to the sign nature of the coefficients in ṽ and ṽSS , Eqns. (6.12–6.13), and for the easiness while the

reading and understanding process of the trigonometric and inequality operations that will be conducted

to prove the different growth requirements, let introduce the following change in the variables to avoid

having constants with negative values, such

ā9 = −a9, (6.101)

c̄6 = −c6 =
a7a9
a5

, (6.102)

where recalling that ā9 > 0, c̄6 > 0, see sections 2.8.5 and 3.3.2.2 for further details. Using Eqns. (6.101)

and (6.102) into Eqns. (6.12–6.13), results in

ṽ(x̃, ỹ) =
ā9ỹ

2
2 +

(

ā9 − b̃y2

)

ỹ2 − b̃y1
ỹ1 + c̄6

(x̃ + x∗)2
, (6.103)

ṽSS(x̃, g̃(x̃)) =
c̄6

(x̃+ x∗)2
. (6.104)

Recalling that both b̃y1
> 0, b̃y2

> 0, it can be seen that with the proper selection of b̃y1
and b̃y2

, results

in ṽ > 0 and ṽSS > 0. In order to simplify the analysis let rewrite ṽ, Eq. (6.103), such

ṽ(x̃, ỹ) =
ā9ỹ

2
2 +

(

ā9 − b̃y2

)

ỹ2 − b̃y1
ỹ1 + c̄6

(x̃+ x∗)2
= s3

(

ν1ỹ
2
2 + ν2ỹ2 + ν3ỹ1 + ν4

)

, (6.105)

with ν1 ,ν2 ,ν3, and ν4 being defined by

ν1(x̃) =
ā9

(x̃+ x∗)2
, (6.106)

ν2(x̃) =

(

ā9 − b̃y2

)

(x̃+ x∗)2
, (6.107)

ν3(x̃) = − b̃y1

(x̃+ x∗)2
, (6.108)

ν4(x̃) = ṽSS =
c̄6

(x̃+ x∗)2
, (6.109)

and recalling that s3 was previously defined in Eq. (4.88) as

s3 = 4c12 = 4
c3
c5

= 4
a2c1
a4c21

=
a2a5
a4a9

. (6.110)

Recalling that

x̃+ x∗ ≡ x, (6.111)

where x represents the angular velocity of the blades, and since x > 0, and s3 > 0, thus

ν1 > 0, (6.112)

ν2 < 0, (6.113)

ν3 < 0, (6.114)

ν4 > 0. (6.115)

Let also introduce the functions

F(x̃, ỹ) =
(

ν1(x̃)ỹ
2
2 + ν2(x̃)ỹ2 + ν3(x̃)ỹ1

)

, (6.116)

C(x̃) = ν4 = ṽSS =
c̄6

(x̃+ x∗)2
, (6.117)
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where 0 ≤ F ≤ 0 depending on the sign of ỹ1, ỹ2, which translates to different error in the altitude and

vertical speed of the helicopter, and also with C > 0. Recalling the definitions of both ỹ1 and ỹ2 given

as

ỹ1 = y1 − y∗1 , (6.118)

ỹ2 = y2 − y∗2 . (6.119)

In order to provide an insight view of the helicopter physical meaning of the mathematic expression

here used, from a position of the helicopter perspective, a negative value of ỹ1, can be interpreted such

that the helicopter, at the instant where ỹ1 is evaluated, has an altitude lower than the desired set point

altitude, while a positive value of ỹ1, implies that the helicopter has an altitude higher than the desired

set point altitude.

From the axial flight regime perspective, and recalling that a given desired altitude is achieved when the

vertical speed it is zero, i.e. y∗2 = 0, a negative value of ỹ2 implies that the helicopter is descending trying

to reach a lower desired set point altitude, while a positive ỹ2, implies that the helicopter is ascending

trying to reach a higher desired set point altitude. With this in mind, and recalling that the helicopter

can conduct any of the two maneuvers, ascent and descent flight, let continue the analysis by rewriting

A1, Eq. (6.96), using the expressions derived in Eqns. (6.106–6.110), and Eqns. (6.116–6.117), resulting

in

A1 = h̃1(x̃, ỹ) + z∗1 = s2

[

(

1 +
√

s3ṽ(x̃, ỹ)
)2

− 1

]

= s2

[

(

1 +
√

s3 (ν1ỹ22 + ν2ỹ2 + ν3ỹ1 + ν4)

)2

− 1

]

= s2

(

2
√

s3 (ν1ỹ22 + ν2ỹ2 + ν3ỹ1 + ν4) + s3
(

ν1ỹ
2
2 + ν2ỹ2 + ν3ỹ1 + ν4

)

)

= s2

(

2
√

s3 (F + C) + s3 (F + C)
)

, (6.120)

and rewriting B1, Eq. (6.97), as

B1 = h̃1SS = s2

[

(

1 +
√

s3ṽSS

)2

− 1

]

= s2

[

(1 +
√
s3ν4)

2 − 1
]

= s2 (2
√
s3ν4 + s3ν4)

= s2

[

(

1 +
√

s3C
)2

− 1

]

= s2

(

2
√

s3C + s3C
)

, (6.121)

where recalling that as previously defined

s2 = −J2
a9
, (6.122)

J2 = −a3a9
a4

, (6.123)

where it can be shown that s2 > 0 and J2 > 0. Recalling Eq. (6.100), let focuss only in the portion of Eq.

(6.100) inside of the brackets and recalling the inequality identity a ≤ |a|, thus rewriting and simplifying

Eq. (6.100)

2a10(x̃+ x∗)2 sin

(A1 − B1

2

)

cos

(A1 + B1

2

)

≤ 2(x̃+ x∗)2 cos

(A1 + B1

2

) ∣

∣

∣

∣

a10 sin

(A1 − B1

2

)∣

∣

∣

∣

. (6.124)
Recalling also that due to the positive nature of the cos(a) function, that is 1 ≥ cos(a) ≥ 0 ∀ a ∈ R, it

can therefore also be shown that

0 ≤ cos

(A1 + B1

2

)

≤ 1, (6.125)
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further more, it can be shown that

0 ≤ cos

(A1 + B1

2

)

≤ K1 ≤ 1, (6.126)

where it can be proven that the maximum value of Eq. (6.125) is achieved for

K1 = cos

(A1MIN
+ B1MIN

2

)

≤ 1, (6.127)

being A1MIN
and B1MIN

the minimum possible value of Eqns. (6.96) and (6.97), respectively, and being

defined by

A1MIN
= [h1(x̃, ỹ) + z∗1 ]MIN

= s2

[

(

1 +
√

s3ṽ(x̃, ỹ)
)2

− 1

]

MIN

= s2

[

(

1 +
√

s3ṽMIN (x̃, ỹ)
)2

− 1

]

, (6.128)

B1MIN
= [h1SS ]MIN

= s2

[

(

1 +
√

s3ṽSS(x̃)
)2

− 1

]

MIN

= s2

[

(

1 +
√

s3ṽSSMIN

)2

− 1

]

, (6.129)

where ṽMIN and ṽSSMIN
represents the minimum values for both ṽ and ṽSS , Eqns. (6.12–6.13), respec-

tively, which are obtained when the variables attain their maximum values which are defined in section

2.8.5.2 such

x̃ = x̃MAX , (6.130)

ỹ1 = ỹ1MAX
, (6.131)

ỹ2 = ỹ2MAX
, (6.132)

where x̃MAX implies that the helicopter is flying at the maximum allowable angular rotation of the blades,

ỹ1MAX
implies that the helicopter is at its higher possible altitude, which is limited by the platform setup,

and it is commanded instantaneously to descent to the lowest possible altitude, and ỹ2MAX
implies that

the helicopter has its maximum allowable ascending velocity. From a physical point of view, this translate

to a very extreme situation in which the helicopter reaches the maximum altitude at the highest possible

velocity, and instantaneously it is commanded to descent to the lowest possible altitude. This seems to

be a highly improbable flight condition, thus making this solution a very conservative analysis, since any

of the situations that will encounter the helicopter during both, the simulations and in the real setup, will

be much more less demanding and restrictive. With the above analysis, expressions ṽMIN and ṽSSMIN

reduce to

ṽMIN =
ā9ỹ

2
2MAX

+
(

ā9 − b̃y2

)

ỹ2MAX
− b̃y1

ỹ1MAX
+ c̄6

x2MAX

, (6.133)

ṽSSMIN
=

c̄6
x2MAX

. (6.134)

Recalling also that Eq. (6.124) can be rewritten by using Eq. (6.127), and also considering the sin

inequality identity (Steele, 2004) given by

|sin a| ≤ |a| , (6.135)
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therefore, allowing to rewrite Eq. (6.124) by using Eqns. (6.127), and (6.135), resulting in

2a10(x̃+ x∗)2 sin

(A1 − B1

2

)

cos

(A1 + B1

2

)

≤ 2(x̃+ x∗)2 cos

(A1 + B1

2

) ∣

∣

∣

∣

a10 sin

(A1 − B1

2

)∣

∣

∣

∣

≤ 2(x̃+ x∗)2K1

∣

∣

∣

∣

a10 sin

(A1 − B1

2

)∣

∣

∣

∣

≤ (x̃+ x∗)2K1 |a10 (A1 − B1)| , (6.136)

where from the physical properties of the helicopter model a10 < 0. Eq. (6.136) can be rewritten using

the functions F(x̃, ỹ), and C(x̃), Eqns. (6.116) and (6.117), respectively, resulting in

2a10(x̃+ x∗)2 sin

(A1 − B1

2

)

cos

(A1 + B1

2

)

≤ (x̃+ x∗)2K1 |a10 (A1 − B1)|
≤ s2K1(x̃+ x∗)2

∣

∣

∣a10

[

2
(

√

s3 (F(x̃, ỹ) + C(x̃))−
√

s3C(x̃)
)

+ s3F(x̃, ỹ)
]∣

∣

∣ . (6.137)

Let redefine

F̃(x̃, ỹ) = s3F(x̃, ỹ), (6.138)

C̃(x̃) = s3C(x̃), (6.139)

and recalling that, as noted previously, due to the nature of the helicopter model here presented

s3 > 0, (6.140)

C̃(x̃) > 0, (6.141)

0 ≥ F̃ ≥ 0, (6.142)

and also recalling that it can also be shown that

F̃ + C̃ > 0, (6.143)

therefore, Eq. (6.137) can be further simplified by identifying that
∣

∣

∣
F̃
∣

∣

∣
≥ F̃ , (6.144)

F̃2

4C̃
≥ 0. (6.145)

Equation (6.145) can be rewritten by using Eq. (6.144), resulting in

∣

∣

∣F̃
∣

∣

∣− F̃ +
F̃2

4C̃
≥ 0, (6.146)

and also recall that

F̃ ≤
∣

∣

∣F̃
∣

∣

∣+
F̃2

4C̃
, (6.147)

where adding C̃ to both sides of inequality (6.147) results in

F̃ + C̃ ≤
∣

∣

∣F̃
∣

∣

∣+ C̃ +
F̃2

2C̃
=





√

C̃ +

∣

∣

∣F̃
∣

∣

∣

2
√

C̃





2

. (6.148)
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Taking the square root of both sides of inequality (6.148) yields

√

F̃ + C̃ ≤
√

C̃ +

∣

∣

∣
F̃
∣

∣

∣

2
√

C̃
. (6.149)

Using the results obtained with inequalities (6.138), (6.139), and (6.149), into inequality (6.137)

yields

2a10(x̃+ x∗)2 sin

(A1 − B1

2

)

cos

(A1 + B1

2

)

≤ s2K1(x̃+ x∗)2
∣

∣

∣a10

[

2
(

√

s3 (F + C)−
√

s3C
)

+ s3F
]∣

∣

∣

= s2K1(x̃+ x∗)2
∣

∣

∣a10

[

2
(√

F̃ + C̃ −
√

C̃
)

+ F̃
]∣

∣

∣

≤ s2K1(x̃+ x∗)2

∣

∣

∣

∣

∣

∣

a10



2





√

C̃ +

∣

∣

∣F̃
∣

∣

∣

2
√

C̃
−
√

C̃



+ F̃





∣

∣

∣

∣

∣

∣

= s2K1(x̃+ x∗)2

∣

∣

∣

∣

∣

∣

a10





∣

∣

∣F̃
∣

∣

∣

√

C̃
+ F̃





∣

∣

∣

∣

∣

∣

= s2K1(x̃+ x∗)2

(

1
√

C̃
+ 1

)

∣

∣

∣a10F̃
∣

∣

∣ . (6.150)

Recalling the definition of C̃(x̃), Eq. (6.139), which can be expanded such that

C̃(x̃) = s3ṽSS(x̃) =
s3c̄6

(x̃+ x∗)2
, (6.151)

and as noted previously, x̃ + x∗ ≡ x, and with the ranges defined by in section 2.8.5.2, it was defined

xMIN ≤ x ≤ xMAX , therefore it can be shown that

1 +
1
√

C̃
= 1 +

x̃+ x∗√
s3c̄6

≤ 1 +
xMAX√
s3c̄6

= 1 +

√

− a4
a2a7

xMAX ,

where − a4

a2a7
> 0. Recalling also that function F̃(x̃, ỹ), Eq. (6.138), was defined as

F̃(x̃, ỹ) = s3
ν̄1ỹ

2
2 + ν̄2ỹ2 + ν̄3ỹ1
(x̃+ x∗)2

, (6.152)

with the new parameters being given by

ν̄1 = ā9, (6.153)

ν̄2 =
(

ā9 − b̃y2

)

, (6.154)

ν̄3 = −b̃y1
, (6.155)

and recalling that s3 was previously defined in Eq. (4.88) as

s3 =
a2a5
a4a9

, (6.156)

thus permitting to rewrite inequality (6.150) as

2a10(x̃+ x∗)2 sin

(A1 − B1

2

)

cos

(A1 + B1

2

)

≤ s2K1(x̃+ x∗)2

(

1
√

C̃
+ 1

)

∣

∣

∣a10F̃
∣

∣

∣

= s2K1(x̃+ x∗)2

(

1
√

C̃
+ 1

)

∣

∣

∣

∣

a10s3
ν̄1ỹ

2
2 + ν̄2ỹ2 + ν̄3ỹ1
(x̃+ x∗)2

∣

∣

∣

∣
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≤ s2K1(x̃+ x∗)2
(

1 +

√

− a4
a2a7

xMAX

) ∣

∣

∣

∣

a10s3
ν̄1ỹ

2
2 + ν̄2ỹ2 + ν̄3ỹ1
(x̃+ x∗)2

∣

∣

∣

∣

. (6.157)

For conciseness introduce

s4 = s2s3 |a10|
(

1 +

√

− a4
a2a7

xMAX

)

K1

=
4a2a3 |a10| K1

a24ε1

(

1 +

√

− a4
a2a7

xMAX

)

, (6.158)

thus simplifying inequality (6.150) as

2a10(x̃+ x∗)2 sin

(A1 − B1

2

)

cos

(A1 + B1

2

)

≤ s2K1(x̃+ x∗)2
(

1 +

√

− a4
a2a7

xMAX

) ∣

∣

∣

∣

a10s3
ν̄1ỹ

2
2 + ν̄2ỹ2 + ν̄3ỹ1
(x̃+ x∗)2

∣

∣

∣

∣

= s4
∣

∣ν̄1ỹ
2
2 + ν̄2ỹ2 + ν̄3ỹ1

∣

∣ . (6.159)

In order to simplify even further inequality (6.159), let also recall that, as defined in section 2.8.5.2

that

ỹ2MIN
< ỹ2 < ỹ2MAX

, (6.160)

therefore, it can be proven that

|ỹ2| ≤ Ỹ2MAX
, (6.161)

with Ỹ2MAX
being the absolute value of the maximum vertical velocity of the helicopter, and given

by

Ỹ2MAX
= max (|ỹ2MIN

| , |ỹ2MAX
|) , (6.162)

thus allowing to rewrite

|ỹ2| ≤ Ỹ2MAX
, (6.163)

ỹ22 ≤ Ỹ2MAX
|ỹ2| , (6.164)

therefore using Eqns. (6.163), and (6.164), into inequality (6.159), yields

2a10(x̃+ x∗)2 sin

(A1 − B1

2

)

cos

(A1 + B1

2

)

≤ s4
∣

∣ν̄1ỹ
2
2 + ν̄2ỹ2 + ν̄3ỹ1

∣

∣

≤ s4
(∣

∣ν̄1ỹ
2
2

∣

∣+ |ν̄2ỹ2|+ |ν̄3ỹ1|
)

≤ s4

(∣

∣

∣ν̄1Ỹ2MAX
ỹ2

∣

∣

∣+ |ν̄2ỹ2|+ |ν̄3ỹ1|
)

. (6.165)

Let also introduce

C1(b̃y1
) = s4 |ν̄3| =

4a2a3 |a10| b̃y1
K1

a24ε1

(

1 +

√

− a4
a2a7

xMAX

)

(6.166)

C2(b̃y2
) = s4

(∣

∣

∣ν̄1Ỹ2MAX

∣

∣

∣+ |ν̄2|
)

=
4a2a3 |a10| K1

a24ε1

(

1 +

√

− a4
a2a7

xMAX

)

(

Ỹ2MAX
|a9|+

∣

∣

∣a9 + b̃y2

∣

∣

∣

)

, (6.167)

with xMAX being the maxim angular velocity of the blades. Using Eqns. (6.166), and (6.167), into

inequality (6.165) yields

2a10(x̃+ x∗)2 sin

(A1 − B1

2

)

cos

(A1 + B1

2

)
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≤ s4

(∣

∣

∣ν̄1Ỹ2MAX
ỹ2

∣

∣

∣+ |ν̄2ỹ2|+ |ν̄3ỹ1|
)

≤ C1 |ỹ1|+ C2 |ỹ2| . (6.168)

Using the results obtained in inequality (6.168) into inequality (6.98), results in

(

∂VS(x̃)

∂x̃

)T
[

f̃(x̃, ỹ , h̃(x̃, ỹ))− f̃(x̃, g̃(x̃), h̃(x̃, ỹ))
]

=
1

2

QS

bx
x̃

[

2a10(x̃+ x∗)2 sin

(A1 − B1

2

)

cos

(A1 + B1

2

)]

≤
∣

∣

∣

∣

1

2

QS

bx
x̃

[

2a10(x̃ + x∗)2 sin

(A1 − B1

2

)

cos

(A1 + B1

2

)]∣

∣

∣

∣

≤
∣

∣

∣

∣

1

2

QS

bx
x̃ (C1 |ỹ1|+ C2 |ỹ2|)

∣

∣

∣

∣

, (6.169)

which can be further simplified by defining

Ĉ1(bx, b̃y1
) =

1

2

QS

bx
C1(b̃y1

), (6.170)

Ĉ2(bxb̃y1
) =

1

2

QS

bx
C2(b̃y1

). (6.171)

Substituting Eqns. (6.170) and (6.171) into inequality (6.169), results in

(

∂VS(x̃)

∂x̃

)T
[

f̃(x̃, ỹ , h̃(x̃, ỹ))− f̃(x̃, g̃(x̃), h̃(x̃, ỹ))
]

≤
∣

∣

∣

∣

1

2

QS

bx
x̃ (C1 |ỹ1|+ C2 |ỹ2|)

∣

∣

∣

∣

≤
(

Ĉ1 |x̃ỹ1|+ Ĉ2 |x̃ỹ2|
)

, (6.172)

thus the original inequality , Eq. (6.92), becomes

(

∂VS(x̃)

∂x̃

)T
[

f̃(x̃, ỹ , h̃(x̃, ỹ))− f̃(x̃, g̃(x̃), h̃(x̃, ỹ))
]

≤
(

Ĉ1 |x̃ỹ1|+ Ĉ2 |x̃ỹ2|
)

≤ β1ψ1(x̃)φ(ŷ), (6.173)

where recalling the selected comparison functions ψ1(x̃) and φ1(ŷ), Eqns. (6.72), and (6.91), respectively,

it can be observed that satisfying inequality (6.173) is reduced to prove that

(

Ĉ1 |x̃ỹ1|+ Ĉ2 |x̃ỹ2|
)

≤ β1ψ1(x̃)φ(ŷ ) = β1

(

QS

2
x̃2
)

1

2 (qf1
2
ỹ21 +

qf2
2
ỹ22

)
1

2

. (6.174)

In order to obtain the constant β1 that guarantees the fulfillment of inequality (6.92), let square both

sides of inequality (6.174), resulting in

(

Ĉ1 |x̃ỹ1|+ Ĉ2 |x̃ỹ2|
)2

≤ β2
1Q̃sx̃

2
(

q̃f1 ỹ
2
1 + q̃f2 ỹ

2
2

)

, (6.175)

where the left-hand side of inequality (6.175) can be expanded as

(

Ĉ1 |x̃ỹ1|+ Ĉ2 |x̃ỹ2|
)2

= x̃2
(

Ĉ2
1 ỹ

2
1 + Ĉ2

2 ỹ
2
2 + 2Ĉ1Ĉ2 |ỹ1ỹ2|

)

, (6.176)

which can be further reduced by using the absolute value version of Young’s inequality

(Steele, 2004)

|ab| ≤
∣

∣

∣

∣

a2 + b2

2

∣

∣

∣

∣

, (6.177)
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which permits to rewrite Eq. (6.176) as

x̃2
(

Ĉ2
1 ỹ

2
1 + Ĉ2

2 ỹ
2
2 + 2Ĉ1Ĉ2 |ỹ1ỹ2|

)

≤ x̃2
[

Ĉ2
1 ỹ

2
1 + Ĉ2

2 ỹ
2
2 + 2Ĉ1Ĉ2

(

ỹ21 + ỹ22
2

)]

= x̃2
(

Ĉ2
1 ỹ

2
1 + Ĉ2

2 ỹ
2
2 + Ĉ1Ĉ2ỹ21 + Ĉ1Ĉ2ỹ22

)

= x̃2
[(

Ĉ2
1 + Ĉ1Ĉ2

)

ỹ21 +
(

Ĉ2
2 + Ĉ1Ĉ2

)

ỹ22

]

. (6.178)

Using Eq. (6.178) permits to rewrite inequality (6.175) as

(

Ĉ1 |x̃ỹ1|+ Ĉ2 |x̃ỹ2|
)2

≤ x̃2
[(

Ĉ2
1 + Ĉ1Ĉ2

)

ỹ21 +
(

Ĉ2
2 + Ĉ1Ĉ2

)

ỹ22

]

≤ β2
1

(

q̃sx̃
2
)

1

2
(

q̃f1 ỹ
2
1 + q̃f2 ỹ

2
2

)

, (6.179)

therefore, satisfying the original inequality (6.92) reduces to find β1 that satisfies the following

inequality

x̃2
[(

Ĉ2
1 + Ĉ1Ĉ2

)

ỹ21 +
(

Ĉ2
2 + Ĉ1Ĉ2

)

ỹ22

]

≤ β2
1

(

Q̃Sx̃
2
)

(

q̃f1 ỹ
2
1 + q̃f2 ỹ

2
2

)

, (6.180)

therefore inequality (6.92) can be satisfied by selecting β1 such

β1 = max (β1a , β1b) , (6.181)

where

β1a ≥

√

√

√

√

(

Ĉ2
1 + Ĉ1Ĉ2

)

Q̃S q̃f1
=

√

√

√

√

4
(

Ĉ2
1 + Ĉ1Ĉ2

)

QSqf1
, (6.182)

β1b ≥

√

√

√

√

(

Ĉ2
2 + Ĉ1Ĉ2

)

Q̃S q̃f2
=

√

√

√

√

4
(

Ĉ2
2 + Ĉ1Ĉ2

)

QSqf2
, (6.183)

with Ĉ1 and Ĉ2, given by Eqns. (6.170) and (6.171), respectively, and where QS , is the Lyapunov matrix

for the ΣS-subsystem, and qf1 , and qf2 are the coefficients of the Lyapunov Matrix QF of the ΣF -

subsystem, see section 5.4.2 for further details. With this in mind, Eqns. (6.182) and (6.183) can be

simplified to

β1a ≥
√

QS
(C1 + C2)

b2x

C1
qf1

, (6.184)

β1b ≥
√

QS
(C1 + C2)

b2x

C2
qf2

, (6.185)

where recalling that for the problem here discussed C2 > C1, therefore the selection of β1a or β1b depends

on the ratio between the stability parameters qf2 and qf1 , such that if

C2
C1

≥ qf2/qf1 → β1 = max (β1a , β1b) = β1b , (6.186)

C2
C1

≤ qf2/qf1 → β1 = max (β1a , β1b) = β1a . (6.187)

This translates into that by selecting the ration between both qf2 and qf1 , the analysis can be simplified,

therefore, for simplicity, as it will be seen in future sections, a relation between qf1 and qf2 can be defined

by equating Eqns. (6.184) and (6.185) resulting in
√

QS
(C1 + C2)

b2x

C1
qf1

=

√

QS
(C1 + C2)

b2x

C2
qf2

, (6.188)
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which reduces to

C2
C1

=
qf2
qf1

= QF21
, (6.189)

this implies that if the ratio between qf2 and qf1 is given by expression (6.189) which implies that

β1 > β1a = β1b =

√

QS
(C1 + C2)

b2x

C1
qf1

=

√

QS
(C1 + C2)

b2x

C2
qf2

, (6.190)

therefore reducing Eq. (6.181)

β1 =

√

QS
(C1 + C2)

b2x

C1
qf1

, (6.191)

where

qf2
qf1

= Q̃F21
, (6.192)

and satisfying that

Q̃F21
≥ QF21

=
C2
C1
, (6.193)

which can be obtained by defining

Q̃F21
= δ1QF21

, (6.194)

with δ1 > 1. It can be proven that the value of δ1 determines the range of permissible d1 that fulfill the

asymptotic stability properties for the ΣSF -subsystem as it will be shown in future analysis.

6.3.5 Proof of Assumption 5.5.5: Second Interconnection Condition for the

Helicopter ΣSF -Subsystem

The second interconnection condition is defined by the inequality

(

∂VF (ỹ)

∂x̃

)T

f̃(x̃, ỹ , h̃(x̃, ỹ)) ≤ γ1φ
2
1(ŷ) + β2ψ1(x̃)φ1(ŷ). (6.195)

Inequality (6.195) can be rewritten by adding and subtracting f̃(x̃, g̃(x̃), h̃(x̃, ỹ)) to the f̃(x̃, ỹ , h̃(x̃, ỹ))

in the left-hand side of (6.195) resulting in

∂VF
∂x̃

f̃(x̃, ỹ , h̃(x̃, ỹ)) ≤ ∂VF
∂x̃

f̃(x̃, ỹ , h̃(x̃, ỹ))

+
∂VF
∂x̃

[

f(x̃, ỹ , h̃(x̃, ỹ))− f(x̃, ỹ , h̃(x̃, ỹ))
]

≤ β2ψ1(x̃)φ1(ŷ) + γ1φ
2
1(ŷ). (6.196)

The resulting inequality Eq. (6.196), can be satisfied by first splitting into two simpler inequalities

given by

∂VF
∂x̃

f̃(x̃, ỹ , h̃(x̃, ỹ)) ≤ β2ψ1(x̃)φ1(ŷ) (6.197)

∂VF
∂x̃

[

f̃(x̃, ỹ , h̃(x̃, ỹ))− f̃(x̃, g̃(x̃), h̃(x̃, ỹ))
]

≤ γφ21(ŷ), (6.198)

therefore, assumption (6.195) will be proven, if both inequalities (6.197) and (6.198) are fulfilled. From

the definition of VF (ŷ), it can be seen that

∂VF
∂x̃

= 0. (6.199)
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Due to the fact that the associated Lyapunov function, VF (ŷ), does not depend on the variable x̃,

implies that the fulfillment of inequality (6.195) is trivial and is achieved by selecting β1 ≥ 0, and γ1 ≥ 0,

thus, concluding that the sub-conditions (6.197) and (6.198) are satisfied by selecting

β2 ≥ 0, (6.200)

γ1 ≥ 0. (6.201)

These results provide an additional degree of freedom that will be exploited in later sections in order

to determine desired upperbounds of the ΣSF Stability Analysis.

6.4 Fulfillment of the Helicopter ΣSF Stability Analysis

The fulfillment of assumptions 5.5.1, 5.5.2, 5.5.3, 5.5.4, and 5.5.5, applied to the helicopter ΣSF -subsystem

by the fulfillment of inequalities 6.67, 6.75, 6.92, and 6.195, proves that the growth requirements of

f̃(x̃, ỹ , h̃(x̃, ỹ)) and ĝ(x̃, ỹ , h̃(x̃, ỹ)) are satisfied, and with the Lyapunov functions VS(x̃) and VF (ŷ),

Eqns. (6.41) and (6.42) respectively, satisfying the respective growth requirements, a new Lyapunov

function candidate V1(x̃, ỹ) is considered and defined by the weighted sum of VS(x̃) and VF (x̃, ỹ), given

by

V1(x̃, ỹ) = (1− d1)VS(x̃) + d1VF (ŷ), d1 ∈ (0, 1)

= (1− d1)
QS

4bx
x̃2 +

d1
2
pf1 ỹ

2
1 +

d1
2
pf3 ỹ

2
2 + d1pf2 ỹ1ỹ2, (6.202)

for 0 < d1 < 1. The newly defined function V1(x̃, ỹ) becomes the Lyapunov function candidate for the

singular perturbed ΣSF -subsystem, Eqns. (6.15–6.17). Similarly as in the general case, to explore the

freedom in choosing the weights, lets take d1 as an unspecified parameter in the interval (0, 1). From

the properties of VS(x̃) and VF (ŷ) and inequality (6.65), that is ‖ g̃(x̃) ‖≤ p1 (‖ x̃ ‖), where p1(·) is a

κ class function, it follows that V1(x̃, ỹ) is positive-definite. Computing the time derivative of V1(x̃, ỹ)

along the trajectories of f̃(x̃, ỹ , h̃(x̃, ỹ)) and ĝ(x̃, ỹ , h̃(x̃, ỹ)) yields an equation of similar structure as in

Eq. (5.145), which can express as a function of the comparison functions ψ1(x̃), and φ1(ŷ) by employing

the derived inequalities 6.67, 6.75, 6.92, and 6.195, resulting in

V̇1 ≤ −(1− d1)α1ψ
2
1(x̃) + (1− d1)β1ψ1(x̃)φ1(ŷ)

− d1
ε1
α2φ

2
1(ŷ) + d1γ1φ

2
1(ŷ) + d1β2ψ1(x̃)φ1(ŷ)

= −
[

ψ1(x̃)

φ1(ŷ)

]T




(1− d1)α1 − 1
2 (1− d1)β1 − 1

2d1β2

− 1
2 (1− d1)β1 − 1

2d1β2 d1

(

α2

ε1
− γ1

)





×
[

ψ1(x̃)

φ1(ŷ)

]

= −









√

Q̃Sx̃2

√

ỹT Q̃Fỹ









T




(1− d1)α1 − 1
2 (1− d1)β1 − 1

2d1β2

− 1
2 (1− d1)β1 − 1

2d1β2 d1

(

α2

ε1
− γ1

)





×









√

Q̃S x̃2

√

ỹT Q̃Fỹ









. (6.203)

In order to guarantee the negative-definiteness property of Eq. (6.203), and conducting the same
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algebraic transformations as in section 5.5.1, it can be obtained the following expression that defines the

requirement to be satisfied by the parasitic constant ε1 such that

ε1 <
α1α2

α1γ1 +
1

4(1− d1)d1
[(1− d1)β1 + d1β2]

2
≡ ε1d . (6.204)

Recalling from the general formulation, chapter 5, that although only α1 and α2 are required by

definition to be positive, β1, β2, and γ1 are also considered to be positive. Inequality (6.204) shows that

for any choice of d1, the corresponding V1(x̃, ỹ), Eq. (6.202), is a Lyapunov function for the singular

perturbed ΣSF -subsystem, Eqns. (6.15–6.17), for all ε1 satisfying Eq. (6.204). It can be easily seen that

the maximum value of ε1d occurs at

d∗1 =
β1

β1 + β2
, (6.205)

yielding the upper bound on ε1 given by

ε∗1 =
α1α2

α1γ1 + β1β2
. (6.206)

Therefore, it can be inferred that the equilibrium point of the singularly perturbed ΣSF -subsystem,

Eqns. (6.15–6.17), is asymptotically stable for all ε1 < ε∗1. The number ε∗1 is the best upper bound

on ε1 that can be provided by the above presented stability analysis. The results obtained from the

fulfillment of inequalities (6.67), (6.75), (6.92) and (6.195) are summarized in Table 6.1, where it can be

seen the similarities between the two-time-scale growth requirements described in Section 5.2.1, and the

three-time-scale growth requirements for the ΣSF -subsystem.

The asymptotic stability analysis presented proves that by fulfilling inequalities (6.67), (6.75), (6.92),

and (6.195), then the origin is an asymptotically stable equilibrium of the singularly perturbed helicopter

ΣSF -subsystem (6.15–6.17) for all ε1 ∈ (0, ε∗1), where ε
∗
1 is given by Eq. (6.206), thus, for every number

d1 ∈ (0, 1), V1(x̃, ỹ), Eq. (6.202), is a Lyapunov function for all ε1(0, εd), where ε1d ≤ ε∗1 is given by Eq.

(6.204), hence satisfying Theorem 5.5.1. As mentioned previously in section 6.3.4, it can be proven that

the value of δ1 determines the range of permissible d1 that fulfill the asymptotic stability properties for

the ΣSF -subsystem, therefore, such that in order to satisfy that for every number d1 ∈ (0, 1), V1(x̃, ỹ),

is a Lyapunov function for all ε1(0, εd), it is required that δ1 ≥ 10.66. Nevertheless, as it will be proven

in the ΣSFU Stability Analysis in section 6.5, in order to satisfy the stability analysis it is required that

δ1 ∈ (1.02, 1.264).

The fulfillment of Theorem 5.5.1 for the helicopter ΣSF -subsystem can be summarized by understand-

ing that x̃ = 0 is an asymptotically stable equilibrium of the reduced ΣS-subsystem, Eq. (6.30), and

ỹ = g̃(x̃) is an asymptotically stable equilibrium of the boundary-layer ΣF -subsystem, Eq. (6.19–6.20),

uniformly in x̃, that is, the ε−δ definition of Lyapunov stability and the convergence ỹ → g̃(x̃) are uniform

in x̃ (Vidyasagar, 2002), and since it has been proven that f̃(x̃, ỹ , h̃(x̃, ỹ)) and ĝ(x̃, ỹ , h̃(x̃, ỹ)) satisfy

certain growth conditions on the reduced and boundary-layer systems, assumptions 5.5.1, 5.5.2, 5.5.3,

5.5.4, and 5.5.5 applied to the helicopter ΣSF -subsystem, then the origin is an asymptotically stable equi-

librium of the singularly perturbed system (6.15–6.17), for sufficiently small ε1 (Kokotović et al., 1986;

Kokotović et al., 1987; Kokotović et al., 1999).

Due to the fact that the system is expressed in its error dynamics form, and that the use of the full range

of reachable state variables has been required in order to satisfy the inequalities that guarantee the asymp-

totic stability properties at the origin of the ΣSF -subsystem, these asymptotic stability properties are also

extended to semiglobal stability, by the definition in (Kokotović, 1992; Sussmann and Kokotović, 1991;

Braslavsky and Miidleton, 1996), by providing upper bounds on the parasitic singularly perturbed pa-

rameters for the entire range of admissible state values, thus extending the domain of attraction to that



6.4. FULFILLMENT OF THE HELICOPTER ΣSF STABILITY ANALYSIS 241

same rage of admissible states.

Assumption 5.5.2 for the Helicopter ΣSF -Subsystem

Section 5.2 ∂V
∂x f(x, h(x)) α1 ψ(x)

ΣSF
∂VS(x̃)

∂x̃ f̃(x̃, g̃(x̃), h̃(x̃, ỹ)) α1 ≤ 1 ψ1(x̃) =

√

Q̃sx̃2

Assumption 5.5.3 for the Helicopter ΣSF -Subsystem

Section 5.2 ∂W
∂z g(x, z) α2 φ(z − h(x))

ΣSF

(

∂VF (ỹ)
∂ỹ

)T

ĝ(x̃, ỹ , h̃(x̃, ỹ)) α2 ≤ 1 φ1(ŷ) =

√

ỹT Q̃Fỹ

Assumption 5.5.4 for the Helicopter ΣSF -Subsystem

Section 5.2 ∂V
∂x f(x, z) f(x, h(x)) β1

ΣSF

(

∂VS(x̃)
∂x̃

)T

f̃(x̃, ỹ , h̃(x̃, ỹ)) f̃(x̃, g̃(x̃), h̃(x̃, ỹ)) β1 ≥ max (β1a , β1b)

Assumption 5.5.5 for the Helicopter ΣSF -Subsystem

Section 5.2 ∂W
∂x f(x, z) γ1 β2

ΣSF

(

∂VF (ỹ)
∂x̃

)T

f̃(x̃, ỹ , h̃(x̃, ỹ)) γ1 ≥ 0 β2 ≥ 0

Table 6.1: Parameters for the Comparison Functions and Inequalities that Guarantee the Asymptotic
Stability Requirements for the Helicopter ΣSF Subsystem.

6.4.1 Bounds for the Stability Parameter of the ΣSF Stability Analysis

Needs to be noted that, due to the existent freedom on selecting β2 and γ1, the upper-bound ε∗1, Eq.

(6.206), and its d∗1 parameter, Eq. (6.205), can be precisely obtained to match the required parameters

that guarantee the asymptotic stability for the full ΣSFU system by selecting the combination of γ1 and

β2 that generates the appropriate combination of both d∗1 and ε∗1. This is obtained by solving Eqns.

(6.205) and (6.206) such that yields

ε∗1 =
α1α2

α1γ1 + β1β2
→ γ1(ε

⋆

1 ) =
1

α1

(

α1α2

ε⋆1
− β1β2

)

(6.207)

and where β2 is defined by

d∗1 =
β1

β1 + β2
→ β2(d

⋆

1 ) =
β1

d⋆1
− β1, (6.208)

where recall that d⋆1 and ε⋆1 are the selected values by the author that satisfy the asymptotic stability

properties of the full system, not to confuse with d∗1 and ε∗1, that are given by Eqns. (6.205) and (6.206),

respectively. The major difference between both, d⋆1 , ε⋆1 and d∗1, ε
∗
1, is that the first appear only for the

special type of problems in which the degrees of freedom that appear during the stability analysis allow to

select β2(d
⋆

1 ) and γ1(ε
⋆

1 ), thus permitting to select the desired values for both ε1 and d1 by selecting ε⋆1
and d⋆1 from Eqns. (6.207) and (6.208), respectively. This reduces Eqns. (6.205) and (6.206) to

d∗1 =
β1

β1 + β2(d
⋆

1 )
, (6.209)

yielding the upper bound on ε1 given by

ε∗1 =
α1α2

α1γ1(ε
⋆

1 ) + β1β2(d
⋆

1 )
. (6.210)
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The power to select ε∗1, can be better understood since the fulfillment of the ΣSF Stability Analysis

depends on the fulfillment that the chosen ε1 in the time-scale selection (see selection 3.5) satisfies ε1 < ε∗1.

The power to select d∗1 will be fully understood when completing the satisfy the ΣSFU Stability Analysis,

but initially can be thought as a requirement to calculate the upper bound on ε∗1, Eq. (6.210), which

requires the calculation of both β2(d
⋆

1 ), and γ1(ε
⋆

1 ), Eqns. (6.208) and (6.207), respectively.

As it will be shown in section 6.6, in order to satisfy the ΣSFU Stability Analysis, it is required that

d1 ∈ (0.0543, 0.5243). Therefore, by selecting d∗1 = 0.5, the ΣSFU Stability Analysis will be satisfied,

and in addition, the percentage contribution on the Lyapunov function V1(x̃, ỹ), Eq. (6.202), is equally

distributed for both Lyapunov functions VS(x̃) and VF (ŷ). The selection of ε⋆1 is more straight forward,

recalling the time-scale of the helicopter problem here analyzed, which was selected as ε1 = 0.028.

Therefore, recalling Eq. (6.207), and identifying that for margin let ε⋆1 = δε1ε1 = 0.02940, where it is

selected as δε1 = 1.05.

Recall also that need to select the stability parameters QS , qf1 , and qf2 , and where although arbitrary

values can be selected in order to satisfy the asymptotic stability properties of the ΣSF -subsystem,

as it will be proven in the stability analysis for the full ΣSFU system, a specific ratio between all three

parameters is required in order to guarantee the stability properties of the ΣSFU system, such that

qf1 = Q̃SFQS, (6.211)

qf2 = Q̃F21
Q̃SFQS , (6.212)

where both Q̃SF = δ1QSF and Q̃F21
= δ1QF21

, represent the required ratios to prove the asymptotic

stability analysis for the full ΣSFU helicopter system, and will be derived in the ΣSFU Stability Analysis

in section 6.5. These ratios, for the physical parameters of the helicopter here discussed, and recalling

that in order to satisfy that the range of permissible unspecified parameter d1 is d1 ∈ (0.0543, 0.5243),

and with δ1 = 1.05 results in

QSF = 0.259974, (6.213)

QF21
= 2.567205, (6.214)

therefore, by selecting QS = 0.5, results in

qf1 = 0.129987, (6.215)

qf2 = 0.333703, (6.216)

which results, according to Eqns. (6.207) and (6.208), results in γ1 = 31.7007576, and β2 = 0.76260,

respectively, which results in the new coefficients that fulfill the growth requirements

α1 = 0.95,

α2 = 0.95,

β1 = 0.76260

β2 = 0.76260,

γ1 = 31.7007576.

Figure 6.1 shows the dependance on the right-hand side of Eq. (6.204) on the unspecified parameter d1,

being able to identify that the maximum value is achieved at the selected d⋆1 = 0.5, and with the value

of the also selected ε⋆1 = ε∗1 = 0.02940, which satisfies the requirements ε1 < ε∗1, and d⋆1 = 0.5. This

concludes the first step of the asymptotic stability analysis, the ΣSF Stability Analysis. The following

section describes the second step of the asymptotic stability analysis, the ΣSFU Stability Analysis for the

helicopter problem.
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Figure 6.1: Adjusted Stability Upper Bounds on ε1 for the Stability Analysis of the ΣSF Subsystem
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6.5 ΣSFU Stability Analysis for the Helicopter Model

Once proven the asymptotic stability of the ΣSF -subsystem, Eqns. (6.15–6.17), the ΣSFU Stability

Analysis is conducted recalling that the ΣSF Stability Analysis provides a composite Lyapunov func-

tion, V1(x̃, ỹ), Eq. (6.202), that satisfies the growth requirements between both f̃(x̃, ỹ , h̃(x̃, ỹ)) and

ĝ(x̃, ỹ , h̃(x̃, ỹ)), therefore, and using these results, it can be continued to prove the asymptotic stability

properties of the full ΣSFU system, which, for convenience, is first rewritten as

˙̃χ = F̃ (χ̃, z̃ ), χ̃ ∈ Rχ̃, (6.217)

ε1ε2 ˙̃z = ĥ(χ̃, z̃ ), z̃ ∈ Rz̃ , (6.218)

with Bχ̃ ⊂ Rχ̃, Bz̃ ⊂ Rz̃ denoting closed sets, and where F̃ (χ̃, z̃ ) represents the augmented system given

by

F̃ (χ̃, z̃ ) ,

[

f̃(χ̃, z̃ )

ĝ(χ̃, z̃ )

]

=

[

f̃ (x̃, ỹ , z̃ )

ĝ (x̃, ỹ , z̃ )

]

, (6.219)

where χ̃ represents the augmented state vector given by

χ̃ ,
[

x̃ ỹ

]T

=
[

x̃ ỹ1 ỹ2

]T

. (6.220)

The ΣSFU Stability Analysis is continued by applying again the Bottom time-scale to the ΣSFU full

system, Eqns. (6.217–6.218), resulting in the new (slow) augmented reduced order ΣSF -subsystem, given

by

˙̃χ = F̃
(

χ̃, h̃(χ̃)
)

=

[

f̃(χ̃, h̃(χ̃))

ĝ(χ̃, h̃(χ̃))

]

=





f̃
(

x̃, ỹ , h̃(x̃, ỹ)
)

ĝ
(

x̃, ỹ , h̃(x̃, ỹ)
)



 , (6.221)

which is equivalent to the subsystem analyzed in the ΣSF Stability Analysis, Eqns. (6.15–6.17), and

therefore, whose associated Lyapunov function is the one obtained as a result of ΣSF Stability Analysis,

V1(χ̃) ≡ V1(x̃, ỹ), while the boundary layer ΣU -subsystem is defined by

dz̃

dτ2
= ĥ(χ̃, z̃ ), (6.222)

which is also equivalent to the boundary layer ΣU -subsystem, Eq. (6.21–6.22), and whose quasi-steady-

state equilibrium, z̃ = h̃(χ̃) is equivalent to the one obtained in the ΣSF Stability Analysis, that is

h̃(χ̃) ≡ h̃(x̃, ỹ), and with VU (ẑ) being its associated Lyapunov function, Eq. (6.51).

Similarly as in the ΣSFU general asymptotic stability analysis presented in section 5.5.3, the he-

licopter ΣSFU Stability Analysis is performed using the standard method for two-time-scale systems

(Kokotović et al., 1986; Kokotović et al., 1987; Kokotović et al., 1999), in which the previously derived

Lyapunov functions for the ΣSF and ΣU -subsystems, that is V1(χ̃) and VU (ẑ), Eqns. (6.202) and (6.51),

respectively, must fulfill certain growth requirements on F̃ (χ̃, z̃ ), Eqns. (6.6–6.8), and ĥ (χ̃, z̃ ), Eqns.

(6.21–6.22) by satisfying certain inequalities. The fulfillment of these inequalities for the full ΣSFU

helicopter subsystem are described bellow.

6.5.1 Isolated Equilibrium of the Origin for the Helicopter ΣSFU System:

Assumption 5.5.1

The origin (χ̃ = 0, z̃ = 0) is a unique and isolated equilibrium for the ΣSFU system, Eqns. (6.6–6.10),

i.e.

0 = F̃ (0, 0), (6.223)
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0 = ĥ(0, 0), (6.224)

moreover, z̃ = h̃(χ̃) is the unique root of

0 = ĥ(χ̃, z̃ ), (6.225)

in Bχ̃ ×Bz̃ , i.e.

0 = ĥ(χ̃, h̃(χ̃)), (6.226)

and there exists a class κ function p2(·) such that

‖ h̃(χ̃) ‖≤ p2 (‖ χ̃ ‖) . (6.227)

The reduced order growth requirements are obtained by first considering the system given by Eq.

(6.217), and adding and subtracting F̃ (χ̃, h̃(χ̃)) to the right-hand side of Eq. (6.217) yielding

˙̃x = F̃
(

χ̃, h̃(χ)
)

+ F̃ (χ̃, z̃ )− F̃
(

χ̃, h̃(χ̃)
)

, (6.228)

where the term F̃ (χ̃, z̃ )−F̃ (χ̃, h̃(χ̃)) can be viewed as a perturbation of the reduced order ΣSF -subsystem

given by

˙̃χ = F̃
(

χ̃, h̃(χ̃)
)

, (6.229)

with F̃ (χ̃, z̃ ) being given by

F̃ (χ̃, z̃ ) =







F̃1 (χ̃, z̃ )

F̃2 (χ̃, z̃ )

F̃3 (χ̃, z̃ )






=

[

f̃(χ̃, z̃ )

ĝ(χ̃, z̃ )

]

=

[

f̃ (x̃, ỹ , z̃ )

ĝ (x̃, ỹ , z̃ )

]

, (6.230)

with

F̃1 (χ̃, z̃ ) = a10(x̃+ x∗)2
[

sin (z̃1 + z∗1)− sin h̃1SS

]

− bxx̃, (6.231)

F̃2 (χ̃, z̃ ) = c1ỹ2, (6.232)

F̃3 (χ̃, z̃ ) = (x̃+ x∗)2
(

c2 + c3(z̃1 + z∗1)−
√

c4 + c5(z̃1 + z∗1)

)

+ a9ỹ2 + a9ỹ
2
2 + c6, (6.233)

and with F̃ (χ̃, h̃(χ̃)) given after substituting the ultra-fast quasi-steady-state equilibrium, z̃ = h̃(χ̃), into

Eq. (6.233), resulting in

F̃ (χ̃, h̃(χ̃)) =













F̃1 (χ̃, z̃ )
∣

∣

∣

z̃=h̃(χ)
= F̃H1

(

χ̃, h̃(χ̃)
)

F̃2 (χ̃, z̃ )
∣

∣

∣

z̃=h̃(χ)
= F̃H2

(

χ̃, h̃(χ̃)
)

F̃3 (χ̃, z̃ )
∣

∣

∣

z̃=h̃(χ)
= F̃H3

(

χ̃, h̃(χ̃)
)













, (6.234)

with

F̃H1

(

χ̃, h̃(χ̃)
)

= a10(x̃+ x∗)2
[

sin
(

h̃1 (χ̃) + z∗1

)

− sin h̃1SS

]

− bxx̃, (6.235)

F̃H2

(

χ̃, h̃(χ̃)
)

= c1ỹ2, (6.236)

F̃H3

(

χ̃, h̃(χ̃)
)

= −b̃y1
ỹ1 − b̃y2

ỹ2, (6.237)

where

h̃1 (χ̃) =

[

s2

(

(

1 +
√

s3ṽ(χ̃)
)2

− 1

)]

− z∗1 , (6.238)
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where recall that h̃1 (χ̃) ≡ h̃1 (x̃, ỹ). Similarly as in the ΣSF Stability Analysis, it is therefore natural to

first satisfy the growth requirements for Eq. (6.229) and then consider the effect of the perturbation term

F̃ (χ̃, z̃ )− F̃ (χ̃, h̃(χ̃)). Therefore let proceed to define first the reduced order growth condition.

