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Abstract

A three-time scale singular perturbation control is applied to an autonomous helicopter model on a
platform to regulate its vertical position. Two singularly perturbation time-scale analysis approaches
are presented, the Top-Down (TD), and the Bottom-Up (BU), which permit to analyze multi-time scale
systems. These methodologies are based in a sequential application of the general two-time-scale singular
perturbation formulation, allowing to decouple the helicopter three-time-scale problem into two simpler

two-time-scale models.

The TD and BU methodologies provide a step-by-step procedure that allows to design the proper
control laws that allows to achieve the desired helicopter’s altitude by either actuating on both the
collective pitch angle and the angular velocity of the blades. In addition, the same methodology, provides
a tool to select an appropriate composite Lyapunov function for the complete singularly perturbed system,
and to demonstrate the asymptotic stability for the resulting closed-loop nonlinear singularly perturbed
system for sufficiently small singular perturbation parameters using Lyapunov stability methods, and

everything in an all-in-one step-by-step methodology.

The equivalency between both the T'D and BU methodologies, permits the designer to choose which
direction is to be used, depending on the structure of the system to be studied, and in special cases,
determine which combination of both methodologies is the most appropriate according to the natural

flow of the variables.

The validity of the methodology has been proved by obtaining the stability upper bound limits for
the three-time-scale boundary layers, €1 and €5, and ensuring that the selected parasitic constants for
the proposed control law satisfy e; < €] and €2 < €5 for both the helicopter and the simplified model
here employed. The stability results have also presented a closed form solution for the proper selection
of the stability parameters such that fulfill the required growth requirements among different singularly
perturbed subsystem, providing asymptotic stability for the helicopter X gy full system with prescribed

upper bounds on the parasitic parameters.

The TD and BU time scale analysis is also extended to the more general N*"-time-scale analysis using
a 4th-time-scale general example. The sequential strategy of decomposing the 4*"-time-scale system,
into simpler two-time-scale subsystems provides valuable tools for both the analysis of time-scale singu-
larly perturbed systems, and the stability properties of any general singularly perturbed N*"-time-scale

system.
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Chapter 1

Introduction

1.1 Motivation

Control of rotary wing aircrafts represents a very challenging task due to the nonlinearities and inherent
instabilities present in such systems. The versatility of rotorcrafts allows them to perform almost any
task that no conventional aircraft can do, but this ability is ultimately associated to the control of its
stability characteristics, which are generally obtained via automatic control design (Curtiss Jr., 2003).
These stability and control properties come at the price of requiring complex control designs in order to

deal with these highly nonlinear aerospace systems.

Historically, classical linear control techniques have been sufficient to obtain reasonable control
responses of these type aerospace systems (Curtiss Jr., 2003). The evolution of the aerospace in-
dustry, and the consequent improvement of technologies, have increased the performance require-
ments of all systems in general, which has called for better control designs that can deal with more
complex systems, making linear control techniques insufficient to cope with these performance re-
quirements. Specifically, in the area of aerospace systems, a wide range of different nonlinear con-
trol techniques have been studied to deal with the nonlinear dynamics of such systems, from sin-
gular perturbation (Kokotovié et al., 1999), feedback linearization (Brockett, 1978; Meyer et al., 1984;
Hunt et al., 1983), dynamic inversion (Buffington et al., 1993; Bugajski et al., 1990; Reiner et al., 1995;
Sunell et al., 1992), sliding mode control (Sira-Ramirez et al., 1994), or backstepping control methods
(Khalil, 1996; Lee and Kim, 2001), to name a few. Neural Networks (NN) are also included within
the realm of nonlinear control techniques, and seem to provide improved robustness properties under

system uncertainties.

Focusing in the system being treated in this thesis, in the past, helicopter control has been solved using
mechanical stabilizers, which has been demonstrated to be sufficient to perform simple stabilization
control tasks. Some of those mechanical systems are still in use in the majority of small helicopters,
but have been proved to be insufficient to cope with the more demanding and agile maneuvers that
are expected in the always expanding roles and missions of helicopters. Complex maneuvers such aerial
refueling, landing on small ships, decelerating approaches in poor weather conditions, to name few, would
be difficult, if not impossible to perform without the aid of stabilization and control augmentation, and the
use of high-gain, full authority systems (Tischler, 1987; Tischler, 1989). As the helicopter performance
requirements increased, it was necessary to introduce electronic stabilization, digital systems or high-gain
controls (Curtiss Jr., 2003) in order to generate adequate control responses, which in return require the

obtention of more detailed and sophisticated dynamic mathematical models.
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These same requirements of more detailed models represent a basic problem in control design, which is
to determine the mathematical modeling complexity required to adequately describe a physical system.
The modeling of many systems calls for high-order dynamic equations, which for the case of rotorcraft
systems, represents a unique challenge due to the involved rotatory parts. Generally, the presence of
parasitic parameters, such as small time constants, is often the source of an increased order and stiffness
of these systems (Naidu and Calise, 2001). The stiffness, attributed to the simultaneous occurrence of
slow and fast phenomena, gives rise to time scales, and the suppression of the small parasitic variables
results in degenerated, reduced order systems, that can be stabilized separately, thus simplifying the
burden of control design of high-order systems. The use of singular perturbation methods to simplify
the control burden parts from the assumption that the associated subsystem are each asymptotically
stable, but such assumption needs additional conditions that will guarantee the asymptotical stability
of the original nonlinear singular perturbed system for sufficient small singular perturbation parasitic
constants, which will have bounded in order to guarantee the stability properties among the different

time-scale subsystems.

This time-scale separation phenomena is quite common in aerospace systems, thus being usual the
use of singular perturbation methodologies to both provide control and analyze the analyze the stability
properties of such systems. Naidu and Calise (Naidu and Calise, 2001) give an extended survey of the
use of singular perturbed and time-scale control methods for aerospace systems which serves as the basis
for the literature review of singular perturbation and time-scale control methods in aerospace systems

that is conducted in section 1.3.2.

As will be described in later sections,several works have been conducted towards demonstrat-
ing the asymptotic stability properties of singularly perturbed systems (Saberi and Khalil, 1984;
Saberi and Khalil, 1985; Khalil, 1987), and all of them show a high degree of complexity required to
demonstrate the stability properties of the different time-scale subsystems. Some of them approach
the multi-parameter asymptotic stability analysis (Abed, 1985¢; Abed, 1986; Desoer and Shahruz, 1986;
Kokotovi¢ et al., 1987) using similar composite stability methods of large scale dynamical systems
(Michel and Miller, 1977; Araki, 1978) based in Lyapunov stability methods, which will also be em-
ployed in this thesis, but without some of the restrictions encountered in the literature. For instance
Araki (Araki, 1978) presents a composite method for analyzing the stability of large-scale systems focus-
ing on the quadratic-order theorems using M-matrices, where the large-scale system is decomposed into
smaller subsystems, and proceed to make a two-step analysis, in which the resulting subsystems are first
analyzed, and secondly the obtained results are combined to reduce the property of the whole system,
by using Lyapunov stability theories, with the restriction that the presented theorems, although elegant
and easy to apply, suffer from the drawback that they can assure stability only for the systems with weak
interconnections. The asymptotic stability procedure here presented do not depend on the nature of the
interconnection properties among the reduced subsystems, and asymptotic stability properties are not
inferred from the asymptotic stability of the different reduced systems, but demonstrating the asymptotic
stability of the full singularly perturbed system by itself following the proposed step-by-step time-scale
methodology.

The work presented in this thesis approaches the problem of multi-parameter asymptotic stability anal-
ysis by extending the procedures defined by Kokotovié¢ (Kokotovié et al., 1999) for the two-time-scale
singular perturbation problems, to the three-time-scale singular perturbation problem of an autonomous
helicopter on a platform, although the methodology here presented can be extended to any general non-
linear singular perturbed dynamical system, as it is demonstrated in the results presented in Appendix
C, where the asymptotic stability analysis is also demonstrated for more general three-time-scale model.

The main contribution of the thesis is that the proposed Top-Down and Bottom-Up methodology allows
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to determine, in a all-in-one simple step-by-step process, the control laws that guarantee desired closed
loop dynamics, provides also a methodology that constructs a composite Lyapunov function for the gen-
eral resulting closed-loop singularly perturbed system, which is also use to demonstrate the asymptotic
stability properties of the origin. These properties are also extended to semiglobal stability, by the defini-
tion in (Kokotovié¢, 1992; Sussmann and Kokotovié, 1991; Braslavsky and Miidleton, 1996), by providing
upper bounds on the parasitic singularly perturbed parameters for the entire range of admissible state

values, thus extending the domain of attraction to that same rage of admissible states.

The original motivation to this thesis comes from the work conducted by Sira-Ramirez
(Sira-Ramirez et al., 1994) that used a dynamical multivariable discontinuous sliding mode control strat-
egy for the stabilization of a nonlinear helicopter model in vertical flight which includes the dynamics
of the collective pitch actuators, and the work conducted by the authors over the past years towards
deriving a suitable control law, and the asymptotical stability analysis that demonstrates the validity
of the proposed control laws (Esteban et al., 2005a; Esteban et al., 2008a; Esteban et al., 2008b). The
use of singular perturbation methods to simplify the control system structure of helicopter models has
been considered in the past as seen in (Heiges et al., 1992; Njaka et al., 1994; Prasad and Lipp, 1993;
Hamidi and Ohta, 1995; Avanzini and de Matteis, 2001; Lépez-Martinez et al., 2007), to name few, but
to the knowledge of the author, the work conducted here, along with that conducted by Bertrand, Hamel
and Piet-Lahanier (Bertrand et al., 2008), that presented a stability analysis of a hierarchical controller
for an unmanned Aerial Vehicle, are the only investigations that theoretically address stability issues
for VTOL UAVs using singular perturbations theory, which is necessary to guarantee the bounds of the
selected parasitic constants. Is that necessity to demonstrate the asymptotic stability properties of the
selected helicopter model using singular perturbation formulation (Esteban et al., 2005a), that presents

the principal motivation for the work here conducted.

Due to the nature of the selected helicopter model, which represents a three-time-scale model, highly
coupled system structure, as seen in Figure 2.30, and the complexity involved in applying the exist-
ing multiparameter stability analysis tools for singularly perturbed multiparameter systems, which al-
though extensive and quite documented (Saberi and Khalil, 1984; Saberi and Khalil, 1985; Khalil, 1987;
Abed, 1985¢; Abed, 1986; Kokotovié et al., 1987), are mainly theoretic formulations, with a high degree
of complexity involved in the demonstrations that provide stability properties of the different time-scale
subsystems, it was clear that a simpler and easier strategy was to be sought. In addition to the com-
plex demonstrations, the available methods required the existence of appropriate Lyapunov function
candidates for each of the time-scale subsystem, which are extremely difficult to derive since they are
obtained at the same time that the fulfillment of the growth requirements among the time-scale subsys-
tems, that is, depending on the complexity of the system being analyzed, and the growth requirement
that must satisfy, thus making the selection of the Lyapunov function dependent of the selection of the
comparison functions that demonstrate the stability and interconnection properties among the time-scale
subsystems, that is the more complex the demonstrations, the more complex the Lyapunov functions
need to be, and thus more difficult to derive as seen in the example provided in (Kokotovi¢ et al., 1986;
Kokotovié¢ et al., 1987).

This motivated the author to pursue an analysis strategy that helped to analyze the asymptotic stability
analysis of multiple time-scale systems in a straight step-by-step procedure, that do not relay on obtaining
complex Lyapunov functions, since the Lyapunov structure is fixed a priori, and based on the natural
desired closed loop response of each resulting subsystem, as selected during the control design that used
the same philosophy, therefore making simpler to tackle the fulfillment of the growth requirements among
the different time-scale subsystems that guarantee the asymptotic stability of the full singularly perturbed

system, that is providing bounds on the singularly parasitic constants that guarantee the stability among



4 CHAPTER 1. INTRODUCTION

the tim-scale subsystems. This methodology is not only limited to the three-times-scale problem here
treated, both for the helicopter model and the more general example, but to any N*"-time-scale singularly

perturbed system as it will shown in later chapters.

This thesis is structured as follows: Chapter 1 provides a brief introduction to the motivation, and a
review of the literature for nonlinear control and in special to singular perturbation control in aerospace
systems; Chapter 2 provides a general description to helicopter dynamics, including the derivation of
the selected helicopter model; Chapter 3 describes the extension conducted from the general two-time-
scale singular perturbation formulation to a general multi-time-scale system by introducing the proposed
Top-Down and Bottom-Up Time-Scale Analysis; the proposed time-scale control strategy is developed
in chapter 4, which includes sensitivity analysis simulation results for the proposed control laws; the
stability analysis for the general case is conducted in chapter 5. Chapter 6 applies the derived stability
analysis to the model here studied; the considerations of unmodeled dynamics to the proposed control
laws is studied in Chapter 7; the conclusions are summarized in chapter 8, and the recommended lines

for the future work in chapter 9.

For conciseness of the thesis, a series of Appendices are presented in which relevant material for the
thesis is presented: the proposed test bench helicopter axial flight models are presented in Appendix A;
Appendix B presents the control strategy selected for the simplified example, while Appendix C presents
the asymptotic stability analysis for the simplified model, and finally some results for the asymptotic
stability analysis for the helicopter model are presented in Appendix D. The work presented in this
Appendixes, in special the work presented in Appendices B and C, have been very valuable to provide
the necessary generality to the methodology here presented, which can be applied to a wide range of

singularly perturbed systems.

1.2 Nonlinear Control in Aerospace Systems

This section provides a background to some of the different control theory approaches that are available
for nonlinear problems, from classical control methods to non-classical methods. This section does not
pretend to be a compilation of all existing control techniques that are applied to the aerospace systems,
but rather being a compilation of some of the techniques that the author has been exposed over the past

years.

1.2.1 Classical Control

Many approaches have been used over the years to solve the problem of automated control. Classic control
techniques try to obtain feedback control laws by conducting comprehensive analysis of the system model.
Some of these classic control techniques include design via root locus techniques, frequency response
techniques and state space techniques to name a few. Nise gives a detailed definition of all the classical
controllers described above in his reference book Control Systems Engineering (Nise, 1995). The author

will try to recap some of the definitions contained in (Nise, 1995) in the next paragraphs.

In the design via root locus, the designer is able to choose the proper loop gain to meet a transient
response specification by graphically analyzing both the transient and the stability information provided
by the root locus. Since the transient response is dictated by the poles at a point in the root locus,
this technique is limited to the transient responses and the steady-state error represented by points
along where the root locus are available. In order to improve these limitations, cascade compensators

are introduced in the form of ideal integral, or proportional-integral (PI) controller, ideal derivative or
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proportional derivative (PD) controller, proportional-plus-integral-plus-derivative (PID) controller, lag

compensators, lead compensators, lag-lead compensators and feedback compensation.

Steady-state design compensators are implemented via PI controllers or lag compensators. PI con-
trollers add a pole at the origin, thereby increasing the system type. Lag compensators, usually imple-
mented with passive networks, do not place the pole at the origin but near it. Both methods add a zero

very close to the pole in order not to affect the transient response.

The transient response design compensators are implemented through PD controllers or lead com-
pensators. PD controllers add a zero to compensate the transient response, while lead compensators
add a pole along with the zero. Lead compensators are usually passive networks. We can correct both
transient response and steady-state error with a PID or lag-lead compensator. Both of these are simply

combinations of the previously described compensators.

Feedback compensation can also be used to improve the transient response, where the compensator is
placed in the feedback path. The feedback gain is used to change the compensator zero or the system’s
open-loop poles, giving the designer a wide choice of various root loci. The system gain is then varied to
move along the selected root locus to the design point. An advantage of feedback compensation is the
ability to design a fast response into a subsystem independently of the system’s total response. Other
classical approach is the design via frequency response. This approach follows the same lines of root locus
via gain adjustment with the difference that the tools used do not require a computer. Instead Bode
plots and Nyquist diagrams are used along side each other to provide stability and transient information
about the system that is used to design a desirable controller (Nise, 1995). Nyquist criterion is used to
determine if a system is stable by looking at the magnitude of the frequency response. Increasing the
phase margin reduces the percent of overshoot of the response, decreasing the bandwidth increases the
speed of the response, and the steady-state error is improved by increasing the low-frequency magnitude

responses.

Another classical method is the state-space design, in which the desired system’s pole locations are
specified and then a controller consisting of state-variable feedback gains is designed to meet these re-
quirements. Controller design consists of feeding back the state variables to the input of the system
through specified gains that were found by matching the coefficients of the system’s characteristic polyno-
mial with the coefficients of the desired characteristic polynomial. If the state variables are not available,
an observer is designed to emulate the plant and provide estimated state variables that will be used to

obtain the gains.

Today systems operate in wider regimes than those in which they were originally designed and therefore
the controllers need to be much more robust to be able to operate beyond the design envelope. Classic
control techniques lack the robustness that is necessary to approach the extreme situations that define
problems like the helicopter’s altitude regulation problem that has motivated this study. The classic linear
control techniques that were once sufficient to obtain reasonable control responses, fall short of today’s
industry requirements, in special when regulating the highly nonlinear and rotating mechanisms involved
in helicopters. Following sections describe some of the nonlinear tools employed to solve aerospace control

problems.
1.2.2 Nonlinear Control Methods in Aerospace
This section describes some of tools used in nonlinear control. Khalil (Khalil, 2002) lists in his Nonlinear

Systems textbook various common tools used for nonlinear design, such as linearization, integral control,

gain scheduling, feedback linearization, sliding mode control, Lyapunov redesign, backstepping, passivity-
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based control, and high gain observers. A brief description of each one of the methods without getting

into the details of the formulation is provided by (Khalil, 2002) and summarized below.

In the design via linearization, the controller is guaranteed to work over the neighborhood of the single
operating point that was used for the linearization. This limitation is extended to a wider range of
operating points with the gain scheduling method, by parameterizing several operating points by one or
more variables. The system is then linearized at the chosen points, and linear feedback controllers are
designed and implemented at each point. This creates a series of linear controllers that are activated by
monitoring the scheduling variables and hence being able to operate at different points of the envelope.
This is one of the most commonly used design tools in the aviation industry today, due to the simplicity

of the design and its capability to work at different operating points.

The integral control approach ensures asymptotic regulation under all parameters that do not destroy
the stability of the closed-loop. The integral action is introduced by integrating the regulation error
between the measured and desired states. By regulating the integrated error to be zero at equilibrium,

the feedback controller creates an asymptotically stable equilibrium point.

Feedback linearization is one of the most widely used methods when trying to control nonlinear systems
by taking a different perspective to linearization of the systems. The idea behind the feedback linearization
problem consists in the stabilization of the nonlinear state equation into a controllable linear state equation
by introducing terms in the controller to reduce or cancel the nonlinearities. Feedback linearization can
be divided in full-state linearization, where the state equation is completely linearized, and input-output
linearization, where the input-output map is linearized, and the state equation may be only partially

linearized.

In the sliding mode control approach, trajectories are forced to reach a sliding manifold in finite time
and to stay on the manifold for all future time. Motion on the manifold is independent of matching
uncertainties. By using a lower order model, the sliding manifold is designed to achieve the control
objective. The Lyapunov redesign uses a Lyapunov-like function of a nominal system to design an
additional control component that makes the design robust to large matched uncertainties. Both the
sliding mode control and the Lyapunov redesign produce discontinuous controllers, which could suffer

from chattering in the presence of delays or unmodeled high-frequency dynamics.

Backstepping is a recursive procedure that interlaces the choice of Lyapunov function with the design
feedback control. It breaks a design problem for the full system into a sequence of design problems
for low order subsystems, using this extra flexibility between the lower order and scalar subsystems
to solve stabilization, tracking and robust control problems under less restrictive conditions. Passivity
based controllers exploit passivity of the open-loop system in the design of feedback control by damping
injection. High-gain observers consider the fact that state feedback might not be available in many

practical problems and extends previous control techniques to output feedback.

These are some of the most important nonlinear methods that are available in the academic litera-
ture, but many other methods have emerged through the years by merging the best parts and pieces of
the above methods described with the power of Neural Networks (NN) (Balakrishnan and Biega, 1996;
Jagannathan and Lewis, 1996; Kim and Calise, 1997; Prasad et al., 1999; Soloway and Haley, 2001),
fuzzy logic (Hartana and Sasiadek, 2002), Genetic Algorithms (GA) (Holland, 1975; Rechenberg, 1973),
State Dependent Riccati Equation methods (SDRE) (Cloutier et al., 1996a; Cloutier et al., 1996b), or
0 — D methodologies (Xin and S.N., 2008; Xin et al., 2004), which all yielding very powerful methods
that are able to solve some of the more complex nonlinear problems. A brief description of some of these

methods is presented bellow.

Neural Networks have gained a lot of attention in the field of control over the last twenty years. Optimal
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control formulations often lead to two point boundary value problems (Bryson and Ho, 1975). For this
reason, except for a very special class of problems, like Linear Quadratic Regulator roblems (LQR), it
is quite difficult to solve for the controller in state feedback form. Moreover for nonlinear problems, the
solution depends on the initial conditions. In real-life problems, however, it is difficult to predict the
initial conditions a priori. Hence, it is necessary to obtain control functions that apply to an entire range
of initial conditions to retain the feedback nature of the solution. The method of dynamic programming
handles this problem by producing a family of optimal paths, or what is known as the field of extremals
(Bryson and Ho, 1975). One great drawback of the dynamic programming approach, however, is that
it requires a prohibitive amount of computation and storage in producing this entire field of extremals
(Bryson and Ho, 1975). NN provides a solution to the problem of covering the entire field of extremals.
This section intends to introduce some of the work done in the area of NN towards solving the highly

demanded nonlinear control problems.

NN have been used extensively in the control of lumped parameter systems, which includes control
of nonlinear plants. Various studies have realized neural network assisted controllers based on feed-
back linearization, dynamic inversion, reinforcement learning etc., in many fields like robotics, flight
vehicles, chemical processes, motors, automobiles etc. A survey paper (Hunt et al., 1983) is cited for

reference.

One of the most successful NN approaches is Adaptive Critic Neural Network (ACNN) method
presented in Balakrishnan and Biega (Balakrishnan and Biega, 1996) and Balakrishnan and Saini
(Saini et al., 1997). Balakrishnan and Viega focus on the use of the Adaptive Critic Neural Networks
(ACNN) architecture to obtain an optimal neurocontroller based in the dual network architecture formed
by an action neural network (ANN) and a critic neural network (CNN). The ANN maps the states of a
system to the control, while the second network, the CNN, captures the mapping between the states of a
dynamical system and the co-states that arise in an optimal control problem. The equations that satisfy
the optimality of the problem are solved with the help of NN. This makes it possible to synthesize the
closed loop controllers for this complex process. It also allows the philosophy of dynamic programming
to be carried out without the need for near impossible computation and storage requirements. Another
advantage of this neural network approach include the fact that no a priori assumptions about the form
of the feedback control are needed; i.e., one need not assume the control expressed in any particular form.
The consequence of this off-line computational method is that the resulting control is available to be used

as on-line state-feedback control for an entire envelope of initial conditions.

Balakrishnan and Saini (Saini et al., 1997) use the ACNN architecture to design a controller for auto
landing an aircraft. Balakrishnan and Han (Balakrishnan and Han, 2002) extend the ACNN formu-
lation to solve a terminal constraint optimal control problem using an expanded form of the ACNN
architecture where the optimization goal is for a trajectory in minimum time to reach a set of final
state constraints. The approach taken for the terminal constrain problem is to reformulate the state
and optimal control equations to change the independent variable to that of one of the former states,
generating a fixed final condition with respect to the independent variable. This sets a hard constraint
on the Hamiltonian equations so that the final conditions are met exactly through the one-dimensional
state equation, which is no longer invariant to the independent variable. This implies that a series of
ACNN pairs are used in sequence along the trajectory to account for the variance. This methodology has
been applied to a wide range of aerospace problems, from aircraft optimal control, helicopter control, or
high-angle of attack fighter maneuvers (Balakrishnan and Biega, 1996; Huang and Balakrishnan, 2005;
Balakrishnan and Esteban, 2001). The author conducted his Master Thesis in Aerospace Engineering in
this last topic, controllers for high angle of attack fighter airplanes (Esteban-Roncero, 2002) using ACNN

under the supervision of Professor S.N. Balakrishnan.
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Other NN methodology by Plummer (Plumer, 1996) touches a family of terminal control problems in
which he extends one of the most popular training algorithms for feed forward NN, backpropagation-
through-time, to address the limitation that the feedforward NN algorithms have when dealing with the
family of problems in which the cost function includes the elapsed trajectory-time. He approaches these
limitations by reforming the controller design as a constraint optimization problem defined over the entire
field of extremals for which the set of trajectory-times is incorporated into the cost which correspond
to standard backpropagation-through-time with the addiction of certain transversality conditions. The
new gradient algorithm based on these conditions, called time-optimal backpropagation-through-time, is

tested on two benchmark minimum-time control problems.

Jagannathan and Lewis (Jagannathan and Lewis, 1996) introduced a family of novel multilayer
discrete-time neural-net controllers for the control of a class of multi-input multi-output dynamical sys-
tems. The neural net controller includes modified delta rule weight tuning and exhibits an on-line learning
instead of an off-line, so that control is immediate with no explicit learning phase needed. The structure
of the neural network controller is derived using a filtered error/passivity approach in which the linear-
ity in the parameters is not required and certainty equivalence is not used, hence overcoming several
limitations of standard adaptive control. The stability analysis of the neurocontroller is done using the
Lyapunov’s direct method to guarantee the performance and the stability of the weight tuning algorithms
of the neural nets. They make use of the passivity based controller properties described above despite the
original system having not passivity properties, by using the neurocontroller to make the closed-loop sys-
tem passive. This allows that the additional unknown bounded disturbances do not destroy the stability

and tracking performance of the system.

Calise and Kim (Kim and Calise, 1997) demonstrated the power of the neural network within the realm
of nonlinear control systems, with specific focus on aircraft control. The strength of their design lays in
the implementation of feedback linearization along with NN as an alternative to gain scheduling, which
simplifies the problem of designing complex flight control system for high-performance fighter aircrafts.
Their design consists of a command and stability augmentation control system based on the feedback
linearization, that uses an off-line trained network to invert the nonlinearities, while an online trained
neural network is used to compensate for imperfections in the inversion and changes to the original
dynamics and/or failures in the controls surfaces. A stable weight adjustment rule for the weights of the

on-line neural network is also presented using a Lyapunov-like function.

Calise’s effort to demonstrate the power of merging nonlinear control theory with the NN ability to
model nonlinearities has yielded an extensive series of papers for a wide range of problems, the aerospace
realm being the one with the most contributions. From helicopters to reusable launch vehicles, Calise
and many more other authors have dedicated an incredible amount of work and resources to design
neurocontrollers that would be able to approach the reconfigurable control problem in an innovative and

efficient approach. Some of these novel works are introduced below.

In Calise (Prasad et al., 1999) shows, in an actual flight system of an unmanned helicopter, the po-
tential benefits of neural network direct adaptive control by designing an outer loop trajectory-tracking
controller. Calise, Johnson and Rysdyk (Johnson et al., ), use the X-33 Reusable Launch Vehicle tech-
nology demonstrator model to demonstrate a version of Calise’s neurocontroller. The specific adaptive
control method, called Pseudo-Control Hedging, is based in the concept of modifying a reference model
to prevent an adaptation law from adapting to saturation of the vehicle input characteristic such as
actuator position limits, actuator position rate limits and linear input dynamics. The same methodology
is applied by Calise and Johnson (Calise and Johnson, 2001) to a type of failures that led to a reduction
in total control authority of the X-33 model. They accomplish this by preventing the outer loop dynam-

ics to adapt to the inner-loop dynamics while operating at the control limits. Calise, Lee, and Sharma
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(Calise et al., 1998; Calise et al., 2000) show the approach taken to the RFC problem using a model of a
tailless fighter aircraft configured with multiple and redundant control actuation devices, which is later

tested in both a piloted simulation and in flight test on the X-36 aircraft.

A different NN approach is presented by Haley and Soloway (Soloway and Haley, 2001) in which they
propose a Neural Generalized Predictive Control (NGPC') algorithm capable of real-time control law
reconfiguration, model adaptation, and the ability to identify failures in control effectiveness by using an
innovative user define cost function that can be associated to either the aircraft outputs or to the control
inputs. The NGPC' algorithm operates in two modes, prediction mode, in which uses the aircraft model
to predict the aircraft’s response, and control mode in which the control input that minimized the user
specified function is passed to the aircraft as actuator position commands which then produce the desired
aircraft response. When failure simulations are introduced, such as frozen elevator, the NGPC algorithm
learns the changed dynamics and reconfigures to use alternative controllers, like symmetric ailerons to

stabilize the aircraft.

Bull, Kaneshige, and Totah (Kaneshige et al., 2000) introduce an innovative generic neural flight con-
trol and autopilots system to provide adaptive flight control, without requiring extensive gain-scheduling
or explicit system identification. The autopilot system is applied to a wide range of vehicle systems and
is formed by a generic autopilot, a neural flight controller and a mode control panel, and a flight director.
The generic guidance system performs automatic gain-scheduling using frequency separation, based upon
the neural flight control system’s specified reference model. The neural flight control architecture is based
on the augmented model inversion controller developed by Calise and Rysdyk (Calise and Rysdyk, 1998),
which is a direct adaptive tracking controller that integrates feedback linearization theory with both pre-
trained and on-line learning NN. Pre-trained NN provide estimates of the aerodynamics stability and
control characteristics required for model inversion. The on-line learning NN are used to generate com-
mand augmentation signals to compensate for the errors in the estimates and from the model inversion.
The online learning NN also provide additional potential for adapting to changes in aircraft dynamics
due to damage or failure. The mode control panel is the pilots’ interface with the generic autopilot, and
the flight directors, provide guidance commands to the pilot through the graphical display of pitch and

bank errors.

Reference (Idan et al., 2002) describes an intelligent fault tolerant flight control system that blends
aerodynamic and propulsion actuation for safe flight operation in the presence of actuators failures.
Fault tolerance is obtained by a nonlinear adaptive control strategy based on on-line learning NN and
actuator relocation scheme. The adaptive control block incorporates a recently developed technique
for adaptation in the presence of actuator saturation, rate limits and failure. The proposed integrated

aerodynamic/propulsion flight control system is evaluated in a nonlinear flight simulation.

Kim and Lee (Lee and Kim, 2001) propose a nonlinear flight control system using back-stepping and
a NN controller that is tested in a non-linear six-degree-of-freedom simulation for an F-16 aircraft. The
back-stepping controller is used to stabilize all state variables simultaneously without separating the fast
dynamics from the slow dynamics, while the adaptive NN controller is used to compensate for the effect
of the aerodynamic modeling errors, by assuming that the aerodynamic coefficients include uncertainty.
The Lyapunov stability theorem is used to demonstrate that the tracking errors and weights of NN
exponentially converge to a compact set under mild assumptions on the aerodynamic uncertainties and

nonlinearities.

Ferrari and Stengel (Ferrari and Stengel, 2002) take the approach of designing a nonlinear control
system that takes advantage of priori knowledge and experience gained from linear controllers, while
capitalizing in the broader capabilities of adaptive, nonlinear control theory and computational NN. The

importance of this novel approach lies in the fact that the gradients of the nonlinear control law represents
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the gain matrices of the equivalent locally linearized controllers by using a set of hypersurfaces expressed

as NN that represent satisfactory linear controllers designed over the plant’s operating range.

Other areas like fuzzy logic, originally introduced by Zadeh (Zadeh, 1965) in 1965, have demonstrated
innovative approaches combining information classification concepts in binary patterns, so that decisions
can be made using the reasoning associated to the complex human behavior, allowing high levels of
autonomy and adaptability, and being applied in a wide range of applications (Boverie et al., 1997).
Hartana and Sasiadek (Hartana and Sasiadek, 2002) present a sensor fusion for dead-reckoning mobile
robot navigation. Odometry and sonar measurement signals are fused together using extended Kalman
filter (FEKF') and Adaptive Fuzzy Logic System (AFLS). Two different methods are used to adapt EKF,
the first uses two exponential data weighting functions to estimate the process and white noise covariance,
while the second method only uses the white noise covariance. The paper shows that the fused signal
of odometry and sonar measurements along with the FKF and the AFLS is more accurate than any of
the original signals considered separately, and the enhanced, more accurate signal, is used to successfully

guide and navigate the robot.

Green and Sasiadek (Green and Sasiadek, 2002) show the comparison results for tracking of a square
trajectory by a two-link flexible robot manipulator, using as comparison an inverse dynamics control
(IDC') and fuzzy logic control (FLC'). A repetitive control technique is used to train a robot on the premise
that it must execute periodic motions so that its performance improves after each iteration. The results
show that while the repetitive learning inverse dynamics control (RLIDC') achieves no improvement in
tracking, repetitive learning fuzzy logic control (RLFLC') achieves greater precision where cyclic tracking

enables the fuzzy inference system to self-adapt and further reduce tracking errors.

Another point of view that uses natural selection of the species, are the Genetic Algorithms (GA), and
the Evolutionary Strategies, that were originally introduced by Holland in 1975 (Holland, 1975) and by
Rechenberg in 1973 (Rechenberg, 1973). Genetic algorithms take advantage of evolution and mutation

in order to solve technical optimization problems.

Optimal control techniques have been also used in the realm of aerospace system, but one of the main
problems encountered is that the optimal feedback control depends on the solution to the Hamilton-
Jacobi-Bellman (HJB) equation (Bryson and Ho, 1975). The HJB equation is extremely difficult to solve
in general, rendering optimal control techniques of limited use for nonlinear systems. Multiple suboptimal
control techniques for nonlinear control problems have been investigated in the past decades. A widely
used technique solves the nonlinear regulator problem in the State Dependent Riccati Equation (SDRE)
(Cloutier et al., 1996a; Cloutier et al., 1996b) method. This method turns the nonlinear equations of
motion into a linear-like structure, and therefore permitting the designer to use linear optimal control
method like LQR and H., design techniques in order to synthesis the associated control laws. This
methodology requires extensive online computation since it is necessary to solve the associated algebraic
Riccati equation at each sample time, which makes it difficult to implement in a real system. Some
alternative methodologies use Taylor series expansions based methods to solve the associated Riccati
equation, thus simplifying the online computational cost, but these techniques have problems related
with the initial required control efforts when the initial states are also large. An extended survey on
SDRE based techniques is presented in (Cimen, 2008).

An alternative control methodology to the Taylor series expansion based methodologies is the § — D
approximation which was originally derived by Balakrishnan and Xin (Xin and Balakrishnan, 2002), and
extended to several aerospace systems (Xin and S.N., 2008; Xin et al., 2004). This control approach ob-
tains a closed-form solution based on approximations to the HJB equation and solves the large-control-
for-large-initial-states problem that occurs in some Taylor series expansion based models. In this article,

the singular perturbation methods are compared with a nonlinear controller synthesis (6 — D approx-
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imation) technique based on the approximate solution to the Hamilton-Jacobi-Bellman equation. The
author has also conducted some work with the § — D methodology (Esteban et al., 2008b) using the
same helicopter problem here studied, by comparing the singular perturbation methodologies presented
in this thesis with the results obtained with the # — D methodology, and comparable results were obtained

although further work will be conducted in the future

On the realm of helicopter control, many different nonlinear techniques have been employed trying to
cope with the challenging task of regulating the inherent instabilities present in such systems, although
some of these nonlinear control techniques have been already described in the review conducted above.
Pallet and Ahmad (Pallett and Ahmad, 1993) use an online two-layer adaptive neural networks to control
a miniature helicopter during hover. The on-line control learns and adapt to changes in the plant on-line.
Sira-Ramirez et al. (Sira-Ramirez et al., 1994) use a dynamical multivariable discontinuous feedback
control strategy of the sliding mode to regulate the altitude of a nonlinear helicopter model in vertical
flight. The proposed control strategy retaining the basic robustness features associated with sliding mode
control policies, and in addition results non-chattering input trajectories and controlled state variable
responses. Balakrishnan and Huang (Huang and Balakrishnan, 2005) use the adaptive critic method

ACNN previously defined, in a helicopter platform equivalent to the one used in this thesis.

Kaloust et al. (Kaloust et al., 2002) presents a robust control scheme for application to helicopters in
vertical flight mode to guarantee altitude stabilization. A nonlinear helicopter model similar to the use in
this thesis is used to derive the proposed control in which Lyapunov’s direct method is used to establish
the overall system stability. Tee et al. (Tee et al., 2008) propose a robust adaptive neural network (NN)
control for helicopters in vertical flight, similar to the one used in this thesis, with dynamics in single-
input-single-output (SISO) nonlinear nonaffine form. Based on the use of the implicit function theorem
and the mean value theorem, they propose a constructive approach for adaptive NN control design with
guaranteed stability. They consider both full-state and output feedback cases, in which it is shown that
the output tracking error converge to a small neighborhood of the origin, while the remaining closed-loop
signals remain bounded. Recall that these five helicopter control strategies, (Pallett and Ahmad, 1993;
Sira-Ramirez et al., 1994; Huang and Balakrishnan, 2005; Kaloust et al., 2002; Tee et al., 2008), use a
nonlinear helicopter model in vertical flight equivalent to one used in this thesis, and all of them propose
diverse solutions for the control strategy employed to regulat the vertical position of the helicopter model

mounted on a stand.

Frazzoli et al. (Frazzoli et al., 2000) present a tracking controller for an underactuated small helicop-
terdynamics, based on a backstepping procedure. The control design provides asymptotic tracking for an
approximate model of small helicopters, and bounded tracking when more complete models are consid-
ered. The control strategies are simulated in both point stabilization and aggressive maneuver tracking.
Shim et al. (Shim et al., 1998) compare three different control methodologies for helicopter autopilot
design: linear robust multivariable control, fuzzy logic control with evolutionary tuning, and nonlinear
tracking control. The control design is based on nonlinear dynamic model with a simplified thrust-torque

generation model which is valid for hovering and low velocity flight.

Koo and Sastry (Koo and Sastry, 2002) present an output tracking controllers based on exact and
approximate input-output linearization of a rigid body helicopter based on the Newton-Euler equations.
By neglecting the couplings between moments and forces, they show that the approximated system with
dynamic decoupling is full state linearizable by choosing positions and heading as outputs, and bounded

tracking is achieved by applying the approximate control.

Walker et al. (Walker et al., 1999), and Walker (Walker, 2003), describe the design and testing of
longitudinal and lateral controllers for the Bell 205 helicopter. The controllers are designed using H .,

optimization in conjunction with low order linearizations taken from a non-linear flight mechanic model.
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Flight test results are also included in which decoupled responses were obtained, and desired handling
qualities achieved, and the bandwidths achieved in flight were close to those predicted by the linear

analysis.

Kim and Shim (Kim and Shim, 2003) present a hierarchical flight control system for unmanned aerial
vehicles, where the proposed system executes high-level mission objectives by progressively substantiating
them into machine-level commands. The acquired information from various sensors is propagated back to
the higher layers for reactive decision making. These control strategies have been successfully implemented

on a number of small helicopters.

Isidori et al. (Isidori et al., 2003) consider the problem of controlling the vertical motion of a nonlinear
model of a helicopter, while stabilizing the lateral and horizontal position and maintaining a constant
attitude. The controller is tested under a situation in which is required to synchronize the vehicle motion
with that of an oscillating platform, such as the deck of a ship in high seas. This is achieved by providing
a reference to be tracked of sinusoidal nature, and assuming that the tracking reference is not to be
available to the controller. Simulation results show the effectiveness of the method and its ability to cope

with uncertainties on the plant and actuator model.

Dzul et al. (Dzul et al., 2004) design and implement a controller of a Lagrangian based small-scale heli-
copter which is mounted on a vertical platform. The control is obtained by classical pole-placement tech-
niques for the yaw dynamics and adaptive pole-placement for the altitude dynamics. Mahony and Hamel
(Mahony and Hamel, 2004) approach the control of an idealized model of a scale model autonomous he-
licopter, by first obtaining an a priori bound on the tracking performance, for an arbitrary trajectory.
The control strategy uses backstepping techniques using an approximate model in which the small body
forces that cannot be directly incorporated into the control design are neglected. The closed-loop perfor-
mance of the full system, including the small body forces, is analyzed with a derived Lyapunov function,
which provides a priori bounds on initial error and the trajectory parameters that guarantees acceptable

tracking performance of the system.

Marconi and Naldi (Marconi and Naldi, 2007) consider the problem of controlling the vertical, lateral,
longitudinal and yaw attitude motion of a helicopter along desired arbitrary trajectories with only re-
strictions on the time derivatives imposed by the functional controllability of the system. The nonlinear
control strategy presented use a combination of feedforward control actions and high-gain and nested
saturation feedback laws, which succeeds in enforcing the desired trajectories robustly with respect to

uncertainties characterizing the physical and aerodynamical parameters of the helicopter.

1.3 Singular Perturbation Literature Review

1.3.1 Singular Perturbation in General

As described by Naidu and Calise (Naidu and Calise, 2001) one of the most important problems found
in the theory of systems and control is the mathematical modeling of a physical system. The realistic
representation of many systems calls for high-order dynamic equations. The presence of some parasitic
parameters, such as small time constants, masses, resistances, inductances, capacitances, moments of
inertia, Reynolds number, etc, is often the source for the increased order and stiffness of these systems.
The presence of these small parasitic parameters appear multiplying time derivatives or, in more disguised

form, due to the presence of large feedback gains and weak coupling.

The principal purpose of the singular perturbation approach is to provide an analysis and design tool

that alleviates the high dimensionality and ill-conditioning resulting from the interaction of slow and
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fast dynamic modes. Is this simultaneous occurrence of slow and fast phenomena, produces both the
stiffness in the dynamical systems, and gives rise to time scales. The systems in which the suppression of
a small parameter is responsible for the degeneration (or reduction) of dimension (or order) of the system
are labeled as singularly perturbed systems, which are a special representation of the general class of
time scale systems. The curse of dimensionality coupled with stiffness poses formidable computational
complexities for the analysis and design of multiple time scale systems. This time-scale approach is
asymptotic, that is, exact in the limit as the ratio € of the speeds of the slow versus the fast dynamics
tends to zero. When ¢ is small, approximations are obtained from reduced-order models in separate time
scales (Saksena et al., 1984), and this separation of time scales helps to reduce the order of complexity

of the systems being controlled.

In the realm of control, two difficult task must be accomplished by a control engineer in order to
guarantee the design of a proper control strategy that will regulate the system being studied. The first
problem deals with the modeling of the system to be controlled. Modeling of systems having in mind
that these systems are pursued to be controlled, have the peculiarity that the model should not be
more detailed than required by the specific control task, while at the same time, the extent of necessary
detail is not known before the control task is accomplished. Some of the common control tasks are
optimal regulation, tracking and guidance, which are generally accomplished in the presence of unknown
disturbances, parameter variations and other uncertainties, therefore, the control system must possess
a sufficient degree of insensitivity and robustness (Kokotovié, 1984). Singular perturbation techniques
tackles this problem by legitimizing the long time used ad hoc simplifications of dynamic models among
the control engineers by allowing to neglect the parasitic parameters which, in return, increase the
dynamic order of the model, but at the same time, the proposed time-scale analysis tool must help to
improve the oversimplified design by dividing the analysis in two steps. The first step provides a simplified
design which captures the dominant phenomena, while the disregarded phenomena, if important, is to

be treated in the second step.

The known asymptotic expansions into reduced (outer) and boundary layer (inner) series, becomes the
main characteristic of singular perturbation techniques. In general, most control systems are dynamic,
and the decomposition into stages is dictated by a separation of time scales, where the reduced model
represents the slowest phenomena which in most applications are dominant, and Boundary layer models
evolve in faster time scales and represent deviations from the predicted slow behavior. The goal of
the second, third, and later design stages is to make the boundary layers and sublayers asymptotically
stable, so that the deviations rapidly decay. The separation of time scales also eliminates stiffness
difficulties and prepares for a more efficient hardware and software implementation of the controller
(Kokotovié¢, 1984).

Singular perturbation theory represents a traditional tool of fluid dynamics and nonlinear mechanics,
which embraces a wide variety of dynamic phenomena possessing slow and fast modes. Singular Pertur-
bations in Mathematics and Fluid Dynamics Singular perturbations has its birth in the boundary layer
theory in fluid dynamics due to Prandtl (Prandtl, 1904). In a paper, given at the Third International
Congress of Mathematicians in Heidelberg in 1904, he pointed out that, for high Reynolds numbers, the
velocity in incompressible viscous flow past an object changes very rapidly from zero at the boundary
to the value as given by the solution of the Navier-Stokes equation. This change takes place in a region
near the wall, which is called the boundary layer, the thickness of which is proportional to the inverse
of the square root of the Reynolds number. Boundary-layer theory was further developed into an im-
portant topic in fluid dynamics (van Dyke, 1975; Kaplun et al., 1967). The term singular perturbations
was first introduced by Friedrichs and Wasow in the 1940s (Friedrichs and Wasow, ). In Russia, mainly

at Moscow State University, research activity on singular perturbations for ordinary differential equa-
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tions, originated and developed by Tikhonov in the 1950s (Tikhonov, 1952) and his students, especially
Vasil’eva (Vasil’eva, 1963), continues to be vigorously pursued even today (Vasil’eva et al., 1995). An
excellent survey of the historical development of singular perturbations is found in a book by O’Malley
(O’Malley Jr, 1991). Other historical surveys concerning the research activity in singular perturbation

theory at Moscow State University and elsewhere can are found (Vasil’Eva, 1976; Vasil’Eva, 1994).

Singular perturbation and time-scale methods have been applied to a wide range scientific branches,
from aerospace systems, to electrical systems and electronics, structures and mechanics, robotics, chemi-
cal reactors, soil mechanics, celestial mechanics, quantum mechanics, thermodynamics, thermoelasticity,
elasticity, lubrication, vibrations, renewal processes, agricultural engineering, ecology, biology, and the
list could continue, where (Naidu, 2002) can be consulted for a detailed survey on the use of singular per-
turbations and time scales. Among all these areas, it is quite interesting the use of singular perturbations
in the realm of biology modeling, in special the research conducted to analyze the predator-prey theory
by Deng et al. (Deng, 2001) where considerations are given to a basic food chain model satisfying the
trophic time diversification hypothesis which translates the model into a singularly perturbed system of
three time scales that it is used to provide rigorous but dynamical explanations as to why basic food chain
dynamics can be chaotic. Later works of the same authors (Deng and Hines, 2002), provide that assum-
ing that the reproduction rate ratio of the predator over the prey is sufficiently small thus resulting in a
basic tri-trophic food chain model. The use of singular perturbation time-scale analysis permit to study
the different interactions among the well established predator pray models, in which the top-predator
is considered the slowest of the three time-scales, the predator model is faster than the top-predator,
and slower than the prey, which represents the fastest of the three-time-scale models, and where the
reproduction ratio rates are considered as the parasitic constants that define the time-scales. The use
of such singularly perturbed models allows them to demonstrate that a singular Shilnikov’s saddle-focus
homoclinic orbit can exist as the reproduction rate ratio € of the top-predator over the predator is greater
than a modest value. In a sequel of his work, Deng and Hines, the singular perturbation and time-scale
analysis allows them to investigate a new chaos generating mechanism in a basic food chain model and
determine the ecological parameter ranges in which this type of chaos occurs, which otherwise, without
the existence of these three-time-scale singularly perturbed methods, will be extremely difficult to analyze
(Deng and Hines, 2003).