6.5.2 Proof of Assumption 5.5.7: Reduced System Conditions for the

Helicopter ΣSFU System

Recalling from Assumption 5.5.7, the ΣSF Lyapunov function candidate V1(χ̃) must be positive-definite

and decreasing, and must also satisfy the following inequality given by

(

∂V1(χ̃)

∂χ̃

)T

F̃
(

χ̃, h̃(χ̃)
)

≤ −α3ψ
2
2(χ̃), (6.239)

where ψ2(·) is a scalar function of vector arguments which vanishes only when its argument are zero, and

satisfying that χ̃ = 0 is a stable equilibrium of the reduced order system. The left-hand side of inequality

(6.239) is given by recalling that V1(χ̃), Eq. (6.202) is defined as

V1(χ̃) = (1− d1)VS(x̃) + d1VF (ŷ) = (1− d1)

(

1

2
PS x̃

2

)

+ d1

(

1

2
ỹTPF ỹ

)

, (6.240)

being therefore easy to see that

(

∂V1(χ̃)

∂χ̃

)T

=

[

∂V1(χ̃)
∂x̃

∂V1(χ̃)
∂ỹ

]

=







∂V1(χ̃)
∂x̃

∂V1(χ̃)
∂ỹ1

∂V1(χ̃)
∂ỹ2






=







V1x̃

V2ỹ1 + V3ỹ2

V3ỹ1 + V4ỹ2






, (6.241)

with

V1 = (1− d1)PS = (1− d1)
QS

2bx
, (6.242)

V2 = d1pf1 = d1 (Cf1qf1 + Cf2qf2) , (6.243)

V3 = d1pf2 = d1Cf3qf1 , (6.244)

V4 = d1pf3 = d1 (Cf4qf1 + Cf5qf2) , (6.245)

and also recalling that F̃ (χ̃, h̃(χ̃)) is given by Eq. (6.234). For completeness recall that the variables A1

and B1 were defined in Eqns. (6.96) and (6.97), respectively, thus rewriting Eqns. (6.235–6.237) as

F̃H1

(

χ̃, h̃(χ̃)
)

= a10(x̃+ x∗)2(sinA1 − sinB1)− bxx̃, (6.246)

F̃H2

(

χ̃, h̃(χ̃)
)

= c1ỹ2, (6.247)

F̃H3

(

χ̃, h̃(χ̃)
)

= −b̃y1
ỹ1 − b̃y2

ỹ2, (6.248)

where for simplicity, Eqns. (6.246–6.248), F̃(·)

(

χ̃, h̃(χ̃)
)

will fe referred as F̃(·). Recalling the sum-to-

product prosthaphaeresis trigonometric identity, Eq. (6.99), the left hand-side of inequality (6.239) can

be expressed as
(

∂V1(χ̃)

∂χ̃

)T

F̃ (χ̃, h̃(χ̃)) =
∂V1(χ̃)

∂x̃
F̃H1

+
∂V1(χ̃)

∂ỹ1
F̃H2

+
∂V1(χ̃)

∂ỹ2
F̃H3

= V1x̃
[

a10(x̃+ x
∗)2(sinA1 − sinB1)− bxx̃

]

+ c1ỹ2 (V2ỹ1 + V3ỹ2)

+ (V3ỹ1 + V4ỹ2)
(

−b̃y1 ỹ1 − b̃y2 ỹ2

)

= V1x̃a10(x̃+ x
∗)2 (sinA1 − sinB1)− bxV1x̃

2
− b̃y1V3ỹ

2

1

−

(

b̃y2V4 − c1V3

)

ỹ
2

2 −

(

b̃y1V4 + b̃y2V3 − c1V2

)

ỹ1ỹ2

= V1a10x̃(x̃+ x
∗)22 sin

(

A1 − B1

2

)

cos

(

A1 + B1

2

)

− t1x̃
2
− t2ỹ

2

1 − t3ỹ
2

2 − t4ỹ1ỹ2, (6.249)
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with

t1 = bxV1, (6.250)

t2 = b̃y1
V3, (6.251)

t3 = b̃y2
V4 − c1V3, (6.252)

t4 = b̃y1
V4 + b̃y2

V3 − c1V2. (6.253)

Recalling that PS , pf1 , pf2 and pf3 are given in Eqns. (6.40), (6.43), (6.44), and (6.45), respectively,

which after being substituted into Eqns. (6.242–6.245), results in

t1 =
1

2
(1− d1)QS , (6.254)

t2 =
1

2
d1qf1 , (6.255)

t3 =
1

2
d1qf2 , (6.256)

t4 = b̃y1
V4 + b̃y2

V3 − c1V2 = 0. (6.257)

Recalling that for the helicopter ΣSF Stability Analysis, section 6.3, it was proven that

2a10(x̃+ x∗)2 sin

(A1 − B1

2

)

cos

(A1 + B1

2

)

≤ C1 |ỹ1|+ C2 |ỹ2| , (6.258)

therefore, inequality (6.249) can be rewritten using the results in Eq. (6.258), resulting in

(

∂V1(χ̃)

∂χ̃

)T

F̃ (χ̃, h̃(χ̃))

= V1a10x̃(x̃+ x∗)22 sin

(A1 − B1

2

)

cos

(A1 + B1

2

)

− t1x̃
2 − t2ỹ

2
1 − t3ỹ

2
2

≤
∣

∣

∣

∣

V1a10x̃(x̃+ x∗)22 sin

(A1 − B1

2

)

cos

(A1 + B1

2

)∣

∣

∣

∣

− t1x̃
2 − t2ỹ

2
1 − t3ỹ

2
2

≤ |V1x̃ (C1 |ỹ1|+ C2 |ỹ2|)| − t1x̃
2 − t2ỹ

2
1 − t3ỹ

2
2 , (6.259)

which can be simplified by introducing

C̃1 = V1C1 = (1− d1)
QS

2bx

4a2a3 |a10| b̃y1
K1

a24ε1

(

1 +

√

− a4
a2a7

xMAX

)

, (6.260)

C̃2 = V1C2 = (1− d1)
QS

2bx

4a2a3 |a10| K1

a24ε1

(

1 +

√

− a4
a2a7

xMAX

)

×
(

Ỹ2MAX
|a9|+

∣

∣

∣a9 + b̃y2

∣

∣

∣

)

, (6.261)

where recall that K1 was previously defined in Eq. (6.127), xMAX is the maxim angular velocity of

the blades, and Ỹ2MAX
is the absolute value of the maxim vertical velocity of the helicopter, previously

defined in Eq. (6.162). Using Eqns. (6.260) and (6.261) into inequality (6.259) results in

(

∂V1(χ̃)

∂χ̃

)T

F̃ (χ̃, h̃(χ̃))

= V1a10x̃(x̃+ x∗)22 sin

(A1 − B1

2

)

cos

(A1 + B1

2

)

− t1x̃
2 − t2ỹ

2
1 − t3ỹ

2
2

≤ |V1x̃ (C1 |ỹ1|+ C2 |ỹ2|)| − t1x̃
2 − t2ỹ

2
1 − t3ỹ

2
2

≤ C̃1 |x̃ỹ1|+ C̃2 |x̃ỹ2| − t1x̃
2 − t2ỹ

2
1 − t3ỹ

2
2 , (6.262)

Inequality (6.262) can be further simplified employing Young’s inequality, Eq. (6.177, thus permitting
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to rewrite Eq. (6.262) as

(

∂V1(χ̃)

∂χ̃

)T

F̃ (χ̃, h̃(χ̃))

= V1a10x̃(x̃+ x∗)22 sin

(A1 − B1

2

)

cos

(A1 + B1

2

)

− t1x̃
2 − t2ỹ

2
1 − t3ỹ

2
2

≤ C̃1 |x̃ỹ1|+ C̃2 |x̃ỹ2| − t1x̃
2 − t2ỹ

2
1 − t3ỹ

2
2

≤ C̃1
(

x̃2 + ỹ21
2

)

+ C̃2
(

x̃2 + ỹ22
2

)

− t1x̃
2 − t2ỹ

2
1 − t3ỹ

2
2

≤ −R1x̃
2 −R1ỹ

2
1 −R1ỹ

2
2 =

(

χ̃T
Rχ̃

)

, (6.263)

where R is a 3× 3 positive definite matrix given by

R =







R1 0 0

0 R2 0

0 0 R3






, (6.264)

with

R1 = t1 −
C̃1 + C̃2

2
=

(1− d1)QS

2



1− s4
b̃y1

+ Ỹ2MAX
|a9|+

∣

∣

∣
a9 + b̃y2

∣

∣

∣

2bx



 , (6.265)

R2 = t2 −
C̃1
2

=
1

2
d1qf1 −

(1− d1)QSs4
4bx

b̃y1
, (6.266)

R3 = t3 −
C̃2
2

=
1

2
d1qf2 −

(1− d1)QSs4
4bx

[

Ỹ2MAX
|a9|+

∣

∣

∣a9 + b̃y2

∣

∣

∣

]

, (6.267)

with s4 being previously defined in Eq. (6.158). Equations. (6.265), (6.266) and (6.267) can be simplified

by introducing

r̃1 =
1− d1

2

(

1− C1 + C2
2bx

)

, (6.268)

r̃2 =
d1
2
, (6.269)

r̃3 = (1− d1)
C1
4bx

, (6.270)

r̃4 = (1− d1)
C2
4bx

, (6.271)

therefore rewriting

R1 = r̃1QS , (6.272)

R2 = r̃2qf1 − r̃3QS , (6.273)

R3 = r̃2qf2 − r̃4QS , (6.274)

thus the original inequality (6.239) becomes

(

∂V1(χ̃)

∂χ̃

)T

F̃ (χ̃, h̃(χ̃))

= V1a10x̃(x̃+ x∗)22 sin

(A1 − B1

2

)

cos

(A1 + B1

2

)

− t1x̃
2 − t2ỹ

2
1 − t3ỹ

2
2

≤ −
(

χ̃T
Rχ̃

)

≤ −α3ψ
2
2(χ̃), (6.275)

where needs to ensure that R > 0 is a positive definite matrix, that is R1 > 0, R2 > 0, and R3 > 0, which

can be done by ensuring the appropriate coefficients selection. This is achieved such that for R1 > 0 it
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is required that

bx >
C1 + C2

2

>
4a2a3 |a10| K1

2a24ε1

(

1 +

√

− a4
a2a7

xMAX

)

(b̃y1
+ Ỹ2MAX

|a9|+
∣

∣

∣
a9 + b̃y2

∣

∣

∣
), (6.276)

for R2 > 0 it is required that

qf1 >
(1− d1)QS

2d1bx
C1

>
(1− d1)QS

2d1bx

4a2a3 |a10| b̃y1
K1

a24ε1

(

1 +

√

− a4
a2a7

xMAX

)

, (6.277)

and finally for R3 > 0 it is required that

qf2 >
(1− d1)QS

2d1bx
C2

>
(1− d1)QS

2d1bx

4a2a3 |a10| K1

a24ε1

(

1 +

√

− a4
a2a7

xMAX

)

×
(

Ỹ2MAX
|a9|+

∣

∣

∣a9 + b̃y2

∣

∣

∣

)

, (6.278)

therefore it can be seen that with the proper selection of parameters it is ensured that R is positive

definite, that is R > 0, for

bx >
C1 + C2

2
, (6.279)

qf1 >
(1− d1)QS

2d1bx
C1, (6.280)

qf2 >
(1− d1)QS

2d1bx
C2, (6.281)

and therefore Assumption (5.5.7) and inequality (6.239) are satisfied by selecting α3 and ψ2(χ̃) such

α3 ≤ 1, (6.282)

ψ2(χ̃) =
(

χ̃T
Rχ̃

)
1

2

=
√

R1x̃2 +R2ỹ21 +R3ỹ22 . (6.283)

From Eqns. (6.280) and (6.281) it can be inferred a series of important relations between the stability

parameters that will help in the remainder of stability analysis. First, from Eq. (6.280) it can be defined

a relation between qf1 and QS by identifying that, in order to guarantee the positive definiteness of R,

needs to be selected such

qf1 > QSFQS, (6.284)

with

QSF =
(1− d1)

2d1bx
C1. (6.285)

For simplicity of the analysis that will be conducted in future derivations, inequality (6.284) can be

converted into expressions by defining

Q̃SF > QSF , (6.286)

therefore rewriting Eqns. (6.284) as

qf1 = Q̃SFQS, (6.287)

where

Q̃SF = δ2QSF , (6.288)
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with δ2 > 1, therefore permitting to delimit the range of the stability parameter qf1 such

qf1 = Q̃SFQS. (6.289)

The second relation is equivalent with the relation obtained in the ΣSF Stability Analysis conducted pre-

viously in section 6.3, which provides an expression for the desired ratio between the stability parameters

qf1 and qf2 . This same second relation is also obtained by dividing (6.281) by (6.280) resulting in the

expression given by

qf2
qf1

> QF21
, (6.290)

where

QF21
=

C2
C1
, (6.291)

which similarly as in the ΣSF Stability Analysis in section 6.3

qf2
qf1

= Q̃F21
, (6.292)

with

Q̃F21
= δ1QF21

, (6.293)

with δ1 > 1, therefore permitting to delimit the range of the stability parameter qf2 such

qf2 = Q̃F21
qf1 . (6.294)

Both relations (6.289) and (6.294) will be of great importance when defining the upper-bounds on ε2

that will be conducted at the end of this section.

6.5.3 Proof of Assumption 5.5.8: Boundary-Layer System Conditions for the

Helicopter ΣSFU System

Recalling from Assumption 5.5.8, the ΣU Lyapunov function candidate VU (χ̃, z̃ ) must be positive-definite

and decreasing, such that for all (χ̃, z̃ ) ∈ Bχ̃ ×Bz̃ satisfies the following inequality

VU (χ̃, z̃ ) > 0, ∀z̃ 6= h̃(χ̃) and VU (χ̃, h̃(χ̃)) = 0, (6.295)

and where
(

∂VU
∂z̃

)T

ĥ(χ̃, z̃ ) ≤ −α4φ
2
2(z̃ − h̃(χ̃)), α4 > 0, (6.296)

where φ2(·) is a scalar function of vector arguments which vanishes only when its arguments are zero, and

satisfying that z̃ − h̃(χ̃) is a stable equilibrium of the boundary layer ΣU -subsystem, where ĥ (χ̃, z̃ ) is the

boundary layer ΣU -subsystem, Eqns. (6.21–6.22), and VU (χ̃, z̃ ), Eq. (6.51), is the Lyapunov function

candidate of the ΣU -subsystem. The left-hand side of inequality (6.296) is defined after recalling that,

as previously defined

VU (ẑ) =
1

2
ẑTPU ẑ =

1

2
pu1

ẑ21 +
1

2
pu3

ẑ22 + pu2
ẑ1ẑ2, (6.297)

where recall that

ẑ = z̃ − h̃(x̃, ỹ), (6.298)
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and with

PU =

(

pu1
pu2

pu2
pu3

)

. (6.299)

Recalling that pu1
, pu2

, and pu3
are defined in Eqns. (6.53), (6.54), and (6.55), respectively, being

therefore easy to see that

(

∂VU
∂z̃

)T

= (PU ẑ)T , (6.300)

and also recalling, from section 6.2.1, that the ĥ(χ̃, z̃ ) subsystem can be rewritten in terms of its quasi-

steady-state equilibrium error as

ĥ(χ̃, z̃ ) = AU ẑ, (6.301)

with AU given by Eq. (6.29). Substituting both Eqns. (6.300) and (6.301) into the left-hand side of

inequality (6.296) yields

(

∂VU
∂z̃

)T

ĥ(χ̃, z̃ ) = (PU ẑ)
T
AU ẑ = ẑTPUAU ẑ = ẑTAU ẑ, (6.302)

being AU defined in

AU = PUAU =

(

α11 α12

α21 α22

)

, (6.303)

with

α11 = a9pu2
, (6.304)

α12 = c7pu1
+ c9pu2

, (6.305)

α21 = a9pu3
, (6.306)

α22 = c7pu2
+ c9pu3

. (6.307)

Substituting the solutions to the associated Lyapunov equation, pu1
, pu2

, and pu3
, Eqns. (6.53), (6.53)

and (6.53), respectively into inequality (6.311) reduces to

(

∂VU
∂z̃

)T

ĥ(χ̃, z̃ ) = −1

2

(

qu1
ẑ21 + qu2

ẑ22
)

= −1

2

(

ẑTQU ẑ
)

, (6.308)

where QU is the matrix of the associated Lyapunov equation defined in Eq. (5.106). For simplicity, let

introduce the variables

q̃u1
=

qu1

2
, (6.309)

q̃u2
=

qu2

2
, (6.310)

and let also Q̃U = QU /2, thus inequality (6.296) can be rewritten such

(

∂VU
∂z̃

)T

ĥ(χ̃, z̃ ) = −
(

ẑT Q̃U ẑ
)

≤ −α4φ
2
2(z̃ − h̃(χ̃)), (6.311)

thus Assumption 5.5.8 and inequality (6.296) can be satisfied by selecting α4 and φ2(z̃−h̃(χ̃)) such

α4 ≤ 1, (6.312)

φ2(z̃ − h̃(χ̃)) =
(

ẑT Q̃U ẑ
)

1

2

=
√

q̃u1
ẑ21 + q̃u2

ẑ22 . (6.313)

For simplicity, and noting that ẑ = z̃ − h̃(χ̃, z̃ ), φ2(ẑ ) is used instead of φ2(z̃ − h̃(χ̃, z̃ )) throughout
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the remainder of the document.

6.5.4 Proof of Assumption 5.5.9: First Interconnection Condition for the

Helicopter ΣSFU System

The Lyapunov functions V1(χ̃) and VU (χ̃, z̃ ), Eqns. (6.202) and (6.51), respectively, must satisfy the

so called interconnection conditions. The first interconnection condition is obtained by computing the

derivative of V1(χ̃) along the solution of Eq. (6.228), resulting in a expression similar to Eq. (5.166),

which provides the first interconnection inequality

(

∂V1(χ̃)

∂χ̃

)T
[

F̃ (χ̃, z̃ )− F̃
(

χ̃, h̃(χ̃)
)]

≤ β3ψ2(χ̃)φ2(z̃ − h̃(χ̃)), (6.314)

where the comparison functions ψ2(χ̃) and φ2(χ̃, z̃ ), are defined in Eqns. (6.313) and (6.283), respectively.

Inequality (6.314) determines the allowed growth of F̃ (χ̃, z̃ ) in z̃, and in typical problems, verifying

Assumption 6.5.4 reduces to verifying the inequality
∥

∥

∥F̃ (χ̃, z̃ )− F̃
(

χ̃, h̃(χ̃)
)∥

∥

∥ ≤ ψ2(χ̃)φ2(z̃ − h̃(χ̃)), (6.315)

which implies that the rate of growth of F̃ (χ̃, z̃ ) cannot be faster than the rate of growth of the com-

parison function φ2(·). The left-hand side of inequality (6.314) is given by recalling Eq. (6.241), and

defining

F̃ (χ̃, z̃ )− F̃ (χ̃, h̃(χ̃)) =







F̃1 − F̃H1

F̃2 − F̃H2

F̃3 − F̃H3






=







F̂1

F̂2

F̂3






, (6.316)

recalling that F̃1, F̃2, and F̃3 are defined in Eqns. (6.231), (6.232), and (6.233), respectively, and that

F̃H1
, F̃H2

, and F̃H3
, are defined in Eqns. (6.235), (6.236), and (6.237), respectively, yielding

F̂1 = a10 (x̃+ x
∗)

2

(

sin (z̃1 + z
∗

1)− sin
(

h̃1(χ̃) + z
∗

1

))

, (6.317)

F̂2 = 0, (6.318)

F̂3 = (x̃+ x
∗)

2

[

c3

(

z̃1 − h̃1(χ̃)
)

−

(

√

c4 + c5 (z̃1 + z∗
1
)−

√

c4 + c5

(

h̃1(χ̃) + z∗
1

)

)]

, (6.319)

where Eqns. (6.317–6.318) can be simplified by introducing

A2 = z̃1 + z∗1 , (6.320)

B2 = h̃1(χ̃) + z∗1 , (6.321)

thus rewriting Eqns. (6.317–6.318) as

F̂1 = a10(x̃+ x∗)22 sin

(A2 − B2

2

)

cos

(A2 + B2

2

)

, (6.322)

F̂2 = 0, (6.323)

F̂3 = (x̃+ x∗)
2
[

c3ẑ1 −
(

√

c4 + c5A2 −
√

c4 + c5B2

)]

, (6.324)

Substituting Eqns. (6.241) and (6.316) into the left-hand side of inequality (6.314), and using Eqns.

(6.320) and (6.321) yields

(

∂V1(χ̃)

∂χ̃

)T
[

F̃ (χ̃, z̃ )− F̃ (χ̃, h̃(χ̃))
]

=
∂V1(χ̃)

∂x̃
F̂1 +

∂V1(χ̃)

∂ỹ1
F̂2 +

∂V1(χ̃)

∂ỹ2
F̂3
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= V1x̃

[

a10(x̃+ x∗)2 sin

(A2 − B2

2

)

cos

(A2 + B2

2

)]

+ (V3ỹ1 + V4ỹ2)
{

(x̃+ x∗)
2
[

c3ẑ1 −
(

√

c4 + c5A2 −
√

c4 + c5B2

)]}

. (6.325)

Focussing in the first term in Eq. (6.325) it can be rewritten as

2a10(x̃+ x∗)2 sin

(A2 − B2

2

)

cos

(A2 + B2

2

)

≤ 2(x̃+ x∗)2 cos

(A2 + B2

2

) ∣

∣

∣

∣

a10 sin

(A2 − B2

2

)∣

∣

∣

∣

, (6.326)

and recalling that due to the positive nature of the function cos(a), that is 1 ≥ cos(a) ≥ 0 ∀a ∈ R, it can

also be shown that

0 ≤ cos

(A2 + B2

2

)

≤ 1, (6.327)

further more it can be shown that

0 ≤ cos

(A2 + B2

2

)

≤ K2 ≤ 1, (6.328)

where it can be proven that the maximum value of Eq. (6.327) is achieved for

K2 = cos

(A2MIN
+ B2MIN

2

)

≤ 1, (6.329)

being A2MIN
and B2MIN

the minimum possible value of Eqns. (6.320) and (6.321) respectively, and being

defined by

A2MIN
= (z̃1 + z∗1)MIN = z1MIN

, (6.330)

B2MIN
= h1MIN

(χ̃) + z∗1 = s2

[

(

1 +
√

s3ṽ(χ̃)
)2

− 1

]

MIN

= s2

[

(

1 +
√

s3ṽMIN (χ̃)
)2

− 1

]

, (6.331)

where z1MIN
represents the minimum collective pitch angle, which is defined in Table 2.3, and where

ṽMIN was defined in Eq. (6.133). Equation (6.326) can be rewritten using Eq. (6.329), and the sine

inequality identity given by |sin a| ≤ |a|, yielding

2a10(x̃+ x∗)2 sin

(A2 − B2

2

)

cos

(A2 + B2

2

)

≤ 2(x̃+ x∗)2 cos

(A2 + B2

2

) ∣

∣

∣

∣

a10 sin

(A2 − B2

2

)∣

∣

∣

∣

≤ 2(x̃+ x∗)2K2

∣

∣

∣

∣

a10 sin

(A2 − B2

2

)∣

∣

∣

∣

≤ (x̃+ x∗)2K2 |a10 (A2 − B2)| . (6.332)

Inequality (6.332) can be further simplified by recalling the definition introduced in the error dynamics

formulation, section 2.8.5.2, such

(x̃+ x∗) , x, (6.333)

and identifying that as seen in Table 2.3, resulting in

xMAX ≥ x ≥ xMIN , (6.334)

therefore allowing to rewrite (6.332) as

2a10(x̃+ x∗)2 sin

(A2 − B2

2

)

cos

(A2 + B2

2

)
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≤ (x̃+ x∗)2K2 |a10 (A2 − B2)|
≤ x2MAXK2 |a10 (A2 − B2)| , (6.335)

which can be further simplified by introducing

s6 = x2MAXK2 |a10| , (6.336)

therefore rewriting inequality (6.335) as

2a10(x̃+ x∗)2 sin

(A2 − B2

2

)

cos

(A2 + B2

2

)

≤ x2MAXK2 |a10 (A2 − B2)|
≤ s6 |(A2 − B2)| . (6.337)

Substituting back A2 and B2, Eqns. (6.320) and (6.321), respectively, into inequality (6.337) results

in

2a10(x̃+ x∗)2 sin

(A2 − B2

2

)

cos

(A2 + B2

2

)

≤ s6 |(A2 − B2)|
= s6 |(z̃1 + z∗1)− (h1(x̃, ỹ) + z∗1)| = s6 |z̃1 − h1(x̃, ỹ)| = s6 |ẑ1| . (6.338)

Let recall that ẑ1 represents the quasi-steady-state equilibrium error of the ultra fast dynamics given

by ẑ1 = z̃1 − h̃1(χ̃), therefore using the results obtained in Eq. (6.338) into inequality (6.389) results

in
(

∂V1(χ̃)

∂χ̃

)T
[

F̃ (χ̃, z̃ )− F̃ (χ̃, h̃(χ̃))
]

= V1x̃

[

a10(x̃+ x∗)2 sin

(A2 − B2

2

)

cos

(A2 + B2

2

)]

+ (V3ỹ1 + V4ỹ2)
{

(x̃+ x∗)
2
[

c3ẑ1 −
(

√

c4 + c5A2 −
√

c4 + c5B2

)]}

≤
∣

∣

∣

∣

V1x̃

[

a10(x̃+ x∗)2 sin

(A2 − B2

2

)

cos

(A2 + B2

2

)]∣

∣

∣

∣

+
∣

∣

∣(V3ỹ1 + V4ỹ2)
{

(x̃+ x∗)
2
[

c3ẑ1 −
(

√

c4 + c5A2 −
√

c4 + c5B2

)]}∣

∣

∣

≤ |s6V1x̃ |ẑ1||+
∣

∣

∣(V3ỹ1 + V4ỹ2)
{

(x̃+ x∗)
2
[

c3ẑ1 −
(

√

c4 + c5A2 −
√

c4 + c5B2

)]}∣

∣

∣

≤ |s6V1x̃ |ẑ1||+ (x̃+ x∗)2
∣

∣

∣
(V3ỹ1 + V4ỹ2)

[

c3ẑ1 −
(

√

c4 + c5A2 −
√

c4 + c5B2

)]∣

∣

∣
. (6.339)

In order to further simplify inequality (6.339) let introduce the following inequality property. Assume

that for a > 0 and a+ bx > 0 it holds that

√
a+ bx ≤ √

a+
bx

2
√
a
, (6.340)

where the proof is given by multiplying both sides of Eq. (6.340) by
√
a resulting in

√
a
√
a+ bx ≤ a+

bx

2
, (6.341)

let square both sides of Eq. (6.342) such

a (a+ bx) ≤ a2 + abx+
b2x2

4
, (6.342)

which can be simplified by canceling terms reducing to

0 ≤ b2x2

4
, (6.343)
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which holds inequality (6.340). Let apply the results of Eq. (6.340), to the second term of inequality

(6.339), that is

(x̃+ x∗)
2
∣

∣

∣(V3ỹ1 + V4ỹ2)
[

c3ẑ1 −
(

√

c4 + c5A2 −
√

c4 + c5B2

)]∣

∣

∣ , (6.344)

where it can be shown that, by using the derived inequality (6.340), that
∣

∣

∣c3ẑ1 −
(

√

c4 + c5A2 −
√

c4 + c5B2

)∣

∣

∣ ≤ D |ẑ1| , (6.345)

where D is defined as

D = max
ξ∈{z̃1,h̃1}

(∣

∣

∣

∣

∣

c5

2
√

c4 + c5 (ξ + z∗1)
− c3

∣

∣

∣

∣

∣

)

. (6.346)

Inequality (6.345) can be expanded by recalling the definitions of both A2 and B2, Eqns. (6.320) and

(6.321), respectively, and the definition of ẑ1 = z̃1 − h̃1(χ̃), such
∣

∣

∣

∣

∣

c3

(

z̃1 − h̃1(χ̃)
)

−
(

√

c4 + c5 (z̃1 + z∗1)−
√

c4 + c5

(

h̃1(χ̃) + z∗1

)

)∣

∣

∣

∣

∣

≤ D |ẑ1| . (6.347)

Fulfilment of inequality (6.347) implies that needs to be proven that
∣

∣

∣

∣

∣

c3

(

z̃1 − h̃1(χ̃)
)

−
(

√

c4 + c5 (z̃1 + z∗1)−
√

c4 + c5

(

h̃1(χ̃) + z∗1

)

)∣

∣

∣

∣

∣

≤ max
ξ∈{z̃1,h̃1}

(∣

∣

∣

∣

∣

c5

2
√

c4 + c5 (ξ + z∗1)
− c3

∣

∣

∣

∣

∣

)

. (6.348)

For completeness let define

A3 = c3

(

z̃1 − h̃1(χ̃)
)

, (6.349)

B3 =

(

√

c4 + c5 (z̃1 + z∗1)−
√

c4 + c5

(

h̃1(χ̃) + z∗1

)

)

, (6.350)

thus reducing Eq. (6.348) such

|A3 − B3| ≤ max
ξ∈{z̃1,h̃1}

(∣

∣

∣

∣

∣

c5

2
√

c4 + c5 (ξ + z∗1)
− c3

∣

∣

∣

∣

∣

)

, (6.351)

where it can be noted that two different cases can be encountered and given by

A3 > B3, (6.352)

A3 < B3. (6.353)

For case 1, Eq. (6.352) it can be shown that the left hand side of inequality (6.351) reduces to

|A3 − B3| = A3 − B3 = c3

(

z̃1 − h̃1(χ̃)
)

+

√

c4 + c5

(

h̃1(χ̃) + z∗1

)

−
√

c4 + c5 (z̃1 + z∗1), (6.354)

the second term of the right hand side of Eq. (6.354) can be rewritten by adding and subtracting z̃1 and

reorganizing such
√

c4 + c5

(

h̃1(χ̃) + z∗1

)

=

√

c4 + c5

(

h̃1(χ̃) + z∗1 + z̃1 − z̃1

)

=

√

[c4 + c5 (z̃1 + z∗1)] + c5

[

h̃1(χ̃)− z̃1

]

. (6.355)
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By recognizing that by definition

c4 + c5 (z̃1 + z∗1) = c4 + c5z1 > 0 ∀ z1, (6.356)

therefore Eq. (6.355) can be rewritten by recalling inequality (6.340) such that

√

[c4 + c5 (z̃1 + z∗1)] + c5

[

h̃1(χ̃)− z̃1

]

≤
√

c4 + c5 (z̃1 + z∗1) +
c5

[

h̃1(χ̃)− z̃1

]

2
√

c4 + c5 (z̃1 + z∗1)
, (6.357)

Therefore, substituting Eq. (6.357) into Eq. (6.354) results in

|A3 − B3| = c3

(

z̃1 − h̃1(χ̃)
)

+

√

c4 + c5

(

h̃1(χ̃) + z∗1

)

−
√

c4 + c5 (z̃1 + z∗1)

≤ c3

(

z̃1 − h̃1(χ̃)
)

+
√

c4 + c5 (z̃1 + z∗1) +
c5

(

h̃1(χ̃)− z̃1

)

2
√

c4 + c5 (z̃1 + z∗1)

−
√

c4 + c5 (z̃1 + z∗1), (6.358)

which after simplifying reduces to

|A3 − B3| ≤ c3

(

z̃1 − h̃1(χ̃)
)

+
c5

(

h̃1(χ̃)− z̃1

)

2
√

c4 + c5 (z̃1 + z∗1)

=

(

c3 −
c5

2
√

c4 + c5 (z̃1 + z∗1)

)

(

z̃1 − h̃1(χ̃)
)

≤
∣

∣

∣

∣

∣

c3 −
c5

2
√

c4 + c5 (z̃1 + z∗1)

∣

∣

∣

∣

∣

∣

∣

∣
z̃1 − h̃1(χ̃)

∣

∣

∣
. (6.359)

For case 2, Eq. (6.353), it can be shown that the left hand side of inequality (6.351) reduces to

|A3 − B3| = B3 −A3 =
√

c4 + c5 (z̃1 + z∗1)−
√

c4 + c5

(

h̃1(χ̃) + z∗1

)

− c3

(

z̃1 − h̃1(χ̃)
)

, (6.360)

the second term of the right hand side of Eq. (6.360) can be rewritten by adding and subtracting h̃1(χ̃)

and reorganizing such

√

c4 + c5 (z̃1 + z∗1) =

√

c4 + c5

(

z̃1 − h̃1(χ̃) + h̃1(χ̃) + z∗1

)

=

√

[

c4 + c5

(

h̃1(χ̃) + z∗1

)]

+ c5

[

z̃1 − h̃1(χ̃)
]

. (6.361)

By recognizing that by definition

c4 + c5

(

h̃1(χ̃) + z∗1

)

= c4 + c5z1 > 0 ∀ z1, (6.362)

therefore Eq. (6.361) can be rewritten by recalling inequality (6.340) such
√

[

c4 + c5

(

h̃1(χ̃) + z∗1

)]

+ c5

[

z̃1 − h̃1(χ̃)
]

≤
√

c4 + c5

(

h̃1(χ̃) + z∗1

)

+
c5

[

z̃1 − h̃1(χ̃)
]

2

√

c4 + c5

(

h̃1(χ̃) + z∗1

)

, (6.363)

Therefore, substituting Eq. (6.363) into Eq. (6.360) results in

|A3 − B3| =
√

c4 + c5 (z̃1 + z∗1)−
√

c4 + c5

(

h̃1(χ̃) + z∗1

)

− c3

(

z̃1 − h̃1(χ̃)
)
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≤
√

c4 + c5

(

h̃1(χ̃) + z∗1

)

+
c5z̃1 − h̃1(χ̃)

2

√

c4 + c5

(

h̃1(χ̃) + z∗1

)

−
√

c4 + c5

(

h̃1(χ̃) + z∗1

)

− c3

(

z̃1 − h̃1(χ̃)
)

, (6.364)

which after simplifying reduces to

|A3 − B3| ≤
c5

[

z̃1 − h̃1(χ̃)
]

2

√

c4 + c5

(

h̃1(χ̃) + z∗1

)

− c3

(

z̃1 − h̃1(χ̃)
)

=









c5

2

√

c4 + c5

(

h̃1(χ̃) + z∗1

)

− c3









(

z̃1 − h̃1(χ̃)
)

≤

∣

∣

∣

∣

∣

∣

∣

∣

c5

2

√

c4 + c5

(

h̃1(χ̃) + z∗1

)

− c3

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣z̃1 − h̃1(χ̃)
∣

∣

∣ , (6.365)

thus, both case 1, Eq. (6.365), and case 2, Eq. (6.365) hold inequality (6.348). Let recall that D in Eq.

(6.346) can be defined as

D = max
ξ∈{z̃1,h̃1}

(∣

∣

∣

∣

∣

c5

2
√

c4 + c5 (ξ + z∗1)
− c3

∣

∣

∣

∣

∣

)

= max (D1,D2) , (6.366)

where D1 is the solution of Eq. (6.366) when ξ = z̃1, that is

D1 =

(∣

∣

∣

∣

∣

c5

2
√

c4 + c5 (z̃1 + z∗1)
− c3

∣

∣

∣

∣

∣

)

=

(∣

∣

∣

∣

c5

2
√
c4 + c5A2

− c3

∣

∣

∣

∣

)

, (6.367)

and where D2 is the solution of Eq. (6.366) when ξ = h̃1(χ̃), that is

D2 =









∣

∣

∣

∣

∣

∣

∣

∣

c5

2

√

c4 + c5

(

h̃1 + z∗1

)

− c3

∣

∣

∣

∣

∣

∣

∣

∣









=

(∣

∣

∣

∣

c5

2
√
c4 + c5B2

− c3

∣

∣

∣

∣

)

. (6.368)

With these results, inequality (6.345) can be further simplified by defining
∣

∣

∣c3ẑ1 −
(

√

c4 + c5A2 −
√

c4 + c5B2

)∣

∣

∣ ≤ D |ẑ1| ≤ DMAX |ẑ1| , (6.369)

and recalling that it can be shown that

D ≤ DMAX , (6.370)

with

DMAX = max (D1MAX
,D2MAX

) , (6.371)

where D1MAX
is given by

D1MAX
=

∣

∣

∣

∣

∣

c5

2
√

c4 + c5 (z̃1 + z∗1)
− c3

∣

∣

∣

∣

∣

MAX

=

∣

∣

∣

∣

∣

c5

2
√

c4 + c5A2MIN

− c3

∣

∣

∣

∣

∣

, (6.372)

and where D2MAX
is given by

D2MAX
=

∣

∣

∣

∣

∣

∣

∣

∣

c5

2

√

c4 + c5

(

h̃1 + z∗1

)

− c3

∣

∣

∣

∣

∣

∣

∣

∣

MAX

=

∣

∣

∣

∣

∣

c5

2
√

c4 + c5B2MIN

− c3

∣

∣

∣

∣

∣

. (6.373)
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Recalling that A2MIN
and B2MIN

were previously defined in Eqns. (6.330) and (6.331), respectively,

therefore, reducing Eqns. (6.372) and (6.373), such

D1MAX
=

∣

∣

∣

∣

∣

c5

2
√

c4 + c5 (z̃1 + z∗1)
− c3

∣

∣

∣

∣

∣

MAX

=

∣

∣

∣

∣

c5
2
√
c4 + c5z1MIN

− c3

∣

∣

∣

∣

, (6.374)

where z1MIN
represents the minimum collective pitch angle, which is defined in Table 2.3, and D2MAX

is

given by

D2MAX
=

∣

∣

∣

∣

∣

∣

∣

∣

c5

2

√

c4 + c5

(

h̃1 + z∗1

)

− c3

∣

∣

∣

∣

∣

∣

∣

∣

MAX

=

∣

∣

∣

∣

∣

∣

∣

∣

c5

2

√

c4 + c5

(

h̃1 + z∗1

)

MIN

− c3

∣

∣

∣

∣

∣

∣

∣

∣

, (6.375)

where as seen previously

(

h̃1 + z∗1

)

MIN
= s2

[

(

1 +
√

s3ṽ(χ̃)
)2

− 1

]

MIN

= s2

[

(

1 +
√

s3ṽMIN (χ̃)
)2

− 1

]

, (6.376)

with ṽMIN given by Eq. (6.133). Therefore, using Eq. (6.369) reduces inequality (6.314) as

(

∂V1(χ̃)

∂χ̃

)T
[

F̃ (χ̃, z̃ )− F̃ (χ̃, h̃(χ̃))
]

= V1x̃

[

a10(x̃+ x∗)2 sin

(A2 − B2

2

)

cos

(A2 + B2

2

)]

+ (x̃+ x∗)
2
∣

∣

∣(V3ỹ1 + V4ỹ2)
[

c3ẑ1 −
(

√

c4 + c5A2 −
√

c4 + c5B2

)]∣

∣

∣

≤ |s6V1x̃ |ẑ1||+DMAX (x̃+ x∗)
2 |(V3ỹ1 + V4ỹ2) |ẑ1|| , (6.377)

where similarly as seen previously, inequality (6.377) can be further simplified by identifying that (x̃ +

x∗) , x, and identifying that, as seen in Table 2.3, xMAX ≥ x ≥ xMIN , therefore allowing to rewrite

inequality (6.377) as

(

∂V1(χ̃)

∂χ̃

)T
[

F̃ (χ̃, z̃ )− F̃ (χ̃, h̃(χ̃))
]

= V1x̃

[

a10(x̃+ x∗)2 sin

(A2 − B2

2

)

cos

(A2 + B2

2

)]

+ (x̃+ x∗)
2
∣

∣

∣(V3ỹ1 + V4ỹ2)
[

c3ẑ1 −
(

√

c4 + c5A2 −
√

c4 + c5B2

)]∣

∣

∣

≤ |s6V1x̃ |ẑ1||+DMAX (x̃+ x∗)
2 |(V3ỹ1 + V4ỹ2) |ẑ1||

≤ s7 |x̃ẑ1|+DMAXx
2
MAX |(V3ỹ1 + V4ỹ2) |ẑ1||

≤ s7 |x̃ẑ1|+ s8 |ỹ1ẑ1|+ s9 |ỹ2ẑ1| , (6.378)

with

s7 = s6V1 = x2MAXK2 |a10| (1− d1)PS , (6.379)

s8 = V3DMAXx
2
MAX = d1pf2DMAXx

2
MAX , (6.380)

s9 = V4DMAXx
2
MAX = d1pf3DMAXx

2
MAX , (6.381)

where V1, V2, V3 and V4 are defined in Eqns. (6.242), (6.243), (6.244) and (6.245) respectively, and s6

is defined in Eq. (6.336). Recalling the definition of PS , Eq. (6.40), and the definitions of pf1 , and pf2 ,

Eqns. (6.43) and (6.44), respectively, allows to rewrite Eqns. (6.379), (6.380) and (6.381) as

s7 = s̃7QS , (6.382)

s8 = s̃8qf1 , (6.383)

s9 = s̃9qf1 + s̃10qf2 , (6.384)
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where

s̃7 = x2MAXK2 |a10| (1− d1)
1

2bx
, (6.385)

s̃8 = d1DMAXx
2
MAXCf3 = d1DMAXx

2
MAX

1

2b̃y1

, (6.386)

s̃9 = d1DMAXx
2
MAXCf4 = d1DMAXx

2
MAX

c1

2b̃y1
b̃y2

, (6.387)

s̃10 = d1DMAXx
2
MAXCf5 = d1DMAXx

2
MAX

b̃y1

2b̃y1
b̃y2

. (6.388)

Using Eqns. (6.382), (6.383) and (6.384) reduces the original inequality (6.314) to

(

∂V1(χ̃)

∂χ̃

)T
[

F̃ (χ̃, z̃ )− F̃ (χ̃, h̃(χ̃))
]

≤ s7 |x̃ẑ1|+ s8 |ỹ1ẑ1|+ s9 |ỹ2ẑ1| ≤ β3ψ2(χ̃)φ2(ẑ ), (6.389)

where recalling the selected comparison functions ψ2(χ̃) and φ2(ẑ ), Eqns. (6.283) and (6.313), it can be

observed that satisfying inequality (6.389) is reduced to prove that

s7 |x̃ẑ1|+ s8 |ỹ1ẑ1|+ s9 |ỹ2ẑ1| ≤ β3

(

χ̃T
Rχ̃

)
1

2
(

ẑ
T
Q̃U ẑ

)
1

2

. (6.390)

In order to obtain the constant β3 that guarantees the fulfillment of inequality (6.314), that is, fulfill-

ing Assumption 5.5.9 for helicopter ΣSFU system, let square both sides of inequality (6.390), resulting

in

(s7 |x̃ẑ1|+ s8 |ỹ1ẑ1|+ s9 |ỹ2ẑ1|)2 ≤ β2
3

(

χ̃
T
Rχ̃

)(

ẑ
T
Q̃U ẑ

)

, (6.391)

expanding the left hand-side of inequality (6.391) results in

(s7 |x̃ẑ1|+ s8 |ỹ1ẑ1|+ s9 |ỹ2ẑ1|)2

= s27x̃
2ẑ21 + s28ỹ

2
1 ẑ

2
1 + s29ỹ

2
2 ẑ

2
1 + 2s7s8 |x̃ŷ1| ẑ21 + 2s7s9 |x̃ŷ2| ẑ21 + 2s8s9 |ỹ1ŷ2| ẑ21 . (6.392)

Inequality (6.392) can be further simplified employing Young’s inequality, Eq. (6.177), permitting to

rewrite Eq. (6.416) as

s27x̃
2ẑ21 + s28ỹ

2
1 ẑ

2
1 + s29ỹ

2
2 ẑ

2
1 + 2s7s8 |x̃ŷ1| ẑ21 + 2s7s9 |x̃ŷ2| ẑ21 + 2s8s9 |ỹ1ŷ2| ẑ21 (6.393)

≤ s27x̃
2ẑ21 + s28ỹ

2
1 ẑ

2
1 + s29ỹ

2
2 ẑ

2
1 + 2s7s8

(

x̃2 + ỹ21
2

)

ẑ21 + 2s7s9

(

x̃2 + ỹ22
2

)

ẑ21 (6.394)

+ 2s8s9

(

ỹ21 + ỹ22
2

)

ẑ21 (6.395)

= ẑ21
(

L1x̃
2 + L2ỹ

2
1 + L3ỹ

2
2

)

= ẑ21

(

χ̃T
Lχ̃
)

, (6.396)

where L is a symmetric positive definite matrix, defined by

L =







L1 0 0

0 L2 0

0 0 L3






, (6.397)

with

L1 = s27 + s7s8 + s7s9, (6.398)

L2 = s28 + s7s8 + s8s9, (6.399)

L3 = s29 + s7s9 + s8s9, (6.400)

where recalling Eqns. (6.382), (6.383) and (6.384), for the definitions of s7, s8, and s9 respectively, thus
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allowing to rewrite Eqns. (6.398), (6.399), and (6.400) as a function of the stability parameters such

L1 = L1aQ
2
S + L1bQSqf1 + L1cQSqf2 , (6.401)

L2 = L2aq
2
f1 + L2bQSqf1 + L2cqf1qf2 , (6.402)

L3 = L3aq
2
f1 + L3bq

2
f2 + L3cQSqf1 + L3dQSqf2 + L3eqf1qf2 , (6.403)

where

L1a = s̃27, (6.404)

L1b = s̃7s̃8 + s̃7s̃9, (6.405)

L1b = s̃7s̃10, (6.406)

L2a = s̃28 + s̃8s̃9, (6.407)

L2b = s̃7s̃8, (6.408)

L2c = s̃8s̃10, (6.409)

L3a = s̃29 + s̃8s̃9, (6.410)

L3b = s̃210, (6.411)

L3c = s̃7s̃9, (6.412)

L3d = s̃7s̃10, (6.413)

L3e = 2s̃9s̃10 + s̃8s̃10, (6.414)

with s̃7, s̃8, s̃9, and s̃10, defined in Eqns. (6.385), (6.386), (6.387), and (6.388), respectively. With this

in mind, let proceed to expand the right-hand side of inequality (6.391) resulting in

β2
3

(

χ̃T
Rχ̃

)(

ẑ
T
Q̃U ẑ

)

= β2
3

(

q̃u1
ẑ21 + q̃u2

ẑ22
) (

R1x̃
2 +R2ỹ

2
1 +R3ỹ

2
2

)

, (6.415)

therefore using both Eqns. (6.396) and (6.415), into inequality (6.390) results in

ẑ21
(

L1x̃
2 + L2ỹ

2
1 + L3ỹ

2
2

)

≤ β2
3

(

q̃u1
ẑ21 + q̃u2

ẑ22
) (

R1x̃
2 +R2ỹ

2
1 +R3ỹ

2
2

)

. (6.416)

It can be shown that the right-hand side of inequality (6.416) can be rewritten as

β2
3 q̃u1

ẑ21
(

R1x̃
2 +R2ỹ

2
1 +R3ỹ

2
2

)

≤ β2
3

(

q̃u1
ẑ21 + q̃u2

ẑ22
) (

R1x̃
2 +R2ỹ

2
1 +R3ỹ

2
2

)

, (6.417)

therefore reducing the fulfillment of the original inequality (6.314) to find the β3 constant that satisfies

the inequality given by

ẑ21
(

L1x̃
2 + L2ỹ

2
1 + L3ỹ

2
2

)

≤ β2
3 q̃u1

ẑ21
(

R1x̃
2 +R2ỹ

2
1 +R3ỹ

2
2

)

, (6.418)

with β3 given by

β3 = max (β3a , β3b , β3c) , (6.419)

where q̃u1
= qu1

/2, and q̃u2
= qu2

/2, thus resulting in

β3a ≥
√

2L1

qu1
R1

, (6.420)

β3b ≥
√

2L2

qu1
R2

, (6.421)

β3c ≥
√

2L3

qu1
R3

, (6.422)

with R1, R2, and R3 given in Eqns. (6.272), (6.273), and (6.274) respectively, and L1, L2, and L3 are
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given in (6.401), 6.402), and (6.403), thus resulting in

β3a ≥
√

2 (L1aQ
2
S + L1bQSqf1 + L1cQSqf2)

r̃1QSqu1

, (6.423)

β3b ≥

√

√

√

√

2
(

L2aq
2
f1

+ L2bQSqf1 + L2cqf1qf2

)

(r̃2qf1 − r̃3QS) qu1

, (6.424)

β3c ≥

√

√

√

√

2
(

L3aq
2
f1

+ L3bq
2
f2

+ L3cQSqf1 + L3dQSqf2 + L3eqf1qf2

)

(r̃2qf2 − r̃4QS) qu1

. (6.425)

In order to obtain a single relation for β3, let recall the relation Eq. (6.294) that defines the relation

between the stability parameters qf1 and qf2 , by defining qf2 = Q̃F21
qf1 , allowing to rewrite Eqns. (6.420),

(6.421), and (6.422) as

β3a ≥

√

√

√

√

2
(

L1aQ
2
S +

(

L1b + Q̃F21
L1c

)

QSqf1

)

r̃1QSqu1

, (6.426)

β3b ≥

√

√

√

√

2
(

L2aq
2
f1

+
(

L2b + Q̃F21
L2c

)

QSqf1

)

(r̃2qf1 − r̃3QS) qu1

, (6.427)

β3c ≥

√

√

√

√

√

2
[(

L3a + Q̃2
F21

L3b + Q̃F21
L3e

)

q2f1 + (L3c + L3d)QSqf1

]

(

r̃2Q̃F21
qf1 − r̃4QS

)

qu1

. (6.428)

Recalling also the expression in Eq. (6.289), qf1 = Q̃SFQS , permits to rewrite Eqns. (6.429), (6.430),

and (6.431) such

β3a ≥ B3a

√

QS

qu1

, (6.429)

β3b ≥ B3b

√

QS

qu1

, (6.430)

β3c ≥ B3c

√

QS

qu1

, (6.431)

where

B3a =

√

√

√

√

2
[

L1a +
(

L1b + Q̃F21
L1c

)

Q̃SF

]

r̃1
, (6.432)

B3b =

√

√

√

√

2
(

L2aQ̃
2
SF +

(

L2b + Q̃F21
L2c

)

Q̃SF

)

r̃2Q̃SF − r̃3
, (6.433)

B3c =

√

√

√

√

2
[(

L3a + Q̃2
F21

L3b + Q̃F21
L3e

)

Q̃2
SF + (L3c + L3d) Q̃SF

]

r̃2Q̃F21
Q̃SF − r̃4

, (6.434)

therefore permitting easily to prove that for the physical parameters here used, and the selected target

dynamic parameters, B3b > B3c > B3a . This is true as long as d1 is selected such d1 ∈ (0.0543, 0.6788)

as it can be seen in Figure 6.2, where it is analyzed the variation of the parameters B3a , B3b , and B3c ,

Eqns. (6.432), (6.433), and (6.434), respectively, as the unspecified parameter d⋆1 is varied in the interval

of interest d1 ∈ (0, 1), with B3b denoted by the solid line.

Similarly, and recalling the definition of Q̃SF , Eq. (6.288), Figure 6.3 shows the variation of B3a , B3b ,
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and B3c as a function of δ1, and where it can be seen that for the range of interest δ1 ∈ (1, 1.5), B3b , Eq.

(6.433), is the largest of the three parameters. Figure 6.4 also shows the variation of B3a , B3b , and B3c as

a function of d⋆1 and δ1. Therefore, by selecting d⋆1 ∈ (0.0543, 0.6788), Eq. (6.419) reduces by selecting

B3b , such

β3 ≥ β3b =

√

√

√

√

2
(

L2aQ̃
2
SF +

(

L2b + Q̃F21
L2c

)

Q̃SF

)

r̃2Q̃SF − r̃3

√

QS

qu1

. (6.435)

6.5.5 Proof of Assumption 5.5.10: Second Interconnection Condition for the

Helicopter ΣSFU System

The second interconnection condition is defined by the inequality

(

∂VU (ẑ )

∂χ̃

)T

F̃ (χ̃, z̃ ) ≤ γ2φ
2
2(ẑ ) + β4ψ2(χ̃)φ2(ẑ ), (6.436)

Inequality (6.436) can be rewritten by adding and subtracting F̃ (χ̃, h̃(χ̃)) to the F̃ (χ̃, z̃ ) in the left-

hand side of (6.436) resulting in

∂VU
∂χ̃

F̃ (χ̃, z̃ ) ≤ ∂VU
∂χ̃

F̃ (χ̃, h̃(χ̃)) +
∂VU
∂χ̃

[

F̃ (χ̃, z̃ )− F̃ (χ̃, h̃(χ̃))
]

≤ β4ψ2(χ̃)φ2(ẑ ) + γ2φ
2
2(ẑ ), (6.437)

therefore, inequality (6.437) can be fulfilled by splitting in two inequalities given by

∂VU
∂χ̃

[

F̃ (χ̃, z̃ )− F̃ (χ̃, h̃(χ̃))
]

≤ γ2φ
2
2(ẑ ) (6.438)

∂VU
∂χ̃

F̃ (χ̃, h̃(χ̃)) ≤ β4ψ2(χ̃)φ2(ẑ ), (6.439)

therefore, inequality (6.436) can be proved, if both new resulting inequalities, Eqns. (6.438) and (6.439),

are fulfilled. Considering the first inequality, Eq. (6.438), it can be seen that the left-hand side of

inequality (6.438) is defined by

[

∂VU
∂χ̃

]

=











∂VU
∂x

∂VU
∂ỹ











=

























∂VU
∂x̃

∂VU
∂ỹ1

∂VU
∂ỹ2

























, (6.440)

where

∂VU
∂x̃

= − (pu1
ẑ1 + pu2

ẑ2)
∂h̃1(χ̃)

∂x̃
, (6.441)

∂VU
∂ỹ1

= − (pu1
ẑ1 + pu2

ẑ2)
∂h̃1(χ̃)

∂ỹ1
, (6.442)

∂VU
∂ỹ2

= − (pu1
ẑ1 + pu2

ẑ2)
∂h̃1(χ̃)

∂ỹ2
, (6.443)

with

ẑ1 = z̃1 − h̃1 (χ)

= z̃1 −
{

s2

[

(

1 +
√

s3ṽ
)2

− 1

]

− z∗1

}

, (6.444)

ẑ2 = z̃2 − h̃2 (χ) = z̃2, (6.445)
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and where Eqns. (6.441), (6.442), and (6.443) can be simplified by introducing

P̂ = (pu1
ẑ1 + pu2

ẑ2) , (6.446)

resulting in

∂VU
∂x̃

= −P̂ ∂h̃1(χ̃)
∂x̃

, (6.447)

∂VU
∂ỹ1

= −P̂ ∂h̃1(χ̃)
∂ỹ1

, (6.448)

∂VU
∂ỹ2

= −P̂ ∂h̃1(χ̃)
∂ỹ2

, (6.449)

where

∂h̃1(χ̃)

∂x̃
= s2s3

1 +R

R

∂ṽ(χ̃)

∂x̃
, (6.450)

∂h̃1(χ̃)

∂x̃
= s2s3

1 +R

R

∂ṽ(χ̃)

∂ỹ1
, (6.451)

∂h̃1(χ̃)

∂x̃
= s2s3

1 +R

R

∂ṽ(χ̃)

∂ỹ2
, (6.452)

with

s2s3 =
4a2a3
a24ε1

, (6.453)

and

R =
√

s3ṽ(χ̃), (6.454)

where

ṽ(χ̃) = −a9ỹ
2
2 + (a9 + b̃y2

)ỹ2 + b̃y1
ỹ1 + c6

(x̃+ x∗)2
, (6.455)

therefore defining

∂ṽ(χ̃)

∂x̃
= −2

ṽ(χ̃)

x̃+ x∗
=

2
(

a9ỹ
2
2 + (a9 + b̃y2

)ỹ2 + b̃y1
ỹ1 + c6

)

(x̃ + x∗)3
, (6.456)

∂ṽ(χ̃)

∂ỹ1
= − b̃y1

(x̃ + x∗)2
, (6.457)

∂ṽ(χ̃)

∂ỹ2
= −2a9ỹ2 + a9 + b̃y2

(x̃ + x∗)2
. (6.458)

For completeness let also define

ṽx̃ = −∂h̃1(χ̃)
∂x̃

= s2s3
1 +R

R

(

2
ṽ(χ̃)

x̃+ x∗

)

, (6.459)

ṽỹ1
= −∂h̃1(χ̃)

∂ỹ1
= s2s3

1 +R

R

(

b̃y1

(x̃+ x∗)2

)

, (6.460)

ṽỹ2
= −∂h̃1(χ̃)

∂ỹ2
= s2s3

1 +R

R

(

2a9ỹ2 + a9 + b̃y2

(x̃+ x∗)2

)

, (6.461)

therefore rewriting Eqns. (6.462), (6.463), and (6.464) as

∂VU
∂x̃

= P̂ ṽx̃, (6.462)

∂VU
∂ỹ1

= P̂ ṽỹ1
, (6.463)
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∂VU
∂ỹ2

= P̂ ṽỹ2
. (6.464)

Recalling that in the left-hand side of inequality (6.438), F̃ (χ̃, z̃ )− F̃ (χ̃, h̃(χ̃)) was previously defined

in Eq. (6.316) as

F̃ (χ̃, z̃ )− F̃ (χ̃, h̃(χ̃)) =







F̂1

F̂2

F̂3






(6.465)

with F̂1, F̂2, and F̂3, being defined in Eqns. (6.317), (6.318), and (6.319), respectively, and recalling

A2 and B2, Eqns. (6.320) and (6.321), respectively, permitting therefore to rewrite the left-hand side of

inequality (6.438) as

∂VU
∂χ̃

[

F̃ (χ̃, z̃ )− F̃ (χ̃, h̃(χ̃))
]

=
∂VU
∂x̃

F̂1 +
∂VU
∂ỹ1

F̂2 +
∂VU
∂ỹ2

F̂2

= P̂ ṽx̃
[

2a10(x̃+ x∗)2 sin

(A2 − B2

2

)

cos

(A2 + B2

2

)]

+ P̂ ṽỹ2

{

(x̃+ x∗)
2
[

c3ẑ1 −
(

√

c4 + c5A2 −
√

c4 + c5B2

)]}

. (6.466)

Inequality (6.466) can be simplified by recalling that, as proved in Eq. (6.338), the left-hand side of

the expanded inequality can be rewritten as

2a10(x̃+ x∗)2 sin

(A2 − B2

2

)

cos

(A2 + B2

2

)

≤ s6 |ẑ1| , (6.467)

with s6 being given by Eq. (6.336). Similarly, inequality (6.466) can be further simplified by recalling

that as proved in (6.369), the right-hand side of the expanded inequality can be rewritten as

c3ẑ1 −
(

√

c4 + c5A2 −
√

c4 + c5B2

)

≤ DMAX |ẑ1| , (6.468)

therefore, using Eqns. (6.467) and (6.468) into inequality (6.466) can be rewritten as

∂VU
∂χ̃

[

F̃ (χ̃, z̃ )− F̃ (χ̃, h̃(χ̃))
]

=
∂VU
∂x̃

F̂1 +
∂VU
∂ỹ1

F̂2 +
∂VU
∂ỹ2

F̂2 (6.469)

= P̂ ṽx̃
[

2a10(x̃+ x∗)2 sin

(A2 − B2

2

)

cos

(A2 + B2

2

)]

+ P̂ ṽỹ2

{

(x̃+ x∗)
2
[

c3ẑ1 −
(

√

c4 + c5A2 −
√

c4 + c5B2

)]}

(6.470)

≤
∣

∣

∣

∣

P̂ ṽx̃
{

2a10(x̃+ x∗)2 sin

(A2 − B2

2

)

cos

(A2 + B2

2

)}∣

∣

∣

∣

+
∣

∣

∣P̂ ṽỹ2

{

(x̃+ x∗)2
[

c3ẑ1 −
(

√

c4 + c5A2 −
√

c4 + c5B2

)]}∣

∣

∣ (6.471)

≤
∣

∣

∣P̂ ṽx̃s6 |ẑ1|
∣

∣

∣+
∣

∣

∣P̂ ṽỹ2
DMAX |ẑ1|

∣

∣

∣ (6.472)

≤
∣

∣

∣P̂ ẑ1
∣

∣

∣ (s6ṽx̃ +DMAX ṽỹ2
) . (6.473)

Recalling that x̃+x∗ , x, and from previous analysis of the states as seen in Table 2.3, that the ranges

of the state variables is given by

xMAX ≥ x ≥ xMIN , (6.474)

ỹ1MAX
≥ ỹ1 ≥ ỹ1MIN

, (6.475)

ỹ2MAX
≥ ỹ2 ≥ ỹ2MIN

, (6.476)

with ỹ1MIN
= −ỹ1MAX

, ỹ2MIN
= −ỹ2MAX

. With this in mind, and recalling the definitions of ṽx̃, ṽỹ1
, ṽỹ2

,
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Eqns. (6.459), (6.460), and (6.461), respectively, it can be proved that inequality (6.473) can be further

reduced by trying to maximize the function s6ṽx̃s6 +DMAX ṽỹ2
such as

s6ṽx̃s6 +DMAX ṽỹ2
≤ s6ṽx̃MAX

s6 +DMAX ṽỹ2MAX
, (6.477)

with ṽx̃MAX
and ṽỹ2MAX

being given as the maximum values of Eqns. (6.459) and (6.461), respectively,

that is

ṽx̃MAX
=

[

s2s3
1 +R

R

(

2
ṽ(χ̃)

x̃+ x∗

)]

MAX

, (6.478)

ṽỹ2MAX
=

[

s2s3
1 +R

R

(

2a9ỹ2 + a9 + b̃y2

(x̃+ x∗)2

)]

MAX

, (6.479)

where it can be proven that both Eqns. (6.478) and (6.479), are maximized by selecting

(x̃+ x∗) , x → xMIN , (6.480)

ỹ1 → ỹ1MIN
, (6.481)

ỹ2 → ỹ2MIN
, (6.482)

where x̃MIN implies that the helicopter is flying at the minimum allowable angular rotation of the blades,

ỹ1MIN
, implies that the helicopter is at its lower possible altitude, and it is instantaneously commanded to

ascent to the highest possible altitude, and ỹ2MIN
implies that the helicopter has its maximum allowable

descent velocity .

Similarly as for the ΣSF Stability Analysis, this translate to a very extreme situation in which the

helicopter reaches the minimum altitude at the highest possible descent velocity, and instantaneously it

is commanded to ascent to the highest possible altitude. Again, this represents a highly improbable flight

condition, thus making this solution a very conservative analysis, since any of the situations that will

encounter the helicopter will be much more less restrictive. Using the above expression allows to rewrite

Eqns. (6.478) and (6.479) as

ṽx̃MAX
=

4a2a3
a24ε1

1 +RMAX

RMAX

(

2
ṽMAX(χ̃)

xMIN

)

, (6.483)

ṽx̃MAX
=

4a2a3
a24ε1

1 +RMAX

RMAX

(

2a9ỹ2MIN
+ a9 + b̃y2

(xMIN )2

)

, (6.484)

where

RMAX =
√

s3ṽMAX(χ̃), (6.485)

and

ṽMAX(χ̃) = −
a9ỹ

2
2MIN

+
(

a9 + b̃y2

)

ỹ2MIN
+ b̃y1

ỹ1MIN
+ c6

(xMIN )2
. (6.486)

Let also define

N =
4a2a3
a24ε1

1 +RMAX

RMAX

(

2s6
ṽMAX(χ̃)

xMIN
+DMAX

2a9ỹ2MIN
+ a9 + b̃y2

(xMIN )2

)

, (6.487)

therefore allowing to rewrite inequality (6.473) as

∂VU
∂χ̃

[

F̃ (χ̃, z̃ )− F̃ (χ̃, h̃(χ̃))
]

=
∂VU
∂x̃

F̂1 +
∂VU
∂ỹ1

F̂2 +
∂VU
∂ỹ2

F̂2 (6.488)

= P̂ ṽx̃
[

2a10(x̃+ x∗)2 sin

(A2 − B2

2

)

cos

(A2 + B2

2

)]

+ P̂ ṽỹ2

(

(x̃+ x∗)
2
[

c3ẑ1 −
(

√

c4 + c5A2 −
√

c4 + c5B2

)])

(6.489)
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≤
∣

∣

∣P̂ ẑ1
∣

∣

∣ (s6ṽx̃ +DMAX ṽỹ2
)

≤
∣

∣

∣P̂ ẑ1
∣

∣

∣N , (6.490)

where recalling the definition of P̂, Eq. (6.446), permits to rewrite inequality (6.491) as

∂VU
∂χ̃

[

F̃ (χ̃, z̃ )− F̃ (χ̃, h̃(χ̃))
]

=
∂VU
∂x̃

F̂1 +
∂VU
∂ỹ1

F̂2 +
∂VU
∂ỹ2

F̂2

= P̂ ṽx̃
[

2a10(x̃+ x∗)2 sin

(A2 − B2

2

)

cos

(A2 + B2

2

)]

+ P̂ ṽỹ2

{

(x̃+ x∗)
2
[

c3ẑ1 −
(

√

c4 + c5A2 −
√

c4 + c5B2

)]}

≤
∣

∣

∣P̂ ẑ1
∣

∣

∣N
= |(pu1

ẑ1 + pu2
ẑ2) ẑ1| N

≤
(

pu1
ẑ21 + pu2

|ẑ1ẑ2|
)

N . (6.491)

The right-hand side of inequality (6.491) can be further simplified employing Young’s inequality, Eq.

(6.177), which permits to rewrite the right-hand side of Eq. (6.491) as

N
(

pu1
ẑ21 + pu2

|ẑ1ẑ2|
)

≤ N
[

pu1
ẑ21 + pu2

(

ẑ21 + ẑ22
2

)]

= N
[

pu1
ẑ21 + pu2

(

ẑ21 + ẑ22
2

)]

= Pu1
ẑ21 + Pu2

ẑ22 , (6.492)

with Pu1
and Pu2

defined as

Pu1
= N

(

pu1
+
pu2

2

)

, (6.493)

Pu2
= N pu2

2
, (6.494)

therefore the fulfillment of inequality (6.436) reduces to satisfy

Pu1
ẑ21 + Pu2

ẑ22 ≤ γ2
(

q̃u1
ẑ21 + q̃u2

ẑ22
)

, (6.495)

therefore reducing the fulfillment of the original inequality (6.436), to find the γ2 constant that satisfies

the above inequality, Eq. (6.495), with is fulfilled with γ2 given by;

γ2 = max (γ2a , γ2b) , (6.496)

where

γ2a ≥ Pu1

q̃u1

, (6.497)

γ2b ≥ Pu2

q̃u2

, (6.498)

with Pu1
, and Pu2

, defined in Eqns. (6.493) and (6.494), respectively. In order to obtain a single relation

for γ2, let recall the definitions for the variables pu1
, and pu2

, Eqns. (6.53), and (6.53) respectively,

allowing to rewrite Eqns (6.497) and (6.498) such

γ2a ≥ Pu1

q̃u1

= 2N
(

Cu1
+
Cu3

2
+ Cu2

qu2

qu1

)

, (6.499)

γ2b ≥ Pu2

q̃u2

= NCu3

qu1

qu2

, (6.500)

with Cu1
, Cu2

, and Cu3
, defined in Eqns. (6.56), (6.57), and (6.58), respectively, and N being defined

in Eq. (6.487). Analyzing both Eqns. (6.499) and (6.500), and recalling that both only depend on the



6.5. ΣSFU STABILITY ANALYSIS FOR THE HELICOPTER MODEL 267

physic parameters of the problem, and the stability parameters qu1
, and qu2

, it can be obtained a relation

between these last two, by equating both equations resulting in

2N
(

Cu1
+
Cu3

2
+ Cu2

qu2

qu1

)

= 2NCu3

qu1

qu2

, (6.501)

which results in a quadratic expression in qu2
/qu1

given as

2Cu2

(

qu2

qu1

)2

+ (2Cu1
+ Cu3

)
qu2

qu1

− Cu3
= 0, (6.502)

which can be solved for
qu2

qu1

, resulting

qu2

qu1

=
− (2Cu1

+ Cu3
)±

√

(2Cu1
+ Cu3

)
2
+ 8Cu2

Cu3

4Cu2

, (6.503)

where since both, qu1
, and qu2

, are by definition positive, only the positive solution is valid therefore

resulting in

qu2

qu1

=
− (2Cu1

+ Cu3
) +

√

(2Cu1
+ Cu3

)
2
+ 8Cu2

Cu3

4Cu2

. (6.504)

Expression (6.504) represents the ratio of qu2
and qu1

where γ2 is smallest, such that both Eqns. (6.497)

and (6.498) coincides such reducing

γ2a ≡ γ2b =
Pu2

q̃u2

= NCu3

qu1

qu2

. (6.505)

This is a really important relation, since provides the ratio that minimizes γ2, and in addition provides

a relation between both qu1
and qu2

that will help to obtain the upper-bounds on ε2 and given by

qu2
= QU21

qu1
, (6.506)

with QU21
given by Eq. (6.504)

QU21
=

− (2Cu1
+ Cu3

) +

√

(2Cu1
+ Cu3

)2 + 8Cu2
Cu3

4Cu2

, (6.507)

therefore allowing to reduce Rq. (6.496) to

γ2 ≥ 2N
(

Cu1
+
Cu3

2
+ Cu2

QU21

)

. (6.508)

Once the first interconnection inequality, Eq. (6.438), is satisfied, let shift towards the second intercon-

nection inequality, Eq. (6.439), where

F̃ (χ̃, h̃(χ̃)) =







F̃H1

F̃H2

F̃H3






, (6.509)

with F̃H1
, F̃H2

and F̃H3
being defined by Eqns. (6.235), (6.236), and (6.237), respectively, and where

recalling the definitions of A1 and B1, (6.96) and (6.97) respectively, thus F̃H1
can be rewritten as

F̃H1
= a10(x̃ + x∗)2 [sinA1 − sinB1]− bxx̃, (6.510)

which can be rewritten by using the sum-to-product prosthaphaeresis trigonometric identity, Eq. (6.99),

thus allowing to rewrite (6.510) as

F̃H1
= a10(x̃ + x∗)2 [sinA1 − sinB1]− bxx̃
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= a10(x̃ + x∗)22 sin

(A1 − B1

2

)

cos

(A1 + B1

2

)

− bxx̃. (6.511)

The left-hand side of inequality (6.512) can be expanded using Eqns. (6.446), (6.459), (6.460), (6.461),

(6.96) and (6.97), such

∂VU
∂χ̃

F̃ (χ̃, h̃(χ̃))

=
∂VU
∂x̃

F̃H1
+
∂VU
∂ỹ1

F̃H2
+
∂VU
∂ỹ2

F̃H3

= P̂ ṽx̃
[

2a10(x̃+ x∗)2 sin

(A1 − B1

2

)

cos

(A1 + B1

2

)

− bxx̃

]

+ P̂ ṽỹ1
c1ỹ2 + P̂ ṽỹ2

(

−b̃y1
ỹ1 − b̃y2

ỹ2

)

= P̂ ṽx̃
[

2a10(x̃+ x∗)2 sin

(A1 − B1

2

)

cos

(A1 + B1

2

)]

− P̂ ṽx̃bxx̃+ P̂ ṽỹ1
c1ỹ2 + P̂ ṽỹ2

(

−b̃y1
ỹ1 − b̃y2

ỹ2

)

. (6.512)

Inequality (6.512) can be simplified by recalling Eq. (6.168) in section 6.3, where it was proved

that

2a10(x̃+ x∗)2 sin

(A1 − B1

2

)

cos

(A1 + B1

2

)

≤ C1 |ỹ1|+ C2 |ỹ2| , (6.513)

therefore permitting to rewrite inequality (6.512) as

∂VU
∂χ̃

F̃ (χ̃, h̃(χ̃))

= P̂ ṽx̃
[

2a10(x̃+ x∗)2 sin

(A1 − B1

2

)

cos

(A1 + B1

2

)]

− P̂ ṽx̃bxx̃+ P̂ ṽỹ1
c1ỹ2 + P̂ ṽỹ2

(

−b̃y1
ỹ1 − b̃y2

ỹ2

)

≤
∣

∣

∣

∣

P̂ ṽx̃
[

2a10(x̃+ x∗)2 sin

(A1 − B1

2

)

cos

(A1 + B1

2

)]∣

∣

∣

∣

+
∣

∣

∣P̂ ṽx̃bxx̃
∣

∣

∣+
∣

∣

∣P̂ ṽỹ1
c1ỹ2

∣

∣

∣+
∣

∣

∣P̂ ṽỹ2

(

−b̃y1
ỹ1 − b̃y2

ỹ2

)∣

∣

∣

≤
∣

∣

∣P̂ ṽx̃ (C1 |ỹ1|+ C2 |ỹ2|)
∣

∣

∣+
∣

∣

∣P̂ ṽx̃bxx̃
∣

∣

∣+
∣

∣

∣P̂ ṽỹ1
c1ỹ2

∣

∣

∣+
∣

∣

∣P̂ ṽỹ2

(

b̃y1
ỹ1 + b̃y2

ỹ2

)∣

∣

∣ . (6.514)

Inequality (6.514) can be further simplified by recalling that ṽx̃, ṽỹ1
, and ṽỹ2

, Eqns. (6.459), (6.460),

and (6.461), respectively, can be maximized by selecting

(x̃+ x∗) , x → xMIN , (6.515)

ỹ1 → ỹ1MIN
, (6.516)

ỹ2 → ỹ2MIN
, (6.517)

where similarly as in Eqns. (6.478) and (6.479), ṽx̃MAX
, ṽỹ1MAX

and ṽx̃2MAX
are given by

ṽx̃MAX
=

[

s2s3
1 +R

R

(

2
ṽ(χ̃)

x̃+ x∗

)]

MAX

, (6.518)

ṽỹ1MAX
=

[

s2s3
1 +R

R

(

b̃y1

(x̃+ x∗)2

)]

MAX

, (6.519)

ṽỹ2MAX
=

[

s2s3
1 +R

R

(

2a9ỹ2 + a9 + b̃y2

(x̃+ x∗)2

)]

MAX

, (6.520)
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which after substituting Eqns. (6.515), (6.516), and (6.517), reduces to

ṽx̃MAX
=

4a2a3
a24ε1

1 +RMAX

RMAX

(

2
ṽMAX(χ̃)

xMIN

)

, (6.521)

ṽỹ1MAX
=

4a2a3
a24ε1

1 +RMAX

RMAX

(

b̃y1

x2MIN

)

, (6.522)

ṽỹ2MAX
=

4a2a3
a24ε1

1 +RMAX

RMAX

(

2a9ỹ2MIN
+ a9 + b̃y2

x2MIN

)

, (6.523)

with RMAX and ṽMAX(χ̃) defined in Eqns. (6.485) and (6.486) respectively. Substituting Eqns. (6.521),

(6.522), and (6.523) into Eq. (6.514) results in

∂VU
∂χ̃

F̃ (χ̃, h̃(χ̃))

= P̂ ṽx̃
[

2a10(x̃+ x∗)2 sin

(A1 − B1

2

)

cos

(A1 + B1

2

)]

− P̂ ṽx̃bxx̃+ P̂ ṽỹ1
c1ỹ2 + P̂ ṽỹ2

(

−b̃y1
ỹ1 − b̃y2

ỹ2

)

≤
∣

∣

∣P̂ ṽx̃ (C1 |ỹ1|+ C2 |ỹ2|)
∣

∣

∣+
∣

∣

∣P̂ ṽx̃bxx̃
∣

∣

∣+
∣

∣

∣P̂ ṽỹ1
c1ỹ2

∣

∣

∣+
∣

∣

∣P̂ ṽỹ2

(

b̃y1
ỹ1 + b̃y2

ỹ2

)∣

∣

∣

≤
∣

∣

∣P̂ ṽx̃MAX
(C1 |ỹ1|+ C2 |ỹ2|)

∣

∣

∣+
∣

∣

∣P̂ ṽxMAX
bxx̃
∣

∣

∣+
∣

∣

∣P̂ ṽỹ1MAX
c1ỹ2

∣

∣

∣

+
∣

∣

∣
P̂ ṽỹ2MAX

(

b̃y1
ỹ1 + b̃y2

ỹ2

)∣

∣

∣
. (6.524)

For completeness, inequality (6.524) can be further simplified by introducing

M1 = |ṽxMAX
bx| , (6.525)

M2 = |ṽxMAX
C1|+

∣

∣

∣ṽỹ2MAX
b̃y1

∣

∣

∣ , (6.526)

M3 = |ṽxMAX
C2|+

∣

∣

∣ṽỹ1MAX
c1

∣

∣

∣+
∣

∣

∣ṽỹ1MAX
b̃y2

∣

∣

∣ , (6.527)

therefore rewriting Eq. (6.524) as

∂VU
∂χ̃

F̃ (χ̃, h̃(χ̃))

= P̂ ṽx̃
[

2a10(x̃+ x∗)2 sin

(A1 − B1

2

)

cos

(A1 + B1

2

)]

− P̂ ṽx̃bxx̃+ P̂ ṽỹ1
c1ỹ2 + P̂ ṽỹ2

(

−b̃y1
ỹ1 − b̃y2

ỹ2

)

≤
∣

∣

∣
P̂ ṽx̃MAX

(C1 |ỹ1|+ C2 |ỹ2|)
∣

∣

∣
+
∣

∣

∣
P̂ ṽx̃MAX

bxx̃
∣

∣

∣
+
∣

∣

∣
P̂ ṽỹ1MAX

c1ỹ2

∣

∣

∣
+
∣

∣

∣
P̂ ṽỹ2MAX

(

b̃y1
ỹ1 + b̃y2

ỹ2

)∣

∣

∣

≤ M1

∣

∣

∣P̂ x̃
∣

∣

∣+M2

∣

∣

∣P̂ ỹ1
∣

∣

∣ +M3

∣

∣

∣P̂ ỹ2
∣

∣

∣

=
∣

∣

∣P̂
∣

∣

∣ (M1 |x̃|+M2 |ỹ1|+M3 |ỹ2|) . (6.528)

This reduces the original inequality (6.436) to

∂VU
∂χ̃

F̃ (χ̃, h̃(χ̃)) ≤
∣

∣

∣P̂
∣

∣

∣ (M1 |x̃|+M2 |ỹ1|+M3 |ỹ2|) ≤ β4ψ2(χ̃)φ2(ẑ ), (6.529)

where recalling the selected comparison functions ψ2(χ̃) and φ2(ẑ ), Eqns. (6.283) and (6.313), respec-

tively, it can be observed that satisfying inequality (6.529) is reduced to prove that
∣

∣

∣
P̂
∣

∣

∣
(M1 |x̃|+M2 |ỹ1|+M3 |ỹ2|) ≤ β4

(

R1x̃
2 +R2ỹ

2
1 +R3ỹ

2
2

)
1

2
(

q̃u1
ẑ21 + q̃u2

ẑ22
)

1

2 . (6.530)

In order to obtain the constant β4 that guarantees the fulfillment of inequality (6.436), let square both
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sides of inequality (6.530), resulting in

P̂2 (M1 |x̃|+M2 |ỹ1|+M3 |ỹ2|)2 ≤ β2
4

(

R1x̃
2 +R2ỹ

2
1 +R3ỹ

2
2

) (

q̃u1
ẑ21 + q̃u2

ẑ22
)

. (6.531)

Expanding the left hand-side of inequality (6.531) results in

P̂2 [(M1 |x̃|+M2 |ỹ1|+M3 |ỹ2|)]2

= P̂2
(

M2
1x̃

2 +M2
2ỹ

2
1 +M2

3ỹ
2
2 + 2M1M2 |x̃ỹ1|

+ 2M1M3 |x̃ỹ2|+ 2M2M3 |ỹ1ỹ2|) , (6.532)

which can be simplified by using Young’s inequality, Eq. (6.177), permits to rewrite Eq. (6.532) as

P̂2
(

M2
1x̃

2 +M2
2ỹ

2
1 +M2

3ỹ
2
2 + 2M1M2 |x̃ỹ1|+ 2M1M3 |x̃ỹ2|+ 2M2M3 |ỹ1ỹ2|

)

≤ P̂2

[

M2
1x̃

2 +M2
2ỹ

2
1 +M2

3ỹ
2
2 + 2M1M2

(

x̃2 + ỹ21
2

)

+ 2M1M3

(

x̃2 + ỹ22
2

)

+ 2M2M3

(

ỹ21 + ỹ22
2

)]

= P̂2
(

M̃2
1x̃

2 + M̃2
2ỹ

2
1 + M̃2

3ỹ
2
2

)

, (6.533)

where

M̃1 = M2
1 +M1M2 +M1M3, (6.534)

M̃2 = M2
2 +M1M2 +M2M3, (6.535)

M̃3 = M2
3 +M1M3 +M2M3. (6.536)

Recall the definition of P̂, Eq. (6.446), then P̂2 can be expanded such

P̂2 = (pu1
ẑ1 + pu1

ẑ2)
2

= p2u1
ẑ21 + p2u2

ẑ22 + 2pu1
pu2

ẑ1ẑ2

≤ p2u1
ẑ21 + p2u2

ẑ22 + pu1
pu2

(

ẑ21 + ẑ22
)

= p̃u1
ẑ21 + p̃u2

ẑ22 , (6.537)

where with the definitions of pu1
, and pu2

, Eqns. (6.53) and (6.54), respectively, results in

p̃u1
= p2u1

+ pu1
pu2

= (Cu1
qu1

+ Cu2
qu2

)
2
+ (Cu1

qu1
+ Cu2

qu2
)Cu3

qu1
, (6.538)

p̃u2
= (Cu3

qu1
)
2
+ (Cu1

qu1
+ Cu2

qu2
)Cu3

qu1
, (6.539)

therefore permitting to rewrite inequality (6.531) such

(

p̃u1
ẑ21 + p̃u2

ẑ22
)

(

M̃1x̃
2 + M̃2ỹ

2
1 + M̃3ỹ

2
2

)

≤ β2
4

(qu1

2
ẑ21 +

qu2

2
ẑ22

)

(

R1x̃
2 +R2ỹ

2
1 +R3ỹ

2
2

)

. (6.540)

The fulfillment of the original inequality (6.436) reduces to find the β4 constant that satisfies inequality

(6.540), where β4 is given by

β4 = max (β4Aβ4B ) , (6.541)

with

β4A = max (β4a , β4b , β4c) , (6.542)

β4B = max
(

β4d , β4e , β4f
)

, (6.543)
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and where

β4a ≥
√

2
p̃u1

M̃1

qu1
R1

, (6.544)

β4b ≥
√

2
p̃u1

M̃2

qu1
R2

, (6.545)

β4c ≥
√

2
p̃u1

M̃3

qu1
R3

, (6.546)

β4d ≥
√

2
p̃u2

M̃1

qu2
R1

, (6.547)

β4e ≥
√

2
p̃u2

M̃2

qu2
R2

, (6.548)

β4f ≥
√

2
p̃u2

M̃3

qu2
R3

, (6.549)

with R1, R2, and R3 given in Eqns. (6.272), (6.273), (6.274) respectively, M1, M2, and M3, given in

Eqns. (6.534), (6.535), and (6.535) respectively, and p̃u1
and p̃u2

given by Eqns. (6.538) and (6.539)

respectively, resulting in

β4a ≥
√

2
M̃1

[(

C2
u1

+ Cu1
Cu3

)

q2u1
+ C2

u2
q2u2

+ (2Cu1
Cu2

+ Cu2
Cu3

) qu1
qu2

]

qu1
(r̃1QS)

, (6.550)

β4b ≥
√

2
M̃2

[(

C2
u1

+ Cu1
Cu3

)

q2u1
+ C2

u2
q2u2

+ (2Cu1
Cu2

+ Cu2
Cu3

) qu1
qu2

]

qu1
(r̃2qf1 − r̃3QS)

, (6.551)

β4c ≥
√

2
M̃3

[(

C2
u1

+ Cu1
Cu3

)

q2u1
+ C2

u2
q2u2

+ (2Cu1
Cu2

+ Cu2
Cu3

) qu1
qu2

]

qu1
(r̃2qf2 − r̃4QS)

, (6.552)

β4d ≥
√

2
M̃1

[(

C2
u3

+ Cu1
Cu3

)

q2u1
+ Cu2

Cu3
qu1

qu2

]

qu2
(r̃1QS)

, (6.553)

β4e ≥
√

2
M̃2

[(

C2
u3

+ Cu1
Cu3

)

q2u1
+ Cu2

Cu3
qu1

qu2

]

qu2
(r̃2qf1 − r̃3QS)

, (6.554)

β4f ≥
√

2
M̃3

[(

C2
u3

+ Cu1
Cu3

)

q2u1
+ Cu2

Cu3
qu1

qu2

]

qu2
(r̃2qf2 − r̃4QS)

. (6.555)

In order to obtain a single relation for β4, let recall that the above expressions can be further reduced

by employing the relations previously derived qf2 = Q̃F21
qf1 , and qu2

= QU21
qu1

, reducing to

β4a ≥

√

2
M̃1

[

C2
u1

+ Cu1
Cu3

+Q2
U21

C2
u2

+QU21
(2Cu1

Cu2
+ Cu2

Cu3
)
]

q2u1

qu1
(r̃1QS)

, (6.556)

β4b ≥
√

2
M̃2

[

C2
u1

+ Cu1
Cu3

+Q2
U21

C2
u2

+QU21
(2Cu1

Cu2
+ Cu2

Cu3
)
]

q2u1

qu1
(r̃2qf1 − r̃3QS)

, (6.557)

β4c ≥
√

√

√

√2
M̃3

[

C2
u1

+ Cu1
Cu3

+Q2
U21

C2
u2

+QU21
(2Cu1

Cu2
+ Cu2

Cu3
)
]

q2u1

qu1

(

r̃2Q̃F21
qf1 − r̃4QS

) , (6.558)

β4d ≥
√

2
M̃1

[

C2
u3

+ Cu1
Cu3

+QU21Cu2
Cu3

]

q2u1

QU21
qu1

(r̃1QS)
, (6.559)

β4e ≥
√

2
M̃1

[

C2
u3

+ Cu1
Cu3

+QU21Cu2
Cu3

]

q2u1

QU21
qu1

(r̃2qf1 − r̃3QS)
, (6.560)
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β4f ≥
√

√

√

√2
M̃1

[

C2
u3

+ Cu1
Cu3

+QU21Cu2
Cu3

]

q2u1

QU21
qu1

(

r̃2Q̃F21
qf1 − r̃4QS

) , (6.561)

which simplifies to

β4a ≥
√

P̃1qu1

r̃1QS
, (6.562)

β4b ≥
√

P̃2qu1

r̃2qf1 − r̃3QS
, (6.563)

β4c ≥
√

P̃3qu1

r̃2Q̃F21
qf1 − r̃4QS

, (6.564)

β4d ≥
√

P̃4qu1

QU21
(r̃1QS)

, (6.565)

β4e ≥
√

P̃5qu1

QU21
(r̃2qf1 − r̃3QS)

, (6.566)

β4f ≥
√

√

√

√

P̃6qu1

QU21

(

r̃2Q̃F21
qf1 − r̃4QS

) , (6.567)

where

P̃1 = 2M̃1

[

C2
u1

+ Cu1
Cu3

+Q2
U21

C2
u2

+QU21
(2Cu1

Cu2
+ Cu2

Cu3
)
]

, (6.568)

P̃2 = 2M̃2

[

C2
u1

+ Cu1
Cu3

+Q2
U21

C2
u2

+QU21
(2Cu1

Cu2
+ Cu2

Cu3
)
]

, (6.569)

P̃3 = 2M̃3

[

C2
u1

+ Cu1
Cu3

+Q2
U21

C2
u2

+QU21
(2Cu1

Cu2
+ Cu2

Cu3
)
]

, (6.570)

P̃4 = 2M̃1

[

C2
u3

+ Cu1
Cu3

+QU21
Cu2

Cu3

]

, (6.571)

P̃5 = 2M̃2

[

C2
u3

+ Cu1
Cu3

+QU21
Cu2

Cu3

]

, (6.572)

P̃6 = 2M̃3

[

C2
u3

+ Cu1
Cu3

+QU21
Cu2

Cu3

]

, (6.573)

where expression P̃1, P̃2, P̃3, P̃4, P̃5, and P̃6 only depend on the physical parameters of the helicopter,

the selected target dynamics parameters, that is bx, b̃y1
, and b̃y2

, and the ratio QU21
. Recalling expression

in Eq. (6.289), qf1 = Q̃SFQS , permits to rewrite Eqns. (6.562), (6.563), (6.564), (6.565), (6.566), and

(6.567) such

β4a ≥ B4a

√

qu1

QS
, (6.574)

β4b ≥ B4b

√

qu1

QS
, (6.575)

β4c ≥ B4c

√

qu1

QS
, (6.576)

β4d ≥ B4d

√

qu1

QS
, (6.577)

β4e ≥ B4e

√

qu1

QS
, (6.578)

β4f ≥ B4f

√

qu1

QS
, (6.579)

where

B4a =

√

P̃1

r̃1
, (6.580)
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B4b =

√

P̃2

r̃2Q̃SF − r̃3
, (6.581)

B4c =

√

P̃3

r̃2Q̃F21
Q̃SF − r̃4

, (6.582)

B4d =

√

P̃4

QU21
r̃1
, (6.583)

B4e =

√

√

√

√

P̃5

QU21

(

r̃2Q̃SF − r̃3

) , (6.584)

B4f =

√

√

√

√

P̃6

QU21

(

r̃2Q̃F21
Q̃SF − r̃4

) , (6.585)

where expression B4a , B4b , B4c , B4d , B4e , and B4f only depend on the physical parameters of the heli-

copter, the selected target dynamics parameters, that is bx, b̃y1
, and b̃y2

, and the ratios QU21
, Q̃F21

and

Q̃SF . It can be also proven that, for the physical parameter here used, and the selected target dynamics

behavior, B4e > B4f > B4b > B4c > B4d > B4a . This is true as long as d1 is selected such d1 ∈ (0, 0.5243)

as it can be seen in Figure 6.5, where it is analyzed the variation of the parameters B4a , B4b , and B4c , B4d ,

B4e , and B4f , Eqns. (6.580), (6.581), (6.582), (6.583), (6.584) and (6.585), respectively, as the unspecified

parameter d⋆1 is varied in the interval of interest d1 ∈ (0, 1), with B4e denoted by the solid line.

Similarly, and recalling the definition of Q̃SF , Eq. (6.288), Figure 6.6 shows the variation of B4a ,

B4b , B4c , B4d , B4e and B4f as a function of δ1, and where it can be seen that for the range of interest

δ1 ∈ (1, 1.5) B4e , Eq. (6.584), is the largest of the six parameters for δ1 ∈ (1.02, 1.264). Figure 6.7 also

shows the variation of B4a , B4b , and B4c , B4d , B4e , and B4f as a function of both d⋆1 and δ1. Therefore,

by selecting d⋆1 ∈ (0, 0.5243), and δ1 ∈ (1.02, 1.264)., Eq. (6.541) reduces by using B4e such

β4 ≥ β4e = B4e

√

qu1

QS
. (6.586)

The proper selection of γ2 and β4, Eqns. (6.496) and (6.541), respectively, satisfies both inequalities

(6.438) and (6.439), therefore satisfying the original inequality (6.436), and concluding the asymptotic

stability analysis of the full ΣSFU system.
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Figure 6.2: Variation of B3a , B3b , and B3c vs. d⋆1 - helicopter ΣSFU system.
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Figure 6.3: Variation of B3a , B3b , and B3c vs. δ1 - helicopter ΣSFU system.
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Figure 6.4: Variation of B3a , B3b , and B3c vs. d⋆1 and δ1 - helicopter ΣSFU system.
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Figure 6.5: Variation of B4a , B4b , B4c , B4d , B4e , and B4f vs. d⋆1 - helicopter ΣSFU system.
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Figure 6.6: Variation of B4a , B4b , B4c , B4d , B4e , and B4f vs. δ1 - helicopter ΣSFU system.

Figure 6.7: Variation of B4a , B4b , B4c , B4d , B4e , and B4f vs. d⋆1 and δ1 - helicopter ΣSFU system.
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6.6 Fulfillment of the Helicopter ΣSFU Stability Analysis

The fulfillment of assumptions 5.5.6, 5.5.7, 5.5.8, 5.5.9, and 5.5.10, applied to the helicopter ΣSFU full

system by the fulfillment of inequalities 6.239, 6.296, 6.314, and 6.436, proves that the growth requirements

of F̃ (χ̃, z̃ ) and ĝ(χ̃, z̃ ) are satisfied, and with the Lyapunov functions V1(χ̃) and VU (χ̃, z̃ ), Eqns. (6.202)

and (6.51), respectively, a new Lyapunov function candidate V2(χ̃, z̃ ) is considered and defined by the

weighted sum of V1(χ̃) and VU (χ̃, z̃ ), given by

V2(χ̃, z̃ ) = (1− d2)V1(χ̃) + d2VU (ẑ ), d2 ∈ (0, 1), (6.587)

for 0 < d2 < 1. The newly defined function V2(χ̃, z̃ ) becomes the Lyapunov function candidate for the

singular perturbed system (6.6–6.10). Similarly as in the general ΣSFU Stability Analysis, to explore the

freedom in choosing the weights, lets take d2 as an unspecified parameter in the interval (0, 1). From the

properties of V1(χ̃) and VU (χ̃, z̃ ) and inequality (6.227), that is ‖ h̃(χ̃) ‖≤ p2 (‖ χ̃ ‖), where p2(·) is a κ
function, it follows that V2(χ̃, z̃ ) is positive-definite.

Computing the time derivative of V2(χ̃, z̃ ) along the trajectories of along the trajectories of F̃ (χ̃, z̃ )

and ĝ (χ̃, z̃ ) yields an equation of similar structure as in Eq. (5.172), which can express as a function

of the comparison functions ψ2(χ̃), and φ2(ẑ ) by employing the derived inequalities 6.239, 6.296, 6.314,

and 6.436, resulting in

V̇2 ≤ −(1− d2)α3ψ
2
1(χ̃) + (1 − d2)β3ψ2(χ̃)φ2(ẑ )

− d2
ε1ε2

α4φ
2
2(ẑ ) + d2γ2φ

2
2(ẑ ) + d2β4ψ2(χ̃)φ2(ẑ )

= −
[

ψ2(χ̃)

φ2(ẑ )

]T




(1− d2)α3 − 1
2 (1− d2)β3 − 1

2d2β4

− 1
2 (1− d2)β3 − 1

2d2β4 d2

(

α4

ε1ε2
− γ2

)





×
[

ψ2(χ̃)

φ2(ẑ )

]

= −









√

χ̃T
Rχ̃

√

ẑT Q̃U ẑ









T




(1− d2)α3 − 1
2 (1 − d2)β3 − 1

2d2β4

− 1
2 (1 − d2)β3 − 1

2d2β4 d2

(

α4

ε1ε2
− γ2

)





×









√

χ̃T
Rχ̃

√

ẑ
T
Q̃U ẑ









. (6.588)

In order to guarantee the negative-definiteness property of Eq. (6.588), and conducting the same

algebraic transformations as in section 5.5.3, it can be obtained the following expression that defines the

requirement to be satisfied by the parasitic constant ε2 such

ε1ε2 <
α3α4

α3γ2 +
1

4(1− d2)d2
[(1− d2)β3 + d2β4]

2
≡ ε1dε2d , (6.589)

where from (6.590) it can be obtained an expression for ε2 as

ε2 <
α3α4

ε1

[

α3γ2 +
1

4(1− d2)d2
[(1 − d2)β3 + d2β4]

2

] ≡ ε2d . (6.590)

Recalling from the general formulation, chapter 5, that although only α3 and α4 are required by

definition to be positive, β3, β4, and γ2 are also considered to be positive. Analyzing equation (6.590) it
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can be observed that ε2 depends on the selected ε1, but not solely on it, since recalling the definitions of

the selected β3, β4 and γ2, Eqns. (6.419), (6.541), and (6.496), respectively, it can be observed that they

are influenced by many more design parameters, which are resumed as

β3 → β3(d1, QS , QF , QU , bx, b̃y1
, b̃y2

, ε1, xMAX , ỹ1MAX
, ỹ2MAX

, z1MIN
, Ỹ2MAX

), (6.591)

β4 → β4(d1, QS , QF , QU , bx, b̃y1
, b̃y2

, ε1, ε2, xMIN , ỹ1MIN
, ỹ2MIN

, Ỹ2MAX
), (6.592)

γ2 → γ2(QU , b̃y1
, b̃y2

, ε1, ε2, xMIN , z1MIN
, xMAX , ỹ1MIN

, ỹ2MIN
), (6.593)

therefore being quite difficult to optimize all parameters such that the upper-bound of ε2 is maximized.

Rather than trying to find the optimum combination, these parameters are divided in two groups Fixed

Parameters and Stability Parameters, where

• Fixed Parameters denote the parameters that are determined by the physics of the problem and the

control design strategy.

• Stability Parameters denote that parameters that are introduced solely in the stability analysis.

The first group, the Fixed Parameters, are defined by the constant coefficients that take part on

the definition of β3, β4 and γ2, being the lower and upper bounds for both the state variables

(xMIN ,xMAX ,z1MIN
), and its error dynamics (ỹ1MIN

, ỹ2MIN
, ỹ1MIN

, ỹ2MIN
, Ỹ2MIN

), which are all defined

by the physics of the problem. This group also includes the control design parameters (bx, b̃y1
, b̃y2

), which

are defined by the selected desired dynamics of the different time-scale subsystems, and the parasitic time

constants (ε1,ε2), which are given by the selection for the time-scales which depend also on the physics

of the problem.

The second group, the Stability Parameters, denote the variables that are introduced in the stability

analysis in order to satisfy the growth requirements of the different time-scale subsystems, that is QS,

qf1 , qf2 , qu1
, qu2

, and d1. Although in the first group, there are some parameters that are subject to

modification in order to satisfy the stability requirements, such the desired dynamics coefficients (bx, b̃y1
,

b̃y2
), in this study are maintained fixed, and only the Stability Parameters are tuned in order to satisfy

the growth requirements.

From inequality (6.590), it can be seen that, depending on the nature of the selected ε1, it will translate

into different upper-bounds on ε2d . This implies that for the conservative upper bound on ε1, that is

larger upper-bounds in ε1 that required, i.e. ε⋆1 > ε1, this translate into a less conservative upper-bound

on ε2. Ultimately, the goal of the stability analysis here conducted, is to prove that the equilibrium point

of the singularly perturbed ΣSFU -subsystem is asymptotically stable for all ε2 < ε∗2, therefore it is desired

to have ε∗1 strictly larger than the selected ε1.

This implies that the largest possible ε2d , that in return will satisfy ε2 < ε∗2, it is given by the minimum

allowable value of ε1 that guarantees the asymptotic stability properties of the ΣSF -subsystem. This is

achieved by selecting the ε⋆1 that was chosen in the ΣSF stability analysis, that is ε⋆1 = dε1ε1, where

dε1 represents the percentage of margin that is applied to the upper-bound, where for the problem here

studied, it is selected as dε1 = 1.05, that is, for safety, the ε∗1 is assumed to be 5% higher than the selected

ε1. Recalling from the ΣSF asymptotic stability analysis conducted in section 6.3, is given in Eq. (6.210)

as

ε∗1 = ε⋆1 =
α1α2

α1(d
⋆

1 )γ1(ε
⋆

1 ) + β1β2
, (6.594)

therefore, substituting Eq. (6.594) into Eq. (6.590) results in

ε2 <
α1γ1(ε

⋆

1 ) + β1(d
⋆

1 )β2
α1α2

α3α4

ε1

[

α3γ2 +
1

4(1− d2)d2
[(1− d2)β3 + d2β4]

2

] ≡ ε2d . (6.595)
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Therefore inequality (6.595) shows that for any choice of d2, the corresponding V2(χ̃, z̃ ) is a Lyapunov

function for the singular perturbed ΣSFU system for all ε2 satisfying inequality (6.595). Analyzing

(6.595), it can be easily seen that the maximum value of ε2d occurs at

d∗2 =
β3

β3 + β4
, (6.596)

yielding for the upper-bound on ε2

ε∗2 =
α3α4

ε⋆1 (α3γ2 + β3β4)
. (6.597)

Therefore it can be inferred that the equilibrium point of the singularly perturbed ΣSFU -subsystem

(6.6–6.10) is asymptotically stable for all ε2 < ε∗2. The number ε∗2 is the best upper bound on ε2 that

can be provided by the above presented stability analysis. The results obtained from the fulfillment

inequalities (6.239), (6.296), (6.314) and (6.436) are summarized in Table 6.2, where it can be seen the

similarities between the two-time-scale growth requirements described in Section 5.2.1, and the three-

time-scale growth requirements for the full ΣSFU system.

The asymptotic stability analysis presented proves that by fulfilling inequalities (6.239), (6.296), (6.314),

and (6.436), then the origin is an asymptotically stable equilibrium of the singularly perturbed helicopter

ΣSFU system, Eqns. (6.6–6.10) for all ε2 ∈ (0, ε∗2), where ε
∗
2 is given by Eq. (6.597), thus, for every

number d2 ∈ (0, 1), V2(χ̃, z̃ ), Eq. (6.587), is a Lyapunov function for all ε2(0, εd), where ε2d ≤ ε∗2 is given

by Eq. (6.597), hence satisfying Theorem 5.5.5.

The fulfillment of Theorem 5.5.5 for the helicopter ΣSFU full system can be summarized by understand-

ing that χ̃ = 0 is an asymptotically stable equilibrium of the reduced system (6.221), z̃ = h̃(χ̃) is an

asymptotically stable equilibrium of the boundary-layer system (6.222) uniformly in χ̃, that is, the ε− δ

definition of Lyapunov stability and the convergence z̃ → h̃(χ̃) are uniform in χ̃ (Vidyasagar, 2002), and

if F̃ (χ̃, z̃ ) and ĝ (χ̃, z̃ ) satisfy certain growth conditions on the reduced and boundary-layer systems,

assumptions 5.5.6, 5.5.7, 5.5.8, 5.5.9, and 5.5.10 applied to the helicopter ΣSFU full system, then the ori-

gin is an asymptotically stable equilibrium of the singularly perturbed system (6.6–6.10), for sufficiently

small ε2. (Kokotović et al., 1986; Kokotović et al., 1987; Kokotović et al., 1999).

Similarly as in ΣSF Stability Analysis, due to the fact that the system is expressed in its error dy-

namics form, and that the use of the full range of reachable state variables has been required in order

to satisfy the inequalities that guarantee the asymptotic stability properties at the origin of the ΣSFU -

subsystem, these asymptotic stability properties are also extended to semiglobal stability, by the definition

in (Kokotović, 1992; Sussmann and Kokotović, 1991; Braslavsky and Miidleton, 1996), by providing up-

per bounds on the parasitic singularly perturbed parameters for the entire range of admissible state

values, thus extending the domain of attraction to that same rage of admissible states.

6.6.1 Bounds for the Stability Parameter of the ΣSFU Stability Analysis

Recalling from the ΣSF stability analysis, that due to the existent freedom on selecting β2 and γ1, the

upper-bound ε∗1, Eq. (6.206), and its d∗1 parameter, Eq. (6.205), can be precisely obtained to match the

required parameters that guarantee the asymptotic stability for the full ΣSFU system. This is achieved

by selecting the appropriate combination of γ1 and β2, which in return generates the desired combination

of both ε⋆1 and d⋆1 , which are both obtained using Eqns. (6.206) and (6.205) such

γ1(ε
⋆

1 ) =
1

α1

(

α1α2

ε⋆1
− β1β2

)

, (6.598)
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Assumption 5.5.7 for the Helicopter ΣSFU System

Section 5.2 ∂V
∂x f(x, h(x)) α1 ψ(x)

ΣSFU

(

∂V1(χ̃)
∂χ̃

)T

F̃ (χ̃, h̃(χ̃)) α3 ≤ 1 ψ2(χ̃) =

√

χ̃T
Rχ̃

Assumption 5.5.8 for the Helicopter ΣSFU System

Section 5.2 ∂W
∂z g(x, z) α2 φ(z − h(x))

ΣSFU

(

∂VU (ẑ)
∂z̃

)T

ĥ(χ̃, z̃ ) α4 ≤ 1 φ2(ẑ ) =

√

ẑ
T
Q̃U ẑ

Assumption 5.5.9 for the Helicopter ΣSFU System

Section 5.2 ∂V
∂x f(x, z) f(x, h(x)) β1

ΣSFU

(

∂V1(χ̃)
∂χ̃

)T

F̃ (χ̃, z̃ ) F̃ (χ̃, h̃(χ̃)) β3 ≥ max (β3aβ3b)

Assumption 5.5.10 for the Helicopter ΣSFU System

Section 5.2 ∂W
∂x f(x, z) γ1 β2

ΣSFU

(

∂VU (ẑ)
∂z̃

)T

F̃ (χ̃, z̃ ) γ2 ≥ max (γ2aγ2b) β4 ≥ max (β4Aβ4B )

Table 6.2: Parameters for the Comparison Functions and Inequalities that Guarantee the Asymptotic
Stability Requirements for the Helicopter ΣSFU System.