In the realm of biology is also interesting the study by Krupa et al (Krupa et al., 2008) of mixed-
mode dynamics that represent a complex type of dynamical behavior that has been observed both,
numerically, and experimentally, in numerous prototypical systems in the natural sciences. They use
the compartmental Wilson-Callaway model for the dopaminergic neuron as an example of a system that
exhibits a wide variety of mixed-mode patterns upon variation of a control parameter. By using singular
perturbation and time-scales, the problem can be analyzed from a geometrical point of view, which permits
to observe that the mixed-mode dynamics is caused by a slowly varying canard structure. Similarly,
Krupa et al (Jalics et al., 2010) present a mathematical study of some aspects of mixed-mode oscillation
(MMOs) dynamics in a three time scale system of ODEs as well as analyze related features of a biophysical
model of a neuron from the entorhinal cortex, which, thanks to the use of singular perturbation, allows
them to reduce the dimensionality of the neuronal model from six to three dimensions which permits
them to investigate a regime in which MMOs are generated, which motivates the three-time-scale model

system used.

The assimilation of singular perturbation techniques in control theory is more recent that in the field of
fluid dynamics, and is rapidly developing, as seen by the large amount of surveys conducted, where
for completeness only few of them are here referenced (Kokotovié et al., 1976; Saksena et al., 1984;

Kokotovié, 1984; Kokotovié¢, 1985; Naidu, 2002). Singular perturbation techniques have been widely
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used in many control problem areas, from open loop optimal control (Kelley, 1973; Cliff et al., 1992), to
closed-loop optimal control which has provided some very elegant results for linear systems leading to a
matrix Riccati differential or algebraic equations (Moerder and Calise, 1984; Moerder and Calise, 1985b;
Moerder and Calise, 1985a), to high-gain feedback problems, observers, stochastic systems, H,, adap-
tive control, or sliding-mode control, to name few. Singular perturbation and time-scale analysis can be
therefore viewed more like an analysis and design tool that alleviates the high dimensionality and ill-
conditioning resulting from the interaction of slow and fast dynamic modes, therefore allowing to reduce
the dynamic order of the studied models, thus permitting the use of control strategies that otherwise
would difficult, if not impossible, to implement. Some of the control strategies used with singularly

perturbation and time-scale analysis are described bellow.

Saberi and Khalil propose a composite control designed for stabilization and regulation of a class of non-
linear singularly perturbed systems by establishing well-posedness of the full regulator problem, providing
explicit upper and lower bounds on a cost function, and upper bounds on the perturbation parameter € are
also provided (Saberi and Khalil, 1985; Saberi and Khalil, 1984). Khorasani and Pai addresses feedback
linearization of full order nonlinear system via that of reduced-order systems, and show improvements for
estimating the upper bound of the perturbation parameter and the region of attraction while studying
the asymptotic stability properties of multiparameter singularly perturbed systems by introducing high

order corrections on the in the model (Khorasani and Pai, 1984; Khorasani and Pai, 1985)

Oh and Khalil (Oh and Khalil, 1997) stabilize a class of nonlinear systems using singular perturbation
by using a globally bounded output-feedback variable structure controller with a high gain observer for
a feedback-linearizable minimum-phase nonlinear system in the presence of unknown disturbance. The
high-gain observer is used to estimate derivatives of the tracking error while rejecting the effect of the
disturbances. The results is the design of a globally bounded output-feedback variable structure controller
that ensures tracking of the reference signal in the presence of unknown time-varying disturbances and

modeling errors.

Chen (Chen, 2002) proposes a globally exponentially stabilizing composite feedback control for a general
class of nonlinear singularly perturbed systems, where the chosen design manifold becomes an exact
integral manifold and the trajectories of the closed-loop systems, starting from any initial states, are
steered along the integral manifold to the origin for all sufficiently small singular perturbation parameters
€. Two appropriate Lyapunov functions are chosen, one for the reduced-order system, and the other for
boundary layer system and then forming a composite Lyapunov function to investigate the stability for

the full-order nonlinear system.

Abed has conducted an extensive amount of work related to demonstrate the stability
properties of multiparameter systems (Abed, 1985a; Abed, 1985d; Abed, 1985¢; Abed, 1985b;
Abed and Silva-Madriz, 1988; Abed, 1986). In (Abed, 1985b) presents time-scale separation and sta-
bility of linear time-varying and time-invariant multiparameter singular perturbation problems, in which
derives upper bounds on the small parasitic parameters ensuring the existence of an invertible, bounded
transformation exactly separating fast and slow dynamics. The study of the time-varying case it is re-
quired the two-time-scale methodology introduced by (Khalil and Kokotovi¢, 1979b), which yields that
the mutual ratios of the small parameters are bounded by known positive constants. Abed also derives the
parameter bounds ensuring that the system in question is uniformly asymptotically stable, which permit
to facilitate the derivation of these latter bounds. The concept of strong D-stability is also introduced and
shown to greatly simplify the stability analysis of time-invariant multiparameter problems. The concept
is extended in (Abed, 1986) where Abed defines that a system F is said to be D-stable if the eigenvalues
of DF have negative real parts for any diagonal matrix D with positive diagonal elements. Abed also

defines that a matrix is strongly D-stable if it is D-stable and if every sufficiently small perturbation of
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the matrix is also D-stable. The concept proves a stability theorem for time-invariant multiparameter
singular perturbation problems applied to two time scale as well as multiple time scale systems, regardless
of the relative magnitudes of the singular perturbation parameters, assuming strong block D-stability of
an associated boundary layer system. He also shows that for linear time-invariant systems the bounded
mutual ratios assumption can be lifted, and typically less conservative parameter estimates are obtained
(Abed, 1985¢).

Robustness analysis has been extensively studied to cope with the uncertainty of parameters, where
for instance, in (Khorasani, 1989), robustness is studied for a feedback stabilization of a nonlinear sys-
tem subject to two sources of uncertainties, uncertainty of parameters and unmodeled high frequency
dynamics, while in (Shi et al., 1998) presents the results for robust stability and robust disturbance
attenuation with norm-bounded parameter uncertainties in both state and output relations. Ioannou
(Toannou and Tsakalis, 2002) proposes a new direct adaptive control algorithm which is robust with re-
spect to additive and multiplicative plant unmodeled dynamics. The algorithm is designed based on the
reduced order plant, which is assumed to be minimum phase and of known order and relative degree,
but is analyzed with respect to the overall plant which, due to the unmodeled dynamics, may be non

minimum phase and of unknown order and relative degree.

More recent robustness results using singular perturbation techniques can be seen in
(Christofides, 2000), where Christofides et al. consider nonlinear singularly perturbed systems with
time-varying uncertain variables, for which the fast subsystem is asymptotically stable and the slow
subsystem is input/output linearizable and possesses input-to-state stable (155) inverse dynamics. They
propose a robust output feedback controller that ensures boundedness of the state and enforces robust
asymptotic output tracking with attenuation of the effect of the uncertain variables on the output of the
closed-loop system. Chakrabortty et al. (Chakrabortty and Arcak, 2007; Chakrabortty and Arcak, 2008;
Chakrabortty and Arcak, 2009) propose also a robust redesign technique which recovers the trajectories
of a nominal control design in the presence of additive input uncertainties by using a high-gain filter
and employing the fast variables arising from this filter in the feedback control law to cancel the effect
of the uncertainties in the plant. Singular perturbation and time-scale analysis is used to prove that
the trajectories of the redesigned system approach those of the nominal system when the filter gain is

increased.

The high-gain feedback is a source for singular perturbation behavior of any physical sys-
tem. In (Saberi, 1987), a stabilizing high-gain dynamic output feedback controller with almost-
disturbance-decoupling property is designed for a class of square-invertible and minimum phase
systems. See reference (Dragan and Halanay, 1987) for stabilizing a linear system by using high-
gain feedback using procedures similar to the stabilization of singularly perturbed systems. See
(Alvarez-Gallegos and Silva-Navarro, 1997; Heck, 1991; Ahmed et al., 2005) for addressing robust
asymptotic stability of a class of nonlinear singularly perturbed systems using sliding-mode control tech-

niques.

The use of singular perturbation and time-scale analysis although is generally applied to two-time-
scale models, it is not limited to these systems, and many more works in the literature are ori-
ented towards large scale or multiparameter singularly perturbed systems. Khalil and Kokotovié
(Khalil and Kokotovié¢, 1979a) extended the singularly perturbed theory to systems with several small
parameters which can change the system order, and discussed the difficulties that arise when testing the
boundary layer stability in multiparameter linear problems, and test their theories to linear quadratic op-
timal control and Nash game problems. Winkelman et al. (Winkelman et al., 1980), present a time-scale
separation procedure which is applied to a three machine interconnected power system modeled with flux

linkage and voltage regulator dynamics, that provided reduced models which yielded good eigenvalue and
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time response approximations of the original system.

Kotovic (Kokotovié¢, 1981) extended the singular perturbation and time-scales philosophy to the analysis
of large-scale systems, in which historically it was assumed that the model studied had some known
diagonal dominance properties which permitted eliminate the burden of properly modeling these large-
scale systems. These assumptions are only acceptable for small size systems, loosing too much of the
information that appears in the large-scale systems, therefore proposing the use of the standard singular
perturbation theory, such that instead of assuming the existence of N diagonally dominant blocks, it is

possible to justify one strongly coupled slow core and N weakly coupled fast subsystems.

Khalil (Khalil, 1981) extends the study of the stability of nonlinear, multiparameter, singularly per-
turbed systems, recalling that the stability properties of reduced-order and boundary-layer systems can
be used to obtain a Lyapunov function for the singularly perturbed system and an estimate of its do-
main of attraction by deriving sufficient conditions that guarantee the asymptotic stability of a class
of nonlinear singularly perturbed systems with several perturbation parameters of the same order, and

provide estimates of the region of attraction and bounds on the small parameters.

Ladde and Siljak (Ladde and Siljak, 1983) propose a scheme for order-decomposition and hierarchial
aggregation of small parameters according to their order, for multiparameter singular perturbation of
linear systems, when dealing with singular perturbation models in which, due to the fact that there are
more than one small parasitic parameter representing physical constants, becomes necessary the use of

multiple time-scales assumptions.

Abed (Abed, 1985¢) derives the recursive formulae which yield asymptotic expansions for the eigen-
values of multiparameter singular perturbation problems, where the formulae follow readily from an
exact expression for the eigenvalues which involves an implicit matrix function. The resulting implicit
function satisfies an algebraic matrix Riccati equation reminiscent of a similar equation of the single
parameter theory, and also demonstrate the block D-stability criterion concept for asymptotic stability

(Khalil and Kokotovié¢, 1979b) for multiparameter singularly perturbed systems.

Wang et al. (Wang et al., 1994) propose a series of perturbation techniques for the decomposition of
near-optimal regulators for linear systems with multiparameter and multi-time scale singular perturba-
tions. These near-optimal regulators have no knowledge of the perturbation parameters, which reduces
the computation in regulator synthesis. For the case of multiparameter singular perturbations, the near
optimal control is a cascade connection of separately designed slow and fast subregulators, while for the
case of multitime scale singular perturbations, the near-optimal control is hierarchically composed of
N + 1 subregulators, in which a parallel algorithm is provided for designing the different subregulators

separately.

Pan and Bagar (Pan and Basar, 1995) obtain the necessary and sufficient conditions for the existence
of approzimate saddle-point solutions in linear-quadratic zero-sum differential games when the state
dynamics are defined on three time scales. They shown that under perfect state measurements, the
original game can be decomposed into three subgames, denoted as slow, fast and fastest. The composite
saddle-point solution of the resulting three subgames make up the approximate saddle-point solution of
the original game. The conditions are obtained for the minimizing and maximizing player goals, and
for both the finite and infinite-horizon cases, providing direct applications in the H*°-optimal control of

three-time scale singularly perturbed linear systems under perfect state measurements.

Mukaidani et al. (Mukaidani et al., 2003) consider the linear quadratic optimal control problem for
multiparameter singularly perturbed systems in which N lower-level fast subsystems are interconnected
through a higher-level slow subsystem, and develop a new method to design a near-optimal controller

which does not depend on the unknown small parameters. They show that the resulting controller
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achieves an O || p || approximation to the optimal cost of the original optimal control problem.

Grammel (Grammel, 2004) presents an order reduction procedure for nonlinear control systems with
multiple time scales. A limit system for the slowest motion describing the situation that all singular
perturbation parameters vanish is constructed using a refined two-scale averaging method in a way that
allows a re-iteration. It is shown that for the case in which the control range vanishes, the results reduce

to the well-known Tychonoff theorem on order reduction for singularly perturbed ODFEs.

1.3.2 Singular Perturbation in Aerospace Systems

Trying to conduct n review of the literature of singular perturbation methods applied to aerospace
systems becomes a challenging task due to the extensive work conducted, that can be traced back to
the early works of Prandtl (Prandtl, 1904) the early 20" century, to the work conducted by the author
(Esteban et al., 2005a; Esteban et al., 2008a; Esteban et al., 2008b) and by Bertrand, Hamel and Piet-
Lahanier (Bertrand et al., 2008), related to the theoretically addressing of stability issues for VTOL
UAVs using singular perturbations theory. Trying to compile a complete review would be an impossible
task, that would not match the great literature reviews that have been already conducted, in special
the one by Naidu and Calise (Naidu and Calise, 2001), which provides an extended and excellent survey
on the use of singular perturbed and time-scale control methods for aerospace systems. This section,
rather than trying to create new literature reviews of the methods employed in this thesis, is based
on the excellent existing reviews (Naidu and Calise, 2001; Naidu, 2002) and tries only to summarized
them, making special emphasis on those works that have specially influenced, and helped, the author
throughout the work conducted in these past years, and furthermore, have raised enough interest and
suggested many ideas that have not been covered in this thesis, for obvious time and space limitations,

but that will surely be tackled in future works of the author.

The application of singular perturbation to aerospace systems was first applied to solve complex flight
optimization problems in the late 1960s. An excellent account of the ”historical development of techniques
for flight path optimization of high performance aircraft” is found in the NASA report by Mehra et al.
(Mehra et al., 1979) in the late 1970s, that provides an extensive account of the ”historical development
of techniques for flight path optimization of high performance aircraft”. The report starts with the
introduction of the work conducted by Kaiser (Kaiser, 1944) on the vertical-plane minimum-time problem
and reviews other works conducted by Miele (Miele, 1950), and Kelley (Kelley, 1959). In the horizontal-
plane, minimum-time problem, the report reviews the works of Connor (Connor, 1967) which extends
the existing closed-form solution of the optimal straight-line trajectories within the atmosphere to the
case of a lateral maneuver at constant height, and Bryson and Lele (Bryson Jr and Lele, 1969) that
present the thrust, bank angle, and angle-of-attack control laws for an aircraft to turn through a desired
heading angle using minimum fuel, while staying at constant altitude, and starting and ending with
specified velocities. In the three-dimensional, minimum-time problem, important contributions were
made by Kelley and Edelbaum (Kelly and Edelbaum, 1986), Hedrick (Hedrick and Bryson, 1971) and
Bryson (Bryson, 1971), in which solve supersonic airplane minimum time turns at constant altitude,
determining thrust, bank angle and angle of attack programs with optimal control theory. Kelley and
Lefton et al. (Kelley and Lefton, 1972) present a family of variable-altitude turns obtained by numerical
integration in the reduced-order approximation for a hypothetical supersonic aircraft, including the effects

of constraints on altitude, dynamic pressure, Mach number, lift coefficient, and normal load factor.

As described by Naidu and Calise (Naidu and Calise, 2001), singular perturbation analysis in flight
mechanics is intimately connected with the concept of energy-state approximation, first introduced by

Kaiser (Kaiser, 1944), to deal with the vertical-plane minimum-time problem. Kaiser introduced the
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notion of resultant height, which is today called energy height or specific energy, as the sum of an
aircraft’s potential and kinetic energy per unit weight. An excellent account of the connection of Kaiser’s
(Kaiser, 1944) early work and that of singular perturbation analysis of aircraft energy climbs can be
found in the revisited article by Merritt et al. (Merritt et al., 1985), where minimum-time and distance-
climb trajectories are compared with the original results for both the minimum-time calculations and the

distance climbs.

It can be seen by the extensive literature, that the use of energy-state approximation in both two- and
three-dimensional optimal trajectory analysis was extensively used until the late 1960s as it can be seen in
the works of Rutowski (Rutowski, 1954), and later by Bryson et al. (Bryson, 1968), in which energy state
approximation for supersonic aircraft performance optimization with extension to maximum range prob-
lems, and Hedrick and Bryson (Hedrick and Bryson Jr, 1972) which apply energy-state approximation
to minimum-time three-dimensional turns for a particular aircraft capable of speeds up to Mach number

two for a series of maneuvers where the change in heading-angle and/or final energy are specified.

The specific investigation on the application of the theory of singular perturbation and time-scales to
aerospace systems began in the early 1970s with Kelley (Kelley, 1970b) which considers the use of sin-
gular perturbations to obtain simplest variational problems that can be solve approximately in terms of
a reduced-order solution plus boundary layers at each end, therefore proposing this as an alternative to
asymptotical expansions used to obtain approximate solution of optimal trajectory and control problems.
Mehra et al. (Mehra et al., 1979) indicated in his study of the application of singular perturbation the-
ory to develop a hierarchical real-time algorithm for optimal three-dimensional aircraft maneuvers that
Kelley and his associates (Kelley, 1970b; Kelley, 1973; Kelly and Edelbaum, 1986) in the early 1970s,
were the first to apply the theory of singular perturbations to aircraft trajectory optimization problems
(Naidu and Calise, 2001). Kelley (Kelley, 1973) also extended the energy type of approximation to air-
craft flight in terms of singular perturbation theory to three-dimensional maneuvers by first studying
differential equations arising in optimal control of fairly general form but low order, and then extend the
results to the attitude dynamics for optimal flight of a rocket in vacuum. Finally, optimal aircraft flight
in various reduced-order approximations is investigated thus demonstrating that the use of reduced-order
approximation facilitates numerical computations by reducing the number of multiplier initial values that

must be determined simultaneously and by improving the conditioning of the differential equations.

Kelley was the first to suggest the use of an artificial small parameter to provide a singular perturbation
structure. This analysis was later called forced singular perturbation analysis by Shinar and Farber
(Shinar and Farber, 1984), where they analyzed the time-optimal pursuit-evasion game in the horizontal
plane between two airplanes by applying the technique of forced singular perturbations (FSPT). They
show that by assuming multiple time scale separation, a zeroth-order closed-form solution is obtained,
which permits the use of realistic aerodynamic and propulsion data, which otherwise, without the time-
scale separation, would be extremely difficult to include. Kelley (Kelley, 1971a) also uses multiple time-
scales to conduct flight path optimization, discussing decoupling of high order three dimensional aircraft

flight problem into several low order problems.

Ashley (Ashley, 1967) first suggested the use of multiple time scales in vehicle dynamic analysis by
proposing multiple scaling as a systematic means for determining when motions occurring with distinctly
different characteristic times can be decoupled during the analytical study of flight vehicle performance
and dynamic behavior (Naidu and Calise, 2001). Ashley presented the basis for separating the problems
of performance and dynamic response by identifying slowly varying control inputs and high lift-to-drag
ratio, which results in temporarily omission of damping terms, thus defining a simple parameter whose
smallness permits the short-period and phugoid modes to be separated, thus yielding approximate solu-

tions for the frequency and decay rate of the short period.
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In (Kelly and Edelbaum, 1986) three-dimensional maneuvers, both energy climbs and energy turns
are addressed via singular perturbation by Kelly, and later theoretical works addressed problems for a
two-state system (Kelley, 1970b) and horizontal plane control (Kelley, 1970a) of a rocket vehicle flight
optimization using a model that includes rigid body degrees of freedom in boundary layer approxima-
tion to attitude transients. Other problems considered by Kelley were energy state models with turns
(Kelley, 1971b) which considered flight path optimization with multiple time scales by discussing decou-
pling of high order three dimensional aircraft flight problem into several low order problems. Kelley
(Kelley, 1973) also derives an alternate third-order model featuring instantaneously variable speed by
means of time-scale separation, which provides an alternative to more complex particle-dynamics model

that comprise three velocity and three position components.

Ardema (Ardema, 1976) applied the method of matched asymptotic expansions (MAFE) to obtain an
approximate solution to the vertical plane minimum time-to-climb problem, by obtaining outer, boundary-
layer, and composite solutions for zeroth and first orders, although the zeroth-order solution proves to
be a poor approximation, but the first-order solution gives a good approximation for both the trajectory
and the minimum time-to-climb, which in addition shows that the computational cost of the singular

perturbation solution is considerably less than that of a steepest descent solution

Breakwell (Breakwell, 1977) identified the vertical plane minimum-time problem where the dependence
of drag (D) on lift (L) is suppressed by calculating the induced drag corresponding to the assumption
that the lift is equal to the weight (W), that is L = W, therefore allowing to obtain the minimum-
time climb path, which obtained by using either using the energy state analysis or by Green’s Theorem,
leads to discontinuities in the flight-path angle (y). By considering the vertical plane minimum-time
problem where D is much less than L, thus defining a natural singular perturbation parameter as of
D/L dependent on Mach number, and demonstrating that the discontinuities in v can be replaced by
transitional boundary layers on time scales of the same order the value of the perturbation parameter
D/L at the moment of the 7 discontinuities. An extension of this work (Breakwell, 1978) show that the
transitions satisfy, on an appropriate time scale, the identical fourth order system, not only when mass
loss is taken into account in a minimum-time climb but also if the problem is changed, for example, to

the maximum-altitude climb for given mass expenditure, and time being free.

All the works conducted until this point applied the theory of singular perturbation and time scales
for aerospace systems to obtain open-loop optimal controls (Naidu and Calise, 2001). Calise, in a series
of papers, focused on complete time scale separation and obtained closed-loop (feedback) controls. In
particular, Calise (Calise, 1977b; Calise, 1978) developed a singular perturbation approach to extend
existing energy management (EM) methods by outlining a procedure for modeling altitude and flight
path angle dynamics which were previously ignored in EM solutions of the vertical plane minimum-
time problem. Calise show that feedback solutions can be obtained, even for EM problem formulations
which currently result in a two-point boundary value problem. The proposed methodology is general
and applicable to solving a wide class of optimal control problems, which solves the matching problem
that exists when applying singular perturbation theory to nonlinear problems, resulting in asymptotically

stable boundary layer solutions as natural results of the presented approach.

Mehra et al. (Mehra et al., 1979) provide an excellent study devoted entirely to the application of
singular perturbation theory to a variety of aerospace problems with special emphasis on real-time com-
putation of nonlinear feedback controls for optimal three-dimensional minimum time long range intercept
problem for an F-4 aircraft model given by six state, three control variable, and assuming a point mass
model. Nonlinear feedback laws are presented for computing the optimal control variables, throttle, bank
angle, and angle-of-attack, as a function of target and pursuer aircraft states and desired terminal condi-

tions. These advances created a continuous and steady interest in this area of the application of singular
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perturbation and time scales to aerospace problems (Naidu and Calise, 2001).

Among others are Ardema (Ardema, 1983), which assesses the applicability and usefulness of sev-
eral classical and other methods for solving the two-point boundary-value problem which arises in non-
linear singularly perturbed optimal control by analyzing and comparing the computational requirements
associated with the studied algorithms (Picard, Newton and averaging types). Ardema and Rajan
(Ardema and Rajan, 1985a), in which proposed two methods for time-scale separation analysis of dy-
namic systems, thus closing the existent gap of a nonexistent systematic application of singular per-
turbation methods for casting complex (high-order, highly coupled, highly nonlinear) aircraft trajectory
optimization problems in a singular perturbation. The proposed methods are based on the concept of
state variable speed and require knowledge only of the dynamical equations and bounds on state and

control variables.

Kelley et al.(Kelley et al., 1986), review the minimum-time climbs in the energy approximation giving
further consideration to the choice of variables, presenting a pair of variables which seems to offer an at-
tractive replacement for altitude and air-speed in singular-perturbation procedures. Naidu and Price
(Naidu and Price, 1988) present the results of applying the Singular Perturbations and Time Scales
(SPATS) methodology to the control of digital flight systems. A block diagonalization method is de-
scribed to decouple a full order, two time (slow and fast) scale, discrete control system into reduced order

slow and fast subsystems.

Naidu and Price present a composite, closed-loop, suboptimal control from the sum of the slow and fast
optimal feedback controls, and show that numerical results obtained for an aircraft model showed very
close agreement between the exact (optimal) solution and the composite (suboptimal) solution which is
computationally simpler and implies a considerable reduction in the overall computational requirements

for obtaining the closed-loop, optimal control laws of digital flight systems.

In the area of flight mechanics, in order to provide appropriate performance analysis and develop
precise guidance and control strategies, it is necessary the use of complex nonlinear equations, which are
further complicated by the presence of aerodynamic and propulsive forces that are dependent on flight
conditions in the form of stability derivatives which are often given in the form of tabular data. This
resulted from the very beginning of the studies of aircraft performance analysis and design, in the use of
simplified analysis models based on quasi-steady approximations. In a natural manner, the necessity of
using these simplified examples translated into an increasing interest in singular perturbation methods
in flight dynamics, which permitted an approximate analysis of an otherwise complicated optimization
problem (Naidu and Calise, 2001).

The use of these simplified models and approximations provided an invaluable tool at the time they
were originally introduced, when the use of high-speed digital computation and powerful numerical opti-
mization algorithms based on either the calculus of variations or nonlinear programming were not avail-
able to solve optimal control problems in flight mechanics (Ashley, 1967; Kelley, 1971a; Kelley, 1970b;
Kelley, 1973; Kelly and Edelbaum, 1986; Shinar and Farber, 1984). Despite the increase of computa-
tional power of today’s computers, the development of simplified models, order reduction, and per-
turbation methods of analysis continue to play an important role since these methods lead to the
development of near-optimal, closed-loop solutions, which in addition provide an insight view into
the physics of the problem which is much harder to identify when analyzing the complete problem
(Naidu and Calise, 2001).

Singular perturbation and time-scale analysis provide a mathematical realization of the inherent and
intuitive analysis approach to simplified models obtained via order reduction, and probably, what it is

most important the theory of singular perturbation and time scales provides a mechanism for correcting
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the solutions for the neglected dynamics that is essential to the development of guidance and control
strategies for many aerospace systems such the slow phugoid mode and a fast short-period mode, which
are well-know time-scale characteristics of the longitudinal motion of an airplane to any aerospace engineer
(Naidu and Calise, 2001). This translates to the fact that singular perturbation and time scale analysis
has been applied in almost all possible branches in aerospace control design, ranging from atmospheric
flight control problems, pursuit-evasion and target interception problems, digital flight control systems,
atmospheric reentry, satellite and interplanetary trajectories, missiles, launch vehicles and hypersonic

flight, or orbital transfer to name few of the areas (Naidu and Calise, 2001).

In the area of atmospheric flight, Chen and Khalil (Chen and Khalil, 1990) use singular perturbation
and time-scale analysis to obtain lower-order slow (phugoid) and fast (short-period) models. The accuracy
of these models in approximating eigenvalues is demonstrated using typical numerical data for stable as
well as unstable airplanes, and the slow and fast models are employed in a sequential design procedure
to design a two-time-scale compensator for an unstable transport airplane (F-8 aircraft) by using a fast
compensator first using the fast model; then a slow compensator is designed using a modified slow model.
Menon et al. (Menon et al., 1987) design flight test trajectory control systems that enable the pilot
to follow complex trajectories for valuating an aircraft within its known flight envelope and to explore
the boundaries of its capabilities by using singular perturbation theory and the theory of prelinearizing

transformations.

Ridgely and Banda (Ridgely et al., 1984) present a control system design that produces the tracking
of command inputs and the decoupling of outputs of high-gain multivariable control systems applied to
fighter /military aircraft (an experimental vertical/standard takeoff and landing aircraft) performing a
number of maneuvers. Vian and Moore (Vian and Moore, 1989) present an interesting application of the
singular perturbation method in time-controlled optimal flight trajectory involving a military aircraft that
include the effects of risk from a threat environment by considering the horizontal plane aircraft motion
using lateral equations, with the slow variables identified as the downrange position and aircraft mass,
whereas cross-track position, energy height, and heading angle are identified as fast variables. Lateral
and vertical algorithms are developed with the intent of near real-time application. A constant altitude,
lateral flight-trajectory generation method is developed that optimizes with respect to time, fuel, final
position, and risk exposure by using singular perturbation methods that obtain reduced-order airplane
models that allow static rather than dynamic optimization. Pontryagin’s Minimum Principle is used with

a Fibonacci search method to minimize the cost functional.

Cliff et al. (Clff et al., 1982) uses a simple singularly perturbed energy approximation point-mass
three-dimensional aircraft model that incorporate thrust-vector control in aircraft optimization where for
certain boundary conditions there are two families of extremal solutions giving rise to a Darbout locus. For
aircraft with static thrust in excess of weight, a spectacular improvement in maneuverability is realized at
energies low enough to permit hover, which in energy approximation, this amounts to instantaneous turn
capability. Reiner et al. (Reiner et al., 1996) presents a robust linear controller with nonlinear feedback
linearization to design robust dynamic inversion controllers. This methodology is applied to an angle-
of-attack command system for longitudinal control of a high performance aircraft(model of the NASA
high-angle-of-attack research vehicle) using feedback linearization coupled with structured singular value
1 synthesis. Nonlinear simulations demonstrate that the controller satisfies handling quality requirements,
provides good tracking of pilot inputs, and exhibits excellent robustness over a wide range of angles-of-

attack and Mach numbers.

Ardema and Yang (Ardema and Yang, 1988) consider interior transition layers in vertical-plane climb
path optimization. They treat the interior layer associated with the transonic energy state discontinuity

as two boundary layers, one in forward time and the other in backward time. The initial states of the
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two boundary layers are matched to give continuous composite solutions at the point of reduced solution
discontinuity. They show that the transition maneuver is relatively tolerant in terms of deviations from

reduced solution values of load factor and flight path angle.

Avanzini et al. (Avanzini et al., 1999) present a method for the inverse simulation that is based on the
idea of timescale separation (TSS). The proposed control strategy is based in the integration method,
which has been extensively applied in the inverse simulation of aircraft motion where control inputs are
determined once a maneuver or flight task is assigned, and where the concept of timescale separation is
merged into an integration technique and a constrained optimization method, which solves some of the
problems of accuracy and stability in the numerical algorithm that introduce the presence of multiple
timescales and right half-plane transmission zeros in aircraft dynamics. The application of singular
perturbation theory results in two subscale problems that are solved separately for the slow and fast
timescales and a numerical algorithm is devised that presents significant advantages in terms of numerical
efficiency and robustness, and that also deal with control saturation. Simulation results show that has
improved performances of the proposed control strategy in comparison with an integration method that

is based on the local optimization concept.

Many trajectory optimization problems, however, have discontinuous reduced-order solutions. Typical
situations are the vertical-plane optimal climb problem when posed so that energy E is the single slow
variable (Ardema, 1976; Ardema, 1977) and altitude h and velocity V' are modeled as slow variables
(Breakwell, 1977). For supersonic aircraft, the outer solution, that is, the energy climb path, is typically
discontinuous in the transonic region (Rajan and Ardema, ; Weston et al., 1983). These discontinuities,
which occur at interior points, give rise to instantaneous jumps called interior transition layers and have

the nature of boundary (initial and final) layers.

In the area of optimal control control navigation and guidance (Ardema, 1980) presented a third-
order, nonlinear, singularly perturbed optimal control problem defined by assumptions that define the
full problem as a singular one, while the reduced problem becomes nonsingular. The separation scales
resulted in the separation between the singular arc of the full problem and the optimal control law for the
reduced problem which become hypersurfaces in state space. The boundary solutions are constructed such
that are stable and reach the outer solution in a finite time, and a uniformly valid composite solution is
then formed from the reduced and boundary-layer solutions and applied to obtain an approximate solution
of a simplified version of the aircraft minimum time-to-climb problem. Calise (Calise, 1976) approached
the solution of variational problems by singular perturbation methods, by provided the necessary tools to
treat the singularities arising in problems where the control appears linearly and/or in state-constrained
control problems, and also allowing to derive approximate feedback solutions for problem formulations
if not treated with singular perturbation methods resulted in a nonlinear two-point boundary value
problems that are applied to a three-dimensional minimum time turns for an F-106 and an F-4E aircraft.
Calise (Calise, 1979; Calise, 1977a) also approaches the navigational guidance problem using singular
perturbation methods to obtain optimal aerodynamic and thrust control laws. In (Calise, 1979) the use
the application of singular perturbation methods to optimal thrust magnitude control and optimal lift
control is applied to missiles restricted to the horizontal plane dynamics. The multiple time scaling
procedure employed avoided the problems of selecting unknown adjoints to suppress unstable modes in
the boundary layer when using asymptotic methods, and therefore permitting to reduce the two-point
boundary value problems to a series of pointwise function extremizations, thus resulting in an analytic

and algebraic optimal control solution

On the realm of helicopter singular perturbation control control, although the use of singular per-
turbation theory has been employed to simplify the control system structure (Heiges et al., 1992;
Njaka et al., 1994; Prasad and Lipp, 1993; Hamidi and Ohta, 1995; Avanzini and de Matteis, 2001;
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Lépez-Martinez et al., 2007), to the knowledge of the author, the work conducted in this thesis,
along with the articles presented by the author and his thesis co-directors in (Esteban et al., 2005b;
Esteban et al., 2005b; Esteban et al., 2007; Esteban et al., 2008a), along with the work of Bertrand,
Hamel and Piet-Lahanier (Bertrand et al., 2008), that presented a stability analysis of a hierarchical
controller for an unmanned Aerial Vehicle, are the only works that theoretically addresses stability issues

for VT'OL UAVs using singular perturbation theory.

Heiges et al. (Heiges et al., 1992) use forced singular perturbation theory to reduced the order of a
6-DOF helicopter model, thus reducing the twelfth-order nonlinear system of equations by separating
the position (slow) and attitude (fast) dynamics, which leads to simpler transformations that are used to
design a full-authority controller separately for each of the reduced order systems. The control strategy
is developed analytically on the basis of nonlinear transformation theory. They provide details of the
inverse transformation and the solution of the inverse kinematics problem, along with the description of
the transformed linear feedback controller. The control strategy is simulated using the NASA AMES
TMAN program (Lewis and Aiken, 1985) to simulate one-on-one Helicopter Air Combat at NOE (Nap-
of-the-Earth).

Njaka et al. (Njaka et al., 1994) proposed singular perturbation theory as an alternative to common he-
licopter flight control strategies that rely heavily on plant models which have been linearized about various
operating set points, and that translate into the use of linear controllers that are designed and scheduled
to cover the operational flight envelope. Simplification of the control design process are conducted by
dividing the rotorcraft dynamics into multiple time scales using the singular perturbation theory that
results in a two-time-scale controller in which the fast dynamics of the rotational state components appear
decoupled from the slower state components associated with translational dynamics. The controllers for
the two resulting reduced-order dynamic systems are then designed separately, with commanded attitude
output from the slow-time-scale system providing the necessary coupling between the controllers. The
use of the fast-time-scale control law provides rotorcraft attitude stability augmentation while imparting

the desired handling qualities, which alleviates the pilot’s work load.

Prasad and Lipp (Prasad and Lipp, 1993) proposed a helicopter full authority flight controller using an
approximate inversion of the nonlinear model of the vehicle, which is derived by recognizing the natural
time scale separation between position and attitude dynamics of the helicopter. This translates into
that the helicopter’s attitudes are treated as pseudo-command variables. The controller is simplified
by assuming approximations to the body axes forces, neglecting first the cyclic and pedal control force
terms, and in a second approximation neglecting the body x- and y-axis force components in the controller
calculations. Simulations are conducted to evaluate the control strategies in a nonlinear simulation model

of the Apache helicopter, and tested using typical command maneuvers.

Hamidi and Ohta (Hamidi and Ohta, 1995) used singular perturbation theory to simplify the control
system structure, which is based in nonlinear transformation theory to represent nonlinearities in the
model of the system, yielding a new algorithm for the inverse nonlinear transformation of the control
terms. They investigate the unmodeled system errors with nonlinear inverse dynamics theory, and show,
via simulations, that the control system could track commanded values under the presence of modeling

errors and disturbances.

Avanzini and de Matteis (Avanzini and de Matteis, 2001) developed and evaluated a fast and reliable
multiple-timescale algorithm for the inverse simulation of rotorcraft maneuvering tasks. Avanzini used
his own previous work (Avanzini et al., 1999) based on a two-timescale approach to the solution of inverse
problems of aircraft motion represents the background for devising a technique that accounts for specific
issues of rotorcraft dynamics such as the large effects of the fast, primary moment generating controls

on the slow dynamics associated to the vehicle trajectory and the system being frequently non minimum



1.3. SINGULAR PERTURBATION LITERATURE REVIEW 25

phase. The inverse simulations provide accurate solutions of the fast and slow reduced-order systems due
to the fact that the quasi-steady-state values of the fast controls are considered in the slow timescale.
They identify non observable motions that are ruled out by the multiple timescale approach, and via
simulations show that the expected computer time reduction is realized, that the well-known difficulties
of inverse methods for finding feasible solutions at convergence are practically eliminated, and, finally,

that steady-state flight conditions are accurately recovered at the end of the prescribed maneuvers.

Lépez et al. (Lopez-Martinez et al., 2007) presented the problem of a nonlinear Lo-disturbance rejection
design for a laboratory twin-rotor system, in which control is only achieved via rotor speed, since the
collective pitch angle is fixed for both rotors. The control strategy is derived considering a reduced order
model of the rotors obtained by application time-scale separation, which also includes integral terms on
the tracking error to deal with persistent disturbances. An explicit suboptimal solution to the associated
partial differential (HJBI) equation is applied, which yields global asymptotical stability for the reduced
system, where the control is of the form of a partial feedback linearization with an external nonlinear

PID, which is tested in a experimental laboratory twin rotor.

Bertrand et al. (Bertrand et al., 2008) presented the stability analysis of a hierarchical controller of a
two-time-scale VTOL UAV using singular perturbation theory. Control laws are derived using time-scale
separation between the translational dynamics and the orientation dynamics of a six degrees of freedom
VTOL UAV model to regulate both position and attitude control. They assume that the linear velocity
is not measured, and thus a partial state feedback control law is proposed, based on the introduction
of virtual states in the translational dynamics of the system. They also identify that although reduced-
order subsystems can be considered for control design, the stability must be analyzed by considering the
complete closed loop system, which in the realm of VT'OL aircraft systems, to the knowledge of the author,
has only been addressed by Bertrand et al. (Bertrand et al., 2008) and the work conducted by Esteban
et al. (Esteban et al., 2005b; Esteban et al., 2005b; Esteban et al., 2007; Esteban et al., 2008a).

This concludes the review of the literature section, which only intended to touch the surface of gen-
eral control strategies in aerospace systems, specially in helicopter, and how singular perturbations
and time-scale methods have been applied to both general aerospace systems and helicopter. Exten-
sive reviews on the singular perturbation and time-scale methods in aerospace systems can be found in
(Naidu and Calise, 2001), and literature reviews in singular perturbation and time-scales in general can be
found in (Kokotovié et al., 1976; Vasil’Eva, 1976; Saksena et al., 1984; Kokotovi¢, 1984; Kokotovi¢, 1985;
O’Malley Jr, 1991; Vasil’'Eva, 1994; Naidu, 2002).
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Chapter 2

Helicopter Dynamics

2.1 Introduction to the Helicopter System

The principle objective of this chapter is to provide an insight view that helps to understand the dynamics
of the problem here investigated, rather than treating the problem as just a plant. From a control designer
perspective, having a priori knowledge of the physics of the plant is not a requirement, but it helps to
ensure that the chosen control strategy is pushing in the same direction as the natural behavior of the
system being analyzed. Furthermore, the aerospace background of the author has provided an additional
edge in determining the natural times-scales appearing in the helicopter, which, as it will be seen in
section 3.5, although the mathematics does generally provide criteria to determine the existence and the
determination of time-scales, the physics of the problem, and knowledge of the natural behavior of the
system, makes time-scale identification and selection of appropriate singularly perturbed parameters that

determine the different boundary layers a much simpler task.

This chapter also derives the necessary tools to obtain the dynamics of the helicopter model here
studied, making special emphasis on the modelization of the thrust force that drives the helicopter in
axial flight. Some of the proposed models will reproduce with higher fidelity the helicopter dynamics in
axial flight by using discontinuous functions, but, due to restrictions on the proposed control strategy,
and the stability methodology, both the system being studied, and the selected control, being required
to be continuously differentiable at every point, only one of the proposed models will be selected. The
selected model represents a degeneration of the axial flight, which is the condition of hovering flight, but
it will be demonstrated that will be a valid approximation model due to the characteristic maneuvers of
the helicopter being studied. The rest of the models, which include the more precise and discontinuous
models, will be used as test bench models to test both validity of the proposed control strategy, and

robustness under unmodeled dynamics.

Many definitions of what is a helicopter can be found on the literature, being one of these the definitions
the one that appears in (McLean, 1990) "helicopters are a type of aircraft known as rotorcraft, for they
produce the lift needed to sustain flight by means of a rotating wing, the rotor”. A more technical defi-
nition is provided by The International Civil Aviation Organization (ICAQ) which defines the helicopter
as a "heavier-than-air aircraft supported in flight chiefly by the reactions of the air on one or more power-
driven rotors on substantially vertical axes” (The International Civil Aviation Organization, 2009), or a
more general definition such the one that states that the helicopter is a type of rotorcraft in which the
necessary forces to maintain flight, lift and thrust, are supplied by one or more engine driven rotors. All

these definitions focus on the unique feature that helicopters have the possibility of directing the thrust

27



28 CHAPTER 2. HELICOPTER DYNAMICS

vector in any selected direction. Is this unique feature that permits the helicopter to take off and land
vertically, to hover, and to fly forwards, backwards and laterally, which makes them much more versatile
than the fixed-wing aircraft. But this flexibility comes at the price of the complexity of the dynamics

that govern such systems.

The model definition will be done by first giving an introduction to all the systems that compose the
helicopter and a basic introduction of how they work in section 2.2. This can be extended to any single
rotor helicopter, from an Radio-Control (R/C) helicopter, to a multi-purpose military helicopter; section
2.3 provides an introduction to the helicopter dynamics and the reference coordinate system employed,
while section 2.4 introduces the non-linear six-degrees-of-freedom (6-DOF') models, and the simplified
helicopter models that are historically used to study in more detail the decoupled longitudinal, lateral-
directional, and axial flight dynamics. Section 2.5 describes the perturbed state equation that leads to
the axial flight model that will be derived in detail in section 2.6 with the definition of the proposed
thrust/lift models for a rotor, the proposed closed-form solutions for the thrust coefficient model Cr are
presented in 2.7, and finally the derivation of the proposed helicopter model is given in section 2.8, while
the derivations of the alternative and more precise models are sent to Appendix A for completeness of
the thesis since the derivations might become cumbersome for the reader. It is also advised to the reader
that for easiness of the reading process, if only interested in the selected model that is studied in this

thesis, and not with the mathematical derivation process, proceed to section 2.8.

2.2 Helicopter Systems

Although there are many types of helicopters depending on number and configuration of the rotors,
from single rotor, to tandem, intermeshing, transverse or coaxial helicopters, this thesis focuses only
on the single main rotor type. Figure 2.1 describes the types of helicopter regarding the type of ro-
tors, where the one that is the focus of this document is the center one, the single main rotor. A
single main rotor helicopter, and in general most helicopters, are formed primarily by a main rotor,
tail rotor, fuselage, engine, fuel tank, transmission, mast, tail rotor drive shaft, tail fin, horizontal fin,
and landing skid. Figure 2.2 in a more simple way, and Figure 2.3 with a little more detail show the
schematic representation of the major components of a helicopter, which are described in more detail
bellow (Federal Aviation Administration, 2000).

The principal element that makes helicopters such a versatile aircraft is the rotor system. The rotor
system is the rotating part of a helicopter which generates main component of lift. A rotor system may
be mounted horizontally as main rotors are, providing lift vertically, or it may be mounted vertically,
such as a tail rotor, to provide lift horizontally as thrust to counteract torque effect. A helicopter main
rotor, is a type of fan that is used to generate both the aerodynamic lift force that supports the weight
of the helicopter, and the thrust force which counteracts the aerodynamic drag in forward flight. Each
main rotor is mounted on a vertical mast over the top of the helicopter, as opposed to a helicopter tail
rotor, which is connected through a combination of drive shaft(s) and gearboxes along the tail boom. A
helicopter’s rotor is generally made up of two or more rotor blades. The amount of lift generated by the
rotor can be varied by either the blade pitch or the angular velocity of the main rotor, which is ultimately
connected with the engine’s RPM. The blade pitch is typically controlled by a swash plate connected to
the helicopter flight controls.

The swash plate is a device that translates input via the helicopter flight controls into motion of the
main rotor blades, which effectively modify the forces and moments acting on the helicopter. Because
the main rotor blades are spinning, the swash plate is used to transmit three of the pilot’s commands

from the non-rotating fuselage to the rotating rotor hub and main blades. These three commands can
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be seen in Figure 2.4 denoted with the black link for the collective pitch, the yellow for the longitudinal
cyclic, and the pair pink and blue for the lateral cyclic. The following section describes in more detail
each of the control actions. The swash plate consists of two main parts: a stationary swash plate and a
rotating swash plate, which can be better observed in a typical swash plate of a R/C helicopter in Figure
2.5, where the blue component, denoted with the number 1, represents the non-rotating outer ring or
swash plate, while the turning inner ring is denoted in silver, denoted with the number 2. The stationary
(outer) swash plate is mounted on the main rotor mast and is connected to the cyclic and collective
controls by a series of pushrods. The swash plate is able to tilt in all directions and move vertically.
The rotating (inner) swash plate is mounted to the stationary swash plate by means of a bearing and is
allowed to rotate with the main rotor mast. An anti-rotation link prevents the inner swash from rotating
independently of the blades, which would apply torque to the actuators. The outer swash typically has
an anti-rotation slider as well to prevent it from rotating. Both swash plates tilt up and down as one
unit. The rotating swash plate is connected to the pitch horns by the pitch links, which are denoted in
silver and with the number 6, as seen in Figure 2.5. The outer non-rotating swash plate receives the pilot
commands through the control links as it can seen in Figure 2.4 with the black, yellow, and the pair pink

and blue control links.

The mast is a cylindrical metal shaft which extends upwards from and is driven by the transmission. At
the top of the mast is the attachment point for the rotor blades, also called the hub. The rotor blades are
then attached to the hub by a number of different methods. Main rotor systems are classified according
to how the main rotor blades are attached and move relative to the main rotor hub. There are three
basic classifications: rigid, semirigid, or fully articulated, although some modern rotor systems use an

engineered combination of these types.

The tail rotor, or anti-torque rotor, is a smaller rotor mounted so that it rotates vertically or near-
vertically at the end of the tail of a traditional single-rotor helicopter. The tail rotor’s position and
distance from the center of gravity allow it to develop thrust in the same direction as the main rotor’s
rotation which in results serves as to counter the torque effect created by the main rotor as seen in Figure
2.6. Tail rotors are simpler than main rotors since they require only collective changes in pitch to vary
the amount of thrust. The pitch of the tail rotor blades provides also directional control by allowing the

pilot to rotate the helicopter around its vertical axis.

The tail rotor drive system consists of a shaft powered from the main transmission and a gearbox
mounted at the end of the tail boom. The drive shaft may consist of one long shaft or a series of shorter
shafts connected at both ends with flexible couplings, that allow the drive shaft to flex with the tail
boom. The gearbox at the end of the tailboom provides an angled drive for the tail rotor, and may
also include gearing to adjust the output to the optimum rotational speed for the tail rotor. Figure
2.7 shows a conventional helicopter rotor drive system. For more details see references (Prouty, 1986;
Leishman, 2006; Lépez and Valenzuela, 2010; Cuerva et al., 2009).

2.2.1 Helicopter Flight Controls

A helicopter pilot manipulates the helicopter flight controls in order to achieve controlled aerodynamic
flight (Gablehouse, 1967; Gablehouse, 1969). The changes made to the flight controls are transmitted
mechanically to the rotor, producing aerodynamic effects on the helicopter’s rotor blades which allow the
helicopter to be controlled. For tilting forward and back (pitch), or tilting sideways (roll), the angle of
attack of the main rotor blades is altered cyclically during rotation, creating different amounts of lift at
different points in the cycle. For increasing or decreasing the overall lift, the angle of attack for all the

blades is collectively altered by equal amounts at the same time resulting in ascents, descents, acceleration
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and deceleration.