β2(d
⋆

1 ) =
β1

d⋆1
− β1, (6.599)

where ε⋆1 = dε1ε1, with dε1 = 1.05, and d⋆1 = 0.5, therefore resulting in the expression

ε2 <
α1γ1(ε

⋆

1 ) + β1β2(d
⋆

1 )

α1α2

α3α4

ε1

(

α3γ2 +
1

4(1− d2)d2
[(1− d2)β3 + d2β4]

2

)ε2d , (6.600)

which has also a maximum for d∗2

d∗2 =
β3

β3 + β4
, (6.601)

thus resulting in the upper bound for ε2 as

ε∗2 =
α1γ1(ε

⋆

1 ) + β1β2(d
⋆

1 )

α1α2

α3α4

α3γ2 + β3β4
. (6.602)

Recalling the definitions of β3, β4 and γ2, given in Eqns. (6.435), (6.505), and (6.586), respectively,

such

β3 ≥

√

√

√

√

2
(

L2aQ̃
2
SF +

(

L2b + Q̃F21
L2c

)

Q̃SF

)

r̃2Q̃SF − r̃3

√

QS

qu1

, (6.603)

γ2 ≥ 2N
(

Cu1
+
Cu3

2
+ Cu2

QU21

)

, (6.604)

β4 ≥ β4e =

√

√

√

√

2M̃2

[

C2
u3

+ Cu1
Cu3

+QU21
Cu2

Cu3

]

QU21

(

r̃2Q̃SF − r̃3

)

√

qu1

QS
, (6.605)

where, as previously derived, the different ratio between the stability parameters are given by

Q̃SF = δ1
(1− d1)

2d1bx
C1, (6.606)
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QU21
=

− (2Cu1
+ Cu3

) +

√

(2Cu1
+ Cu3

)
2
+ 8Cu2

Cu3

4Cu2

, (6.607)

where recalling from the results obtained in sections 6.5.4 and 6.5.5, it is required that d⋆1 ∈ (0, 0.5243),

and δ1 ∈ (1.02, 1.264), therefore selecting d⋆1 = 0.5, and δ1 = 1.05. In addition to the ratios defined in

Eqns. (6.606) and (6.607), an additional ratio was previously derived

Q̃F21
>

C2
C1
, (6.608)

therefore resulting in

qf1 = Q̃SFQS , (6.609)

qf2 = Q̃F21
Q̃SFQS , (6.610)

qu2
= QU21

qu1
. (6.611)

In order to completely define the upper bounds on ε2, all the stability parameters, QS , qf1 or qf2 , qu1
and

qu2
, need to be selected, where needs to be noted that only the ratios Q̃SF , and QU21

, Eqns. (6.609) and

(6.611), respectively, are completely bounded, and Q̃F21
it is defined by the above expression, but needs

to be bounded. This implies that, by initially selecting a reference value for the stability parameter QS,

only qf1 is completely defined and bounded by using Eq. (6.609). The rest of the stability parameters

can be determined by analyzing the extended version for the upper-bounds ε∗2 and d∗2, Eqns. (6.602)

and (6.613), respectively. The expression that determines the upper-bound in ε2, Eq. (6.435), can be

rewritten by substituting in β3, γ2, and β4, Eqns. (6.603), (6.604), and (6.605), respectively, resulting

in

ε∗2 =
α3α4

(

α1γ1(ε
⋆

1 ) + β1β2(d
⋆

1 )
)

α1α2

(

α3γ2 +

√

4M̃2(L2a Q̃
2

SF
+(L2b

+Q̃F21
L2c)Q̃SF )[C2

u3
+Cu1

Cu3
+QU21

Cu2
Cu3 ]

QU21(r̃2Q̃SF−r̃3)
2

) , (6.612)

with γ2 being given in Eq. (6.604), and similarly with d∗2 resulting in

d∗2 =

√

2(L2a Q̃
2

SF
+(L2b

+Q̃F21
L2c)Q̃SF ) QS

qu1

r̃2Q̃SF−r̃3
√

2(L2a Q̃
2

SF
+(L2b

+Q̃F21
L2c)Q̃SF )

r̃2Q̃SF−r̃3

QS

qu1

+

√

2M̃2[C2
u3

+Cu1
Cu3

+QU21
Cu2

Cu3 ]
QU21(r̃2Q̃SF−r̃3)

qu1

QS

. (6.613)

It can be recognized that the fulfillment of the asymptotic stability properties for the ΣSFU full system

can be achieved by the proper selection of stability parameters QS , qf1 , qf2 , qu1
, qu2

, d⋆1 , and ε⋆1 , with

d⋆1 = 0.5, and ε⋆1 = 1.05ε1, as seen previously. Observing Eq. (6.612), it can be recognized that the

upper-bound on ε∗2 only depends on the physical parameters of the problem, the control design parameters

bx, b̃y1
, and b̃y2

that determine the selected target dynamics response, and the stability parameter ratios

Q̃SF , Q̃F21
, QU21

. Observing the denominator in Eq. (6.612) it can be also recognized that it is required

to satisfy that Q̃SF > r̃3
r̃2
, which after substituting the expressions for both r̃2 and r̃3, Eqns. (6.269)

and (6.271), respectively, it can be recognized that it is equivalent to the expression derived in the ΣSF

Stability Analysis, that resulted in the expression defined in Eq. (6.606), thus being consistent with the

analysis previously derived.

Recalling that one of the principal results of the ΣSFU Stability Analysis is the obtention of the upper

bounds on the parasitic constant ε∗2, to identify if the selected ε2 < ε∗2 which is one of the requirements

to guarantee the asymptotic stability properties for the system being analyzed, the three-time-scale

helicopter model. This can be achieved by designing the ratios that define the values of the Stability

Parameters such that both ε∗2 and d∗2 are bounded. This can be done by starting first to select the
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desired value of ε2 as ε⋆2 = dε2ε2 in Eq. (6.612), where dε2 is the selected safety margin for the parasitic

constant ε2, and selected as dε2 = 1.05. This implies that the upper bound of ε∗2 is selected to be a 5%

increment with respect to the selected ε2 for the helicopter problem here discussed. With this in mind,

Eq. (6.612) can be solved to obtain the ratio QF21 resulting in

Q̃F21
=

QU21

(

r2Q̃SF − r3

)2 (
α3α4

ε⋆
1
ε⋆
2

− α3γ2

)2

4L2cM̃2

(

C2
u3

+ Cu1
Cu3

+QU21
Cu2

Cu3

)

Q̃SF

− L2aQ̃
2
SF + L2bQ̃SF

L2cQ̃SF

, (6.614)

were it can be seen that Q̃F21
is a function of Q̃F21

(

QS, Q̃SF , QU21

)

, with Q̃SF and QU21
being defined

in Eqns. (6.606) and (6.607), respectively. Recalling that for the helicopter model here described the

control design parameters are selected as

bx = 1.5 (6.615)

b̃y1
= ε1ω

2
ny

(6.616)

b̃y2
= 2ε1ζny

ωny
, (6.617)

where recall that ωny
is desired natural frequency of the vertical displacement target dynamics, and

selected as ωny
= 1 and ζny

is the desired damping ratio for the vertical displacement target dynamics,

and selected as ζny
= 0.9, therefore resulting in

Q̃SF = 0.259974, (6.618)

QF21
= 2.567205, (6.619)

QU21
= 0.0041970. (6.620)

Therefore, by selecting an arbitrary value for QS , ie. QS = 0.5, and recalling Eqns. (6.609), and

(6.610), results in

qf1 = 0.129987, (6.621)

qf2 = 0.333703. (6.622)

This translate to having bounded values for three out of the five stability parameters, where still missing

a relation to provide bounded values for both qu1
and qu2

, although it can be reduced to obtain a relation

for only one of the two, since the proper ratio between both qu1
and qu2

is given by Eq. (6.607). This

can be achieved by analyzing Eq. (6.613), and recognizing that, by selecting the value of d∗2 = d⋆2 , it can

be obtained an expression that determines the missing relation that allows to obtain both qu1
and qu2

,

with the use of Eq. (6.611). Rewriting Eq. (6.613) results in

d∗2 =
β3

β3 + β4
,→ 1− d⋆2

d⋆2
=
β4
β3
, (6.623)

therefore, after substituting both β3 and β4, Eqns. (6.603) and (6.605), respectively, results in

1− d
⋆

2

d
⋆

2

=
qu1

QS

√

√

√

√

4M̃2 (C2
u3

+ Cu1
Cu3

+QU21
Cu2

Cu3
)
(

L2aQ̃
2

SF +
(

L2b
+ Q̃F21

L2c

)

Q̃SF

)

QU21

, (6.624)

therefore identifying that a expression that relates qu1
and QS can be obtained from Eq. (6.624) resulting

in

qu1

QS
=

1− d⋆2

d⋆2

√

4M̃2(C2
u3

+Cu1
Cu3

+QU21
Cu2

Cu3)(L2a Q̃
2

SF+(L2b
+Q̃F21

L2c)Q̃SF )
QU21

= QUS , (6.625)

where QUS defines the ratio between QS and qu1
such qu1

= QUSQS , with QS being the arbitrary

stability parameter, selected as QS = 0.5. This result, along with the rest stability ratio parameters,



6.6. FULFILLMENT OF THE HELICOPTER ΣSFU STABILITY ANALYSIS 283

yields QUS = 0.330899. This completes the stability ratio parameters such that all stability parameters

that satisfy the asymptotic stability analysis are bounded, and that can be defined as a function of the

arbitrary parameter QS such

qf1 = Q̃SFQS , (6.626)

qf2 = Q̃F21
Q̃SFQS , (6.627)

qu1
= QUSQS , (6.628)

qu2
= QU21

qu1
= QU21

QUSQS . (6.629)

Using the definitions of the ratios, Q̃SF , Q̃F21
, QUS , and QU21

, Eqns. (6.606), (6.614), (6.624), and

(6.607), respectively, results in

QS = 0.5, (6.630)

qf1 = 1.05
(1− d1)

2d1bx
C1QS , (6.631)

qf2 = 1.05
(1− d1)

2d1bx
C1QS







QU21

(

r2Q̃SF − r3

)2 (
α3α4

ε⋆
1
ε⋆
2

− α3γ2

)2

4L2cM̃2

(

C2
u3

+ Cu1
Cu3

+QU21
Cu2

Cu3

)

Q̃SF

− L2aQ̃
2
SF + L2bQ̃SF

L2cQ̃SF

]

, (6.632)

qu1
=

QS

(

1− d⋆2

)

d⋆2

√

4M̃2(C2
u3

+Cu1
Cu3

+QU21
Cu2

Cu3)(L2a Q̃
2

SF
+(L2b

+Q̃F21
L2c)Q̃SF )

QU21

, (6.633)

qu2
=

QS

(

1− d⋆2

)

(

− (2Cu1
+ Cu3

) +

√

(2Cu1
+ Cu3

)
2
+ 8Cu2

Cu3

)

4Cu2
d⋆2

√

4M̃2(C2
u3

+Cu1
Cu3

+QU21
Cu2

Cu3)(L2a Q̃
2

SF
+(L2b

+Q̃F21
L2c)Q̃SF )

QU21

, (6.634)

where for the physical parameters here employed, the parameters become

QS = 0.5, (6.635)

qf1 = 0.129986, (6.636)

qf2 = 0.333703, (6.637)

qu1
= 0.165449, (6.638)

qu2
= 5.455576× 10−4. (6.639)

Recall that the stability parameters depend on the selected upper-bounds, d⋆1 , d⋆2 , ε⋆1 , and ε⋆2 , the

selected target dynamics coefficients, bx, b̃y1
, and b̃y2

, and the physical parameters of the helicopter,

including the selected parasitic constants, ε1 and ε2. Recall that d
⋆

1 and d⋆2 represent the desired values

for the upper-bound constants d∗1 and d∗2, where ε1 and ε2 are maximum, Eqns. (6.204) and (6.600),

respectively.

The unspecified parameters d⋆1 and d⋆2 , differ from d∗1 and d∗2, Eqns. (6.205) and (6.596), respectively,

in the fact that d⋆1 and d⋆2 are selected rather than obtained by using their respective definitions. In

addition, the selection of these parameters is done satisfying the different growth requirements for the

asymptotic stability analysis, which bounds these values such that the asymptotic stability properties are

guaranteed.

As seen in previous derivations, it was chosen d⋆1 = 0.5, and for completeness, although it is not

required, and it is also selected d⋆2 = 0.5, such that the distribution for both ε1 and ε2 are centered as
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it can be seen in Figure 6.8. This is a really powerful result, since implies the existence of a closed form

solution for the proper selection of the stability parameters qf1 , qf2 , qu1
, and qu2

as a function of the

arbitrary QS , which are given in Eqns. (6.631), (6.632), (6.633), and (6.634). This translates to the fact

that, thanks to the proposed three-time-scale methodology employed to fulfill assumptions 5.5.6, 5.5.7,

5.5.8, 5.5.9, and 5.5.10, which in return implies that the origin is an asymptotically stable equilibrium

of the singularly perturbed helicopter ΣSFU system (6.6–6.10) for all ε2 ∈ (0, ε∗2), the results obtained

through the fulfillment of inequalities (6.239), (6.296), (6.314), and (6.436), it also provides the tools to

determine the selection of the stability parameters that guarantee the asymptotic stability properties for

the helicopter ΣSFU full system. Expanding V2(χ̃, z̃ ) it can be seen that the resulting Lyapunov function

is also a function of the stability parameters such

V2(χ̃, z̃ ) = (1− d2)V1(χ̃) + d2VU (ẑ )

= λ1
QS

4bx
x̃2 +

λ2
2

[

(Cf1qf1 + Cf2qf2) ỹ
2
1 +

d1
2

(Cf4qf1 + Cf5qf2) ỹ
2
2 + d1Cf3qf1 ỹ1ỹ2

]

+ λ3

[

1

2
(Cu1

qu1
+ Cu2

qu2
) ẑ21 +

1

2
(Cu4

qu1
+ Cu5

qu2
) ẑ22 + Cu3

qu1
ẑ1ẑ2

]

, (6.640)

where

λ1 = (1− d⋆1 )(1 − d⋆2 ) = 1− d⋆1 − d⋆2 + d1d
⋆

2 , (6.641)

λ2 = (1− d⋆2 ), (6.642)

λ3 = d⋆2 , (6.643)

therefore, the definition of the stability parameters, also provide a valid Lyapunov function for the complete

helicopter ΣSFU singularly perturbed system. Figure 6.8 shows the dependance on the right-hand side

of Eq. (6.595) on the unspecified parameter d2, and as it can be seen, the maximum value of the ε2

parameter is given a ε⋆2 = 1.26250 × 10−4. Recall that for the problem here stated it was selected

ε2 = 1.25 × 10−4, thus satisfying that ε2 < ε⋆2 . Figure 6.9 shows the linear dependance of the stability

parameters qf1 , qf2 , qu1
, and qu2

for varying QS.

The described stability process can be better understood by describing the dependance on both the

Stability Parameters, Eqns. (6.630), (6.631), (6.632), (6.633) and (6.634), and their ratios, Eqns. (6.606),

(6.608), and (6.607), as a function of varying the desired d⋆1 , and d⋆2 while still maintaining constant

the desired upper-bound ε⋆2 . Some of these Stability Parameters, like the ratio Q̃SF , and QF21
, and the

parameters qf1 and qf2 have no dependance on the desired d⋆2 . Figures 6.10, 6.11, show the variation of

the Stability Parameter ratios QSF , and QF21
, respectively, as the desired parameter d⋆1 is varied from

(0, 1).

Figure 6.12 shows also the variation of the Stability Parameters qf1 , and qf2 as the desired parameter

d⋆1 is varied in the feasible range that satisfies asymptotic stability, d⋆1 ∈ (0.0543, 0.5243). On the other

side, since the Stability Parameter ratio QUS does depend on both the desired d⋆1 and d⋆2 , the Stability

Parameters qu1
and qu2

, also vary as both d⋆1 and d⋆2 are also varied. Figures 6.13, and 6.14 show the

variation of ratio QUS , and the Stability Parameters qu1
and qu2

, respectively as both d⋆1 and d⋆2 are

varied, but, still maintaining constant the desired upper-bound ε⋆2 = dε2ε2. The rest of the Stability

Parameters, qf1 , qu1
, qu2

, remain constant since only depend on the Stability Parameters QS .

These figures show the power of the final results here described, where, thanks to the proposed ΣSFU

Stability Analysis approach, the designer has total control over the Stability Parameters, as long as

they satisfy the bounds and the ratios that have been obtained through the fulfillment of the proposed

asymptotic stability methodology, thus allowing to select them in order to satisfy the asymptotic stability

properties of the closed loop resulting system.
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Furthermore, since the same philosophy was used to design the proper control laws, the asymptotic sta-

bility analysis is performed in a fluent and straight forward manner, which once completed, even might

seem trivial, but this is thanks to the proposed methodology. The difficulties encountered when try-

ing to stabilize a multiparameter time-scale nonlinear system are well known (Abed, 1985d; Abed, 1985e;

Abed, 1985b; Desoer and Shahruz, 1986; Kokotović et al., 1987; Naidu, 2002; Grammel, 2004), and most

of the time, they become just theoretical applications due to the complexity of the proposed methods. In

addition, the determination of the stability properties require the obtention of complicated Lyapunov func-

tion candidates for each of the studied subsystems, which are obtained at the same time than the fulfill-

ment of the associated growth requirements that fulfill the asymptotic properties (Kokotović et al., 1986;

Kokotović et al., 1987), which complicates even further the entire analysis process, and not even mention

the fact that the studied systems, are autonomous problems in which the design of the control strat-

egy is not considered. The proposed methodology in this thesis provides an all-in-one tool that provide

the control strategy, a Lyapunov time scale derivation, and a time-scale asymptotic stability analysis of

the singularly perturbed system, becoming a really powerful tool for the analysis of nonlinear singularly

perturbed systems.

Therefore, recalling from the previous stability analysis, the coefficients that fulfill the growth require-

ments are therefore given by

α3 = 0.95,

α4 = 0.95,

β3 = 492.14288,

β4 = 492.14288,

γ2 = 11128.12913.

The upper-bound (6.612) is given by ε∗2 = 1.26250× 10−4. Recall that for the problem here stated it

was selected ε2 = 1.25× 10−4, thus satisfying that ε2 < ε∗2. Recall that (6.595) depends on the selection

of the variable d1, and the maximum value of ε2 is achieved with d∗1 = d⋆1 = 0.5, and d∗2 = d⋆2 = 0.5.

It has been proven that with proper selection of the Stability Parameters, QS , qf1 , qf2 , qu1
, and qu2

, the

value of ε∗1 in the ΣSF -subsystem and ε∗2 in the ΣSFU full system have been obtained such that ε1 < ε∗1,

and ε2 < ε∗2, therefore, since all the growth requirements are satisfied, then the origin χ̃ = 0, z̃ = 0,

is an asymptotically stable equilibrium of the singularly perturbed ΣSFU system for all ε2 ∈ (0, ε∗2).

Due to the methodology here presented, in which in order to demonstrate the fulfillment of all growth

requirements, the full range of helicopter attainable states was considered to prove all inequalities, this

defines the domain of attraction of the proposed stability analysis as the full range of helicopter attainable

states. A sensitivity analysis for the results for the asymptotic stability analysis for the helicopter model

is presented in Appendix D.
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Figure 6.8: Stability upper bounds on ε2 for the Stability Analysis of the ΣSFU system.
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Figure 6.13: Variation of Stability Parameter QUS vs. d⋆1 and d⋆2 - helicopter ΣSFU system
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Figure 6.14: Variation of Stability Parameter qu1
vs. d⋆1 and d⋆2 - helicopter ΣSFU system.

Figure 6.15: Variation of Stability Parameter qu2
vs. d⋆1 and d⋆2 - helicopter ΣSFU system.
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6.7 Conclusions

The Asymptotic Stability Analysis presented in chapter 5 has been applied to the three-time-scale au-

tonomous helicopter model obtained in chapter 4. The proposed two-step process defined in chapter 3

allows to study the asymptotic stability properties of the closed loop system, and also proposes a method-

ology to obtain a Lyapunov function candidate for the entire system, V2(x̃, ỹ , z̃ ), by using a weighted

sum of the proposed Lyapunov function candidates of the three time-scale subsystems.

The validity of the methodology has been proved by obtaining the stability upper bound limits on the

boundary layers, ε1 and ε2, and ensuring that the selected parasitic constants for the proposed control law

satisfy ε1 ≤ ε∗1 and ε2 ≤ ε∗2 for the helicopter model here employed. The use of the full range of reachable

state variables has been required in order to satisfy the inequalities that guarantee the asymptotic stabil-

ity properties at the origin of the ΣSFU -subsystem, which results in extending the asymptotic stability

properties to semiglobal stability, by the definition in (Kokotović, 1992; Sussmann and Kokotović, 1991;

Braslavsky and Miidleton, 1996), by providing upper bounds on the parasitic singularly perturbed pa-

rameters for the entire range of admissible state values, thus extending the domain of attraction to that

same rage of admissible states.

The stability results have also presented a closed form solution for the proper selection of the stability

parameters qf1 , qf2 , qu1
, and qu2

as a function of the arbitrary stability parameter QS , such that fulfill

assumptions 5.5.6, 5.5.7, 5.5.8, 5.5.9, and 5.5.10, providing asymptotic stability for the helicopter ΣSFU

full system with prescribed upperbounds on the parasitic parameters.



Chapter 7

Considerations of Unmodeled

Dynamics

7.1 Introduction

Having in mind that the derived control strategies here presented are intended to be implemented in the

future in the GCNL autonomous helicopter platform, Fig. 2.24, this chapter analyzes the behaviour of

the mentioned control laws, under some of the possible unmodeled dynamics encountered when applied

in the real platform.

Although many forms of unmodeled dynamics can be analyzed, and the study of all of them would be

a difficult tasks, and what it is most important, out of the scope of the work here presented, only one

type of unmodeled dynamics will be considered, and that is the unmodeled dynamics introduced by the

modeling of the thrust coefficient of the main rotor. As discussed in chapter 2, and in Appendix A in more

detail, the momentum theory provided some good insight into how the helicopter hovers by providing

definitions for the inflow ratio depending on the flight condition, while blade element theory provide

physical explanations at how the collective pitch and rotational speed affect the developed thrust, but

lack to provided closed-form solutions, since the integral form described in Eq. (2.239) depends on the

inflow angle. Therefore being necessary to combine both theories in order to obtain closed-form solutions

of the thrust coefficient (CT ).

There are many proposed closed-form solutions in the literature (Leishman, 2006) for the thrust coef-

ficient CT which depends on the flight condition that it is assumed, the type of blade, and the assumed

flow distribution along the blade of the rotor. Some of these models, in special the ones chosen by the

author to test the behavior under unmodeled dynamics of the proposed control laws, are denoted bellow,

following the standard literature nomenclature:

• Moment theory for uniform inflow in hover flight condition - MTH

• Moment theory for uniform inflow in axial flight condition - MTC

• Combined blade element theory and momentum theory - BEMT .

• Combined blade element theory and momentum theory with Prandtl’s Tip-Loss Model - BEMTTL.

The first proposed model, the MTH model, has been previously presented in chapter 2, and is the

selected CT model to be implemented in the helicopter dynamics presented in this thesis. As previ-

ously mentioned, although the model implies a series of hypothesis, it can be proven (Johnson, 1994;

291
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Leishman, 2006) that for maneuvers in which the climb and descent velocities are low enough, the MTH

is a really good approximation without any loss of generality, as it will be proven in the simulations.

Also, and most important, the first model is the only closed-form continuous model of the four proposed

models, therefore, becoming a good candidate, if not the only candidate, that can be used for a control

strategy of the continuous type.

Although the selected MTH model is the only continuous implementable model, one of the objectives

of this thesis is to provide a series of control laws that will be able to be implemented into the GCNL

autonomous helicopter platform, thus, although the MTH model is a good approximation for low ax-

ial flight conditions, it is desired to see how the proposed control laws perform under a more realistic

helicopter environment. Although there are much more precise, and also much more complex thrust co-

efficient models in the literature (Cuerva et al., 2006a; Cuerva et al., 2006b; Theodore, 2000), the author

has chosen these three models, the MTC, BEMT and the BEMTTL models as significate models that

are both, much more complex than the selected thrust model, MTH , but are also easily implemented in

the numerical simulation platform defined by the author. See Appendix A for more detail on the above

mentioned models.

These alternative models will serve as great bench problems where to test the behavior of the proposed

control strategies under unmodeled uncertainties. This chapter will conduct a sensitivity analysis on the

proposed derived control laws to see how they perform on the three alternative different CT models, and

investigate if it is necessary to include some additional control regulation in order to take into account

for the introduced unmodeled dynamics having in mind the scenario that will take place when trying to

implement the presented control laws into the real GCNL autonomous helicopter platform.

7.2 Proposed Thrust Coefficient Models

Prior to conduct the sensitivity analysis let recall the proposed thrust model coefficients that will be used

as test bench problems, by recalling the most important equations that define the four proposed models.

For the first defined model, the MTH , the thrust coefficient is given in Eq. (2.251) by

CT =

[

σClα

12

(

− 3

2
√
2
+

√

9

8
+

24θc
σClα

)]2

, (7.1)

which it also has a closed-form solution for the thrust force due to the employed simplifications resulting

in

T = ρNbc(ΩR)
2R

σC2
lα

144

(

3

2
√
2
+

√

9

8
+

24θc
σClα

)2

, (7.2)

where recall both virtual control signals, the collective pitch angle, θc and the angular velocity of the

blades, Ω, contribute to the generation of thrust as seen in Eq. (7.2). For the second model, the MTC,

the thrust coefficient for the three flight axial conditions is divided in three terms given by

CTMTC
= −ρAσCLα

RΩ (−3σCLα
RΩ+ T1 − 32RθcΩ+ 24Vc)

192ρAΩ2R2
, (7.3)

CTMTD
=

TMTD

ρAΩ2R2
, (7.4)

CTMTWM
= −ρAσCLα

RΩ (3σCLα
RΩ− T2 − 32RθcΩ+ 24Vc)

192ρAΩ2R2
, (7.5)
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where each of the three thrust coefficients, CTMTC
, CTMTD

, or CTMTWM
, are selected depending on the

magnitude and the nature of the axial flight regime, and given by

Vc/vh ≥ 0 → CTMTC
, (7.6)

−2 ≤ Vc/vh ≤ 0 → CTMTD
, (7.7)

−2 ≥ Vc/vh → CTMTWM
, (7.8)

where the reader can refer to Appendix A for further details on the derivation of the proposed models.

For the third model, the BEMT , the thrust coefficient in axial ascent is given by integrating along the

entire blade of the integral dCT given by

dCT =
σClα

2

(

θcr
2 − λr

)

dr, (7.9)

with the inflow ratio given in (A.71) as

λ(r, λc) =

√

(

σClα

16
− λc

2

)2

+
σClα

8
θr −

(

σClα

16
− λc

2

)

, (7.10)

and where for the particular case in which the hover flight condition is considered, thus λc = 0, Eq. (7.10)

simplifies to

λ(r) ≡ λi(r) =
σClα

16

(√

1 +
32

σClα

θr − 1

)

, (7.11)

while for the axial descent is given by

CTMTD
=

TMTD

ρAΩ2R2
, (7.12)

CTMTWM
= −ρAσCLα

RΩ (3σCLα
RΩ− T2 − 32RθcΩ+ 24Vc)

192ρAΩ2R2
, (7.13)

where similarly, as for theMTC
model, the thrust coefficient for the BEMT model in axial descent regime

is given depending on the magnitude of the helicopter’s descent velocity as

− 2 ≤ Vc/vh ≤ 0 → CTMTD
, (7.14)

−2 ≥ Vc/vh → CTMTWM
. (7.15)

And finally, for the fourth model, the BEMTTL, the thrust coefficient is also given by integrating along

the entire blade of the integral dCT given as

dCT =
σClα

2

(

θcr
2 − λr

)

dr, (7.16)

with the inflow ratio given in (7.10) as

λ(r) =

√

(

σClα

16F (r, λ(r))
− λc

2

)2

+
σClα

8F (r, λ(r))
θr −

(

σClα

16F (r, λ(r))
− λc

2

)

, (7.17)

and where for the particular case in which the hover flight condition is considered, thus λc = 0, Eq. (7.17)

simplifies to

λ(r) ≡ λi(r) =
σClα

16F (r, λ(r))

(
√

1 +
32F (r, λ(r))

σClα

θr − 1

)

, (7.18)

while again, for the axial descent, the CT is given by the different flight regimes given by Eq. (7.13).

Recall that both MTH and MTC produce close-form solutions for the thrust coefficient CT (2.248) which

are both explicit functions of the collective pitch angle θc and the inflow angle. Recall also that while for

theMTH model the inflow angle is a function of CT , this resulting in a continuous closed-form solution for
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the thrust coefficient, while theMTC model, presents nonlinearities depending on the nature of the climb

flight region, and therefore being unfeasible to integrate into a set of continuous differential equations if

the goal is to design continuous and differentiable control laws.

On the other side, for both blade element theory models, BEMT and BEMTTL, it is required numerical

integration at each instant in order to obtain the thrust coefficient, therefore making impossible to obtain

a closed-form solution to which be able to design a proper control law to regulate the amount of thrust

generated, but they will serve as a great bench problems where to test the validity of the selected model,

and to test the performance of the proposed control laws under model uncertainties. It is important

to note the great mathematical differences between the selected MTH model, and the selected MTC,

BEMT and BEMTTL thrust coefficient models, in special the discontinuities present in the proposed

CT models when the helicopter is in axial descends flight regime, as it will be seen in the sensitivity

analysis that will be conducted in the following sections.

7.3 Sensitivity Analysis under Unmodeled Thrust Coefficient

Model

In order to evaluate the performance of the derived control laws under unmodeled dynamics, a sensibil-

ity analysis is conducted by performing four distinctive maneuvers that include all possible helicopter

maneuvers:

1. Ascent flight with increasing engine RPM.

2. Ascent flight with decreasing engine RPM.

3. Descent flight with increasing engine RPM.

4. Descent flight with decreasing engine RPM.

Despite the extensive sensitivity analysis conducted, only four significate cases are presented, which

correspond to a sequential simulation that includes all four distinctive maneuvers, and that are defined

by the bellow conditions:

1. y1(0) = 1.85 m, y∗1 = 0.5 m, x(0) = 120 rad/sec, and x∗ = 140 rad/sec.

2. y1(0) = 0.5 m, y∗1 = 1 m, x(0) = 140 rad/sec, and x∗ = 120 rad/sec.

3. y1(0) = 1 m, y∗1 = 1.5 m, x(0) = 120 rad/sec, and x∗ = 145 rad/sec.

4. y1(0) = 1.5 m, y∗1 = 0.75 m, x(0) = 145 rad/sec, and x∗ = 120 rad/sec.

Needs to be noted that starting with the second maneuver, it is assumed that the helicopter has

reached the desired target altitude and angular rotation of the blades, thus the initial conditions for the

second, third and fourth maneuver are the selected as desired target conditions of the previous maneuvers

respectively. For the case in which the helicopter has not reached the assigned target condition, the new

maneuver will start at whenever condition the helicopter is at the moment of the change in set point.

Each maneuver is lapsed with an interval of twenty seconds, and after that time it is assigned the new

set points independently if the helicopter has reached or not the desired set point.

Due the continuous/discontinuous nature of the CT models the sensitivity analysis is conducted con-

sidering first continuous CT simplified models, as discussed in section 7.4.1, and later, the simulations

are extended analyzing the discontinuous models as it will be seen in section 7.4.2. These results are

described in following sections.
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7.3.1 Sensitivity Analysis for Continuous Unmodeled Thrust Coefficient

Models

The first sensibility analysis will be conducted assuming that the model formulation for theMTC , BEMT ,

and BEMTTL, are continuous by assuming that, for both ascent and descent axial flight, the model can

be defined by that of the ascent flight for all three models. This approximation can be taken since as noted

by (Johnson, 1994; Leishman, 2006), for small Vc/vi, the use of the axial flight models are reasonable

approximations to the axial flight dynamics without loss of generality, and this will be observed in the

simulations where Vc/vi > −0.15 as it can be seen in the middle sub-figure in Figure 7.4.

The conducted sensitivity analysis with this approximation will prove that the proposed selected control

laws are able to stabilize the helicopter in approximately the same amount of time for all three proposed

alternative propulsive models, see the trends in the vertical velocity and acceleration of the helicopter in

the middle and bottom subfigures, respectivelty, in Figure 7.1. It needs to be noted that for the BEMT

and BEMTTL models it does so to different altitudes than the selected target altitude, see top subfigure

in Figure 7.1, and therefore will be necessary to include an simple extra-robustness law to compensate

for this steady-state error in the final altitude of the helicopter.

Figures 7.1 to 7.4 show some representative simulations of the sensitivity analysis conducted. As ex-

pected the different commanded angular rotation of the blades are properly tracked, since no uncertainties

are introduced into the propulsive model. The collective pitch angle history in the middle subfigure in

Figure 7.2, shows that different collective pitch angles are demanded by the different control signal u2 in

order to achieve equilibrium flight, despite the different amount of CT generated by of the four presented

test bench CT models, as it can be seen in the zoomed portion of the top sub-figure in Figure 7.4. The

different control signals for all four maneuvers can be seen in Figure 7.3.

The difference in altitude is almost imperceptible for theMTC model, while it is most noticeable for both

BEMT , and BEMTTL, producing a positive steady-state error in the altitude for the BEMT , and a neg-

ative steady-state error for the BEMTTL model, which is consistent with the literature (Johnson, 1994;

Leishman, 2006) where the for a given collective pitch angle and angular rotational speed of the blades, the

BEMT model produces a higher thrust coefficient that the MTH , while the BEMTTL model produces

a lower thrust coefficient that the MTH .

Although strictly speaking, this trend cannot be exactly appreciated in the sensitivity analysis here

conducted since the control signals are different for each of the analyzed CT models, this trend can be

seen in the sensitivity analysis conducted in Appendix A.5, in which in order to conduct a comparable

performance analysis between the selected MTH model, against the more precise models, the MTC , the

BEMT and the BEMTTL, the same control signal, resulting from analyzing the equilibrium points of the

original helicopter model, is applied to all four CT . See A.5.1 for more details. The important conclusion

that can be drawn are that despite the clear unmodeled dynamics, the control strategy presents robust

behavior on stabilizing the helicopter, although doing so at a different altitude.

7.3.2 Sensitivity Analysis for Discontinuous Unmodeled Thrust Coefficient

Models

Additional sensitivity studies are conducted considering now that all three test bench models, MTC,

BEMT , and BEMTTL respectively, have discontinuities when transition from ascent to descent flight

condition according to their original formulations. These discontinuities will introduce higher complexity

to the unmodeled dynamics study, since not only the control laws will have to account for different
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magnitudes of CT , but also for the discontinuities of all three models when transition to the descent flight

regime.

Similarly as in the continuous case, in order to evaluate the performance of the derived control laws

under unmodeled dynamics, the sensibility analysis is conducted by performing the same four distinctive

maneuvers described above, and where again despite the extensive sensitivity analysis conducted, only

four significate cases are presented, which correspond to a simulation that includes all four distinctive

maneuvers in one simulation with the same properties as described in section 7.3

The same trends are observed for the discontinuous models simulations, Figures 7.5-7.8. The proposed

selected control laws are able to stabilize the helicopter for all three proposed alternative propulsive

models, see the trends in the vertical velocity and acceleration of the helicopter in the middle and bottom

subfigures, respectivelty, in Figure 7.5, although for the BEMT and BEMTTL models to different

altitudes than the selected target altitude, see top subfigure in Figure 7.5, with some chattering behavior

when reaching the equilibrium condition, that is reaching a zero vertical velocity y = 2 → 0, where

the discontinuity creates oscillatory behaviour in the vertical movement as it can be seen in the evident

chattering in the vertical acceleration.

This is specially amplified for the BEMTTL model as seen in the bottom subfigure of Figure 7.5,

which is due to the erratic CT behaviour near the region that serves as the switching point between the

discontinuous CT models as it can be seen in the top subfigure in Figure 7.8. The collective pitch angle

history in the middle subfigure in Figure 7.6, shows that different collective pitch angles are demanded

by the control signal u2 in order to achieve equilibrium flight, according to the amount of generated

thrust for each of the four presented test bench CT models, and the different control signals for all four

maneuvers can be seen in Figure 7.7.

The discontinuities can be better observed in the nature of the thrust coefficient (CT ) when either

transition from either an initial stationary flight to a descending flight, or an ascending flight to a

descending flight. The discontinuities can also observed when the helicopter is in the vicinity of reaching

the desired final altitude in which, due to the typical damped oscillation, the CT model shows the

discontinuous behavior when oscillating around zero vertical velocity, and appearing the discontinuous

structure for all three proposed alternative CT models. This is much more distinct for the BEMTTL

discontinuous model.

Again, and similarly as for the continuous sensitivity analysis previously conducted, the discontinuous

sensitivity analysis shows that the proposed selected control laws are able to stabilize the helicopter for

all three proposed alternative propulsive models, despite the great differences in the models, that can be

thought as of large unmodeled dynamics, but it does so to a different altitude than the selected target

altitude, and therefore will be necessary to include an simple extra-robust law to compensate for this

steady-state error in the final altitude of the helicopter. Despite the discontinuous CT models, the derived

control laws are able to stabilize the helicopter. These results infer the derived control laws with some

degree of robustness against the most than probable unmodeled CT dynamics that will be encounter

when applying the obtained control laws to the actual ESI autonomous helicopter platform, but still

not enough to guarantee the precise regulation to the desired altitude which will require of some type

of simple extra-robust law to compensate for the existing steady-state error in the final altitude of the

helicopter. This extra-control law will be presented in the following section.
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Figure 7.1: States History for the Continuous Unmodeled CT and the BU-TD Control Design
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Figure 7.2: States History for the Continuous Unmodeled CT and the BU-TD Control Design
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Figure 7.3: Control History for the Continuous Unmodeled CT and the BU-TD Control Design.
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Figure 7.4: States and Significate Aerodynamic Parameters History for the Continuous Unmodeled CT

and the BU-TD Control Design.
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Figure 7.5: States History for the Discontinuous Unmodeled CT and the BU-TD Control Design
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Figure 7.6: States History for the Discontinuous Unmodeled CT and the BU-TD Control Design
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Figure 7.7: Control History for the Discontinuous Unmodeled CT and the BU-TD Control Design.
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Figure 7.8: States and Significate Aerodynamic Parameters History for the Discontinuous Unmodeled
CT and the BU-TD Control Design.
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7.4 Control Strategy for Unmodeled Dynamics

In order to account for the unmodeled thrust coefficients of the MTC , BEMT , and BEMTTL models, a

simple solution is selected which consists on adding an additional PID based control signal to the collective

pitch angle control signal u2. The extra control signal is added linearly to the existing control signal as

seen in Figure (7.9). For the TD-BU control strategy, the new closed loop system would become

ẋ = a10x
2 [sin(z1 − sinh1SS

(x))] − bx(x− x∗) (7.19)

ẏ1 = y2 (7.20)

ẏ2 = x2
(

a1 + a2z1 −
√
a3 + a4z1

)

+ a5y2 + a6y
2
2 + a7 (7.21)

ż1 = z2 (7.22)

ż2 = a13z1 + a15z2 +Kb

[

(

1 +
√

s3v(x,y)
)2

− 1

]

+ u2PID
, (7.23)

while for the CF-TD-BU control design would become

ẋ = a10x
2 (sin z1 − sinh1SS

(x)) − bx (x− x∗) , (7.24)

ẏ1 = y2, (7.25)

ẏ2 = x2
(

a1 + a2z1 −
√
a3 + a4z1

)

+ a5y2 + a6y
2
2 + a7, (7.26)

ż1 = z2, (7.27)

ż2 = −b̃z1 (z1 − h1c(x, y))− b̃z2z2 + u2PID
, (7.28)

with the extra control signal u2PID
given by

u2PID
(t) = Kp

(

e(t) +
1

Ti

∫ t

0

e(τ)dτ + Td
de(t)

dt

)

, (7.29)

with Kp, Ti, and Td being the standard tuning parameters for the three-term PID control signal. Refer to

the literature for more detail (Visioli, 2006; Åström and Hägglund, 1995; Åström and Hägglund, 2006).

The chosen structure can be seen in Figure 7.9. Simulations are conducted for both the continuous

and discontinuous test cases described in previous sections, and the results for the conducted sensitivity

analysis, are limited to the same four distinctive maneuvers that include all possible helicopter maneuvers

flight regimes:

1. Ascent flight with increasing engine RPM.

2. Ascent flight with decreasing engine RPM.

3. Descent flight with increasing engine RPM.

4. Descent flight with decreasing engine RPM.

with the same set point conditions used in previous sections. For conciseness also, only the simulations

for the TD-BU control design are presented since the simulations on the CF-TD-BU control design do

not change significantly.
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Figure 7.9: PID control.
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7.4.1 Sensitivity Analysis for Continuous Unmodeled Thrust Coefficient

Models with Added extra Control Signal (u2PID
)

Similarly as for the sensibility analysis conducted previously for the continuous model, the analysis is first

conducted assuming that the model formulation for theMTC , BEMT , and BEMTTL, are continuous. A

sensitivity analysis is conducted following standard tuning rules to adjust the different PID parameters to

obtain approximate desired time responses. The simulations that will be shown for both the continuous

and discontinuous models use Kp = 50, Td = 0.5, and Ti = 4.

The simulations with the PID extra control signal show not only that that the new proposed selected

control law is able to stabilize the helicopter in approximately the same amount of time for all three

proposed alternative propulsive models, but also doing so to the different desired set point altitudes as

seen in Figure 7.10. Figure 7.11 shows the tracking of the commanded angular rotation of the blades,

and the collective pitch angle and velocity. The different control signals for all four maneuvers can be

seen in Figure 7.12, while Figure 7.13 shows the time history for the CT , the normalized vertical velocity,

and the inflow angle.

7.4.2 Sensitivity Analysis for Discontinuous Unmodeled Thrust Coefficient

Models with Added extra Control Signal (u2PID
)

Similarly as for the sensibility continuous case, the sensitivity analysis is extended to the discontinuous

models for the MTC , BEMT , and BEMTTL. The sensitivity analysis is conducted using the same

tuning rules to adjust the different PID parameters that is Kp = 50, Td = 0.5, and Ti = 4. The

simulations with the PID extra control signal show again not only that that the new proposed selected

control law is able to stabilize the helicopter in approximately the same amount of time for all three

proposed alternative propulsive models, but also doing so to the different desired set point altitudes as

seen in Figure 7.14.

Figure 7.15 shows the tracking of the commanded angular rotation of the blades, and the collective

pitch angle and velocity. The different control signals for all four maneuvers can be seen in Figure 7.16,

while Figure 7.13 shows the time history for the CT , the normalized vertical velocity, and the inflow

angle. These results infer the derived control laws with some degree of robustness against the most than

probable unmodeled CT that will be encounter when applying the obtained control laws to the actual

ESI autonomous helicopter platform.

7.5 Conclusions

A performance sensitivity analysis is conducted for both the continuous and discontinuous presented test

bench models, the MTC , BEMT , and BEMTTL, and, after identifying that for BEMT , and BEMTTL

models, the selected control strategy presented a steady state error in the helicopter altitude, a simple

extra control signal is presented and tested again with the test bench problems, providing a certain type

of robustness under thrust coefficient modeling.
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Figure 7.10: States History for the Continuous Unmodeled CT and the BU-TD-PID Control Design



7.5. CONCLUSIONS 309

0 10 20 30 40 50 60 70 80
110

120

130

140

150

160

170

180
Helicopter Rotorblade Angular Velocity − x

x 
[r

ad
/s

]

time [s]

 

 

MT
H

MT
C

BEMT
BEMT

TL

(a) x

0 10 20 30 40 50 60 70 80
3

4

5

6

7

8

9

10

11

Helicopter Pitch Blade Angular Position − z
1

z 1 [d
eg

]

time [s]

 

 

MT
H

MT
C

BEMT
BEMT

TL

(b) z1

0 10 20 30 40 50 60 70 80
−60

−50

−40

−30

−20

−10

0

10

20

Helicopter Pitch Blade Angular Velocity − z
2

z 2 [d
eg

/s
]

time [s]

 

 

MT
H

MT
C

BEMT
BEMT

TL

(c) z2

Figure 7.11: States History for the Continuous Unmodeled CT and the BU-TD-PID Control Design
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Figure 7.12: Control History for the Continuous Unmodeled CT and the BU-TD-PID Control Design.
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Figure 7.13: Significate Aerodynamic Parameters History for the Continuous Unmodeled CT and the
BU-TD-PID Control Design.
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Figure 7.15: States History for the Discontinuous Unmodeled CT and the BU-TD-PID Control Design
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Figure 7.16: Control History for the Discontinuous Unmodeled CT and the BU-TD-PID Control Design.
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Chapter 8

Summary and Main Conclusions

Two singularly perturbation approaches that permit to analyze three-time-scale systems have been pre-

sented. These two methodologies are based in a sequential application of the general two-time-scale

singular perturbation formulation, which allows to decouple the three-time-scale problem into two sim-

pler two-time-scale models depending on the direction in which the methodology is applied. The direction,

the Top-Down (TD) or the Bottom-Up (BU ), refers to the order in which the stretched time-scales are

applied to the full singularly perturbed system in order to reduce the order of the original system. These

methodologies become a valuable tool that simplify the burden of both, designing appropriate control

laws, and demonstrate the asymptotic stability of singularly perturbed systems.

The TD and BU methodologies provide a step-by-step procedure that allows to design the proper

control laws that guarantee a desired degree of stability, and in addition, select an appropriate composite

Lyapunov function for the complete singularly perturbed system, and demonstrate the asymptotic sta-

bility for the resulting closed-loop nonlinear singularly perturbed system for sufficiently small singular

perturbation parameters, and everything in an all-in-one step-by-step methodology. The equivalency

between both the TD and BU methodologies, permits the designer to choose which direction is to be

used, depending in which combination of both methodologies is the most appropriate according to the

natural flow of the variables.

The TD and BU time scale analysis is also extended to the more general N th-time scale analysis using

a 4th-time-scale general example. The sequential strategy of decomposing the 4th-time-scale system,

into simpler two-time-scale subsystems provides a valuable tool that will help in analyzing any general

singularly perturbed N th-time-scale system, and provide additional tools for the time-scale analysis of

singularly perturbed systems.

The presented control strategy takes advantage of the TD and BU time-scale analysis methodologies,

resulting in two singular-perturbation-based control strategies: the TD and BU control design strategies.

For the special underactuated system here studied, a three-time-scale system with two control signals, a

modified version of the TD control strategy is presented, along with the Composite Feedback TD control

design, where both control strategies take advantage of the philosophy of the TD time scale analysis,

in which the control laws that stabilize the full problem are obtained by sequentially applying the TD

strategy, that results in two distinctive degenerated two-time-scale subproblems considerably simplified,

thus permitting to easily obtain the appropriate control laws that stabilize each of the subsystems, and

ultimately, stabilizing the full ΣSFU system.

The selected based TD control strategies, are divided in two stages, being each stage dedicated to design

each of the two control signals. The first stage of the TD based control strategies, apply sequentially

317



318 CHAPTER 8. SUMMARY AND MAIN CONCLUSIONS

the Top and Down time constant conditions, to select the control law that stabilizes the ΣFU -subsystem

using singular perturbation time-scale analysis to obtain the appropriate control law (u2) that stabilizes

the ΣF -subsystem, assuming that the closed-loop ultra-fast subsystem has inherent stable properties.

The second stage of the TD control strategy focuses on the Top sequence by using the first time-scale

decomposition, along with the obtained results in the second time-scale decomposition of the first stage,

and proceeds to stabilize the ΣS-subsystem with the proper u1.

The CF-TD control strategy uses a similar sequential application of the TD time-scale analysis as

conducted in the TD control design, with the particularity that this methodology allows the user to

define a prescribed degree of desired stability for the ultra-fast subsystem, ΣU , therefore permiting to

stabilize the boundary layer ΣU -subsystem if becomes unstable after substituting the control law that

stabilizes the ΣF -subsystems, which occurs at the end of the first stage of the TD control design. It

could also happen that the resulting closed-loop boundary layer ΣU -subsystem does not have the desired

degree of prescribed stability, therefore, would require a different control strategy in order to provide that

same desired degree of stability to the ΣU -subsystem. In any of the two possible scenarios in which the

TD control design lacks to provide the sufficient stability properties to the ΣU -subsystem, the CF -TD

control design, adapted to the three-time-scale singularly perturbed problem, will satisfy these stability

requirements on the ultra-fast ΣU -subsystem.

Once the control strategy has provided with autonomous stable systems, the attention is shifted to

guarantee the asymptotic stability of the proposed control laws, and to identify the domain of attraction

for the resulting closed loop system. The asymptotic stability analysis methodology is also based on

the TD and/or BU time-scales analysis here presented, although for the system here analyze, and for

completeness, only the BU asymptotic stability analysis is considered. The asymptotic stability analysis

provides the necessary tools to guarantee the stability properties for any three-time-scale singularly per-

turbed autonomous systems, which permits to simplify the burden associated with the analysis multiple

time-scale systems employing the existing stability methods.

The same philosophy that permits to analyze the asymptotical stability of an autonomous singular

perturbed subsystem, provides, in a step-by-step process similar to the control strategy methodol-

ogy, with the associated Lyapunov functions for each of the subsystems based on the natural desired

closed loop response of each of the resulting subsystem. This methodology, much simpler that the one

employed in the existing multiparameter time-scale analysis (Abed, 1985d; Abed, 1985e; Abed, 1985b;

Kokotović et al., 1987; Kokotović et al., 1986), permits to have Lyapunov function candidates for each

of the defined subsystems a priori of starting the stability analysis, and with a simple structure. The

Lyapunov structure is fixed a priori, reducing the fulfillment of the growth requirements among the differ-

ent time-scale subsystems to obtain the appropriate comparison functions and demonstrating the growth

requirements among the different subsystems.

The validity of the methodology has been proved by obtaining the stability upper bound limits for the

three-time-scale boundary layers, ε1 and ε2, and ensuring that the selected parasitic constants for the

proposed control law satisfy ε1 ≤ ε∗1 and ε2 ≤ ε∗2 for both the helicopter and the simplified model here

employed. The use of the full range of reachable state variables has been required in order to satisfy

the inequalities that guarantee the asymptotic stability properties at the origin of the ΣSFU -subsystem,

which results in extending the asymptotic stability properties to semiglobal stability, by the definition in

(Kokotović, 1992; Sussmann and Kokotović, 1991; Braslavsky and Miidleton, 1996), by providing upper

bounds on the parasitic singularly perturbed parameters for the entire range of admissible state values,

thus extending the domain of attraction to that same rage of admissible states.

The stability results have also presented a closed form solution for the proper selection of the stability

parameters such that fulfill the required growth requirements among different singularly perturbed sub-
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system, providing asymptotic stability for the helicopter ΣSFU full system with prescribed upperbounds

on the parasitic parameters.

The work conducted in this thesis differs from the studies of multiparameter time-scale singularly

perturbed systems that have been conducted extensively in the literature (Saberi and Khalil, 1984;

Saberi and Khalil, 1985; Khalil, 1987), in that they do not provide mathematical expressions on the

upper bounds for the parasitic constants that define the stretched time scales. These works generally

state that the asymptotic stability properties of the system being studied will be satisfied for suffi-

ciently small singularly perturbed parameters, but do not provide precise mathematic expressions on the

bounds.

Although for two-time-scale systems, general expression for the upper bounds are provided in the liter-

ature (Kokotović et al., 1999; Kokotović et al., 1987), but the expressions are subject to the satisfaction

of the growth requirements inequalities for the time-scale subsystems with the selection arbitrary con-

stants, but no precise mathematical expressions are provided. This is even more evident when dealing

with multiparameter time-scale systems, systems with more than two-time-scales. Again, several works

that appear in the literature approach the multi-parameter asymptotic stability analysis (Abed, 1985c;

Abed, 1986; Desoer and Shahruz, 1986; Kokotović et al., 1987) using all similar methods based on com-

posite stability methods of large scale dynamical systems (Michel and Miller, 1977; Araki, 1978), but

again without defining mathematical upper bounds on the singularly perturbed parameters. The main

contribution of the study conducted in this thesis is providing a methodology that permits to obtain the

mathematical expressions that define the upper bounds for the parasitic constants that guaranteed the

time-scale selection.

The TD and BU time scale analysis is also extended to the more general N th-time-scale analysis using

a 4th-time-scale general example. The sequential strategy of decomposing the 4th-time-scale system,

into simpler two-time-scale subsystems provides a valuable tool that will help in analyzing the stability

properties of any general singularly perturbed N th-time-scale system, and provide additional tools for

the time-scale analysis for singularly perturbed systems.

A performance sensitivity analysis has been also conducted for both the continuous and discontinuous

presented test bench models, the MTC , BEMT , and BEMTTL, and, after identifying that for BEMT ,

andBEMTTL models, the selected control strategies, despite the discontinuities that present such systems

comparing with the selected CT model, and the quantitative differences on the amount of thrust coefficient

generated for a given control signal, both above and bellow the nominal value of the selected CT , both

control strategies are still able to stabilize the helicopter, although they presented a steady state error

in the helicopter altitude, which is eliminated by including a simple extra control signal, which is also

tested again with the test bench problems, providing a certain type of robustness under thrust coefficient

modeling.

TheTD and BU singularly perturbed strategy here presented has shown the ability to solve the main

problems treated on this thesis:

1. Define a control design strategy that permits to select the desired degree of stability of each of the

time-scale subsystems.

2. Define a methodology that permits to demonstrate the asymptotic stability properties of the resulting

closed loop full system, by selecting the Lyapunov functions for each of the singularly perturbed

subsystems, and construct the associated composite Lyapunov function for the full system.
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Chapter 9

Future Work

The work conducted in this thesis only tries to provide the initial guidelines that will help in extending

the work here conducted to a more realistic helicopter model and to other aerospace systems. Possible

future works conceived at the time of witting this chapter diverge into two principal lines which are both

clearly independent but also intrinsically linked:

• Open problems related to the helicopter model.

• Open problems regarding the multiparameter singular perturbation methodology here presented.

Regarding the first line, the problems related to the helicopter modeling can be divided again into two

lines of investigation:

• A more theoretical line and focused on the asymptotic stability analysis conducted on the helicopter

problem.

• A more practical regarding the helicopter model.

The first line will address some of the open lines of investigation, that for completeness were left out

of this thesis, like a comprehensive study of how the upper bounds on the parasitic parameters are

affected by the variation of the Fixed Parameters, that is, the variation of the physics of the problem

and the control design strategy. For conciseness, these parameters were assumed to be fixed, that is, the

helicopter model are not varied (a1, a2, . . . a15), neither the control design parameters (bx, b̃y1
, b̃y2

), which

are defined by the selected desired dynamics of the different time-scale subsystems, or the parasitic time

constants (ε1,ε2), which are given by the selection for the time-scales which depend also on the physics

of the problem. This study will be of great interest in order to allow to use the same control strategy

to a wide range of helicopter systems, since each helicopter will have its own dynamics, and the different

missions will also require different time responses.

In addition to study the dependance of the upper bounds on the Fixed Parameters, it will also carried

the following lines of investigation:

• Extension of the asymptotic stability properties at the origin and the semiglobal stability to exponential

stability.

• The study of the implications of actuator saturations.

• A more extensive study of unmodeled dynamics and perturbations for:

– Further investigate the unmodeled Thrust Coefficient.

– Extend to the unmodeled engine characterization as introduced in chapter 2.
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• Disturbance rejection for the real platform.

• Control design for robustness under external disturbances with the associated asymptotic stability

analysis.

As a second line of investigation related to the helicopter model, short term goals imply the implemen-

tation of the control laws into the real helicopter platform developed by the Grupo de Control No Lineal

(GCNL). On a more long term goal, and having in mind that it is desirable to control the helicopter in all

three axis, will be desirable to extend the 2-DOF helicopter model creating full longitudinal and lateral

directional models for helicopters, in which suitable control strategies can be derived in order to provide

the helicopter with full autonomous capability.

Regarding the open problems for the multiparameter singular perturbation methodology here presented,

some of the future work, that the author has already started, imply extending the three-time-scale TD

and BU methodology to a more general N th-time-scale singular perturbation system, although the work

has already been started for both time-scale and stability analysis. Also, specifically, for a three-time-

scale model, will be investigated a combined one-step TD and BU asymptotic stability methodology

which has been applied to a simplified model with interesting and encouraging results when compared

with the ΣSFU Stability Analysis.

In addition, due to the natural singular perturbation behavior of aerospace systems, and aerospace

background of the author, the TD and BU will be extended to different classes of nonlinear aerospace

systems, which in general, use systematically singular perturbation and time-scale theory to reduce the

order of the system, but do not conduct asymptotic stability analysis to demonstrate the bounds of the

parasitic parameters due to the inherent complexities encountered using the existing methods.
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system. Automatica, 16(1):35–43.

Xin, M. and Balakrishnan, S. (2002). A new method for suboptimal control of a class of nonlinear

systems. In Decision and Control, 2002, Proceedings of the 41st IEEE Conference on, volume 3, pages

2756–2761. IEEE.



-336 BIBLIOGRAPHY

Xin, M., Balakrishnan, S., Stansbery, D., and Ohlmeyer, E. (2004). Nonlinear missile autopilot design

with θ − d technique. Journal of guidance, control, and dynamics, 27(3):406–417.

Xin, M. and S.N., B. (2008). Nonlinear H∞ missile longitudinal autopilot design with θ −D method.

volume 44, pages 41–56. IEEE.

Yeo, H., Bousman, W., and Johnson, W. (2004). Performance Analysis of a Utility Helicopter with

Standard and Advanced Rotors. Technical report.

Young, C. (1978). A Note of the Velocity Induced by a Helicopter Rotor in the Vortex Ring State.

Technical report, RAE Technical Report - 78125.

Zadeh, L. (1965). Fuzzy sets. Information and control, 8(3):338–353.

(Zephyris), R. W. (2005). Basic anatomy of a helicopter.



Appendix A

Proposed Test Bench Helicopter

Axial Flight Models

A.1 Introduction

This Appendix is dedicated to described in detail the proposed test bench helicopter axial flight models

that will be used to test the robustness of the proposed control laws. These models, similarly to the se-

lected model, the moment theory with uniform inflow and hover flight condition model (MTH), described

in section A.3, are based on the combination of both the momentum theory (MT ) and blade element

theory (BE), with the peculiarity, that while the MTH model is based in the hover condition, all three

proposed models in this appendix, take into account the axial flight conditions of the helicopter, therefore

being able to capture much more of the highly nonlinear dynamics that affects the generation of thrust/lift

during the course of these maneuvers. Although the selected model imply a series of hypothesis, such

that the inflow ratio along the blades is constant and equal to that of a hovering helicopter, therefore

not taking into account the axial movement of the helicopter, it can be proven (Johnson, 1994) that for

small enough axial velocities the simplification is valid and permits to have quite precise predictions of

the rotor performance, as it will be seen in the robustness section. Both the momentum theory (MT ),

simplified to hovering flight, and the blade element theory (BE), for the general case, are described in

detail in sections 2.6.1.1 and 2.6.2, respectively, and will not be rewritten again, but will be refereed

throughout the rest of this Appendix. Prior to described the three proposed test bench helicopter axial

flight models, it is necessary to extend the momentum theory analysis to the more general axial flight

condition which is described in the following section

A.2 Momentum Theory Analysis in Axial Flight

Similarly as in the hover case, it is assumed that the flow through the rotor is one-dimensional, quasi-

steady, incompressible and inviscid, with the only difference that in the axial flight regime, with a climb

velocity different from zero, the relative velocity far upstream relative to the rotor is now given by Vc

(Leishman, 2006). Therefore resulting this that in the plane of the rotor, the velocity is now defined by

Vc + vi, and the velocity far downstream, at station 2, is given by Vc + w as seen in Figure A.1. By

the conservation of mass, Eq. (2.174), the mass flow rate is constant within the boundaries of the wake,

A-337
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therefore

ṁ =

∫

∞

ρV · dS =

∫

2

ρV · dS, (A.1)

where dS is again the outward pointing normal from the control volume, and therefore resulting in

ṁ = ρA∞ (Vc + w) = ρA (Vc + vi) , (A.2)

and the application of the conservation of momentum (2.175) results in

T =

∫

∞

ρ (V · dS)V −
∫

0

ρ (V · dS)V. (A.3)

Assuming a steady climb flight condition, the velocity far upstream of the rotor is finite, so that both

terms on the right-hand side of Eq. (A.3) are nonzero, while compared with the hover problem, in which

the right hand side was zero. This results that for the climb case

T = ṁ (Vc + w)− ṁVc = ṁw, (A.4)

which is equivalent to the rotor thrust obtained in the hover flight condition (2.180). Since the work done

by the climbing rotor in now given by T (Vc + vi) then

T (Vc + vi) =

∫

∞

ρ (V · dS)V2 −
∫

0

ρ (V · dS)V2

=
1

2
ṁ (Vc + w)

2 − 1

2
ṁV 2

c =
1

2
ṁw (2Vc + w) . (A.5)

Using equations (A.4) and (A.5) it can be seen that, similarly as the hover case, w = 2vi. Recalling

that the relationship between the rotor thrust and the induced velocity at the rotor disk in hover was

given in Eq. (2.186), and that can be used in (A.4) to prove that

T = ṁw = ρA (Vc + vi)w = 2ρA (Vc + vi) vi, (A.6)

such that

T

2ρA
= v2h = (Vc + vi) vi = Vcvi + v2i , (A.7)

where dividing (A.7) by v2h results in

(

vi
vh

)2

+
Vc
vh

vi
vh

− 1 = 0, (A.8)

which is a quadratic form in (vi/vh) with the solution given by

vi
vh

= −1

2

(

Vc
vh

)

±
√

1

4

(

Vc
vh

)2

+ 1, (A.9)

where the only valid solution in climb is the positive solution, therefore yielding

vi
vh

= −1

2

(

Vc
vh

)

+

√

1

4

(

Vc
vh

)2

+ 1, (A.10)

which can be rewritten in terms off the induced velocity vi by solving in (A.10) resulting

vi = −Vc
2

+

√

V 2
c

4
+ vh, (A.11)

where recall as seen in (A.7)

vh =

√

T

2ρA
, (A.12)
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therefore rewriting Eq. (A.34) as

vi = −Vc
2

+

√

√

√

√

V 2
c

4
+

√

T

2ρA
. (A.13)

This implies that the induce velocity in climb flight decreases as the climb velocity increases, which

is called the normal working state of the rotor, with the hover flight condition being the lower limit.

However, taking a look at (A.9), as the rotor begins to descend there can be two possible flow directions,

which violates the assumed flow model, so this solution is physically invalid, so the momentum theory

can only be assumed valid for low rates of descent (Leishman, 2006). This implies that the climb flow

model cannot be used in a descent with the descend velocity being more than twice the average induced

velocity Vc, which corresponds with a flight condition in which the slipstream will be above the rotor. This

implies that for cases where the descend velocity is in the range −2vh ≤ Vc ≤ 0, the velocity at any plane

through the rotor slipstream can be either upward or downward, which creates complicated recirculating

flow patterns at the rotor and momentum theory cannot be used in this situation since no definitive

control volume surrounding the rotor and its wake can be established (Glauert, 1935; Leishman, 2006).

For the descending flight case, the control volume surrounding the descending rotor is given in Figure

(A.2)

Therefore, with this in mind, in order to determine the proper relationships for the descend flight,

let assume that |Vc| > 2vh so that a well-defined slipstream will always exists above the rotor and

encompassing the rotor disk. Far upstream (well bellow) the rotor, the magnitude of the velocity is the

descend velocity, which is equal to |Vc|, therefore at the plane of the rotor, the velocity is |Vc| − vi, and

in the far wake (above the rotor), the velocity is |Vc|−w. Recalling the conservation of mass (2.174), the

fluid mass flow rate through the rotor disk for the descend flight conditions given by

ṁ =

∫

∞

ρV · dS =

∫

2

ρV · dS, (A.14)

and where similarly as for the climb case

ṁ = ρA∞ (Vc + w) = ρA (Vc + vi) , (A.15)

and similarly, the application of the conservation of momentum (2.175) results in

T = −
[∫

∞

ρ (V · dS)V −
∫

0

(ρV · dS)V
]

, (A.16)

where it can be see that the difference with the climb case (A.3) is just the sign, which arises since the

flow direction is now reversed. Assuming a steady descent, the velocity far upstream of the rotor must

be finite so both terms on the right hand-side of (A.16) are non-zero and given by

T = (−ṁ) (Vc + w)− (−ṁ)Vc = −ṁw, (A.17)

and since the work done by the rotor in the descent flight condition is now given by T (Vc+vi) then

T (Vc + vi) =

∫

∞

ρ (V · dS)V2 −
∫

0

ρ (V · dS)V2

=
1

2
ṁV 2

c − 1

2
ṁ (Vc + w)

2
= −1

2
ṁw (2Vc + w) , (A.18)

which is a negative quantity, which implies that the rotor is extracting power from the airstream. Using

equations (A.16) and (A.17) it can be seen again that similarly as in the hover case, and the climb

case, w = 2vi, with the difference that the net velocity in the slipstream is less than |Vc|, and from

continuity considerations the wake boundary expands above the descending rotor disk. Recalling that

the relationship between the rotor thrust and the induced velocity at the rotor disk in hover was derived
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in Eq. (2.186), and using (A.17) it can be shown that

T = −ṁw = −ρA (Vc + vi)w = −2ρA (Vc + vi) vi, (A.19)

such that

T

2ρA
= v2h = − (Vc + vi) vi = −Vcvi − v2i , (A.20)

where dividing (A.7) by v2h results in

(

vi
vh

)2

+
Vc
vh

vi
vh

+ 1 = 0, (A.21)

which is a quadratic form in (vi/vh) with the solution given by

vi
vh

= −1

2

(

Vc
vh

)

±
√

1

4

(

Vc
vh

)2

− 1, (A.22)

similarly as in the climb case (A.9) there are two solutions, and it can be seen that one of the solution

produces values of vi/vh > 1 which violates the assumed flow in this case, therefore the only valid solution

is given by

vi
vh

= −1

2

(

Vc
vh

)

−
√

1

4

(

Vc
vh

)2

− 1, (A.23)

which is valid only for the region Vc/vh ≤ −2. Similarly as in the ascend flight condition, Eq. (A.23) can

be rewritten in terms off the induced velocity vi resulting in

vi = −Vc
2

−
√

V 2
c

4
− vh, (A.24)

where recall as seen in (A.7)

vh =

√

T

2ρA
, (A.25)

therefore rewriting Eq. (A.36) as

vi = −Vc
2

−

√

√

√

√

V 2
c

4
−
√

T

2ρA
. (A.26)

Expression (A.47) corresponds to the so called wind-mill region (Leishman, 2006). In the region −2 ≤
Vc/vh ≤ 0 momentum theory is strictly speaking invalid because the flow can take two possible directions

and a well-defined slipstream ceases to exist, which implies that a control volume cannot be defined that

encompasses only the physical limits of the rotor disk. However, the velocity curve can still be defined

empirically on the basis of flight test or other experiments with rotors, that can be used to find the best-fit

approximation for vi at any given descent rate. Following Young (Young, 1978) one approximation is

given by

vi
vh

= κ+ k1

(

Vc
vh

)

+ k2

(

Vc
vh

)2

+ k3

(

Vc
vh

)3

+ k4

(

Vc
vh

)4

, (A.27)

with κ being the measured induced power factor in hover, which is a coefficient derived from rotor

measurements or flight test and includes a number of noideal, but physical effects that are out of the

scope of this thesis. Also let

k1 = −1.125, (A.28)

k2 = −1.372, (A.29)
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k3 = −1.718, (A.30)

k4 = −0.655, (A.31)

which is valid of the full range −2 ≤ Vc/vh ≤ 0. This last model completes the full range of axial flight.

Although as a control design, and due to the nature of the predesign maneuvers for the RC helicopter

used in this thesis, the velocities in axial descend flight will never reach the values of Vc/vh ≤ −2, it is

important to introduce this distinction for future considerations. This concludes the momentum theory for

the axial flight, and although the momentum theory provides some good insights into how the helicopter

hovers, it does not provide a physical explanation at how the collective pitch and rotational speed affect

the developed thrust. This insight view, will be provided in the blade-element-theory formulation.
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Figure A.1: Flow model for momentum theory analysis of a rotor in axial climbing flight (Leishman, 2006;
Cuerva et al., 2009).

Figure A.2: Flow model for momentum theory analysis of a rotor in axial descend flight (Leishman, 2006;
Cuerva et al., 2009).
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A.3 Proposed Closed-Form Solutions for the Thrust Coefficient

Model CT

As seen previously in chapter 2, the momentum theory provided some good insight into how the helicopter

hovers by providing definitions for the inflow ratio depending on the flight condition, while blade element

theory provide physical explanations at how the collective pitch and rotational speed affect the developed

thrust, but lack to provided closed-form solutions since the integral form (2.239) depends on the inflow

angle. Therefore being necessary to combine both theories in order to obtain closed-form solutions of the

thrust coefficient which could be used in the proposed axial flight dynamic model for this thesis. This

appendix collects some of the proposed closed-form solutions in the literature (Leishman, 2006) for the

thrust coefficient CT which depends on the flight condition that it is assumed, the type of blade, and

the assumed flow distribution along the blade of the rotor. These models will be denoted, following the

standard literature nomenclature, and are given by:

• Moment theory for uniform inflow in hover flight condition - MTH

• Moment theory for uniform inflow in axial flight condition - MTC

• Combined blade element theory and momentum theory - BEMT .

• Combined blade element theory and momentum theory with Prandtl’s Tip-Loss Model - BEMTTL.

The first proposed model, the MTH model, has been previously presented in chapter 2, and is the

selected CT model to be implemented in the helicopter dynamics presented in this thesis. As previ-

ously mentioned, although the model implies a series of hypothesis, it can be proven (Johnson, 1994;

Leishman, 2006) that for maneuvers in which the climb and descent velocities are low enough, the MTH

is a really good approximation without any loss of generality, as it will be proven in the simulations.

Also, and most important, the first model is the only closed-form continuous model of the four proposed

models, therefore, becoming a good candidate, if not the only candidate, that can be used for a control

strategy of the continuous type.

Although there are much more precise, and also much more complex thrust coefficient models in the

literature (Cuerva et al., 2006a; Cuerva et al., 2006b; Theodore, 2000), the author has chosen the MTC,

BEMT and the BEMTTL models as significate models that are both, much more complex than the

selected thrust model MTH , but are also easily implemented in the simulation platform defined by the

author. These ”alternative” models will serve as great test-bench problems where to test the robustness of

the proposed control strategies under model uncertainties. The first of the proposed models, the MTH ,

has been previously defined in detail in section 2.8, therefore, only the following three models, MTC,

BEMT , and BEMTTL, respectively, will be described in detail in the following sections.

A.3.1 Moment Theory with Uniform Inflow in Axial Flight Model - MTC

In order to obtain the closed-form blade element and moment theory for uniform inflow let recall the

integral form of the thrust coefficient obtained in the BET analysis, and given by Eq. (2.239) as

CT =
1

2
σClα

∫ 1

0

(θcr
2 − λr)dr. (A.32)

Let also recall that in the MTH proposed model, it was assumed that the helicopter was at the hover

flight condition, thus reducing the inflow ratio, λ =
√
CT /2. This assumption, although valid for small

axial velocities near the hover condition (Johnson, 1994; Leishman, 2006) only uses the momentum theory

derived in the hover flight condition, and it is necessary to include the derivations obtained in section
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A.2 for the axial flight conditions. Recall that similarly as in the MTH , to obtain the MTC model, it

is assumed that inflow ratio is uniform, and thus the thrust coefficient Eq. (2.239) can be rewritten

as

CT =
1

2
σClα

∫ 1

0

(θcr
2 − λr)dr =

1

2
σClα

[

θ0r
3

3
− λr2

2

]1

0

=
1

2
σClα

[

θ0
3

− λ

2

]

. (A.33)

The main difference between the MTH and the MTC models is the model of inflow ratio which is

given depending on the flight condition for the MTC , (i.e. λclimb 6= λdescent for climb or descent flight).

Following the results obtained in section A.2, for axial climb it was defined by Eq. (A.10) as

vi
vh

= −1

2

(

Vc
vh

)

+

√

1

4

(

Vc
vh

)2

+ 1, (A.34)

while for the axial flight descent region given by −2 ≤ Vc/vh ≤ 0, the inflow ratio was given by Eq.

(A.27) as

vi
vh

= κ+ k1

(

Vc
vh

)

+ k2

(

Vc
vh

)2

+ k3

(

Vc
vh

)3

+ k4

(

Vc
vh

)4

, (A.35)

and finally, for the wind mill axial descent region given by |Vc| > 2vh is given by Eq. (A.23) as

vi
vh

= −1

2

(

Vc
vh

)

−
√

1

4

(

Vc
vh

)2

− 1. (A.36)

From the definitions for the inflow velocities for the three different axial flight regimes, the thrust

coefficient CT can be defined by recalling that the inflow ratio is given by

λ =
Vc + vi
ΩR

, (A.37)

then Eq. (2.248) can be rewritten as

CT =
1

2
σClα

[

θ0
3

− λ

2

]

=
1

2
σClα

[

θ0
3

− Vc
2ΩR

− vi
2ΩR

]

, (A.38)

with the induced velocity given by the expression for the different axial flight regimes. For the axial flight

climb condition, recall that the induced velocity is given by (A.13) as

vi = −Vc
2

+

√

√

√

√

V 2
c

4
+

√

T

2ρA
, (A.39)

therefore substituting (A.39) into (A.38) results in

CT =
1

2
σClα







θ0
3

− Vc
2ΩR

− 1

2ΩR






−Vc

2
+

√

√

√

√

V 2
c

4
+

√

T

2ρA












, (A.40)

where recall that the derived thrust coefficient in (A.40) is a function of the thrust force T , and this in

due to the fact that it is necessary to ensure that induced velocity of the helicopter, vh, equals to the

amount of thrust at each instant, which is given by (2.189) as

CT =
T

ρAΩ2R2
. (A.41)
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Equating both (A.38) and (A.41) results in

T

ρAΩ2R2
=

1

2
σClα







θ0
3

− Vc
2ΩR

− 1

2ΩR






−Vc

2
+

√

√

√

√

V 2
c

4
+

√

T

2ρA












, (A.42)

which results in a function of T , that can be solved for an empirical function in T , and given as

TMTC
= −ρAσCLα

RΩ (−3σCLα
RΩ± T1 − 32RθcΩ+ 24Vc)

192
, (A.43)

with T1 given by

T1 =

√

(3σCLα
ΩR)

2
+ (24Vc)

2
+ σCLα

ΩR (192ΩRθc − 144Vc), (A.44)

where it can be seen that (A.43) has two possible solutions and the solution for positive T is the selected,

which corresponds to

TMTC
= −ρAσCLα

RΩ (−3σCLα
RΩ+ T1 − 32RθcΩ+ 24Vc)

192
. (A.45)

Since for implementation purposes it is desirable to have an expression for the thrust coefficient CT , it

can be obtained by using the formal definition of CT , Eq. (A.41) such

CTMTC
= −ρAσCLα

RΩ (−3σCLα
RΩ+ T1 − 32RθcΩ+ 24Vc)

192ρAΩ2R2
. (A.46)

For the axial flight descent regimes recall that two distinct flight regimes were defined: the region given

by −2 ≤ Vc/vh ≤ 0, and the wind mill state in which the descent flight condition is given by |Vc| > 2vh.

Let first obtain the thrust coefficient for the second descent region, the wind mill state region with

|Vc| > 2vh. In a similar manner as for the case of the ascend velocity, but replacing (A.47) with

vi = −Vc
2

−

√

√

√

√

V 2
c

4
−
√

T

2ρA
, (A.47)

and conducting the same analysis results in that the thrust coefficient in the wind-mill state is given

by

TMTWM
= −ρAσCLα

RΩ (3σCLα
RΩ− T2 − 32RθcΩ + 24Vc)

192
, (A.48)

with T2 given by

T2 =

√

(3σCLα
ΩR)

2
+ (24Vc)

2 − σCLα
ΩR (192ΩRθc + 144Vc), (A.49)

where it can be seen that (A.49) has two possible solutions, and the solution selected is the solution that

satisfies the wind mill state conditions. Again, since for implementation purposes it is desirable to have

an expression for the thrust coefficient CT , it can be obtained by using the formal definition of CT , Eq.

(A.41) such

CTMTWM
= −ρAσCLα

RΩ (3σCLα
RΩ− T2 − 32RθcΩ+ 24Vc)

192ρAΩ2R2
. (A.50)

Finally, to obtain the thrust coefficient for the descent region −2 ≤ Vc/vh ≤ 0 let recall that the induced

velocity as given in Eq. (A.27) is defined as

vi = vh

[

κ+ k1

(

Vc
vh

)

+ k2

(

Vc
vh

)2

+ k3

(

Vc
vh

)3

+ k4

(

Vc
vh

)4
]

= vhκ+ k1Vc + k2
V 2
c

vh
+ k3

V 3
c

v2h
+ k4

V 4
c

v3h
, (A.51)
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where recall that from Eq. (A.7) that

vh =

√

T

2ρA
. (A.52)

In a similar manner as the two previous flight conditions, Eq. (A.51) is substituted into Eq. (A.38)

resulting in

CT =
1

2
σClα





θ0
3

−
Vc +

(

vhκ+ k1Vc + k2
V 2

c

vh
+ k3

V 3

c

v2

h

+ k4
V 4

c

v3

h

)

2ΩR



 , (A.53)

therefore, and similar as for the previous axial flight conditions, equating both Eqns. (2.189) and (A.53),

results in

T

ρAΩ2R2
=

1

2
σClα





θ0
3

−
Vc +

(

vhκ+ k1Vc + k2
V 2

c

vh
+ k3

V 3

c

v2

h

+ k4
V 4

c

v3

h

)

2ΩR



 , (A.54)

this resulting in an implicit function in T which has to be solved using numerical methods, and once

obtained the thrust force, it can be expressed in the normalized form of the CT using

CTMTD
=

TMTD

ρAΩ2R2
, (A.55)

with TMTD
being the thrust force obtained from solving numerically (A.54). This results in the three

thrust coefficients for the three axial flight conditions and resumed as

CTMTC
= −ρAσCLα

RΩ (−3σCLα
RΩ+ T1 − 32RθcΩ+ 24Vc)

192ρAΩ2R2
, (A.56)

CTMTD
=

TMTD

ρAΩ2R2
, (A.57)

CTMTWM
= −ρAσCLα

RΩ (3σCLα
RΩ− T2 − 32RθcΩ+ 24Vc)

192ρAΩ2R2
, (A.58)

where

Vc/vh ≥ 0 → CTMTC
, (A.59)

−2 ≤ Vc/vh ≤ 0 → CTMTD
, (A.60)

−2 ≥ Vc/vh → CTMTWM
. (A.61)

Recall that both MTH and MTC are required to integrate (2.239) along the entire blade to obtain a

relationship of CT as a function of the collective pitch angle θc, and the only difference is the selected

inflow ratio. Due to the non-dependance of the integral form in the inflow ratio (i.e. the inflow ratio is

uniform, λ = constant), the integral dCT can be solved resulting in (2.248) which is a explicit function

of the collective pitch angle θc and the inflow angle. While for the hover flight condition the inflow angle

is a function of CT (2.198), resulting in a continuous closed-form solution for the thrust coefficient, in

the axial flight condition, the proposed model for MTC has nonlinearities depending on the nature of

the climb flight region, and therefore making impossible to integrate into a set of continuous differential

equations. Since for the proposed methodology in this thesis it is desired that the control laws have to

be continuous and differentiable throughout all the range, this model will be only used as a test bench

model to test the validity of the selected model, and to test the robustness of the proposed control laws

under model uncertainties.
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A.3.2 Combined Blade Element Theory and Momentum Theory

(BEMT )

The blade element momentum theory (BEMT ) presented in this section is a hybrid method for hovering

rotors (Gessow and Gustafson, 1945; Gessow and Center, 1948) that combines the basic principles from

both the blade element and momentum theory approaches. The principles involve the invocation of

the equivalence between the circulation and momentum theories of lift. With certain assumptions, the

BEMT allows the inflow distribution along the blade to be estimated. See (Leishman, 2006) for more

references.

Consider first the application of the conservation laws to an annulus of the rotor disk, as shown in

Figure (A.3) which is the essence essence of Froude’s original differential theory for propellers in axial

motion. This annulus is at a distance y from the rotational axis, and has a width dy. The area of this

annulus is, therefore, dA = 2πydy. The incremental thrust, dT , on this annulus may be calculated on

the basis of simple momentum theory and with the 2-D assumption that successive rotor annuli have no

mutual effects on each other, although this has good validity except near the blade tips.

Using the same one-dimensional momentum theory developed in section 2.6.1.1,the incremental thrust

on the rotor annulus, is obtained as the product of the mass flow rate through the annulus and twice

the induced velocity at that section, thus becoming the mass flow rate over the annulus of the disk given

by

dṁ = ρdA (Vc + vi) = 2πρ (Vc + vi) ydy, (A.62)

such that the incremental thrust on the annulus is given by

dT = 2ρ (Vc + vi) vidA = 4πρ (Vc + vi) viydy. (A.63)

which is also known as the Froude-Finsterwalder equation. Since it is more convenient to work with the

nondimensional form Eq. (A.63) let rewrite

dCT =
dT

ρ(πR2)(ΩR)2
=

2ρ (Vc + vi) vidA

ρ(πR2)(ΩR)2

=
2ρ (Vc + vi) vi(2πydy)

ρπR2(ΩR)2
= 4

(Vc + vi)

ΩR

( vi
ΩR

)( y

R

)

d
( y

R

)

, (A.64)

which can be simplified to

dCT = 4λλirdr, (A.65)

Therefore, the incremental thrust coefficient on the annulus can be written as

dCT = 4λλirdr = 4λ(λ− λc)rdr, (A.66)

since it can be shown that λi = λ − λc. With the integral thrust coefficient obtained for the blade

element theory (A.66), the challenge is to devise an approach that can solve for the inflow directly,

without making any assumptions as to its magnitude and form. It is clear that if the inflow can be

determined, considerably information about the rotor performance can be obtained. One solution can be

obtained using a hybrid blade element and momentum approach using the principles of the equivalence

between the circulation theory of lift and the momentum theory of lift, which provides the so called radial

inflow equation (Gessow and Gustafson, 1945; Gessow and Center, 1948; Leishman, 2006). Recall that

from BET analysis it was proven that the incremental thrust produced on an annulus of the disk is given

by

dCT =
1

2
σClr

2dr =
σClα

2

(

θcr
2 − λr

)

, dr (A.67)
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where equating the incremental thrust coefficients from the momentum and blade element theories, that

is using Eqns. (A.66) and (A.67), respectively, it can be shown that

σClα

2

(

θcr
2 − λr

)

= 4λ(λ− λc)rdr, (A.68)

which gives

σClα

8
θcr −

σClα

8
λ = λ2 − λcλ, (A.69)

which can also be rewritten as

λ2 +

(

σClα

8
− λc

)

λ− σClα

8
θcr = 0, (A.70)

which is a quadratic equation in λ and can be solved as

λ(r, λc) =

√

(

σClα

16
− λc

2

)2

+
σClα

8
θcr −

(

σClα

16
− λc

2

)

. (A.71)

For the particular case in which the hover flight condition is considered, (λc = 0), Eq. (A.71) simplifies

to

λ(r) ≡ λi(r) =
σClα

16

(√

1 +
32

σClα

θcr − 1

)

. (A.72)

Equations (A.71) and (A.72) allow for a solution of the inflow as a function of radius for any given

blade pitch, blade twist distribution, planform (chord distribution), and airfoil section (through the effect

of lift-curve-slope Clα and zero-lift angle α0 via θc). Once the inflow is obtained, the rotor thrust can be

found by integrating across the rotor disk using Eq. (A.67). This model requires of numerical integration

at each instant in order to obtain the thrust coefficient, and again, it will be only used as a test bench

model to test the validity of the selected model, and to test the robustness of the proposed control laws

under model uncertainties. It is important to note that the validity of this model only applies the axial

ascent flight condition, although it has been proven (Johnson, 1994; Leishman, 2006), that it is also valid

for moderate small descent velocities, while for higher descent velocities, the only available model is the

one presented for the MTC . Therefore, while for the flight condition given by the region Vc/vh ≥ 0 it will

used the numerical integration method that uses Eq. (A.71) and (A.67), for the descent flight conditions

it will be used the descent flight condition model presented on the MTC model, in which the thrust

coefficient is given in the two defined descent given by regions

− 2 ≤ Vc/vh ≤ 0 → CTMTD
, (A.73)

−2 ≥ Vc/vh → CTMTWM
. (A.74)

with

CTMTD
=

TMTD

ρAΩ2R2
, (A.75)

CTMTWM
= −ρAσCLα

RΩ (3σCLα
RΩ− T2 − 32RθcΩ+ 24Vc)

192ρAΩ2R2
. (A.76)

This will introduce a discontinuity when changing from the ascent to the descent flight condition, or

viceversa, creating instantaneous changes in the thrust coefficient when reaching the discontinuity. As

it will be seen in the simulations this will create an inconsistency in the behaviour of the helicopter,

and it will be address both in the comparison of the proposed models, and in the simulations to test the

robustness of the proposed control laws. In the first one, the comparison of the proposed models, it will be

shown that as predicted (Johnson, 1994; Leishman, 2006), due to the slow descent velocities encountered

by the helicopter’s maneuvers, the use of the BEMT model for both the ascent and the descent flight
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conditions gives good results. In the second one, the testing for the robustness of the derived control

laws in the different proposed models, the discontinuity of the model will cause the helicopter to react

in a inconsistent manner when reaching the hover flight condition. This behaviour can be eliminated

by using the BEMT model in ascent flight for the descent flight conditions also. This will represent a

challenge when testing the robustness of the proposed control laws, since not only there will be unmodeled

dynamics, but discontinuous models that the selected control laws and the proposed extra control laws

will have to deal with. As it will be seen in the robustness analysis in section 7, the extra control signal

will perform great even with the non-continuous BEMT model for different flight conditions.

A.3.3 Combined Blade Element Theory and Momentum Theory with

Prandtl’s Tip-Loss Model (BEMTTL)

The last proposed mode, is a modification of the combined blade element and momentum theory (BEMT )

with the addition of the Prandtl’s Tip-Loss function. See (Leishman, 2006; López and Valenzuela, 2010)

for more references. Instead of assuming a value for the tip-loss factor as selected in section A.2, using

a method proposed by Prandtl (Betz, 1919), the tip-loss effects can be computed by taking into account

the induced effects associated with finite number of blades.

Without getting into details, see (Betz, 1919; Goldstein, 1929; Lock, ) for more detail, Prandtl’s final

result can be expressed in terms of a correction factor given by

F (r) =

(

2

π

)

cos−1 (exp(−f)) , (A.77)

where f is given in terms of the number of blades and the radial position of the blade element, r by

f =
Nb

2

(

1− r

rφi

)

, (A.78)

and where φi is the inflow angle, where recall that it is defined as

φi =
λr

r
, (A.79)

therefore resulting in

f(r, λ(r)) =
Nb

2

[

1− r

λ(r)

]

, (A.80)

thus rewriting Eq. (A.77) as

F (r, λ(r)) =

(

2

π

)

cos−1

[

exp

(

−Nb

2

(

1− r

λ(r)

))]

. (A.81)

The basic effect of the F (r, λ(r)) function is to increase the induced velocity over the tip region and

reduce the amount of lift generated at the tip. The application of the Prandtl’s tip-loss method can

be incorporated into the BEMT proposed model by in a similar methodology as the presented for the

BEMT , let consider the integral thrust coefficient for the blade element and the momentum theory

(A.67) and (A.66) respectively, and given by

dCT =
1

2
σClr

2dr =
σClα

2

(

θcr
2 − λr

)

dr, (A.82)

and let

dCT = 4λλirdr = 4F (r, λ(r))λ(λ − λc)rdr, (A.83)

where it can be seen that the main difference is that the incremental thrust coefficients for the momentum

theory includes Prandt’s Tip-Loss function F (r, λ(r)), therefore by equating both (A.83) and (A.82)
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results in

σClα

2

(

θcr
2 − λr

)

= 4F (r, λ(r))λ(λ − λc)rdr, (A.84)

which gives

λ2 +

(

σClα

8F (r, λ(r))
− λc

)

λ− σClα

8F (r, λ(r))
θcr = 0, (A.85)

which is a quadratic equation in λ(r) and can be solved as

λ(r) =

√

(

σClα

16F (r, λ(r))
− λc

2

)2

+
σClα

8F (r, λ(r))
θcr −

(

σClα

16F (r, λ(r))
− λc

2

)

, (A.86)

and where for the particular case in which the hover flight condition is considered, thus λc = 0, Eq.

(A.86) simplifies to

λ(r) ≡ λi(r) =
σClα

16F (r, λ(r))

(
√

1 +
32F (r, λ(r))

σClα

θcr − 1

)

, (A.87)

where it can be seen that since (A.87) is an implicit function, that is λ(r) = f(F (r, λ(r)), r), is required to

be solved by using an iterative method. The net result of the application of Prandtl’s Tip-Loss function

on the blade thrust distribution is a reduction of the thrust generated over the immediate tip region.

Once the corrected inflow is obtained, the rotor thrust can be found by integrating across the rotor disk

using Eq. (A.82). This model requires also of numerical integration at each instant in order to obtain the

thrust coefficient, and again, it will be only used as a test bench model to test the validity of the selected

model, and to test the robustness of the proposed control laws under model uncertainties.

In a similar manner as for the BEMT model, the validity of this model only applies the axial ascent

flight condition, although it has also been proven that it is also valid for moderate descent velocities

(Johnson, 1994; Leishman, 2006). Therefore, while for the flight condition given by the region Vc/vh ≥ 0

it will used the numerical integration method that uses Eq. (A.86) and (A.82), for the descent flight

conditions it will be used the descent flight condition model presented on the MTC model, in which the

thrust coefficient is given in the two defined descent regions given by

− 2 ≤ Vc/vh ≤ 0 → CTMTD
, (A.88)

−2 ≥ Vc/vh → CTMTWM
, (A.89)

that is

CTMTD
=

TMTD

ρAΩ2R2
, (A.90)

CTMTWM
= −ρAσCLα

RΩ (3σCLα
RΩ− T2 − 32RθcΩ+ 24Vc)

192ρAΩ2R2
. (A.91)

This will introduce a discontinuity when changing from the ascent to the descent flight condition, or

viceversa, creating instantaneous changes in the thrust coefficient when reaching the discontinuity. As

it will be seen in the simulations this will create an inconsistency in the behaviour of the helicopter,

and it will be address both in the comparison of the proposed models, and in the simulations to test

the robustness of the proposed control laws. In the first one, the comparison of the proposed models,

it will be shown that as predicted (Johnson, 1994; Leishman, 2006), due to the slow descent velocities

encountered by the helicopter’s maneuvers, the use of the BEMT model for both the ascent and the

descent flight conditions gives good results.

In the second one, the testing for the robustness of the derived control laws in the different proposed

models, the discontinuity of the model will cause the helicopter to react in a inconsistent manner when

reaching the hover flight condition. Again, similarly as for the BEMT model, this behaviour can be
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eliminated by using the BEMT model in ascent flight for the descent flight conditions also. This will

represent a challenge when testing the robustness of the proposed control laws, since not only there

will be unmodeled dynamics, but discontinuous models that the selected control laws and the proposed

extra control laws will have to deal with. As it will be seen in the robustness analysis in section 7, the

extra control signal will perform great even with the non-continuous BEMT model for different flight

conditions.
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Figure A.3: Annulus of rotor disk for a local momentum analysis of the hovering rotor (Leishman, 2006;
Cuerva et al., 2009).
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A.4 Proposed Thrust Coefficient Model

This concludes the section dedicated to define the proposed models thrust coefficients, and this section

serves to collect the most important equations that define the four proposed models. For the first defined

model, the MTH , the thrust coefficient is given in(2.251) by

CT =

[

σClα

12

(

− 3

2
√
2
+

√

9

8
+

24θc
σClα

)]2

, (A.92)

which it also has a closed-form solution for the thrust force due to the employed simplifications resulting

in

T = ρNbc(ΩR)
2R

σC2
lα

144

(

3

2
√
2
+

√

9

8
+

24θc
σClα

)2

. (A.93)

For the second model, the MTC , the thrust coefficient for the three flight axial conditions is as

CTMTC
= −ρAσCLα

RΩ (−3σCLα
RΩ+ T1 − 32RθcΩ+ 24Vc)

192ρAΩ2R2
, (A.94)

CTMTD
=

TMTD

ρAΩ2R2
, (A.95)

CTMTWM
= −ρAσCLα

RΩ (3σCLα
RΩ− T2 − 32RθcΩ+ 24Vc)

192ρAΩ2R2
, (A.96)

where

Vc/vh ≥ 0 → CTMTC
, (A.97)

−2 ≤ Vc/vh ≤ 0 → CTMTD
, (A.98)

−2 ≥ Vc/vh → CTMTWM
. (A.99)

For the third model, the BEMT , the thrust coefficient in axial ascent is given by integrating along the

entire blade of the integral dCT given by

dCT =
σClα

2

(

θcr
2 − λr

)

dr, (A.100)

with the inflow ratio given in (A.71) as

λ(r, λc) =

√

(

σClα

16
− λc

2

)2

+
σClα

8
θcr −

(

σClα

16
− λc

2

)

, (A.101)

and where for the particular case in which the hover flight condition is considered, thus λc = 0, Eq.

(A.101) simplifies to

λ(r) ≡ λi(r) =
σClα

16

(√

1 +
32

σClα

θcr − 1

)

, (A.102)

while for the axial descent is given by

CTMTD
=

TMTD

ρAΩ2R2
, (A.103)

CTMTWM
= −ρAσCLα

RΩ (3σCLα
RΩ− T2 − 32RθcΩ+ 24Vc)

192ρAΩ2R2
, (A.104)

where

− 2 ≤ Vc/vh ≤ 0 → CTMTD
, (A.105)

−2 ≥ Vc/vh → CTMTWM
. (A.106)
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And finally, for the fourth model, the BEMTTL, the thrust coefficient is also given by integrating along

the entire blade of the integral dCT given as

dCT =
σClα

2

(

θcr
2 − λr

)

dr, (A.107)

with the inflow ratio given in Eq. (A.86) as

λr =

√

(

σClα

16F (r, λ(r))
− λc

2

)2

+
σClα

8F (r, λ(r))
θcr −

(

σClα

16F (r, λ(r))
− λc

2

)

, (A.108)

and where for the particular case in which the hover flight condition is considered, thus λc = 0, Eq.

(A.108) simplifies to

λ(r) ≡ λi(r) =
σClα

16F (r, λ(r))

(
√

1 +
32F (r, λ(r))

σClα

θcr − 1

)

, (A.109)

while again, for the axial descent is given by

CTMTD
=

TMTD

ρAΩ2R2
, (A.110)

CTMTWM
= −ρAσCLα

RΩ (3σCLα
RΩ− T2 − 32RθcΩ+ 24Vc)

192ρAΩ2R2
, (A.111)

where

− 2 ≤ Vc/vh ≤ 0 → CTMTD
, (A.112)

−2 ≥ Vc/vh → CTMTWM
. (A.113)

As previously mentioned in section A.4, let recall that bothMTH andMTC produce close-form solutions

for the thrust coefficient CT (2.248) which are both explicit functions of the collective pitch angle θc and

the inflow angle. Recall also that while for the MTH model, the hover flight condition, the inflow angle is

a function of CT , resulting in a continuous closed-form solution for the thrust coefficient. The proposed

MTC model presents nonlinearities depending on the nature of the climb flight region, and therefore being

unfeasible to integrate into a set of continuous differential equations if the goal is to design continuous

and differentiable control laws.

On the other side, for both blade element theory models, BEMT and BEMTTL, it is required numerical

integration at each instant in order to obtain the thrust coefficient, therefore making impossible to obtain

a closed-form solution to which be able to design a proper control law to regulate the amount of thrust

generated, but they will serve as a great test bench problems where to test the validity of the selected

model, and to test the robustness of the proposed control laws under model uncertainties.

With this in mind, this makes MTH the only implementable thrust coefficient model CT , and will be

the model employed for the helicopter dynamics proposed in section 2.8, which, once integrated into the

proposed dynamics for axial flight, it will be tested against the rest of models, and it will be shown,

via simulations, that the MTH model, although much more simpler, it reproduces the dynamics of the

more detailed and complex models (MTC , BEMT and BEMTTL) without loss of generality for the

low vertical speeds at which the RC helicopter is to be operated, thus corroborating the validity of its

selection (Johnson, 1994; Leishman, 2006).

Nevertheless, the validity of the MTH model is subject to the series of hypothesis that have been

exposed throughout the previous derivations, and are exposed in the following sections to justify that the

selected model can be implemented in the RC helicopter model. As previously mentioned in section A.4,

these hypothesis are standard and well established hypothesis, which are necessary in order to be able to

obtain reduced empirical models that are able to model, to a certain degree, the highly complex and non
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linear behavior of rotating blades (Leishman, 2006).

The most important of the hypothesis used throughout the model definition are justified or, corrections

are introduced in the proposed model, to account for the various effects not accounted for in the original

model. These hypothesis (Prouty, 1986; Pallet and Ahmad, 1991) are divided in two big groups: hypoth-

esis on the flow characteristics (hypothesis 1 through 5), and the hypothesis on the physical geometry

and characteristics of the RC helicopter’s main rotor (hypothesis 6 through 12):

1. Uniform Induced Velocities over the Entire Disk.

2. Non Rotating Wake and Tip Vortices Not Affecting the Angle of Attack of the Blades.

3. No Effects Due to Radial Flow.

4. No Loss Due to Airflow Over Helicopter’s Body.

5. The lifting portion of the blade extends from the hub to the tip of the blade.

6. Blades have a constant chord, no taper, and ideal twist.

7. The blades have ideal twist.

8. The blades are torsionally rigid and thus no structural twisting occurs.

9. Airfoil lift and drag characteristics are the same as the National Advisory Committee for Aeronautics

(NACA) 0012.

10. Airfoil characteristics are not a function of local stall or compressibility effects.

11. The rotor is far above the ground, no ground effect.

These hypothesis are described in the following sections.

A.4.1 Hypothesis 1 - Uniform Induced Velocities over the Entire Disk

In the real RC helicopter, as expected, the induced velocities will not be uniform along the blade of the

rotor, and as a result, the theoretic thrust coefficient will be somehow overestimated when comparing

with the actual thrust coefficient, which will be observed when using the BEMT and BEMTTL models

to test the validity of the selected model, although that overestimation should be quite small for the

reduced vertical axial velocities encountered by the RC helicopter.

The assumption that the air moves smoothly and uniformly through the rotor blades neglects the fact

that the helicopter body sits below the rotor disk area and takes up area where it would desirable to push

air through. This will result in measurable loss in thrust developed that will be referred as Dconst. Other

problems like the wind blowing across the wake, or the fact that the blade will have no ideal twist will

also be affected by the actual nonuniform airflow. As seen in the BEMT and BEMTTL models, sections

A.3.2 and A.3.3, respectively, the use of nonuniform inflow models is quite restrictive if it is desired to

have a simple enough thrust coefficient model that can be dealt with. Otherwise, if more realistic inflow

distributions are employed, it is necessary the use of numerical integration tools to obtain the associated

thrust coefficient. Therefore, and assuming that the constant drag due to the body of the helicopter is

the major cause for losses assuming there is negligible wind present, the only possible modeling approach

is to include all the losses due to the nonuniform inflow in the Dconst term. This constant drag loss will

be included in the axial flight dynamics of the helicopter, rather than in the main rotor dynamics. The

Dconst term will be used as a hodgepodge where to include most of the rotor losses, and it will be left to

the parameter estimation for proper estimation.
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A.4.2 Hypothesis 2 - Non Rotating Wake and Tip Vortices Not Affecting the

Angle of Attack of the Blades

The understanding and prediction of the effects of the rotor wake is an important key to the successful

prediction of the loads of a blade, and many other aerodynamics helicopter problems. A helicopter rotor

wake is dominated by strong vortices that are trailed down from the tips of each blade. The nature of the

rotor wake, in terms of geometry, strength, and the aerodynamic effects produced on the blades, depends

principally on the operating state and flight condition of the helicopter. In the hover flight condition, the

tip vortices follow nominally helical trajectories bellow the rotor as seen in Figure A.4. Although this is

the simplest of the possible operating states comparing with the forward flight operating flight condition

in which the vortex trajectories become interlocked, but nominally epicycloidal, but even so, in the hover

condition the wake structure becomes relatively complicated to model (Leishman, 2006). Some complex

models have been developed to enable predictions of the inflow through the disk considering generalized

prescribed vortex wake models, but without the expense and uncertainties associated with explicit calcu-

lating the force-free positions of the wake. These models prescribe the locations of the rotor tip vortices

(and sometimes also the inner vortex sheet) as functions of the wake age ψw on the basis of experimental

observations (Leishman, 2006). Some of the works for hovering flight, generalized prescribed vortex wake

models have been developed in (Landgrebe, 1969; Gilmore and Gartshore, ; Kocurek et al., 1977).

In a rotating wake model in the hover operating condition, as seen in Figure A.4, there exists a rotational

speed of the rotors, Ω, and a induced wake rotation and ω. This wake rotation will result in some of

the input power being lost to wake rotation instead of all of it going to producing lift. This effect can

be thought of as a drag on the airfoil which is proportional to the angular velocity of the blade, that is,

the faster the rotational speed, the more loss in terms of power, and as it will be shown in the modeling

of the combustion engine and the rotational velocity equation, also proportional to the collective pitch

angle, that is the higher the collective pitch angle the higher the total projection of the blade surface area

sees the flow, and therefore higher the profile drag.

The assumption that the wake is non rotating neglects this loss of power, and although the proposed

dynamic model is not concern with power loss, but on the generation of lift itself, this effect needs to be

taken into account when modeling the combustion engine output, the rotation speed equation, and how

throttle effects the resulting rotational speed, which will be dealt in more detail in section 2.8.

Similarly, as for the assumption for the non rotating wake, and directly associated to the rotation of the

wake, is the fact that the proposed models assume that the tip vortices generated by the rotating wake

do not affect in the effective angle of attack of the blades. Tip vortex formation is a complex problem

involving high velocities with shear, flow separation, pressure equalization, and turbulence production.

The tip region is enclosed in a region of high vorticity, which rolls up quickly into a dominant vortex

(Leishman, 2006), as it can be seen in subfigure A.5(a), which describes the tip vortex locations with

wake interference and subfigure A.5(b)that describes the tip vortex locations without wake interference,

and Figure A.6 that shows the tip vortex interference, the tip vortices effect the angle of attack as

each following blade goes through an area in which the air has been disturbed by the previous blade,

and therefore the velocity component that sees the blade at the tip has been altered by the tip vortex.

Although many tip vortex models have been hypothesized, some of them solely taking into account the

velocity field models for helicopters (Leishman, 2006), and some other based on tip vortices for airplane

fixed-wings (Dosanjh et al., 1962), it is difficult, if not impossible to account for any of these predicted

behaviors in the differential proposed equations for axial flight, therefore the change of angle of attack

in the blades due to tip vortices is left to be accounted in the parameter estimation for the proposed

model.
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A.4.3 Hypothesis 3 - No Effects Due to Radial Flow

Radial flow is the result of molecules in contact with the rotor blade flowing along the rotor blade

due to centrifugal pumping, wake contraction, spanwise pressure gradient, and undeveloped tip vortices

(Prouty, 1986). Studies have shown that this flow can be either inboard or outboard depending on these

four effects. The conclusion (Prouty, 1986) which is based on what is known of the problem at this time,

is that it is acceptable to neglect radial flow. Therefore, it will also be neglected.

A.4.4 Hypothesis 4 - No Loss Due to Airflow Over Helicopter’s Body

The assumption that the airflow over the body of the helicopter while descending or climbing has no

effect on the thrust produced is again conservative. There will be a drag produced called parasitic drag

that will result in losses to the thrust when moving through the air. The loss in thrust that will be

appreciated as the helicopter moves through the air will be of the form given by:

Tloss =
1

2
ρV 2

c f, (A.114)

where f is the parasitic drag area and Vc is the climb velocity of the helicopter. This term will be taken

into account in the position equation and as with some of the above hypothesis, the determination of

the parasite drag area, f , will be left to the parameter estimation described in more detain in section

2.8.4.1.

A.4.5 Hypothesis 5 - The lifting portion of the blade extends from the hub

to the tip of the blade

As seen in section 2.6.1.2, the formation of a trailed vortex at the tip of each blade produces a high

local inflow over the tip region and effectively reduces the lifting capability there, this results in that the

lifting-line theory is not strictly valid near wing tips. When the chord at the tip is finite, blade element

theory gives a nonzero lift all the way out to the end of the blade. In reality the amount of lift produced

will drop off near the hub and at the tip, as shown in Figure (2.19).

As suggested (Johnson, 1994; Leishman, 2006), one way to account for loss of lift at the at the tip is to

integrate the incremental lift from some r0 to BR where r0 is radius of the root cut-out, and BR is the

effective outer radius, Re < R. These values are chosen such that the area under the theoretical curve

out to BR is the same as the area under the actual lift curve out to R. Recall the empirical equation by

Prandtl and Betz (Betz, 1919) gives good correlation to numerical method determinations (Glauert, 1935;

Johnson, 1994; Prouty, 1986; Leishman, 2006) and results in an empirical correction factor derived in

section 2.6.1.2 and given by (2.199) as

B = 1−
√
CT

Nb
. (A.115)

Therefore, by replacing the radius of the blade R by BR, then then root and tip cut-out losses are taken

into account. As seen in the literature (Leishman, 2006) typical values for B range from 0.95 to 0.98.

In order to choose an appropriate value for B let use the available collective pitch angles, which will be

defined in section 2.8.5.2 and are given as 1◦ ≤ θc ≤ 20◦, and substitute them into the thrust coefficient

selected model (7.1) and study the allowed values for B. Figure A.7 shows the thrust coefficient value for

the ranges of available collective pitch angles, and the solution to the Prandtl’s B factor. From figure A.8

it can be seen that for the range of available collective pitch angles B is limited to 0.94349 ≤ B ≤ 0.99329.