A helicopter has four flight control inputs. These are the cyclic, the collective, the tail rotor collective,
and the throttle. The first control input is called the cyclic because it changes the pitch of the rotor
blades cyclically. Cyclic controls are used to change a helicopter’s roll and pitch. Push rods or hydraulic
actuators tilt the outer swash in response to the pilot’s commands. The swash plate, depending in the
mode in which the links are connected, moves in the intuitively expected direction, tilting forwards to
tilt the rotor "disc” forwards, for instance, but ”pitch links” on the blades transmit the pitch information
ahead of the blade’s actual position, giving the blades time to ”fly up” or "fly down” to reach the desired
position which creates a difference of lift around the blades, and the helicopter will tilt towards the side
with lower lift (Federal Aviation Administration, 2000).

This results in that the pitch angle of the rotor blades changes depending upon their position as
they rotate around the hub so that all blades will change their angle the same amount at the same
point in the cycle. The change in cyclic pitch has the effect of changing the angle of attack and
thus the lift generated by a single blade as it moves around the rotor disk. This in turn causes the
blades to fly up or down in sequence, depending on the changes in lift affecting each individual blade
(Federal Aviation Administration, 2000).

The net result is that, for conventional swash place combinations as the one treated in this thesis, when
tilting the rotor disk in a particular direction, the main rotor forces tilt also in that direction. If the
pilot pushes the cyclic forward, the rotor disk tilts forward, and the rotor produces a thrust vector in the
forward direction as seen in Figure 2.8 while if the pilot pushes the cyclic rearward, the rotor disk tilts
rearward, and the rotor produces a thrust vector in the rearward direction as seen in Figure 2.9. If the
pilot pushes the cyclic to the right, the rotor disk tilts to the right and produces thrust in that direction,
causing the helicopter to move sideways and roll in a hover, or to roll into a right turn during forward flight

as seen in Figure 2.10, much as in a conventional aircraft (Federal Aviation Administration, 2000).

On any rotor system there is a delay between the point in rotation where a change in pitch is introduced
by the flight controls and the point where the desired change is manifest in the rotor blade’s flight. While
often discussed as gyroscopic precession (Department of the Army, 2007), this phase lag varies with the
geometry of the rotor system it can be defined as the time it takes for the blade to change its flapped
position after a change in lift. The lag is an example of a dynamic system in resonance but is never more

than ninety degrees.

The collective pitch control, or collective, changes the pitch angle of all the main rotor blades collectively
(i.e. all at the same time) and independently of their position. Therefore, if a collective input is made,
all the blades change equally, and the result is the helicopter increasing or decreasing in altitude due to
a change in vertical velocity if in hover, as seen in Figure 2.11 (Federal Aviation Administration, 2000),

and an additional increase in forward speed if the helicopter was moving forward.

To control the collective pitch of the main rotor blades, the entire swash plate must be moved up or
down along its axis without changing the orientation of the cyclic controls. Conventionally, the entire
swash plate is moved along the main shaft by a separate actuator. However, some newer model helicopters
remove this mechanically complex separation of functionalities by using three interdependent actuators
that can each move the entire swash plate, as seen by the three control links in Figure 2.4, number 3.
When the three control links are moved uniformly up or down, they actuate as collective pitch, and when
they move with a prescribed combination of the control links provide the cyclic longitudinal and lateral

motions. This is called cyclic/collective pitch mixing (Federal Aviation Administration, 2000).

The collective tail rotor provide control in the direction in which the nose of the aircraft is pointed.

The application of the collective tail rotor changes the pitch of the tail rotor blades, which increases or
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reduces the thrust produced by the tail rotor, thus causing the nose to yaw in the opposite direction
in which the thrust is increased. Helicopter rotors are designed to operate at a specific RPM, which is
actually proportional to the main rotor RPM, implying that a change in the main rotor angular velocity
translates in a change in the thrust produced by the tail rotor, that is a yawing moment that needs to
be compensated. And finally, the throttle controls the power produced by the engine, which is connected
to the rotor by a transmission. The purpose of the throttle is to maintain enough engine power to
keep the rotor RPM within allowable limits in order to keep the rotor producing enough lift for flight
(Federal Aviation Administration, 2000).
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Figure 2.2: Major helicopter components (Federal Aviation Administration, 2000).
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Figure 2.4: Flight controls on a helicopter
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. Non-rotating outer ring (blue)

. Turning inner ring (silver)

3. Ball joint

. Control (pitch) preventing turning of outer ring
5. Control (roll)

5. Linkages (silver) to the rotor blade

. Linkages (black) that make the inner ring turn

Figure 2.5: Swashplate on a radio-controlled helicopter (Gruss Guido Biischer, RC-Discount, 2006)

,— Blade Rotation

Tail Rotor Thrust
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Figure 2.6: Description of helicopter torque effect (US DoT - FAA, 2006Db)
(Federal Aviation Administration, 2000).
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Figure 2.7: Helicopter rotor drive system (US DoT - FAA, 2006a)
(Federal Aviation Administration, 2000).
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Figure 2.8: Helicopter forward flight (Federal Aviation Administration, 2000).
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Figure 2.9: Helicopter Rearward Flight (Federal Aviation Administration, 2000).
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Figure 2.10: Helicopter sideward flight (Federal Aviation Administration, 2000).
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Figure 2.11: Helicopter axial flight (Federal Aviation Administration, 2000).
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2.3 Helicopter Dynamics

The relative movement of some of the helicopter components such the main or the tail rotor, or the
moving parts of its engines, can be taken into account in the equations of motion in many different ways,
such as external forces, inertial actions associated to the change in momentum, or angular momentum
due to the relative motion of these components. The acting external forces can be divided into aerody-
namic, propulsive and gravitational forces, and the estimation of these forces represents one of the most

challenging tasks when dealing with helicopter modeling.

The stabilization of a helicopter requires that the sum of the external forces acting on the system to be
identically zero, where, in these conditions, the movement of the center of mass with respect to a selected
inertial reference system is uniform and rectilinear, and the position of the space axes with respect to the
inertial reference system does not change with time (Lépez Ruiz, 1993). In order to better understand the
problem of helicopter stabilization, it is necessary to define the dynamics of the helicopter with respect
to a inertial reference coordinate system, where the dynamics of the helicopter, and in general of any

aerospace system is decomposed in two parts:

e The movement of its center of mass, which is considered fixed in the helicopter, although the fuel
consumption or the shift of onboard masses might induce slight center of mass variations with respect

to its reference system

e The movement of the rigid solid or the characteristic three-axes-system with respect to a parallel

inertial reference system.

The two dynamics decomposition refer to distinct problems, where the first one represents the dynamics
associated to a point-mass (the center of mass) which is subject to external forces, while the second type
of dynamics represents the dynamics of a rigid solid with a fixed point subject to the external forces which,
at the same time produce a moment with respect to the fixed point. Both problems are quite similar
since the aerodynamic forces acting on the helicopter depend both on the rotational and translational
velocities of the elements that generate those external forces, i.e. the main and tail rotor. In addition,
the forces acting on the helicopter can also be modified by acting on the geometry itself through the
rotor actuators, although both dynamic problems are studied separately. Following sections describe the

reference coordinate system that will help in the task of defining the appropriate dynamic model.

2.3.1 Reference Coordinate Systems

In order to better understand the model that will be used in the formulation for the nonlinear sin-
gular perturbation helicopter model, which is introduced in section 2.8, it is necessary to define the
equations that govern the motion of a rigid helicopter. Several references (Padfield, 2007; Prouty, 1986;
Cooke et al., 2002; Lépez Ruiz, 1993; Cuerva et al., 2009) will be used throughout the reminder of this
section, to define the helicopter’s equations of motion, and the reference system where these equations
are valid. Figure 2.12 shows the two systems used to define the equations that govern the motion of a
rigid airplane, the Earth-fixed system and the airplane body-fixed system. The Earth-fixed system is
denoted by X "Y' Z', which will be considered the inertial reference frame in which the Newton’s laws of
motion are valid. This model reference neglects rotational velocity of the Earth. The helicopter body
fixed system is defined by XY Z.

The XY Z helicopter body fixed system is fixed relative to the helicopter, where the positive X axis is
along the fuselage, the positive Y axis is along the starboard (right) side of the fuselage, and the positive

Z axis is directed downward, perpendicular to the XY plane as shown by the directions of the arrows
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in Figure 2.12. The origin is located at the geometric center of gravity. The translational motion of
the helicopter is given by the components of the velocity: forward velocity (U), side-slip velocity (V),
and downward velocity (W) which are directed along the X, Y, and Z directions, respectively. The free
stream velocity, Vi, represents the vector sum resultant of the velocity components, U, V', and W. The
rotational motion is given by the angular velocity components: roll rate (P), pitch rate (@), and yaw rate
(R), about the X,Y, and Z axes respectively. These rotational velocities are due to the moments about
the helicopter body-fixed system: roll moment (L), pitch moment (M), and yaw moment (N) about the
XY, and Z axes, respectively.

The helicopter is assumed to consist of continuum mass elements, dm, as seen in Figure 2.12, that
are kept track by a series of vectors, r , which connect the origin X 'Y'Z' with each mass element.
Each mass element is subject to the acceleration of gravity, g, which is assumed to be oriented along
the positive Z’-axis of the Earth-fixed coordinate system, thus assuming that the Earth is flat. This
creates a gravitational force acting in each element mass equal to pygdv = gdm, where py represents
the local mass density of the helicopter and dv is a helicopter volume element. The elements that are
located in the surface of the helicopter are also subject to combined aerodynamic and thrust forces per
unit area denoted by F. These aerodynamic and thrust-combined forces will be expanded in the next

section.

The orientation of the aircraft relative to the Earth-fixed coordinate system X 'Y'z /, is obtained by
introducing three sequential rotations over the Euler angles: heading angle (¥), the pitch attitude angle
(©), and the bank o roll angle (®). In order to keep track of the three sequential rotations, the Earth-
fixed coordinate system X 'Y'Z' is redefined with X1Y;Z;. The first rotation is produced by rotating
the coordinate system X;Y7 77 over an angle ¥ so that the helicopter is taken to its heading angle after
which the coordinate system is re-labeled X5Y5Z5. Figure 2.13 shows the first rotation. The change of
coordinates between the Earth-fixed coordinate system X;Y;7; and the new coordinate system X5Y5 75

is given by the transformation matrix

Xo cosU sin¥v 0 X1
Ys = —sin¥ cos¥ 0 Y1 ;. (2.1)
Zo 0 0 1 A

The second rotation is produced by rotating the coordinate system XsY5Z5 over a pitch attitude angle
O after which the coordinate system is re-labeled X3Y3573. Figure 2.14 shows the second rotation, where
the change of coordinates between the coordinate system X5Y5Z5 and the coordinate system X3Y3Z73 is

given by the transformation matrix given by

X3 cos® 0 —sin® X5
Y3 = 0 1 0 Y5 , (2.2)
Zs sin® 0 cos® Za

and a third, and final, rotation is conducted about a roll angle ® to reach the body-fixed coordinate system
XY Z. Figure 2.15 shows the final rotation, where the change of coordinates between the coordinate
system X3Y3Z3 and the body-fixed coordinate system XY Z is given by the transformation matrix given
by

X 1 0 0 X3
Y = 0 cos¥ sinV¥ Y3 7. (2.3)
Z 0 —sin¥ cosW¥ Z3

Figure 2.16 shows the three sequential rotations from the point of view of an observer far away from

the reference coordinate systems. With this in mind, the relation between the Earth fixed coordinate
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system and the helicopter body fixed system can be defined as

X = X/COS(")COS\I/—l—YTCOS@SiD\I/ -7 sin ©,
Y X' (sin ® sin © cos ¥ — cos ® sin ¥) +

Y’ (sin ® sin © sin ¥ 4 cos @ cos U) + Z sin ® cos O,
Z = X (cos @ sin O cos ¥ + sin sin V) +
Y (cos @ sin O sin U — sin ® cos ¥) + Z cos P cos O,

(2.6)

where, equations (2.4), (2.5) and (2.6) describe the three rotations that generate the body-fixed axis

kinematic equations given by

® = P+ (Qsin® + Rcos®)tanO,
© = Qcosd®— Rsin®,
@ Qsin® + Rcos P

cos O ’

which can also be expressed as

P = &—Usin®,
Q = Ocosd+ VcosOsind,
R = UcosOcos® — Osind.

(2.7)
(2.8)
(2.9)

(2.10)
(2.11)
(2.12)
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dm
ds
dv
pHGdv = gdm

\ 4 XY Z is a body-fixed (rotating) system
XY Z is an Earth-fixed (non-rotating) system
Arrows indicate positive directions

Figure 2.12: Earth-fixed and body-fixed coordinate systems.

Figure 2.13: Rotation over a heading angle of ¥ about Z;.
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Figure 2.14: Rotation over a pitch angle of © about Y5.

Figure 2.15: Rotation over a roll angle of ® about Xs.
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Figure 2.16: Relation between the Earth-fixed system and the helicopter(Lépez Ruiz, 1993).
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2.4 Non-linear Six-Degrees-of-Freedom Model

This section describes the non-linear six-degrees-of-freedom (6 — DOF') equations for the helicopter model
by employing the general aircraft formulation (Roskam, 2001). By applying the Newton’s second law to
Figure 2.12, such as the linear and angular momentum are equal to the externally applied forces and
moments respectively, the results are the creation of the vector-integral form of the equations of motion
for the linear momentum which given by

d dr’
— [ pp—dv = /pHgdv+/Fds, (2.13)
e/, dt v g

where the left-hand side of Eq. (2.13) represents the linear momentum, and the right-hand side represents
the applied forces. The angular momentum given by

dr

d
T Urpoadv = /Urpogdv—i—/erFds, (2.14)

where the left-hand side of Eq. (2.14) represents the angular momentum, and the right-hand side repre-
sents the applied moments. The integrals fv and fs represent volume and surface integrals for the entire

helicopter. The total mass of the helicopter is then given by the expression

m:/pHdV, (2.15)

where it is assumed that the total mass of the helicopter remains constant with time

dm

— =0. 2.1
3 =V (2.16)

This last assumption is justified as long as the mass change is sufficiently small over a period of 30 — 60
seconds, which is the typical time period over which the aircraft responses are evaluated (Roskam, 2001).
It is also assumed that the mass distribution is also constant with time, that is, the center of gravity

stays in the same place during the same interval of time, 30 — 60 seconds.

Recall from Figure 2.12 that all the helicopter mass elements are tracked with the help of vector r/,
but it is most convenient to use the vectors r and r/P, being the relation between the three vector given

by the expression

r =rp+r. (2.17)

Recall also that as observed in Figure 2.12, Pojs is assumed to be the center of mass of the helicopter,
therefore the body-fixed coordinate system XY Z has its origin at Popys. If Poas is the center of mass,

then the following relation must be satisfied

/rpHdV =0, (2.18)
therefore resulting in

/ 1 /

= — d 2.19

rp=— / pt'dv, (2.19)
thus rewriting the left-hand side of the linear momentum, Eq (2.13), as

dd / / dd dVp

- = — = m— 2.2

dtdt/UpH(rP+r)dV atde P T Mg (220)

where V p represents the velocity vector of the helicopter center of mass and given by

4
_drp

vy =&e 9.21
T (2.21)
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The right-hand side of the linear momentum Eq. (2.13) can be rewritten as

/pHgdv + /Fds =mg+F, (2.22)

where F represent the vector form of the external forces acting on the helicopter, which can be written

as the sum of the contributions from the different aircraft components such as
F=Fr+Frr+F;+Fy +Fpp, (2.23)

where the subscripts refer to the different elements of the helicopter, R for the rotor, TR for the tail

rotor, f for the fuselage, tp for the horizontal plane, and fn for the vertical fin (Padfield, 2007). Using
Eqns. (2.20) and (2.22) into the linear momentum Eq. (2.13) results in

Vp

T

where Eq. (2.24) implies that the time rate of change of linear momentum, mV p, is equal to the sum

=mg+F, (2.24)

of the externally applied forces in the helicopter. In a similar manner as for the linear momentum, the
angular momentum can be rewritten by substituting Eq. (2.17) into Eq. (2.14), and accounting for Eqns.
(2.18) and (2.14) leading to

d dr
— [ rX pg—dv = r x Fds =M, 2.25
at J, 5 P [ (225)
where M represent the external moments vector acting on the helicopter, which can be written as the

sum of the contributions from the different aircraft components such as
M = Mpg+Mrg+ Mg+ My, + My, (2.26)

and IR, TR, l¢, lip, and Iy, represent the arms from the helicopter center of mass to the point where
the forces of the different elements, Fr, Frr, Ff, Fyy,, and Fy,,, are applied. Equation (2.25) implies
that the time rate of change of angular momentum, fv rxp H%dv, is equal to the sum of the externally
applied moments in the helicopter. It is important to note that the estimation of the external forces and
moments acting on a helicopter, and in general in any aircraft, is one of the most challenging issues since if
they are not modeled correctly, it is quite difficult, if not impossible, to precisely predict the performance

characteristics, and therefore making almost impossible to design proper control laws.

The approach of decoupling the different constitutive elements of a helicopter and obtain the forces,
Eq. (2.23), and moments, Eq. (2.25), of each of the different helicopter components separately, and
sum them all together in the right hand side of the linear and angular momentum, Eqns. (2.24) and
(2.25), respectively, is a very extended practice on the world of helicopter modeling and simulation
(Padfield, 2007; Theodore, 2000; Gavrilets et al., 2002b; Gavrilets et al., 2001). This can be better seen
in Figure 2.17.

The definition of the angular momentum implies that the volume integral in the left-hand side of Eq.
(2.25) is a time dependent function, which it is really difficult to work with, therefore, and to eliminate
the time-dependance, a switch of coordinate system is introduced, such that the linear momentum and
angular momentum equations, Eqns. (2.24) and (2.25), respectively, are rewritten with respect to the
body-fixed coordinate system, that is XY Z, instead of X 'Y'Z'. This translates in that the volume
integral is not longer time-dependent. This raises a new problem, and it is the fact that the coordinate
system XY Z is a rotating (non-inertial) coordinate system, where the Newton’s Laws do not apply as

they were used earlier. This can be ssolved by using a vector transformation relationship given by

dA dA .
where A represents any vector which is to be transformed, therefore % represents the fixed coordinate
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system X/Y/Z/, and % + w X A the rotating coordinate system XY Z. With this in mind, the trans-

formation formula, Eq. (2.27), is applied to the left-hand side of both (2.24) and (2.25), where for the

linear momentum is given by

dVP de
= 2.2
mdt m(dt —i—wap), (2.28)
therefore rewriting Eq. (2.13) as
dv
<j££+waﬁ):ng+F, (2.29)
while for the angular momentum is given by
d dd d
I Urpod—Edv = /Urx ad—szdv:/Urx a(r’drw x r) pgdv
= /rx(i‘+wxr+2wxr+wx(wxr))pHdv. (2.30)

The angular momentum, Eq. (2.30), can be simplified by assuming that all the mass elements stay
together, and that there are no spinning rotors in the aircraft, therefore it is easily recognized that

I = I = 0 and therefore permitting to rewrite Eq. (2.30) as

/rx(wxr—l—wx(wxr))pHdv:M. (2.31)
v

Since vector w is a property of system XY Z, that is, the angular acceleration of the axis system XY Z
relative to axis X' Y'Z' is equal to the angular acceleration of the aircraft relative to the earth, it can
be taken outside the volume integral, which makes the volume integral time-independent. For the case
in which the existence of spinning rotors cannot be neglected, the gyroscopic moments due to spinning
rotors can be taken into account by a simple addition to the angular momentum equation (2.25) given
by

d dr dh

il - - = Fds=M 2.32
g UrxdtpHdV+dt /er ds , (2.32)

where h is the total angular momentum of spinning rotors given by
h = ¥=7h,, (2.33)

where the rotor is assumed to have a moment of inertia Ir, about its spinning axis, and it is also assumed

that the rotor spins with angular velocity wpg,, therefore permitting to rewrite Eq. (2.33) as

h=X=1g wr,, (2.34)

or in its component for
h =ih; + jhy + kh., (2.35)

where 7, 7 and k are unit vectors along the X, Y and Z axes respectively. The total angular momentum
due to the spinning rotors is generally neglected since the mass of the blades represents typically less
than 5 % of the total mass of the helicopter, thus neglecting the mass shift and its effects of the flapping
and lagging motion of the rotor (Padfield, 2007). In addition, the rotor is assumed to be a fixed force
and moment generating device (Cooke et al., 2002), and furthermore, since the changes in the inertia
tensor with time are small when compared with the perturbing forces and moments, it is customary and
acceptable to simply drop the terms involving time derivatives of the mass properties (Dreier, 2007).
Therefore, the volume integral in the angular momentum Eq. (2.31) is conducted solely over the fuselage
of the helicopter, which is treated like a rigid body, in which the structural distortions are neglected
(Cooke et al., 2002). This reduces Eq. (2.32) to Eq. (2.31), which can now be rewritten in state space
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form as

m(d(\;—tp +w pr) =mg+F, (2.36)
and where the angular momentum is given by

Its(il—c: +w x Iw =M, (2.37)

where F and M have been previously defined in Eqns. (2.23) and (2.27), respectively, and as seen

previously, V p is the velocity of the helicopter center of mass and given in vector form by
T
Vp = [UVW}, (2.38)

with U, V and W being the velocity components of Vp along X, Y, and Z components respectively of the
body-fixed coordinate system XY Z. The angular rotation vector of the helicopter w is given by

w = [ra R}T7 (2.39)

with P, @ and R being the helicopter angular velocity components of w along X, Y, and Z components,

respectively. The inertia tensor of the helicopter is given by

Ixm 0 *Ixz
I, = 0 I, 0 |, (2.40)
_Izz 0 Izz

where it is considered that the moments of inertia I, = I,,, = 0. Finally, g is the gravitation vector and

given in vector form by

T
g = g[—sin@ cos © sin © cos@cosd)} . (2.41)

Recalling the operations between vectors and tensors, where

_Iwz 0 Izz R _IZZP+IZZR
and
0 —-R Q@
wx=| R 0 -P |, (2.43)
-Q P 0

therefore substituting Eqns. (2.38-2.41), and using Eq. (2.43) and (2.42) into Eqns. (2.36) and (2.37),

results in the helicopter dynamic equations in state space form

U+WQ-VR —sin®

F = m| V+UR-WP | —mg| cosOsind |, (2.44)
W4+Vp—-UQ cos O cos @

M = IyQ+ (Ioy — I..) PR+ I, (P — R?) |, (2.45)

IzzR - IzzP + (Iyy - Izz) PQ + IZZQR

where Eq. (2.44) represents the force equations, and where Eq. (2.45) represents the moment equations

)

: (2.46)
) , (2.47)

F, F,
M:(Mz M, M,
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where F,, F,, and F, being the external forces applied to the helicopter on the X, Y, and Z axis,
respectively. Recalling Eq. (2.23), the forces can be expressed as

F, = Fp,+Fopp+ me + Fxtp + szn, (2.48)
F, = FyR+FyTR+Fyf+Fytp+Fyfn’ (2'49)
F, = F.o+F,,+F, +F, +F.,, (2.50)

where again, the subscripts stand for: rotor, R, tail rotor, T'R, fuselage, f, horizontal plane tp, and vertical
fin, fn, and where M,, M,, and M, represent the external moments being applied to the helicopter on

the X, Y, and Z axis respectively, and expanded as

M, = Mg+ Mypp + My, + My, + M, (2.51)
My = MyR + MyTR + Myf + Mytp + Myfn) (2'52)
M, = M., + M., + M., +M,,, +M,,,. (2.53)
With this in mind, Eq. (2.44) is rewritten as
: F,
U = VR-WQ —gsin® + —, (2.54)
m
. F,
Vo= WPfURngsin(I)cos@JrEy, (2.55)
: F,
W = UQ-VP+gcos®cosO + —, (2.56)
m
and Eq. (2.45) is rewritten as
LuP = (Iyy = L) RQ+ Lx (R+ PQ) + My, (2.57)
I,,Q = (L..— Iz) RP+I,. (R* — P?) + M,, (2.58)
L.R = (Lo — Ipy) PQ+ L. (P . QR) 4 M. (2.59)

The force and the moments equations, Eqns. (2.54-2.56) and (2.57-2.59), respectively, are comple-
mented with the kinematic equations, Eqns. (2.7-2.9), that connect the components of the angular
rotation vector, w, with the aircraft’s bank velocity, ®, the pitch attitude velocity, ©, and the heading
velocity, W. This results in the nine differential equations that permit to determine the evolution with

respect to time of the state vector X’ given by
X:[UVWPQRJJGQD}T. (2.60)
Generally, vectors F and M, Eqns. (2.46) and (2.47) are complex functions of the state variables and
the control signals such
F=F (U V,W,P.Q.RUV,W,P,Q R 000,01, 00,00, 61,.01..6,) . (2.61)
M = M (U, V. W, P,Q.R,UV, W, P, Q. 00,01,,01,, 00y, 00,01, 61.,01r ) (2.62)

with 6. being the collective pitch angle signal for the main rotor, 6;, is the longitudinal cyclic control
signal, 6;_ is the lateral cyclic control signal, and 6, is the collective pitch angle of the tail rotor. The

nine differential equations are therefore given by
) F,
U = VR*WQ*QSiH@‘FE, (2.63)
. F
V = WP—-UR+gsin®cosO + -2, (2.64)
m

. F.
W = UQfVP+gcos<I>cos@+E, (2.65)
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Lo P (Iyy = 1) RQ + L= (e + PQ) + M, (2.66)

1,,Q (I.. — Is) RP + I, (R? — P?) + M,, (2.67)

L.R (Iw — Iy) PQ + I (P - QR) + M., (2.68)

P ® — Usin®, (2.69)

Q O cos® + W cos Osin P, (2.70)

R W cos O cos @ — O sin P. (2.71)

The navigation equations that determine the location of the aircraft at any given time are given by
(Lewis and Stevens, 2003)

PN =

h =

where py, pE

UcosOcosVU + V(—cos®sin ¥ + sin P sin O cos U) +
W (sin @sin¥ + cos @ sin © cos V),
UcosOsinU + V(cos @ cos ¥ + sin @ sin O sin ¥) +
W (—sin ® cos ¥ + cos @ sin © sin U),

Usin® — Vsin®cos® — W cos P cos O,

(2.72)

(2.73)
(2.74)

and h are, respectively, the north, east, and vertical components of the helicopter velocity

in the local level geographic frame on the surface of the Earth. This concludes the nonlinear 6 — DOF

model, and the following section presents the perturbed state equations of motion that will lead to the
axial flight model that will be used in this thesis.
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Figure 2.17: Modeling Components of a Helicopter (Padfield, 2007).
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2.5 Perturbed State Equations of Motion

In order to simplify the highly nonlinear equations of motion defined in Eqns. (2.63-2.71), two special

flight conditions, are considered in more detail:
e Steady state flight condition.
e Perturbed state flight condition.

Only the second flight condition will be discussed in this thesis, yielding the equations that form the
basis for the helicopter model that will be used in this study. The perturbation state equations decouples
the highly non-linear 6 — DOF' problem into the longitudinal and the lateral-directional problems, while
the work conducted in this thesis will focus on a special case of the first problem, the axial flight condition,
which is further discussed in section 2.8. Prior to start with the decoupling let recall Roskam’s definition
(Roskam, 2001) of perturbed state flight given as

A perturbed state flight condition is defined as one for which ALL motion variables are defined

relative to a known steady state flight condition.

For that case, the substitutions are applied to all motion variables, forces and moments in the original
Equs. of motion (2.63)-(2.71). For example, the forward velocity state, U, uses the substitution U =
Uy + u, where the subscript in U; defines a perturbed motion about a general trim condition, and the
lower case variable, u, defines the perturbed state flight condition, where a trim condition is considered
state that provides moment equilibrium at a given flight regime. Similar substitutions are conducted for

the rest of the states as seen bellow

U=U+u, V=Vi4+v, W=W+w, (275)
P:P1+pa Q:Q1+q7 R=Ry+r, (276)
P=P,+¢, O=0,+60, V=V, +9 , (2.77)

and the same is done with the forces and moments resulting in

Fo=Fy +fo, Fy=F, +f, F.=F., +f., (2.78)
M, = M,, +my, M, =M, +m,, M, =DM, +m. . (2.79)

Using Eqns. (2.75-2.77) and (2.78-2.79) into the non-linear equations of motion (2.63-2.71) results in

the perturbation equations of motion defined as

« = Vi+o)(Ri+7r)— (Wi +w)(Q1+q) — gsin(©; + 60) + — Jr & (2.80)
v = —(Ui+u)(Ri+r)+ (Wi +w)(Pr+p) + gsin(@1 + ) 008(91 + 0)
Ey  fy
n + Iy (2.81)
m m
w o= (Ur+u)(Q1+q)— (Vi +v)(Pr+p)+ gcos(Py + ¢) cos(O1 + 0)
L ELE 2.82
m m
Iy = —(Ioo — L)(PL+p)(Ri +7) — L. [(Py+p)? — (R +1)?] + My + my, 2.84
I.r =

Pitp = (®1+6)— (W1 +1)sin(0:1 +0),
Ql +q = (@1 +9) COS(q)l +¢) (\Ifl +’L/)) COS(@l +9) ((I)l +¢)
(

(2.82)
(2.83)
(2.84)
Iozp = (Lyy = Laa) (P +p)(Q1 + @) — L2=(Q1 + ) (Ry + 1) + Mz + mo, (2.85)
(2.86)
(2.87)
Uy + 1) cos(O1 4 0) cos(®1 + ¢) — (O1 + 0) sin(P; + ), (2.88)

Ri+r =
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where f;, fy,, and f. represent the external perturbed forces being applied to the helicopter on the X,

Y, and Z axis respectively, where

fz = me+szR+fmf+fztp+fzfnv (289>
fy = fyR+fyTR+fyf+fytp+fyfn’ (2'90)
fz = sz+szR+fo+fztp+fona (2-91)

and where [, m,, and m, represent the external perturbed moments being applied to the helicopter on

the X, Y, and Z axis respectively, where

My = Map + Mgy + Mgy + My, + Moy, (2.92)
My = Myp + Mypp + My, + My, +my, (2.93)
My = Myp + Moy + My + My, + My, (2.94)

although for simplicity, the force and moment equations will be kept in their non-expanded form. After
some trigonometric manipulations and approximations, which include some restrictions to the allowable
magnitude of the motion perturbations, see reference (Roskam, 2001) for further details, Eqns. (2.80-
2.88) are simplified by eliminating the small perturbations and neglecting the nonlinear terms compared

with the linear terms, thus reducing to

w = Vir+ Ryv—Wiqg— Qiw — ghcos O + %, (2.95)
v = =Uir—Riu+Wip+ Prw— g0sin @y sin 01 + go cos Py cos ©1 + %, (2.96)
w = Uipg+ Qiu—Vip— Piv — g cos ®qsin ©1 — gosin P1cosO®; + %, (2.97)
Iop = Lt + L. (Pig+ Qip) — Lz — Lyy)(Rig + Qi) + my, (2.98)
Iy = —(Iye — L.)(Pir + Rip) — I,.(2Pip — 2Ry7) + my, (2.99)
L.t = L.p— Iy — L) (Piqg+ Q1p) — L(Q1r + Riq) +m., (2.100)
p = ¢—W10cosO; —1)sinOy, (2.101)
q = fé)lgbsintl)l+écos@1+\ﬁl¢cos@1 cos P, 7\11198111@1 sin 4
+ 1/}cos ©1 sin P4, (2.102)
r = —\iflqﬁcos O;sind; — \1119 sin ©4 cos ®1 + 1/}cos ©,cosd; — qubcos P,
— fsin®, (2.103)

which form the nine perturbed equations of motion relative to a very general steady state in which all
motion variables are allowed to have non-zero steady state values. It can be shown that the aircraft

kinematic Eqns. (2.101-2.103) can be rewritten as

(;5 = p+ (qsin¢1+rcos¢1+¢®1) tan ©1 + 00, secO1, (2.104)
= gcos®y — rsin®; — ¢pcos 91\111, (2.105)
1/} = (q sin @ + rcos @y + ¢pO1 + fsin @1\111) sec ©;. (2.106)

With the nine perturbed equations of motion, Eqns. (2.95-2.100) and (2.104-2.106), the next step
towards the definition of the axial flight model shifts towards the linearization of the force and moments.
Recall from reference (Padfield, 2007) that:

A fundamental assumption of linearization is that the external forces F,, F, and F, and moments
My, My, and M, can be represented as analytic functions of the disturbed motion variables and
their derivatives. Taylor’s theorem for analytic functions then implies that if the force and moment

functions (i.e., the aerodynamic loadings) and all its derivatives are known at any one point (the trim
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condition), then the behavior of that function anywhere in its analytic range can be estimated from an
expansion of the function in a series about the known point. The requirement that the aerodynamic
and dynamic loads be analytic functions of the motion and control variables is generally valid, but
features such as hysteresis and sharp discontinuities are examples of non-analytic behaviour where
the process will break down. Linearization amounts to neglecting all except the linear terms in the
expansion. The validity of linearization depends on the behaviour of the forces at small amplitude,
i.e., as the motion and control disturbances become very small, the dominant effect should be a linear

one.

With this in mind, the perturbed forces can then be written in the approximate form by recalling the

forces and moments dependencies, as seen in Eqns. (2.61) and (2.62), resulting in

Ofs  Ofc  Ofa Ofa
fo = fo, + 9 u+ % v+ 8ww+ 2. O+ ...etc, (2.107)
5fy oy . 9ty ofy
fy= fyl—i— u -+ avv—l— 8ww+ 2. O+ . (2.108)
fo=fa+ w -+ avv+awar...Jraec@CJr...etc, (2.109)
and the same can be applied to the perturbed moments, which are given by
Omy, Omy Omy Omy
o = Mg, 0.+ ...etc, 2.11
Ma =My £ g Ut vt Gyt g, Vet e (2.110)
my:my1+8£yu+agzyv+a;;yw+u +%7Zy9 +. (2.111)
om, om., om, om;
m, =m,, + aour e v+ aww+...+69696+...et0. (2.112)

The linear approximation will therefore contain terms in the rates of change of motion and control
variables with time (i.e. ,0,... ,éc, ..., ete.), but initially they will be neglected. The partial nature of
the derivatives indicates that they are obtained with all the other degrees-of-freedom held fixed, which is
simply another manifestation of the linear assumption (Padfield, 2007). For simplification, the derivatives

are written in the form, where the derivatives for the force in the X axis are given by

% - X, 63{? _ X, % ~ X, (2.113)

% _ x, %ﬂ _x,, % _ X, (2.114)

e = o G o G = o e = Ko -
and the force derivatives in the Y axis are given by

%_J;/ _ 5@7%:;@,%:1@ (2.117)

R
and the force derivatives in the Z axis are given by

6(9];; _ 2, %_J;Z 7, aa{vz e (2.120)
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Similarly, with the perturbed moment derivatives in the X axis being written as

-, ey dN=_ g 2.122
ou v ow ( )
- I _ I — L. 2.123
Ip P*dq o or ( )
omy, omy, omy, omy,
- _ Mo _ e _p, 2.124
90, L L (2.124)
and the force derivatives in the Y axis are given by
omy om om
= M, —2 =M, —2L =M, 2.125
ou T ov T ow ’ ( )
omy om om
- M Y — M Y — M,, 2.126
op P 0q T or ( )
omy om om om
= My, —2 = — ¥ = = My, 2.12
895 9c5 8915 015 i 8916 915 i aeTR GTR ( 7)
Finally the force derivatives in the Z axis are given by
. = N,, —==N,, —2= = N,, 2.128
Ju v ow ( )
> = N,, —==N,, —= =N,, 2.129
6]7 P aq q> ar ( )
om, om, om, om.
= Ny, — =N, —— = N, —— = Ny,pn- 2.130
690 0c5 8915 015 Y 6916 015 Y aeTR GTR ( )

Therefore, with the use of the force and moment stability derivatives, the linearized equations of motion
for the full six degrees of freedom, Eqns. (2.95-2.100), and (2.104-2.106), describing perturbed motion

about a general trim condition can be written as (Padfield, 2007)
X = AX + BU(t), (2.131)

where A and B are the so called system and control matrices which are formed by the partial derivatives of
the non-linear 6 — DOF, Eqns. (2.63-2.71), with X being just the state vector X, Eq. (2.60), reorganized

such that the perturbed longitudinal dynamic variables and the lateral directional variables are grouped

as
~ N N T T
X:{Xlong Xlat} z[qut?qubrz/} , (2.132)
with
N T
Xlong = |:U w q 9} ) (2133)
. T
Rar = [vp o w], (2.134)
resulting in
Az(ai:—) : (2.135)
0X ) -2,
and
s= (%% : (2.136)
MU ) 2z,

with F being the vector function that includes the complete 6 — DOF model, Eqns. (2.63-2.71), and

where U being the control vector and given by

T
U - { Uiong Urat } , (2.137)
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with the longitudinal and lateral-directional control signals given by

z’llong = [‘gc; HIS]T ) (2.138)
Uar = [01,.0:]" . (2.139)

In order to simplify the stability and control analysis of any aircraft in general, the perturbed equations
of motion are generally decoupled into longitudinal and lateral-directional modes, therefore lets make
the distinction between pure longitudinal, pure lateral-directional, and coupled longitudinal and lateral

directional stability derivatives by reorganizing the system and control matrices, A and B such

A: ( AiAonlLy Al(:;:g:lat ) , (2140)
at—long a

where Ajong is a 4 x 4 matrix that represents the pure longitudinal dynamics of the helicopter, and
where Ajq¢ is a 5 x 5 matrix that represents the pure lateral dynamics of the helicopter, Ajong—iat is
a 4 x 5 matrix that defines the lateral-directional coupling of the longitudinal equations of motion, and
Alat—iong 18 a 5 x 4 matrix that defines the longitudinal coupling of the lateral-directional equations of

motion. A similar reorganization is conducted for the control matrix yielding

B— ( Blong BLong—Lat ) 7 (2141)

Blat—long Blat

where similarly, Biong is a 4 x 2 matrix that represents the control signals for the pure longitudinal
dynamics, that is the collective pitch angle of the main rotor 6., and the longitudinal cyclic 6;_, while
Biat is a b X 2 matrix that represents the control signals for the pure lateral-directional dynamics, that
is the lateral cyclic 0;_, and the tail rotor collective pitch 7. In its expanded form, Eq. (2.140) can be
defined as (Leishman, 2006)

Xu Xw - Ql Xq - W1 —(g CcoS @1
Zu, Zow Z,+ U — P sin O
Aigng — + Q1 4 +Ui  —gcos®;sin® 7 (2.142)
M, M, M, 0
0 0 cos O, 0
and
X, + Ry X, 0 X, +W 0
Z, — P, Z, —V —gsin ®q cos © Zy 0
-Along—lat = P ! P ! ! ! (2.143)
Mv Aiong—[atl 0 Along—lat2 0
0 0 7\111 cos O — sin @4 0
For simplicity the constants are defined as
Along—latl = Mp - 2P1[_ - Rlli, (2144)
vy vy
Iwz Izz - Izz
-Along—lat2 =M, + 2R, + P —, (2.145)
Ly, Ly,
and
Y.— R Y,+ P Y, —gsin 1 sin ©4
L,—P L, Ly+kP—kR 0
Alat—tong = 0 0 sin ®; tan O U, sec O , (2.146)
N, N,  N,—kRy - k3P, 0
0 0 sin @1 sec ©1 \111 tan ©
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and
Y, Y,-Wi gcos®;cosO; Y, —U; 0
L;, L;) + k1Qq 0 L; — k@1 O
Alar = 0 1 O; tan ©, cos® tan®; 0 | . (2.147)
N, N, —ksQ 0 N.—kQ; 0
0 0 O secO®, cos®ysec®; 0

Recall that the X, Y and Z derivatives are written in a semi-normalized form with respect to the mass

of the aircraft, m, i.e.

X

X, = , (2.148)
m
Y.

Y, = =, (2.149)
m
Zs

z, = = 2.150
- (2.150)

and where also the longitudinal moment derivatives are normalized with the moment of inertias

such

M,
M, = : (2.151)

Iyy

and the lateral-directional moment derivatives are normalized with respect to the moment inertias re-

sulting in
! Izz Imz
L, = L, N,, 2.152
¥ Izzlzz - I%Z * Izzlzz - Igz ( 5 )
N, = e o T (2.153)
¥ N Izzlzz - I%Z * Izzlzz - Igz v '

where I, and I.. are the roll and yaw moments of inertia, and I, is the roll/yaw product of inertia.

The k. constants in Eqns. (2.146-2.147) are given by the expressions

Lz Lz + Ly — 1)
' Iwmlzz - I%Z , ( 5 )
L. (L. —I,,)+I?
k _ zz 2z yy Tz 2.1
’ Izzlzz - Igz ’ ( 55)
ke = — =3 2.156
) L.l — IZ. (2.156)
In their expanded form, (2.141) is defined as
Xo,  Xo,,
Zo. Zy
B — e 1s , 2.157
long MOC M615 ( )
0 0
Xo,,  Xo,,
Zoy.  Zo,,
Blong—lat Mellc MGM , (2158)
0 0
}/Gc 5/913
Ly, Lelg
Blat—long = 0 0 y (2159)
Ny, Np,_,
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}/:glc XGM“
Ly, L,
Blat = 0 o |. (2.160)
N91C Netr
0 0

Recall that in addition to the linearized aerodynamic forces and moments, the state and control ma-
trices, Eqns. (2.140) and (2.141) respectively, also contains perturbation inertial, gravitational and kine-

matic effects linearized about the trim conditions defined by

1, ©1, V1, Ur, Vi, Wh, P, Qu, Ry (2.161)

The coefficients in the different state and control matrices represents the slope of the forces and moments

at the trim point reflecting the strict definition of the stability and control derivatives.

2.5.1 Longitudinal Linearized Model

In order to simplify the stability and control analysis problems for aircrafts, it is customary, as seen in
the literature (Etkin and Reid, ; Roskam, 2001; Padfield, 2007), to decouple the perturbed equations of

motion into its longitudinal and lateral-directional modes, where the first one is given by

Xlong = Alongxlong + Blongulong (t)7 (2162)

with Xlong, Aiong, Biong, and Uiong being defined by Eqns. (2.133), (2.142), (2.157), and (2.138)
respectively. Only the longitudinal model will be developed in this section, since the work described here
only looks at a degenerated case of the longitudinal dynamics. This longitudinal linearized approximate
model permits a small amplitude stability analysis of the helicopter motion, which recalling the linear
system theory (Chen, 1998) implies that the helicopter motion can be described as a linear combination
of the natural modes, each having its own unique frequency damping and distribution of the response
variables (Leishman, 2006).

Without getting in detail into the linear system theory, the analysis of the dynamic response of the
longitudinal state-space model can be conducted via modal or eigenvector analysis, which shows that by
analyzing the characteristic equation of the longitudinal linearized model for helicopters, (2.162), it can
be differentiated three modes. The characteristic equation (CE), when solved, will show the nature of the

controls fixed response of the helicopter to a disturbance (Cooke et al., 2002), which is given by
det(sI — Ajong) =0, (2.163)

where I is a 4 x 4 identity matrix, and where expanding (2.163) results in

s 0 0 O Xu Xw—0Q1 Xq—W1 —gcos O
CE — 0 0 0 Zu + Q1 Zw Zg+ U —gcos®;sin ©1 _o, (2.164)
0 s 0 M, My, M, 0
0 0 s 0 0 cos ©1 0
this results in
S*Xu 7Xw7Q1 7(Xq7W1) gCOS@l
—(Z, — Zw —(Z U P, sin O
CE — (Zu+ Q1) s (Zy+Uy) gcos®qsin®; o, (2.165)
—M,, —M,, s — M, 0
0 0 —cos O s

where the determinant of Eq. (2.165) is of the form As* + Bs® + Cs? + Ds + E = 0. The coefficients
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in the polynomial can be expressed in terms of aerodynamics derivatives, see (Bramwell et al., 2001) for

mode details. For helicopters, in most cases, the equation can be factorized into
(Tys +1) (Tos + 1) (s 4+ 2¢wps + w?) =0, (2.166)

which represent the three helicopter modes in longitudinal flight. These there modes can be summarized
as (Cooke et al., 2002):

1. Vertical Velocity Mode: The vertical velocity mode, which is described by the first factorization
(Ths+ 1) =0, is a stable, heavily damped subsidence in the vertical velocity. The motion is decoupled

from the speed and pitch and has a time constant of the order of 1 to 2 seconds.

2. Forward Speed Mode: The forward speed mode, which is described by the second factorization
(Tes+1) = 0, is a stable heavily damped subsidence in speed. The motion is coupled with pitch

attitude and pitch rate. It has a short time constant of the order of 0.5 seconds.

3. Pitching Oscillation: The stability of the pitching oscillation is both speed and flight condition de-
pendent. In the climb or at high speed the oscillation can be unstable, possibly generating to an
exponential divergence at high speed. The oscillation couples with the forwards speed mode and is

mainly due to the rotor flapping caused by speed changes.

With this in mind, and in order to justify the proposed model in vertical flight, and recalling that only
the first of the modes, the vertical velocity mode, is the mode of interest for this thesis, the following

section focuses only on this mode.

2.5.2 Simplified Vertical Displacement Model

As shown above, the vertical velocity mode is decoupled from the speed and pitch modes. In order to
obtain an axial flight model, the original longitudinal simplified model has to be studied for the hover
flight condition, in which U; = W7 = Q1 = ©7 = ¥; = 0 and also can be assumed that some derivatives
are approximately zero (Lopez Ruiz, 1993; Cooke et al., 2002), that is X\, = Xg, = Z, = Z, = Zy,, =
M, = My_ = 0, therefore reducing Eq. (2.162) to

A?long = -AlongH A?long + BlongHulong (t)a (2-167)

with the hovering state and control matrices being given by

X, 0 X, —g
0 Z, 0 0
on = 5 2.168
Al 9H Mu 0 Mq 0 ( )
0 0 1 0
0 X,
7 0
BlongH = ]\46; Mg . (2169)
0 0

This permits to separate the longitudinal dynamics in hover into the axial displacement and the com-
bined forward speed and pitch attitude movement of the helicopter (Lépez Ruiz, 1993) resulting in

= Xyu+ Xqq— g0+ Xo, 01, (2.170)

W = Zyw+ Zy, 0O, (2.171)

g = Myuu+ Myq— 90 + My 0. + M913 01,, (2.172)
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0 = ¢ (2.173)

Focusing on Eq. (2.171), it can be seen that the analysis of the vertical velocity mode, yields that it
has a real root given by s — Z,, = 0, so that its eigenvalue is given by s = Z,,. This presents a heavily
damped subsidence, which translates to the fact that if a helicopter is disturbed, by a vertical gust for
example, the subsequent heave (vertical) motion is quickly damped out (Cooke et al., 2002). As seen in
(2.171), this motion is a pure convergence with no oscillation and confirms that the vertical motion is

completely decoupled from the pitching and the forward motions as seen in Eq. (2.171).

The performance of a helicopter in axial flight near the hover condition can be predicted by analyzing
(2.171), where Z,, is the vertical force due to vertical speed, and Zy_ is the vertical force due to the
collective control signal 6.. Therefore, in order to have a feasible model that can approximately predict
the performance of a helicopter in axial flight, and considering the resulting simplified axial dynamics
(2.171), is it necessary to derive a model that can accurately predict both vertical forces derivatives,
Zw and Zg_, along with some other significate contributions in vertical flight that are not considered in
this simplified vertical motion model. In order to do so, the following sections approach the problem by
defining nonlinear models that can both, predict in a precisely manner the performance characteristics

of a helicopter rotor in axial flight.