Therefore a safe assumption is B = 0.9684. A more exact Prandtl’s factor can be obtained by conducting
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experiments on the helicopter platform and recording the collective pitch angles θc associated to several

thrust coefficients CT which is described in more detain in section 2.8.4.1

A.4.6 Hypothesis 6 - Constant Chord No Taper Blades

Generally the blades that are used in RC helicopter, are straight and have no taper, which is the case

for the RC model here employed, therefore the will not be a concern.

A.4.7 Hypothesis 7 - Blades Have Ideal Twist

Recalling the BEMT model, in which the thrust coefficient was given by integrating along the entire

blade of the integral dCT given by

dCT =
σClα

2

(

θcr
2 − λr

)

dr, (A.116)

with the inflow ratio given in Eq. (A.86) as

λ(r, λc) =

√

(

σClα

16
− λc

2

)2

+
σClα

8
θcr −

(

σClα

16
− λc

2

)

, (A.117)

and where for the particular case in which the hover flight condition is considered, thus λc = 0, Eq.

(A.117) simplifies to

λ(r) ≡ λi(r) =
σClα

16

(√

1 +
32

σClα

θcr − 1

)

, (A.118)

it can be shown that (Gessow and Center, 1948) if

θcr = constant = θtip, (A.119)

there is a special solution to the inflow equation in (A.118) that gives uniform inflow, that is,

θc(r) =
θtip
r
. (A.120)

This twist distribution, called ideal twist, is depicted in Figure A.9. With ideal twist the performance

of the rotor can now be recalculated, and using Eq. (A.119) results in

CT =
1

2
σClα

∫ 1

0

(θtipr
2 − λr)dr =

1

2
σClα

(

θtip
2

+
λ

2

)

. (A.121)

Recalling that the inflow ratio can be written as

λ =
Vc + vi
ΩR

=
Vc + vi
Ωy

(

Ωy

ΩR

)

=
UP

UT

( y

R

)

= φir = φtip, (A.122)

thus rewritten (A.121) by using (2.230) yields

CT =
1

4
σClα (θtip − φtip) =

σClα

4
αtip, (A.123)

and where using (A.117) and (A.120) gives

λ(r) =
σClα

16

(√

1 +
32

σClα

θtipr − 1

)

= constant =

√

CT

2
, (A.124)

which is equivalent to the assumption considered for theMTH proposed model. Therefore, if it is assumed

that the blades have ideal twist, then the nonuniform flow of the BEMT model, collapses into the MTH

model in hover. Although ideal twist blades have much more implications that the simplification of
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the inflow in the hover condition, like minimum induced power rotors (Johnson, 1994; Prouty, 1986;

Leishman, 2006), ideally twisted blades are extremely difficulty of construction and thus not feasible in

practice for large rotors, although it is raising great interest among the Micro UAV’s.

A.4.8 Hypothesis 8 - Blades are Torsionally Rigid

The assumption that the rotor blades are rigid is not entirely true for full scale helicopters and thus

dynamic twisting of the rotor blades should be taken into account. The main concern here is that as

the blades begin to twist, the angle of attack will change and the resulting lift will vary. This will cause

discrepancies in correlating measured thrust with measured collective pitch. But, since both power and

thrust are effected by the same degree, small angular differences in the twist will have little or no effect

on power to thrust relationships. For the case of small RC helicopters, the blades are much stronger in

relation to the amount of torsion that they will see than their counterparts on large scale helicopters.

Therefore, it would be expected that only a minimal amount of twisting of the blade will be seen and

that this assumption should hold for this type of RC models.

A.4.9 Hypothesis 9 - The Helicopter’s Blade are NACA 0012 Airfoils

It will be assumed that the airfoil that the main rotor of the helicopter model presented used a NACA

0012, which according to (Prouty, 1986), that is the case for most rotor blades, and for which there exists

a great deal of results. As a result, it is assumed that the airfoil of the rotor blades of the RC helicopter

exhibit similar characteristics to that of the NACA 0012 and assume that any differences can be made

up in the parameter estimation experiments. Figure A.10 shows the main aerodynamic characteristics

for the NACA 0012 airfoil

A.4.10 Hypothesis 10 - Airfoil Characteristics are not a Function of local

Stall or Compressibility Effects

Since the helicopter will be operated only in hover flight, the assumption regarding the drag divergence

which limit the maximum forward speed and maneuvering capability of the helicopter will be valid since

the RC helicopter will not be flying hear the regions where stall and drag divergence can have a significant

affect on hover performance.

A.4.11 Hypothesis 11 - No Ground Effects

Helicopter performance is affected by the presence of the ground or any other boundary that may alter

or constrain the flow into the rotor or constrain the development of the rotor wake. When a rotor is in

ground effect, the rotor slipstream tends to rapidly expand as it approaches the surface. This alters the

slipstream velocity, the induced velocity in the plane of the rotor, and, therefore, the rotor thrust and

power, resulting in that the rotor thrust is found to be increased for a given power (Leishman, 2006).

Lots of works on ground effect have been conducted through experimental analysis and the data suggests

that significant effects on hovering performance for heights less than one rotor diameter are encountered

(Leishman, 2006) as seen in Figure A.11. Some methods have been proposed to simulate ground effect

(Cheeseman and Bennett, 1957), in which the rotor thrust can be expressed by
[

T

T∞

]

P=const
=

1

1− (R/4z)2

1+(µ/λi)2

, (A.125)
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where z is the height off the ground and λi is the induced velocity at the rotor. This equation has a

validity for z/R > 0.5, where R is the radius of the blade. Incorporating the effect of blade loading given

by

CT

σ
=

T

ρA(ΩR2)

(

A

Ab

)

=
T

ρAb(ΩR)2
, (A.126)

where Ab is the area of the blades, and µ is the rotor advance ratio, given by µ = V∞ cosα/ΩR and

therefore rewriting Eq. (A.127) such
[

T

T∞

]

P=const
=

1

1− σClαλi

4CT

(R/4z)2

1+(µ/λi)2

, (A.127)

For hovering effects, and neglecting any blade-loading effects (A.127) can be reduced to
[

T

T∞

]

P=const
=

1

1− ( R
4z )

2
. (A.128)

This relationship has to be taken into account when flying near the ground, but since the helicopter

will be mounted in a stand that is already elevated from the ground a rotor diameter, as it will be seen

in section 2.8, the ground effects can be neglected.
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Figure A.4: Wake rotation (Prouty, 1986).

(a) Wake Contraction (b) Without Wake Contraction

Figure A.5: Tip vortex locations with: (a) wake contraction and (b) without wake contraction
(Prouty, 1986).
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Figure A.6: Tip vortex interference (Prouty, 1986).
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A.5 Performance Analysis Comparisons for the Proposed Mod-

els

The validity of the proposed thrust coefficient model, MTH defined in section 2.8 and applied in (2.339–

2.343), is tested against the different thrust coefficient proposed models, the MTC defined in section

A.3.1, the BEMT defined in section A.3.2, and the BEMTTL defined in A.3.3. Recalling the selected

helicopter model defined in (2.339–2.343) and given by

ẋ = a8x+ a10x
2 sin z1 + a9x

2 + a11 + u1, (A.129)

ẏ1 = y2, (A.130)

ẏ2 = x2(a1 + a2z1 −
√
a3 + a4z1) + a5y2 + a6y

2
2 + a7, (A.131)

ż1 = z2, (A.132)

ż2 = a13z1 + a14x
2 sin z1 + a15z2 + a12 + u2, (A.133)

which recall this model is unique for the selected thrust coefficient MTH and given by

CT =

[

σClα

12

(

− 3√
2
+

√

9

8
+

24θc
σClα

)]2

, (A.134)

then Eq. (A.131) is rewritten as

ẏ2 = K1CTx
2 + a5y2 + a6y

2
2 + a7, (A.135)

where recall that from section 2.8.4.1 that K1 is given by (A.136) as

K1 =
ρNbcR

3

σm
. (A.136)

In order to test the proposed methods it is necessary to define the values of the parameters in the

proposed nonlinear RC axial flight dynamics (2.339–2.343). In section 2.8.4.1, methods are proposed

to determine the characteristics of all the constants, K1 through K12, that define the complete set of

five differential equations that has been selected as the dynamics in axial flight for the RC helicopter,

equations (2.305), (2.294), and (2.332). As shown in the parameter determination section 2.8.4.1, some

of these parameters could be obtained via analysis of the dynamics of the problem, i.e. K1 in (A.136),

but some others required of experiment setups to determine their nominal value.

The ultimate goal of the work proposed in this thesis is to be able to generate a series of control laws

that will be able to test in the RC helicopter model that the investigation Non-Linear Group (NLG)

of the Departamento de Ingenieŕıa de Sistemas y Automática at the University of Seville is preparing

as a test bench. The author, along with several other researchers from the group, have been working

in the past years to get the platform ready by conducting several final degree projects with several stu-

dents that have been in charge programming a PC-104 with a RTL OS as the core for all the controlled

operations (Pujol-Pérez, 2007), design and construction of the avionics box to safely allocate the PC-

104 and the rest of electronic sensors and provide the necessary power to all the electronic equipment

(Santos-Garćıa, 2007), is allocated and all the control, the design, construction and integration of the

different required sensors, i.e. altitude sensor (Jiménez-González, 2007), the collective pitch and the rota-

tional speed of the rotor sensors (Navarro-Collado, 2010), the design and integration of a communications

interface between the avionic box and the ground PC, and a RTL 6-DOF helicopter simulation software

where to test the control laws prior to test them in the real RC helicopter (Lara-González, 2008).

At this stage, the experiments to identify the different parameters, following the tips defined in section

2.8, has not been conducted, therefore, the author has chosen to select the values of the constants
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appearing in the reference from which this model is inspired (Pallet and Ahmad, 1991). Pallet and

Ahmad (Pallet and Ahmad, 1991) give these parameters for their helicopter platform after conducting the

required identification process for all the parameters, and did that with a similar helicopter to the one the

experiments will be conducted in the future. The identification process is conducted in a helicopter flying

stand made by Whitman Industries, see figure 2.23, similar to the platform that was selected by the NLG

which was acquired in Active Distribution Limited (Active Distribution LTD, 2004), and can be seen in

figure 2.23 and in figure A.12 after being modified to elevate teh platform from the ground and therefore

reducing, if not eliminating completely, the ground effect. Both flying stands allow the helicopter not

only to move in axial flight, but also in pitch, yaw, and roll, but similarly as in (Pallet and Ahmad, 1991),

the flying stand has been modified to limit the helicopter motion to the vertical plane.

The helicopter chassis in the report is an X-Cell model 50 RC aircraft manufactured by Miniature Air-

craft, Florida, USA (Miniature Aircraft USA, 1999), which is powered by a 0.5 in3 displacement two-cycle

combustion engine made by Webra Model-Building Inc (Germany), while the selected RC helicopter is a

Raptor 30 with an OS 0.5 in3 displacement two-cycle combustion engine (OS Engines, 2010). Therefore,

the nominal values of the constants of the model here employed (Pallet and Ahmad, 1991) are defined in

Table A.1.

Some of the physical parameters of the associated helicopter are not identified in

(Pallet and Ahmad, 1991), i.e. the mass of the helicopter, the radius, and the chord, but they

can be calculated from the data given in the report and the formulation of the selected MTH model.

Recall that K1 is given by an empirical equation defined as

K1 =
ρNbcR

3

σm
, (A.137)

where

σ =
cNb

πR
, (A.138)

recalling that from experimentation in (Pallet and Ahmad, 1991), K1 is obtained as K1 = 0.25. Recalling

that the X-Cell 50 kit uses a 620 mm blades, that after connected to the hub of the rotor results in a

rotor span of 1405 mm, that is R = 702.5 m, and that the blades used ar the SAB 620 that have a

chord of 58 mm, then the mass of the helicopter can be approximated by using (A.139), and recalling

that the effective radius of the blade is corrected with Prandtl’s Tip-Loss coefficient of B = B = 0.9569

(Pallet and Ahmad, 1991) then the mass, m can be obtained as

m =
ρNbcR

3

σK1
=
πρ(BR)4

K1
, (A.139)

resulting in that the mass of the helicopter in the experiments (Pallet and Ahmad, 1991) is ap-

proximately m = 3.1487 kg, which matches really close the RC helicopters of the same class

(Miniature Aircraft USA, 1999). With this in mind, it can also be completed the CT models which

are given by

CT =

[

σClα

12

(

− 3√
2
+

√

9

8
+

24θc
σClα

)]2

, (A.140)

which recall that can also be written as

CT =

(

−KC1 +
√

K2
C1 +KC2θc

)2

, (A.141)

with

KC1 =
σClα

8
√
2
, (A.142)
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KC2 =
2σClα

12
, (A.143)

where for

σ =
cNb

πBR
, (A.144)

with c = 0.060 m, Nb = 2, B = 0.9569 and R = 702.5 m, results that the calculated values for KC1 and

KC2 are

KC1 =
σClα

8
√
2

= 0.032242, (A.145)

KC2 =
2σClα

12
= 0.0607971, (A.146)

where recalling that from (Pallet and Ahmad, 1991) KC1 = 0.032592 and KC2 = 0.061456 which repre-

sents only 1% error with respect to the employed coefficients. Therefore, and recalling the rest of the

definitions of the equivalent parameters in (A.129-A.133) and defined in Table A.1 results in the constants

defined in defined in Table 2.1, which will be the constant that will be used throughout the remainder of

the thesis.

In order to conduct a comparable performance analysis between the selected MTH model, against the

more precise models, the MTC , the BEMT and the BEMTTL, it is necessary to select a control signal

that can be used to test the behavior of all four systems. The analysis of the equilibrium equations

conducted in section 2.8.5.1 resulted in two sets of expressions that obtained the equilibrium space of

configuration for the helicopter model depending if the collective pitch angle, z∗1 , or the angular velocity

of the blades, x∗, were set at a desired condition, being the first set defined in (2.353–2.355), and the

second set defined in (2.356–2.358). Selecting the second set, which implies selecting a nominal angular

velocity of the blades, and using the collective pitch angle as the active control signal, which is what it is

commonly use in helicopter axial flight control, both the small scale and the full scale counterpart results

in

z̄1(x
∗) =

a4x
∗ +

√

Cax∗
2 + Cb

2a22x
∗

+ Cc +
Cd

x∗2
, (A.147)

ū1(x
∗) = −a8x∗ − x∗

2

(a10 sin z̄1 + a9)− a11 (A.148)

ū2(x
∗) = −a13z̄1 − a14x

∗
2

sin z̄1 − a12, (A.149)

being the constants defined by

Ca = a24 − 4a2a1a4 + 4a22a3,

Cb = −4a2a7a4,

Cc = −a1
a2
,

Cd = −a7
a2
,

where Equation (A.148) and (A.149), define the control signals required to achieve the selected equilibrium

points, and where (A.147) defines the space of configuration of the collective pitch angle, z̄1(x
∗), associated

to a selected desired rotational speed of the blades, x∗.

K1 = 0.25 K2 = 0.1 K3 = 0.1 K4 = 7.86 K5 = 0.7
K6 = 0.0028 K7 = 0.005 K8 = −0.1088 K9 = −13.92 K10 = 800
K11 = 65 K12 = 0.1 KC1

= 0.03259 KC2
= 0.061456

Table A.1: Values for the helicopter estimated physical coefficients K∗.
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A.5.1 Simulation Results for the Performance Analysis Comparisons for the

Proposed Models

Simulations are conducted using the equilibrium control laws, (A.148) and (A.149) to test the validity

of the different CT models. The simulations are conducted using a fourth order Runge-Kutta fixed step

integration method with an integration step of 0.01 seconds. The study is performed for the closed-loop

error dynamics model (4.116–4.120) by conducting a sensitivity study for variable initial conditions in

helicopter collective pitch angle, z1(0) and angular rotational speed of the blades, x(0), while fixing the

final rotational speed of the rotor at the desired operational value, x∗. Since there is no control in the

vertical position of the helicopter with this law, the only possible way of conducting ascent and descent

flight is by selecting increases in the angular rotation speed of the blades, that is x(0) > x∗, and descent

flight conditions by decreasing the angular rotation speed of the blades, that is x(0) < x∗, which through

(A.147) translates to a different equilibrium collective pitch angle. The simulations are started at an

equilibrium condition, that is governed by no initial vertical velocity, x2(0) = 0, nor collective pitch

velocity of the blades, z2(0) = and the pair of initial angular rotation of the blades, and the collective

pitch angle, x(0) and z1(0) respectively, given by (A.147).

In order to evaluate the performance of the new derived control law under unmodeled dynamics, a

sensibility analysis is conducted by performing the same four distinctive maneuvers that include all

possible helicopter maneuvers:

1. Ascent flight with increasing engine RPM.

2. Ascent flight with decreasing engine RPM.

3. Descent flight with increasing engine RPM.

4. Descent flight with decreasing engine RPM.

where once again, despite the extensive sensitivity analysis conducted, only four significate cases are

presented, which correspond to a maneuver that includes all four distinctive maneuvers in one simulation,

and that are defined by the bellow conditions:

1. y1(0) = 1.85 m, y∗1 = 0.5 m, x(0) = 120 rad/sec, and x∗ = 140 rad/sec.

2. y1(0) = 0.5 m, y∗1 = 1 m, x(0) = 140 rad/sec, and x∗ = 120 rad/sec.

3. y1(0) = 1 m, y∗1 = 1.5 m, x(0) = 120 rad/sec, and x∗ = 145 rad/sec.

4. y1(0) = 1.5 m, y∗1 = 0.75 m, x(0) = 145 rad/sec, and x∗ = 120 rad/sec.

As a close note of this section, it is important to remember that although the selected model might not

be completely accurate with the performance of a real RC helicopter in all the axial flight conditions, and

although the presented MTH , BEMT and BEMTTL models reproduce with more detail the nonlinear

dynamics of a helicopter in axial flight, the complexity added with these models makes quite difficult to

approach the regulation of the RC helicopter’s altitude. Therefore, theMTH , and the rest of the selected

dynamics, that is the collective pitch dynamics, and the rotational speed of the main rotor, presents a

feasible solution that can tackle the nonlinear problem or controlling the vertical position of a helicopter by

actuating in the collective pitch and the angular rotational speed of the blades. This selected dynamics of

the helicopter becomes a highly nonlinear control problem that will require of advanced nonlinear control

techniques, which are the main contribution of this thesis, and the perfection of a more detailed helicopter

model that will model closely some of the nonlinear effects that are not contemplated, such the rotor

model, the engine model or the collective pitch dynamics, will be left for later work since they are out of

the scope of this thesis. This concludes the performance analysis comparisons for the proposed models,

and following chapters will deal with the proposed control strategy to deal regulate this problem.
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Figure A.12: Degrees of Freedom for the Grupo de Control Nolineal autonomous platform.
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Figure A.13: States History Comparing the Continuous MTH , MTC , BEMT and BEMTTL Models for
Constant Control
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Figure A.14: States History Comparing the Continuous MTH , MTC , BEMT and BEMTTL Models for
Constant Control
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Figure A.15: Control Signals History Comparing the Continuous MTH , MTC , BEMT and BEMTTL

Models for Constant Control
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Figure A.16: Significate Aerodynamic Parameters History Comparing the Continuous MTH , MTC,
BEMT and BEMTTL Models for Constant Control
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Figure A.17: States History Comparing the Continuous MTH , MTC , BEMT and BEMTTL Models for
Constant Control
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Figure A.18: States History Comparing the Continuous MTH , MTC , BEMT and BEMTTL Models for
Constant Control
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Figure A.19: Control Signals History Comparing the Continuous MTH , MTC , BEMT and BEMTTL
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BEMT and BEMTTL Models for Constant Control
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Appendix B

Control Strategies for the Simplified

Example

B.1 Introduction

For completeness purposes, the proposed control strategies for both the Top-Down and Bottom-Up and

the Composite Feedback TD, applied to the simplified model are presented in this appendix. The use of

the simplified example will aid understanding these control strategies, and the reader can focus only on

these example and only proceed to read in detail the helicopter’s control strategy if wants to get into the

details.

B.2 Top-Down Control Design for the Simplified Model

This section extends the TD control design for the simplified model by describing in detail both stages

of the TD control design strategy for the simplified model, recalling that the simplified three-time-scale

singularly perturbed model is given by

ẋ = −ρ1
(

x+ x2z + y
)

+ u1, (B.1)

ε1ẏ = −η1 (y + xz + 1) , (B.2)

ε1ε2ż = −η2
(

z + x2 + y
)

+ η3u2. (B.3)

Similarly as in the helicopter control design, the TD control strategy is divided in two stages, being

each stage dedicated to design each of the two control signals. The first stage of the TD control strategy,

applies sequentially the Top and Down time constant conditions, to select the control law that stabilizes

the ΣFU -subsystem using singular perturbation time-scale analysis to obtain the appropriate control law

(u2).

The second stage of the TD control strategy focuses on the Top sequence by using the first time-scale

decomposition, along with the obtained results in the first time-scale decomposition, and proceeds to

stabilize the ΣS-subsystem with the proper u1. The following sections describe in detail both stages of

the TD control formulation applied to the simplified model.
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B.2.1 Control Design for u2: 1st Stage of the Top-Down Control Design for

the Simplified Model

The TD control strategy applies the Top stretched time constant, τ1, to the ΣSFU full system, Eqns.

(B.1–B.3), resulting in the reduced order (slow) ΣS-subsystem, given by

ẋ = ρ1
[

x+ x2h(x, u2) + g(x, u2)
]

+ u1, (B.4)

while the boundary layer (fast) ΣFU -subsystem for the TD problem is defined by

dy

dτ1
= −η1 (y + xz + 1) , (B.5)

ε2
dz

dτ1
= −η2

(

z + x2 + y
)

+ η3u2, (B.6)

where x is treated like a fix parameter, and τ1 = t/ε1, and where functions g(x, u2) and h(x, u2)

represent the quasi-steady-state equilibria of the boundary layer ΣFU -subsystem, obtained by solving

simultaneously when setting ε1 = 0 in Eqns. (B.5–B.6), yielding

0 = ĥ(x, y, z, u2) → y = g(x, u2) =
1

1− x

(

x2 − η3
η2
xu2

)

(B.7)

0 = ĝ(x, y, z) → z = h(x, u2) = −x2
(

1 +
1

1− x

)

+
η3
η2
u2

(

1 +
x

1− x

)

, (B.8)

where both g(x, u2) and h(x, u2) depend on the control law u2, therefore being necessary to complete

the Down sequence in order to completely determine both, the quasi-steady-state equilibria, and the

control law u2. The control law u2 is selected by recognizing that the ΣFU -subsystem can be decomposed

again into a two-time-scale singular perturbation problem by applying the Down stretched time constant,

τ2 = τ1/ε2 = t/(ε1ε2), resulting in the new reduced (slow) ΣF -subsystem given by

dy

dτ1
= −η1 (y + xh(x, y, u2) + 1) , (B.9)

while the new boundary layer ΣU -subsystem is given by

dz

dτ2
= ĥ(x, y, z, u2) = −η2

(

z + x2 + y
)

+ η3u2, (B.10)

with variables x and y being treated like fixed parameters. The quasi-steady-equilibrium h(x, y, u2) of

the new boundary layer ΣU -subsystem, Eq. (B.10), is obtained by setting ε2 = 0, resulting in

0 = ĥ(x, y, z, u2) → z = h(x, y, u2), (B.11)

being

h(x, y, u2) = z = −x2 − y +
η3
η2
u2. (B.12)

The control signal is embedded in the quasi-steady-state equilibrium z = h(x, y, u2), Eq. (B.12), and

it is substituted back into the reduced order ΣF -subsystem, Eq. (B.9) resulting in

dy

dτ1
= −η1

(

y + x

(

−x2 − y +
η3
η2
u2

)

+ 1

)

= −η1
(

y − x3 − x+ 1
)

− η1η3
η2

xu2. (B.13)

In order to stabilize the ΣF -subsystem, let select the control signal such that the target dynamics

behaves like

dy

dτ1
= −b̃y (y − y∗) = −ε1by (y − y∗) , (B.14)
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where b̃y is the time constant that defines the desired dynamics of the stretched time-scale τ1 = t/ε1, and

selected as b̃y = ε1by, where by is the time constant that defines the desired dynamics for the y variable,

and y∗ is the desired value of y, thus the control signal u2 is selected such

u2(x, y, y
∗) =

η2
η1η3x

(

−η1
(

y − x3 − yx+ 1
)

+ b̃y (y − y∗)
)

. (B.15)

As seen previously, it is assumed that the boundary layer is stable after selecting the control signal

that stabilizes the ΣF -subsystem, but does not provide a control strategy to stabilize the ΣU -subsystem,

which it is therefore, assumed to be inherently stable after substituting the derived control signal u2.

This can be proven by substituting u2 in the ΣU -subsystem, Eq. (B.10), which results in

dz

dτ2
= −η2z −

η2
x

(

y + 1− b̃y
η1

(y − y∗)

)

, (B.16)

whose new quasi-steady-state equilibrium, h(x, y), is given by substituting Eq. (B.15) into (B.12) resulting

in

z = h(x, y) = − 1

x

(

y + 1− b̃y
η1

(y − y∗)

)

, (B.17)

The stability of the ΣU -subsystem can be analyzed by recognizing that the closed-loop ΣU -subsystem,

Eq. (B.16), posses inherent stability properties that can be identified by rewriting Eq. (B.16) using the

definition of the quasi-steady-state equilibrium, Eq. (B.12) thus becoming

dz

dτ2
= −η2z −

η2
x

(

y + 1− b̃y
η1

(y − y∗)

)

= −η2
[

z +
1

x

(

y + 1− b̃y
η1

(y − y∗)

)]

= −η2 (z − h(x, y)) = −η2ẑ, (B.18)

where ẑ can be seen as the augmented state variable of the error between the ultra-fast state z and

its quasi-steady-state equilibrium, h(x, y), which is stable, and with eigenvalue λ = −η2, with η2 > 0,

therefore satisfying that the boundary layer ΣU -subsystem is stable after selecting the control signal that

stabilizes the ΣF -subsystem.

This control strategy implies that the response of the ΣU -subsystem can not be modified to include

the desired stable behavior of the boundary layer, i.e. λ = λ∗ where λ∗ is the desired eigenvalue of the

closed-loop ΣU -subsystem. An alternative control strategy for three-time-scale systems is derived in the

Composite Top-Down and Bottom-Up (CF-TD) control design section 4.6.1 that allows to select a desired

behavior for the ΣU -subsystem. For the TD control design described in this section, it is assumed that

the prescribed degree of stability of the closed-loop ΣU -subsystem, Eq. (B.18), satisfies the requirements

of both stability and speed of the response. This concludes the first stage of the TD control design, and

the following section describes the second stage of the TD control design.

B.2.2 Control Design for u1: 2nd Stage of the Top-Down Control Design for

the Simplified Model

The second stage of the TD subproblem focuses on the control design for u1 for the stabilization of

the ΣS-subsystem. For that purpose, recall first that after selecting the control signal u2(x, y, y
∗), the

ΣFU -subsystem, Eqns. (B.5–B.6), can be rewritten as

dy

dτ1
= −η1 (y + xz + 1) , (B.19)
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ε2
dz

dτ1
= −η2 (z − h(x, y)) = −η2ẑ, (B.20)

In order to determine the equilibria that will define the ΣS-subsystem, Eq. (B.4), the ΣFU -subsystem,

Eqns. (B.19–B.20), can be decomposed by applying the stretched time scale τ2 resulting in the ΣF -

subsystem given by

dy

dτ1
= −η1 (y + xh(x, y) + 1) , (B.21)

and where the new boundary layer (fast) ΣU -subsystem is defined by

dz

dτ2
= −η2 (z − h(x, y)) , (B.22)

where the ΣU -subsystem quasi-steady-state equilibria, h(x, y) is given in Eq. (B.17), which after being

substituted into the ΣF -subsystem, Eq. (B.21), reduces to

dy

dτ1
= −b̃y (y − y∗) , (B.23)

where the quasi-steady-state equilibrium of the boundary layer, Eq. (B.23), is obtained by setting ε1 = 0,

resulting in

0 = ĝ(x, y, h(x, y)) = −b̃y (y − y∗) → y = g(x) = y∗. (B.24)

Recalling the quasi-steady-state equilibria for both the ΣF and ΣU -subsystems, that is y = g(x) and

z = h(x, y), respectively, given by Eqns. (B.24) and (B.17), respectively, and also recall that substituting

g(x) into Eq. (B.17), results in

z = h(x, g(x)) = −y
∗ + 1

x
. (B.25)

Therefore, substituting both quasi-steady-state equilibria, y = g(x) and z = h(x, g(x)), into the reduced

order ΣS-subsystem, Eq. (B.4), results in

ẋ = f(x, g(x), h(x, g(x)), u1) = −ρ1 (x− xy∗ + y∗) + u1. (B.26)

The control signal u1 is selected such that stabilizes the ΣS-subsystem by selecting a target dynamics

of the form

ẋ = −bx (x− x∗) , (B.27)

where bx is the selected time constant for the target dynamics, and x∗ is the desired value of x, thus the

control signal u1 is selected such

u1(x, x
∗, y∗) = ρ1y

∗ (1− x)− bx (x− x∗) , (B.28)

which concludes the TD control design.

B.2.3 Closed-Loop of the Simplified Model

After substituting the selected control laws, Eqns. (B.15) and (B.28), into the original nonlinear equations

of motion, Eqns. (B.1–B.3), the closed loop system is given by

ẋ = −ρ1x (1 + xz + y∗)− ρ1 (y − y∗)− bx (x− x∗) (B.29)

ẏ = −ρ2 (y + xz + 1) (B.30)

ż = −ρ3z −
ρ3
x

(

y + 1− b̃y
η1

(y − y∗)

)

. (B.31)
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The equilibria of the closed-loop system are obtained by setting all derivatives of (B.29–B.33) to zero,

resulting in the equilibrium of ultra-fast dynamics, Eq. (B.33) given by

z = h(x, y) = − 1

x

(

y + 1− b̃y
η1

(y − y∗)

)

, (B.32)

Recall that observing the closed-loop ultra-fast dynamics, Eqns. (B.33), can be expressed as a function

of a pseudo error dynamics by using the definition of the quasi-steady-state equilibrium h1(x, y), Eq.

(B.32), resulting in

ż = −ρ3z −
ρ3
x

(

y + 1− b̃y
η1

(y − y∗)

)

= −ρ3 (z − h(x, y)) , (B.33)

where ρ3 provides the transient response of the ultra-fast dynamics. The substitution of the equilibrium

of the ultra-fast subsystem, Eq. (B.32) into the equilibrium equation for the fast dynamics, , Eq. (B.30),

results in

0 = −ρ2 (y + xh(x) + 1) ,

= −ρ2
{

y + x

[

− 1

x

(

y + 1− b̃y
η1

(y − y∗)

)]

+ 1

}

= −ρ2
η1
by (y − y∗) , (B.34)

yielding the fast equilibrium given by

y = y∗, (B.35)

and finally, substituting the equilibria of both the ultra-fast subsystem, Eq. (B.32), and the fast subsys-

tem, Eq. (B.35), into the equilibrium equation for the slow dynamics, Eq. (B.29), results in

0 = −ρ1x
{

1 + x

[

− 1

x

(

y∗ + 1− b̃y
η1

(y∗ − y∗)

)]

+ y∗

}

− ρ1 (y
∗ − y∗)

− bx (x− x∗) (B.36)

= −bx (x− x∗) , (B.37)

yielding the equilibrium of the slow dynamics

x = x∗. (B.38)

The asymptotic stability analysis of the resulting closed-loop system will be conducted in future chap-

ters.

B.3 Composite Feedback TD Control Design for the Simplified

Model

This section extends the CF -TD control design for the nonlinear underactuated three-time-scale singularly

perturbed simplified model given by

ẋ = ρ1
(

x+ x2z + 1
)

+ u1, (B.39)

ε1ẏ = −η1 (y + xz + 1) , (B.40)

ε1ε2ż = −η2
(

z + x2 + y
)

+ η3u2c = −η2
(

z + x2 + y
)

+ η3
(

u2s + u2f
)

. (B.41)
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where the main difference with the ΣSFU subsystem analyzed in the TD control design, Eqns. (B.1–

B.3), is the fact that the control signal in the ultra-fast dynamics is divided into two components,

u2c = u2s + u2f , which will allow to select the desired transient behavior for the ΣU -subsystem.

The control strategy focuses first on defining a control signal, u2s = Γs(x, y), that stabilizes the

intermediate fast ΣF -subsystem with the desired degree of stability, while u2f = Γf (x, y , z ) is a feedback

function of x, y, and z, that stabilizes the ultra-fast ΣU -subsystem with the desired degree of stability.

Once stabilized the ΣFU -subsystem, the control strategy shifts towards obtaining the control signal u1

that stabilizes the ΣS-subsystem. The following subsections describe in detail each one of the CF -TD

control methods for the helicopter problem.

B.3.1 Control Design for u2: 1st Stage of the Composite Feedback Top-Down

Control Design for the Simplified Model

Similarly as in the TD control methodology, the CF -TD control design starts by considering the sub-

system that results when applying the Top condition to the original ΣSFU (B.39–B.41), resulting in the

reduced order (slow) ΣS-subsystem, given by

ẋ = ρ1
(

x+ x2hc(x, u2c) + gc(x, u2c)
)

+ u1, (B.42)

while the boundary layer (fast) ΣFU -subsystem for the TD problem is defined by

dy

dτ1
= −η1 (y + xz + 1) , (B.43)

ε2
dz

dτ1
= −η2

(

z + x2 + y
)

+ η3u2c , (B.44)

where x is treated like a fix parameter, and τ1 = t/ε1, and where functions gc(x, u2c) and hc(x, u2c)

represent the quasi-steady-state equilibrium of the boundary layer ΣFU -subsystem, obtained by solving

simultaneously when setting ε1 = 0 in Eq. (B.43–B.44), given by

0 = ĥ(x, y, z, u2c) → y = gc(x, u2c), (B.45)

0 = ĝ(x, y, z) → z = hc(x, u2c), (B.46)

where

y = gc(x, u2c) =
1

1− x

(

x2 − η3
η2
xu2c

)

, (B.47)

z = hc(x, u2c) = −x2
(

1 +
1

1− x

)

+
η3
η2
u2c

(

1 +
x

1− x

)

. (B.48)

where both gc(x, u2c) and hc(x, u2c) depend on the control law u2c , therefore being necessary to complete

the Down sequence in order to completely determine both, the quasi-steady-state equilibria, and the

control law u2c . The control strategy employed obtains the associated control law u2c that stabilizes

the ΣFU -subsystem by applying the Down condition, by recalling that the CF control method seeks the

control signal of the ΣU -subsystem as the sum of the slow and fast control signals, that is

u2c = u2s + u2f , (B.49)

with

u2s = Γs(x, y), (B.50)

and

u2f = Γf (x, y, z), (B.51)
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thus becoming the ΣFU -subsystem defined by

dy

dτ1
= −η1 (y + xz + 1) , (B.52)

ε2
dz

dτ1
= −η2

(

z + x2 + y
)

+ η3
(

u2s + u2f
)

. (B.53)

The fast feedback function Γf (x, y, z) is designed to satisfy two crucial requirements. First, when the

feedback control, Eq. (B.49), is applied to Eqns. (B.52–B.53), the closed-loop system should remain a

standard singularly perturbed system, that is, the equilibrium equation given by

0 = ĥ(x, y, z,Γs(x) + Γf(x, z)), (B.54)

should have a unique root given by z = hc(x, y) in Bx ×Bz. This requirement assures that the choice of

Γf will not destroy this property of the function ĥ in the open-loop system. The second requirement on

Γf (x, y, z) is that it be inactive for z = hc(x, y, u2s), which translates in that

Γf (x, y, hc(x, y,Γs(x, y))) = 0, (B.55)

therefore, by Eqns. (B.54) and (B.55), the new reduced (slow) subsystem, is now defined by

dy

dτ1
= ĝ(x, y, hc(x, y, u2s)) = −η1 (y + xhc(x, y, u2s) + 1) , (B.56)

while the boundary layer ΣU -subsystem of the ΣFU -subsystem, Eqns. (B.43–B.44), is defined by

dz

dτ2
= ĥ(x, y, z, u2s) = −η2

(

z + x2 + y
)

+ η3u2s , (B.57)

where x and y are treated like fixed parameters, and where the quasi-steady-state equilibrium is given

by

hc(x, y, u2s) = z = −x2 − y +
η3
η2
u2s . (B.58)

Substituting the quasi-steady-state equilibrium, Eq. (B.58), back into the reduced order system results

in

dy

dτ1
= −η1

[

+x

(

−x2 − y +
η3
η2
u2s

)

+ 1

]

(B.59)

= −η1
(

y − x3 − yx+ 1
)

− η1η3
η2

xu2s . (B.60)

In order to stabilize the ΣF -subsystem, similarly as in the TD control strategy, let select the control

signal such that the target dynamics behaves like

dy

dτ1
= −b̃y (y − y∗) = −ε1by (y − y∗) , (B.61)

where b̃y is the time constant that defines the desired dynamics of the stretched time-scale τ1 = t/ε1,

and is selected as b̃y = ε1by, where by is the time constant that defines the desired dynamics for the y

variable, and y∗ is the desired value of y. The control signal u2s is therefore selected as

u2s =
η2

η1η3x

[

−η1
(

y − x3 − yx+ 1
)

+ b̃y (y − y∗)
]

. (B.62)

therefore, recalling the definition of hc(x, y, u2s) in Eq. (B.58), the quasi-steady-state equilibrium reduces

to

hc(x, y, u2s) = hc(x, y) = −x2 − y +
η3
η2
u2s
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= − 1

x

(

y + 1− b̃y
η1

(y − y∗)

)

. (B.63)

Once the design of the slow control u2s = Γs(x, y) has been conducted, the strategy shifts towards

selecting the desired degree of stability of the boundary layer ΣU -subsystem. Let first analyze the resulting

boundary layer after substituting the slow control u2s = Γs(x, y), Eq. (B.62), resulting in

dz

dτ2
= −η2

(

z + x2 + y
)

+ η3
(

u2s + u2f
)

= −η2 (z − hc(x, y)) + η3u2f . (B.64)

The requirement in Eq. (B.55) is now interpreted as a requirement on the feedback control u2f =

Γf (x, y, z) not to shift the equilibrium z = hc(x, y,Γs(x, y)) of the boundary layer system, Eq. (B.64).

The design of u2f must guarantee that z = hc(x, y,Γs(x, y)) is an asymptotically stable equilibrium of

Eq. (B.64) uniformly in x and y. Let therefore select a desired target dynamics for the boundary layer

of the form

dz

dτ2
= −b̃z (z − hc(x, y)) , (B.65)

where b̃z is the time constant that defines the desired dynamics of the stretched time-scale τ2 = t/ε1ε2

and selected as b̃z = ε1ε2bz. By selecting the target dynamics in that form, it is guaranteed that the

requirement in Eq. (B.55) is satisfied. Analyzing the new boundary layer, Eq. (B.64), the fast control

law is selected as

u2f =
1

η3

[

η2
(

z + x2 + 1
)

− b̃z (z − hc(x, y))
]

+ u2s =
η2 − b̃z
η3

(z − hc(x, y))

=
η2 − b̃z
η3

[

z +
1

x

(

y + 1− b̃y
η1

(y − y∗)

)]

, (B.66)

therefore becoming the CF-TD control law defined by

u2c(x, y, z, y
∗) = u2s + u2f =

η2
η3

(

x2 + 1 + hc(x, y)
)

+
η2 − b̃z
η3

(z − hc(x, y))

=
1

η3

[

η2
(

z + x2 + y
)

− b̃z (z − hc(x, y))
]

, (B.67)

therefore becoming the closed loop boundary layer ΣU -subsystem

dz

dτ2
= −η2

(

z + x2 + y
)

+ η3
(

u2s + u2f
)

= −b̃z (z − hc(x, y)) . (B.68)

The design of u2f guarantees that z = hc(x, y,Γs(x, y)) is an asymptotically stable equilibrium of (B.64)

uniformly in x and y. This has been satisfied with the appropriate selection of both u2s and u2f as seen

in Eq. (B.68). This concludes the fisrt stage of the CF -TD control design, which has only stabilized the

ΣFU -subsystem, and the following section focuses on stabilizing the remainder ΣS-subsystem, starting

with the stabilized ΣFU -subsystem.

B.3.2 Control Design for u1: 2nd Stage of the Composite Feedback Top-Down

Control Design for the Simplified Model

The second stage of the CF-TD control design focuses on the selection of u1 such that stabilizes the

ΣS-subsystem. For that purpose, recall first that, after selecting the control signal u2c(x, y, z1, y
∗), Eq.

(B.67), the ΣFU -subsystem, Eqns. (B.52–B.53) can be rewritten as

dy

dτ1
= −η1 (y + xz + 1) , (B.69)
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ε2
dz

dτ1
= −b̃z

[

z +
1

x

(

y + 1− b̃y
η1

(y − y∗)

)]

= −b̃z (z − hc(x, y)) . (B.70)

In order to determine the equilibria that will define the ΣS-subsystem, Eq. (B.42), the ΣFU -subsystem,

Eqns. (B.69–B.70), can be decomposed into a two-time-scale subsystem by applying the stretched time

scale τ2 resulting in the ΣF -subsystem given by

dy

dτ1
= ĝ(x, y, hc(x, y)) = −η1 (y + xhc(x, y) + 1) , (B.71)

and the new boundary layer (fast) ΣU -subsystem being defined by

dz

dτ2
= ĥ(x, y, z) = −b̃z

[

z +
1

x

(

y + 1− b̃y
η1

(y − y∗)

)]

= −b̃z (z − hc(x, y)) , (B.72)

where, as previously defined in Eq. (B.63), the quasi-steady-state equilibrium of the ΣU -subsystem being

defined by

z = hc(x, y) = − 1

x

(

y + 1− b̃y
η1

(y − y∗)

)

. (B.73)

Recall that when substituting the quasi-steady-state equilibria of the ΣU -subsystem, Eq. (B.73) into

Eq. (B.71), the ΣF -subsystem degenerates into the selected ΣF -subsystem target dynamics given by and

in the equivalent boundary layer ΣF -subsystem, such

dy

dτ1
= ĝ(x, y, hc(x, y)) = −b̃y (y − y∗) , (B.74)

therefore, with the quasi-steady-state equilibria gc(x) being given by

y = gc(x) = y∗. (B.75)

Similarly as in the TD control design, the control law u1 that stabilizes the slow ΣS-subsystem is

obtained by substituting the ΣF and ΣU -subsystem equilibria, Eqns. (B.75) and (B.73), respectively,

into Eq. (B.42), yielding the reduced order ΣS-subsystem given by

ẋ = f(x, gc(x), hc(x, y), u1) = ρ1xy
∗ − ρ1 + u1, (B.76)

the control signal (u1) is selected such that stabilizes the ΣS-subsystem by selecting a target dynamics

of the form

ẋ = −bx (x− x∗) , (B.77)

resulting in

u1 = −ρ1xy∗ + ρ1 − bx (x− x∗) , (B.78)

thus concluding with the CF-TD control design.

B.3.3 Closed-Loop of the Simplified Model

After substituting the selected control laws, Eqns. (B.67) and (B.78), into the original nonlinear equations

of motion, Eqns. (B.1–B.3), the closed loop system is given by

ẋ = −ρ1x (1 + xz + y∗)− bx (x− x∗) , (B.79)

ẏ = −ρ2 (y + xz + 1) , (B.80)

ż = −bz (z − hc(x, y)) = −bz
[

z +
1

x

(

y + 1− b̃y
η1

(y − y∗)

)]

. (B.81)
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with the equilibria of the closed-loop system being equivalent to those obtained with the TD control

strategy, Eqns. (B.38), (B.35) and (B.32), with the only difference between both control strategies, being

the transient response of the ultra-fast-dynamics.



Appendix C

Asymptotic Stability Analysis for

the Simplified Model

C.1 Introduction

C.2 Simplified Example Model for the Asymptotic Stability

Analysis

This Appendix describes the stability analysis conducted for the simplified model, which for conciseness,

only is analyzed the closed-loop error dynamics for the TD-BU control design, see section B.2 for further

details. As noted in chapter 6, the use of the simplified example stability analysis can be used by the

reader for better understanding the scope of the presented three-time-scale asymptotic stability analysis,

following the same philosophy intended by the author throughout this thesis, which is to serve as an

instrument that will ease in the understanding of the presented analysis complexity. As discussed in

previous chapters, the use of the three-time-scale simplified example stability analysis can be used as

the solely source for understanding the asymptotic stability methodology here presented, and leave the

asymptotic stability analysis for the helicopter model, once the methodology have been fully understood.

Therefore, proceeding with the asymptotic stability analysis for the simplified example let first recall the

original three-time-scale simplified model given by

ẋ = ρ1
(

x+ x2z + 1
)

+ u1, (C.1)

ε1ẏ = −η1 (y + xz + 1) , (C.2)

ε1ε2ż = −η2
(

z + x2 + 1
)

+ η3u2. (C.3)

The closed-loop dynamics are obtained by recalling the laws derived in Top-Down and BU control

design, that is u1 and u2, respectively, and given by

u1 = −ρ1xy∗ + ρ1 − bx (x− x∗) , (C.4)

and

u2 =
η2

η1η3x

(

−η1
(

y − x3 − x+ 1
)

+ b̃y (y − y∗)
)

. (C.5)

Therefore, after substituting the selected control laws, Eqns. (C.4) and (C.5), into the original nonlinear

C-389
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equations of motion, Eqns. (C.1 – C.3), the closed loop system is given by

ẋ = −ρ1x (1 + xz + y∗)− bx (x− x∗) , (C.6)

ε1ẏ = −η1 (y + xz + 1) , (C.7)

ε1ε2ż = −η2z −
η2
x

(

y + 1− b̃y
η1

(y − y∗)

)

. (C.8)

As introduced in section 5.2.1, one of the requirements for the asymptotic stability analysis, is to

guarantee that there exist asymptotic stability of the origin, which is expressed in Assumption 5.2.1.

This translates to ensure that the boundary layer does not shift from its original equilibrium, that is,

that the fastest time-scale maintains its quasi-steady-state equilibrium, given by z = h(x). Since the

systems here studied present equilibria different from zero, in order to satisfy this requirement, a change

of variables is introduced such that defines the new system in terms of its error-dynamics.For the simplified

three-time-scale model the error dynamics are defined by introducing

x̃ = x− x∗, (C.9)

ỹ = y − y∗, (C.10)

z̃ = z − z∗, (C.11)

where x∗, y∗, and z∗ represent the desired values of the state variables. Due to the nature of the singularly

perturbed systems, and its property of maintaining the equilibrium of the boundary layer, only the desired

values of the slow and fast subsystems, that is x∗, y∗, are defined by the designer, while z∗ is left as a

free variable in the error dynamics formulation since the true error dynamics of the ultra-fast subsystem

is considered when being compared with its quasi-steady-state equilibrium, z = h(x, y). As the selected

control law drives the slow and fast variables towards their desired states, that is x → x∗ and y → y∗,

the ultra-fast variable moves through its configuration space given by z = h(x, y), therefore becoming

the equilibrium z∗ = h(x∗, y∗). It can be proven that the quasi-steady-state equilibrium of the ultra-fast

dynamics, z∗ = h(x∗, y∗), is defined by the equilibrium differential equation of the intermediate dynamics,

that is, the fast dynamics, resulting in

0 = y + xz + 1 → z∗ = −y
∗ + 1

x∗
, (C.12)

implying that, for a pair of desired x∗ and y∗, the desired value of z∗ is defined by Eq. (C.12). Therefore,

the closed-loop equations can be rewritten into its error dynamics as

˙̃x = −ρ1 (x̃+ x∗) (1 + (x̃+ x∗) (z̃ + z∗) + y∗)− bxx̃, (C.13)

ε1 ˙̃y = −η1 ((ỹ + y∗) + (x̃+ x∗) (z̃ + z∗) + 1) , (C.14)

ε1ε2 ˙̃z = −η2 (z̃ + z∗)− η2
x̃+ x∗

(

(ỹ + y∗) + 1− b̃y
η1
ỹ

)

. (C.15)

To help with the demonstration of the growth requirements, the following sections recap on the de-

generated subsystems for the simplified model, that is the ΣS , ΣF , ΣU , ΣSF , and ΣUF -subsystems. It

also describes the quasi-steady-state equilibria for the ΣF and ΣU -subsystems, that is ỹ = g̃(x̃) and

z̃ = h̃(x̃, ỹ), respectively, and also, the associated Lyapunov functions for the three degenerated subsys-

tems, Vs, Vf and Vu.
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C.3 Lyapunov Top-Dow and Bottom-Up Function Candidate

Selection for the Simplified Example

This section determines the associated Lyapunov functions for the closed-loop simplified example three-

time-scale singular perturbed system, Eqns. (C.13–C.15), where it is assumed that the system is an

autonomous stable system, with prescribed stability properties given by the selection of appropriate

control laws derived following the TD and BU methodologies. The strategy to determine the Lyapunov

candidates for each one of the singularly perturbed subsystems, ΣS , ΣF , and ΣU , respectively, consists

on treating the three different time scales as two distinct two-time-scale singular perturbed problems,

as described in the general L-TDBU function selection, section 5.4.1. The following sections describe

the selection of the Lyapunov function candidates for each of the singularly perturbed ΣS , ΣF , and ΣU

subsystems.

C.3.1 Lyapunov Function Candidate for the Simplified Example ΣS-

Subsystem

The Lyapunov function candidate for the ΣS-subsystem is obtained by applying the stretched time-scale

τ2 = t/ε1ε2, yielding the reduced (slow) ΣSF -subsystem defined by

˙̃x = f̃(x̃, ỹ, h̃(x̃, ỹ)) = ρ1

(

(x̃+ x∗) + (x̃+ x∗)
2
h̃(x̃, ỹ) + (x̃+ x∗) y∗

)

− bxx̃, (C.16)

ε1 ˙̃y = g̃(x̃, ỹ, h̃(x̃, ỹ)) = −η1
(

(ỹ + y∗) + (x̃+ x∗) h̃(x̃, ỹ) + 1
)

, (C.17)

and where the boundary layer (fast) subsystem for the BU subproblem is defined by the ΣU -

subsystem

dz̃

dτ2
= h̃(x̃, ỹ, z̃) = −η2 (z̃ + z∗)− η2

x̃+ x∗

(

(ỹ + y∗) + 1− b̃y
η1
ỹ

)

, (C.18)

where the quasi-steady-state of the boundary layer h̃(x̃, ỹ) is given by

h̃(x̃, ỹ) = − 1

x̃+ x∗

[

(ỹ + y∗) + 1− b̃y
η1
ỹ

]

− z∗. (C.19)

The boundary layer ΣSF -subsystem is decomposed again into a two-time-scale singular perturbation

problem by applying the stretched time-scale given by τ1 = t/ε1, where the new reduced (slow) ΣS-

subsystem, is now defined by

˙̃x = f̃(x̃, g̃(x̃), h̃(x̃, g̃(x̃))

= ρ1

(

(x̃+ x∗) + (x̃+ x∗)
2
h̃(x̃, g̃(x̃)) + (x̃+ x∗) y∗

)

− bxx̃

= −bxx̃, (C.20)

and the new boundary layer (fast) ΣF -subsystem is defined as

dỹ

dτ1
= g̃(x̃, ỹ, h̃(x̃, ỹ)) = −b̃yỹ, (C.21)

with the quasi-steady-state equilibria of the boundary layer ΣF -subsystem, Eq. (C.21), being given

by

0 = g̃(x̃, ỹ, z̃) = g̃(x̃, ỹ, h̃(x̃, ỹ)) → ỹ = g̃(x̃), (C.22)
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being the quasi-steady-state defined by

ỹ = g̃(x̃) = y∗. (C.23)

Recall that following the control design strategy described in section B.2.2, the ΣS-subsystem is stabilized

with a prescribed desired target dynamics, therefore the new reduced order ΣS-subsystem, Eq. (C.45) it

is defined by the same target dynamics, making it easy to define the associated Lyapunov function for

the slow ΣS-subsystem as the natural quadratic Lyapunov function of the selected target dynamics, that

is

Vs (x̃) =
1

2
Psx̃

2, (C.24)

where Ps is the solution of the associated Lyapunov function for the selected target dynamics of the

ΣS-subsystem, and given by

PsAs +AsPs +Qs = 0, (C.25)

where Qs is also a positive constant, As = −bx, therefore Ps is given by

Ps =
Qs

2bx
, (C.26)

where Qs is a positive constant. Thus yielding the associated Lyapunov function

Vs (x̃) =
1

2
Psx̃

2 =
Qs

4b̃x
x̃2. (C.27)

C.3.2 Lyapunov Function Candidate for the Simplified Example ΣF -

Subsystem

To obtaining the Lyapunov function candidate for the ΣF -subsystem, let use the Lyapunov-Top-Down

(L-TD) methodology, which studies the system resulting by applying the stretched time-scale given by

τ1 = t/ε1, yielding the reduced order (slow) ΣS-subsystem defined by Eq. (C.45), and where the boundary

layer (fast) ΣFU -subsystem is given by

dỹ

dτ1
= g̃(x̃, ỹ, z̃) = −η1 [(ỹ + y∗) + (x̃+ x∗) (z̃ + z∗) + 1] , (C.28)

ε2
dz

dτ1
= h̃(x̃, ỹ, z̃) = −η2z̃ −

η2
x̃+ x∗

[

(ỹ + y∗) + 1− b̃y
η1
ỹ

]

. (C.29)

The associated Lyapunov function for the ΣF -subsystem is obtained by recognizing that the boundary

layer ΣFU -subsystem, Eqns. (C.28-C.29), can be treated again like a two-time-scale singular perturbation

problem by dealing with the subsystem that results by applying the stretched time-scale given by τ2 =

τ1/ε2 = t/ε1ε2, where the new reduced (slow) ΣF -subsystem for the simplified model is defined by Eq.

(C.18), the boundary layer ΣU -subsystem of the ΣFU -subsystem is given by Eq. (C.18) and, with the

quasi-steady-state equilibrium of the boundary layer ΣU -subsystem, h̃(x̃, ỹ), is given by Eq. (C.19). With

this in mind, it is easy to define the associated Lyapunov function candidate for the ΣF -subsystem as

the natural quadratic Lyapunov function of the selected target dynamics, Eq. (C.21), that is

Vf (ỹ) =
1

2
Pf ỹ

2, (C.30)

where Pf is the solution of the associated Lyapunov function for the selected target dynamics and given

by

PfAf +AfPf +Qf = 0, (C.31)
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where Qf is also a positive constant, Af = −b̃y, and Pf is given by

Pf =
Qf

2b̃y
, (C.32)

where Qf is a positive constant. Thus yielding the associated Lyapunov function given by

Vf (ỹ) =
1

2
Pf ỹ

2 =
Qf

4b̃y
ỹ2. (C.33)

The ΣF -subsystem, as seen previously, serves as both the boundary layer of the ΣSF -subsystem, and

the reduced order of the ΣFU -subsystem, becoming the interconnection subsystem between both the ΣSF

and ΣFU -subsystems.

C.3.3 Lyapunov Function Candidate for the Simplified Example ΣU -

Subsystem

The associated Lyapunov functions for the ΣU -subsystem is obtained by recognizing that the ΣFU -

subsystem, Eqns. (C.28–C.29), can be treated again like a two-time-scale singular perturbation problem

by applying the stretched time-scale given by τ2 = τ1/ε2 = t/ε1ε2, where the new reduced (slow)

ΣF -subsystem for the simplified model is now defined by Eq. (C.18), and the new boundary layer ΣU -

subsystem is given by Eq. (C.18).

Recall that it is necessary to ensure that the boundary layer ΣU -subsystem does not to shift from

the equilibrium z̃ = h̃(x̃, ỹ), since it is the equilibrium that defines the nature of the different reduced

order subsystems, ΣS and ΣF -subsystems, respectively. It is therefore necessary to introduce a change of

variables so that the equilibrium of this boundary-layer system is centered at zero, and thus permitting

to select a natural Lyapunov function candidate to maintain the equilibrium z̃ = h̃(x̃, ỹ). This is obtained

by introducing a change of variables defined by

ẑ = z̃ − h̃(x̃, ỹ), (C.34)

with h̃(x̃, ỹ) being the quasi-steady-state equilibrium for the ΣU -subsystem and being defined by Eq.

(C.19). This change of variable permits to express the boundary layer ΣU -subsystem, Eq. (C.18),

as a linear function of ẑ, which can be viewed as the true error dynamics vector for the ultra-fast

dynamics,therefore rewriting the ΣU -subsystem as

dz̃

dτ2
= −η2 (z̃ + z∗)− η2

x̃+ x∗

(

(ỹ + y∗) + 1− b̃y
η1
ỹ

)

= −η2
[

z̃ −
[

− 1

x̃+ x∗

(

(ỹ + y∗) + 1− b̃y
η1
ỹ

)

− z∗

]]

= −η2
(

z̃ − h̃ (x̃, ỹ)
)

= −η2ẑ, (C.35)

thus being quite simple to select its natural associated Lyapunov function Vu of the form given by

Vu(x̃, ỹ, z̃) = Vu(ẑ) =
1

2
Puẑ

2, (C.36)

where Pu is a positive constant that solves the associated Lyapunov equation

PuAu +AT
uPu +Qu = 0, (C.37)

where Qu is also a positive constant, Au = −η2, and with η2 > 0, and Pu is given by

Pu =
Qu

2η2
, (C.38)
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therefore yielding the associated Lyapunov function

Vu(ẑ) =
1

2
Puẑ

2 =
Qu

4η2
ẑ2. (C.39)

C.3.4 Degenerated Subsystems for the Simplified Model

For completeness, and to help while reading the asymptotic stability analysis, this section collects the

different degenerated subsystems employed throughout the rest of the asymptotic stability analysis for

the simplified model, that is the associated ΣS , ΣF , ΣU , ΣSF , and ΣUF -subsystems. The associated

quasi-steady-state equilibria for the ΣF and ΣU -subsystems are also collected. These subsystems were

previously derived to determine the appropriate Lyapunov functions, therefore the complete derivations

will not be conducted again, and only a brief description will be presented. Recalling from section C.3,

the ΣSF -subsystem is given by

ẋ = −ρ1 (x̃+ x∗)
(

1 + (x̃+ x∗)
(

h̃(x̃, ỹ) + z∗
)

+ y∗
)

− bxx̃, (C.40)

ε1ẏ = −η1
(

(ỹ + y∗) + (x̃+ x∗)
(

h̃(x̃, ỹ) + z∗
)

+ 1
)

, (C.41)

therefore being f̃(x̃, ỹ, h̃(x̃, ỹ)) given by

ẋ = −ρ1 (x̃+ x∗)
(

1 + (x̃+ x∗)
(

h̃(x̃, ỹ) + z∗
)

+ y∗
)

− bxx̃, (C.42)

and g̃(x̃, ỹ, h̃(x̃, ỹ)) being defined by

ε1ẏ = −η1
(

(ỹ + y∗) + (x̃+ x∗)
(

h̃(x̃, ỹ) + z∗
)

+ 1
)

. (C.43)

The associated boundary layer for the ΣU -subsystem is given by

dz̃

dτ2
= −η2 (z̃ + z∗)− η2

x̃+ x∗

(

(ỹ + y∗) + 1− b̃y
η1
ỹ

)

, (C.44)

with the quasi-steady-state equilibria of the boundary layer ΣU -subsystem, Eq. (C.44), being given

by

h̃(x̃, ỹ) = z̃ = − 1

x̃+ x∗

[

(ỹ + y∗) + 1− b̃y
η1
ỹ

]

− z∗. (C.45)

The ΣU -subsystem can be reorganized resulting in

dz̃

dτ2
= −η2 (z̃ + z∗)− η2

x̃+ x∗

(

(ỹ + y∗) + 1− b̃y
η1
ỹ

)

= −η2
[

z̃ −
[

− 1

x̃+ x∗

(

(ỹ + y∗) + 1− by
η1
ỹ

)

− z∗
]]

= −η2
(

z̃ − h̃ (x̃, ỹ)
)

, (C.46)

where it can be recognized that the ΣU -subsystem can be rewritten in state space form by considering

the change of variables

ẑ = z̃ − h̃(x̃, ỹ), (C.47)

reducing to

dz̃

dτ2
= Auẑ, (C.48)

where

Au = −η2. (C.49)
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The f̃(x̃, ỹ, h̃(x̃, ỹ)) can be rewritten by substituting Eq. (C.45) into Eq. (C.42), resulting in

ẋ = −ρ1 (x̃+ x∗)

{

1 + (x̃+ x∗)

(

− η2
x̃+ x∗

(

(ỹ + y∗) + 1− b̃y
η1
ỹ

))

+ y∗

}

− bxx̃

= (x̃+ x∗) ỹ

(

ρ1 −
ρ1
η1
bx

)

− bxx̃, (C.50)

where recalling that from the time-scale selection

ε1 =
ρ1
ρ2
, (C.51)

and recalling that

η1 = ρ2ε1, (C.52)

thus, using Eq. (C.51) into Eq. (C.52) results in

η1 = ρ2ε1 = ρ2
ρ1
ρ2

= ρ1, (C.53)

therefore using Eq. (C.53) into Eq. (C.50) reduces to

f̃(x̃, ỹ, h̃(x̃, ỹ)) = (x̃+ x∗) ỹ (ρ1 − by)− bxx̃. (C.54)

Similarly, rewriting g̃(x̃, ỹ, h̃(x̃, ỹ)), by substituting Eq. (C.45) into Eq. (C.43) results in

dỹ

dτ1
= g̃(x̃, ỹ, h̃(x̃, ỹ)) = −b̃yỹ = Af ỹ. (C.55)

The quasi-steady-state equilibrium of the ΣF -subsystem, g̃(x̃), is given by

g̃(x̃) = 0. (C.56)

The ΣS-subsystem f̃(x̃, g̃(x̃), h̃(x̃, ỹ)), is given by

˙̃x = f̃(x̃, g̃(x̃), h̃(x̃, ỹ)) = f̃(x̃, g̃(x̃), h̃(x̃, g̃(x̃))) = −bxx̃ = Asx̃, (C.57)

C.4 ΣSF Stability Analysis for the Simplified Model

This section provides the proof for the asymptotic stability requirements for the ΣSF -subsystem simplified

example, by applying the Bottom-Up-methodology using the same methodology as the one described

previously for the general model in chapter 5. These requirements are defined by applying the assumptions

defined in section 5.5.1, that is, Assumptions, 5.5.1, 5.5.2, 5.5.3, 5.5.4, and 5.5.5, to the simplified example

resulting autonomous system, Eqns. (C.13–C.15.).

The ΣSF Stability Analysis is performed assuming that the ΣU -subsystem variables evolve in their own

configuration space. The analysis of this first stage is performed using the standard method for two-

time-scale systems (Kokotović et al., 1986; Kokotović et al., 1987; Kokotović et al., 1999), in which the

previously derived Lyapunov functions for the ΣS and ΣF -subsystems, Vs(x̃) and Vf ỹ, Eqns. (C.27)and

(C.30), respectively, must fulfill certain growth requirements on f̃(x̃, ỹ, h̃(x̃, ỹ)), and ĝ(x̃, ỹ, h̃(x̃, ỹ)), Eqns.

(C.42) and (C.43), respectively, by satisfying certain inequalities. The fulfillment of these inequalities for

the ΣSF simplified example is described bellow.
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C.4.1 Isolated Equilibrium of the Origin for the Simplified Example ΣSF -

Subsystem: Assumption 5.5.1

The origin (x̃ = 0, ỹ = 0) is a unique and isolated equilibrium of the ΣSF -subsystem, Eqns. (C.40–C.41),

i.e.:

0 = f̃(0, 0, h̃(x̃, ỹ)), (C.58)

0 = ĝ(0, 0, h̃(x̃, ỹ)), (C.59)

moreover, ỹ = g̃(x̃) is the unique root of:

0 = ĝ
(

x̃, ỹ, h̃(x̃, ỹ)
)

, (C.60)

in Bx̃ ×Bỹ, i.e.:

0 = ĝ(x̃, g̃(x̃), h̃(x̃, ỹ)), (C.61)

and there exists a class κ function p1(·) such that:

‖ g̃(x̃) ‖≤ p1 (‖ x̃ ‖) . (C.62)

The reduced order growth requirements are obtained by first considering the system given by Eq.

(C.40), and adding and subtracting f̃(x̃, g̃(x̃), h̃(x̃, ỹ)), Eq. (C.57), to the right-hand side of Eq. (C.40)

yielding:

˙̃x = f̃
(

x̃, g̃(x̃), h̃(x̃, ỹ)
)

+ f̃
(

x̃, ỹ, h̃(x̃, ỹ)
)

− f̃
(

x̃, g̃(x̃), h̃(x̃, ỹ)
)

, (C.63)

where the term f̃(x̃, ỹ, h̃(x̃, ỹ))− f̃(x̃, g̃(x̃), h̃(x̃, ỹ)) can be viewed as a perturbation of the reduced order

ΣS-subsystem, that is, f̃(x̃, g̃(x̃), h̃(x̃, ỹ)), Eq. (C.57), and with f̃(x̃, ỹ, h̃(x̃, ỹ)) defined in Eq. (C.40). It

is therefore natural to first satisfy the growth requirements for Eq. (C.57) and then consider the effect

of the perturbation term f̃(x̃, ỹ, h̃(x̃, ỹ)) − f̃(x̃, g̃(x̃), h̃(x̃, ỹ)). Therefore let proceed to define first the

reduced order growth condition.

C.4.2 Proof of Assumption 5.5.2: Reduced System Conditions for the Sim-

plified Example

Recalling from Assumption 5.5.2, the ΣS Lyapunov function candidate Vs(x̃) must be positive-definite

and decreasing, and must also satisfy the following inequality:

(

∂Vs(x̃)

∂x̃

)T

f̃
(

x̃, g̃(x̃), h̃(x̃, ỹ)
)

≤ −α1ψ
2
1(x̃), (C.64)

where ψ1(·) is a scalar function of vector arguments which vanishes only when its argument are zero, and

satisfying that x̃ = 0 is a stable equilibrium of the reduced order system. The left-hand side of inequality

(C.64) is given by recalling that Vs (x̃) is given by Eq. (C.24), being therefore easy to see that:

(

∂Vs(x̃)

∂x̃

)T

= Psx̃, (C.65)
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therefore substituting f̃(x̃, g̃(x̃), h̃(x̃, g̃(x))), Eq. (C.57), and Eq. (C.65) into Eq. (C.64), and recalling

that Ps =
Qs

2bx
yields:

(

∂Vs(x̃)

∂x̃

)T

f̃(x̃, g̃(x̃), h̃(x̃, ỹ)) = −Psbxx̃
2 = −1

2
Qsx̃

2, (C.66)

therefore Assumption (C.64) can be satisfied by selecting α1 and ψ1(x̃) such:

α1 ≤ 1, (C.67)

ψ1(x̃) =

√

Q̃sx̃2, (C.68)

with:

Q̃s =
1

2
Qs. (C.69)

C.4.3 Proof of Assumption 5.5.3: Boundary-Layer System Conditions for the

Simplified Example

Recalling from Assumption 5.5.3, the ΣF Lyapunov function candidate Vf (x̃, ỹ) must be positive-definite

and decreasing, such that for all (x̃, ỹ) ∈ Bx̃ ×Bỹ satisfies the following inequality:

Vf (x̃, ỹ) > 0, ∀ ỹ 6= g̃(x̃) and Vf (x̃, g̃(x̃)) = 0, (C.70)

and:
(

∂Vf
∂ỹ

)T

ĝ
(

x̃, ỹ, h̃(x̃, ỹ)
)

≤ −α2φ
2
1(ỹ − g̃(x̃)), (C.71)

where φ1(·) is a scalar function of vector arguments which vanishes only when its arguments are zero, and

satisfying that ỹ−g̃(x̃) is a stable equilibrium of the boundary layer ΣF -subsystem, where ĝ
(

x̃, ỹ, h̃(x̃, ỹ)
)

is the boundary layer ΣF -subsystem, Eq. (C.43), and Vf (x̃, ỹ), Eq. (C.33), is the Lyapunov function

candidate of the ΣF -subsystem. The left-hand side of inequality (C.71) is defined after recalling that

Vf (ỹ) is given by Eq. (C.30), being therefore easy to see that:

(

∂Vf
∂ỹ

)T

= (Pf ỹ)
T
, (C.72)

and also recalling from section C.3.4 that:

g̃(x̃, ỹ, h̃(x̃, ỹ)) = Af ỹ, (C.73)

being:

Af = −b̃y, (C.74)

and therefore substituting, Eqns. (C.72), and (C.73) into Eq. (C.71) resulting in:

(

∂Vf
∂ỹ

)T

ĝ(x̃, ỹ, h̃(x̃, ỹ)) = (Pf ỹ)
T
Af ỹ = ỹTPfAf ỹ = ỹTMf ỹ, (C.75)

with Mf defined by:

Mf = −Pf b̃y = −Qf

2
, (C.76)

therefore rewriting the left-hand side of inequality (C.75) as:

(

∂Vf
∂ỹ

)T

ĝ(x̃, ỹ, h̃(x̃, ỹ)) = ỹTMf ỹ = −1

2

(

ỹTQf ỹ
)

= −1

2
Qf ỹ

2, (C.77)
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with QF being the associated Lyapunov matrix. For simplicity let also introduce:

Q̃f =
1

2
Qf , (C.78)

and rewriting (C.75) as:

(

∂Vf
∂ỹ

)T

ĝ(x̃, ỹ, h̃(x̃, ỹ)) = −
(

ỹT Q̃f ỹ
)

= −Q̃f ỹ
2, (C.79)

therefore the fulfillment of inequality (C.79) is achieved by selecting α2 and φ(ŷ − g̃(x̃)) such:

α2 ≤ 1, (C.80)

φ1(ỹ − g̃(x̃)) =
(

ỹT Q̃f ỹ
)

1

2

=
(

Q̃f ỹ
2
)

1

2

. (C.81)

For simplicity, from now on the comparison function φ1(ỹ − g̃(x̃)) it is refereed as φ1(ŷ).

C.4.4 Proof of Assumption 5.5.4: First Interconnection Condition for the

Simplified Example

The Lyapunov functions Vs(x̃) and Vf (x̃, ỹ), Eqns. (C.27), and (C.33) respectively, must satisfy the

so called interconnection conditions. The first interconnection condition is obtained by computing the

derivative of Vs(x̃) along the solution of Eq. (C.63), resulting in a expression similar to Eq. (5.139),

which provides the first interconnection inequality:

(

∂Vs(x̃)

∂x̃

)T
[

f̃
(

x̃, ỹ, h̃(x̃, ỹ)
)

− f̃
(

x̃, g̃(x̃), h̃(x̃, ỹ)
)]

≤ β1ψ1(x̃)φ1(ỹ), (C.82)

where the comparison function ψ1(x̃) and φ1(ŷ), are defined in Eqns. (C.68) and (C.81) respectively.

Inequality (C.82) determines the allowed growth of f̃(x̃, ỹ, h̃(x̃, ỹ)) in ỹ, and in typical problems, verifying

inequality (C.82) reduces to verifying the inequality:
∥

∥

∥f̃
(

x̃, ỹ, h̃(x̃, ỹ)
)

− f̃
(

x̃, g̃(x̃), h̃(x̃, ỹ)
)∥

∥

∥ ≤ ψ1(x̃)φ1(ŷ), (C.83)

which implies that the rate of growth of f̃(x̃, ỹ, h̃(x̃, ỹ)) cannot be faster than the rate of growth of the

comparison function φ1(·). The left-hand side of inequality (C.82) is given by recalling the results of Eq.

(C.72), and recalling both f̃(x̃, g̃(x̃), h̃(x̃, ỹ)) and f̃(x̃, ỹ, h̃(x̃, ỹ)), Eqns. (C.57), and (C.54), respectively,

yielding:

f̃(x̃, ỹ, h̃(x̃, ỹ))− f̃(x̃, g̃(x̃), h̃(x̃, ỹ)) = (x̃+ x∗) ỹ (ρ1 − by) . (C.84)

Substituting Eqns. (C.65) and (C.84) into inequality (C.82) results in:

(

∂Vs (x̃)

∂x̃

)T
[

f̃
(

x̃, ỹ, h̃(x̃, ỹ)
)

− f̃
(

x̃, g̃(x̃), h̃ (x̃, ỹ)
)]

=
1

2

Qs

bx
(x̃+ x∗) (ρ1 − by) x̃ỹ ≤ β1ψ1(x̃)φ1(ŷ), (C.85)

where recalling the selected comparison functions ψ1(x̃) and φ1(ŷ), Eqns. (C.68) and (C.81), respectively,

it can be observed that fulfillment of inequality (C.82) is reduced to prove that:

1

2

Qs

bx
(ρ1 − by) (x̃+ x∗) x̃ỹ ≤ β1

(

Q̃sx̃
2
)

1

2
(

Q̃f ỹ
2
)

1

2

. (C.86)

The left-hand side of inequality (C.86) can be simplified by recalling from the error state vector definition

that x̃+ x∗ , x, and from the results presented in Table 2.3, where it was defined that:

xMAX ≥ x ≥ xMIN , (C.87)
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where xMIN is the minimum allowable value of the slow variable x, and xMAX is the maximum allowable

value of the slow variable x. With this in mind, the left hand side of inequality (C.88) can be bounded

and given by:

1

2

Qs

bx
(ρ1 − by) (x̃+ x∗) x̃ỹ ≤ Cx̃ỹ, (C.88)

with:

C =
1

2

Qs

bx
(ρ1 − by)xMAX , (C.89)

therefore inequality (C.85) can be rewritten as:

(

∂Vs (x̃)

∂x̃

)T
[

f̃
(

x̃, ỹ, h̃(x̃, ỹ)
)

− f̃
(

x̃, g̃(x̃), h̃ (x̃, ỹ)
)]

=
1

2

Qs

bx
(x̃+ x∗) (ρ1 − by) x̃ỹ

≤ Cx̃ỹ

≤ β1

(

Q̃sx̃
2
)

1

2
(

Q̃f ỹ
2
)

1

2

, (C.90)

therefore the fulfillment of the original inequality (C.82), reduces to prove:

Cx̃ỹ ≤ β1

(

Q̃sx̃
2
)

1

2
(

Q̃f ỹ
2
)

1

2

. (C.91)

In order to obtain the constant β1 that guarantees the fulfillment of inequality (C.91), let square both

sides of inequality (C.91), resulting in:

C2x̃2ỹ2 ≤ β2
1Q̃sQ̃f x̃

2ỹ2, (C.92)

thus inequality (C.82) can be satisfied by selecting β1 such:

β1 ≥
√

C2

Q̃sQ̃f

, (C.93)

where C is defined in Eq. (C.89), Q̃s defined in Eq. (C.69), and Q̃f , given in Eq. (C.78).

C.4.5 Proof of Assumption 5.5.5: Second Interconnection Condition for the

Simplified Example

The second interconnection condition is defined by the inequality:

(

∂Vf (ỹ)

∂x̃

)T

f̃
(

x̃, ỹ, h̃(x̃, ỹ)
)

≤ γ1φ
2
1(ỹ) + β2ψ1(x̃)φ1(ŷ). (C.94)

Inequality (C.94) can be rewritten by adding and subtracting f̃(x̃, g̃(x̃), h̃(x̃, ỹ)) to the f̃(x̃, ỹ, h̃(x̃, ỹ))

in the left-hand side of Eq. (C.94) resulting in:

∂Vf
∂x̃

f̃(x̃, ỹ, h̃(x̃, ỹ)) ≤ ∂Vf
∂x̃

f̃(x̃, ỹ, h̃(x̃, ỹ))

+
∂Vf
∂x̃

[

f(x̃, ỹ, h̃(x̃, ỹ))− f(x̃, ỹ, h̃(x̃, ỹ))
]

≤ β2ψ1(x̃)φ1(ŷ) + γ1φ
2
1(x̃), (C.95)

where the resulting inequality (C.95) can be satisfied by first splitting into two simpler inequalities given

by:

∂Vf
∂x̃

f̃(x̃, ỹ, h̃(x̃, ỹ)) ≤ β2ψ1(x̃)φ1(ŷ) (C.96)
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∂Vf
∂x̃

[

f̃(x̃, ỹ, h̃(x̃, ỹ))− f̃(x̃, g̃(x̃), h̃(x̃, ỹ))
]

≤ γφ21(ỹ), (C.97)

therefore, assumption (6.195) can be proven, if both inequalities (C.96) and (C.97) are fulfilled. From

the structure of Vf (x̃) it can be seen that:

∂Vf
∂x̃

= 0. (C.98)

Due to the fact that the associated Lyapunov function Vf (ŷ) does not depend on the variable x̃, implies

that the fulfillment of inequality (C.94) is trivial and is achieved by selecting β1 ≥ 0, and γ1 ≥ 0, thus,

concluding that thesub-conditions (C.96) and (C.97) are satisfied by selecting:

β2 ≥ 0, (C.99)

γ1 ≥ 0. (C.100)

These results provide an additional degree of freedom that will be exploited in later sections in order

to determine desired upperbounds of the ΣSF Stability Analysis.

C.5 Fulfillment of the Simplified Example ΣSF Stability Analy-

sis

The fulfillment of assumptions 5.5.1, 5.5.2, 5.5.3, 5.5.4, and 5.5.5, applied to the simplified example

ΣSF -subsystem by the fulfillment of inequalities C.64, C.71, C.82, and C.94, proves that the growth

requirements of f̃(x̃, ỹ, h̃(x̃, ỹ)) and ĝ(x̃, ỹ, h̃(x̃, x̃)) are satisfied, and with the Lyapunov functions Vs(x̃)

and Vf (x̃, x̃), Eqns. (C.27) and (C.46), respectively, a new Lyapunov function candidate V1(x̃, ỹ) is

considered and defined by the weighted sum of VS(x̃) and VF (x̃, ỹ), given by:

V1(x̃, ỹ) = (1− d1)Vs(x̃) + d1Vf (ỹ), d1 ∈ (0, 1), (C.101)

for 0 < d1 < 1. The newly defined function V1(x̃, ỹ) becomes the Lyapunov function candidate for

the singular perturbed ΣSF -subsystem, Eqns. (C.40–C.41). Similarly as in the general case, and the

helicopter problem, to explore the freedom in choosing the weights, lets take d1 as an unspecified pa-

rameter in the interval (0, 1). From the properties of Vs(x̃) and Vf (x̃, ỹ), and inequality (C.62), that is

‖ g̃(x̃) ‖≤ p1 (‖ x̃ ‖), where p1(·) is a κ class function, it follows that V1(x̃, ỹ) is positive-definite. Com-

puting the time derivative of V1(x̃, ỹ) along the trajectories of f̃
(

x̃, ỹ, h̃(x̃, ỹ)
)

and ĝ
(

x̃, ỹ, h̃(x̃, ỹ)
)

yields

an equation of similar structure as in Eq. (5.145), which can express as a function of the comparison

functions ψ1(x̃), and φ1(ŷ) by employing the derived inequalities C.64, C.71, C.82, and C.94, resulting

in:

V̇1 ≤ −(1− d1)α1ψ
2
1(x̃) + (1− d1)β1ψ1(x̃)φ1(ŷ)

− d1
ε1
α2φ

2
1(ŷ) + d1γ1φ

2
1(ŷ) + d1β2ψ1(x̃)φ1(ŷ)

= −
[

ψ1(x̃)

φ1(ŷ)

]T




(1 − d1)α1 − 1
2 (1− d1)β1 − 1

2d1β2

− 1
2 (1− d1)β1 − 1

2d1β2 d1

(

α2

ε1
− γ1

)





×
[

ψ1(x̃)

φ1(ŷ)

]

= −





√

Q̃sx̃2
√

Q̃f ỹ2





T 



(1− d1)α1 − 1
2 (1− d1)β1 − 1

2d1β2

− 1
2 (1− d1)β1 − 1

2d1β2 d1

(

α2

ε1
− γ1

)




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×





√

Q̃sx̃2
√

Q̃f ỹ2



 . (C.102)

In order to guarantee the negative-definiteness property of Eq. (C.102), and conducting the same

algebraic transformations as in section 5.5.1, it can be obtained the following expression that defines the

requirement to be satisfied by the parasitic constant ε1 such:

ε1 <
α1α2

α1γ1 +
1

4(1− d1)d1
[(1− d1)β1 + d1β2]

2
≡ ε1d . (C.103)

Recalling from the general formulation, chapter 5, that although only α1 and α2 are required by

definition to be positive, β1, β2, and γ1 are also considered to be positive. Inequality (C.103) shows that

for any choice of d1, the corresponding V1(x̃, ỹ), Eq. (C.101), is a Lyapunov function for the singular

perturbed ΣSF -subsystem, Eqns. (C.40–C.41), for all ε1 satisfying Eq. (C.103). It can be easily seen

that the maximum value of ε1d occurs at:

d∗1 =
β1

β1 + β2
, (C.104)

yielding the upper bound on ε1:

ε∗1 =
α1α2

α1γ1 + β1β2
. (C.105)

Therefore, it can be inferred that the equilibrium point of the singularly perturbed ΣSF -subsystem,

Eqns. (C.40–C.41), is asymptotically stable for all ε1 < ε∗1. The number ε∗1 is the best upper bound

on ε1 that can be provided by the above presented stability analysis. The results obtained from the

fulfillment of inequalities (C.64), (C.71), (C.82) and (C.94) are summarized in Table C.1, where it can

be seen the similarities between the two-time-scale growth requirements described in Section 5.2.1, and

the three-time-scale growth requirements for the ΣSF -subsystem.

The asymptotic stability analysis presented proves that by fulfilling inequalities (C.64), (C.71), (C.82),

and (C.94), then the origin is an asymptotically stable equilibrium of the singularly perturbed helicopter

ΣSF -subsystem (C.40–C.41) for all ε1 ∈ (0, ε∗1), where ε
∗
1 is given by Eq. (C.105), thus, for every number

d1 ∈ (0, 1), V1(x̃, ỹ), Eq. (C.101), is a Lyapunov function for all ε1(0, εd), where ε1d ≤ ε∗1 is given by Eq.

(C.103), hence satisfying Theorem 5.5.1.

The fulfillment of Theorem 5.5.1 for the simplified example ΣSF -subsystem can be summarized by

understanding that x̃ = 0 is an asymptotically stable equilibrium of the reduced ΣS-subsystem, Eq.

(C.57), ỹ = g̃(x̃) is an asymptotically stable equilibrium of the boundary-layer ΣF -subsystem, Eq. (C.43),

uniformly in x̃, that is, the ε−δ definition of Lyapunov stability and the convergence ỹ → g̃(x̃) are uniform

in x̃ (Vidyasagar, 2002), and if f̃
(

x̃, ỹ, h̃(x̃, ỹ)
)

and ĝ
(

x̃, ỹ, h̃(x̃, ỹ)
)

satisfy certain growth conditions on

the reduced and boundary-layer systems, then the origin is an asymptotically stable equilibrium of the

singularly perturbed ΣSF -subsystem, Eqns. (C.40–C.41), for sufficiently small ε1 (Kokotović et al., 1986;

Kokotović et al., 1987; Kokotović et al., 1999).

Due to the fact that the system is expressed in its error dynamics form, and that the use of the full range

of reachable state variables has been required in order to satisfy the inequalities that guarantee the asymp-

totic stability properties at the origin of the ΣSF -subsystem, these asymptotic stability properties are also

extended to semiglobal stability, by the definition in (Kokotović, 1992; Sussmann and Kokotović, 1991;

Braslavsky and Miidleton, 1996), by providing upper bounds on the parasitic singularly perturbed pa-

rameters for the entire range of admissible state values, thus extending the domain of attraction to that

same rage of admissible states.
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Assumption 5.5.7

Section 5.2 ∂V
∂x f(x, h(x)) α1 ψ(x)

ΣSF
∂Vs(x̃)

∂x̃ f̃(x̃, g̃(x̃), h̃(x̃, ỹ)) α1 ≤ 1 ψ1(x̃) =

√

Q̃sx̃2

Assumption 5.5.8

Section 5.2 ∂W
∂z g(x, z) α2 φ(z − h(x))

ΣSF

(

∂Vf (ỹ)
∂ỹ

)T

ĝ(x̃, ỹ, h̃(x̃, ỹ)) α2 ≤ 1 φ1(ŷ) =
√

Q̃f ỹ2

Assumption 5.5.9

Section 5.2 ∂V
∂x f(x, z) f(x, h(x)) β1

ΣSF

(

∂Vs(x̃)
∂x̃

)T

f̃(x̃, ỹ, h̃(x̃, ỹ)) f̃(x̃, g̃(x̃), h̃(x̃, ỹ)) β1 ≥
√

C2

Q̃sQ̃f

Assumption 5.5.10

Section 5.2 ∂W
∂x f(x, z) γ1 β2

ΣSF

(

∂Vf (ỹ)
∂x̃

)T

f̃(x̃, ỹ, h̃(x̃, ỹ)) γ1 ≥ 0 β2 ≥ 0

Table C.1: Parameters for the Comparison Functions and Inequalities that Guarantee the Asymptotic
Stability Requirements for the Simplified Example ΣSF Subsystem.

C.5.1 Bounds for the Stability Parameter of the ΣSF Stability Analysis

Needs to be noted that, due to the existent freedom on selecting β2 and γ1, the upper-bound ε∗1, Eq.

(C.105), and its d∗1 parameter, Eq. (C.104), can be precisely obtained to match the required parameters

that guarantee the asymptotic stability for the full ΣSFU system by selecting the combination of γ1 and

β2 that generates the appropriate combination of both ε∗1 and d∗1. This is obtained by solving Eqns.

(C.105) and (C.104) such:

ε∗1 =
α1α2

α1γ1 + β1β2
→ γ1(ε

⋆

1 ) =
1

α1

(

α1α2

ε⋆1
− β1β2

)

, (C.106)

and where β2 is defined by:

d∗1 =
β1

β1 + β2
→ β2(d

⋆

1 ) =
β1

d⋆1
− β1, (C.107)

where recall that ε⋆1 and d⋆1 are the selected values by the author that satisfy the asymptotic stability

properties of the full system, not to confuse with ε∗1 and d∗1, that are given by Eqns. (C.105) and (C.104).

The major difference between both, ε⋆1 , d⋆1 and ε∗1 and d∗1, is that the first appear only for the special

type of problems in which the degrees of freedom that appear during the stability analysis allow to select

β2(d
⋆

1 ) and γ1(ε
⋆

1 ), thus permitting to select the desired values of both ε1 and d1 by selecting ε⋆1 and

d⋆1 from Eqns (C.106) and (C.107), respectively. This reduces Eqns. (C.104) and (C.105) to:

d∗1 =
β1

β1 + β2(d
⋆

1 )
, (C.108)

yielding the upper bound on ε1

ε∗1 =
α1α2

γ1(ε
⋆

1 )γ1 + β1β2(d
⋆

1 )
. (C.109)

The power to select ε∗1, can be better understood since the fulfillment of the ΣSF Stability Analysis

depends on the fulfillment that the chosen ε1 in the time-scale selection (see selection 3.5) satisfies ε1 < ε∗1.
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The power to select d∗1 will be fully understood when completing the satisfy the ΣSFU Stability Analysis,

but initially can be thought as a requirement to calculate the upper bound on ε∗1, Eq. (C.109), which

requires the calculation of both β2(d
⋆

1 ), and γ1(ε
⋆

1 ), Eqns. (C.107) and (C.106), respectively, into Eq.

(C.109). By selecting d∗1 = 0.5, the ΣSFU Stability Analysis, the percentage contribution on the Lyapunov

function V1(x̃, ỹ), Eq. (C.101), is equally distributed for both Lyapunov functions Vs(x̃) and Vf (ỹ). The

selection of ε⋆1 is more straight forward, recalling the time-scale of the simplified example problem here

analyzed, which was selected as ε1 = 0.01. Therefore, recalling Eq. (C.106), and identifying that for

margin let ε⋆1 = δε1ε1 = 0.0105, where δε1 = 1.05.

Recall also that need to select the stability parameters Qs, and Qf . Although arbitrary values can be

selected in order to satisfy the asymptotic stability properties of the ΣSF -subsystem, as it will be proven

in the stability analysis for the full ΣSFU system, a specific ratio between both Qs, and Qf needs to be

chosen in order to guarantee the stability properties of the ΣSFU system, that is:

Qf = QsfQs, (C.110)

where Qsf is the ratio between both stability parameters. Also, as it will be proven in section C.6, this

ratio, for the physical parameters of the problem here discussed is given by:

Qsf = 146.0304329, (C.111)

therefore, by selecting Qs = 15, results in Qf = 2190.45649, which results in:

γ1 = 90.476068, (C.112)

β2 = 0.010757, (C.113)

which also results in β1 = 0.010757, which, along with the selection for the rest of the coefficients:

α1 = 0.95,

α2 = 0.95,

which results in ε∗1 = ε⋆1 = 0.0105, which satisfies the requirements ε1 < ε∗1, and d
⋆

1 = 0.5, and with the

dependance on the right-hand side of Eq. (C.103) on the unspecified parameter d1 sketched in Figure

C.1, which as it can be see it is adjusted to the selected d⋆1 = 0.5 and ε∗1 = 0.0105.

This concludes the first step of the asymptotic stability analysis. The ΣSF Stability Analysis asymptotic

stability analysis. The following section describes the second step of the generic asymptotic stability

analysis, the ΣSFU Stability Analysis for the simplified problem.
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Figure C.1: Adjusted Stability Upper Bounds on ε1 for the Stability Analysis of the ΣSF Subsystem
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C.6 ΣSFU Stability Analysis for the Simplified Model

Once proven the asymptotic stability of the ΣSF -subsystem, Eqns. (C.40–C.41), and a valid Lyapunov

function candidate has been obtained, Eq. (C.101). The ΣSFU Stability Analysis is conducted recalling

that the ΣSF Stability Analysis provides a composite Lyapunov function, V1, that satisfies the growth

requirements between both f̃
(

x̃, ỹ, h̃(x̃, ỹ)
)

and ĝ
(

x̃, ỹ, h̃(x̃, ỹ)
)

, therefore, and using these results, it can

be continued to prove the asymptotic stability properties of the full ΣSFU system, which, for convenience,

is rewritten as:

˜̇χ = F̃ (χ̃, z̃), (C.114)

ε1ε2 ˙̃z = ĥ(χ̃, z̃), (C.115)

where F̃ (χ̃, z̃) represents the slow dynamics of the ΣSFU full system, when applying the stretched time

constant τ2, and is given by Eqs. (C.13) and (C.14), that is

F̃ (χ̃, z̃) ,

[

f̃(χ̃, z̃)

ĝ(χ̃, z̃)

]

=

[

f̃ (x̃, ỹ, z̃)

ĝ (x̃, ỹ, z̃)

]

, (C.116)

where χ̃ represents the augmented state vector given by

χ̃ ,
[

x̃ ỹ
]T

. (C.117)

The Lyapunov function obtained during the ΣSF Stability Analysis, V1(χ̃), becomes the Lyapunov

function for the F̃ (χ̃, z̃) system, where

V1(χ̃) = (1− d1)Vs + d1Vf . (C.118)

Identifying that the new singularly perturbed ΣSFU full system defined in Eqns. (C.114–C.115) can

be decomposed into a two-time-scale by applying the stretched time scale τ2, yielding the reduced order

ΣSF -subsystem

˙̃χ = F̃ (χ̃, h̃(χ̃)) =





f̃
(

x̃, ỹ, h̃(x̃, ỹ)
)

ĝ
(

x̃, ỹ, h̃(x̃, ỹ)
)



 =

[

f̃(χ̃, h̃(χ̃))

ĝ(χ̃, h̃(χ̃))

]

, (C.119)

which is equivalent to the subsystem analyzed in the ΣSF Stability Analysis, while the boundary layer

ΣU -subsystem is defined by

dz̃

dτ2
= ĥ(χ̃, z̃), (C.120)

and with VU (ẑ) being its associated Lyapunov function. The quasi-steady-state equilibria z̃ = h̃(χ̃) that

defines the ΣSF -subsystem, Eq. (C.119) is given by

0 = ĥ(χ̃, z̃) → z̃ = h̃(χ̃). (C.121)

In a similar analysis to the one conducted in the first stage, the new Lyapunov functions must define the

growth requirements for F̃ (χ̃, z̃) and ĥ(χ̃, z̃) by satisfying certain inequalities. These growth requirements

can be divided in three main groups:

• Reduced order growth requirements, if they refer to the properties that must posses the reduced order

subsystem, F̃ (χ̃, h̃(χ̃)) .

• Boundary layer growth requirements, if they refer to the properties that must posses the boundary

layer subsystem, ĝ(χ̃, h̃(χ̃)) .

• Interconnection growth requirements, if they refer to the properties that must posses both subsys-
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tems in conjunction to prove the continuity between both the reduced order and the boundary layer

subsystems.

The properties for the isolated equilibrium at the origin are discussed in Assumption C.6.1. The growth

requirements of both the reduced and boundary layer system separately are addressed in Assumptions

C.6.2 and C.6.3 respectively, while the growth requirements that combine both reduced ΣSF and boundary

layer ΣU -subsystem requirements, called interconnection conditions, are defined in Assumptions C.6.4 and

C.6.5. These Assumptions are all described in detail bellow.

C.6.1 Isolated Equilibrium of the Origin for the Simplified Example ΣSFU

System: Assumption 5.5.1

The origin (χ̃ = 0, z̃ = 0) is a unique and isolated equilibrium of Eqns. (C.114–C.115), i.e.

0 = F̃ (0, 0), (C.122)

0 = ĥ(0, 0), (C.123)

moreover, z̃ = h̃(χ̃) is the unique root of

0 = ĥ(χ̃, z̃), (C.124)

in Bχ̃ ×Bz̃ , i.e.

0 = ĥ(χ̃, h̃(χ̃)), (C.125)

and there exists a class κ function p2(·) such that

‖ h̃(χ̃) ‖≤ p2 (‖ χ̃ ‖) . (C.126)

The reduced order growth requirements are obtained by first considering the subsystem given by Eq.

(C.114), and adding and subtracting F̃ (χ̃, h̃(χ̃)) to the right-hand side of Eq. (C.114) yielding

˙̃x = F̃
(

χ̃, h̃(χ)
)

+ F̃ (χ̃, z̃)− F̃
(

χ̃, h̃(χ̃)
)

, (C.127)

where the term F̃ (χ̃, z̃)−F̃ (χ̃, h̃(χ̃)) can be viewed as a perturbation of the reduced order ΣSF -subsystem

given by

˙̃χ = F̃
(

χ̃, h̃(χ̃)
)

, (C.128)

with F̃ (χ̃, z̃) given by

F̃ (χ̃, z̃) =

[

F̃1 (χ̃, z̃)

F̃2 (χ̃, z̃)

]

=

[

f̃(χ̃, z̃)

ĝ(χ̃, z̃)

]

=

[

f̃ (x̃, ỹ, z̃)

ĝ (x̃, ỹ, z̃)

]

, (C.129)

and where

F̃1 (χ̃, z̃) = −ρ1 (x̃+ x∗) (1 + (x̃+ x∗) (z̃ + z∗) + y∗)− bxx̃, (C.130)

F̃2 (χ̃, z̃) = −η1 ((ỹ + y∗) + (x̃+ x∗) (z̃ + z∗) + 1) , (C.131)

and with F̃ (χ̃, h̃(χ̃)) given by

F̃ (χ̃, h̃(χ̃)) =







F̃H1

(

χ̃, h̃(χ̃)
)

= F̃1 (χ̃, z̃)
∣

∣

∣

z̃=h̃(χ)

F̃H2

(

χ̃, h̃(χ̃)
)

= F̃2 (χ̃, z̃)
∣

∣

∣

z̃=h̃(χ)






, (C.132)
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therefore

F̃1

(

χ̃, h̃(χ̃)
)

= (x̃+ x∗) ỹ (ρ1 − by)− bxx̃, (C.133)

F̃2

(

χ̃, h̃(χ̃)
)

= −b̃yỹ. (C.134)

Similarly as in the ΣSF Stability Analysis, it is therefore natural to first satisfy the growth requirements

for (C.128), and then consider the effect of the perturbation term F̃ (χ̃, z̃) − F̃ (χ̃, h̃(χ̃)). Therefore let

proceed to define first the reduced order growth condition.

C.6.2 Proof of Assumption 5.5.7: Reduced System Conditions for the Sim-

plified Example

There exists a positive-definite and decreasing Lyapunov function candidate V1(χ̃) that satisfies the

following inequality

(

∂V1(χ̃)

∂χ̃

)T

F̃
(

χ̃, h̃(χ̃)
)

≤ −α3ψ
2
2(χ̃), (C.135)

where ψ2(·) is a scalar function of vector arguments which vanishes only when its argument are zero, and

satisfying that χ̃ = 0 is a stable equilibrium of the reduced order system. The left-hand side of inequality

(C.135) is given by recalling that V1(χ̃) is the associated Lyapunov function previously derived in the

ΣSF -subsystem Stability Analysis, Eq. (6.202), and defined as

V1(χ̃) = (1− d1)Vs(x̃) + d1Vf (ŷ) =
1− d1

2
Psx̃

2 +
d1
2
Pf ỹ

2, (C.136)

being therefore easy to see that

(

∂V1(χ)

∂χ̃

)T

=

[

∂V1(χ̃)
∂x̃

∂V1(χ̃)
∂ỹ

]

=

[

ν1x̃

ν2ỹ

]

, (C.137)

with

ν1 = (1− d1)Ps, (C.138)

ν2 = d1Pf , (C.139)

and also recalling that F̃ (χ̃, h̃(χ̃)) is given by

F̃ (χ̃, h̃(χ̃)) =







F̃H1

(

χ̃, h̃(χ̃)
)

= F̃1 (χ̃, z̃)
∣

∣

∣

z̃=h̃(χ)

F̃H2

(

χ̃, h̃(χ̃)
)

= F̃2 (χ̃, z̃)
∣

∣

∣

z̃=h̃(χ)






, (C.140)

with

F̃1

(

χ̃, h̃(χ̃)
)

= (x̃+ x∗) ỹ (ρ1 − by)− bxx̃, (C.141)

F̃2

(

χ̃, h̃(χ̃)
)

= −b̃yỹ. (C.142)

Expanding the left hand side of inequality (C.135) by using Eqns. (C.137) and (C.140), and noting

that from a control design point point of view it is desired that bx > ρ1, therefore resulting in

(

∂V1(χ̃)

∂χ̃

)T

F̃
(

χ̃, h̃(χ̃)
)

= ν1x̃ [(x̃+ x∗) ỹ (ρ1 − by)− bxx̃]− ν2b̃y ỹ
2

= −ν1x̃ [(x̃+ x∗) ỹ (by − ρ1)− bxx̃]− ν2b̃yỹ
2

= −ν1 (x̃+ x∗) (by − ρ1) x̃ỹ − ν1bxx̃
2 − ν2b̃y ỹ

2. (C.143)
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Equation (C.143) can be simplified by recalling that x̃ + x∗ , x, and also considering that xMAX ≥
x ≥ xMIN . With this in mind, inequality (C.143) is rewritten as

(

∂V1(χ̃)

∂χ̃

)T

F̃
(

χ̃, h̃(χ̃)
)

= −ν1 (x̃+ x∗) (by − ρ1) x̃ỹ − ν1bxx̃
2 − ν2b̃y ỹ

2,

≤ −ν1xMAX (by − ρ1) x̃ỹ − ν1bxx̃
2 − ν2b̃y ỹ

2

= −R1x̃
2 −R2ỹ

2 −R3x̃ỹ = −(χ̃T
Rχ̃χ̃), (C.144)

with Rχ̃ being given by

Rχ̃ =

(

R1 R3

R3 R2

)

, (C.145)

where

R1 = ν1bx, (C.146)

R2 = ν2b̃y, (C.147)

R3 =
1

2
ν1xMAX (by − ρ1) , (C.148)

where it is required that R to be positive definite, that is, Rχ̃ > 0, which is satisfied by observing that

R1 > 0, R2 > 0 and R3 > 0, being this last one due to the selection of bx > ρ1. Therefore, the fulfilment

of Assumption (C.6.2) reduces to prove that

− (χ̃T
Rχ̃χ̃) ≤ −α3ψ

2
2(χ̃), (C.149)

thus, the fulfillment of inequality (C.149), and, therefore, the original inequality (C.135), is done by

selecting α3 and ψ2(χ̃) such

α3 ≤ 1, (C.150)

ψ2(χ̃) =
(

χ̃
T
Rχ̃χ̃

)
1

2

. (C.151)

C.6.3 Proof of Assumption 5.5.8: Boundary-Layer System Conditions for the

Simplified Example

There exists a positive-definite and decreasing Lyapunov function candidate Vu(χ̃, z̃) such that for all

(χ̃, z̃) ∈ Bχ̃ ×Bz̃ satisfies

Vu(χ̃, z̃) > 0, ∀z̃ 6= h̃(χ̃) and Vu(χ̃, h̃(χ̃)) = 0, (C.152)

and also satisfies
(

∂Vu
∂z̃

)T

ĥ(χ̃, z̃) ≤ −α4φ
2
2(z̃ − h̃(χ̃)), α4 > 0, (C.153)

where Vu(χ̃, z̃) is the Lyapunov function candidate of the boundary layer ΣU -subsystem, Eq. (C.120)

in which χ̃ is treated as a fixed parameter, and φ2(·) is a scalar function of vector arguments which

vanishes only when its arguments are zero, and satisfying that z̃ − h̃(χ̃) is a stable equilibrium of the

boundary layer system. Both ψ2(·) and φ2(·) will be referred as comparison functions. The left-hand side

of inequality (C.153) is given by recalling that Vu is the Lyapunov function for the ΣU -subsystem, Eq.

(C.120), and is given by

Vu(ẑ) =
1

2
ẑTPuẑ =

Qu

4η2
ẑ2, (C.154)
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with

ẑ = z̃ − h̃(χ̃), (C.155)

being therefore easy to see that

(

∂Vu
∂z̃

)T

= (Puẑ)
T
=
Qu

2η2
ẑ, (C.156)

and also recalling from section C.3.4, that the ΣU -subsystem, Eq. (C.120), can be rewritten in terms of

Eq. (C.155), yielding

ĥ(χ̃, z̃) = Auẑ, (C.157)

where

Au = −η2. (C.158)

Substituting both Eqns. (C.156) and (C.157), into the left-hand side of inequality (C.153) yields

(

∂Vu
∂z̃

)T

ĥ(χ̃, z̃) = (Puẑ)
T
Auẑ = ẑTPuAuẑ = −ẑTAuẑ, (C.159)

being Au defined as

Au = PuAu =
Qu

2
. (C.160)

Therefore the left-hand side of inequality (C.6.3) reduces to

(

∂VU
∂z̃

)T

ĥ(χ̃, z̃) = −1

2

(

ẑTQuẑ
)

, (C.161)

where Qu is given by Eq. (C.37). Let introduce Q̃u = Qu

2 , thus inequality (C.153) can be rewritten

as
(

∂Vu
∂z̃

)T

ĥ(χ̃, z̃) = −
(

ẑT Q̃U ẑ
)

≤ −α4φ
2
2(z̃ − h̃(χ̃)). (C.162)

Therefore inequality (C.153) can be satisfied by selecting α4 and φ2(ẑ) such

α4 ≤ 1, (C.163)

φ2(ẑ) =
(

ẑT Q̃uẑ
)

1

2

=
(

Q̃uẑ
2
)

1

2

. (C.164)

For simplicity φ2(ẑ) will be used instead of φ2(z̃ − h̃(χ̃)) throughout the reminder of the document,

recalling that ẑ = z̃ − h̃(χ̃, z̃).

C.6.4 Proof of Assumption 5.5.9: First Interconnection Condition for the

Simplified Example

The Lyapunov functions V1(χ̃) and Vu(χ̃, z̃) must satisfy the so called interconnection conditions. The

first interconnection condition is obtained by computing the derivative of VS(x̃) along the solution of Eq.