This implies that the selected model has to be able to collect the most significate nonlinear dynamics
of the problem, but also be simply enough that can be tackled down from a control perspective. Section
2.6 will define such models, and section 2.8 will define the proposed model definition for a miniature
helicopter in axial flight which is the main focus of this thesis. The proposed mathematical model will
include the nonlinear vertical motion of the helicopter, the nonlinear dynamics of the collective pitch
actuators, but also a nonlinear model for the combustion engine which permits the rotational velocity of
the blades. The use of collective pitch dynamics will increases considerably the complexity of the model,
but will also depict a more realistic system, with views of being able to implement in the future the
control and stability analysis results here obtained in the GCNL real autonomous platform with a higher

rate of success.

2.6 Helicopter Aerodynamics in Axial Flight

This section is dedicated to define the basis of the theory that will be employed to determine the dynamic
equations of a helicopter in axial flight. The correct understanding of the vertical flight of helicopters
requires an in depth analysis and study of the two main theories that explain rotor performance: mo-
mentum theory (MT) and blade element theory (BE). A dynamic model of the thrust coefficient of
the main rotor for a helicopter in hover or axial flight can be obtained through a combination of these
two theories. The momentum theory provides a direct explanation of how vertical flight is obtained
through a global analysis, but it is unable to provide alone the required tools to predict the performance
of rotors. On the other side, blade element theory provides this required in depth look into the physics
that permits to predict the rotor performance, but unfortunately at the cost of added complexity. This
in-depth analysis is out of the scope of this thesis, and the author encourages the reader to solve any
doubts with some of the references employed in this section (Payne, 1959; Johnson, 1994; Layton, 1984;
Prouty, 1986; Leishman, 2006; Padfield, 2007; Cuerva et al., 2009).

In this section, the author tries to resume the most important parts of the two theories that lead to
the axial flight model that is employed in the thesis by using the available literature (Johnson, 1994;
Prouty, 1986; Leishman, 2006). Although several axial flight models are employed in certain parts of

this thesis, this section focuses on describing solely the axial flight model that will be selected, which is
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based on the momentum theory with the assumption of the existence of uniform inflow and hover flight
condition, where for completeness this model will be referred as M1y model from now on. The MTy
model is based on the proposed model selected by Pallet and Ahmad, which presented in several technical
reports written at the University of Purdue (Pallet et al., 1991; Pallet and Ahmad, 1991), although with
some modifications regarding some of the aerodynamic parameters that were not completely defined
in the original work. The resulting model describes the vertical motion of an autonomous helicopter
mounted on a stand, along with the dynamics of the rotational speed of the blades, and the dynamics of

the collective pitch actuators.

Although the selected model implies a series of hypothesis, such that the inflow ratio along the blades is
constant and equal to that of a hovering helicopter, it can be demonstrated (Johnson, 1994) that for small
enough axial velocities the simplification is valid and permits to have quite precise predictions of the rotor
performance. This thrust model is based in the sum of the blade element (BE) and the moment theory
(MT) at the hover flight condition and assuming uniform inflow along the blade. The author contribution
to the original model, in addition to the definition of some of the coefficients by relating them to the
aerodynamic parameters of the MTy model, includes also the use of a more realistic thrust coefficient
models that are easily implemented in the M7y model which considers axial flight and non-uniform
inflow along the blades. The use of these more realistic, and therefore much more complex models, will
permit to test the validity of the hypothesis that the selection of simplified models around the hovering
condition is still valid for small vertical axial velocities, as it will be shown in the simulations. The use of
these models, which are described in detail in Appendix A, is limited to test the robustness of the control
laws that will be derived in this thesis by considering that these more accurate and complex models can

be used to account for unmodeled dynamics not being accounted for in the original model.

Although these models, described in detail in Appendix A, are widely used in the literature, and are
known to describe in higher detail, and with much more fidelity, the axial flight forces generated by a rotor
in axial flight, due to the discontinuities of these models, as previously described, are not implementable
models for the proposed control and analysis strategies which require continuously differentiable models,
thus will serve as test bench models where to test the robustness of the proposed control laws. Prior to
define the M Ty model, the basis for both the BE and MT are presented so that they provide an insight

view of the mathematics of the problem.

2.6.1 Momentum Theory Analysis

Momentum theory applies the basic conservation laws of fluid mechanics (conservation of mass, momen-
tum, and energy) to the rotor and flow as a whole to estimate the rotor performance. It is a global
analysis, relating the overall flow velocities and the total rotor thrust and power (Johnson, 1994). The
rotor disk supports a thrust created by the action of the air on the blades. By Newton’s law there must
be an equal and opposite reaction of the rotor on the air. As a result, the air in the rotor wake acquires
a velocity increment directed opposite to the thrust direction. It follows that there is kinetic energy in
the wake flow field which must be supplied by the rotor. In order to simplify the analysis let consider the

control volume defined in Figure 2.18.

To simplify the dynamics of the rotor in the momentum theory, the rotor is modeled as an actuator
disk, which is a circular surface of zero thickness that can support a pressure difference, while accelerating
the air through the disk, and with the loading assumed to be steady, although it can vary over the surface
of the disk. The actuator disk may also support a torque, which imparts angular momentum to the fluid
as it passes through the disk. The actuator disk model is only an approximation to the actual rotor

that provides a simplification by assuming that the distribution of the rotor blade loading over a disk is
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equivalent to considering an infinite number of blades, in which pressure and velocity can be measured
along the control volume. Let also be assumed that the flow through the rotor is one-dimensional, quasi-
steady, incompressible and inviscid (Leishman, 2006). To help understand the momentum theory, let

define four relevant positions in the vicinity of the rotor model being:
e Station 0: in a position far upstream,

e Station 1: in a position right before the rotor blades,

e Station 2: in a position right after rotor blades,

e Station oco: in a position far downstream.

The location of the stations can be seen in Figure 2.18, and where the velocity of the mass of air at
station 0 is given by vy = 0, the velocities of the mass of air at station 1 and station 2 are the same,
and are given by v;, which represents the induced velocity, or the velocity imparted to the mass of air
contained in the control volume at the rotor disk, and the velocity of the mass of air at station 2 is
given by given by w. Following sections describe the momentum theory on two important helicopter
flight conditions: the hover and the axial flight. The first one, the hover condition, it is associated with
a equilibrium condition of the dynamic model employed in this thesis. The second flight condition, the
axial flight, represents the means by which the helicopter moves from one equilibrium point to another.
These two flight conditions are the basis for the control strategy adopted in this thesis of moving from
equilibrium to equilibrium in order to regulate the desired altitude of a helicopter. The controller must
be able to change its altitude from any prescribed initial altitude to any selected final altitude, always
taking into account that at the initial altitude the helicopter is already in equilibrium flight, that is,
maintaining the hover condition at that initial altitude, and that both, the initial and final altitudes are

limited by the physics of the problem, that is, the helicopter is restricted by the stand.

2.6.1.1 Momentum Theory Analysis in Hovering Flight

Let first consider the hover problem, where the control volume surrounding the rotor and its wake has
surface area S, as seen in Figure 2.18. Let dS be the unit normal area vector which by convention always
points out of the control volume across the surface S. The general equation governing the conservation

of fluid mass applied to this finite control volume can be written as

/ pV -dS =0, (2.174)
S

where V is the local velocity and p is a scalar function of the density of the fluid. This equation states
that the mass flow into the control volume must equal the mass flow of the control volume. Similarly,

the equation governing the conservation of fluid momentum can be written as

F = /pVVdS. (2.175)

For unconstrained flow, the net pressure force on the fluid inside the control volume is zero, therefore
the net force on the fluid, F, is simply equal to the rate of change with time of the fluid momentum across
the control surface, S. Although Eq. (2.175) is a vector equation, it is simplified with the assumption
of quasi-dimensional flow. Because the force of the fluid is supplied by the rotor, by Newton’s third law
the fluid must exert an equal and opposite force on the rotor, which is the rotor thrust 7. Finally the
conservation laws of aerodynamics are completed with the equation governing the conservation of energy

in the flow given by

W:/%(pV-dS) V|2, (2.176)
S
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which states simply that the work done on the fluid by the rotor is a scalar function that can be identified
as a gain in kinetic energy of the fluid in the rotor slipstream per unit time. These general equations
of mass, momentum, and energy conservation are applied to the specific problem of a hovering rotor
following the standardized procedures (Glauert, 1935; Johnson, 1994; Leishman, 2006). Following the
assumption that the flow is quasi-steady and by the principle of conservation of mass, Eq. (2.174), the
mass flow rate, m, must be contained within the boundaries of the rotor wake, therefore resulting in the

flow rate which is given by

m:/ pV~dS:/pV~dS, (2.177)
o] 2

which implies that the mass flow rate at station 2, see Figure 2.18, must be the same that the mass flow
rate at station co. The mass flow rate model can be simplified by rewriting Eq. (2.177) can be rewritten

for one-dimension (1 — D) incompressible flow as

m = pAscw = pAv;. (2.178)

The conservation of fluid momentum, Eq. (2.175), gives the relationship between the rotor thrust, T,
and the net time rate-of-change of fluid momentum out of the control volume, obeying Newton’s second
law. Therefore resulting in that the rotor thrust is equal and opposite to the force on the fluid, which is

given by

—F:T:/ p(V-dS)V—/p(V-dS)V. (2.179)

Because in hovering flight the velocity far upstream of the rotor, station 0 in Figure 2.18, is quiescent,
the second term on the right-hand side of Eq. (2.179) is zero, therefore, for the hover problem, the rotor

thrust reduces to

T= / p(V-dS)V = rw. (2.180)

From the principle of conservation of energy, the work done on the rotor is equal to the gain in energy
of the fluid per unit time, where the work done per unit time, or power consumed by the rotor is, T'v;,
therefore having that

1 1
Tvi:/ —p(V-dS)VQp—/—p(V-dS)V2p, (2.181)
oo 2 0 2

where in hover, the second term in (2.181) is zero reducing to

1 1
To; :/ 5p(v.dS)VQp: 5mw?. (2.182)

Using Eqns. (2.180) and (2.182) it can be easily seen that

1
Su, (2.183)

therefore obtaining a direct relationship between the induced velocities at the rotor and far downstream

v =

of the rotor

w = 2u;. (2.184)

It is also important to define the induced velocity at the rotor disk. As seen previously in Eq. (2.180),
the momentum theory is used to relate the rotor thrust to the induced velocity a the rotor disk by using

the relations previously derived resulting in

T = 1hw = m(2v;) = 2(pAv;)v; = 2pAv2, (2.185)
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which can be rearranged and solved for the induced velocity at the plane of the rotor disk by the

expression
T
v = U = oA (2.186)
where note that the induced inflow velocity at the rotor disk, v;, can be written as
vy = v; = \QR, (2.187)

where the nondimensional quantity Ay is called the induced inflow ration in hover and is defined by
Ui
QR’

where (2 represents the angular rotational speed of the rotor, and R is the rotor radius, and the product

Ap = (2.188)

QR is just the blade tip speed V;;,. The inflow ratio is a very important parameter which is preferable
used when comparing results from different rotors because it is a nondimensional quantity. For rotating-
wing aircraft (i.e. helicopters), it is convention to nondimensionalize all velocities with the blade tip
speed (i.e. by Vi = QR) (Leishman, 2006). In helicopter analysis it is also customary to define formally
the rotor thrust coefficient as

Cr = ij‘;Q = pAé;RQ’ (2.189)

tip

where the reference area is the rotor disk area, A, and the reference speed is the blade tip speed, QR.

The inflow ratio ();) is related to the thrust coefficient in hover by using the expression

An =\ = LY A R — ,/ 2.190
" QR QR \/ 2p4 QpA (QR)? (2.190)

where Eq. (2.190) is the result of the assumption that the flow is a one-dimensional flow, which implies

that this value of inflow is assumed to be distributed uniformly over the disk. This relation is quite
important and it is used in following sections as a reference when describing the momentum theory for

the axial flight both the ascend and descend regimes.

2.6.1.2 Induced Tip Loss

Prior to describe the blade element theory, it is important to first introduce a physical real effect that
can be easily implemented in both the momentum theory, and as it will be demonstrated later, also in
the blade element theory, and in the subsequent proposed closed-form solutions for the thrust coefficient
models. The formation of a trailed vortex at the tip of each blade produces a high local inflow over the
tip region and effectively reduces the lifting capability there, this results in that the lifting-line theory is
not strictly valid near wing tips. When the chord at the tip is finite, blade element theory gives a nonzero
lift all the way out to the end of the blade. In reality, the blade loading drops to zero at the tip and at
the root, or hub of the blade because of three-dimensional flow effects. This translates into that, unless
these effects are accounted for in the modeling of the thrust forces, will result in an overestimated overall
thrust coefficient that will make the R/C helicopter to behave different that expected. These tip-losses

can be better seen in Figure (2.19).

The dynamic pressure loading for a rotary wing, which is proportional to 72, is concentrated at the tip
and drops off even faster than that for fixed wings. The loss of lift at the tip is an important factor in
calculating the rotor performance. If this loss is neglected, the rotor thrust for a given power or collective
will be significantly overestimated. A rigorous treatment of the tip loading would require a lifting surface

analysis. One way to take this effect into account is to integrate the incremental lift from some rg to BR
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where 7o is radius of the root cut-out, and BR is the effective outer radius, R, < R. These values are
chosen such that the area under the theoretical curve out to BR is the same as the area under the actual
lift curve out to R. this resulting in that the tip loss corresponds to a reduction in the rotor disk area by
a factor B2, that is

A, = TR? = n(BR)* = B*(nR?) = B*A. (2.191)

Recalling that rg is defined as the nondimensional radius of the cut-out, then the effective area of the

hovering rotor for momentum theory purposes becomes
A, = TB*R? — mr3 R?, (2.192)

which can be written in terms of an area ratio as
A, wB?R?-— 7TT(2)R2

e LA U LR R (2.193)

Both, the root cutout, and the tip loss effects, can be included into an empirical equation for B that
was first derived by Prandtl and Betz (Betz, 1919) which gives good correlation to numerical method de-
terminations (Glauert, 1935; Johnson, 1994; Prouty, 1986; Leishman, 2006). Prandtl showed that when

accounting for the tip loss, the effective blade radius, R, is given by

RBe g <1'386) A (2.194)

R Ny ) 14N

where Ny, being the number of blades. For helicopter rotors J; is typically less than 0.07 (Leishman, 2006),

therefore A? is small and Eq. (2.194) can be simplified into

R, 1.386
a1l — i, 2.195
R < Ny ) ( )
therefore resulting in a more general tip-loss equation given by
1.386;
B=1- . 2.196
T (2:196)

Recall that the inflow ratio is given by
Ve +v;
)\'L = )
QR

where V. is the climb velocity, and that for the hovering flight condition with the assumption of uniform

(2.197)

inflow, it has already been demonstrated in Eq. (2.190) that the inflow ratio can be assumed to be given
by
Cr

Y 2.1
i 5 (2.198)

therefore the tip-loss factor can be approximated by

R (1.386>¢C_TN1_\/C_T_

*_B=1-— ~
R Ny Ny Ny

(2.199)

Values for helicopter rotors are found to range from about 0.95 to 0.98, depending on the
number of blades (Leishman, 2006). Other empirical tip-loss factors are derived in the literature
(Gessow and Myers, 1985) based on blade geometry alone where

c
B=1-—, 2.200
" (2:200)

where c is the tip chord, but this result is limited to rectangular blade tips. Another alternative method
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(Sissingh, 1939; Sissingh, 1941) provides an expression for the tip-loss factor given by

co(140.77,)
1.5R ’

where ¢ is the root chord of the main blade, and 7,. is the blade taper ratio. The tip-loss factor will be used

B=1- (2.201)

in the different proposed closed-form solutions for the thrust coefficient models described in Appendix
A.3. The following section describes the blade element theory which provides the needed physical insight
to understand how the collective, 6., and the rotational speed, €2, affect the developed thrust.

2.6.2 Blade Element Theory

In order to obtain a mathematical model of how a helicopter in vertical flight generates thrust, it is
necessary investigate the blade element theory (BET) (Johnson, 1994; Prouty, 1986; Padfield, 2007;
Leishman, 2006; Cuerva et al., 2009; Lépez and Valenzuela, 2010). This theory will provide a closer
look of how the thrust force is generated. Blade element theory calculates the forces on the blade due
to its motion through the air, and hence the forces and the performance of the entire rotor. Basically,
blade element theory is a lifting-line theory applied to the rotating wing. It is assumed that each blade
section acts as a two-dimensional airfoil to produce aerodynamic forces, with the influence of the wake
and the rest of the rotor contained entirely in an induced angle of attack at the section. Basically the
thrust at the blade element is the same as the lift at a wing section. Several works (Anderson Jr., 1989;
Anderson Jr., 1991; Bertin and Smith, 2002) can be referenced for further explanations on the lifting line

theory, since discussing such theory is out of the scope of this thesis.

Blade element theory is the foundation of almost all analysis of helicopter aerodynamics because it deals
with the detailed flow and loading of the blade, and hence relates the rotor performance and other charac-
teristics to the detailed design parameters. In contrast, momentum theory, or any actuator disk analysis,
is a global analysis, which provides useful results but cannot alone be used to design the rotor. Again,
similarly as in the momentum theory analysis, the blade element theory analysis here conducted follows
closely the work done in the literature (Payne, 1959; Bramwell et al., 2001; Johnson, 1994; Prouty, 1986)
which is greatly compiled and developed by Leishman (Leishman, 2006) and serves as the main basis for

all derivations conducted in this chapter.

Prior to start with the BET analysis, it is important to define the incident velocities and the aero-
dynamics environment at a typical blade element as given in Figure 2.20, where it can be seen that the
resultant local flow velocity at any blade element at a radial distance y from the rotational axis has an
out-of-plane component Up = V. + v; normal to the rotor as a result of climb and induced inflow, an
in-plane component Ur = Qy parallel to the rotor because of the blade rotation relative to the disk plane,
and also a radial component Ug. This last component is generally assumed negligible, thus the resultant

velocity at the blade element is given by

U=\/U%+U2, (2.202)

where the relative inflow angle, or also called induced angle of attack, at the blade element is given
by

¢; = tan~! <@> , (2.203)
Ur
which for small angles reduces to
1 (Up Up
; =tan !t | — | ~ —. 2.204
41 = tan <UT> . (2.204)

If the blade pitch angle at the blade element is 6., the aerodynamic or effective angle of attack is given
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Up
Up’
therefore the resultant increment lift dL. and drag dD per unit span on this blade element are given
by

a=0,—¢; =0, — (2.205)

1

dL = §pUQCCldy, (2.206)
1

dD = 5pU%Cddy, (2.207)

where C; and Cy are the lift and drag coefficients, respectively. The lift (dL) and drag (dD) act perpen-
dicular and parallel to the resultant flow velocity, respectively, and where c is the local bade chord. The
forces can be resolved perpendicular and parallel to the rotor disk plane by using the diagram in Figure
2.20, resulting in
dF, = dLcos¢; —dDsin¢;, (2.208)
dFy = dLsin¢; + dD cos ¢;, (2.209)

thus the contribution to the thrust, torque and power at the rotor are given by

dT = N,dF,, (2.210)
dQ = NydFyy, (2.211)
AP = N,dF,Qy, (2.212)

where Np is the number of blades that form the rotor. Substituting Eqns. (2.208-2.209) into Eqns.
(2.210-2.212) results in

dT = N, (dLcos¢; —dDsing;), (2.213)
dQ = N, (dLsing; +dDcose;)y, (2.214)
dP = N, (dLsin¢; + dD cos ¢;) Qy. (2.215)

A series of assumptions for helicopter rotors can be made (Leishman, 2006) to simplify the analysis,
such that the out of plane velocity Up is much smaller than the in-plane velocity Uz, and this allowing
to rewrite Eq. (2.202) as

U=,/U2+U3~Ur, (2.216)

which is a valid approximation except near the blade root, where the aerodynamics forces are small

anyway due to the low local velocity. The induced angle ¢; is small so that it can be rewritten as

_ UP) Up
, =tan ' | — | ~ —, 2.217
6 (UT o (2.217)

and also using the following trigonometric approximations
sing; = ¢, (2.218)
1. (2.219)

Q

Cos ¢;

Finally, since the drag for aerodynamic surfaces is at least one order of magnitude less than the lift, it

can be assumed that

dDsin¢; < dLcos¢; ~ 0. (2.220)
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Using Eqns. (2.216-2.220) into Eqns. (2.213-2.215) results in

dT = NudL, (2.221)
dQ = N, (¢dL +dD)y, (2.222)
dP = NQ(¢:dL +dD)y. (2.223)

Let introduce the nondimensional quantities by dividing lengths by R and velocities by QR thus resulting

in
Y
= = 2.224
p= L (2.224)
U Qy Y
- = 2 _Z_ 2.22
OR QR R " (2.225)
and also rewriting Eqns. (2.221-2.223)
T
dCr = diw (2.226)
pA(QR)
d
dCq Q —, (2.227)
pA(QR)"R
P
dcp = — 4 . (2.228)
pA(QR)
The inflow ratio can therefore be written as
Ve+v  Vetwu (Qy Up (y
\— _ i :_(_): o) 2.229
QR Qy (QR) or \R) =9 (2:229)
therefore the increment in thrust coefficient is given by
NpdL
dCr = b72
pA(QR)
1 [ Nyc Yy )2 Yy
- L(E)aa)
2 ( TR ) G (R R
1 [ Npc 9
= —-|— . 2.2
5 (WR)CZT dr (2.230)

Let also recall that for a rectangular blade (¢ = constant) the ratio of the rotor area to the rotor disk

area is known as solidity ratio and is given by

Blade area Ay, NpycR  Npc
— T == 2.231
Disk area A mR? TR’ (2:231)
therefore the rotor thrust coefficient in Eq. (2.230) is reduced to
1
dCr = §aclr2dr. (2.232)

Equation (2.232) is one of the most fundamental equations for rotating-wing analysis by means of the
BET. Similarly, it can be shown that the rotor-torque coefficient increment is given by
dQ o Nb ((bldL + dD) y o 1 (Nbc

dCo =dCp = = — Oy + Cy) ridr

TR
1
= 0 (601 + Ca)ridr, (2.233)

which represents the sum of an induced part and a profile part. To find the total Cr and Cq, the
incremental thrust, Eq. (2.232), and the incremental power, Eq. (2.233), must be integrated along the
blade from the root to the tip. For a rectangular blade the thrust coefficient is given by

1 1
Cr= 50/ Cyridr, (2.234)
0
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where the limits of integration are r = 0 at the root to r = 1 at the tip. For the corresponding torque or

power coefficient

1 1
Co=Cp= %O’/O (:Cy + Cg) r3dr = %O’/O ()\Clr2 + Cdrg) dr, (2.235)

To evaluate Cr it is necessary to predict the span-wise variation in the inflow ratio, A, as well as the sec-
tional aerodynamic force coeflicients, Cr and Cp. Assuming 2-D aerodynamics, then C; = Cj(«, Re, M)
and Cyq = Cy(a, Re, M), where R, and M are the local Reynolds number and Mach number, respectively,
and a = a(V, 0., v;) and v; = v;(r). Because these effects cannot, in general, be expressed as simply ana-
lytic results, it is necessary to numerically solve the integrals for C'r. However, with certain assumptions

and approximations, it is possible to find closed-form analytical solutions.

These solutions are very useful because they serve to illustrate the fundamental form of the results in
terms of the operational and geometric parameters of the rotor, and also provide exact check cases for
the numerical solutions to the blade element theory (Leishman, 2006). With this in mind, in order to
obtain a closed form solution of Cp (2.234) it is necessary to define the form of the local lift coefficient

C;. Based on steady linearized aerodynamics, the local blade lift coefficient can be written as
C=aq, (a —ap) = Cy, (96 — g — (bl), (2.236)

where Cj is the 2-D lift-curve-slope of the airfoil section comprising the rotor and «y is the corresponding
zero-lift angle. For an incompressible flow, C;, would have a value close to the thin-airfoil result of 27
per radian (Leishman, 2006). Although Cj_, will take a different values at each blade station because it
is a function of local incident Mach number and Reynolds number, an average value for the rotor can
be assumed without by selecting C;, = 5.73 per radian, which will be the value used throughout the
remainder of the thesis. Also it will be assumed that «( can be combined into collective pitch angle 6.,
reducing Eq. (2.236) to

Cl = Cla (96 — Qy — d)z) = Cla (96 — (bz) (2237)

Therefore, due to the assumption that C;_ does not depend on r, it can be taken outside of the integral

sign, allowing to rewrite (2.234) as

I I 1 !
Cr = —O’/ Cyr?dr = —O’/ Ci,, (0. — ¢i)r*dr = =0 C), / (0. — ¢;)r3dr, (2.238)
2 Jo 2 Jo 2 0
which can be rewritten by recalling the definition of the inflow angle ¢; = A/r resulting in

1 1
Cr = 50C, / (0% — Ar)dr. (2.239)
0

Similarly to the thrust approximation, torque-power approximations can be obtained by recognizing

that Eq. (2.233) can be rewritten by using also the definition of the inflow angle resulting in
dCq=dCp = %@cﬁdr n % 4 Cgrddr
= %Cl)ﬂ’2d1“ + % + Cyridr
= dCp, +dCp,, (2.240)

where dC'p, is the induced power and dCp, is the profile power. Recalling from the definition of the

incremental thrust Eq. (2.232), the induced power can be written as

dCp, = ACr, (2.241)
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which can be used to rewrite Eq. (2.240) as
dCp = NdCp + dCPO, (2.242)

and the total power coefficient is given

r=1 1
Cp = / ACT + / %cdr?’dr. (2.243)
r=0 0

By assuming uniform inflow and Cy = Cy4, = constant, then after integration it is obtained

Cp = \Cr + %cdo, (2.244)
which can be simplified by assuming hover condition and uniform inflow, Eq. (2.190) resulting in
o3/2
Cp=Co=-L-+20,, (2.245)

where the first term reduces to the simple momentum theory, while the second term in Eq. (2.245) is the
extra power predicted by the BET that is required to overcome profile drag of the rotor blades. This
concludes the BET analysis, which results in an integral form, Eq. (2.239) that can be used to obtain the
thrust coefficient, Cr (), which depends on the model used to obtain A. The following section provides

the proposed closed-form solution for the selected thrust coefficient.
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Figure 2.18: Induced velocities in the vicinity of hovering rotor (Leishman, 2006; Cuerva et al., 2009).
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Figure 2.19: Theoretical and realistic lift distribution (Prouty, 1986).
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Figure 2.20: Incident velocities and aerodynamic environment at a typical blade element (Leishman, 2006;

Cuerva et al., 2009).
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2.7 Proposed Closed-Form Solutions for the Thrust Coefficient
Model

The previous sections have described separately both the momentum theory (MT) and the blade element
theory (BET). The momentum theory provided some good insight into how the helicopter hovers by
providing definitions for the inflow ratio depending on the flight condition, while blade element theory
provide physical explanations at how the collective pitch and rotational speed affect the developed thrust,
but lack to provide closed-form solutions since the integral form, Eq. (2.239), depends on the inflow angle.
Therefore it is necessary to combine both theories in order to obtain closed-form solutions of the thrust

coefficient which can be used in the proposed axial flight dynamic model for this thesis.

Four closed-form solutions will be proposed for the thrust coefficient C'r which depends on the flight
condition that it is assumed, the type of blade, and the assumed flow distribution along the blade of the
rotor. These models, all of them available in the literature (Leishman, 2006), will be denoted, following

the standard literature nomenclature, and are given by:

e Moment theory for uniform inflow in hover flight condition M T}y

e Moment theory for uniform inflow in axial flight condition MT¢

e Combined blade element theory and momentum theory (BEMT)

e Combined blade element theory and momentum theory with Prandtl’s Tip-Loss Model (BEMTry,)

The first proposed model, the M Ty model, will be the selected model to implement the helicopter
dynamics presented in this thesis, and although the model implies a series of hypothesis, it can be
demonstrated (Johnson, 1994; Leishman, 2006) that for maneuvers in which the climb and descent ve-
locities are low enough, the M Ty is a really good approximation without any loss of generality, as it will
be demonstrated in the simulations. Also, and most important, the first model is the only closed-form
continuous model of the four proposed models, therefore, becoming a good candidate, if not the only

candidate, that can be used for a control strategy of the continuous type.

Although there are much more precise, and also much more complex thrust coefficient models in the
literature (Cuerva et al., 2006a; Cuerva et al., 2006b; Theodore, 2000), the author has chosen the MT¢,
BEMT and the BEMTr;, models as significate models that are both, much more complex than the
selected thrust model M Ty, but are also easily implemented in the simulation platform defined by the
author. These ”alternative” models will serve as great test-bench problems where to test the robustness
of the proposed control strategies under model uncertainties, and for conciseness of the thesis will be
described Appendix A, and only a resumed version of the M T, BEMT, and BEMTr;, models will be

presented in this section.

2.7.1 Proposed Closed-Form Solution for the Thrust Coefficient Model -
The Moment Theory For Uniform Inflow in Hover Flight Condition
MTy

In order to obtain a closed-form blade element and moment theory model for uniform inflow let recall
the integral form of the thrust coefficient obtained in the BET analysis, Eq. (2.239). The closed-form
solution is obtained by solving the integral along the entire blade, from root to tip, but prior to do so, it
is important to introduce the blade-twist concept. For structural purposes, it is desirable to have blades
that produce equal amount of thrust along the entire blade, but recalling that the amount of lift of a

blade element at a given rotational speed increases with the square of the radius, this implies that the
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amount of lift generated for a given pitch angle is much greater at the tip, than at the root of the blade,
and in return, the structural rigidity of the blade at the tip must be much greater than that at the root
of the blade. In order to avoid such construction complexity, most common blades are twisted such that
the pitch at the tip is less than the pitch at the rotor. Ideally, it is desired that the twist of the blade be

given by the expression

01
0. =—, 2.246
- (2:246)
where 6, is the pitch at the blade tip. This distribution is known as the ideal twist (Johnson, 1994;
Prouty, 1986; Leishman, 2006). Due to the complexity associated to the construction of the blades with

ideal twist, generally the blades present a linear twist which is defined as
0. = 0o + 10, (2.247)

where 6 is the pitch that the blade would have if it extended into the center of rotation, and 60, is
the negative angle of twist or washout between the center of rotation and the tip. This negative angle
makes possible that the pitch angle of the blade, as it moves toward the tip of the blade, is effectively
reduced, which in return, also implies that the amount of lift generated is also reduced from the root to
the tip.

Although the ideal twist produces better performance than any other type of twist, the margin between
both blades is relatively small, and the simplicity in the manufacturing of the linear twist blades, results
in that most helicopters use blades with linear twist. It is important to note that for small radio control
(R/C) helicopters, it it easier to construct blades that are rigid enough that there is no need to use twist.
With this in mind, and considering first the case in which the blade is untwisted, that is § = 6y = constant,
recall that, for uniform inflow ratio, which is assumed in simple momentum theory, A = constant, and

therefore not dependant on the location of the blade, the thrust coefficient, Eq. (2.239), can be rewritten

as
1 ! 9 1 Oor3  Ar? !
Cr = §Ucla/0 (Ocr —)\r)dr—§aCla{ 3 _7]0
1
B ?@J%—ﬂ- (2:248)

To find the direct relationship between Cp and the blade pitch, we can use the relationship between
Cr and X introduced in the momentum theory section for hover flight, Eq. (2.190), therefore reducing
Eq. (2.239) such

(2.249)

Equation (2.249) can be solved to find Cp for a given value of 6. Alternatively, Eq. (2.239) can be

solved directly for the pitch angle, 6y, in terms of an assumed thrust resulting in

6Cr 3 |/Cr
2 2.2
%o oC, 2 2’ (2.250)

where the first term in Eq. (2.250) is the blade pitch required to produce thrust, and the second term

is the additional pitch required to compensate for the inflow resulting from that thrust (Johnson, 1994;
Leishman, 2006). It can be shown that by either solving Eq. (2.249) or (2.250), an expression of Cr as
a function of 6. can be obtained resulting in (Pallet and Ahmad, 1991)

oC (3 |9, 26
12 2\/5 8 oC,

Cr = (2.251)
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Recalling the previously defined thrust coefficient and solidity ration in Eqns. (2.189) and (2.231),

respectively, then the thrust force for a given rectangular blade can be rewritten as

C
T = pNyc(QR)*R—L, (2.252)
o
and substituting Eq. (2.251) into Eq. (2.252) results in a relation to obtain the thrust force as a function

of the angular rotational speed of the blades and its pitch angle given by

2
oC? 3 9 246
T = pNyc(QR)?2R—1te | -2 Z °< . 2.253

pNve(QR)“ R ( o \8 T saL (2:253)

Since the blade of A R/C helicopter is untwisted, and the control signal associated to the collective

pitch angle has been defined as 6., yielding

2
cC? 3 9 246
T = pNyc(QR)? b (2 Z c . 2.254
pNye( R)R144<2\/§+ 8+aCla> (2.254)

It can be shown from experimental results (Leishman, 2006) that the agreement between Eq. (2.249)
for a given rotor, and the measurements for the same rotor is found to be good, although there is a slight
overprediction of the thrust because the nonuniformity of the inflow and nonideal effects, such as tip-loss
which have not been taken into account. Considering now the case for linearly twisted blades, that is
0.(r) = 0y + 701y, where 0y, as seen previously, is the blade twist rate per radius of the rotor (i.e., in
degrees per rotor radius or the equivalent in degrees per unit length of blade). Using this variation in
0.(r), in Eq. (2.239) gives

Cr

1 1
—oC), / (0% — Ar)dr
2 0

1
= %O’Cla / [(90 + 104) 72 — )\T} dr
0

— laC Oor® Htwr4_)\_7“2 1
2773 4 2 |,
Oy  On A
— o [T+t (2255)

If the reference blade-pitch angle (or collective pitch) is taken at 3/4-radius (also referred as 6 75 ),
then 0.(r) = 0o.75 + (r — 0.75)0;, and Eq. (2.255) can be rewritten as

1 1
Cr ~oC), / (0r® — Ar)dr
2 0
1 1
= §O'Cla / [[fo.75 + (r — 0.75)6p] r* — Ar] dr
0

1 1
= —oC, / (90_75r2 + Opyr> — 0.7504,12 — )\r) dr
0

2

o 1 90.75 otw etwr4 A

- 2”016*{ 3 4 12
1 Oo75 A

_ 1 A 2.2
20’Cla { 3 5| (2.256)

which shows that it is equivalent with Eq. (7.2), therefore showing an interesting result, namely that a
blade with linear twist has the same thrust coefficient as one of constant pitch when 6. is set to the pitch
the twisted blade defined at the 3/4-radius (Gessow and Myers, 1985; Johnson, 1994; Leishman, 2006).

In a similar manner as for the untwisted analysis, an expression of Cr as a function of 6. can be obtained
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resulting in

oCy 3 9 240075
Cr = = | ———= - 2.257
T 12 ( 22 TR oCy, ’ ( )
and similarly, the thrust force is given by
2
oC? 3 9 24675

T = pNpe(QR)?R—t | - + /= : 2.258
pNve(QR) R ( o \8 T Ga (2:258)

2.7.2 Proposed Thrust Coefficient Model

This section presents the different proposed thrust coefficient models, the MT¢x, the BEMT and the
BEMTyr;, models that will be used as bench models to test the robustness of the proposed control
strategies under unmodelled dynamics since they provide more accurate Cr modes than the selected

MTy. These three models are described in detail in the Appendix section A.3.

For the first model, the MT¢, the thrust coefficient for the three flight axial conditions are given
by
~ pAcCL, RQ(=30CL, RQ +Ti — 32RO + 24V;)

= 2.2
Ctarrg 192pA02R? ’ (2.259)
Ty
CT]\lTD = MTQDRQ, (2260)
pAcCr, RQ (30CL RO — Ty — 32RO + 24V,)
Clury, = — 192p A2 R? , (2.261)
where 71 and T3 are described in Eqns. (A.45) and (A.49), respectively, and where
Ve/vn >0 = Cryp.» (2.262)
72 S ‘/C/vh S 0 — CTIVITD’ (2263)
—2>V./on = Cryr,,.. (2.264)

For the second model, the BEMT, the thrust coefficient in axial ascent is given by integrating along
the entire blade of the integral dCr given by

UC[

dCr = —= (0cr* — Ar) dr, (2.265)
with the inflow ratio given by
oCy A\ o0 aC Ae
c — o = (&3 . _ (&3 . , 2-2
A1, Ae) \/( 16 2) + 3 Ocr 16 5 (2.266)

and where for the particular case in which the hover flight condition is considered, thus A, = 0, Eq.
(2.266) simplifies to

oC 32
A(r) = N(r) = = 1+ —~0r—-11, 2.2
() =xi(r) = =2 ( ot ) (2:267)
while for the axial descent is given by
Ty
CTJ\lTD = MTQDRQ, (2268)
pAcCr, RQ (30Cy, RO — Ta — 32RO, + 24V,)
CTZ\/ITW]W = - 192pAQ2R2 s (2269)
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where

=2<Ve/un <0 = Cryrpys (2.270)
-2>Ve/un = Cryn,,, (2.271)

And finally, for the fourth model, the BEMTrp, the thrust coefficient is also given by integrating along
the entire blade of the integral dCr given as

oC

Oy = == (6r® — W) dr (2.272)

with the inflow ratio given by

oC Ac 2 oC) oCy Ac
Ar) = —_ - — —fr— | ——— — |, 2.273
(r) \/<16F(r, A7) 2 ) T8FEA) " T\ A@) 2 (2.273)
and where for the particular case in which the hover flight condition is considered, thus A, = 0, Eq.
(2.273) simplifies to

A = X0 = s (\/ 1 BEEADD,, 1) , (2,071

while again, for the axial descent is given by

Tyvity

Cryr, = AR (2.275)
Cror = - pAcCr_ RQ (300331;;}45—)27]'32— 32R0.Q + 24V,) , (2.276)
where
=2<Ve/on <0 = Crygys (2.277)
=2>Ve/on = Crygy,,,- (2.278)

Recall that both M Ty and M T¢ produce close-form solutions for the thrust coefficient Cr, Eq. (2.248),
which are both explicit functions of the collective pitch angle 6. and the inflow angle. Recall also that while
for the MTy model, the hover flight condition, the inflow angle is a function of C, resulting in a con-
tinuous closed-form solution for the thrust coefficient. The proposed M T model presents nonlinearities
depending on the nature of the climb flight region, and therefore being unfeasible to integrate into a set of

continuous differential equations if the goal is to design continuous and differentiable control laws.

On the other side, for both blade element theory models, BEMT and BEM Ty, it is required numerical
integration at each instant in order to obtain the thrust coefficient, therefore making impossible to obtain
a closed-form solution to which be able to design a proper control law to regulate the amount of thrust
generated, but they will serve as a great bench-mark problems where to test the validity of the selected

model, and to test the robustness of the proposed control laws under model uncertainties.

With this in mind, this makes M Ty the only implementable thrust coefficient model Cr, and will be
the model employed for the helicopter dynamics proposed in section 2.8, which, once integrated into the
proposed dynamics for axial flight, it will be tested against the rest of models, and it will be shown,
via simulations, that the M1y model, although much more simpler, it reproduces the dynamics of the
more detailed and complex models (MTe, BEMT and BEMTry,) without loss of generality for the
low vertical speeds at which the R/C helicopter is to be operated, thus corroborating the validity of its
selection (Johnson, 1994; Leishman, 2006).

Nevertheless, the validity of the MTy model is subject to the series of hypothesis that have been

exposed throughout the previous derivations, and are exposed in the following sections to justify that the
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selected model can be implemented in the R/C helicopter model that will be derived in detail in A.4.
These hypothesis are standard and well established hypothesis, which are necessary in order to be able
to obtain reduced empirical models that are able to model, to a certain degree, the highly complex and

non linear behavior of rotating blades (Leishman, 2006).

As it will be described in section 2.8, the dynamics of the helicopter in axial flight will consist in three
distinct dynamics, the axial flight dynamics, that is, the dynamics that define the axial displacement
and velocity of the helicopter, the combustion engine and rotational velocity dynamics, which define the
rotational angular velocity of the blades, and the collective pitch dynamics, which describe the collective
pitch angle of the blades. All three dynamics are somehow affected, in one way or another, by the above

mentioned hypothesis.

The author believes that it is important to note that the solution adopted, although is not the only
possible solution, and maybe not the optimal solution, it is a feasible solution that has been adopted
previously in (Pallett and Ahmad, 1993; Sira-Ramirez et al., 1994; Huang and Balakrishnan, 2005;
Kaloust et al., 2002; Tee et al., 2008) with great success. The proposed methodology employed to model
the dynamics of the helicopter in axial flight, and the methodology proposed to determine the re-
quired parameters being involved in the different dynamic models, both presented in (Pallet et al., 1991;
Pallet and Ahmad, 1991), follow a logic process that is consistent with the blade element and momentum
theory previously presented, making this a feasible methodology, and, what it is probably more important,

a suitable methodology for both the actual goals, and the near future goals of this thesis.

The first one, the actual goal, is having a helicopter model where to test the proposed control laws,
and the second, the near future goals, is to have a step-by-step process that can be used to identify the
parameters that are used in the presented model since ultimately it is desired to be able to validate the
results here presented in a real R/C helicopter platform, and a theoretical model is only good if it serves
the purposes for which it was created, and in this case it was selected having in mind that had to be
implemented. With this in mind, it is expected that when trying to implement the obtained control laws
into the real R/C helicopter, some of the proposed identification methods (Pallet and Ahmad, 1991)
will need to be revised and/or improved, as it has been already done with some of the aerodynamic
parameters, to account for some lost dynamics, but this is out of the scope of this thesis, and throughout

the remainder will be assumed that the proposed methods are the proper ones.

2.8 Proposed Model Definition for a Miniature Helicopter in
Axial flight

This section proposes a model for a miniature helicopter, which will be used throughout the remainder
of this thesis, and it is based on the technical reports that were written at the University of Purdue
(Pallet et al., 1991; Pallet and Ahmad, 1991), that describe the vertical motion of an autonomous heli-
copter mounted on a stand as seen in Figure 2.23. This model is used to derive the control laws that will
be implemented in the future in a similar platform to (Pallet and Ahmad, 1991), which can be seen in
Figures 2.24 and 2.25.

The model is based in the M T model previously derived in section 2.6, which includes the helicopter
dynamics in the axial flight condition, and also includes some of the losses that were introduced in
the hypothesis presented in section A.4, and that were not accounted for in the proposed M Ty model.
It is important to note that although miniature helicopters are functionally similar to their full-scale
counterparts, there are a few differences (mainly in rotor construction) which require modification to the

normal thrust equations used to model full-scale helicopters. For example, as noted in the hypothesis
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A .4.8, the model helicopter has straight rotor blades instead of linearly twisted blades as is the case for real
helicopters. Another significant difference between a miniature RC helicopter and full-scale helicopter is
that, generally, RC helicopters compensate for the lack of a flapping and lead-lag hinges (Layton, 1984;
Prouty, 1986) by using a teetering hinge which produces the same effect.

The teeter system works around a central hinge. The position of the blades is due to the balance
between centrifugal force which is trying to hold the blades ”straight out”, versus lift which is trying to
make them fold straight up. The balance of the forces will cause the blades to fly at some angle. If one
blade starts to develop more lift, while the other blade starts to develop less lift, one blade will want to
climb while the other will want to descend. The result will be that the rotor head will teeter, allowing
one blade to go up while the other goes down. Figure 2.21 shows the main rotor of a Bell 206 where it
can be distinguished the teeter hinge, and Figure 2.22 shows the teetering movement on a Robinson 22.
The use of a teetering rotor will not be a concern for modeling the hovering of the RC' helicopter and

will not introduce any changes.

The helicopter model here presented, although constrained to vertical flight with the selected thrust
coefficient model, the M Ty model, it also includes the nonlinear dynamics of the collective pitch actuators,
which increases considerably the complexity of the model, but also depicts a more realistic model. The
helicopter dynamics in vertical flight will be initially separated into three equations: vertical position of
the helicopter, collective pitch of the blades, and rotational velocity of the main rotor. The following
sections describe in more detail each of the governing equations, with each of the parameters of the
equations being described and justified using the proposed methods in (Pallet and Ahmad, 1991). After
the models have been defined, methods to determine the unknown constants of the proposed models will
be presented also derived from (Pallet and Ahmad, 1991).

2.8.1 Proposed Model for the Vertical Displacement Equations

Recalling the resulting simplified vertical displacement dynamics, Eq. (2.171), the vertical force that
provides the axial displacement can be modeled by considering the differential set of equations that

describes the vertical motion of a model miniature helicopter given by:

E= (14 Gegg) ~ 9: — Fuaamping — Tioss ~ Firag: (2279)
where Q (radians) is the rotational speed of the rotor blades, £ (meters) is the height of the helicopter
above the ground, g, (m/s?) is the gravitational acceleration, and Gef; models the ground effect, but
during the remainder of this thesis it will be considered negligible (G.s¢ = 0), since at it can be seen
in Figure 2.24, the constructed setup for the flying helicopter stand is elevated more than one rotor
diameter, which as previously discussed, is the distance required so that the ground effect does not have
any significate influence the helicopter’s performance. In Eq. (2.279), T is the thrust force defined in Eq.
(7.2) which for completeness is written as:
Cr

T = prc(QR)2R7, (2.280)

where Cr is the thrust coefficient of the helicopter model, which was defined by the M T}y derived model,

Eq. (7.1), and for completeness of the section rewritten again as:

oC (3 |9, 26
12 2\/5 8 oC,

where recall that o is the solidity ratio, C,, is the blade lift slope, and 6. is the collective pitch angle of the

2

Cr = : (2.281)

rotor blades. For simplification purposes in the parameter determination process, the thrust coefficient
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can also be expressed as:

2
Cr = (_KCl + \/ Kél + KCQGC) ) (2282)

where:
o
K = = 2.283
o1 NG ( )
20C,
K = < 2.284
o = 2 (228)

With this in mind Eq. (2.279) can be expanded as:
2

£ = pNye(QR)’R ) m(1+ Ges) — g2 (2.285)

oC? 3 9 246,
ol (e e Ry s
144m \ 2v2  \/8 " oGy,

Fdamping - T’loss - Fdrag-

The first term on the right-hand side of (2.290), can be rewritten as K1Cr(1 + Geyy) with

prCR3
am '

K, = (2.286)

This term represents the main thrust/lift term which is based on the M Ty model previously derived.
The second term, g., is the acceleration due to gravity acting on the helicopter. The third term in (2.290),
Faamping, represents the damping in the flight test stand especially due to the piston mounted to offset
the weight of the helicopter and the structure itself, and can be defined as Kgé . The fourth term, Tj,ss,
represents the resistance to motion of the helicopter as seen in section A.4.5, where this term represents
the parasitic drag that will result in losses to the generated thrust, when moving the helicopter through
the air. Recalling that the loss in thrust that will be appreciated as the helicopter moves through the
air, the Tj,ss was defined as of the form:

1

noss = m

PV, (2.287)

where fzf "5 is the equivalent flat plate area of the fuselage in the z-axis direction, also defined as fzf s =
StusCpy, with Sy, being the maximum fuselage cross area in the x-y plane, and Cp, the drag of the
fuselage, and V, is the climb velocity of the helicopter, where «E = V.. Equation 2.288 can be defined

as:
noss = KB‘/CQ; (2288)

with K3 of the form:

Ky = 5pfl", (2.289)
where although f/"* can be initially estimated using simple equivalent skin friction methods
used for aircraft design (Raymer, 2006; Roskam and Lan, 1997), methods trends for helicopter
(Cheeseman and Bennett, 1957; Yeo et al., 2004; Leishman, 2006), or even due to the limitation of these
last, use estimations for similar RC helicopters (Gavrilets, 2003) which has been extensively used in the
literature (Gavrilets et al., 2002a; Ng et al., 2006; Budiyono et al., 2008; Garratt, 2007), and resembles
the helicopter model here selected as it will be seen in section 2.8.4.1. The obtention of the proper
equivalent flat plate area is out of the scope of this thesis, and will be assumed that it is obtained via ex-
perimentation. The values employed in this thesis for K3 will be the ones described in (Pallet et al., 1991;
Pallet and Ahmad, 1991), ans as it will be seen in section 2.8.4.1, don’t differ from the predicted values

existing in the literature.