(C.127), resulting in

V̇1(χ̃) =
∂V1
∂χ̃

F̃
(

χ̃, h̃(χ̃)
)

+
∂V1
∂χ̃

[

F̃ (χ̃, z̃)− F̃ (χ̃, h̃(χ̃))
]

(C.165)

≤ −α3ψ
2
2χ̃+

∂V1
∂χ̃

[

F̃ (χ̃, z̃)− F̃
(

χ̃, h̃(χ̃)
)]

, (C.166)
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thus assuming that

(

∂V1(χ̃)

∂χ̃

)T
[

F̃ (χ̃, z̃)− F̃
(

χ̃, h̃(χ̃)
)]

≤ β3ψ2(χ̃)φ2(z̃ − h̃(χ̃)), (C.167)

so that

V̇1 ≤ −α3ψ
2
2(χ̃) + β3ψ2(χ̃)φ2(χ̃− h̃(χ̃)). (C.168)

Inequality (C.167) determines the allowed growth of F̃ (χ̃, z̃) in z̃, and in typical problems, verifying

Assumption C.6.4 reduces to verifying the inequality
∥

∥

∥F̃ (χ̃, z̃)− F̃
(

χ̃, h̃(χ̃)
)∥

∥

∥ ≤ ψ2(χ̃)φ2(z̃ − h̃(χ̃)), (C.169)

which implies that the rate of growth of F̃ (χ̃, z̃) cannot be faster than the rate of growth of the com-

parison function φ2(·). The left-hand side of inequality (C.167) is given by recalling that, as previously

derived
(

∂V1(χ)

∂χ̃

)T

=

[

∂V1(χ̃)
∂x̃

∂V1(χ̃)
∂ỹ

]

=

[

ν1x̃

ν2ỹ

]

, (C.170)

with

ν1 = (1− d1)Ps, (C.171)

ν2 = d1Pf , (C.172)

and recalling that as seen previously, F̃ (χ̃, z̃) is given by

F̃ (χ̃, z̃) =

[

F̃1 (χ̃, z̃)

F̃2 (χ̃, z̃)

]

=

[

f̃(χ̃, z̃)

ĝ(χ̃, z̃)

]

=

[

f̃ (x̃, ỹ, z̃)

ĝ (x̃, ỹ, z̃)

]

, (C.173)

with

F̃1 (χ̃, z̃) = −ρ1 (x̃+ x∗) [1 + (x̃+ x∗) (z̃ + z∗) + y∗]− bxx̃, (C.174)

F̃2 (χ̃, z̃) = −η1 [(ỹ + y∗) + (x̃+ x∗) (z̃ + z∗) + 1] , (C.175)

and with F̃
(

χ̃, h̃(χ̃)
)

given by

F̃ (χ̃, h̃(χ̃)) =







F̃H1

(

χ̃, h̃(χ̃)
)

= F̃1 (χ̃, z̃)
∣

∣

∣

z̃=h̃(χ)

F̃H2

(

χ̃, h̃(χ̃)
)

= F̃2 (χ̃, z̃)
∣

∣

∣

z̃=h̃(χ)






, (C.176)

with

F̃1

(

χ̃, h̃(χ̃)
)

= (x̃+ x∗) ỹ (ρ1 − by)− bxx̃, (C.177)

F̃2

(

χ̃, h̃(χ̃)
)

= −b̃yỹ, (C.178)

therefore having that

F̃ (χ̃, z̃)− F̃ (χ̃, h̃(χ̃)) =

[

F̃1 − F̃H1

F̃2 − F̃H2

]

=

[

F̂1

F̂2

]

, (C.179)

being

F̂1 = −ρ1 (x̃+ x∗) [1 + (x̃+ x∗) (z̃ + z∗) + y∗]− (x̃+ x∗) ỹ (ρ1 − by) , (C.180)

F̂2 = −η1 [(ỹ + y∗) + (x̃+ x∗) (z̃ + z∗) + 1] + b̃yỹ. (C.181)

It can be proven that both, F̂1 and F̂2, Eqns. (C.180) and (C.181), respectively, can be expressed in
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terms of the quasi-steady-state equilibrium (6.23) where

h̃(χ̃) = h̃(x̃, ỹ) = z̃ = − 1

x̃+ x∗

[

(ỹ + y∗) + 1− b̃y
η1
ỹ

]

− z∗, (C.182)

resulting in

F̂1 = −ρ1 (x̃+ x∗) [1 + (x̃+ x∗) (z̃ + z∗) + y∗]− (x̃+ x∗) ỹ (ρ1 − by)

= −ρ1 (x̃+ x∗)
2
(

z̃ − h̃(x̃, ỹ)
)

= −ρ1 (x̃+ x∗)
2
ẑ, (C.183)

F̂2 = −η1 [(ỹ + y∗) + (x̃+ x∗) (z̃ + z∗) + 1] + b̃yỹ

= −η1 (x̃+ x∗)2
(

z̃ − h̃(x̃, ỹ)
)

= −η1 (x̃+ x∗)
2
ẑ, (C.184)

therefore using (C.170), (C.183), and (C.184) into inequality (C.169) results in

(

∂V1(χ̃)

∂χ̃

)T
[

F̃ (χ̃, z̃)− F̃
(

χ̃, h̃(χ̃)
)]

= −ν1x̃ρ1 (x̃+ x∗)
2
ẑ − ν2ỹη1 (x̃+ x∗)

2
ẑ

≤ β3ψ2(χ̃)φ2(z̃ − h̃(χ̃)). (C.185)

Recalling the definition of the comparison functions ψ2(χ̃) and φ2(ẑ), Eqns. (C.151) and (C.164),

respectively, permits to rewrite inequality (C.185) as

(

∂V1(χ̃)

∂χ̃

)T
[

F̃ (χ̃, z̃)− F̃
(

χ̃, h̃(χ̃)
)]

= −ν1x̃ρ1 (x̃+ x∗)
2
ẑ − ν2ỹη1 (x̃+ x∗)

2
ẑ

≤ β3

(

χ̃T
Rχ̃χ̃

)
1

2
(

Q̃uẑ
2
)

1

2

, (C.186)

therefore, the fulfillment of the original inequality (C.167) reduces to prove

− ν1x̃ρ1 (x̃+ x∗)
2
ẑ − ν2ỹη1 (x̃+ x∗)

2
ẑ ≤ β3

(

χ̃T
Rχ̃χ̃

)
1

2
(

Q̃uẑ
2
)

1

2

. (C.187)

The left-hand side of inequality (C.187) can be simplified by recalling that x̃ + x∗ , x, and also

xMAX ≥ x ≥ xMIN . With this in mind, let define

D1 = ν1ρ1x
2
MAX = (1 − d1)Psρ1x

2
MAX , (C.188)

D2 = ν2η1x
2
MAX = d1Pfη1x

2
MAX , (C.189)

therefore the left hand side of inequality (C.187) can be rewritten as

− ν1x̃ρ1 (x̃+ x∗)
2
ẑ − ν2ỹη1 (x̃+ x∗)

2
ẑ ≤ −ẑ (D1x̃+D2ỹ)

≤ β3

(

χ̃T
Rχ̃χ̃

)
1

2
(

Q̃uẑ
2
)

1

2

, (C.190)

therefore fulfillment of Assumption C.6.4 reduces to prove inequality

− ẑ (D1x̃+D2ỹ) ≤ β3

(

χ̃T
Rχ̃χ̃

)
1

2
(

Q̃uẑ
2
)

1

2

. (C.191)

In order to obtain the constant β3 that guarantees the fulfillment of inequality (C.191), that is, fulfilling

Assumption C.6.4 for the first interconnection growth requirement, let square both sides of inequality

(C.191), resulting in

ẑ2 (D1x̃+D2ỹ)
2 ≤ β2

3

(

χ̃T
Rχ̃χ̃

)(

Q̃uẑ
2
)

, (C.192)

therefore reducing the fulfillment of the original inequality (C.167) to find the β3 constant that satisfies
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the inequality given by

ẑ2
(

D2
1x̃

2 +D2
2 ỹ

2 + 2D1D2x̃ỹ
)2 ≤ β2

3Q̃uẑ
2
(

R1x̃
2 +R2ỹ

2
1 + 2R3x̃ỹ

)

, (C.193)

with β3 given by

β3 = max (β3a , β3b , β3c) , (C.194)

where

β3a ≥
√

D2
1

Q̃uR1

, (C.195)

β3b ≥
√

D2
2

Q̃uR2

, (C.196)

β3c ≥
√

D1D2

Q̃uR3

, (C.197)

with R1, R2, and R3 given in Eqns. (C.146), (C.147), and (C.148), respectively, and D1, and D2 given

in (C.188), (C.189). The expressions (C.195), (C.196) and (C.197) can be expanded resulting in

β3a ≥
√

D2
1

Q̃uR1

=

√

(1− d1)ρ21x
4
MAX

b2x

Qs

Qu
, (C.198)

β3b ≥
√

D2
2

Q̃uR2

=

√

d1η21x
4
MAX

b̃2y

Qf

Qu
, (C.199)

β3c ≥
√

D1D2

Q̃uR3

=

√

√

√

√

2d1ρ1η1x3MAX

b̃y

(

b̃y − ρ1

)

Qf

Qu
, (C.200)

where observing Eqns. (C.198–C.200), the final selection of β3 depends on physical parameters given by

the problem, and the selection of Qs and Qf . From inspection it can be proven that, for Qs > 0 and

Qf > 0, β3b > β3a and β3b > β3c therefore resulting in

β3 = max (β3a , β3b , β3c) = β3b =

√

d1η21x
4
MAX

b̃2y

Qf

Qu
, (C.201)

where as it will be shown in the stability results, see section C.6, the proper selection of both, Qs and

Qf , will determine the final properties of the stability analysis for the full ΣSFU system. Such selection

will be described in detail in section C.7.

C.6.5 Proof of Assumption 5.5.10: Second Interconnection Condition for the

Simplified Example

The second interconnection condition is defined by the inequality

(

∂Vu(ẑ)

∂χ̃

)T

F̃ (χ̃, z̃) ≤ γ2φ
2
2(ẑ) + β4ψ2(χ̃)φ2(ẑ), (C.202)

where ψ2(·) and φ2(·) have been previously derived by satisfying the assumptions C.6.2 and C.6.3. The

left-hand side of inequality (C.202) is defined after recalling Vu(ẑ), Eq. (C.36), and F̃ (χ̃, z̃), Eq. (C.116),

with

F̃ (χ̃, z̃) =

[

F̃1 (χ̃, z̃)

F̃2 (χ̃, z̃)

]

, (C.203)
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with

F̃1 (χ̃, z̃) = −ρ1 (x̃+ x∗) [1 + (x̃+ x∗) (z̃ + z∗) + y∗]− bxx̃, (C.204)

F̃2 (χ̃, z̃) = −η1 [(ỹ + y∗) + (x̃+ x∗) (z̃ + z∗) + 1] . (C.205)

Inequality (C.202) can therefore be rewritten by adding and subtracting F̃
(

χ̃, h̃(χ̃)
)

to F̃ (χ̃, z̃) in the

left-hand side of Eq. (C.202) resulting in

∂Vu
∂χ̃

F̃ (χ̃, z̃) ≤ ∂Vu
∂χ̃

F̃ (χ̃, h̃(χ̃)) +
∂Vu
∂χ̃

[

F̃ (χ̃, z̃)− F̃ (χ̃, h̃(χ̃))
]

≤ β4ψ2(χ̃)φ2(ẑ) + γ2φ
2
2(ẑ). (C.206)

Fulfillment of inequality (C.206) can be fulfilled by splitting it into two inequalities given by

∂Vu
∂χ̃

[

F̃ (χ̃, z̃)− F̃ (χ̃, h̃(χ̃))
]

≤ γ2φ
2
2(ẑ), (C.207)

∂Vu
∂χ̃

F̃ (χ̃, h̃(χ̃)) ≤ β4ψ2(χ̃)φ2(ẑ), (C.208)

therefore, assumption (C.202) will be proven if both inequalities, Eqns. (C.207) and (C.208), respectively,

are fulfilled. Considering the first inequality, Eq. (C.207), it can be seen that the left-hand side of

assumption (C.207) is defined by

[

∂Vu
∂χ̃

]

=











∂Vu
∂x

∂Vu
∂ỹ











, (C.209)

where

∂Vu
∂x̃

= −Puẑ
∂h̃(χ̃)

∂x̃
, (C.210)

∂Vu
∂ỹ

= −Puẑ
∂h̃(χ̃)

∂ỹ
, (C.211)

where for conciseness let

h̃x̃ =
∂h̃(χ̃)

∂x̃
= − h̃(χ̃)

x̃+ x∗
=

1

(x̃+ x∗)
2

[

(ỹ + y∗) + 1− b̃y
η1
ỹ

]

, (C.212)

h̃ỹ =
∂h̃(χ̃)

∂ỹ
= − 1

x̃+ x∗

[

1− b̃y
η1

]

. (C.213)

Recall that, from a control point of view, it is desired that b̃y > η1, and therefore,
b̃y
η1
> 1, thus rewriting

Eq. (C.213) as

h̃ỹ =
1

x̃+ x∗

[

b̃y
η1

− 1

]

. (C.214)

Therefore, using Eqns. (C.212) and (C.214), permits to rewrite Eq. (C.209) as

[

∂Vu
∂χ̃

]

=











∂Vu
∂x

∂Vu
∂ỹ











=

[

−Puẑh̃x̃

−Puẑh̃ỹ

]

, (C.215)

with h̃x̃ and h̃ỹ being defined in Eqns. (C.212) and (C.213), respectively. Recalling that F̂1 and F̂2 are
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given in Eqns. (C.183) and (C.184). Expanding the left-hand side of inequality (C.207) results in

∂Vu
∂χ̃

[

F̃ (χ̃, z̃)− F̃ (χ̃, h̃(χ̃))
]

=
∂Vu
∂x̃

F̂1 +
∂Vu
∂ỹ

F̂2

= Pu (x̃+ x∗)
2
ẑ2
(

ρ1h̃x̃ + η1h̃ỹ

)

≤ γ2φ
2
2(ẑ). (C.216)

The left-hand side of inequality (C.216) can be simplified by introducing

Ĥx̃ = (x̃+ x∗)2 h̃x̃ = (ỹ + y∗) + 1− b̃y
η1
ỹ, (C.217)

Ĥỹ = (x̃+ x∗)
2
h̃ỹ = − (x̃+ x∗)

[

1− b̃y
η1

]

, (C.218)

and recalling that x̃+x∗ , x, and xMAX ≥ x ≥ xMIN , therefore permitting to rewrite inequality (C.216)

as

∂Vu
∂χ̃

[

F̃ (χ̃, z̃)− F̃ (χ̃, h̃(χ̃))
]

=
∂Vu
∂x̃

F̂1 +
∂Vu
∂ỹ

F̂2

= Pu (x̃+ x∗)
2
ẑ2
(

ρ1h̃x̃ + η1h̃ỹ

)

≤ Puẑ
2
(

ρ1Ĥx̃ + η1Ĥỹ

)

≤ γ2φ
2
2(ẑ), (C.219)

therefore, the fulfillment of inequality (C.207) reduces to satisfy

Puẑ
2
(

ρ1Ĥx̃ + η1Ĥỹ

)

≤ γ2φ
2
2(ẑ), (C.220)

Recalling also that from previous analysis of the states as seen in Table 2.3 that

ỹMAX ≥ ỹ ≥ ỹMIN , (C.221)

with ỹMIN = −ỹMAX , therefore, and recalling the definitions of Ĥx̃ and Ĥỹ, Eqns. (C.217) and (C.218),

respectively, it can be shown that inequality (C.220) can be further reduced by maximizing the left hand

side resulting in

Pux
2
MAX ẑ

2
(

ρ1h̃x̃ + η1h̃ỹ

)

≤ Pux
2
MAX ẑ

2
(

ρ1Ĥx̃MAX
(b̃y) + η1ĤỹMAX

(b̃y)
)

≤ γ2φ
2
2(ẑ), (C.222)

with Ĥx̃MAX
(b̃y) and ĤỹMAX

(b̃y) being the maximum values of (C.217) and (C.218), respectively, and

given by

Ĥx̃MAX
(b̃y) =

(

(ỹ + y∗) + 1− b̃y
η1
ỹ

)

MAX

, (C.223)

ĤỹMAX
(b̃y) =

[

(x̃+ x∗)

(

b̃y
η1

− 1

)]

MAX

, (C.224)

where it can be proven that both, Eq. (C.223) and Eq. (C.224), are maximized by selecting

(x̃+ x∗) , x → xMAX , (C.225)

(ỹ + y∗) , y → yMIN , (C.226)

ỹ → ỹMIN , (C.227)

therefore allowing to rewrite Eqns. (C.223) and (C.224) as

Ĥx̃MAX
(b̃y) = yMIN + 1− b̃y

η1
ỹMIN , (C.228)
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ĤỹMAX
(b̃y) = xMAX

[

b̃y
η1

− 1

]

. (C.229)

Inequality (C.222) can therefore be rewritten as

Pu

(

ρ1Ĥx̃MAX
(b̃y) + η1ĤỹMAX

(b̃y)
)

ẑ2 = Ñ ẑ2 ≤ γ2Q̃uẑ
2, (C.230)

with

Ñ = Pu

(

ρ1Ĥx̃MAX
(b̃y) + η1ĤỹMAX

(b̃y)
)

, (C.231)

this allowing to rewrite the original inequality (C.202) as

∂Vu
∂χ̃

[

F̃ (χ̃, z̃)− F̃ (χ̃, h̃(χ̃))
]

≤ Ñ ẑ2 ≤ γ2Q̃uẑ
2, (C.232)

therefore, reducing the fulfillment of the original inequality (C.202) to find the γ2 constant that satisfies

the inequality (C.232), which is achieved by selecting γ2 as

γ2 ≥ Ñ
Q̃u

. (C.233)

It can be shown by expanding the right-hand side of Eq (C.233), and using the definition of Pu = Qu

2η2

that

Ñ
Q̃u

=
2Pu

(

ρ1Ĥx̃MAX
(b̃y) + η1ĤỹMAX

(b̃y)
)

Qu
=
ρ1Ĥx̃MAX

(b̃y) + η1ĤỹMAX
(b̃y)

η2
, (C.234)

thus implying that γ2 does only depend on the problem variables

γ2 ≥ ρ1Ĥx̃MAX
(b̃y) + η1ĤỹMAX

(b̃y)

η2
, (C.235)

with Ĥx̃MAX
(b̃y) and ĤỹMAX

(b̃y) defined in Eqns. (C.228) and (C.229), respectively. Once proven the

first inequality, let proceed to prove the second interconnection inequality , Eq. (C.208), which is given

by

∂Vu
∂χ̃

F̃ (χ̃, h̃(χ̃)) ≤ β4ψ2(χ̃)φ2(ẑ), (C.236)

where the left-hand side of assumption (C.236) is defined by

[

∂Vu
∂χ̃

]

=











∂Vu
∂x

∂Vu
∂ỹ











=

[

−Puẑh̃x̃

−Puẑh̃ỹ

]

, (C.237)

and where

F̃ (χ̃, h̃(χ̃)) =







F̃H1

(

χ̃, h̃(χ̃)
)

= F̃1 (χ̃, z̃)
∣

∣

∣

z̃=h̃(χ)

F̃H2

(

χ̃, h̃(χ̃)
)

= F̃2 (χ̃, z̃)
∣

∣

∣

z̃=h̃(χ)






, (C.238)

with

F̃H1

(

χ̃, h̃(χ̃)
)

= (x̃+ x∗) ỹ (ρ1 − by)− bxx̃

= − (x̃+ x∗) ỹ (by − ρ1)− bxx̃, (C.239)

F̃H2

(

χ̃, h̃(χ̃)
)

= −b̃yỹ. (C.240)

The left-hand side of inequality (C.236) can be expanded using Eqns. (C.237), (C.239), and (C.240),
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thus becoming

∂Vu
∂χ̃

F̃ (χ̃, h̃(χ̃)) =
∂Vu
∂x̃

F̃H1
+
∂Vu
∂ỹ

F̃H2

= Puh̃x̃ẑ [(x̃+ x∗) (by − ρ1) ỹ + bxx̃] + Puh̃ỹ b̃y ỹẑ

= Puẑ
[

(x̃+ x∗) bxh̃x̃x̃+
[

(x̃+ x∗) (by − ρ1) h̃x̃ + h̃ỹ b̃y

]

ỹ
]

= ẑ
(

L̃1x̃+ L̃2ỹ
)

, (C.241)

with

L̃1 = Pu (x̃+ x∗) bxh̃x̃, (C.242)

L̃2 = Pu

[

(x̃+ x∗) (by − ρ1) h̃x̃ + h̃ỹ b̃y

]

, (C.243)

where h̃x̃ and h̃ỹ are given by using Eqns. (C.212) and (C.214), therefore the fulfillment of inequality

(C.236) reduces to satisfy the inequality given by

ẑ
(

L̃1x̃+ L̃2ỹ
)

≤ β4ψ2(χ̃)φ2(ẑ). (C.244)

It can be shown that inequality (C.244) can be further reduced by maximizing the left hand side such

that results in

ẑ
(

L̃1x̃+ L̃2ỹ
)

≤ ẑPu

(

L̃1MAX
(bx, b̃y)x̃+ L̃2MAX

(b̃y)ỹ
)

≤ β4ψ2(χ̃)φ2(ẑ), (C.245)

with L̃1MAX
(bx, b̃y) and L̃2MAX

(b̃y) being the maximum allowable values of Eqns. (C.242) and (C.243),

respectively, where

L̃1MAX
(bx, b̃y) =

[

(x̃+ x∗) bxh̃x̃

]

MAX
, (C.246)

L̃2MAX
(b̃y) =

[

(x̃+ x∗) (by − ρ1) h̃x̃ + h̃ỹ b̃y

]

MAX
, (C.247)

where recalling the definitions of both h̃x̃ and h̃ỹ, Eqns. (C.212) and (C.214), respectively, thus

rewriting

L̃1MAX
(bx, b̃y) = bx

[

1

x̃+ x∗

[

(ỹ + y∗) + 1− b̃y
η1
ỹ

]]

MAX

, (C.248)

L̃2MAX
(b̃y) =

{

(by − ρ1)

[

1

x̃+ x∗

(

(ỹ + y∗) + 1− b̃y
η1
ỹ

)]

+ b̃y

(

b̃y
η1

− 1

)}

MAX

, (C.249)

where it can be proven that both Eq. (C.248), and Eq. (C.249), are maximized by selecting

(x̃+ x∗) , x → xMIN , (C.250)

(ỹ + y∗) , y → yMAX , (C.251)

ỹ → ỹMIN , (C.252)

x∗ → x∗MAX , (C.253)

y∗ → y∗MIN , (C.254)

therefore, rewriting Eq. (C.248) and Eq. (C.249) as

L̃1MAX
(bx, b̃y) = bx

[

1

xMIN

(

yMAX + 1− b̃y
η1
ỹMIN

)]

, (C.255)

L̃2MAX
(b̃y) =

{

(by − ρ1)

[

1

xMIN

(

yMAX + 1− b̃y
η1
ỹMIN

)]

+ b̃y

(

b̃y
η1

− 1

)}

. (C.256)

In order to obtain the constant β4 that guarantees the fulfillment of inequality (C.245), that is, fulfilling
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Assumption C.6.5 for the first interconnection growth requirement, let square both sides of inequality

(C.245), resulting in

P 2
u ẑ

2
(

L̃1MAX
(bx, b̃y)x̃+ L̃2MAX

(b̃y)ỹ
)2

≤ β2
4

(

χ̃T
Rχ̃χ̃

)

Q̃uẑ
2, (C.257)

where, after expanding, results in

P 2
u

(

(

L̃1MAX
(bx, b̃y)

)2

x̃2 +
(

L̃2MAX
(b̃y)

)2

ỹ2 + 2L̃1MAX
(bx, b̃y)L̃2MAX

(b̃y)x̃ỹ

)2

ẑ2

≤ β2
4

(

R1x̃
2 +R2ỹ

2
1 + 2R3x̃ỹ

)

Q̃uẑ
2, (C.258)

therefore reducing the fulfillment of the original inequality (C.208) to find the β4 constant that satisfies

inequality (C.258) with β4 given by

β4 = max (β4a , β4b , β4c) , (C.259)

where

β4a ≥

√

√

√

√

P 2
u

(

L̃1MAX
(bx, b̃y)

)2

Q̃uR1

, (C.260)

β4b ≥

√

√

√

√

P 2
u

(

L̃2MAX
(b̃y)

)2

Q̃uR2

, (C.261)

β4c ≥
√

P 2
u L̃1MAX

(bx, b̃y)L̃2MAX
(b̃y)

Q̃uR3

, (C.262)

with R1, R2, and R3 given in Eqns. (C.146), (C.147), and (C.148), respectively, and L̃1MAX
(bx, b̃y),

and L̃2MAX
(b̃y) given in Eqns. (C.255), and (C.256), respectively. The expressions (C.260), (C.261) and

(C.262) can be expanded resulting in

β4a ≥

√

√

√

√

(

L̃1MAX
(bx, b̃y)

)2

Q̃uR1

=

√

√

√

√

(

L̃1MAX
(bx, b̃y)

)2

η22(1 − d1)

Qu

Qs
, (C.263)

β4b ≥

√

√

√

√

(

L̃2MAX
(b̃y)

)2

Q̃uR2

=

√

√

√

√

(

L̃2MAX
(b̃y)

)2

η22d1

Qu

Qf
, (C.264)

β4c ≥
√

L̃1MAX
(bx, b̃y)L̃2MAX

(b̃y)

Q̃uR3

=

√

√

√

√

L̃1MAX
(bx, b̃y)L̃2MAX

(b̃y)

η22(1 − d1)xMAX

(

b̃y − ρ1

)

Qu

Qs
, (C.265)

where observing Eqns. (C.263–C.265), the final selection of β4 depends on physical parameters given by

the problem, and the selection of stability parameters, Qs, Qf , and Qu. From inspection it can be proven

that, for positive Qs > 0 , results in Qf > 0 and Qu > 0, β4a > β4b and β4a > β4b therefore resulting

in

β4 = max (β4a , β4b , β4c) = β4a =

√

√

√

√

(

L̃1MAX
(bx, b̃y)

)2

η22(1 − d1)

Qu

Qs
, (C.266)

where as it will be shown in the stability results, see section C.7, the proper selection of both, Qs and

Qf , will determine the final properties of the stability analysis for the full ΣSFU system. Such selection

will be described in detail in section C.7. The proper selection of γ2, Eq. (C.233), and β4, Eq. (C.259),

satisfies both inequalities (C.207) and (C.208), therefore, satisfying inequality (C.202) and concluding

the asymptotic stability analysis of the full ΣSFU system.
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C.7 Fulfillment of the Simplified Example ΣSFU Stability

Analysis

If assumptions C.6.1, C.6.2, C.6.3, C.6.4, and C.6.5 are all satisfied, then the growth requirements of

F̃ (χ̃, z̃) and ĝ(χ̃, z̃) are satisfied, and with the Lyapunov functions V1(χ̃) and Vu(χ̃, z̃) defined, a new

Lyapunov function candidate V2(χ̃, z̃) is considered and defined by the weighted sum of V1(χ̃) and

Vu(χ̃, z̃), given by

V2(χ̃, z̃) = (1− d2)V1(χ̃) + d2Vu(ẑ), d2 ∈ (0, 1), (C.267)

for 0 < d2 < 1. The newly defined function V2(χ̃, z̃) becomes the Lyapunov function candidate for the

singular perturbed ΣSFU full system (C.114–C.115). To explore the freedom in choosing the weights, lets

take d2 as an unspecified parameter in the interval (0, 1). From the properties of V1(χ̃) and Vu(χ̃, z̃) and

inequality (C.126), that is ‖ h̃(χ̃) ‖≤ p2 (‖ χ̃ ‖), where p2(·) is a κ function, it follows that V2(χ̃, z̃) is

positive-definite. Computing the time derivative of V2(χ̃, z̃) along the trajectories of F̃ (χ̃, z̃) and ĝ (χ̃, z̃)

results in

V̇2 = (1− d2)
∂V1
∂χ̃

F̃ (χ̃, z̃) +
d2
ε1ε2

∂Vu
∂z̃

ĝ (χ̃, z̃) + d2
∂Vu
∂χ̃

F̃ (χ̃, z̃)

= (1− d2)
∂V1
∂χ̃

F̃
(

χ̃, h̃(χ̃)
)

+ (1− d2)
∂V1
∂χ̃

[

F̃ (χ̃, z̃)− F̃
(

χ̃, h̃(χ̃)
)]

+
d2
ε1ε2

∂Vu
∂z̃

ĝ (χ̃, z̃) + d2
∂Vu
∂χ̃

F̃ (χ̃, z̃) . (C.268)

Using the inequalities in Assumptions C.6.2, C.6.3, C.6.4 and C.6.5, allows to rewrite Eq. (C.268)

as

V̇2 ≤ −(1− d2)α3ψ
2
1(x̃) + (1− d2)β3ψ2(χ̃)φ2(χ̃− h̃(χ̃))

− d2
ε1ε2

α4φ
2
2(χ̃ − h̃(χ̃)) + d2γ2φ

2
2(χ̃ − h̃(χ̃)) + d2β4ψ2(χ̃)φ2(χ̃− h̃(χ̃))

= −
[

ψ2(χ̃)

φ2(z̃)− h̃(χ̃)

]T




(1 − d2)α3 − 1
2 (1− d2)β3 − 1

2d2β4

− 1
2 (1− d2)β3 − 1

2d2β4 d2

(

α4

ε1ε2
− γ2

)





×
[

ψ2(χ̃)

φ2(z̃ − h̃(χ̃))

]

. (C.269)

The right-hand side of Eq. (C.269) is a quadratic form in ψ2(χ̃) and φ2(χ̃− h̃(χ̃)), where the quadratic

form is negative-definite when

d2(1− d2)α3

(

α4

ε1ε2
− γ2

)

>
1

4
[(1− d2)β3 + d2β4]

2
, (C.270)

which is equivalent to

1

ε1ε2
>

1

α3α4

[

α3γ +
1

4(1− d)d
[(1− d)β3 + dβ4]

2

]

, (C.271)

where from (C.271) it can be obtained an expression for ε2 as

ε2 <
α3α4

ε1

[

α3γ2 +
1

4(1− d2)d2
[(1 − d2)β3 + d2β4]

2

] ≡ ε2d . (C.272)

From inequality (C.272), it can be seen that, depending on the nature of the selected ε1, it will translate
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into different upper-bounds on ε2d , where the most conservative upper-bound, that is the smallest possible

ε2d , is given by the maximum allowable value of ε1 that guarantees the asymptotic stability properties of

the ΣSF -subsystem, which is obtained by selecting the ε⋆1 that was chosen in the ΣSF Stability Analysis,

resulting in a conservative upper-bound for the problem here studied.

Therefore, by defining ε⋆1 = dε1ε1, where dε1 represents the percentage of margin that is applied to

the upper-bound, where for the problem here studied, it is selected as dε1 = 1.05, translating that for

safety, the ε∗1 is assumed to be 5% higher than the ε1 selected for the three-time-scale model. For the

simplified problem, the selected parasitic constant for the ΣSF -subsystem and given by ε1 = 0.01, thus

ε⋆1 = 0.0105. Recalling from the ΣSF asymptotic stability analysis conducted in section C.4, is given in

Eq. (C.109) as

ε∗1 = ε⋆1 =
α1α2

α1(d
⋆

1 )γ1(ε
⋆

1 ) + β1β2
, (C.273)

therefore, substituting Eq. (C.273) into Eq. (C.272) results in

ε2 <
α1γ1(ε

⋆

1 ) + β1(d
⋆

1 )β2
α1α2

α3α4

ε1

[

α3γ2 +
1

4(1− d2)d2
[(1− d2)β3 + d2β4]

2

] ≡ ε2d , (C.274)

where ε2 represents a more conservative upper-bound on ε2. The choice of ε2, Eq. (C.274), is a more

suitable expression for the stability analysis conducted on the ΣSFU full system, since considers a suitable

upper-bound value with a safety margin given by selecting ε⋆1 = dε1ε1, where dε1 = 1.05. Therefore, with

this in mind, to satisfy the stability properties of the full ΣSFU system, the results from Eq. (C.274) are

sufficient since imply the maximum upper-bound on ε2 for the selected ε⋆1 . Therefore inequality (C.274)

shows that for any choice of d2, the corresponding V2(χ̃, z̃) is a Lyapunov function for the singular

perturbed ΣSFU system for all ε2 satisfying inequality (C.274). The dependance on the right-hand side

of Eq. (C.274) on the unspecified parameter d2 will be studied in section C.6. Analyzing (C.274), the

maximum value of ε2 occurs at

d∗2 =
β3

β3 + β4
, (C.275)

yielding for the upper-bound

ε∗2 =
α3α4

ε⋆1 (α3γ2 + β3β4)
. (C.276)

Therefore it can be inferred that the equilibrium point of the singularly perturbed ΣSFU full system

(C.114–C.115) is asymptotically stable for all ε2 < ε∗2. The number ε∗2 is the best upper bound on ε2

that can be provided by the above presented stability analysis. Assumptions C.6.2, C.6.3, C.6.4 and

C.6.5 are summarized in Table C.7, where it can be seen the similarities between the two-time-scale

growth requirements described in Section 5.2.1, and the three-time-scale growth requirements for the full

ΣSFU system here derived. The asymptotic stability analysis presented can be summarizes in Theorem

C.7.1.

Theorem C.7.1 : Let inequalities (C.135), (C.153), (C.167), and (C.202) be satisfied. Then the origin

is an asymptotically stable equilibrium of the singularly perturbed ΣSFU system, Eqns. (C.114–C.115),

for all ε2 ∈ (0, ε∗2), where ε
∗
2 is given by Eq. (C.276). Moreover, for every number d2 ∈ (0, 1)

V2(χ̃, z̃) = (1− d2)V1(χ̃) + d2Vu(χ̃, z̃), (C.277)

is a Lyapunov function for all ε2 ∈ (0, ε2d), where ε2d ≤ ε∗2 is given by Eq. (C.276).

Theorem C.7.1 can be summarized by understanding that χ̃ = 0 is an asymptotically stable equilibrium
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of the reduced ΣSF -subsystem, Eq. (C.119), and z̃ = h̃(χ̃) is an asymptotically stable equilibrium of

the boundary-layer ΣU -subsystem, Eq. (C.120), uniformly in χ̃, that is, the ε− δ definition of Lyapunov

stability and the convergence z̃ → h̃(χ̃) are uniform in χ̃ (Vidyasagar, 2002), and if F̃ (χ̃, z̃) and ĝ (χ̃, z̃)

satisfy certain growth conditions on the reduced and boundary-layer systems, then the origin is an

asymptotically stable equilibrium of the singularly perturbed ΣSFU full system, Eqns. (C.114–C.115),

for sufficiently small ε2. (Kokotović et al., 1986; Kokotović et al., 1987; Kokotović et al., 1999).

Similarly as in ΣSF Stability Analysis, due to the fact that the system is expressed in its error dy-

namics form, and that the use of the full range of reachable state variables has been required in order

to satisfy the inequalities that guarantee the asymptotic stability properties at the origin of the ΣSFU -

subsystem, these asymptotic stability properties are also extended to semiglobal stability, by the definition

in (Kokotović, 1992; Sussmann and Kokotović, 1991; Braslavsky and Miidleton, 1996), by providing up-

per bounds on the parasitic singularly perturbed parameters for the entire range of admissible state

values, thus extending the domain of attraction to that same rage of admissible states.

Assumption 5.5.7

Section 5.2 ∂V
∂x f(x, h(x)) α1 ψ(x)

ΣSFU

(

∂V1(χ̃)
∂χ̃

)T

F̃ (χ̃, h̃(χ̃)) α3 ≤ 1 ψ2(χ̃) =
(

χ̃T
Rχ̃χ̃

)
1

2

Assumption 5.5.8

Section 5.2 ∂W
∂z g(x, z) α2 φ(z − h(x))

ΣSFU

(

∂Vu(ẑ)
∂z̃

)T

ĥ(χ̃, z̃) α4 ≤ 1 φ2(ẑ) =
(

Q̃uẑ
2
)

1

2

Assumption 5.5.9

Section 5.2 ∂V
∂x f(x, z) f(x, h(x)) β1

ΣSFU

(

∂V1(χ̃)
∂χ̃

)T

F̃ (χ̃, z̃) F̃ (χ̃, h̃(χ̃)) β3 ≥ max (β3a , β3b , β3c)

Assumption 5.5.10

Section 5.2 ∂W
∂x f(x, z) γ1 β2

ΣSFU

(

∂Vu(ẑ)
∂ỹ

)T

F̃ (χ̃, z̃) γ2 ≥ Ñ

Q̃u
β4 ≥ max (β4a , β4b , β4c)

Table C.2: Parameters for the Comparison Functions and Inequalities that Guarantee the Asymptotic
Stability Requirements for the ΣSFU Subsystem.

C.7.1 Bounds for the Stability Parameter of the ΣSFU Stability Analy-

sis

Recalling from the ΣSF stability analysis, that due to the existent freedom on selecting β2 and γ1, the

upper-bound ε∗1, Eq. (C.105), and its d∗1 parameter, Eq. (C.104), can be precisely obtained to match the

required parameters that guarantee the asymptotic stability for the full ΣSFU system. This is achieved

by selecting the appropriate combination of γ1 and β2, which in return generates the desired combination

of both ε∗1 and d∗1, which are both obtained using Eqns. (C.105) and (C.104) such

γ1(ε
⋆

1 ) =
1

α1

(

α1α2

ε⋆1
− β1β2

)

, (C.278)

β2(d
⋆

1 ) =
β1

d⋆1
− β1, (C.279)
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where ε⋆1 = dε1ε1, with dε1 = 1.05, and d⋆1 = 0.5, therefore resulting in the expression

ε2 <
α1γ1(ε

⋆

1 ) + β1β2(d
⋆

1 )

α1α2

α3α4

ε1

(

α3γ2 +
1

4(1− d2)d2
[(1− d2)β3 + d2β4]

2

)ε2d , (C.280)

which has also a maximum for d∗2, given by

d∗2 =
β3

β3 + β4
, (C.281)

thus resulting in

ε∗2 =
α1γ1(ε

⋆

1 ) + β1β2(d
⋆

1 )

α1α2

α3α4

α3γ2 + β3β4
, (C.282)

Recalling from the definitions of β3, β4 and γ2, given in Eqns. (C.201), (C.235), and (C.266), respec-

tively, resulting in

β3 ≥
√

d1η21x
4
MAX

b̃2y

Qf

Qu
, (C.283)

γ2 ≥ ρ1Ĥx̃MAX
(b̃y) + η1ĤỹMAX

(b̃y)

η2
, (C.284)

β4 ≥

√

√

√

√

(

L̃1MAX
(bx, b̃y)

)2

η22(1− d1)

Qu

Qs
, (C.285)

therefore the expression that determines the upper-bound in ε2, Eq. (C.282), can be rewritten by sub-

stituting in Eqns. (C.283–C.285), resulting in

ε∗2 =
α3α4

(

α1γ1(ε
⋆

1 ) + β1β2(d
⋆

1 )
)

α1α2

(

α3
ρ1Ĥx̃MAX

(b̃y)+η1ĤỹMAX
(b̃y)

η2
+

√

d1η2

1
x4

MAX(L̃1MAX
(bx,b̃y))

2

(1−d1)b̃2yη
2

2

Qf

Qs

) , (C.286)

and similarly with d∗2 resulting in

d∗2 =

√

d1η2

1
x4

MAX

b̃2y

Qf

Qu

√

d1η2

1
x4

MAX

b̃2y

Qf

Qu
+

√

(L̃1MAX
(bx,b̃y))

2

η2

2
(1−d1)

Qu

Qs

. (C.287)

It can be recognized that the fulfillment of the asymptotic stability properties for the ΣSFU full system

can be achieved by the proper selection of stability parameters Qs, Qf , Qu, d
⋆

1 , and ε⋆1 , with d⋆1 = 0.5,

and ε⋆1 = 1.05ε1. Observing Eq. (C.286), it can be seen that the upper-bound on ε∗2 only depends on

the physical parameters of the problem, the control design parameters bx, and b̃y, that determine the

selected target dynamics response, and the stability parameters Qs, and Qf , while not depending on

Qu. The stability parameters Qu, as it can be seen in Eq. (C.287), only influences in the parameter d∗2.

Furthermore, it can be seen that the upper-bound ε∗2 can be expressed as a function of the ratio
Qf

Qs
,

which is given by the expression

Qf

Qs
= Qfs =

(1 − d1)b̃
2
yη

2
2

d1η21x
4
MAX

(

L̃1MAX
(bx, b̃y)

)2

×





α3α4

(

α1γ1(ε
⋆

1 ) + β1β2(d
⋆

1 )
)

α1α2ε
⋆

2

− α3
ρ1Ĥx̃MAX

(b̃y) + η1ĤỹMAX
(b̃y)

η2





2

, (C.288)

where recall that ε∗2 is substituted by ε⋆2 , implying that is selected such that ε⋆2 = dε2ε
∗
2, with dε2 =



C-422 APPENDIX C. ASYMPTOTIC STABILITY ANALYSIS FOR THE SIMPLIFIED MODEL

1.05. Also recall that for the simplified model here described the control design parameters are selected

as bx = 0.25, and b̃y = 0.0075, which results in Ĥx̃MAX
(b̃y) = 8.12500, ĤỹMAX

(b̃y) = 32.500, and

L̃1MAX
(bx, b̃y) = 2.0312500, thus resulting in Qfs = 177.51647. It can be observed in Eq. (C.287) that,

by selecting the value of d∗2 = d⋆2 , it can be obtained an expression that determines the necessary value

of the stability parameter Qu, resulting in the expression

Qu =
d⋆1 Qfη

2
1x

2
MAXη

4
2Q

2
s b̃

2
y

(

d⋆1 − 1− 2d⋆1 d
⋆

2 + 2d⋆2 + d⋆1 d
⋆

2 − d⋆2

)2

√

−d⋆1 Qfη21b
2
xĤ

2
x̃MAX

d⋆2 η
6
2Q

3
sb̃

6
y

(

d⋆1 − 1− 2d⋆1 d
⋆

2 + 2d⋆2 + d⋆1 d
⋆

2 − d⋆2

)3
, (C.289)

where d⋆1 and d⋆2 represent the desired values for the upper-bound constants d∗1 and d∗2, where ε1 and ε2

are maximum, Eqns. (C.103) and (C.280), respectively. The unspecified parameters d⋆1 and d⋆2 , differ

from d∗1 and d∗2, Eqns. (C.104) and (C.275), respectively, in the fact that d⋆1 and d⋆2 are selected such

that the distribution of both ε1 and ε2 are centered, that is, selecting d⋆1 = 0.5 and d⋆2 = 0.5.

This is a really powerful result, since implies the existence of a closed form solution for the proper

selection of the stability parameters Qs, Qf and Qu, which are given in Eqns. (C.288) and (C.289),

recalling that Eq. (C.288) implies also that either Qs or Qf has to be fixed initially, since the expression

only provides a relation for Qf/Qs. This implies that it can be selected the values at which the derived

Lyapunov function for the singularly perturbed ΣSFU full system, V2(χ̃, z̃), can guaranteed that the given

system is asymptotically stable for all ε2 < ε∗2.

These conclusions can be better observed in Figures C.2, C.4, C.3, C.6, and C.7. Figure C.2 shows the

variation of ε2 vs. Qs and Qf , where the range of Qs is given by 10 ≤ Qs ≤ 20 and the range of Qf is

given by Eq. (C.288), that is 10Qfs ≤ Qf ≤ 20Qfs, where for the problem here discuses Qfs = 177.51647.

It can be seen that as long as the ratio of the selected stability parameters Q∗
s and Q∗

f , are greater than

the ratio in Eq. (C.288), that is Q∗
f/Q

∗
s ≥ Qf/Qs, the resulting upper-bound ε∗2 ≥ 1.1025× 10−3, thus

satisfying ε2 < ε∗2.

Figure C.3 shows the variation of ε2 and the unspecified parameters d1 and d2. It can be seen that as

selected in the previous calculations, the required expression ε2 < ε∗2 it is satisfied for the combination

of d1 = 0.5 and d2 = 0.5, and also, as seen by the color scheme in the same figure, but view from the

azimuthal perspective as depicted in Figure C.4, where it can be observed that for d2 6= 0.5, there exist

two combinations for d1 > 0.5 and d1 < 0.5, that satisfy ε2 < ε∗2.

This can also be also seen for the case in which expression Eq. (C.280) is analyzed for d⋆1 = 0.5 and

ε⋆1 = 1.05ε1 = 0.0105 as seen in Figure C.5. Figures C.6 and C.7 show the variation of the unspecified

parameter d2 as a function of Qs and Qf , in Figure C.6, and Qf and Qu, in Figure C.7. The range in

both figures is determined by the expressions described in Eqns. (C.288) and (C.289), therefore, selecting

10 ≤ Qs ≤ 20, resulting in

1460.304329 ≤ Qf ≤ 2920.60865, (C.290)

0.099153 ≤ Qu ≤ 0.1983065. (C.291)

Figure C.6 shows that in order to maintain d2 = 0.5, as Qs is increased, Qf needs to be reduced, and

the opposite, as Qs is decreased, Qf needs to be increased, always maintaining the Qfs ratio. The same

trends are depicted in Figure C.7, thus concluding that by maintaining the ratio given by Eqns. (C.288)

and (C.289), it can be obtained the desired d⋆2 . Therefore, recalling from the previous stability analysis,

the coefficients that fulfill the growth requirements are therefore given by

α3 = 0.95,

α4 = 0.95,
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β3 = 286.04338,

β4 = 286.04338,

γ2 = 40.625,

and the stability parameters that produce such parameters are selected as

Qs = 15,

Qf = 2190.45649,

Qu = 0.1487299.

The upper-bound (C.286) is given by ε∗2 = 1.1025 × 10−3. Recall that for the problem here stated it

was selected ε2 = 1 × 10−3, thus satisfying that ε2 < ε∗2. Recall that (C.274) depends on the selection

of the variable d1, and the maximum value of ε2 is achieved with d∗1 = d⋆1 = 0.5, and d∗2 = d⋆2 = 0.5.

It has been proven that with proper selection of the Stability Parameters, Qs, Qf , and Qu, the value

of ε∗1 in the ΣSF -subsystem and ε∗2 in the ΣSFU full system have been obtained such that ε1 < ε∗1, and

ε2 < ε∗2, therefore, since all the growth requirements are satisfied, then the origin χ̃ = 0, z̃ = 0, is an

asymptotically stable equilibrium of the singularly perturbed ΣSFU system for all ε2 ∈ (0, ε∗2). This

concludes ΣSFU Stability Analysis for the simplified example.
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Figure C.2: ε2 vs. Qs and Qf .

Figure C.3: ε2 vs. d1 and d2.
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Figure C.4: ε2 vs. d1 and d2.
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Figure C.5: Stability upper bounds on ε2 for the Stability Analysis of the ΣSFU simplified system.
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Figure C.6: d2 vs. Qs and Qf .

Figure C.7: d2 vs. Qs and Qu.
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C.8 Conclusions

The Asymptotic Stability Analysis presented in chapter 5 has been applied to the three-time-scale au-

tonomous simplified example model obtained in chapter 4. The proposed two-step process defined in

chapter 3 allows to study the asymptotic stability properties of the closed loop system, and also proposes

a methodology to obtain a Lyapunov function candidate for the entire system, V2(x̃, ỹ, z̃), by using a

weighted sum of the proposed Lyapunov function candidates of the three time-scale subsystems.

The validity of the methodology has been proved by obtaining the stability upper bound limits on the

boundary layers, ε1 and ε2, and ensuring that the selected parasitic constants for the proposed control law

satisfy ε1 ≤ ε∗1 and ε2 ≤ ε∗2 for the helicopter model here employed. The use of the full range of reachable

state variables has been required in order to satisfy the inequalities that guarantee the asymptotic stabil-

ity properties at the origin of the ΣSFU -subsystem, which results in extending the asymptotic stability

properties to semiglobal stability, by the definition in (Kokotović, 1992; Sussmann and Kokotović, 1991;

Braslavsky and Miidleton, 1996), by providing upper bounds on the parasitic singularly perturbed pa-

rameters for the entire range of admissible state values, thus extending the domain of attraction to that

same rage of admissible states.

The stability results have also presented a closed form solution for the proper selection of the stability

parameters Qf , and Qu as a function of the arbitrary stability parameter QS , such that fulfill assumptions

5.5.6, 5.5.7, 5.5.8, 5.5.9, and 5.5.10, providing asymptotic stability for the helicopter ΣSFU full system

with prescribed upperbounds on the parasitic parameters.
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Appendix D

Results for the Asymptotic Stability

Analysis for the Helicopter Model

A sensitivity analysis for the results for the asymptotic stability analysis for the helicopter model is

here presented by performing the same four distinctive maneuvers that include all possible helicopter

maneuvers:

1. Ascent flight with increasing engine RPM.

2. Ascent flight with decreasing engine RPM.

3. Descent flight with increasing engine RPM.

4. Descent flight with decreasing engine RPM.

where once again, despite the extensive sensitivity analysis conducted, only four significate cases are

presented, which correspond to a maneuver that includes all four distinctive maneuvers in one simulation,

and that are defined by the bellow conditions:

1. y1(0) = 1.85 m, y∗1 = 0.5 m, x(0) = 120 rad/sec, and x∗ = 140 rad/sec.

2. y1(0) = 0.5 m, y∗1 = 1 m, x(0) = 140 rad/sec, and x∗ = 120 rad/sec.

3. y1(0) = 1 m, y∗1 = 1.5 m, x(0) = 120 rad/sec, and x∗ = 145 rad/sec.

4. y1(0) = 1.5 m, y∗1 = 0.75 m, x(0) = 145 rad/sec, and x∗ = 120 rad/sec.

Figures D.2 and D.3 show the fulfillment of the reduced order and boundary layer inequalities for

the ΣSF -subsystem, inequalities (6.67) and (6.75), respectively. The fulfillment of these inequalities are

represented graphically by recalling that Eqns. (6.67) and (6.75) can be rewritten as

0 < −α1ψ
2
1(x)−

dVS
dx

f̃
[

x̃, g̃ (x̃) , h̃ (x̃, g̃ (x̃))
]

, (D.1)

0 < −α2φ
2
1(ŷ)−

dVF
dỹ

ĝ
[

x̃, ỹ , h̃(x̃, g̃(x̃))
]

, (D.2)

where, the fulfillment of both, the reduced, and boundary layer inequalities, assumptions 6.3.2, 6.3.3, is

achieved if Eqns. (D.1), and (D.2) are positive, or equal to zero, for the entire range of the conducted

simulations for all eight distinctive helicopter maneuvers, as it can be seen in Figures D.2 and D.3. Figures

D.4, D.5, shown the evolution of the comparison functions ψ1(x̃), and φ1(ẑ ), for all eight helicopter

maneuvers.

Similarly, Figures D.6, D.7, D.8, and D.9, show the fulfillment of the reduced order, boundary layer, and

interconnection inequalities for the ΣSFU -subsystem, inequalities (6.239), (6.296), (6.314), and (6.436)

D-429
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respectively. The fulfillment of these inequalities are represented graphically by recalling that Eqns.

(6.239), (6.296), (6.314), and (6.436) can be rewritten as eq.

0 < −α3ψ
2
2(χ̃)−

(

dV1
dχ̃

)T

F̃
(

χ̃, h̃(χ̃)
)

, (D.3)

0 < −α4φ
2
2(ẑ )−

(

dVU
dz̃

)T

ĝ
[

χ̃, h̃(χ̃)
]

, (D.4)

0 < β3ψ2(χ̃)φ2(ẑ )−
(

dV1
dχ̃

)T
[

F̃ (χ̃, z̃ )− F̃ (χ̃, h̃(χ̃))
]

, (D.5)

0 < γ2φ
2
2(ẑ ) + β4ψ2(χ̃)φ2(ẑ )−

(

dVU
dχ̃

)T

F̃ (χ̃, z̃ ) , (D.6)

where, the fulfillment of these inequalities, assumptions 6.5.2, 6.5.3, 6.5.4, and 6.5.5, is achieved if Eqns.

(D.3), (D.4), (D.5), and (D.6), are positive, or equal to zero, for the entire range of the conducted

simulations for all eight distinctive helicopter maneuvers, as it can be seen in Figures D.6, D.7, D.8,

and D.9. Figures D.10, D.11, shown the evolution of the comparison functions ψ2(χ̃), and φ2(ẑ ). This

concludes the ΣSFU Stability Analysis asymptotic stability analysis for the simplified example.
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Figure D.1: States History for the TD Control Strategy
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