Finally, the last term, Fy.q4 is the normalized constant drag, Fyrqg = Deonst/m. The constant drag,
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which will be represented by parameter Ky, is due mainly to the fact that the area taken up by the
helicopter body itself will reduce the amount of lift force that can be produced from the blades. The
helicopter body takes up area through which the blades would push air through if the helicopter body
was not present. This drag loss should be small, since the majority of the thrust is produced in the
middle of the blade instead of at the root or the tip of the blade. With all this in mind, the original

vertical position equation (2.290) can be written as:
€= K1Or(1+ Gepp) 0 — g — Kab — Ks€® — Ky, (2.290)

which can be reduced if it is assumed that the helicopter is at an altitude in which ground effects are

negligible, as seen in Figures 2.24 and 2.25, thus reducing Eq. (2.290) to:

£=Ki0rQ? — g. — Kxf — K362 — K. (2.291)

The model proposed in (Pallet et al., 1991; Pallet and Ahmad, 1991) does not provide a detailed de-
scription of each of the presented constants, and it leaves their estimation to the experiments. This
section has provided mathematical expression for K7 and K3, Eqns. (2.286) and (2.289) that will help

in the modelization process, and in future improvements of the existing theoretical 2 — D models.

2.8.2 Proposed Model for the Combustion Engine and Rotational
Velocity

The dynamics of the angular velocity of the blades can be modeled as:

O =—K:5Q — K¢ — K;Q%sin 6, + f(un), (2.292)
with:

fun) = (Ksun + Ko), (2.293)

where f(us,) is the input to the throttle servo, ug,. It is assumed that the time delay is negligible
(Pallet et al., 1991; Pallet and Ahmad, 1991), and therefore not modeled thus resulting in:

0= —KsQ — KgQ? — K70%sin 6, + Ksuw, + Ko. (2.294)

Note that all of the five unknown constants have been divided by the rotor’s effective inertia, I,.. which
includes the inertia of the motor reflected through the gears. The first term on the right-hand side of
Eq. (2.292), K59, is a damping term that opposes the motion of the rotor blades due to the friction
within the rotor gears and the gasoline engine that produces an opposing torque that will tend to slow
the rotational speed. The second term in Eq. (2.292), KQ?, are considered in (Pallet et al., 1991;
Pallet and Ahmad, 1991) as a drag term that is constant with respect to the collective pitch. This drag
can be thought as the drag on the blade when the collective pitch angle is zero, that is 8. = 0. Pallet
et al. (Pallet et al., 1991; Pallet and Ahmad, 1991) does not provide a mathematical expression for Kg,
and again leaves its calculation to the experimentation. A mathematical model can be proposed by
considering BET theory presented previously in section 2.6.2, thus it can be assumed that Ky is of the
form:

Ny

K¢ = I_prrofile’ (2'295)

where Ny, is the number of blades, and fq,,, ;. is a function of the profile torque, which in addition it can
be assumed to be a function of the equivalent flat plate area, f2%?¢, of the blade, which can be defined
as fblade — ShiadeCDy, With Spiade being the blade area, and Cp, the profile drag of the blade. Similarly,
the third term in Eq. (2.292), K7Q?sin 6., is considered in (Pallet et al., 1991; Pallet and Ahmad, 1991)
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as an air drag loss for the rotational speed of the blades, which is proportional to the drag area of the
blades. This air drag loss will oppose the rotation of the blades, and it varies as the effective area of the
blades cutting through the air. It is assumed that the induced drag term, the third term in Eq. (2.292), is
approximated by observing the projected blade surface area perpendicular to the rotation of the blades,
as seen in Figure 2.26, it can be seen that the effective drag area of the main rotor blades can be defined

as:
Ap. = N,Resinf, = N,Asin .., (2.296)

with R being the radius of the blade, and ¢ the chord, and A the area blade if it is assumed that the
blade is not tapered in planform, i.e. rectangular blade, that is A = Re, therefore it can be assume that
K is of the form:
NyA
K7 = I—fQinduced’ (2'297)
T

where fo., ... 1S a function of the induced torque. A better modelization of these two terms can be
obtained by recalling the MT and BET presented in Chapter 2.6, and recognizing that they represent
the induced torque and the profile torque losses of the main rotor, or what it is the same the extra power
required to overcome the induced drag and the profile drag of the rotor blades. By considering BET the

second and third term in Eq. (2.292) can be replaced resulting in:

O =-K5Q — IQ + f(uth,Td), (2.298)
with @ being the sum of the profile and induced rotor torque, and defined by BET as:
1 1
Q=5 (QR)> QRAC, = 5PN (QR)> QRA (Cq, + Co,) (2.299)

where Cg is formed by the induced torque coefficient, Cg,, and the profile torque coefficient, Cg,, which
can be approximated for uniform inflow and constant profile drag by using Eq. (2.245) resulting in:
1 2 03/2 g
= —pN, (QR)"QRA | L=+ =C,
Q 5PNs (QR) ( /5 gl
3/2

1 2 C 1 2 o
= —pNy (2 QRA—L_— + ZpN, (Q QRA— 2.

where the main rotor inertia, I, is a difficult parameter to determine. Gavrilets (Gavrilets, 2003;
Gavrilets et al., 2001) has proposed a highly nonlinear complete 6-DOF helicopter model that has been
extensively used in the literature due to the available complete model and the values of all parameters.
The success of such model relays in that the helicopter modeled is a X-Cell 60 RC helicopter, with a
hingeless main rotor equipped with a Bell-Hiller stabilizer bar (Bramwell et al., 2001), which provides
lagged rate feedback and augments the servo torque with aerodynamic moment to change the cyclic pitch
of the blades, of approximately 11 lbs (4,98 kg), which has been a commonly available UAV platform,
and used by many university and research institutions. This model is equivalent in size to the R/C
model helicopter used in (Pallet et al., 1991; Pallet and Ahmad, 1991), and used throughout this thesis,
an X-Cell 50, which is equivalent in size and with the only difference affecting the engine plant. For
that reason, the geometrical parameter estimations presented in (Gavrilets, 2003) provide valuable data
that can be used in the more precise modelization presented in this section. With this in mind, and
due to the difficulty associated in determining the main rotor inertia, the process presented by Gavrilets
(Gavrilets, 2003) is used where:

I, =2Ig,, + LsnZ, + 215,17, (2.301)

where Ig, = and Ig, represent the main rotor and the tail rotor blade inertias, respectively, I, is the
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inertia of the engine shaft and all components rotating at the engine speed, ny, is the tail rotor gear ratio,
and nes is the engine gear ratio. As defined in (Gavrilets, 2003), the most important contribution comes
from the main rotor blades. The tail rotor inertia, after scaling with the gear ratio squared, amounts to
5% percent of the main rotor inertia. The rotating inertia referenced to the engine speed is harder to
estimate, but an upper bound can be found by estimating the total mass of rotating components for the
X-Cell 0.2 kg, and its effective radius of inertia, 0.04 m. They arrive to an estimate for I,,; equal to 2.5
inertias of the main rotor blade, where from (Gavrilets, 2003), for the X-Cell 60, I5,,. = 0.038kgm?, this
resulting in I, = 0.095kgm?>.

The final term f(uyy,) is due to the throttle servo input. The exact dependance of the throttle input to
the rotational speed of the blades and the engine is quite difficult to predict precisely since the dynamics
of the engine’s thermal process are not well understood in terms of linear or nonlinear models which could
be simply derived. However, an approximate model is selected (Pallet and Ahmad, 1991) by observing
that the angular acceleration near the typical hovering rotation velocities is affected by the throttle input

in a linear manner, and defined by Eq. (2.293).

Despite the differences between the theoretical models presented by Pallet et al. (Pallet et al., 1991;
Pallet and Ahmad, 1991), Eq. (2.292), and the proposed alternative angular velocity model here
presented, which is based in the BET, Eq. (2.298), the first model will be the one selected
throughout the remainder of this thesis, since it has been widely used in the literature as a test
bench problem (Pallett and Ahmad, 1993; Sira-Ramirez et al., 1994; Huang and Balakrishnan, 2005;
Kaloust et al., 2002; Tee et al., 2008).

The alternative, and more precise angular velocity model will be used in future related works as a
test bench model to test the robustness for the selected engine-throttle control strategy, although in the
work conducted in this thesis, the robustness to unmodeled dynamics will only be studied on the thrust

coefficient modelization.

The parameter estimation process developed in section 2.8.4.1 will define a process that allows to
determine the proposed throttle input models and also the rest of the parameters in Eq. (2.292) based in
(Pallet and Ahmad, 1991). Tt is important to note that many other external factors can affect the engine
performance, and that the proposed model does not take into account, like the air condition, the fuel or

lubrication employed which can modify engine performance, to name few.

The above mentioned will result in that the helicopter’s performance will change from day to day, and
even from experiment to experiment. With this in mind, the parameter estimation experiments will be
used to obtain a set of nominal values about which the engine is expected to be operated. It is therefore
recommended to try to replicate the external conditions of the experiments, both during the identification

experiments, and through the testing process, to ensure the validity of the proposed model.

2.8.3 Proposed Model for the Collective Pitch Dynamics

The dynamics of the collective pitch angle can be defined as:
0. = Kiof (ug,,0:) — K110, — K120 sin6,, (2.302)
where f(ug,,0.) in a function that defines the collective servomechanism input, ug_ and is given by:
f(ue,.0c) = Ag, ug, + Ao, —0c, (2.303)
therefore resulting in:

éc = Ko (qu ug, + A9c2 - 95) - Kuéc — K1292 sin 6. (2304)
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The first term in Eq. (2.302), Kiof(ug,,0.), represents the force input produced by the collective
pitch servo actuating the collective pitch mechanism to the desired position. The second term in
Eq. (2.302), K116., is a damping term due to the linkages and the built in servo gear ratio, which
generally can be demonstrated that this type of servomechanisms will have naturally some damping
(Pallet and Ahmad, 1991).

The third term in Eq. (2.302), K129Q?sin 6., represents the drag/resistence to motion due to the blade
striking the air. Since the RC helicopter will always be operating with a positive collective pitch, the
blade will naturally tend to move towards a position of least resistance. Note, that all of the three
unknown constants include a divide by the inertia of the blades and mechanical linkages about the
collective pitch axis, I,, and also due to the difficulty on its difficult calculation, its value will be left
for the identification experiments, and for the model employed in this thesis, the estimates presented in
(Pallet and Ahmad, 1991) will be used.

2.8.4 Proposed Methods for Parameter Determination and Model

Verification

This section describes the proposed methods for parameter determination and model verification which
are based on the works of (Pallet et al., 1991; Pallet and Ahmad, 1991) and described the parameter
determination process for the three proposed dynamics, the axial flight dynamics, the engine actuation
and the rotational velocity of the blades, and the collective pitch actuators dynamics. The determination

of the parameters for each of the three dynamics is described bellow.

2.8.4.1 Parameter Determination For Axial Flight Dynamics

The proposed methodology to determine the different parameters for the axial flight dynamics (2.305),
that is K7, Ko, K3, and K4, can be divided in two parts (Pallet and Ahmad, 1991). In a first part, the
main objective is to determine empirically the coefficients that do not depend on the axial velocity, f ,
and this can be done by conducting several experiments is which the RC helicopter if flown at the hover
flight condition, this resulting in that the terms involving the axial velocity cancel out, since at hover

¢ = 0 therefore reducing (2.305) to:

§ = KiCrQ?—g. — K. (2.305)

This flight condition reduces the axial flight dynamics to a equation with the thrust/lift term, the
gravitational force, and the constant drag term. Although K has been defined in (2.286), it is necessary
to determine its value through experiments to account for possible losses. This is done by conducting
several experiments in which known amounts of weight are added to the helicopter for a given fixed
rotational speed, 21, and a fixed collective pitch angle, 6., until the helicopter is able to hover at a fixed

position.

Once the helicopter is able to sustain that hover flight condition, and assuming that the thrust coefficient
model, M T}y is an accurate model, the weight is recorded, Wi, and a new experiment is conducted, for
different fixed rotational speed, 22, the same fixed collective pitch angle, 0., and in a similar manner,
different weights are added until the helicopter is able to hover at a fixed altitude, which will again
be associated to a new weight, W5. For the different loading test the constant drag term, K4 will be
constant, and the value of both K7 and K4 can be determined empirically. The process could be defined
like:

Wi = K.CpnQ?— Ky, (2.306)
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Wy = K,CpnQ%— Ky, (2.307)

where K, = g: + K4. Let solve K; in Eq. (2.306) as a function of constant drag term, K, resulting

in:
Wi+ Ky
K =———7, 2.308
oong (2.308)
and substitute Eq. (2.308) into Eq. (2.307) resulting in:
Wl + K4 2 >
Wy = ——Cn,Q5—-K
2 Crnoz (T 4
Y
= Wi+ K= Ke (2.309)
which can be solved for IQ resulting in:
. Ws — ng—g
1= (2.310)
T -1
thus recalling Ky = g- + K4 results in:
K4 = K4 — gz
W — Wl%
= e (2.311)
P -
and substituting Eq. (2.311) back into Eq. (2.306) results in:
, Wa— ng—g
Wi = KiCpQ— —m—, (2.312)
o -1
which can be solved for K resulting in:
2
PO RS 2.313
Caw\"M g ) -

thus resulting in an empirical equation for both K and Ky. It is convenient to run the experiment several
times to reduce the error associated to bias measurements. The second part of the identification process

deals with the constants that depend on the axial velocity, § , that is K5 and K3.

Once determined K; and K4, the determination of the parameters shifts towards step responses in
throttle and collective pitch, (ug,,0.) which will result in vertical motion of the helicopter. From this
data it is able to determine the damping constant, K5 , and the parasitic drag constant, K3, by fitting

the step response data curves.

2.8.4.2 Parameter Determination for Rotational Speed Dynamics

The proposed methodology to determine the different parameters in (2.294), that is K5, K¢, K7, Ks, and
Ko, uses also a series of experiments described bellow (Pallet and Ahmad, 1991). The rotational speed
equation constants may turn out to be the most difficult to determine as a result of the variations in

plant output from day to day as mentioned above.

First, and in a similar manner as for the vertical velocity equation, the identification process can be
simplified by canceling terms by taking use of the available control signals, that is, let cancel the collective

pitch angle terms by selecting 6. = 0, and by running the helicopter at a constant rotational velocity.
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This will results in an equation with K5, K¢, Kg and Kg terms resulting in:
0=—K:0— K¢O? + Kguy, + Ko, (2.314)

which can be rewritten to obtain an expression for the throttle input servo uy, resulting in:

un = K5Q + K¢Q? — Ko, (2.315)
with:

Ky = % (2.316)

K¢ = % (2.317)

Ko = % (2.318)

The determination process for the constants K5, K¢, Ko is conducted by selecting steady state pairs
of measured rotational angular speeds, €2, and input to the throttle servo, wu,, for the given range of

rotational speed during the hover flight condition, resulting in a set of linear equations:

wn, = Ks5Qi + KeQf — Ko, (2.319)
Uth, = R5QQ + R@Q% - Rg, (2320)
Uthys = R5Q3 + R@Qg - Rg, (2321)
wn, = K5O, + KeQ? — Ky. (2.322)

The steady state pairs obtained in the experiments , that is (Q;usp,) can be used to solve for the

1=1,n >

constants K5, Kg, K9 by rewriting the linear equations (2.319-2.322) as:

Q% Ql — 1 R uthl
Q% QQ -1 _ 5 Uthy
: K¢ | = : ; (2.323)
. . Kg .
Q% Qn —1 Uthn

where Eq. (2.323) can be expressed in a more simple manner as Agxx = B,,, with:
[ Q7 9 -1

Q2 Q0 -1
Ao = : o (2.324)

rx = | Kg |, (2.325)

(2.326)

Uth = . )

Wth,

therefore, Eq. (2.323) can be solved for K5, Kg, and Ko by using a Moore-Penrose left pseudo-inverse
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method to obtain the least square error fit as:

zx = | K¢ | = (AgAQ) B, (2.327)

Ky
where Ks, Kg, and Ky represents the obtained results of the constants using the Moore-Penrose left
pseudo-inverse method. Also recall that in order to determine K5, Kg and Ky it is necessary to determine
also K. This can be done by recalling Eq. (2.315) and using the values obtained in (2.327) into the

proposed rotational velocity assuming that the collective pitch angle is zero resulting in:

QO = —K:Q— K¢Q? — K;Q%sinf,. + Kgug, + Ko
= Ks (*Ksﬂ — K6 + uy, — f(g) : (2.328)

where Ky can be obtained by looking into the step response data obtained using throttle step responses
with zero pitch angle, 6. = 0, and conducting a parameter adjustment on Kg until the simulated step
responses match the data from actual flight data. The determination of the term associated to the air
drag loss for the rotational speed of the blades, K7, is conducted by running a series of steady-state
experiments for pairs of pitch angles, 6.,, and throttle settings, up, for hovering flight conditions. From
the different experiment flight data, and using the results obtained for the degenerated rotational speed
of the blades Eq. (2.328), a fit analysis can be conducted to obtain the K7 that best fits the flight results.
With Kjg obtained, constants K5, K¢ and Ko can be determined using Eqns. (2.316-2.318).

2.8.4.3 Parameter Determination for Collective Pitch Dynamics

In order to determine the unknown constants, K19, K11, and K15 a potentiometer needs to be mounted
on the collective pitch servo to measure the exact magnitude of the pitch as seen in Figure 2.28. Figure
2.28 reproduces the installation of the potentiometer in the collective pitch angle for the selected solution
in the EST RC helicopter (Navarro-Collado, 2010).

Ideally, it would be desirable to mount the potentiometer directly to the blades but given the physical
limitations, it can only be measured the servo position. This set up has the limitations that possible
flexing in the drive links from the servo to the blades will not be taken into account, but if the links
are rigid enough, this flexing can be negligible which is the case in all the RC helicopter main rotor
heads. Effects of backlash will also be ignored. The first term in (2.304) is determined by comparing the
collective servomechanism input, ug,, to the measured pitch, 6. as measured by the collective pitch with
the helicopter at rest, which reduces (2.304) to:

Kiof(ue,,0:) =0, (2.329)

This allows to determine the structure of the f(ug,,0.) which is obtained after comparing the
servo inputs to the measured collective pitch angles. After experimentation (Pallet et al., 1991;
Pallet and Ahmad, 1991) it is observed that the resulting collective pitch seems to behave in a linear
fashion with respect to the collective pitch servo input wug,, therefore it is selected to determine the

structure of f(ug,,0.) by using a least squares fit for a model of the form:
flug,,0.) = Ag, ug, + Ay, — 0., (2.330)

which can be determine employing a methodology similar to the one conducted for the rest of unknown
parameters by conducting a series of experiments in which a series of state pairs of collective pitch angles,

0c;, and servo control inputs, ug,, are obtained to try to model the actuator dynamics. The sets of pairs
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can be written in the form:

ug., 1 0.,
'LLQCZ 1 A 902
b | =] 7 (2.331)
Ao, :
Ug 1 0.

cn

Equation (2.331) can be solved for Ag, and Ag, by using a Moore-Penrose left pseudoinverse and

therefore identifying the original model, Eq. (2.304), as:

éc - KlOf(u0c7 90) - Klléc - K12w2 sin oc
= Ko (Ao, up. + Ap,, — 0c) — K110, — K1w>sin 6. (2.332)

Once defined the collective pitch actuator dynamics, let proceed to determine constants Ky and K
which is done by considering the helicopter at rest. In this situation the angular velocity of the blades is
zero, = 0, therefore reducing Eq. (2.332) to:

0= Kio (AQCI ug, + AQCZ — 90) — Klléc, (2333)

where both K1 and K1; can be obtained by looking into the step response data obtained using collective
step responses for zero angular velocity, 2 = 0, and conducting a parameter adjustment on K19 and K1
that provide the best fit to the curves. The last term to be accounted for is the collective pitch angle
behavior while the blades are in motion, that is the third term in Eq. (2.302), K12. This term relates
the rotational speed of the rotor with the pitch position of the blades. Experiments are conducted with
the same pair of conditions used to determine the actuator dynamics, Eq. (2.330), but with varying
rotational angular velocity of the blades, €2, and therefore adjusting the coefficient K75 until matches
the actual results obtained with €2 = 0. It is expected that Ki5 will be small since due to the nature
of RC' servomotors, the internal position control loop of the servo subsystems keeps the collective pitch
at a constant position even in the presence of resistance up to the torque at which they are rated
(Wikipedia, the free encyclopedia, 2010b; Wikipedia, the free encyclopedia, 2010a).

Although in (Pallet et al., 1991; Pallet and Ahmad, 1991) the term including Kjs is neglected from
experimental results and for simplicity, in the two control papers that originally motivated the work
presented in this thesis (Huang and Balakrishnan, 2005; Sira-Ramirez et al., 1994), the different control
strategies used in both works leave the K5 term and therefore for control purposes, since the existence
of this term increases the degree of complexity of the model. It is left for future work the adjusted of the

presented model with the real RC helicopter, since this is out of the scope of this thesis.

The servo motors that will be used in the RC helicopter are standardized RC' servos as seen in Figure
(2.29) where it can be seen that the servo consist of an output spline where the arm that converts the
angular motion to linear motion is attached, the drive gears that allows to convert the produced rotational
speed of the motor to the desired rotational speed and torque, the motor, the potentiometer that allows
to determine the actual position of the servo, and a electric motor which by using the read from the

potentiometer, ensures that the servo is at the commanded position.

RC' servos are composed of an electric motor mechanically linked to a potentiometer
(Wikipedia, the free encyclopedia, 2010b; Wikipedia, the free encyclopedia, 2010a). Pulse-width mod-
ulation (PWM) signals which are sent to the servo, and are translated into position commands by the
electronics inside the servo. When the servo is commanded to rotate, the motor is powered until the
potentiometer reaches the value corresponding to the commanded position. The servo is usually con-
trolled by three wires: ground, power, and control. The servo will move based on the pulses sent over the

control wire, which set the angle of the actuator arm. The servo expects a pulse every 20 ms in order to
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gain correct information about the angle. The width of the servo pulse dictates the range of the servo’s
angular motion. A servo pulse of 1.5 ms width will typically set the servo to its "neutral” position or
45°, a pulse of 1.25 ms could set it to 0° and a pulse of 1.75 ms to 90°.

The physical limits and timings of the servo hardware varies between brands and models, but a general
servo’s angular motion will travel somewhere in the range of 90° — —120° and the neutral position is
almost always at 1.5 ms. This is the ”standard pulse servo mode” used by all hobby analog servos. When
these servos are commanded to move they will move to the position and hold that position. If an external
force pushes against the servo while the servo is holding a position, the servo will resist from moving out
of that position. The maximum amount of force the servo can exert is the torque rating of the servo.
Servos will not hold their position forever though; the position pulse must be repeated to instruct the

servo to stay in position.

A hobby digital servo is controlled by the same ”standard pulse servo mode” pulses as an analog
servo (of Robots, 2008). Some hobby digital servos can be set to another mode that allows a robot
controller to read back the actual position of the servo shaft. Some hobby digital servos can optionally
be set to another mode and ”programmed”, so it has the desired PID controller characteristics when
it is later driven by a standard pulse servo receiver (Hitec, 2007). The way in which servos work is
out of the scope of this thesis, so for further detail refer to (Wikipedia, the free encyclopedia, 2010b;
Wikipedia, the free encyclopedia, 2010a; of Robots, 2008).

2.8.5 Final Helicopter Model

The proposed helicopter model is defined by identifying that Eqns. (2.305), (2.294), and (2.332) can be

written into a set of first order nonlinear equations of motion by defining the state space vector as:

X
y |, (2.334)

z

4

X

where & represents angular velocity of the blades, that is z £ €, y represent the state vector for the

vertical motion of the helicopter, that is y; = &, and is given by:

A | Y A ¢
ylm] [«E] (2.335)

and z represents the state vector for the collective pitch angle dynamics, that is z; £ 6. and is given

by:
_ ).
e Ve, (2.336)
z9 90
The control vector is given by:

a | W
u = =

U2

(1>

Kgup

, (2.337)
Ap,, Kioue,

with u; being the normalized input to throttle servo signal (us), and us being the normalized input to
collective pitch servo signals (ug,). This results in the nonlinear equations of the form:
T = f('rvyazvul)v
y = gy, 2), (2.338)
= h(xayazauQ)a
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resulting in

& = asx + apr’sinz + agx® + a1 + uq, (2.339)
o= Yo, (2.340)
o = a%(a1 + asz1 — Vaz + agz1) + asys + agys + ar, (2.341)
4= o, (2.342)
20 = 1321 + a1ax?sinzq + a1522 + a2 + ua, (2.343)

where the constants are given by in table 2.1. Recall that g(z,y, z) denotes the vector function that

describe the vertical displacement dynamics of the helicopter given by

:I-/: [ yl ] :g(x,y,z): [ gl(zayvz) ],

/ (2.344)
Y2 92(:5) Y, Z)

(2.345)

with g1 and go given by Eqns. (2.340) and (2.341), respectively, and h(z, y, z) denotes the vector function
that describes the collective pitch dynamics of the helicopter given by

hl(xvyaz) ]

s=| | =hz,y, zu) = (2.346)
Z2 hQ(ZC,y,Z,Ug)

(2.347)

with hy and he given by Eqns. (2.342) and (2.343), respectively. Figure 2.30 depicts a simplified block
diagram that helps to understand the high degree of coupling and the dependence between the three
subsystems in which are organized the five differential equations of time (2.339-2.343). These subsystems
correspond to the vertical position and velocity of the helicopter y, the main rotor angular velocity =,

and the collective pitch dynamics z.

This concludes the definition of the model that will be used through the remainder of this thesis. The
following subsections are dedicated to an in depth analysis of the equilibrium equations, the definition
of the available ranges of the states variables, which will be used to determine the semi-global stability
properties in future sections, and a performance analysis of the selected model against the more complex
thrust models previously presented to justify the validity of the proposed model which is presented in
Appendix A. The constants in table 2.1 used throughout the remainder of this thesis are defined in table
2.2 which are slightly different from the original techreport (Pallet and Ahmad, 1991). See A.5 for further

details on the derivation of the coefficients.

0'202 C C £ C 3
a; = Kl 64LO‘ ag = Kl—g GLO‘ az = 3(2K1)2 (—U 4LO‘) a4 = 2K127(0 i“) as = 7K2
ag = — K> ar = —g. — Ky ag = —Kjs ag = —Kg ayo = —Ks
an = Ky aiz = Ay, Ko a1z = —Kiyo aig = —Kip ais = —Kn

Table 2.1: Relation between the helicopter estimated physical coefficients K, and the helicopter normal-
ized physical coefficients a. - Eqns. (2.339-2.343).

a; =5.19791 x 10~% | as = 1.51992 x 1072 | a3z = 2.70183 x 10~ 7 | a4 = 1.58009 x 10~°
as = —0.1 ag = —0.1 ay = —17.67 ag = —0.7
ag = —0.0028 aip = —0.0028 a1 = —13.92 a19 = 434.88
a1z = —800 a14 = —0.1 a5 = —65

Table 2.2: Values of the normalized physical coefficients a..
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2.8.5.1 Equilibrium Points Analysis for the Helicopter Model

In order to better understand the behavior of the helicopter system, an analysis of its equilibrium points
is conducted. The equilibrium points are obtained by setting all the derivatives of the system Equs.

(2.339-2.343) to zero, thus yielding the equilibrium equations:

& =0=asZ + a10Z’ sin z1 + a9Z? + a11 + U1, (2.348)
=0 = 7, (2.349)
U2 =0 = Z%(ay + a2z — Vaz + asz1) + asys + aeys + ar, (2.350)
5= 0= 5, (2.351)
29 =0 = a13Z + a147°sin Z; + a1572 + a1z + o, (2.352)

where the symbol [ denotes that the variable is at an equilibrium condition. As seen by the equilibrium
equations, the system is formed by five state variables, and two control signals. It can be seen that
the altitude variable y; does not appear in any of the equilibrium equations, which implies that any
of the equilibrium points of the helicopter system can be attained at any altitude, always taking into
consideration the physical limitations of the problem. This implies that there exists an infinitely number
of equilibrium points, and one of the variables needs to be fixed in order to determine a single equilibrium
point. This also implies that the system is an underactuated one, which will increase the degree of
complexity involved in trying to regulate the helicopter vertical motion, in special considering that the
vertical displacement dynamics have no direct control action, and in order to effect in both the vertical
position and velocity of the helicopter will be required to provide the proper control signals to both the
angular velocity and the collective pitch angle of the blade. This will provide an excellent nonlinear frame

where to test the validity of the proposed control strategies.

Equations (2.349) and (2.351) yield the solutions for the equilibrium vertical velocity of the helicopter
(g2 = 0), and the equilibrium collective pitch rate of the blades (zZo = 0). Equation (2.350) defines
the equilibrium space of configuration by selecting a desired value for either T or z;, such that an
expression can be determined as a function of the selected desired variable, defined from now on as
x* or z} respectively. Equations (2.348) and (2.352), define the control signals required to achieve the
selected equilibrium points. This implies that in order to determine the equilibrium points, it will be first
necessary to select between = or z; as the desired initial value, which will in return provide a relation to
determine the equilibrium for the other variable. If the collective pitch angle is selected as the desired
fixed variable 27, the expressions that determine the rest of the variables at the equilibrium points are

given by:

_ a7
z(zf) = =+, /- , 2.353
= \/ o+ an7i — ar T (2:359)

u1(zy) = —asT — a0z’ sin 2} — agZ® — a1y, (2.354)

U2 (Zr) = 70,132? — (114552 sin Z1 — ai2. (2355)

On the other side, if the angular velocity of the blades is selected as the desired variable x*, the

expressions become:

., arx* £/ Cox*® + Cy Cy

= c 2 2.
zZ1(x™) 2ale +C. + e (2.356)
’al(l'*) = 7a8:c* — 1'*2 (a10 sin 21 + ag) — a1l (2357)

ag(m*) = —a1321 — a14x*2 sinz; — aq2, (2358)
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being the constants defined by:

C, = a2 —4asaiay + 4aias, (2.359)

Cb = —4a2a7a4, (2360)

c, = -4 (2.361)
a

cy = -2 (2.362)
ag

It can be observed that Eq. (2.353) has two solutions for the equilibrium rotational speed of the blades
Z, but constrained by the physical nature of the problem, that is, the clockwise rotation of the blades,
only the positive solution is considered. It is observed that Eq. (2.356) has also two solutions for the
equilibrium collective pitch angle of the blades Zz, but it can be demonstrated substituting both solutions
in the original equilibrium Eqns. (2.348)—(2.352), that the solution corresponding to the minus sign in
front of the square root is a spurious solution introduced in the previous computations, therefore only

the positive solution is considered in the sequel.

From the physics of axial helicopter flight, is is customary, for both RC and full size helicopters, to
maintain the engine’s RPM constant, and use collective pitch angle to provide the differential thrust
required to regulate the helicopter’s vertical position, since the collective pitch angle effect in the amount
of vertical force is much faster than the effect that has the angular velocity of the blades on the generation
of thrust. This translates that Eq. (2.356) will be used instead of Eq. (2.353).

Taking into consideration the physical restrictions of the proposed model, it is necessary to define the

range of the reachable states, and also their reachable desired final conditions (y7, v, «*

, 27 and 23).
These reachable states and equilibrium points are defined by the physical limits of the state variables.
The altitude limits are defined by the limitations of the platform in which the helicopter is mounted,
0 < y1 < 2 m.; the vertical velocity limitations for the descent phase are defined by the velocity at which
the effects of vertical velocity cannot be neglected, which can be approximated by the induced velocity of
the helicopter at the rotor disk in the hover flight condition (Leishman, 2006), that is —v; < y2, and where
v; (meter/second) represents the induced velocity at the rotor disk, and is defined as seen previously
by:
T
Vi = 2p—A’

where T' (Newton) is the necessary thrust force to maintain the hover flight condition, and given by
T = mg., where m (kg.) is the mass of the helicopter, p (kg/m?) is the air density, and A (m?) is the
rotor disk area, that is A = 7wR?, with R (meter), being the radius of the helicopter blade. For the
helicopter case discussed through the thesis it is assumed that m = 3.1488 kg, p = 1.225 kg/m3, and
R = 0.7025 m. Refer to A.5 for further details. The maximum ascend velocity is fixed as 2v; thus
yielding the limits for the vertical velocity as —2.8505 < yo < 5.7010 m/s; the limits on the angular
speed of the motor comes defined by the physical limitations of the rotorcraft engine, @4, = 180 rads/s,
(approximately 1718 RPM’s), while the lower boun is fixed by assuming that the idle speed of the
engine is set at @i, = 74.25 rads/s; the limits on the angular velocity of the pitch is modeled after
the specifications of a high speed servo, Futaba S9250 Servo Digital Heli, which has a speed of 9.51
rads/s (Futaba®, 2006). For the range of collective pitch angles, a maximum collective pitch angle

of z1 = 0.35 rads = 20.05° is considered; the minimum collective pitch angle can be determined

analyzing the selected modelization of the thrust coefficient, as seen in Eq. (2.282), where it can be
observed that due to the nature of the square root in the thrust coefficient equation, only collective
pitch angles greater than z; > —K¢ /K¢, = —as/ay will be defined. Analysis of Z(z}) and z(z*), Egs.

(2.353) and (2.356) respectively, show that there is a region within the considered collective pitch angle
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range that it is not defined as an attainable desired final condition, thus defining two distinctive regions

of reachable collective pitch angles:

max

as
«
Py, > 21 > —— ,and 21

> 2] > EAT (2.363)
aq

being z1,,,, and z1,,,  the roots of the denominator of Eq. (2.353) given as:

as — 2a1as — /a2 — dasaras + 4adaz

leiml = 2(1% ’
ay — 2a1a a? — dagaias + 4aca
o _ W 1as + /a3 40102 + 293 (2.364)
limg 2(1%

for the constants defined in this problem, the collective pitch angle equilibrium points are given by
—0.3992 x 1073 rads > 27 > —0.1727 x 107! rads and 0.25 rads > 27 > 0.4138 x 1073 rads. Analyzing
in detail the relation between the equilibrium states and the range of the desired states, it is concluded
that, despite that the entire range of desired final conditions generate defined equilibrium points, it is not
feasible to consider desired collective pitch angle values smaller than z; < 4.87°, which as it can be seen
in Figure 2.31, in order to provide the thrust force required to maintain an equilibrium position, that is
generating the same amount of thrust for a given weight, it requires angular velocities = > 180 radians,

which is not possible due to the limitations on the engines’s RPM.

For safety purposes and to avoid ranges of angle of attack in which the airfoil might be operating in
a near stall region, the maximum value of the collective pitch angle is restricted to 14° > z; therefore
resulting that the range of desired collective pitch angles is limited to 14° > 2z > 4.87°. Refer to
(Esteban et al., 2005a) for more details. Figure 2.31 represents the relation of Z(z7), z1 (z*), Eqns. (2.353)
and (2.356) respectively, for the ranges of considered desired collective pitch angle and angular velocity
of the blades.

2.8.5.2 Error Dynamics and Range of Variables for the Helicopter Model

As it is shown later, one of the requirements for the analysis of the asymptotic stability of a singular
perturbed system is the necessity to ensure that the closed loop system has an isolated equilibrium at
the origin. To satisfy this requirement we introduce a change of variables that define the new system in

terms of its error dynamics as:

%= % (2.365)

where x is defined in Eq. (2.334), and x* represents the desired values of the state vector defined in the

previous section. This translates into:

Po— oo (2.366)

~ * 7{1 — Yy — yi , (2367)
Y2 Y2 =Yz

z = z—z*:[zllzlzl_zw, (2.368)

29 2o — 25

<
I
<
I
<
I

where constants =*, yi, y5, 27, 25 represent the desired values of the states variables, and as discussed
previously in the equilibrium analysis section, in order to have the helicopter at a given equilibrium
position, that is, maintaining a stationery hover position, it is required that the vertical speed of the
helicopter, y3, and the pitch angular velocity of the blades to be y5 = 25 = 0, and 2] can be obtained
as a function of the selected angular velocity of the blades, a*, by using Eq. (2.356), resulting in
z¥ = z7(2*,y3). The limits of all the state variables are defined in Table 2.3. Using (2.366-2.368) into
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(2.339-2.343) results in the error dynamics of the problem given by:

r = ag(Z+ )+ ar(@ +x*)?sin (2 + 27)

+  ag(® +2%)? + arr + 11 + 1,

vo= Y2,

o = (Z42%)? <a1 +as(Z +27) — yJas +as(Z1 + z’f)) (2.369)
+  asfa + asls + ar

5= 2,

Zy = a3(51 4 2)) + a1a(@ + %)% sin (31 + 27) + a1532 + aio + do + o,

where:

Uz Uy — Uz

aélf“]zu—aé[“l_“l], (2.370)

where @y and @y are given by Eqns. (2.354) and (2.355) or Eqns. (2.357) and (2.358) respectively, but
as mentioned in the previous section, due to the physics of flight selected, and, as it is shown later, due
to the time-scale selection, only Eqns. (2.357) and (2.358) are used. This resulting in the limits of the
real variables defined by:

XMIN <X < XMAX- (2.371)

From analysis of the maximum allowable state variables and desired final states it can therefore be defined

the ranges of the error-dynamics given by:

XMIN <X < XMAX; (2.372)

with the minimum values of the error dynamic variables being given by:

XMIN = XMIN — XMAX (2.373)

and the maximum values of the error dynamic variables being given by

XMAX = XMAX — XMIN- (2.374)

Table 2.3 resumes the limits for the helicopter variables, for the actual values, the desired and the error
dynamics. Note that for safety purposes, the desired values for the angular velocity of the blades and
the collective pitch angle, are limited an additional 10% on both the minimum and maximum allowable
desired values. Similarly, the desired values on the altitude are limited 10 cm. on both the minimum and

maximum possible altitudes.

| States [ xavaw | xvrax | Xoprw | Xgax | Xmrn | Xmax |
= [tadjs] || 7425 | 180 | 8L675 | 162 | 87.75 | 98.325
U1 m] 0 2 0.1 1.9 -1.9 1.9
Y2 [m/s] —2.8505 | 5.7009 0 0 —2.8505 | 5.7009
z1 [rad] 0.0175 0.2443 | 0.0935 | 0.2199 | —0.2025 | 0.1508
25 [rad/s] || =952 | 9.52 0 0 —952 | 952

Table 2.3: Error-Dynamic Limits for the Helicopter Variables.
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Figure 2.21: Teeter mechanism in Bell 206 rotor head

Figure 2.22: Teeter movement in a Robinson 22
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Figure 2.23: Helicopter stand (Pallet et al., 1991; Pallet and Ahmad, 1991)

Figure 2.24: Grupo de Control Nolineal autonomous helicopter platform
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Figure 2.25: Grupo de Control Nolineal autonomous helicopter platform

Resin 6.

Figure 2.26: Effective drag area of the rotor blades (Pallet and Ahmad, 1991)
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Figure 2.27: Aerodynamic characteristics for a NACA 0012 airfoil (Prouty, 1986).

Figure 2.28: Potentiometer installed in the helicopter collective pitch servo for the Grupo de Control
Nolineal RC helicopter (Navarro-Collado, 2010)
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Figure 2.29: Standard servo breakdown (ServoCity, 2008).
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Figure 2.30: Block diagram of the helicopter dynamics.
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2.9 Conclusions

A model for a miniature helicopter in axial flight mounted on a platform has been presented. The model
will be used throughout the remainder of the thesis to design the proper control laws that regulate
the vertical position of the helicopter, and to demonstrate the asymptotic stability properties of the
resulting autonomous system. The model is based in the M T model previously derived in section 2.6,
which includes the helicopter dynamics in the axial flight condition, and also includes some of the losses
presented in section A.4, and that were not accounted for in the original proposed MTy model. The

presented model

The helicopter model, although mainly focuses on the nonlinear vertical displacement, which is based
on the selected thrust model, the MTy model, it also includes the nonlinear dynamics of the col-
lective pitch actuators, which increases considerably the degree of complexity of the model, but also
depicts a more realistic model, and also includes the nonlinear dynamics of the rotational velocity
of the main rotor. Although the model is based on an existing model that has been quite used
in the literature (Pallett and Ahmad, 1993; Sira-Ramirez et al., 1994; Huang and Balakrishnan, 2005;
Kaloust et al., 2002; Tee et al., 2008), the author has proposed some changes, mainly in the definition of
some of the variables in vertical displacement and angular velocity of the blades dynamics, taking into

account the derived BE and MT derivations conducted in section 2.6 and Appendix A.

The author has also proposed three alternative thrust coefficient models, MT,., BEMT, and BEMTry,
described in detail in Appendix A, that will serve as test bench to test the validity of the selected model for

axial flight, and to test the robustness of the proposed control strategy under unmodeled dynamics.

This chapter also introduces the range of reachable values for the states, the desired values and the
error dynamics according to the real physic limitations of the model here presented. The definition of
the ranges of the reachable values will be of great importance when conducting the stability analysis for
the resulting closed-loop system, and will provide the tools to infer semi-global stability by extending the
asymptotic stability properties of the selected control strategy not only to the origin, but extending the

domain of attraction to the entire domain of reachable states.



Chapter 3

Singular Perturbation Analysis:
Top-Down and Bottom-Up
Approaches

3.1 Introduction

This chapter focuses on the time-scale analysis of singularly perturbed systems. Singular perturbation
analysis of complex nonlinear systems provide a valuable tool that simplifies the burden of both, designing
appropriate control laws, and guaranteing the asymptotic stability of the original nonlinear system. As
noted in the introduction, section 1.3, singular perturbation techniques permit to deal with the complexity
and nonlinearities present in many aerospace systems, and of many systems in general, by identifying
the existence of times-scale behaviors among the different dynamics that are used to model the systems.
This time-scale separation permits to describe the different aspects of the dynamic phenomena of each
of the different time-scale subsystems with respect to each of the defined time-scales and, therefore,
allowing to express the full problem as a composite description of the complex dynamics of each of the
subsystems. This time-scale decomposition permits to easily understand the behavior of each of the
resulting subsystems when being analyzed with respect to their new time-scales, something that would

be quite difficult when trying to accomplish for the full system.

A priori, this can be thought as a process to decouple complex dynamics into lower order dynamics, and
then apply the respective controls, where the power and the success of singular perturbation and time-
scales philosophy lies on the use of approximate theory and, in particular, on the concept of asymptotic
analysis that needs to be conducted to guarantee that the resulting time-scale subsystems satisfy the so

called boundary layer requirements among the different resulting time-scales (Ramnath, 2010).

The time-scale analysis that will be here presented is based in a extension from the general two-time-
scale singular perturbation formulation, to a three-time-scale singularly perturbed system, and as it
will be shown also extended to a more general N*'-time-scale singular perturbation formulation. These
methodologies will be employed throughout the reminder of this thesis, and applied to both a general
three-time-scale model and a three-time-scale helicopter model. The use of a more general three-time-
scale example will serve to extend the formulation described in this thesis to any N*"-time-scale singularly

perturbed system in general.

The methodologies presented in this thesis provide an approach in which, for a specific class of singularly

101
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perturbed nonlinear systems, a step-by-step procedure can be used, such that allows to design the proper
control laws that guarantee a desired degree of stability, select an appropriate composite Lyapunov
function for the complete singularly perturbed system, and demonstrate the asymptotic stability for the
resulting closed-loop nonlinear singularly perturbed system for sufficiently small singular perturbation

parameters, and everything in an all-in-one step-by-step process.

These step-by-step methodologies will be denoted as Top-Down (TD) and Bottom-Up (BU)
methodologies, and receive their names from the direction in which the singular perturbation parameters
are considered, which in return result in different time-scales subsystem. For example, for a three-time
scale singularly perturbed system, see Figure 3.1, the Top-Down methodology analyzes the time-scales
in a descending manner, considering first the top singularly perturbed parameter, 1, resulting in a sim-
plified two-time-scale problem formed by a one-dimension subsystem, and a two-dimension subsystem,
denoted both by the red dashed boxes; in a second instance, and following the descending direction, the
bottom singularly perturbed parameter is applied, 3, such that simplifies the second-order subsystem
into another two-time-scale problem formed this time by two one-dimension subsystems, denoted both
by the blue dashed-dotted boxes. A similar methodology is applied in the Bottom-Up methodology, but
in an ascending manner as seen in Figure 3.2. This ascending or descending philosophy will be discussed

in more detail in future sections.

The strategy analysis of the TD or BU methodologies here presented, consists on treating the different
N time-scales as N — 1 distinct two-time-scale singular perturbed problems, using sequential analysis,
and using the standard two-time-scale analysis (Kokotovié et al., 1986) for each of the N —1 resulting two-
time-scale subproblems. This singularly perturbed strategy becomes the main pillar of the methodology
employed in this thesis and, as will be demonstrated in the following chapters, unifies in one simple

process, the ability to solve the main problems treated on this thesis

1. Define a control design strategy that permits to select the desired degree of stability of each of the

time-scale subsystems.

2. Define a methodology that permits to demonstrate the asymptotic stability properties of the resulting
closed loop full system, by selecting the Lyapunov functions for each of the singularly perturbed

subsystems, and construct the associated composite Lyapunov function for the full system.

The TD and BU methodologies simplify the burden of satisfying the requirements that guarantee the
stability between the different time-scale subsystems by defining natural Lyapunov functions based on
the desired dynamics for each of the time-scale subsystems resulting from applying the sequential T'D
and BU methodologies, and using these functions to demonstrate the requirements, rather than trying
to obtain Lyapunov functions that satisfy the requirements for each of the subsystems, which proves to
be a complex and difficult task, in special when the dynamics of the systems present a high degree of
complexity (Kokotovié et al., 1986; Kokotovi¢ et al., 1987; Kokotovié¢ et al., 1987).

The TD and the BU methodologies here proposed are introduced by first describing the general two-
time-scale singular perturbation formulation in which are based, described in section 3.2; the extension
to a three-time-scale formulation is derived in section 3.3, along with the methodology employed for the
proper time-scale selection; section 3.4 describes in detail both the 7D and the BU time-scale analysis,
and section 3.5 introduces an intuitive description of the three-time-scale decomposition that will help to

understand the time-scale evolution of a general three.time-scale system.

The TD and the BU methodologies are presented as two different, but equivalent approaches that
help to analyze the three-time-scale singularly perturbed systems here studied. The selection of the
TD, or the BU methodologies, will be taken by the designer, since depending on the structure of the

system being analyzed, it might be more desirable to select one or another methodology, as it will be
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shown in later sections. The results obtained in this chapter will lead to the derivation of the proposed
control strategy, which will be described in detail in chapter 4, and an extension of the standard two-time
scale methodology to demonstrate the asymptotic stability of the three-time-scale autonomous systems

obtained also using this same methodology, which will be also described in more detail in chapter 5.
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3.2 General Two-Time Scale Singular Perturbation Formula-

tion

The general two-time scale singular perturbation model formulation, that represents the basis for the
N*"_time-scale and singular perturbation formulation here presented, has been extensively studied in
the literature (Tikhonov, 1952; Tikhonov, 1948; Levinson, 1950; Vasil’eva, 1963; O’Malley Jr, 1971), to
name few, and was also one of the first to be used in control and systems theory (Kokotovié¢ et al., 1986).
The general two-time-scale singularly perturbed model, that it is the basis for the strategy conducted
in this thesis, is in the explicit state-variable form in which the derivatives of some of the states are

multiplied by a small positive scalar, ¢, that is

i = f(z,zet), z(t) =2, z € R", (3.1)
et = h(z,ze,t), z(t)) = 2% z€R™, (3.2)

where a dot denotes a derivative with respect to time t, and f and h are functions that are assumed
to be sufficiently many times continuously differentiable functions of their arguments z, z, €, t. Let
also B, C R™ and B, C R™ denote closed sets. The scalar € represents all the small parameters to
be neglected. In control and systems theory, the model defined by Eqns. (3.1-3.2) is a step towards
reduced order modeling, a common engineering task (Kokotovi¢ et al., 1986). The order reduction is
converted into a parameter perturbation, called singular. When setting the singular parameter ¢ = 0,
the dimension of the state space of Eqns. (3.1-3.2) reduces from n + m to n because the differential

equation (3.2) degenerates into the algebraic or transcendental equation given by
0 = g(f7 2,07 t)’ (3'3)

where the bar denotes that the variables belong to a system with ¢ = 0. Equation (3.3) can also be defined
as the quasi-steady-state equilibrium of the fast-subsystem. The new model is considered in standard

form if and only if, in a domain of interest, Eq. (3.3) has k > 1 distinct and unique real roots such

=

z =

(z,t), i=1,2,....k (3.4)

where h(Z, t) represents the quasi-steady-state equilibrium of the fast-subsystem. This assumption assures
that a well defined n-dimensional reduced model will correspond to each root of Eq. (3.4). To obtain the
it" reduced model, Eq. (3.4) is substituted into Eq. (3.1) resulting in

= f(z,%0,t), Z(ty) = 2°, (3.5)

which keeps the same initial conditions for the state variable Z(t) as for «(¢). This model is called a quasi-
steady-state model (Kokotovic¢ et al., 1987; Kokotovi¢ et al., 1986) because z, whose velocity z = g/e can
be large when ¢ is small, may rapidly converge to a root of Eq. (3.3), which is the quasi-steady-state
form of Eq. (3.2). The slow response is approximated by the reduced model defined in Eq. (3.5), while
the discrepancy between the response of the reduced model, Eq. (3.5), and that of the full model, Eqns.
(3.1) and (3.2), is the fast transient. These relations between both the reduced model, Eq. (3.5), and
the quasi-steady-state equilibrium of the fast subsystem, Eq. (3.4) represents the basis for powerful tools
that singular perturbation provides to the analysis of systems. For simplicity, in future derivations the
dependance of the functions in € and ¢ will be omitted. Additionally, to reduce the complexity of the
nomenclature the bar denoting that the variables belong to a system with ¢ = 0 will be also omitted,

which will be easily identified through the context.

Singular perturbation techniques simplify considerably the complexity of coupled dynamics such those
present in aerospace systems (Naidu and Calise, 2001; Naidu, 2002) and, as described in the introduc-

tion, singular perturbation techniques are used in this thesis as a methodology that permits to perform a
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complete analysis of nonlinear systems, by providing control law strategies for the singularly perturbed
systems, and also demonstrate the asymptotic stability properties of the resulting closed-loop system.
This approach permits to create nonlinear control laws that can be derived directly from the original
nonlinear systems without the need of making unreasonable simplifications, being only required to guar-
antee the interconnection properties between the different time-scale subsystems. Following sections will

extend these tools to more general time-scale systems.

3.3 Extension to the Multi-Time Scale Singular Perturbation

Model Formulation

For simplicity, rather than dealing with a general N*"-time-scale singularly perturbed system, the analysis
conducted in this chapter will be simplified to a three-time-scale model, which will aid through the
remainder of this chapter to visualize the different time-scale strategies. With this in mind, this section
provides the extension conducted from the general two-time-scale singular perturbation formulation, to
the three-time-scale singular perturbation formulation which will be employed throughout the reminder
of this thesis. This extension was originally motivated by the type of problems being dealt in this thesis,

singularly perturbed three time-scale problems.

The extension from two to three time-scale analysis is conducted by first introducing the basis for the
time-scale selection employed in this thesis, both related to a simplified example, and later to the more
complex three-time-scale helicopter model previously presented in section 2.8. The simplified model will
help the reader to understand the proposed singular perturbation methods that will be later used on the

more complex helicopter model.

3.3.1 Simplified Three-Time-Scale Model

As stated previously, a simplified three-time-scale model is proposed in this section in order to simplify
the burden of understanding the proposed time-scale analysis methodology. The use of the simplified
model throughout the thesis can be used by the reader as an alternative to understand the proposed
solutions to the three-time-scale problems here presented. This simplification can be taken up to the
extreme point by the reader so that the proposed strategies for the control design, the Lyapunov function
selections and the asymptotic stability analysis for the helicopter model can be initially omitted by the
reader, since they only represent the application of the same methodologies to a much more complex
model, allowing the reader to focus on the simplified model, and only deal with the helicopter problem

once the methodologies have been fully understood.

For completeness of the thesis, all the derivations regarding the proposed T'D control strategies, and the
stability analysis for the simplified example are moved to appendixes B and C respectively. It is advised
to the reader, that if, while reading the respective control strategy, and asymptotic stability analysis for
the helicopter model, chapters 4 and 6, respectively, the complexity associated to the problem makes the
understanding troublesome, start with the respective strategies for the simplified example in Appendixes

B and C, and only proceed with the helicopter derivations if wants to get further into the details.

The selected simplified model has been defined possessing many similarities with the helicopter model
that is the main focus of this thesis, i.e. the simplified model possesses three distinct variables, x, y, and
z, which can be defined as three distinct time-scales, and has the same control authority as the helicopter
model, that is, the control signal is only present on two of the dynamics, becoming an underactuated

system, in which the objective is to regulate the dynamics that does not have any control signal, this
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becoming a distinctive challenge when trying to regulate the underactuated variable. Similarly as in Eq.
(2.338), the selected model is of the form

i = f(z,y,2,wm)=—p (z+2°24+1) +u, (3.6)
z = h(xayaZaUQ) = —pP3 (Z + :CQ + y) + u2, (38)

where p; = 0.001, p2 = 0.1 and p3 = 100, which will be referred as parasitic constants. It will be seen
in later chapters that this model simplifies considerably the understanding of the time-scale dependance
between each of the different dynamics by observing the magnitude of the associated parasitic constants

of each of the three systems (p1, p2, p3).

3.3.1.1 Error Dynamics Formulation for the Simplified Model

Similarly as conducted for the helicopter model in section 2.8.5.2, the simplified example state variables

are expressed in their error dynamics form by defining

r = x—a" (3.9)

g o= y-v, (3.10)

Z = z-2" (3.11)
where =¥, y*, and z* represent the desired values of the states variables, and

’ELl = U — 121, (312)

Uz = Uz — Uz, (3.13)

with @ and @y represent the steady-state control signals, thus becoming the error-dynamics of the
simplified model, Eqns. (3.6-3.8), defined by

Po= —p (EHa)+ @) G2 1) H i+, (3.14)
gy o= —p2(@+y)+@+a)(F+2")+1), (3.15)
i = —pg((2+z*)+(:z+x*)2+(gj+y*))+a2+a2. (3.16)

3.3.1.2 Range of Variables for the Simplified Model

In order to define the admissible range of the proposed error-dynamics variables, it is necessary to
determine first the maximum range for both, the state variables, and the desired final states. For the
problem here studied, the state variables are bounded and given from the physics of the problem, although
for the proposed simplified model, since it has no physical significance, the definition of the ranges are
determined from simulations, and imposed by the author, therefore, different ranges could be employed
which in return, and due to the dependance of the stability analysis on the physics of the problem, could
vary the obtained results. For the problem here discussed, and throughout the remainder of this thesis,
the range limits for the states variable for the simplified example, and its associated desired values, are
defined in Table 3.1 where, similarly as in the helicopter model, the vector that represents the variables

is defined as

xX=1v |, (3.17)
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therefore being the limits of the ranges defined as

XMIN <X < XMAX; (3.18)

where the range of the error-dynamics is defined by

XMIN <X < XMAX, (3.19)
with

XMIN = XMIN — XMAX, (3.20)

XMAX = XMAX — XMIN; (3.21)

where the selected limits for the simplified example can be seen in Table 3.1.

| States (x) | xmrnv [ xmax | Xan | Xgax | Xmin | Xvrax |

T 50 140 60 135 -90 90
Y 0 3 0.1 2.9 -3 3
z -1 1 -1 +1 -2 +2

Table 3.1: Error-Dynamic Limits for the Simplified Model Variables.

3.3.2 Time-Scale Selection

This section describes one of the most challenging issues when dealing with singularly perturbed
systems: identifying the presence of time-scales, and once identified, select the appropriate mag-
nitude of the small parameters that guarantee the asymptotic properties of the different boundary
layers. The appropriate selection of time scales is an important aspect of the singular perturba-
tion and time-scales theory (Ardema and Rajan, 1985a; Ardema and Rajan, 1985b; Calise et al., 1994;
Mehra et al., 1979; Naidu and Calise, 2001), and, as described in section 1.3.2, can be categorized into

three approaches:

e direct identification of small parameters such small time constants, moments of inertia, high Reynolds

numbers, and so on.
e transformation of state equations.
e linearization of the state equations.

The first of the three approaches is the one employed to determine the different time scales in this thesis.
The challenge comes in identifying those time-scales. Naidu and Calise (Naidu and Calise, 2001) define
singular perturbation time-scale characteristics for aerospace systems, and for any system in general, as
often associated with small parameter multiplying the highest derivative of the differential equation, or
multiplying some of the state equations describing a physical system. They also state that often occurs
that the parasitic constant does not appear in the desired form, or the small parameter may not be
identifiable at all, and only the physical insight, and past experiences of the behavior of the systems in
question, might give clues of how to identify the small parameters. In this thesis, the later proposed
method, experience of the behavior of the systems, is the principal methodology employed to identify
the parasitic constants, but in addition, mathematical reasoning is also employed during the time-scale
identification process. In order to identify the type of systems that will be dealt in this thesis, let first

define the general three-time-scale model description used throughout this thesis is given by
io= floy2), (3.22)
y = g(z,y,2), (3.23)
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z = h(z,y,2), (3.24)

where x, y, and z are the state variables. The general three-time-scale singular perturbed model used

throughout the thesis is required to possess three different time-scales that can be written as

& = f(z,y,2), (3.25)
Ely = g(:rvya’z)a (326)
e1625 = h(z,y,2), (3.27)

being = the slow state variable, y the fast state variable, and z the ultra-fast state variable, and holding
that 0 < e1e9 << g1 << 1, thus €5 << 1. Let also define the relationship between the original nonlinear
dynamics and the singularly perturbed dynamics through the relationship given by

g(:rvyaz) = Elg(zayvz)v (328)
h(z,y,z) = eiesh(x,y,2). (3.29)

Equations (3.25-3.27) represent the singularly perturbed full system, and for simplicity will be denoted
as Ygpy full system throughout the reminder of this thesis. The following sections will describe the
time-scale selection process employed for the simplified and the helicopter model. For simplicity, and
completeness of the thesis, the notation to denote the different time-scale subsystems it is defined as Xy,
where the subindex denotes the different subsystems, that is: g for the slow subsystem, ¥ for the fast

subsystem, and the Xy for the ultra-fast subsystem.

In the (slow) X g-subsystem the fast and ultra-fast state variables, y and z, respectively, are assumed to
evolve in their configuration spaces, given by y = g(z) and z = h(x, y), respectively, where g(x) represents
the quasi-steady-state equilibrium of Eq. (3.26) when setting €1 = 0 that is §(z,y,2) = 0 — y = g(z),
and where h(x,y) represents the quasi-steady-state equilibrium of Eq. (3.27) when setting 2 = 0 that is
ﬁ(m, y,2) =0 — z = h(z,y). Note that for completeness, throughout the remainder of this thesis, while
the functions will be denoted with italic lower case, i.e.: g and h, the associated quasi-steady-equilibrium

for the same functions will be denoted in Roman lower case g and h.

In the (fast) X p-subsystem, it is assumed that the ultra-fast state variable z evolve on its configuration
space, that is z = h(z,y), while the slow state variable z is treated like a fixed parameter, and finally,
in the (ultra-fast) Xy-subsystem, both x and y are treated like constants. Refer to Figure (3.9) for

completeness, although it will be described in detail in section 3.5.

3.3.2.1 Time-Scale Selection for the Simplified Example

The simplified three-time-scale singular perturbed model that is employed in this thesis can be rewritten

in a three-time-scale structure similar to Eqns. (3.25-3.27), and defined as

T = f(wayazaul)a (330)
Ely = g(x,y,Z), (331)
€1892 = ﬁ(x,y,z,ug), (3.32)

being x the slow variable, y the fast variable, and z the ultra-fast variable, and also holding that 0 <
€169 << €1 << 1, thus g5 << 1 where

g(x,y,z) = Elg(‘raywz)a (333)

h(-T,y,Z,Ug) = ElEgh(.T,y,Z,UQ)- (334)

Equations (3.30-3.32) represent the singularly perturbed full system, and for simplicity, as noted
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previously, it will be also denoted as Y gpy full system throughout the reminder of the simplified model
analysis. These equations differ from the general three-time-scale singularly perturbed Eqns. (3.25-3.27),

in the inclusion of the control signals.

The time scales of the simplified model can be identified by analyzing the mathematics of the problem.
Observing the nature of the coefficients multiplying the original Eqns. (3.6-3.8), p1, p2, ps3, it can be
identified the existence of small and large parameters that multiply the highest derivative of the differential
Equns. (3.6-3.8), where recalling that p; = 0.001, po = 0.1 and ps = 100, thus p; < p2 < ps3, being

obvious the choice of x as the slow variable, y as the fast variable, and z as the ultra-fast variable.

In order to express the original set of time differential Eqns. (3.6-3.8) in the proper three time-
scale singular perturbation formulation, Eqns. (3.30-3.32), a series of algebraic modifications, using the
identified time constants that multiply the original equations (p1, p2, p3), are introduced re-writing the
equations in the form

Lz = wa(xayazaul) = f(-T,y,Z,Ul), (335)
Li = Lh(z,y,zus) =h(z,y, 2 u), (3.37)

where I, I, and I, represent the perturbation parameters of each of three time-scales, and can be thought

as inertias multiplying the time-derivatives, and are given by

1

I, = —, (3.38)
P1

I, = ! (3.39)

Yy p2’ .
1

I, = —. (3.40)
P3

It can be seen that I, >> I, >> I, therefore in order to express Eqns. (3.35-3.37) in the correct
multi-time singular perturbation formulation, Eqns. (3.30-3.32), all the perturbation parameters are
normalized with respect to the slowest coefficient, that is, I, yielding the parasitic constants selected for

this problem as

I
e = w_PL_pon, (3.41)
I:n P2
1,
en = 2 =2_ 0001, (3.42)
L, ps3
I
crey = = =P _ 000001, (3.43)
I:n P3

satisfying that 0 < 5 << e; << 1, and that 0 < 162 << g7 << 1, thus €5 << 1, and therefore, allowing

to rewrite the three-time-scale Y gpy simplified model as

i = —pi(z+a’2+1)+u, (3.44)

e1y = —-my+azz+1), (3.45)

e1822 = —m (2 + 2% +y) + nue, (3.46)
where

mo = £1p2, (3.47)

N2 = €1€2p3, (3.48)

N3 = £i1€2. (3.49)
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3.3.2.2 Time-Scale Selection for the Helicopter Model

The three-time-scale singular perturbed helicopter model that will be employed in this thesis also possess
the same structure as Eqns. (3.30-3.32). Both the simplified, and the helicopter model, will use the
same nomenclature to refer to each of the subsystems being analyzed, and this will be the common
trend throughout the remainder of this thesis, since the context will be sufficient condition to identify
if the nomenclature is referring to the simplified or the helicopter model. The author believes that by
maintaining the same nomenclature, it is going to be easier for the reader to benefit from the simplified
example when trying to understand how the proposed singular perturbed methodologies apply to the
more complex helicopter model, otherwise, the use of different nomenclature will confuse and distract the

reader from understanding the proposed methodologies.

As previously described, the time scales can be identify by analyzing the mathematics of the problem,
and observing the existence of small and large parameters that multiply the highest derivative of the
differential equations. The identification of the three-time-scales for the helicopter model is obtained
conducted from initial inspection of the helicopter dynamics, Eqns. (2.339-2.343), and recalling the
helicopter modeling process described in section 2.8, it can be deduced that a three-time-scale model is
more suitable than a two-time-scale one. From a physical point of view it is clear that z; and z, are
much faster than the rest, since they represent the collective pitch and its actuator dynamics, which
are generally treated as a control input, and here are treated as state variables. The vertical motion
of the helicopter, variables y; and y., are much faster than the angular velocity of the blades, x, and
as is shown in later sections, through the design of appropriate control laws, we can modify both the
vertical maneuverability of the helicopter and its engine behavior to adequate their reactions to the

desired transient responses.

After identifying the time scales from a physical perspective, it is necessary to identify them from a
mathematical point of view. Analyzing the mathematics of the problem it can be identified the existence
of small and large parameters that multiply the highest derivative of the differential equations such
that the higher order dynamics of the angular speed of the blades in Eq. (2.339), terms in 2?2, are
multiplied by ag = ajp = —0.0028; the higher order dynamics of the vertical motion of the helicopter in
(2.340), terms in yo and y3, are multiplied by a5 = ag = —0.1; and the higher order dynamics of the
collective pitch angle in (2.343), z; and z9, are multiplied by a;3 = —800 and a15 = —65 respectively.
The mathematical characteristics of the system corroborate the three time-scale selection based on the
physical point of view, and by observing that the parameters that multiply the highest derivatives of the
differential equations. Therefore, let proceed to select x as the slow variable, y £ [y yQ]T as the fast

state vector, and z = [z; ZQ]T as the ultra-fast state vector.

In order to express the original set of differential Eqns. (2.339-2.343) in the standard three time-
scale singular perturbation formulation, Equs. (3.30-3.32), and similarly as in the simplified example,
a series of algebraic modifications using the identified large and small parameters that multiply the
original equations are introduced, re-writing the equations similarly as in Eqns. (3.35-3.37), where the

perturbation parameters of each of three time-scales, I, I, and I., are given by

I, = a—lg (3.50)

I, = a_15 (3.51)

L = - (3.52)
ais

It can also be seen that I, >> I, >> I,, therefore in order to express the equations of the three

time-scales in the correct multi-time singular perturbation formulation, all the perturbation parameters



112 CHAPTER 3. SINGULAR PERTURBATION ANALYSIS: TD AND BU APPROACHES

are normalized with respect to the slowest coeflicient, that is I, yielding the parasitic constants selected

for this problem given by

e = Tv_® 551072 (3.53)
Iz as
e = LB 5101, (3.54)
Iy a3
I
crey = 2= _ 355107 (3.55)
I:n a13

satisfying that 0 < g5 << g7 << 1, and that 0 < e162 << g1 << 1, thus €2 << 1, thus rewriting Eqns.
(2.339-2.343) as

& = asx + apox’sinz + agr® + a1 + uy, (3.56)

€191 = cC1Yo (3.57)
e12 = a°(co+csz1 — Vea + e521) + agys + agys + ce, (3.58)
€1€9221 = C729 (3.59)
£162%9 = agz1 + cgr®sinzy + coza + c1o + 11Uz, (3.60)

being the helicopter singular perturbation normalized physical coefficients defined as

0 = B- 0.028, ¢ = B = oy =1.2229 x 107°
as as
2
es = 299y =3.9011x 1074, ¢y = (@) = cjaz = 1.4956 x 10°
as as
a 2 ara
- <_9> as = 2a; = 9.5418 x 1079, ¢g = ——2 = cya7; = —4.9476 x 107!
aq as
cr = e =22 —3500x 1075, ¢ = 9Ot _ gy = —3.500 x 1077
a3 a3
co = DU _ gy = 22750 x 1074, 10 = 212 — coayp = 1.52208 x 1075,
a3 ais

3.4 Top-Down and Bottom-Up Time-Scale Analysis

The strategy presented in this thesis for the analysis of three-time-scale singular perturbed problems
consists on treating the three different time-scales as two distinct two-time-scale singular perturbed prob-
lems using the standard two-time-scale analysis (Kokotovié et al., 1986) for each of the two obtained
subproblems as seen in Figures 3.1 and 3.2. Each one of the two resulting two-time-scale singularly
perturbed sub-problems is considerably simplified, and thus permitting to easily obtain the appropriate
control laws that stabilize each of the resulting subsystems, or in the case in which the proposed method-
ology is employed to analyze the stability properties, it will ease the complexity associated to guarantee
the interconnection properties among the different time-scale subsystems. Each one of the two-time-
scale singularly perturbed sub-problems consists of a slow and a fast subsystem, and by the selection
of the appropriate control laws, it is ensured that the associated subsystems are each asymptotically
stable.

The importance of the proposed Top-Down (TD) and Bottom-Up (BU) time-scale analysis presented
in this section will be understood realizing that the problems addressed in this thesis, the control design
strategy, the obtention of the associated Lyapunov functions, and the demonstration of the asymptotic
stability properties of the closed-loop system, are all based on the TD, the BU, or a combination of
both methodologies. This section tries to describe in detail the generic methodology that will serve

throughout the rest of this thesis as a basis for selecting the proper control laws, and guaranteeing that
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the resulting closed-loop systems are asymptotically stable. The strategy employed can be conducted by
either selecting the T'D approach, or the BU approach, depending in the direction in which the time-scales
are applied, being both approaches equivalent for the analysis of the time-scale properties. This results
in that either strategy can be selected depending in the direction in which the time-scales are desired
to be applied, that is, according to the complexity of the nonlinear systems being treated, it might be

desirable to use either direction.

The strategy of treating the three different time-scales as two distinct two-time-scale singular per-
turbed problems using the standard two-time-scale analysis for each of the two sub-problems is based on
sequentially considering the different time scales appearing on the original three-time-scale system, Equns.
(3.25-3.27), that is, selecting the time scales associated to the small parasitic constants €1 and 2. For
the general three-time-scale problems here described, the use of either the T'D or the BU methodologies
produce equivalent results, although for conciseness and completeness, the BU methodology will be se-
lected as the principal analysis methodology, although, as it will be seen in chapter 4, the selected control
strategy will use the TD methodology. Following sections described in much more detail both the TD

and BU time-scale analysis.

3.4.1 Top-Down Time-Scale Analysis

The first presented methodology, denoted as Top-Down (TD), deals with the subsystems that result when
considering first the time-scale defined by the Top condition, that is, applying the stretched time scale
given by 7 = t/e1, to the original Xgpy system, Eqns. (3.25-3.27). This results in a two-time-scale
subproblem where the reduced (slow) subsystem is defined by

&t = f(z,g(x)h(z,g(x))), (3.61)
and where the boundary layer (fast) subsystem for the TD subproblem is defined by
dy R
o = 9@y(n),z(n)), (3.62)
T1
dz -
g2 = h(z,y(n),2(n)), (3.63)
T1

where 71 = t/e1, and where the expressions g(z) and h(z, g(z)) in Eq. (3.61) represent the quasi-steady-
state equilibria of the boundary layer, Eqns. (3.62-3.63), when £; = 0, that is

0 = h(z,y,2) = 2z=h(z,y) = h(z g)), (3.64)
0 = g(x,y,h(x,y)) — Y= g(x)a (365)

where both g(x) and h(x,y) evolve on their own configuration spaces. The reduced order (slow) sub-
system, Eq. (3.61), resulting from the Top-condition analysis will be denoted as Yg-subsystem, while
the boundary layer (fast) subsystem resulting from the same Top-condition analysis, Eqns. (3.62-3.63),
will be referred as ¥ pyy-subsystem for simplicity. Recall that in the space of configuration of the bound-
ary layer Y py-subsystem, Eqns. (3.62-3.63), x is treated like a fix parameter. Figure 3.3 depicts the
Top-sequence of the Top-Down methodology.

The second sequence of the T'D time-scale analysis, the Down sequence, permits to analyze the behavior
of the boundary layer ¥ py-subsystem, Eqns. (3.62-3.63). It can be identified that the resulting g p-
subsystem can be treated again like a two-time-scale singular perturbation problem by analyzing the
subsystem that results when applying the stretched time scale given by 7o = 71 /g2 = t/e1£2. This results
in a new reduced (slow) subsystem, denoted as ¥ p-subsystem for simplicity, and defined by

dy

i 9(@,y(m1), h(z,y(11))), (3.66)
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and where the new boundary layer (fast) subsystem is given by

d=

i = by, (3.67)

The boundary layer, Eq. (3.67), will be denoted as Xy-subsystem for simplicity. The function
h(z,y(m)) in the reduced order ¥ p-subsystem, Eq. (3.66), represents the quasi-steady-state of the
boundary layer ¥ -subsystem, Eq. (3.67), when setting e = 0, that is

0= h(z,y,2) = z = h(z,y), (3.68)

where = and y are treated like fix parameters. This concludes the Top-Down methodology (TD).
The following section describes the Bottom-Up methodology, which in a similar manner to the 7D
methodology, analyzes the three time-scale system by decomposing it into two distinct two-time-scale

singular perturbed problems. Figure 3.5 depicts the complete Top-Down time-scale analysis.

3.4.2 Bottom-Up Time-Scale Analysis

The Bottom-Up methodology (BU), uses a philosophy similar to 7D methodology presented in the
previous section, but the analysis is conducted considering the time-scale defined by first the Bottom
condition, that is, applying the stretched time scale given by 75 = ¢/e2, and secondly the Up condition,
that is the stretched time scale 71 = t/e1. Applying first the Bottom stretched time-scale condition to
the Ygpy full system yields the new reduced (slow) subsystem defined by

i = f(z,y,h(z,y)), (3.69)
51?) = g(,ﬁC,y,h(.’L‘,y)), (370)
and denoted as Y gp-subsystem, and where the new boundary layer (fast) subsystem is given by
dz ~
-~ — 71
= hz,y, z(12)), (3.71)

and denoted also as Xy-subsystem. The function h(z,y) in the reduced order Ygp-subsystem, Eqns.
(3.69-3.70), represents the quasi-steady-state of the boundary layer, Eq. (3.71) when 5 = 0, that

1S
0= h(z,y,2) = z =h(z,y), (3.72)

where h(z,y) evolves on its own configuration space. Recall that Eq. (3.67) in the TD time-scale
analysis, and Eq. (3.71) in the BU are equivalent and both denoted as X-subsystem. Figure 3.4 depicts
the Bottom-sequence of the BU methodology. Let also recall that, in the boundary layer ¥;-subsystem,
the variables x and y are treated like fixed parameters. The analysis of the BU methodology is continued
by identifying that the reduced order ¥gp-subsystem, Eqns. (3.69-3.70), can be treated again like a
two-time-scale singular perturbed problem, by dealing with the subsystem that results when applying
the Up condition, that is, applying the stretched time scale given by 71 = t/e;, where the new reduced

(slow) subsystem, denoted as Y g-subsystem for simplicity, is now defined by

i = f(z,g(@) hiz,y)), (3.73)
and the new boundary layer is defined by
dy X
d_ = g(.’L‘,y(Tl),h(ZE,y(Tl))), (374)
1

where g(x) represents the quasi-steady-state of the boundary layer, Eq. (3.74), when &1 = 0, that is

Ozg(ac,y,z) zg(x,y,h(x,y)) —>y:g(x), (375)
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where g(z) and h(x,y) evolve on their own configuration spaces. Figure 3.6 depicts the complete analysis

of the Top-Down subproblem.

3.4.3 Top-Down and Bottom-Up Interconnection Properties

It is important to clarify the interconnection properties between the TD and BU time-scale analysis are of
great importance to help understanding the equivalencies between both strategies. These interconnection
properties guarantee that the presented strategy for treating the three different time-scales as two dis-
tinct two-time-scale singular perturbed problems, result in that the two-different two-time-scale resulting

problems are both complementary.

The resulting Xg, X, and Xy subsystems obtained in the TD methodology, Eqns. (3.61), (3.66), and
(3.67), respectively, are equivalent to the ones obtained in the BU methodology, Equs. (3.73), (3.74), and
(3.71), respectively. For simplicity, throughout the remainder of this thesis, in the boundary-layer ¥ p-
subsystem, Eq. (3.74), state variable y(71) will be denoted as y, and in the boundary-layer 3-subsystem,
Eq. (3.71), the state variable z(72) will be denoted as z

These complementary interconnection properties can be better identified when considering the
similarities between both the 7D two-time-scale sequential decomposition seen in Fig. 3.5, and the BU

two-time-scale sequential decomposition seen in Fig. 3.6. These similarities can be resumed as:

e The reduced order X g-subsystem of the TD analysis is also the slow movement of the ¥ gp-subsystem
obtained in the BU analysis, Eqns. (3.61) and (3.73) respectively.

e The Y p-subsystem is the slow movement of the X py-subsystem from the T'D analysis and the fast
movement of the X gp-subsystem from the BU analysis, becoming the interconnected subsystem be-
tween both the 7D and BU methodologies, Eqns. (3.66) and (3.74) respectively.

e The Yy-subsystem is the fast movement of the ¥ pr-subsystem from the T'D analysis, and also the
boundary layer for the BU analysis, and the ultra-fast movement of Xgpy, Equs. (3.67) and TD and
(3.71) respectively.

These similarities can be further understood by analyzing Figure 3.7, which depicts these interconnec-
tions among the different subsystems by merging both sequential time-scale decompositions defined in
Figs. 3.5 and 3.6. It can be clearly identified the interconnected subsystems where the labels 14 and
15 denote the BU and TD reduced order Y g-subsystems, labels 24 and 2p denote the BU and TD
Y. p-subsystems, and finally, labels 34 and 35 denote the boundary layer BU and TD Xy-subsystems,

therefore becoming both approaches complementary, and equivalent.

For three-time-scale singularly perturbed systems, one of the two methodologies is sufficient to con-
duct the stability analysis, the control design, and the selection the appropriate Lyapunov functions for
each of the singularly perturbed subsystems. The equivalency between each of the two analysis strate-
gies is guaranteed by the superposition principle, which despite the combination of the TD and BU

methodologies, the final results will be equivalent.

For the more general N*"-time-scale system, the same methodologies are applicable, with the exception
that, after each obtained subsystem reduction, the designer can continue with the time-scale decomposi-
tion using either the TD or the BU methodologies, depending on the system structure of the resulting
reduced order and boundary layer subsystems, and what suits better in order to proceed with the time-

scale decomposition.
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Figure 3.3: Top-sequence of the Top-Down methodology.
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Figure 3.4: Bottom-sequence of the Bottom-Up subproblem.
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3.5 Intuitive Description of the Three-Time-Scale Decomposi-

tion

The TD and BU methodologies previously presented can be used separately for analysis purposes, pro-
ducing equivalent results, and when combined can be used to determine the appropriate control laws,
and the Lyapunov function for each of the X g, ¥, and Xy-subsystems as it will be shown in later chap-
ters. The understanding of the natural evolution of a generic three-time-scale model, can be achieved by
focusing only on the BU sequential methodology, which will help to describe how the ultra-fast, fast and

slow variables of a stable system evolve through their own configuration spaces, or manifolds.

In order to better understand how a three-time-scale singularly perturbed systems behaves, it is im-
portant to first understand how a stable two-time-scale singularly perturbed system behaves. In such
systems, the fastest variable of the system evolves towards its equilibrium through its fast manifold, while
the slowest variable remains almost unchanged until the fastest variable reaches its configuration space.
At that point, the slowest variable evolves towards its equilibrium through the slow manifold while the
fast variable moves through its configuration space. This two-time-scale evolution can be easily observed

in Fig. 3.8, where z represents the fast variable, while x represents the slow variable of the system.

For a three-time-scale singularly perturbed system, the evolution is a bit more complex than the two-
time-scale behavior, but shows lots of resemblances, and can be described considering the BU time-scale
analysis. In order to be able understand the evolution of a generic three-time-scale model let recall
that the generic three-time-scale Y gpy model, Eqns. (3.25-3.27), can be sequentially decomposed into
two different two-time-scale models. The first two-time-scale model considers the time-scale defined by
T2 = t/(e1£1), where the reduced (slow) Y gp-subsystem was given in Eqns. (3.69-3.70), and where the
boundary layer of the Y gy system is given by the 3y-subsystem, Eq. (3.71). This first two-time-scale
decomposition represents the Bottom sequence previously defined in the BU analysis as seen in Fig.
3.4. The reduced order Y gp-subsystem, Eqns. (3.69-3.70), can be treated again like a two-time-scale
singular perturbation problem by considering the time scale defined by 71 = t/e1, where the reduced Xg-
subsystem is given by Eq. (3.73), and where the new boundary layer for the ¥gp-subsystem, denoted as
Y p-subsystem, is given by Eq. (3.74). This second time-scale decomposition represents the Up-sequence

of the BU, and can be better appreciated in the right-hand-side of Figure 3.6.

In order to have a better understanding of the evolution of the different time-scales Figure 3.9 shows
the complete evolution of a generic stable three-time-scale model. Figure 3.9(a) shows the evolution
of the ultra-fast variable z as it moves through the configuration space of the boundary layer, Xy -
subsystem, towards the surface that defines the quasi-steady-state equilibrium of the Xy-subsystem,

given by iz(x, y,z) =0, that is 2 = h(z,y), while x and y behave as fixed parameters.

Figure 3.9(b) shows the evolution of the fast state variable y as it moves on the configuration space of the
boundary layer of the ¥ g p-subsystem towards the surface that defines the quasi-steady-state equilibrium
of X p-subsystem given by g(x,y,h(x,y)) = 0, that is y = g(z), while the slow variable z behaves as a
fixed parameter, and z = h(x,y) evolves also on its manifold. Finally, Figure 3.9(c) shows the evolution
of the slow variable x as it moves in the manifold of the ¥ g-subsystem, which is given by the intersection

between the planes §(z,y, h(z,y)) = 0 and h(z,y,z) = 0.



3.5. INTUITIVE DESCRIPTION OF THE THREE-TIME-SCALE DECOMPOSITION 121

2
Y
fast manifold

Figure 3.8: Example of slow and fast manifolds.
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h(z,y,2) =0
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3y subsystem manifold

(a) Ty-subsystem movement

§(z,y,2) =0Nh(z,y,2) =0

2 (2(0),%(0), 2(0))

iL:v,,ZZO
(z,y,2) "
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g(z,y,2) =0

(b) X p-subsystem movement
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(¢) X g-subsystem movement

Figure 3.9: Generic three-time-scale Evolution
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3.6 Top-Down and Bottom-Up Analysis Extension for N-

Time-Scale System

The same presented time-scale analysis methodologies are applicable for a more general N*"-time-scale
system, with some significate differences that provide an additional degree of freedom to the designer.
For the three-time scale analysis previously described, the direction in which the singular perturbation
parameters are analyzed is maintained, that is, once selected either the T'D or the BU time-scale analysis,

it is continued until the end of the time scale analysis, as it can be seen in Figure 3.1.

Figure 3.1 shows that the TD analysis is selected by first considering the Top singularly perturbed pa-
rameter, €1, and secondly considers the Down singularly perturbed parameter e, following the descending
direction as indicated by the arrow. In a similar manner, Figure 3.2 shows that for the BU time-scale

analysis, the same philosophy is applied but with an ascending direction as indicated by the arrow.

For the general singularly perturbed N*'-time-scale system, the major difference, when comparing
with the three-time-scale TD and BU time-scale analysis, consists in the fact that after each subsystem
reduction that results when applying the selected stretched time scale, the designer can continue with
the time-scale decomposition using either the 7D or the BU methodologies, depending on the system
structure of the resulting reduced order and boundary layer subsystems, and what suits better in order
to proceed with the time-scale decomposition. This results in, assuming that the first time-scale de-

2N72

composition is conducted only on the Top or Bottom singularly perturbed parameter, in possible

combinations, that is, for he 4"-time-scale system, will result in 24~2 = 4 possible combinations, or for a
5t_time-scale system, will result in 2°~2 = 8 combinations. What it is most important, the combinations

are all equivalent as it will be shown for the 4*"-time-scale system.

In order to help understanding the extension of the T'D and BU strategies here proposed for a more
general N*"-time-scale system, the author has chosen a general 4*"-time-scale system, that will used
throughout the remainder of the thesis when extending the obtained results to a more general N*-time-
scale system. The proposed 4‘"-time-scale system, denoted as X gpy, for simplicity, is of the form given
by

z = flz,y,2z,w) (3.76)

ey = glx,y,z,w) (3.77)
€1892 = il(x,y,z,w) (3.78)
c1e083 = i(z,y, z,w). (3.79)

Figure 3.10 presents a schematic of the four possible solutions for the 4‘"-time-scale analysis, and
where for conciseness, only the first one will be briefly described in this section since uses the same
philosophy employed for the three-time-scale analysis previously presented. The analysis for the first
possible combination of Figure 3.10 starts by applying the Top stretched time-scale condition to the
4*h_time-scale original system, Eqns. (3.76-3.79), and identified as a solid green line in Figure 3.10. The
application of the first stretched time-scale condition results in the reduced order Y g-subsystem, given
by

where the boundary layer (fast), denoted as Yy, -subsystem for simplicity, and denoted by the short-
dashed red line in Figure 3.10, is given by

Ay,

dr, = g(x’y(Tl)aZ(Tl)aw(Tl))a (3.81)
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i = )= wn)), (3.52)
e = iy u(m). (359

where 71 = t/e1, and where the expressions g(z), h(z) and i(z) in Eq. (3.80) represent the quasi-steady-
state equilibria of the boundary layer ¥y, -subsystem, Eqns. (3.81-3.83), when &1 = 0, that is

0 = i(z,y,zw) = w=i(z,y,2) =i(z,g(x), h(z,g(z))) = i(x), (3.84)
0 = h(z,y,2i(z,y,2) = z=h(z,y) =h(z,g)) = h(z), (3.85)
0 = g(z,y,h(x,y),l(x,y,h(z))) -y :g(x)v (386)

where g(z), h(z), and i(z) evolve on their own configuration spaces. Recall that in the space of configura-
tion of the boundary layer given by the stretched time scale 71 = t/e1, Equs. (3.81-3.83), x is treated like
a fixed parameter. This is the point at which the N*"-time-scale analysis differs from the three-time-scale
analysis previously presented, by providing with the additional degree of freedom which permits to select

either the 7D or BU time scale analysis.

For the first of the four cases here described, the time scale analysis continues by applying the BU
strategy to the Xy, -subsystem, which implies selecting the stretched time scale given by 73 = 71 /(e263) =
t/(e1£2e3). This results in a new reduced (slow) subsystem, denoted as X py-subsystem for simplicity
and identified with the dashed-dotted blue line, and defined by

j—i = g(z,y(n), 2(n),i(@,y(m), 2(n1))) , (3.87)
= ()2 y(n), =), (3.88)

and where the new boundary layer (fast) subsystem, denoted as X,-subsystem for simplicity, is given
by

d .

d—:_l; =i (x,y,z,w(r3)) . (3.89)

The function i(z,y(m1), 2(71)) in the reduced order ¥ py-subsystem, Eqns. (3.87-3.88), represents the
quasi-steady-state of the boundary layer 3y,-subsystem, Eq. (3.89), when setting e5 = 0, that is

0=i(z,y,2,w) = w=i(z,y,2), (3.90)

where z, y,and z are treated like fixed parameters. Finally, it can be recognized that the X py-subsystem
can be decomposed again into another two-time-scale singularly perturbed problem by considering the
last stretched time scale given by applying 7 = 71/e2 = t/(£1£2). This results in a new reduced (slow)
subsystem, denoted as ¥ p-subsystem for simplicity, and defined by
dy . :
7 = 9@y, h(@ y(n), i@ y(n)), (3.91)

and where the new boundary layer (fast) subsystem is given by
dz - .
o = h(z,y,2(n),i(2,y, 2(72))) - (3.92)
T2
The boundary layer, Eq. (3.92), will be denoted as Xy-subsystem for simplicity. The function
h(z,y(71)) in the reduced order ¥ p-subsystem, Eq. (3.91), represents the quasi-steady-state of the
boundary layer X-subsystem, Eq. (3.92), when setting €2 = 0, that is

0= h(z,y, 2i(z,y,2)) = z = h(z,y), (3.93)

where z and y are treated like fixed parameters, and w it is assumed that is moving through its con-
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figuration space. Both the reduced order ¥ p-subsystem, and the boundary layer ¥y, -subsystem for the
first combination, are identified with the yellow long-spaced-dashed lines. Note that the color code for
the lines of the four different approaches do not imply the same reduced order subsystem, but the same

order in the sequential model order reduction.

This concludes the first of the four possible combinations that appear in Figure 3.10. It can be seen by
analyzing the rest of the four possible combinations appearing in Figure 3.10, that despite the combination
of TD and BU strategies, all the one-dimension final reduced order subsystems obtained using any of
the four possible TD and BU combinations are equivalent. This can be appreciated in Figure 3.10 when
comparing the different resulting reduced order subsystem, where the ¥ g-subsystem is denoted with the
circle, the ¥ p-subsystem is denoted with a star, the X, -subsystem is denoted with a pentagon, and
finally, the Xy,-subsystem is denoted with a square. This demonstrates the equivalency among all four

possible combinations of theTD and BU time-scale analysis.

The extension to the N*"-time scale can easily be identified from the analysis of the 4*"-time-scale
example above described. The sequential strategy of decomposing the 4*-time-scale system, into simpler
two-time-scale subsystems provides a valuable tool that will help in analyzing any general singularly
perturbed N*"-time-scale system, and, as it will be seen in the sequel, provide powerful tools for both
selecting proper control strategies, and determining the stability properties of the resulting singularly

perturbed N*'-time-scale system.
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Figure 3.10: 4'"-time-scale Top-Down and Bottom-Up analysis strategy.
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3.7 Conclusions

Two singularly perturbation time-scale analysis approaches, the Top-Down (TD), and the Bottom-Up
(BU), have been presented. These methodologies are based in a sequential application of the general
two-time-scale singular perturbation formulation, allowing to decouple a general N*"-time-scale problem
into N —1 simpler reduced order two-time-scale models that simplify considerably the burden of designing
appropriate control strategies, and demonstrate the asymptotic stability properties of the resulting closed-

loop systems, as it will be shown in later chapters.

The equivalency between the use of the T'D and BU time-scale strategies, permits to reduced the order
of complexity of the original system, thus becoming a tool that can be employed by the designer to select
the order in which the strategies are applied depending on the complexity of the original system being
analyzed.

The TD and BU time scale analysis is also extended to the more general N*"-time scale analysis using a

4th_time-scale system,

4th_order time-scale general example. The sequential strategy of decomposing the
into simpler two-time-scale subsystems provides a valuable tool that will help in analyzing any general
singularly perturbed N*"-time-scale system, and provide additional tools for the time-scale analysis of

singularly perturbed systems.

In conclusion, the 7D and BU singularly perturbed strategy here presented becomes the main pillar
of the methodology employed in this thesis and, as shown in following chapters, provides, in one simple

step-by-step process, the ability to solve the main problems treated on this thesis:

1. Define a control design strategy that permits to select the desired degree of stability of each of the

time-scale subsystems.

2. Define a methodology that permits to demonstrate the asymptotic stability properties of the resulting
closed loop full system, by selecting the Lyapunov functions for each of the singularly perturbed

subsystems, and construct the associated composite Lyapunov function for the full system.
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Chapter 4

Control Strategy

4.1 Introduction

Generally, feedback control designs for systems resulting from the interaction of slow and fast dynamic
modes, suffer from the higher dimensionality and ill-conditioning. The time-scale control strategies
taken advantage of these stiffness properties by decomposing the original ill-conditioned system into
two subsystems with separate time scales, the reduced order (slow) and the boundary layer (fast)
(Kokotovié et al., 1986). This chapter takes advantage of this strategy by introducing two singular-

perturbation-based control strategies that are employed in this thesis.

Both control strategies take advantage from the methodology previously derived, the TD and the BU
methodologies, in which the control laws that stabilize the full problem are obtained by sequentially
applying the selected methodology. Although both methodologies are valid for the general time-scale
system, for the underactuated model here used, in which the main purpose of the control strategy is to

regulate the underactuated fast subsystem, ¥, it is necessary to employ the T'D control strategy.

The sequential application of T'D time-scale analysis methodology results in two distinctive degenerated
two-time-scale subproblems considerably simplified, this permitting to easily obtain appropriate control
laws that stabilize each of the subsystems. In addition, each one of the two-time-scale singular perturbed
subproblems will consist of a slow and fast subsystems, and, by selecting the appropriate control laws, it
will be ensured that the associated subsystems are asymptotically stable. The two proposed control laws
that will be used to regulate the dynamics of both the simplified model, and the helicopter model, will

be referred as
e Top-Down Control Design (7D).
e Composite Feedback Top-Down Control Design (CF-TD).

For completeness of the thesis, although both control strategies have been applied to both the simplified
and the helicopter three-time scale models, the control strategy for the simplified model has been moved to
Appendix B as a reference tool. Again, it is advised to the reader to use the derivations for the simplified

model as a reference and reinforcing tool to help understanding the proposed control strategies.

The first control strategy, the Top-Down (TD) control design, uses sequentially the different stretched-
time-scales to stabilize the intermediate X p-subsystem with a desired degree of stability, and once has
been stabilized, and assuming the ultra-fast y-subsystem becomes inherently stable with the control
signal selected to stabilize the X p-subsystem, then proceeds to stabilize the slowest ¥ g-subsystem with

also a desired degree of stability by using the second stretched time-scale.

129
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The second proposed control strategy, the Composite Feedback Top-Down control design (CF-TD), uses
a similar sequential application of the T'D control design, with the particularity that this methodology
allows the user to select also a prescribed degree of desired stability for the ultra-fast subsystem, X,
therefore not being necessary to assume that the closed-loop ultra-fast subsystem has inherent stable
properties. Both control strategies are based in the approximations introduced by singular perturbation

theory, and the stability of the resulting closed-loop systems will be studied in later chapters.

As previously noted, for simplicity, and completeness of the thesis, the author has chosen to keep the
same nomenclature presented in chapter 3 for the different time-scale subsystems for both the simplified
example, and the helicopter model, since the context will be significate enough to determine to which
model is referring, and maintaining the same nomenclature will help in the process of using the simplified

example as a reference tool.

Similarly, the different time-scale subsystems will be defined as a function of the form ¥.), where the
subindex denotes the different subsystems, that is, ¥ g for the slow subsystem, X for the fast subsystem,

and finally, Xy for ultra-fast subsystem, where & and 7 are treated like constants.

The following sections describe in further detail both control designs by first deriving them for a generic
three-time-scale singularly perturbed model, and then extending the results to the helicopter model. Prior
the selected control strategies employed in this chapter for a class of underactuated nonlinear systems, a
brief description of what would be the natural control strategy for a general nonlinear three-time-scale

singularly perturbed system is introduced.

4.2 Top-Down and Bottom-Up Control Design Strategies for
General Three-Time-Scale Systems
Prior to derive the selected TD control strategy for the underactuated system analyzed in this thesis,

this section presents a general description of both the 7D and BU control strategies for a general three-

time-scale system of the form

T = f(zayvzvul)a (41)
e1y = g(z,y,2 u2), (4.2)
€1698 = ﬁ(x,y,z,ug). (4.3)

Similarly as in the time-scale analysis, both the T'D and BU control strategies will produce equivalent

results as it is shown in the following sections.

4.2.1 Top-Down Control Design Strategy for General Three-Time-Scale Sys-

tems

The TD control strategies for the general three-time-scale system follows the same philosophy as the
TD time scale analysis described in section 3.4.1, where the control strategy employed is quite simple,
since each subsystem in the Xgpy system has sufficient control authority such that the control signal
associated to each subsystem will be sufficient to stabilize the system to whom it belongs. The T'D control
strategy starts by first considering the time-scale defined by the Top condition, yielding the reduced (slow)
Y. g-subsystem defined by

T = f(x,g(x),h(x),ul), (4'4)
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and where the boundary layer (fast) ¥ py-subsystem for the T'D subproblem is defined by

d .
d_i = g(z,y,Z,UQ)- (45>
dz .

Ezd—ﬁ = h(xvy,Z,US)- (4-6>

Recall that in the Y g-subsystem, g and h are the quasi-steady-state equilibria for the boundary layer
Y py-subsystem, Eqns. (4.5-4.6), when setting £; = 0 and being solved simultaneously yielding

Oig(l',y,z,’(,@) %y:g(xv’(‘@)v (47>
0= h(z,y, z,u3) = z = h(z, us3). (4.8)

The reduced order ¥ g-subsystem will not be stabilized until the boundary layer ¥ py-subsystem is stabi-
lized, which is done by recognizing that can be treated again like a two-time-scale singularly perturbed sys-
tem by applying the Down condition, that is applying the stretched time constant 7o = &1 /g2 = t/(1€2),
which results in a new reduced (slow) subsystem, denoted as X p-subsystem for simplicity, defined
by

d .

d_i g(zayvh('rvy)aUQ)? (49>
and where the new boundary layer (fast) Xy-subsystem is defined by

d .

o = Mz, (4.10)

The Xy-subsystem, Eq. (4.10), is stabilized by selecting a control signal us(z,y, z) such that provides

a desired prescribed performance given by

dz ~ .
where b, represents the desired time response of the ultra-fast dynamics. Once stabilized the Xy-
subsystem, its quasi-steady-state equilibrium is obtained by setting e2 = 0 yielding

0= h(x,y,2) = z =h(z,y), (4.12)
with h(z,y) evolving on its own configuration space on the boundary layer X;-subsystem, where both x
and y are being treated like fixed parameters. With the Y;-subsystem stable, the strategy shifts towards
stabilizing the ¥ p-subsystem, (4.9), which is achieved by selecting the control signal us(z,y) such that
stabilizes the X p-subsystem with a desired prescribed performance given by

dy >
— bo(y —y* 4.1
an vy =¥, (4.13)

where l;y represents the desired time response of the fast dynamics. Once stabilized both the Xz and
Yy-subsystems, their quasi-steady-state equilibria can be obtained recalling Eqns. (4.7-4.8), resulting
in
0 = g(z,y,2,u2) = ua(x,y) =y = g(x), (4.14)
0 = Mo,y 2us) - us(@,y,2) = 2 = h(z,) = h(r,g(2)) = h(z). (4.15)
which are used to define the ¥ g-subsystem, Eq. (4.4). With the functions g(z) and h(z), Eqns. (4.14) and
(4.15), respectively, evolving on their own configuration spaces, the control signal u;(z) in the resulting

reduced order Y g-subsystem, Eq. (4.4), is selected such that stabilizes the Y g-subsystem with a desired
degree of stability given by

&= —by(x —a"), (4.16)
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where I;y represents the desired time response of the fast dynamics. This concludes the general Top-Down
control design with all three subsystems being stabilized with a desired prescribed degree of stability.
Figure 4.1 depicts the complete TD control design sequence for a general three-time-scale singularly

perturbed problem.

4.2.2 Bottom-Up Control Design Strategy for General Three-Time-Scale

Systems

The BU control strategies for the general three-time-scale system follows the same philosophy as the BU
time scale analysis described in section 3.4.2. Similarly as for the T'D control design, the control strategy
employed is quite simple, since the control signal of each subsystem in Eqns. (4.1-4.3), is sufficient to
stabilize the system to whom it belongs. This translates to that, following the natural and logical flow of
the states, as seen in intuitive description of the three-time-scale decomposition, described in section 3.5,
the Bottom-Up analysis is first applied to the general system, Eqns. (4.1-4.3), by first considering the
time-scale defined by the Bottom condition, yielding the reduced (slow) X gp-subsystem defined by

T = f(xayah(xay)’ul)a (417)
€1y = g(z,y,h(x,y),m), (418)

and where the boundary layer (fast) X -subsystem for the BU subproblem is defined by

dz

d_7'2 = iz(x,y,z,u@. (4.19)

The boundary layer Xj-subsystem, Eq. (4.19), is stabilized by selecting the control signal us(z,y, 2)

such that stabilizes the ¥ -subsystem with a desired prescribed performance as

dz -
— = b (z—2z"), 4.2
= (=) (4.20)

where b, represents the desired time response of the ultra-fast dynamics. Once stabilized the Xy-
subsystem, its quasi-steady-state equilibrium is obtained by setting €5 = 0 yielding

0= h(z,y,2) =z =h(z,y), (4.21)
with h(z,y) evolving on its own configuration space on the boundary layer Y;-subsystem, where both
z and y are being treated like fixed parameters. The X gp-subsystem is completed after substituting
h(z,y) into the Eqns. (4.17-4.18). With X;-subsystem being stable, the control strategy continues
by recognizing that the X gp-subsystem can be treated again like a two-time-scale singularly perturbed
system by dealing with the subsystem that results when considering the time-scale defined by the Up
condition, that is the second stretched time scale of the BU control design, and given by 71 = t/e1, where

the new reduced (slow) Y g-subsystem is now defined by

T = f(x,g(x),h(x,g(x)),ul), (422)
and where the new boundary layer ¥ p-subsystem is given by

d X

d_i = g(zayvh('rvy)aUQ)' (423)

The new boundary layer ¥ p-subsystem, Eq. (4.23), is first stabilized by selecting the control signal

us(x,y) such that provides a desired prescribed performance given by

dy ~
— = —=b,(y—y" 4.24
d7_1 y(y Y )) ( )
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where l;y represents the desired time response of the fast dynamics. Once stabilized the X p-subsystem,

its quasi-steady-state equilibrium is obtained by setting €; = 0 such

With the functions g(z) and h(z,y) = h(z,g(z)) = h(z), Eqns. (4.25) and (4.21), respectively, the
control signal uq(z) in the resulting reduced order Y g-subsystem, Eq. (4.22), is selected such that

stabilizes the slow subsystem with a desired degree of stability given by
&= —by(x —a"), (4.26)

where b, represents the desired time response of the slow dynamics. This concludes the general BU control
design with all three subsystems being stabilized with a desired prescribed degree of stability. Figure
4.2 depicts the complete BU control design sequence for a general three-time-scale singularly perturbed
problem. The following section deals with the control strategy for a non-general underactuated system,
in which the control strategy is required to be more elaborated in order to solve the problem of controlling

an underactuated system.

4.3 Top-Down Control Strategy for Underactuated Singular
Perturbed Systems

Due to the nature of the dynamics of the selected helicopter problem, Eq. (2.338), in which the con-
trol signals are allocated only in two of the singularly perturbed subsystems, therefore becoming an

underactuated system with a structure of the form

T = f(wayazvul)a (427)
51?) = g(x,y,z), (428)
e1602 = h(z,y, 2z us). (4.29)

in which the variable that it is desired to be regulated is the underactuated one, i.e.: it is desirable to
regulate the y variable, implies that only the T'D control strategy above presented can be employed. The
selected control strategy, needs to deal with the underactuated structure defined in Equs. (4.27-4.29),

and does so by proposing a control design based in the TD strategies.

The TD control design strategy for the three-time scale singular perturbation formulation consists
on treating the three-different time scales as two-distinct two-time-scale singular perturbed problems.
Following the logic flow in a control process, in which the fastest variables are stabilized first, the TD
control strategy uses a two stage process to stabilize the full Y gpy system. The first stage focusses on
the Down sequence of the T'D control design by applying, in a sequential manner, first the stretched
time scales 71 = t/e1, yielding the reduced order X g-subsystem, and the boundary layer X py-subsystem,
and secondly, applying the stretched time-scale 7o = t/e1£2 to the X py-subsystem, to accomplish the
stabilization of the X py-subsystem, with the proper us, and once stabilized, the second stage focuses
on the Top sequence by using the first time-scale decomposition, along with the obtained results in the
first time-scale decomposition, and proceeds to stabilize the slow ¥ g-subsystem with the proper uy. The

following subsections describe in detail both stages of the T'D control design strategies.
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4.3.1 Control Design for u,: 1% Stage of the Top-Down Control Design

The first stage of the Top-Down subproblem applies first the stretched time-scale 71 = t/e; to the original
Ysru (4.27-4.29), resulting in the reduced (slow) subsystem defined by

T = f(.’L',g(.’L‘,UQ),h(.’L',g(-’L'),UQ),Ul), (430)
and where the boundary layer (fast) X py-subsystem for the TD subproblem is defined by
dy

f— 0 4. 1

= 9(z,y, 2), (4.31)
dz -

—_— f— 4. 2

52d7_1 h(-T,y,Z,Ug), ( 3 )

where the quasi-steady-state equilibria of the boundary layer ¥ py-subsystem, Eqns. (4.31-4.32), are

obtained when setting €; = 0, and solving simultaneously resulting in

0= ﬁ(ac, y,z,us) — z=h(z,y,u2) =h(z,g(x),us), (4.33)
I
Ozg(ac,y,z) :g(x’yah(xay’UQ)) — y:g(xaUQ)a (434)

Note that on the boundary layer ¥ py-subsystem, the variable x is treated like a fixed parameter. Note
that in order to completely determine the reduced order ¥ g-subsystem, it is necessary to completely
define the equilibria of the X gy subsystem, that is, defining h(z, g(x), u2) and g(z, us), Eqns. (4.33-4.34),
therefore being necessary to define the control signal us, which implies to complete the Down-sequence
of the TD control strategy, and this is achieved by first stabilizing the X py-subsystem using singular

perturbation time-scale analysis.

The stabilization of the X py-subsystem is accomplished by identifying that the boundary layer X gy -
subsystem, Eqns. (4.31-4.32), can be decomposed into a two-time-scale singular perturbed problem
by dealing with the subsystem that results when applying the second stretched time-scale 5 = 71 /e2 =
t/(e1£2), where the new reduced (slow) subsystem, denoted as X p-subsystem for simplicity, is now defined
by

dy

. 9(z,y, h(z,y, uz)), (4.35)
and where the new boundary layer (fast) Xy-subsystem is defined by

d A

d—; = h(z,y,z,u2), (4.36)

and where the quasi-steady-state equilibrium of the boundary layer 3y -subsystema, Eq. (4.36), when

setting €9 = 0, resulting in

0= iz(:c,y, z,u2) = 2z = h(x,y,us). (4.37)

Note that the control signal is embedded in the quasi-steady-state equilibrium z = h(z,y,us2), Eq.
(4.37), which, once substituted back into the reduced order ¥ p-subsystem, Eq. (4.35), will be chosen
such that stabilizes the X p-subsystem with a desired degree of stability, i.e. the control signal is selected
such that guarantees to match a selected degree of performance. It is assumed that the boundary layer

Yy-subsystem is stable after selecting the control signal that stabilizes the 3 p-subsystem.

In the contrary, if the boundary layer Xy-subsystem is not stable, or does not have the desired perfor-
mance, the control strategy can be modified to account for the desired stable behavior of the ¥y boundary
layer by introducing a modification in the control strategy that will be addressed in the CF-TD control

design developed in section 4.5.1.
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The first stage of the T'D control strategy finalizes with the selected control strategy us that guarantees
a desire degree of stability for the underactuated X py-subsystem. The control strategy for the complete
Y. gru system continues with the second stage of the T'D control strategy, in which will be addressed the
stabilization of the ¥ gp-subsystem. Figure 4.3 depicts the complete first stage of the 7D control design

sequence.

4.3.2 Control Design for u;: 2" Stage of the Top-Down Control Design

The second stage of the Top-Down subproblem focuses on the control design for u; for the stabilization
of the Y g-subsystem. For that purpose, recall first that after selecting the control signal us(z,y, ), the
Y py-subsystem, Eqns. (4.31-4.32), can be rewritten as

dy
— 5 4.
an 9(z,y,2), (4.38)
dz -
— 4.
Engl h(z,y, z), (4.39)

In order to determine the equilibria that will define the ¥ g-subsystem, Eq. (4.30), the X py-subsystem,
Eqns. (4.38-4.39), can be decomposed by applying the stretched time scale 7o resulting in the X p-

subsystem given by

dy

— g h 4.4

= 9(x,y,h(z,y)), (4.40)
and where the new boundary layer (fast) Xy-subsystem is defined by

dz -

— = 4.41

with their equilibria being now completely determined resulting in
= h(x,y,2) = uz(z,y) = z = h(z,y), (4.42)

0
0 = g(x,y,h(x,y)) — Y= g(x)a (443)

with this in mind, the reduced order (slow) ¥g-subsystem, Eq. (4.30) reduces to
& = f(z,g(x) bz, g(r)),u1). (4.44)

The control signal (u1) is selected such that stabilizes the Y g-subsystem with a desired degree of
stability. This concludes the T'D control design. Figure 4.4 depicts the complete T'D control design

sequence, including both the Top and Down sequences, control design for us and uj, respectively.

4.3.3 Conclusions for the Top-Down Control Design

Due to the underactuated structure of the system being controlled, a sequential application of the 7D
has allowed to control the full ¥gpy system, by stabilizing separately first the ¥ pr-subsystem, and once
stable, and using the results obtained in this first stabilization, proceed with the ¥ g-subsystem, which
follows the logic flow of the dynamics of a singular perturbed time scale system, as described in Figure
3.9.

The complete evolution of a generic stable three-time-scale model is described in Figure 3.9(a), where
it can be seen the evolution of the ultra-fast variable z as it moves through the configuration space of
the boundary layer, Y -subsystem, Eq. (4.41), towards the surface that defines the quasi-steady-state
equilibrium of the Yy -subsystem, given by the first part of the first stage of the T'D control strategy, Eq.

(4.42), while 2 and y behave as fixed parameters.
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The end of the first stage of the TD control strategy is observed in Figure 3.9(b), which depicts the
evolution of the fast variable y as it moves on the configuration space of the reduced order of the X py-
subsystem, which is equivalent to the boundary layer of the Y gp-subsystem, Equs. (4.38) and (4.39),
respectively, towards the surface that defines the quasi-steady-state equilibrium of ¥ p-subsystem given
by Eq. (4.40), while the slow variable 2 behaves as a fixed parameter, and z = h(z, y) evolves also on its

manifold.

The second stage of the T'D control strategy can be seen in Figure 3.9(c), which shows the evolution of
the slow variable z as it moves in the manifold of the ¥ g-subsystem, which is given by the intersection
between the planes §(z,y,h(x,y)) = 0 and iz(z,y,z) = 0, which results in the manifold of the Xg-
subsystem given by Eq. (4.44). The following subsections will extend this formulation to both the
three-time-scale singularly perturbed helicopter model, while the control strategies for the simplified

model are moved to Appendix .
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4.4 Top-Down Control Design for the Helicopter Model

The control strategy for the nonlinear underactuated three-time-scale singularly perturbed helicopter
model, Eqns. (3.56-3.60), with a structure equivalent to Eqns. (4.27-4.29), is the same as the one
defined in section 4.3, which consists on treating the three different time scales as two-distinct two-time-
scale singular perturbed problems. The TD control strategy is divided in two stages, being each stage

dedicated to design each of the two control signals.

The first stage of the T'D control strategy, applies sequentially the Top and Down time constant condi-
tions, to select the control law that stabilizes the X pr-subsystem using singular perturbation time-scale
analysis to obtain the appropriate control law (u2) that stabilizes the vertical position of the helicopter

(y1) by taking the helicopter to a desired altitude (y*), and therefore, regulating its vertical velocity
(y2).

The second stage of the T'D control strategy focuses on the Top sequence by using the first time-scale
decomposition, along with the obtained results in the second time-scale decomposition, and proceeds to
stabilize the angular velocity of the blades with the proper u;. The following sections describe in detail

both stages of the T'D control formulation applied to the helicopter model.

4.4.1 Control Design for u,: 1% Stage of the Top-Down Control Design for
the Helicopter Model

The TD control strategy applies the Top stretched-time-scale, resulting in the reduced order (slow)
Y. g-subsystem, given by

& = agx + ajpr’sin hy(z,u2) + agx® + a1 + u1, (4.45)

with hy (z, u2) being the equilibria of the ¥ py-subsystem, as it will be seen bellow, and where the resulting

boundary layer (fast) ¥ py-subsystem is given by

j_gi - (4.46)
3_(?_? = 2%(ca + c321 — Vea + c521) + agys + agys + o, (4.47)
523—2 = 729 (4.48)
Egj—j_j = a9z + cgx?sinzy + coza + 10 + C11Us. (4.49)

Recall that neither the angular velocity of the blades dynamics, Eq. (4.45), nor the collective pitch
dynamics, Eqns. (4.48-4.49), depend on the helicopter vertical movement dynamics, therefore, only
the quasi-steady-state equilibria of the collective pitch dynamics, h(z, y,us), is substituted into Eq.
(4.45) to obtain the reduced order Yg-subsystem, where hj(x, us) represents the collective pitch angle
quasi-steady-state equilibrium. Recall that the Roman boldbace quasi-steady-state equilibria denotes a

vector.

Recall also that, for completeness, and simplicity, throughout the remainder of the thesis, when dealing

with the helicopter model, the vector state denoting the vertical displacement dynamics will be written
in italic bold font, y = [ y; 1y, |7, and the vector state denoting the collective pitch dynamics will be
written in italic bold font, 2 = [ z; 2z, |-

The control strategy employed obtains the associated control law us that stabilizes the X prr-subsystem,

Eqns. (4.46-4.49), assuming that the slow variable, the angular velocity of the blades (z) is constant, and
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that the fast variables have reached their quasi-steady-state equilibria and evolve on it. In order to do
so, the boundary layer X prr-subsystem can be treated again like a two-time-scale singular perturbation
problem by applying the Down stretched time-scale condition resulting in the new reduced (slow) X p-

subsystem given by

dy:

A 4.50

d7'1 Cly2 ( )

d

d—% = z? (02 + eshy(z, 9, u2) — /s + cshy(z, y, UQ)) + agys + agys + cg, (4.51)
1

and with the new boundary layer ¥ -subsystem given by

d21

- 4.52

dTQ cr=2 ( )

d22 2 .

3 = agz1 + cgT” sin z1 + cgza + c19 + C11U2, (4.53)
2

where the quasi-steady-state vector equilibria of the boundary layer X;-subsystem is given by

hl(xa yaUQ) ‘| )

ho (2, 9, 12) (4.54)

h(xa yaUQ) = l

Prior to define in detail the quasi-steady-state equilibria (4.54), and therefore the control law, a feedback
transform is introduced in Eq. (4.53) to guarantee that the X;-subsystem is stable by selecting the

function
Vg = cgx?sin z1 + c19 + Cc11ua, (4.55)

thus rewriting Eqns. (4.52-4.53) such

le

— 4.56
dT2 cr=2 ( )
d
£= = agz1 + Cgzo + V3. (457)
dT2

The appropriate selection on vs, and the inherit nature of the actuator dynamics, results in a stable
Yy-subsystem, and also faster than the rest of the time scales. This can be proven by analyzing the
open-loop eigenvalues of the Yy -subsystem, Eqns. (4.56-4.57), given by A\; = —0.5772 x 10~% and
X2 = —0.1697 x 10~%. This ensures that the response of the ¥y -subsystem dynamics is stable and much
faster than the rest of the dynamics, but with the limitation that the current control strategy cannot

provide desired transient response for the ultra-fast variables.

To tackle such limitation, the author has also proposed an alternative control law (Esteban et al., 2008b)
to the one here used, based in the Composite Feedback control for singular perturbed systems
(Kokotovié et al., 1999), in which using additional feedback control strategies permit the selection of
the desired target dynamics for the 3y-subsystem, therefore, ensuring that if the boundary layer system
is unstable, or that the response is stable but not adequate, it can be made stable via control design.
This alternative control strategy will be dealt with in section 4.5.1, and for the time being, it will be
assumed that for the T'D control design, the Xy-subsystem is inherently stable after substituting the

derived control signal us, and with a sufficient transient response.

Once introduced the feedback transform, the quasi-steady-state equilibria of the X-subsystem, Eqns.
(4.56-4.57), is obtained by setting 2 = 0, yielding

0= ﬁ(ac, y,2z,v3) = z = h(x, y,v2), (4.58)
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resulting in

h
z =h(z,y,v) = 1@, Y, v2) , (4.59)
h2($a yaUQ)
with
hy = 21 = cizve, (4.60)
h2 = Z9 = 0, (461)

where h; (v2) and hy represent the quasi-steady-state equilibria of the Xi7-subsystem, and with ¢;3 = —%.

Substituting the equilibria (4.60-4.61) into Eqns. (4.50-4.51), results in the reduced order (slow) Xp-

subsystem is given by

dy,
- 4.62
= c1y2 (4.62)
d
_d% = (02 +eghi(v2) = Vea+ C5h1(v2)) agys + agys + co (4.63)
1

= 22 (CQ + c3c1302 — Vey + 05c1302) + agy2 + a9y§ + Cé.
The control law that stabilizes the fast subsystem is obtained after a series of algebraic substitutions.
Let first introduce the transformation given by

w? = ¢4 + ¢35 (c13v2), (4.64)

where an expression of va, as a function of w, can be obtained from Eq. (4.64) such

2

=g —“ (4.65)
C5C13
where substituting Eqns. (4.64) and (4.65) into Eq. (4.63) yields
dy
an 1Y2
dya w? — ¢y 9
— = z"|c2+cs —w | + agy2 + agy; + Cs, (4.66)
dry Cs
which can be simplified into
dy
d7'1 1y2
dy 5 2 2
o (crow® —w+ Kq) + agya + agys + cs, (4.67)
1
being the constants given by
C12 = 0—37 (4.68)
Cs
Ka = (9 — C4C12. (469)
After choosing
v =cppw? —w+ K, (4.70)
Eq. (4.67) becomes
dy:
I _ 4.71
d7'1 C1Y2, ( )
d
S _ 20 + agys + agyg + c6. (4.72)

d7'1
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In order to select a proper control law, let choose a stable target system of the form given by

dyy

— 4.73
dm c1y2 ( )
dv _ 5 (y1 — yt) — by, o (4.74)
dT1 Y1 1 Y2 )

where y] represents the desired altitude of the helicopter, and I;yl, and l;yZ are control design parameters
that determine the desired transient response of the fast dynamics, and given by selecting the natural

frequency (wp,.) and the damping ratio (¢, ) such as

by = by, (4.75)

by, = eiby, (4.76)
with

by, = Wi, (4.77)

by, = 2Wn,.Coypes (4.78)

where wy, . and ¢, . are the desired natural frequency and damping ratio for the fast-dynamics on the
stretched time-scale given by 71 = t/e1. The control problem can be solved if a control signal v is chosen
such that the ¥ p-subsystem , Eqns. (4.71-4.72), behaves like the selected target system defined in Equs.
(4.73-4.74). The control signal v is therefore chosen to be

agys + (a9 + 61}2) Yo + by, (y1 — %) + cs
U(:Ea y) = - ) (479)

22

where it should be noted that this control law is not defined for zero angular velocity of the blades, x = 0,
but this will not be a problem since the blades of the helicopter will always have an angular velocity
x > xprn > 0. The control law us can be obtained by tracking back the algebraic feedback transform
substitution presented in Eq. (4.55), resulting in

vy — cgx? sin 21 — ¢1

Uy = , 4.80
? C11 ( )

where x is treated, at the moment, as a constant, and v is given by the expression defined in Eq. (4.65),

and w can be obtained solving for the roots of the quadratic polynomial of Eq. (4.70), yielding

14+ /1= —
w = LEVL— den( — vz, y) (4.81)
2c12

It can be proven, by substituting into the equilibria Eqns. (2.349)—(2.348), that the solution
corresponding to the minus sign in front of the square root is a spurious solution introduced in the
previous computations. In the following, only the positive root will be considered. The control law is

therefore defined as

2
us(x,y,y7,21) = Ky (1 + V1 —4deia (Kq — v(z, y))) + K, + Kyz?sin z;
2
- K (1 + /sa0(z, y)) + K. + Kqa?sin 2, (4.82)
with v(z, y) being given by

agys + (119 + 5y2) Yo + by, (y1 — %) + cs
vz, y) = — = , (4.83)
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and the coefficients of the control law being given by

a1a9 a2a3 a%

Ka = (9 — C4C12 = 3 5 (484)
as asaz
1 asa7a13
K, = =, (4.85)
465611612613 4(12(19
Cq c1o _ a3agais
K. = —————=———uay, (4.86)
Cs5€11€13 (11 asar
€8
Ky = —— =—a, (4.87)
C11
C3 agCq a20ars
S3 = 4012 =4— =4 5 = . (488)
Cy ascy a4a9

It should be noted that due to the nature of the derived control law us, Eq. (4.82), it needs to be ensured
that the control law is defined for all possible conditions, which is done by selecting the appropriate control
design variables l;yl and l;yQ. It is assumed that the boundary layer is stable after selecting the control

signal that stabilizes the X p-subsystem.

4.4.2 Control Design for u;: 2" Stage of the Top-Down Control Design for
the Helicopter Model

The second stage of the T'D subproblem focuses on the control design for u; for the stabilization of the
Y g-subsystem. For that purpose, recall first that after selecting the control signal us(x,y,y7, 21), the
Y py-subsystem, Eqns. (4.46-4.49), can be rewritten as

d
S, 4.89
dr
1
d
d_% = a?(ca+ sz —Vea + csz1) + agyz + agys + cs, (4.90)
1
d21
= = 4.91
2 dT1 C722 ( 9 )

d 2
52d—j2 = agz + coz2 + Jo {(1 + /s3v(x, y)) - 1] , (4.92)
1

where the constat J, is given by

Jy = D= B9 (4.93)
a13 Gy

In order to determine the equilibria that will define the ¥ g-subsystem, Eq. (4.45), the X py-subsystem,
Eqns. (4.89-4.92), can be decomposed by applying the stretched time scale 7o resulting in the X p-

subsystem given by

dyl
- 4.94
d7'1 C1Y2, ( )
dya 5 b Ver +eshi(z, y) 2 4.95
n (ca + cshi(z, y) — /s + cshi(z, y) + agyz + agys + co, (4.95)
and where the new boundary layer (fast) Yy-subsystem is defined by
le
- 4.96
i 12 (4.96)
dz 2
d—: = a9z + cozo + Jo {(1 + +/s3v(z, y)) — 1] . (4.97)
2

The new Y;7-subsystem quasi-steady-state equilibria is given by setting €2 = 0, resulting in

0=h(z,y,2z) = z=h(z,y) = l E;Ez’z; ] : (4.98)
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that is
0 = crza = 29 = ha(a,y), (4.99)
0 = agz1 +cgza + Jo [(1 + mf — 1] — z1 = hi(z,9), (4.100)
therefore yielding
hi(z,y) = 21 = s {(1 + \/m)2 - 1] , (4.101)
ha(z,y) = 22=0, (4.102)

where the constant s, is given by
J2
ag ’

S9 =

(4.103)

With the quasi-steady-state equilibria of the Xy-subsystem, Eqns. (4.101-4.102), the reduced order
Y p-subsystem, Eqns. (4.94-4.95) is therefore given by

dy
P 4.104
d7'1 C1Y2, ( )
dy2 _ 2 h \/T 2
m - (c2 + eshi(z,y) — Vea + eshi(z, y) + agys + agys + co

= —by, (1 —y7) — by (4.105)

Recall that when substituting the quasi-steady-state equilibria of the Xy-subsystem, Eqns. (4.101-
4.102) into Eqns. (4.94-4.95), they degenerate into the selected Y target dynamics, Eqns. (4.73-4.74).
Setting the perturbation parameter €; = 0, reduces the dimension of the ¥ p-subsystem because the
differential equations (4.104-4.105) degenerate into the equation that determine the roots of the fast

manifold, defined as

. g1(x
0=g(z,y,h(z,y)) - y=g) = 1(@) ; (4.106)
92()
that is
0 = ay =y =g(2), (4.107)
0 = —by, (11— u}) = bpas = 11 = g1(x), (4.108)

therefore yielding the equilibria for the vertical motion of the helicopter given by

g = n=y", (4.109)
g2(x) = y2 =0, (4.110)
where Eq. (4.109) represents that the equilibrium altitude position is the desired altitude, while Eq.
(4.110), provides that, as expected, the equilibrium vertical position must be zero in order to achieve
a vertical equilibrium point. The control law u; that stabilizes the slow Y g-subsystem is obtained by

substituting the ¥ and Xy-subsystem equilibria, Eqns. (4.109-4.110), and (4.101-4.102), respectively,
into Eq. (4.45), yielding the reduced order X g-subsystem given by

& = agz + ajor® sinhy (v, g(x)) + agz”® + ary + uy, (4.111)

where h; (2, g(x)) represents the quasi-steady-state equilibrium of the collective pitch angle, Eq. (4.101)

when substituting the quasi-steady-state equilibria for the vertical displacement dynamics, Equs (4.109-
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4.110), resulting in

higs (2, 8(x)) = hi(z, y)l,_g ) = 52 [(1 + \/S3vss($,g(z)))2 - 1] , (4.112)

with vgg(z, g(x)) is the results of substituting Eqns. (4.109) and (4.110) into Eq. (4.83), yielding

Co

vss(x,8(2)) = v(@, Y)ly—g(x) = ~ 3 (4.113)
The control law is selected by defining a target system of the form

&= —by(x —a"), (4.114)

where b, is a control design parameter that defines the desired transient response of the collective pitch
angular velocity of the blades. The associated control law that stabilizes the ¥ g-subsystem is therefore

selected as

up(z,z*) = —agx — aox? sin (hieo (2, 8(2))) — agr? — ayq — by (x — ™)

= —agx — ajpr? sin (hig (7)) — agr? — a1y — by (x — 2*). (4.115)

This concludes the TD control design.

4.4.3 Closed-Loop of the Helicopter Model

After substituting the selected control laws, Equs. (4.82) and (4.115), into the original nonlinear equations
of the helicopter, Eqns. (2.339-2.343), the closed-loop system is given by

& = ajor?[sin(z; —sinhy (2))] — be(x — 2*) (4.116)
noo= Y2 (4.117)
U2 = 2% (a1 + a2z — Vasg + aszr) + asyz + agy; + az (4.118)
5= 2 (4.119)
Zy = 1321+ aizze + Ky [(1 + \/m)2 — 1} , (4.120)

The equilibria of the closed-loop system are obtained by setting all derivatives of Eqns. (4.116-4.120) to
zero, thus yielding the equilibrium equations, where the equilibria of ultra-fast dynamics, Eqns. (4.119-

4.120), results in the quasi-steady-state equilibria given by

0=h(z,y,2) = 2 =h(z,y) = l ba(z. y) ] : (4.121)
ha(z,y)
that is
0 = 23— 20 =ho(z,y), (4.122)
0 = aizr+aiszs + Ko {(1 + \/m)Q - 1] o =ha(z, y), (4.123)

therefore yielding

h(ny) = 2 =10 [(1+ \/m)2 - 1} _ {(H \/m)2 - 1] , (4.124)

ho(x,y) = 22=0, (4.125)

Recall that observing the closed-loop ultra-fast dynamics, Eqns. (4.119-4.120), can be expressed as a
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function of a pseudo error dynamics by using the definition of the quasi-steady-state equilibrium h; (z, y),
Eq. (4.124), resulting in

2
732 = a13z1 + a15z2 + Kb |:(1 + \/ Sg’U(:C, y)) — 1:|
= a3 (z1 —hi(z,y)) + a1s22, (4.127)

which provides the transient response of the ultra-fast dynamics given by a second order time response

of the form
5 o= —wk (21— hi(z,y)) — 2wn (A, (4.128)

with w,,_ being the natural frequency of the closed-loop ultra-fast system, and (, being the damping ratio

of the ultra-fast dynamics, which can be defined as

wn, = V—a, (4.129)

—ais —ais
z = ) 4.130
< 2wn., 2y/—a13 ( )

Substituting the equilibria of the ultra-fast subsystem, Eqns. (4.124-4.125), into the equilibrium equa-
tions of the fast dynamics, Eqns. (4.117-4.118), results in

0 = 9 (4.131)
0 = 562 (al + aghl(:c, y) — as + a4h1(z, y)) + asy2 + (J,Gy% + ay
= —by, (Y1 —y1) — by, (y2 — y3)., (4.132)

yielding the equilibrium of the fast dynamics

o= v, (4.133)
ys = yi=0. (4.134)

The transient response of the fast dynamics is given by a second order time response of the form
?jl = _by1 Y1 — byzyl
= —wn Y1~ 2. Gy, (4.135)

with wy, . being the desired natural frequency of the closed-loop ultra-fast system, and ¢y~ being the

desired damping ratio of the ultra-fast dynamics, which can be defined as

Wne = by, (4.136)

by by
* frd 2 — 2 4 137
Cy Sony  2/b ( )

Y1
and finally, substituting the equilibria of the ultra-fast subsystem, Eqns. (4.124-4.125), and the fast
subsystem, Eqns. (4.133-4.134), into the equilibrium equation of the slow dynamics (4.116) results

in
0 = apr? {sin (52 [(1 + \/W)Q - 1}) —sinhj g (J:)] —by(x — ™) (4.138)
= —by(r—a"), (4.139)
yielding the equilibrium of the slow dynamics
r=2a", (4.140)

with b, being the transient response for the slow system. This satisfies that the resulting equilibria of the
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closed-loop X gpy system are those selected in the T'D control design. The asymptotic stability analysis
of the resulting closed-loop system will be conducted in future sections. Simulations are conducted to
test the proposed control laws on the helicopter model, and significate results are presented in section
4.8.

4.5 Composite Feedback Control Design

This section proposes an alternative singularly perturbed based control methodology to the TD control
design proposed in section 4.3. This control strategy follows a similar philosophy as the T'D control
design, with the peculiarity that benefits from the properties of the well-known Composite Feedback (CF)

control for two-time-scale singularly perturbed models (Kokotovi¢ et al., 1986).

Generally, feedback control designs for systems resulting from the interaction of slow and fast dynamic
modes, suffer from the higher dimensionality and ill-conditioning, while in the two-time-scale CF control
approach, these stiffness properties are taken advantage of by decomposing the original ill-conditioned
system into two subsystems in separate time scales(Kokotovi¢ et al., 1986). These properties of the
feedback control design in conjunction with the properties of the two-time-scale singularly perturbed

problems are joined in the CF control design defined in (Kokotovi¢ et al., 1986).

The general two-time-scale CF design proceeds to stabilize each lower-order subsystem, and then com-
bines the obtained results yielding the composite state-feedback control for the original system. At the
same time, the composite controller is required to achieve an asymptotic approximation to the closed-
loop system performance that would have been obtained had a state-feedback controller been designed
without the use of singular perturbation methods. The composite-feedback control design proposed in
this section extends the general two-time-scale CF control design, to a three-time-scale control design by

merging its properties with the 7D control strategy previously proposed.

The main difference between the two proposed control strategies is that, the CF control design permits
to stabilize the boundary layer ¥;-subsystem if becomes unstable after substituting the control law that
stabilizes the 3 p-subsystems, which occurs at the end of the TD subproblem. It could also happen that
the resulting closed-loop boundary layer ;-subsystem does not have the desired degree of prescribed
stability, therefore, would require a different control strategy in order to provide that same desired degree
of stability to the ¥X;-subsystem. In any of the two possible scenarios in which the T'D control design lacks
to provide the sufficient stability properties to the X-subsystem, the CF control design, adapted to the
three-time-scale singularly perturbed problem, will satisfy these stability requirements on the ultra-fast

Yy-subsystem.

This section will first describe the general two-time-scale CF control formulation, then extend the
formulation to the generic three-time-scale CF-TD control design, and finally applies the resulting control
strategy to the helicopter model, and again, as a reference, the application the control strategy to the

simplified model is moved to the Appendix B.

4.5.1 General Two-Time-Scale Composite Feedback Control Formula-

tion

The general two-time-scale CJF  control method for nonlinear autonomous systems
(Kokotovié¢ et al., 1986), is defined for a model of the form

z = f(z,z,u), € R" (4.141)
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ez = g(x,z,u), z€R™, (4.142)

where u € R" is a control input. Assuming that the open-loop system, Eqns. (4.141-4.142), is a standard

singular perturbation system for every v € B,, C R", or what it is the same
0=g(z,zu), (4.143)

has a unique root z = h(z,u) in B, X B, X B,. The CF control method seeks the control u as the sum

of slow and fast controls, given by

u=us +uy, (4.144)
where u; is a feedback function of z, given by

us = Ly(x), (4.145)
and uy is a feedback function of x and z, given by

up =Ty(z, 2). (4.146)

The fast feedback function I'f(x,2) is designed to satisfy two crucial requirements. First, when the
feedback control, Eq. (4.145), is applied to the singularly perturbed system, Eqns. (4.141-4.142), the

closed-loop system should remain a standard singular perturbed system, given by
0=g(z,2,Ts(z) + sz, 2)), (4.147)

should have a unique root given by z = h(z) in B, x B;. This requirement assures that the choice of I'y
will not destroy this property of the function g in the open-loop system. The second requirement on the

fast feedback function I'y(z, z) is that it be inactive” for z = h(x, us), that is

Ly(z, h(z,Ts(z))) = 0. (4.148)

The importance of the results in Eq. (4.148) can be seen from the resulting closed-loop equation, given
by

T o= f(z,z,us +uy), (4.149)
ez = gz, z,us +uy). (4.150)
The requirement in Eq. (4.148) guarantees that z = h(z,T's(x)) is a root of

0=yg(z, 2z s(x) + Tf(x,2)). (4.151)

Recalling Eq. (4.147), it can be seen that Eq. (4.151) has a unique root z = h(z). With this in mind,
and considering Eqns. (4.147) and (4.148), the quasi-steady-state equilibrium of the boundary layer is
given by

h(z) = h(z,I's(z)), (4.152)

which holds as an identity. With Eqns. (4.148) and (4.152), the reduced order model of the closed-loop
system, Eqns. (4.149-4.150) is given by

& = f(z,h(z,us), us), (4.153)

which is independent of I'; and is the same reduced model obtained from the open loop system, that is,
Eqns. (4.141-4.142), when u is taken as us. Therefore, it can be seen that the design of the slow control
us = I's(x) can be carried out independently of the fast design I'y. Once I';(x) has been chosen, the
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boundary layer model of the closed-loop system is defined as
dz
dr

where z is treated as a fixed parameter. The requirement in Eq. (4.148) is now interpreted as a require-

=g(z, z,Ts(x) +uy), (4.154)

ment on the feedback control uy = I'(z, z) not to shift the equilibrium z = h(z,I's(z)) of the boundary
layer system, Eq. (4.154). The design of u; must guarantee that z = h(z,I's(z)) is an asymptotically
stable equilibrium of Eq. (4.154) uniformly in 2. Following sections extend this formulation to the

three-time-scale model.

4.6 Composite Feedback-Top-Down Control Strategy for Un-

deractuated Singular Perturbed Systems

The Composite Feedback Top-Down (CF-TD) control formulation for the three-time-scale underactuated
model presented in section 4.3, Eqns. (4.27-4.29), follows a control strategy similar to that for the
TD control design, with the principal difference that the control signal in the ultra-fast subsystem, Eq.

(4.157), is divided into a slow and a fast control component, i.e. us, = ua, + U2, therefore rewriting the

model as
z = fla,y,z,u1), (4.155)
ey = g(x,y,2), (4.156)
e1605 = h(z,y,2,u2,) = h(x,y, 2, us, + Uy, ). (4.157)

The control strategy for the three-time scale CF singular perturbation formulation consists on treating
the three different time scales as two distinct two-time-scale singular perturbed problems similarly as in
the TD control design, where following the logic flow in a control process, in which the fastest variables
are stabilized first, the T'D control strategy uses a two stage process to stabilize the full X gpy system,
where following the same control logic as in the T'D control strategy, the full ¥ gz system is stabilized

in a two stage process in which the fastest variables are stabilized first.

The first stage of the CF-TD subproblem applies sequentially first the stretched time scale 71 = t/e;
and right after the stretched time-scale 7o = t/e1£2, thus obtaining the associated control law wusy, . This
control law is formed by the sum of a slow (uz,) and a fast control signal (uz,). The slow control signal
ug, is used to stabilize the ¥ p-subsystem, and once stabilized, the fast control law uso, is used to stabilize
the Xy-subsystem, or in the case that already stable, provide the desired response. The selected fast
control signal has to satisfy certain conditions in order to guarantee that the properties of the singularly

perturbed system remains unchanged, as it will be seen.

The second stage of the CF-TD, focuses on the Top sequence by using the first time-scale decomposition,
along with the obtained results in the first time-scale decomposition, and proceeds to stabilize the slow
Yg-subsystem with the proper u;. Following sections describe in detail the general CF-TD control

design.
4.6.1 Control Design for uy: 15 Stage of the Composite Feedback Top-Down
Control Design

The first stage of the CF-TD considers the subsystem that results when considering the time-scale defined
by the Top condition to the original Ygpy, Eqns. (4.155-4.157), where the reduced (slow) subsystem is
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defined by

i = f(z,g(x,u2.),h(z,8(x),uz,), u1), (4.158)
and where the boundary layer (fast) X py-subsystem for the TD subproblem is defined by
dy

= § 4.159
an 9(x,y,2), ( )

d .
Egd—jl = h(x,y,z,u2,), (4.160)

where g(x, ua, ) and h(z, us,) in the reduced order X.g-subsystem, Eq. (4.158), represent the quasi-steady-
state equilibria of the boundary layer ¥ py-subsystem, Eqns. (4.159-4.160), which are obtained when

setting €1 = 0,

and solving simultaneously resulting in

0=h(w,y,zu) = z=hizyus)=hzg@), ), (4.161)
!
Ozg(xayaz) :g(x’y,h(x,y’UQC)) — y:g(.T,UQ), (4162)

Note that on the boundary layer ¥ gi-subsystem, the variable z is treated like a fixed parameter. It
is important to note the difference between this method and the one previously presented in section 4.3,
since the Composite Feedback control method seeks the control signal of the ¥¢-subsystem as the sum of

the slow and fast control that is

U2, = Uz, + U2, (4163)

where ug, is a feedback function of slow variables, x and y, given by
ug, = Is(z,y), (4.164)

that stabilizes with the desired degree of stability the intermediate fast X p-subsystem, and ug, is a

feedback function of z, y, and z, given by
ug, = Lf(z,y,2), (4.165)

that stabilizes the ultra-fast Yy -subsystem with the desired degree of stability, thus rewriting the X py-

subsystem as

dy X
I = @), (4.166)
d A
s = hizy 2 Tu(ey) + Ty, 2), (4.167)
1

where x is treated like a fixed parameter, and 71 = t/e1. Recall that as noted in the general two-time-
scale Composite Feedback formulation, the fast feedback function I'f(x,y, z) is designed to satisfy two
crucial requirements. First, when the feedback control, Eq. (4.163), is applied to Eqns. (4.166-4.167),
the closed-loop system should remain a standard singularly perturbed system. This translates to that

the equilibrium of the boundary layer
0= h(z,y, 2 Ts(x,y) + Tf(2,9,2)), (4.168)

should have a unique root given by z = h(x,y) in B, x By X B;. This requirement assures that the choice
of I'y will not destroy this property of the function h in the open-loop system. The second requirement

on I'y(z,y, 2) is that it be inactive for z = h(z,y,us, ), that is

Ty [z, y, bz, y,Ts(2,9))] = 0. (4.169)
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The control strategy continues by identifying that the ¥ py-subsystem, Eqns. (4.166-4.167), can be
treated again like a two-time-scale singularly perturbed system by applying the Down time-scale decom-

position, 7, where the new reduced order X p-subsystem is given by

d X
d—y 9(@,y,h(z, y, us,)) (4.170)
T1
and the new boundary layer ¥;-subsystem is given by
dz . N
? = h’(xvyazaUQC) :h(zayvzvu% +u2f)5 (4171)
2

where x and y are treated like fix parameters. The function h(z,y, us,) represents the quasi-steady-state

equilibrium of the boundary layer Eq. (4.171) when e3 = 0, yielding

0= h(z,y,z us,) — z = h(z,y,us.) = h(z,y,us, + Uy, ). (4.172)

Recall that according to Eq. (4.169), Eq. (4.173) reduces to

z =h(z,y,ua,) = h(x,y, Ts(z,y)). (4.173)

The substitution of the quasi-steady-state equilibrium, Eq. (4.173), back into the reduced order X p-
subsystem, Eq. (4.171), permits to obtain the associated slow control law us, that stabilizes the X p-
subsystem. Once the design of the slow control us, = I's(z,y) has been conducted, the strategy shifts
towards selecting the fast control law uz, that permits to select the desired degree of stability of the
boundary layer Y;;-subsystem which is given by after substituting the slow control, us, = I's(z,y), back
into Eq. (4.171), resulting in

(;1—:2 = ﬁ(x,y,z,uzs +ug,), (4.174)
where x and y are treated as fixed parameters, and with us, defined by the previously obtained slow
control law that stabilizes the Y p-subsystem. The fast control uz, = I's(x,y, 2z) needs to satisfy the
requirement described in Eq. (4.169), which is now interpreted as a requirement on the feedback control
ug, = I'g(x,y,2) not to shift the equilibrium z = h(z,y,s(z,y)), Eq. (4.173), of the boundary layer
system, Eq. (4.174).

The design of uz, must also guarantee that z = h(z,y,s(z,y)) is an asymptotically stable equilibrium
of Eq. (4.174) uniformly in 2 and y. This concludes the first stage of the CF-TD control design, and the
results obtained are used to solve the second stage which is described in detail in the following section.

Figure 4.5 depicts the first stage of the CF-TD control design sequence.

4.6.2 Control Design for u,: 2"¢ Stage of the Composite Feedback Top-Down
Control Design

The second stage of theCF-TD subproblem focuses on the control design for u; for the stabilization of the
Ys-subsystem. For that purpose, recall first that after selecting the control signal us(z,y, 2) = uz, +uz,,

the X py-subsystem, Eqns. (4.159-4.160), can be rewritten as

dy R

- = 4.1

= g(,y, 2), (4.175)

dz -

—_— f— 4.1
52d7_1 h(.’L',y,Z), ( 76)

Similarly as in the T'D control design, in order to determine the equilibria that will define the Xg-
subsystem, (4.158), the X py-subsystem, Equs. (4.175-4.176), can be decomposed by applying the
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stretched time scale 7 resulting in the ¥ p-subsystem given by

dy
; h 4.177
an 9(z, y, h(z,y)), (4.177)
and where the new boundary layer (fast) Yy-subsystem is defined by
dz “
— = h 4.178
= = hlepe), (4178)

with their equilibria being now completely determined resulting in

0 = iz(:c,y, z) = ua(z,y) = 2z = h(x,y), (4.179)

with this in mind, the reduced order (slow) X g-subsystem, Eq. (4.158) reduces to
i = f(z,g(2) bz, g@)),w). (4.181)

The control signal u; is selected such that stabilizes the resulting ¥ g-subsystem (4.181) to ensure that

guarantees the desired degree of stability.

4.6.3 Conclusions for the CF-Top-Down Control Design

This concludes the CF-TD control design. Following sections will extend this formulation to the helicopter
model, and in Appendix B to the simplified model. Again, and similarly as in the T'D control design,
due to the underactuated structure of the system being controlled, a sequential application of the T'D
has allowed to control the full ¥gpy system, by stabilizing separately first the ¥ pr-subsystem, and once
stable, and using the results obtained in this first stabilization, proceed with the ¥ g-subsystem, which
follows the logic flow of the dynamics of a singular perturbed time scale system, as described in Figure
3.9. For better understanding of the complete CF-TD, it can be refer the Figure in the 7D control
strategy Figure 4.6.
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4.7 Composite Feedback Top-Down Control Design for the
Helicopter Model

The CF-TD control strategy for the nonlinear underactuated three-time-scale singularly perturbed he-
licopter model, Eqns. (3.56-3.60), follows a similar strategy to the one used for the T'D control design,
with the main difference that the control signal in the ultra-fast dynamics is divided into a slow and a fast
component, uz, = uz, +uz,, which permits to select the desired transient behavior for the ¥y-subsystem,

hence becoming the full X gpy system defined by

& = asx + apr’sinz + agx® + a1 + uq, (4.182)

ca11 = C1yq, (4.183)
e192 = x2(co + 321 — Vea + c521) + agys + agys + c, (4.184)
€16221 = Cr22, (4.185)
£162%2 = agz1 + csx’sinzy + cozo + c10 + c1y (un, +uz,) . (4.186)

The CF-TD control strategy, similarly as the T'D control strategy, consists on treating the three different
time scales as two-distinct two-time-scale singular perturbed problems. The CF-TD control strategy is

also divided in two stages, being each stage dedicated to design each of the two control signals.

In the first stage, the control strategy focuses on defining a control signal, us, = I's(x, y), that stabilizes
the intermediate fast ¥ p-subsystem with the desired degree of stability, while us, = I'f(z,y,2) is a
feedback function of z, y, and z, that stabilizes the ultra-fast ¥;-subsystem with the desired degree of
stability. Once stabilized the ¥ py-subsystem, the control strategy shifts towards obtaining the control
signal u; that stabilizes the X g-subsystem. The following subsections describe in detail each one of the
CF-TD control methods for the helicopter problem.

4.7.1 Control Design for uy: 15 Stage of the Composite Feedback Top-Down
Control Design for the Helicopter Model

The first stage of the CF-TD starts by decomposing the X gy, Eqns. (4.182-4.186), into a two-time-scale
subsystem by applying the Top condition, resulting in the reduced order (slow) X g-subsystem

& = agx + ajr’sinfhy, (z,us,)] + agz® + ay + ug, (4.187)

and where the resulting boundary layer (fast) ¥ py-subsystem is given by

j—f_i = c1yo, (4.188)
j_zf = 552(02 + 321 — Vs + c521) + agys + agyg + cg, (4.189)
523—2 = (729, (4.190)
523—: = a9z + cgx’sinzy + coza + 10 + c11 (ugs + Ugf) . (4.191)

Similarly as in the TD control design, the proposed control strategy obtains the associated control
law wug, that stabilizes the X py-subsystem by recognizing that X pp-subsystem, Eqns. (4.188-4.190), can
be treated again like a two-time-scale singular perturbation problem by applying the Down condition,
but prior to proceed with the time-scale decomposition, and similarly as conducted in the T'D control

design section, a feedback transform is introduced to guarantee that the X;-subsystem is stable by
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selecting
vy, = csz? sinzy + c10 + c11U2,, (4.192)

thus rewriting Eqns. (4.190-4.191) such
d21

- = 4.193
cag crz2, (4.193)
d
52£ = a9z + coza2 +vg,. (4.194)
dT1

As demonstrated in the T'D control design, with the appropriate selection on vs,, and taking into
account the inherit nature of the actuator dynamics, the Yy-subsystem dynamics become stable, and
faster than the rest of the time scales and with open loop eigenvalues given by A\; = —0.5772 x 10~* and
A2 = —0.1697 x 10~

Recall that the main difference between the CF-TD control strategy presented in this section, and the
TD control strategy previously presented in section 4.3, is the liberty of modifying the resulting transient
response of the Xy-subsystem after obtaining the slow control signal (us, ), therefore allowing to modify
both A1 and As to a desired transient response as it will be shown in the second part of the CF-TD control
design. Using a similar control strategy as the one employed in the T'D control design in section 4.4, and

recalling that the requirement on I'y(x, y, z) is that it be inactive for z = h(x, us,), that is

Tz, y,h(z,y,Ts(z,y)) =0, (4.195)

the control law that stabilizes the vertical displacement of the helicopter is therefore defined as

us, = K (1 + \/1 —4deya(Ky — vs(x, y)))2 + K.+ Kg2° sin 2,
= K (1+ \/m)2 K.+ Kga?sinzi, (4.196)
with
agy3 + (ag + Eyz) Y2 + by, (Y1 — yi) + co
vs(z,y) = — 5 , (4.197)

x
and K,, Ky, K., K4, and s3 being defined in Eqns. (4.84-4.88). Recall that the control law obtained in
the TD control design, (4.82), is equivalent as the slow component control law us,_, therefore, being also

equivalent the closed loop 3-subsystem from the T'D control design, and dz/dm = h(z,y, z,Ts(x, us.)),

this resulting in equivalent quasi-steady-state equilibria, given by

hlc (‘T’ y)a ]

ho, (2, 9). (4.198)

z = hc(‘ray) = [
with

hi(z,y) = z21=s2 {(1 + \/531}5(:6,:1/))2 - 1] (4.199)
ho (z,y) = 22=0, (4.200)

and with s defined in Eq. (4.103). Once the design of the slow control us, = I's(z, y), that stabilizes
the ¥ p-subsystem has been selected, the strategy shifts towards selecting the desired degree of stability
of the boundary layer Y-subsystem by selecting the appropriate fast control signal ug, = I'y(z, ¥, 2).
The selection of uz, needs to be done taken into consideration that has to fulfill the requirement that
assures that the choice of I'y will not destroy the property that the boundary layer ¥ -subsystem will

only have a unique root z = h(z, y) in B, X By x B, of the function h in the open-loop system, and that
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T f(x,y, z) it be inactive for z = h(z,y,Ts(x,y)), that is

d21
- = 4.201
an Ccr22, ( )
d22 2 .
W - agz1 + cgr” sin z1 + cozo + 10 + c11(uz, 4 uz,)

2

= agz1 + 08562 sin z1 + cgzo + C10 + C11U2,
2
= agz1 + cgza + Jo {(1 + \/s3vs(z, y)) — 1} , (4.202)

which reduces to the closed loop of the T'D control design, and with with h(x,y,T's(z, y)) given in Eq.
(4.198).

The requirement (4.195) is now interpreted as a requirement on the feedback control ua, = I'y(7, y, 2)
not to shift the equilibrium z = h(z, y,Ts(z,y)), Eq. (4.198), of the boundary layer system (4.201-
4.202), such that the design of uz, must guarantee that z = h(z,y,I's(2, y)) is an asymptotically stable
equilibrium of Eqns. (4.201-4.202) uniformly in 2 and y. Therefore, in order to obtain the fast control

law, ug,, let first substitute the control law uz,, Eq. (4.196), into the Yy-subsystems resulting in

d21
R 4.203
dTQ 72 ( )
dz? 2 .
? = agz1 +cgxr°smzy + c9zg + C109 + C11 (Uzs + uzf)

2

2
= a9z + cozo + Jo {(1 + /8305 (x, y)) — 1} + criug;. (4.204)

Let select a desired target dynamics for the boundary layer of the form

d21

—_— f— 4.2
dr C722, (4.205)
dz - -

= = hula—h(ny) - b (4.200)
T2

where l;zl, and EZZ are control design parameters that determine the desired time response for the actuator

dynamics of the stretched time-scale 7o = t/£122 and selected as

b., = e1e2bs, (4.207)

b., = e162bsy, (4.208)
with

b:y = Wi (4.209)

by = 2w Cor, (4.210)

where w,,_, represents the selected natural frequency, and (.- the selected damping ratio of the desired
transient response of the boundary layer Y /-subsystem. By selecting the desired target dynamics for the
boundary layer on the form above described in Eqns. (4.205-4.206), the requirement that the feedback
control ug, = I'f(x,y, ) not to shift the equilibrium z = h(z, y,T's(z, y)) of the boundary layer system

is satisfied.

The design of uz, must also guarantee that z = h(z, y,'s(7, y)) is an asymptotically stable equilibrium
of Eqns. (4.203-4.204) uniformly in 2 and y. The control problem can be solved if a control signal us, is
chosen such that Eqns. (4.203-4.204) behave like the target system defined in Eqns. (4.205-4.206). The

control signal uz, is therefore chosen to be of the form

1 ~ -
Ugp = = (a921 + csx? sin 21 + coza + €10 + c11uz, + bz, (21 — by, (2, y)) + szZ2) ) (4.211)
11
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where uo_ is defined in Eq. (4.196). The fast us, control law can be rewritten by expanding the slow

control signal us_, and recalling the definition of 21 = hy_(«, y, us,) in Eq. (4.101), thus resulting in

1 1 /- ~
’LLQf = 70— (0,921 —+ 081'2 sin 21+ Cgzo + C10 + cllu25) — C_ <b21 (Zl — hlc ($, y)) + bZQZQ)
11 11
1 /- - 1
= —— (b (o1 D, (0,9)) + boa ) — — (a9 (21 — B (2,9)) + o)
C11 C11
1 /e .
= _C_ |:(bz1 + a/9) (21 - hlc (:C) y)) + (bz2 + 09) z2i| ) (4212)
11

where it can be observed that the fast control law uy, satisfies both requirements. The CF-TD control

signal us, is therefore defined as the sum of the slow and the fast control signals, resulting in
2
u2c($7y5217y*) = Uz, +’ll,2f = Kb <1+ V SgU(ZE,y)) ‘FI{C<FI{CIZr2 Sinzl

1 ~ -
- [(bz1 + ag) (z1 —hi_(z,9)) + (bz2 + 09) zg} . (4.213)
11
The following section continues with the CF-TD control methodology for the helicopter model by
conducting the CF-BU methodology that stabilizes the ¥ g-subsystem.

2nd

4.7.2 Control Design for u;: Stage of the Composite Feedback Top-Down

Control Design for the Helicopter Model

The second stage of the CF-TD control design focuses on the selection of u; such that stabilizes the
Y g-subsystem. For that purpose, recall first that, after selecting the control signal us_(x,y, z1,y*), Eq.
(4.213), the Y py-subsystem, Eqns. (4.188-4.190) can be rewritten as

dys
-7 = 4.214
d7'1 C1Y2, ( )
d
d_% = 2%(ca + c321 — Vea + c521) + agys + agys + o, (4.215)
1
le
a- 4.216
€2 an Cr22, ( )
d 2
52d—7z_2 = agz1 + cgza + Jo {(1 + /s3v(x, y)) - 1]
1
- (5zl + ag) (21 = hu (2, 9)) + (5@ + 09) 22, (4.217)

where Eq. (4.217) can be rewritten by considering the definition of z; = hy_(z, y,uz2,), Eq. (4.199),

resulting in
dZQ 2
52? = a9z + cozo + Jo (1 + +/s3v(z, y)) -1
1
- (Bz1 + 0,9) (Zl - hlc (ZL', y)) + (Bzz + C9) z2
2

= a9 (zl — 89 [(1 + /s3v(x, y)) — 1}) + cozo

— (B +a9) (o1~ (@,9)) + (B + o) 22

= g (21— b, (2, 9)) + eoz2 = (b +a0) (21— h(w,9) + (B o) 22

= 7521 (Zl - hlc (:C, y)) - 522227 (4218)
therefore rewritting the X py-subsystem as

dy

= 4.219
d7'1 C1Y2, ( )
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d
d_% = 2%(ca + c321 — Vea + c521) + agys + agys + o, (4.220)
1

dz

sgd—; = ¢z, (4.221)
d - .

e = —be (21— by (2,y)) —bsy20. (4.222)
dT1

In order to determine the equilibria that will define the Y.g-subsystem, Eq. (4.187), the ¥ py-subsystem,
Eqns. (4.214-4.217), can be decomposed into a two.time-scale system by applying the stretched time scale

To resulting in the ¥ p-subsystem given by

dyy

= 4.223
dTl C1Y2, ( )
dyz _ e h v I 2 4.224
d—ﬁ = z%(c2 +eshi (2, y) — Vea + eshy (z,y) + agyz + agys + ce, (4.224)

and where the new boundary layer (fast) Xy-subsystem is defined by
d21
B 4.225
an cr22, ( )
dZQ ~ ~
d_ = 7b21 (Zl — hlc (SC, y)) — szZQ. (4226)
T2

where the quasi-steady-state equilibrium of the Y -subsystem is given when e = 0, that is

0=h(z,y,2) > z = he(z,y), (4.227)
where
, ]
z =he(z,y) = 1.y : (4.228)
th (ZL', Yy ]
with

I 2
hi, = z1=hi(z,y)=s2 (1 + v/ s3vs(x, y)) - 1] , (4.229)
h2 = Z9 = hQC (.T, y) = 0, _ (4230)

where recall that satisfies the requirement for the design of the fast control law wug, that the closed-
loop system should remain a standard singularly perturbed system with a unique equilibrium given by
z = h(z,y), that is h(z,y) = he(z, y), therefore being equivalent to the quasi-steady-state resulting
from the first stage of the CF-TD control strategy, Eqns. (4.199-4.200).

Recall that when substituting the quasi-steady-state equilibria of the Xy-subsystem, Eqns. (4.229-
4.230) into Eqns. (4.225-4.226), they degenerate into the selected Xy target dynamics, Eqns. (4.73-4.74).
Therefore, setting the perturbation parameter £; = 0, degenerate into the equation that determine the

roots of the fast manifold, defined as

. g1(x
0=9(z,y,h(z,y)) = y=glx) = (@) ; (4.231)
92()
that is
0 = ay >y =g(2), (4.232)
0 = —by, (11— u}) = byas = 11 = g1(x), (4.233)

therefore yielding the equilibria for the vertical motion of the helicopter given by

ax) = yp=y" (4.234)
g2(x) = y2=0, (4.235)
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where Eq. (4.234) represents that the equilibrium altitude position is the desired altitude, while Eq.
(4.235), provides that, as expected, the equilibrium vertical position must be zero in order to achieve
a vertical equilibrium point. Similarly as in the 7D control design, the control law u; that stabilizes
the slow Y g-subsystem is obtained by substituting the ¥z and Xy-subsystem equilibria, Eqns. (4.234-
4.235), and (4.229-4.230), respectively, into Eq. (4.187), yielding the reduced order ¥ g-subsystem given
by

& = agx + a1or? sin hy o (v, g(x)) + agx® + a1 + i, (4.236)

where hy (2, g(x)) represents the quasi-steady-state equilibrium of the collective pitch angle, Eq. (4.229),
when substituting the quasi-steady-state equilibria for the vertical displacement dynamics, Equs (4.234—
4.235), resulting in

2
by (2, 8(2)) = b (2 9)ly_gio) = 52 [(1 Vastss @ g@)) - 1] , (4.237)
with vgg(z, g(z)) being the result of substituting the Xy equilibria, Eqns. (4.234) and (4.235), into Eq.
(4.83), yielding

C6

vss(2,8(2)) = v(@, Y)ly—g@) = ~ 13- (4.238)

Similarly as in the T'D control design, the control law is selected by defining a target system of the

form
&= —by(x —a"), (4.239)

where b, is a control design parameter that defines the desired transient response of the collective pitch
angular velocity of the blades. The associated control law that stabilizes the Y g-subsystem is therefore

selected as

uip(z,x*) = —agwr — ayoz? sin (higs(x, g(x))) — agr® — ayq — by(x — ™)

= —agr — ajpr? sin (hig (7)) — agr® — a1y — by (x — 2*). (4.240)

This concludes the CF-TD control design.

4.7.3 Closed-Loop Composite Feedback Dynamics

After substituting the selected control laws, Eqns. (4.213) and (4.240), into the original nonlinear equa-
tions of motion, Eqns. (2.339-2.343), the closed loop system is given by

& = ajr?(sinz; —sinhy(2)) — by (x — 2*), (4.241)
o= s, (4.242)
g = a2 (a1 + asz) — \/m) + asys + agys + ar, (4.243)
4= o, (4.244)
Zy = —b., (21 —hy (2,9)) — boy2a, (4.245)

where

hy (z,y) = s2 {(1 + \/531}5(:6,2/))2 - 1] , (4.246)
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~agy3 + (a9 + by, )y + by, (1 — y5) + co

vs(z,y) = — , (4.247)
by (,8(2) = 52 [(1 +Vsvss(e.g@)) - 1} , (4.248)
~ ~ . . Ce
vss(z,G(T)) = G (4.249)

The transient response of the ultra-fast dynamics is given by a second order time response of the

form
5 = —wiz* (z1 —hi (2, 9)) — 2wn_. (21, (4.250)

with wy,_. being the desired natural frequency of the closed-loop ultra-fast system, and (.- being the

desired damping ratio of the ultra-fast dynamics, which can be defined as

W, = bz, (4.251)

b, b,
o 2 _ _Um 4.252
¢ o = 37 (4.252)

1

which differ from those obtained in the T'D control strategy, Eqns. (4.129-4.130), since the CF-TD allows
to select the desired transient response. The equilibria of the closed-loop system for CF-TD is equivalent
to those obtained with the TD control strategy, Eqns. (4.124-4.125) for the ultra-fast collective pitch
dynamics, Eqns. (4.133-4.134) for the fast vertical displacement dynamics, and Eq. (4.140) for the
slow angular velocity of the blades dynamics, with the only difference between both control strategies,
being the transient response of the ultra-fast-dynamics, Eqns (4.251-4.252) vs. Eqns (4.129-4.130). The
asymptotic stability analysis of the resulting closed-loop system will be conducted in future sections.
Simulations are conducted to test the proposed control laws on the helicopter model, and significate

results are presented in the following section.

4.8 Numerical Results

This section describes the sensitivity analysis conducted for the proposed control laws. The simulations
are conducted using a fourth order Runge-Kutta fixed step integration method with an integration step of
0.01 seconds, and written in the M AT LAB interface ®. The study is performed for the helicopter model,
by conducting a sensitivity study for different conditions. For completeness, the conducted analysis of

the closed-loop systems is only presented for the helicopter problem and organized as
e Results for the T'D control design.
e Results for the Composite Feedback TD control design.

Similar as the performance analysis of the thrust coefficient models conducted in Appendix A, in order
to evaluate the performance of the TD control laws, and the CF TD control design for the helicopter
model, a sensibility analysis is conducted by performing the same four distinctive maneuvers that include

all possible helicopter maneuvers

1. Ascent flight with increasing engine RPM.
2. Ascent flight with decreasing engine RPM.
3. Descent flight with increasing engine RPM.
4. Descent flight with decreasing engine RPM.

where once again, for completeness of the thesis, despite the extensive sensitivity analysis conducted, only

four significate cases are presented, which correspond to a simulation that includes all four distinctive
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maneuvers in one simulation, and that are defined by the bellow conditions

1. y1(0) = 1.85 m, y; = 0.5 m, x(0) = 120 rad/sec, and z* = 140 rad/sec.
2. y1(0) = 0.5 m, y; =1 m, 2(0) = 140 rad/sec, and x* = 120 rad/sec.
3. y1(0) =1 m, yf = 1.5 m, 2(0) = 120 rad/sec, and =* = 170 rad/sec.
4. y1(0) = 1.5 m, y¥ = 0.75 m, 2(0) = 170 rad/sec, and z* = 140 rad/sec.

Needs to be noted that starting with the second maneuver, it is assumed that the helicopter has reached
the desired target altitude and angular rotation of the blades, implying that the initial conditions for the
second, third, and fourth maneuver, are the selected as desired target conditions of the previous maneuvers
respectively. For the case in which the helicopter has not reached the assigned target condition, the new
maneuver will start at whenever condition the helicopter is at the moment of the change in set point.
Each maneuver is lapsed with an interval of twenty seconds, and after that time, it is assigned the new

set points independently if the helicopter has reached or not the desired set point.

Figures 4.7 and 4.11 show the time evolution of the vertical position (y; ), axial velocity (y2), and vertical
acceleration (ay) of the helicopter, for both the T'D and the CF-TD control strategies respectively. Figures
4.8 and 4.12 show the time evolution of the remainder states, the angular velocity of the blades (x), the
collective pitch angle (z1), and the collective pitch rate of the blades (z2) for both the TD and the CF-TD
control strategies respectively. Figures 4.9 and 4.13 show the time evolution of the control signals u; and
ug for both the TD and the CF-TD control strategies respectively. And finally, Figures 4.10 and 4.14
show the time evolution of significate aerodynamic parameters, the trust coefficient (Cr), the normalized
vertical speed (V/V,,), and the climb inflow (A.), for both the TD and the CF-TD control strategies
respectively. All simulations demonstrate that both control strategies are able to drive the helicopter

model to de desired set points with reasonable time response.
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Figure 4.12: States history for the CF-TD control strategy.
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Figure 4.14: Significate aerodynamic parameters history for the CF-TD control strategy.
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4.9 Conclusions

The two presented control strategies, the Top-Down Control Design (TD), and the Composite Feedback
Top-Down Control Design (CF-TD), take advantage of the TD time-scale methodologies presented in
chapter 3.

Both control strategies tackle the underactuated problem here studied by using a two-stage sequential
strategy of the T'D methodology, which results in two distinctive degenerated two-time-scale subproblems
considerably simplified, that permits to easily obtain the appropriate control laws that stabilize each of

the subsystems, the X py first, and the g secondly.

The first stage in the T'D control strategy uses a sequential analysis to stabilize first the intermediate
Y p-subsystem with the desired degree of stability, through the means of the control signal from the ¥¢/-
subsystem, and once has been stabilized, and assuming the ultra-fast 3;-subsystem becomes inherently
stable with the control signal selected to stabilize the X p-subsystem, then proceeds to stabilize the slowest

Y. g-subsystem with also a desired degree of stability by using the T'D philosophy.

The CF-TD control strategy uses a similar sequential application of the T'D time-scale analysis, with
the particularity that this methodology allows the user to define a prescribed degree of desired stability
for the ultra-fast Yy-subsystem, therefore not being necessary to assume that the closed-loop ultra-fast
subsystem has inherent stable properties. Following chapter will address the stability properties of the

resulting closed-loop systems.
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Chapter 5

Stability Analysis for the (General
Three-Time-Scale Singularly
Perturbed System

5.1 Introduction

The three-time-scale helicopter problem here discussed, was previously identified as a three time-scale
singular perturbation problem, chapter 3, and the appropriate control laws were designed using a sequen-
tial combination of two different time-scale problems using the proposed T'D methodology, as seen in
chapter 4. This chapter analyzes the properties that guarantee the asymptotic stability of the resulting

autonomous systems for sufficiently small singular perturbation parameters, £; and es.

This is obtained by considering composite stability methods of large scale dynamical systems
(Michel and Miller, 1977; Araki, 1978; Kokotovi¢ et al., 1986; Kokotovié et al., 1987), which consider
that the associated three-time-scale subsystems g, ¥, and ¥y are each asymptotically stable, which
is satisfied by the control design strategy described in chapter 4. This chapter derives the additional
requirements that prove the asymptotic stability properties for the three-time-scale systems here studied
by extending the well-known standard asymptotic stability requirements for the two-time-scale singular
perturbation problems (Kokotovié et al., 1987; Kokotovié et al., 1986) to the three-time-scale problems

here discussed.

The selected strategy, using a similar step-by-step process to the control strategy, obtains the associ-
ated Lyapunov functions for each of the subsystems based on the natural desired closed loop response
of each of the resulting subsystem. This methodology, much simpler that the one employed in the exist-
ing multiparameter time-scale analysis (Abed, 1985d; Abed, 1985¢; Abed, 1985b; Kokotovi¢ et al., 1987;
Kokotovi¢ et al., 1986), permits to have Lyapunov function candidates for each of the defined subsystems
a priori of starting the stability analysis, and with a simple structure, which differs from the alternative
procedures, which derive the Lyapunov functions for the reduced order and boundary layer subsystems
according to the fulfillment of the growth requirements that guarantee the asymptotic stability properties

of the full system.

This translates to the fact that depending in the complexity of the growth requirements that need to
satisfy the reduced order and boundary layer subsystems, the designer has to find appropriate Lyapunov

functions for each of the subsystems, task that when encountering highly nonlinear problems like the
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one treated in this thesis, becomes an arduous task, which adds to the complexity of selecting proper
comparison functions. The asymptotic stability analysis here presented does not relay on obtaining
complex Lyapunov functions, since the Lyapunov structure is fixed a priori, reducing the fulfillment of
the growth requirements among the different time-scale subsystems to obtain the appropriate comparison

functions and demonstrating the growth requirements among the different subsystems.

The contents of this chapter include the general formulation for the asymptotic stability analysis of
the two-time-scale singular perturbation problem, which is described in section 5.2; a description of the
different three-time scale autonomous systems to be analyzed, is presented in section 5.3; the method
proposed to derive the associated Lyapunov function is presented in section 5.4; and finally, the extension
of the stability analysis to the general three-time-scale singular perturbation problem is presented in
section 5.5, which is also extended to a more general N*"-order singular perturbed time-scale system in

section 5.6.

For conciseness, this chapter only focusses on the asymptotic stability analysis of the general three-
time-scale singularly perturbed autonomous system, and is left for Chapter 6, the asymptotic stability
analysis for the three-time-scale helicopter model, while the stability analysis for the three-time-scale

simplified model is left as a reference in Appendix C.

Also, for simplicity, and completeness of the thesis, the notation that indicates the different time-scale
closed-loop subsystems is defined similarly as in the control design sections, that is, as a function of the
form Xy, where the subindex denotes the different subsystems. Note also that the state variables are
now defined with the symbol O, which denotes that the stability analysis will be conducted using their

error dynamics formulation, as it will be defined in section 5.3.

5.2 Asymptotic Stability Analysis of a Two-Time-Scale Singu-

larly Perturbed Autonomous System

The asymptotic stability analysis formulation for the general two-time-scale singular perturbation system
outlined in this section, follows the well know theory of asymptotic stability analysis for two-time-scale
singular perturbation problems (Kokotovié et al., 1987; Kokotovié et al., 1986). The general two-time-
scale asymptotic stability analysis formulation serves as the basis for the proposed stability analysis for
three-time-scale models. Although the two-time-scale formulation is a well established formulation, the
author believes that by dedicating a section to recall the main important points of such theory, it will
be easier for the reader to understand the extension to the three-time-scale asymptotic analysis that is
conducted in the following sections. In order to start the general two-time-scale asymptotic formulation,
let first recall the nonlinear autonomous two-time-scale singular perturbed system defined previously in
Eqns. (3.1-3.2) and given by

t = f(z,2), € R", (5.1)

ez = g(z,z), ze R™, (5.2)
which has an isolated equilibrium at the origin (x = 0, z = 0). Let also B, C R™ and B, C R™ denote
closed sets. It is assumed throughout the formulation that f and g are smooth to ensure that for specified

initial conditions, system (5.1-5.2) has a unique solution. The stability of the equilibrium is investigated

by examining the reduced (slow) system given by

T = f(l',h(l‘)), (5'3)
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where z = h(z) is an associated root of 0 = g(x, z), and the boundary-layer (fast) system, which is given
by

j—j_ =g(z,2(7)), T = é, (5.4)
where x is treated as a fixed parameter, and ¢ is the parasitic constant that defines the stretched time
scale of the fast subsystem. The asymptotic stability properties of the singularly perturbed system can
be defined by considering that if z = 0 is an asymptotically stable equilibrium of the reduced system, Eq.
(5.3), z = h(x) is an asymptotically stable equilibrium of the boundary layer system, Eq. (5.4), uniformly
in z, that is, the ¢ — ¢ definition of Lyapunov stability and convergence such that z — h(z) are uniform
in x (Vidyasagar, 2002), and if f(-,-) and g(-,-) satisfy certain growth conditions, then the origin is an
asymptotically stable equilibrium of the singularly perturbed system defined by Eqns. (5.1-5.2).

These asymptotic stability requisites on the reduced and boundary-layer systems are expressed by
requiring the existence of Lyapunov functions for both, the slow subsystem, and the fast subsystem,
Equs. (5.3) and (5.4), respectively, that satisfy certain growth conditions. The growth requirements of
f and g take the form of inequalities that must be satisfied by the proposed Lyapunov functions. The
following section describes in detail these growth requirement for the general two-time-scale singularly

perturbed system.

5.2.1 Growth Requirements for the General Two-Time-Scale Singular

Perturbation System

Prior to start defining the growth requirements, it is imperative to prove that the origin is a unique isolated
equilibrium, which is presented in Assumption 5.2.1. The growth requirements of both the reduced and
boundary layer system, separately, are addressed in Assumptions 5.2.2 and 5.2.3 respectively, while
the growth requirements that combine both reduced and boundary layer system, called interconnection
conditions, are defined in Assumptions 5.2.4 and 5.2.5, respectively. These assumptions are all described
in detail bellow in their general two-time-scale formulation, which will be the basis for the extension to

the three-time-scale formulation addressed in section 5.5.

Assumption 5.2.1 Isolated Equilibrium at the Origin
The origin (x =0, z=10) is a unique and isolated equilibrium of Eqns. (5.1-5.2), i.e.

0 = f(0,0), and 0 = g(0,0), (5.5)
moreover, z = h(x) is the unique root of the form given by

0=g(z,z0), (5.6)
i By X B, i.e.

0= g(a,h(x)), (5.7)
and there exists a class & function p(-) such that

I'h(z) [[<p (1)) (5.8)

To construct a Lyapunov function candidate for the singular perturbed system, Eqns. (5.1-5.2), let
consider first each of the two systems separately. Let first consider the system in Eq. (5.1) by adding
and subtracting f(z,h(x)) to the right-hand side of Eq. (5.1) yielding

&= f(z,h(z)) + f(z,2) = f(z,h(z)), (5.9)
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where the term f(x,z) — f(z,h(z)) can be viewed as a perturbation of the reduced order system is given
by

= = f(x,h(x)). (5.10)

It is therefore natural to first satisfy the growth requirements for (5.10) and then consider the effect
of the perturbation term f(z,z) — f(x,h(z)). Therefore let proceed to define the reduced order growth

condition.

Assumption 5.2.2 Reduced Order System Condition
There exists a positive-definite an decreasing Lyapunov function candidate V(x) such that for all x € B,

satisfying that
O<q(z])<V(z)<qzl), (5.11)

for some class k function q1(-) and q2(-) that satisfies the following inequality
ov
e

where () is a scalar function of vector arguments which vanishes only when its argument are zero, and

(z,h(z)) < —any® (), (5.12)

satisfying that x = 0 is a stable equilibrium of the reduced order system. Condition (5.12) guarantees that

x =0 is an asymptotically stable equilibrium of reduced order system (5.10).

Assumption 5.2.3 Boundary-Layer System Condition
There exists a positive-definite an decreasing Lyapunov function candidate W (x,z) such that for all

(x,z) € By X B, satisfying

0<gs(llz=h(x) [) <W(z,2) < qa(l z—Dh(z) ), (5.13)
for some class k function qs(-) and q4(+), that satisfies

W(xz,z) >0, Vz #h(x) and W(x,h(z)) =0, (5.14)

and results in the following inequality

ow

a—g(:c,z) < —a9¢*(z — h(x)), ag >0 (5.15)
z

where W(x, z) is a Lyapunov function of the boundary layer system (5.4), in which x is treated as a fized

parameter, and ¢(-) is a scalar function of vector arguments which vanishes only when its argument are

zero, and satisfying that z — h(x) is a stable equilibrium of the boundary layer system.

Both ¢(-) and ¢(-) are scalar functions of vector arguments that vanish only when their arguments are

zero, i.e., (x) = 0if and only if z = 0. Both ¢(-) and ¢(+), will be referred as comparison functions.

Assumption 5.2./4 First Interconnection Condition
V(z) and W (x,z) must satisfy the so called interconnection conditions. The first interconnection con-

dition is obtained by computing the time derivative of V(x) along the solution of Eq. (5.9), resulting

Vo= S ) + () — b))
< —ad(w) + G [f(2) — f@ @), (5.16)

where assuming that

ov

B [ (@:2) = f(2,h(z))] < Bid(2)é(z — h(z)). (5.17)
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so that

V < —ar¢®(x) + Brop(x)p(z — h(x)). (5.18)

Inequality (5.17) determines the allowed growth of f in z, and, in typical problems, verifying Assumption
5.2.4 reduces to verifying the following inequality

[f(, 2) — f(z, h(x))|| < ¢(x)d(z —h(z)), (5.19)

which implies that the rate of growth of f cannot be faster than the rate of growth of the comparison
function ¢(-).

Assumption 5.2.5 Second Interconnection Condition

The second interconnection condition is defined by

O 1(w,2) S 96%(= = (&) + fa(w)o (= — h(a), (5.20)

where ¥ () and ¢(-) are both scalar functions previously derived when satisfying Assumptions 5.2.2 and
5.2.3.

If assumptions 5.2.1, 5.2.2, 5.2.3, 5.2.4, and 5.2.5 are all satisfied, then the growth requirements of
f and g are satisfied, and with the Lyapunov functions V(x) and W (z, z) obtained, a new Lyapunov
function candidate v(x, z) is considered and defined by the weighted sum of V(z) and W (x, z), and given
by

v(z,z) = (1 —d)V(z) +dW(z, z), (5.21)

for 0 < d < 1. The newly defined function v(z,z) becomes the Lyapunov function candidate for the
singular perturbed system (5.1-5.2). To explore the freedom when choosing the weights, let take d as
an unspecified parameter (0,1). From the properties of V() and W (x, z) and inequality (5.8) it follows
that v(z, z) is positive-definite and decreasing. Computing the derivative of v(z, z) along the trajectories
of Equs. (5.1) and (5.2), results in

U= (1fd)g—‘;f(z,z)+g%—z/g(x,z)eraa—Z/f(x,z)
= - % fn@) + (- )2 [f(@.2) - b)) (5.22)
+ gaa—z/g(x,z)nLd%—Z/f(x,z).

Using inequalities (5.12), (5.15), (5.17), and (5.20), permits to express Eq. (5.22) as

o< —(1=d)ay? (@) + (1 = d)Bi(z)p(z — h(x))
- gagqﬁQ(z Ch(@)) + dv*(z — h(a) + dBav () — h(z))

_ l e (1= d)s —1(1—d)p, — Ldp,
- (= — h(z)) —1(1—d)By — Ldp, d (% =)
[ v 1 : (5.23)
$(= —h(x))

The right-hand side of inequality Eq. (5.23) is a quadratic form in the comparison functions #(x) and

¢(z — h(x)), where the quadratic form is negative-definite when

d(1 = d)on (% - v) > i (1= d)y +dpa)”, (5.24)
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which is equivalent to

1

[(1—d)B1 +dBa]| - (5.25)

e oas a7y + 4(1 —d)d

Inequality (5.25) shows that for any choice of d, the corresponding v(z, z) is a Lyapunov function for the
singularly perturbed system (5.1-5.2) for all ¢ satisfying Eq. (5.25). Inequality (5.25) can be rewritten
as

e < a1 = eg4. (5.26)

1
a1y + =y (1 —d)B1 + dpa)?

The dependance on the right-hand side of Eq. (5.26) on the unspecified parameter d is sketched in

Figure 5.1. It can be easily checked that the maximum value of €4 occurs at

* /81
dr = , 5.27
B1+ P2 ( )
being therefore
109
= — 5.28
a1y + 152 (5.28)

Therefore it can be inferred that the equilibrium point of the singularly perturbed original system
(5.1-5.2) is asymptotically stable for all ¢ < &*. The number £* is the best upper bound on e that
can be provided by the above presented stability analysis. The asymptotic stability analysis presented

(Kokotovié¢ et al., 1986; Kokotovié¢ et al., 1987) can be summarizes in Theorem 5.2.1.

Theorem 5.2.1 : Let inequalities (5.12), (5.15), (5.17), and (5.20) be satisfied. Then the origin is an
asymptotically stable equilibrium of the singularly perturbed system (5.1-5.2) for all € € (0,&*), where e*
is given by (5.28). Moreover, for every number d € (0,1)

v(z,z) =1 —d)V(z) + daW(z,y), (5.29)

is a Lyapunov function for all €(0,e4), where 4 < £* is given by (5.26).

Theorem 5.2.1 can be summarized by understanding that if z = 0 is an asymptotically stable equilib-
rium of the reduced system, Eq. (5.3), z = h(x) is an asymptotically stable equilibrium of the boundary-
layer system, Eq. (5.4), uniformly in z, that is, the ¢ — ¢ definition of Lyapunov stability and the
convergence z — h(x) are uniform in z (Vidyasagar, 2002), and if f(-,-) and g(-,-) satisfy the growth
conditions on the reduced and boundary-layer systems, then the origin is an asymptotically stable equilib-
rium of the singularly perturbed system, Eqns. (5.1-5.2), for sufficiently small & (Kokotovi¢ et al., 1986;
Kokotovié¢ et al., 1987).

This concludes the asymptotic stability analysis for the general two-time-scale system. The extension to
the three-time-scale systems is conducted in the following sections, and it is based in a double application
of the two-time-scale asymptotic stability analysis employing either the Top-Down or the Bottom-Up
time-scale analysis previously defined, although for the three-time-scale stability analysis conducted in

this thesis is selected the Bottom-Up time-scale analysis.
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8dA

Figure 5.1: Stability upper bounds on e (Kokotovié¢ et al., 1986).
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5.3 Closed-Loop Error-Dynamics Model

As introduced in section 5.2.1, one of the requirements for the asymptotic stability analysis, is to guarantee
that there exist asymptotic stability of the origin, which is expressed in Assumption 5.2.1. This translates
to ensure that the boundary layer does not shift from its original equilibrium. Since the systems here
studied present equilibria different from zero, in order to satisfy this requirement, a change of variables
is introduced such that defines the new system in terms of its error-dynamics. For the three-time-scale

helicopter model, the error dynamics are defined by introducing;:

T = x—a" (5.30)
y = y—y*=lgz1]=lxl_xw7 (5.31)

Ty — X5

2 = Z—Z*:|‘Z/1‘|:|‘Z/1_Zl‘|7 (532)
29 2o — 25

where constants x*, yf, y5, 27, 25 represent the desired values of the states variables. Recall that,
as discussed previously in the equilibrium analysis section, in order to have the helicopter at a given
equilibrium position, that is, maintaining a stationery hover position, it is required that the vertical
speed of the helicopter, y;5, and the collective pitch angular velocity of the blades, z3, to be defined by
ys = 23 = 0. The desired collective pitch angle, z}, can be obtained as a function of the selected angular
velocity of the blades, * by using the equilibrium equation of the summation of the vertical forces, Eq.
(2.356), therefore z7 = 25 (z*, y7). It is proven in later sections that, both 27 and z3, correspond with the

solutions of quasi-steady-state equilibria of the ultra-fast dynamics, that is:

21 = hi(z",y"), (5.33)
z5 = ha(a™,y*)=0. (5.34)

5.3.1 Singularly Perturbed Closed-Loop for the Helicopter Model

Recalling the three-time-scale helicopter model given by:

& = agx+apr?sinz + agx? + a1 + ui, (5.35)

g1y1 = C1ye, (5.36)
e12 = a°(co+ csz1 — Vea + e521) + agys + agys + ce, (5.37)
€16221 = cCr723, (5.38)
£169% = a9z + csx’sinzy + cozo + C1o + C11Us2, (5.39)

the closed-loop dynamics are obtained substituting the control laws obtained in the 7D control design
section 4.4. Recall that the selected control laws for the T'D control design, that is u; and us, are defined
by

u = — (asz + aioz’ sinhig (z, g(2)) + agz® + anr + by (o — z%)), (5.40)
and

us = Ky (1+\/m)2+KC+de25inz1, (5.41)
with

agys + (ag + 5y2) Y2 + by, (Y1 — %) + o
2 9

(5.42)

ol y) = - -
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and the coefficients of the control law are given by Eqns. (4.84-4.88). Therefore, after substituting the
selected control laws, Egs. (5.40) and (5.41), into the original nonlinear equations of motion, Egs. (5.35

— 5.39), the closed loop system is given by:

& = ajor?[sin(z1) —sinhig (7)] — bp(x — 2*), (5.43)

a1l = C1y, (5.44)

efe = 2%(ca+ 3z — Vea+ 6s21) + agys + agys + ¢, (5.45)

515221 = CrZza, (546)
2

€1€9%29 = agz1 + c9za + J2 {(1 + +/s3v(z, y)) - 1] . (5.47)

These closed-loop equations can be rewritten into its error dynamics formulation recalling the intro-
duced error dynamics state vector (5.30-5.32) thus defining the closed-loop error dynamics as:

F = aw@E+a)? [sin(zl +27) — sin by (gz)] — by, (5.48)
€1§1 = c1Y2, (5.49)
c12 = (f-ﬁ-w*)Q (C2+C3(51 +27) — C4+Cs(51+zi‘)) + ag @z + ag s + co, (5.50)
818221 = 0722, (5.51)
. 2
€1€222 = ag(Z1+ 21) +coZa + Jo [(1 + /s30(x, y)) — 1] , (5.52)
where
Cq
Ke=K.—appa=———"—, (5.53)
C5C11C13
and

g (7,8(F) = s {(1+\/53v(z,y))21], (5.54)

~ ~ ~ C6
USS(xag(x)) = 7(@_’_:1/_*)27 (555)
Sy aof3 +(ag + bya)T2 + by, 1 + o

@ +a)2 '

(5.56)

5.4 Lyapunov Function Candidates

The selection of proper Lyapunov functions to study the asymptotic stability properties of an autonomous
system is one of the most challenging issues that a control engineer has to be faced with. The asymptotic
stability analysis of the different time-scales requires the existence of Lyapunov functions for each one
of the singularly perturbed subsystems, that is the g, X p, and Xy-subsystems. The fulfillment of
certain growth requirements between each of the Lyapunov functions, and the use of composite stability
methods (Kokotovié¢ et al., 1999; Kokotovié et al., 1987; Michel and Miller, 1977) ensures the existence

of a composite Lyapunov function for the entire X gpy system.

This sections describes the methods proposed in this thesis to determine the associated composite Lya-
punov function that proves the asymptotic stability properties of the full ¥ gpy system. The philosophy
employed to determine the Lyapunov functions for the associated time-scale subsystems uses the T'D and

BU time-scale decomposition philosophy, derived in chapter 3.

The strategy to determine the Lyapunov function candidates for each one of the singularly perturbed
Yg, X, and Xy subsystems, consists on treating the three different time scales as two-distinct two-
time-scale singular perturbed problems. The proposed methodology obtains the associated Lyapunov

functions for each of the subsystems by taking advantage of the same properties that were exploited in
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the time-scale analysis, that is, the sequential application of both the T'D and BU methodologies, which

in return translates to a considerably simplification of the Lyapunov function selection.

The following sections describe in more detail the procedure to obtain the associated Lyapunov func-
tion candidates for a generic three-time-scale singularly perturbed system, and later extending the
methodology to obtain the associated Lyapunov functions for the simplified example, and the helicopter

model.

5.4.1 General TD-BU Lyapunov Function Candidate Selection

This section describes the general Lyapunov TD and BU, (£-TD-BU), function candidate selection for

the three-time-scale singularly perturbed closed-loop systems.

The strategy to determine the Lyapunov candidates for each one of the singularly perturbed Xg, ¥p,
and Xy subsystems, consists on treating the three different time-scales as two distinct two-time-scale
singular perturbed problems. The following subsections describe in detail the two-distinct two-time-
scale singularly perturbed subproblems, the £-TD and £-BU, that help in the selection of the Lyapunov

function candidates for each of the singularly perturbed subsystems g, X, and Xy .

5.4.1.1 General Lyapunov Function Candidate for the Y g-Subsystem

The Lyapunov function candidate for the ¥ g-subsystem is obtained by applying the Lyapunov-BU (£-
BU) methodology, which, in a similar manner as the BU time-scale analysis, section 3.4.2, analyzes the
subsystem resulting when considering the time-scale obtained when applying the stretched time-scale
Ty = t/e1€2, which in return results in the reduced (slow) Y gp-subsystem, Eqns. (3.69-3.70), and the
associated boundary layer (fast) Xy-subsystem, Eq. (3.71), with the boundary layer Xy-subsystem’s
associated quasi-steady-state given by Eq. (3.72).

The associated Lyapunov function for the ¥ g-subsystem is obtained by recognizing that the boundary
layer g p-subsystem, Eqns. (3.69-3.70), can be treated again like a two-time-scale singular perturbation
problem by applying the stretched time-scale 7, = t/e1, resulting in the new reduced (slow) X g-subsystem,
Eq. (3.73), and the associated new boundary layer (fast) X p-subsystem, Eq. (3.74), and with the Xp-
subsystem quasi-steady-state equilibrium given by Eq. (3.75).

Recall that following the control design strategy, the control signal u; was selected such that stabilizes
the X g-subsystem with a prescribed desired target dynamics, therefore being easy to define the Lyapunov
function for the slow X g-subsystem as the natural Lyapunov function of the selected target dynamics,
denoted as Vg(Z).

5.4.1.2 General Lyapunov Function Candidate for the X p-Subsystem

To obtain the Lyapunov function candidate for the ¥ p-subsystem let use the Lyapunov-TD (L£-TD)
methodology, which, in a similar manner as in the 7D time-scale analysis, section 3.4.1, analyzes the
subsystem resulting when considering the time-scale defined by applying the stretched time-scale given
by 71 = t/e1, yielding the reduced order (slow) Xg-subsystem, Eq. (3.61), and the boundary layer (fast)
Y py-subsystem, Eqns. (3.62-3.63), with the associated quasi-steady-state equilibria of the boundary
layer ¥ py-subsystem being given by Eqns. (3.65-3.65).

The associated Lyapunov function for the ¥ p-subsystem is obtained by exploiting the fact that the

boundary layer 3 py-subsystem, Eqns. (3.65-3.65), can be treated again like a two-time-scale singular
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perturbation problem, by applying the stretched time-scale given by 1o = 71 /e2 = t/e122, resulting in
a new reduced (slow) X p-subsystem, Eq. (3.66), and a new boundary layer (fast) Xy-subsystem, Eq.
(3.67), with its associated quasi-steady-state equilibrium defined by Eq. (3.68).

Recalling that following the control strategy methodology, the control signal us is selected such that
stabilizes the X p-subsystem with a prescribed desired target dynamics, therefore, when substituting the
equilibrium of the Xy-subsystems into Eq. (3.66), that is, substituting fl(fc, 7), yields the X p-subsystem
defined by the selected desired target dynamics, therefore being easy to define the Lyapunov function for
the intermediate X p-subsystem as the natural Lyapunov of the selected target dynamics, Vg (g). The
Y. p-subsystem serves as both the boundary layer of the ¥ gp-subsystem, and the reduced order of the

Y. pr-subsystem, becoming the interconnection subsystem between the X gr and X py-subsystems.

5.4.1.3 General Lyapunov Function Candidate for the >;-Subsystem

The natural Lyapunov function candidate for the 3y-subsystem is obtained by recalling and analyzing
the boundary layer of the ¥-subsystem resulting from the Down sequence of the £-TD and given by Eq.
(3.67). Recall that it is necessary to ensure that the boundary layer X;-subsystem does not to shift from
the equilibrium Z = h(Z, ), since it is the equilibrium that defines the nature of the different reduced
order subsystems, Y g and X p-subsystems. It is therefore necessary to introduce a change of variables
so that the equilibrium of this boundary-layer system is centered at zero, and thus permitting to select
a natural Lyapunov function candidate that maintains the equilibrium 2z = B(i,gj) This is obtained
by introducing a change of variables defined by the error dynamics between the fast variable, and its

quasi-steady-state equilibrium that is

2 =7%—Nh( 7). (5.57)

The change of variables permits to express the boundary layer subsystem, Eq. (3.67), as a linear
function of 2, thus being quite easy to select its natural associated Lyapunov function Vi (2 — B(j, 7))-
The following sections extend this general formulation of the appropriate Lyapunov function candidates

for all three subsystem for the three-time-scale singularly perturbed helicopter model.

5.4.2 Lyapunov Top-Dow and BU Function Candidate Selection for the
Helicopter Model

This section determines the associated Lyapunov functions for the closed-loop three-time-scale singular
perturbed helicopter model which is defined by Equs. (5.48-5.52), where, similarly as for the general case,
it is assumed that the system is an autonomous stable system with a prescribed stability properties given
by the selection of appropriate control laws. The strategy to determine the Lyapunov candidates for each
one of the singularly perturbed X g, X, and Xy subsystems, consists on treating the three different time
scales as two distinct two-time-scale singular perturbed problems. The following sections describe the
selection of the Lyapunov function candidates for each of the singularly perturbed subsystems g, ¥ p,
and Xy .

5.4.2.1 Lyapunov Function Candidate for the Helicopter Model ¥ s-Subsystem

The Lyapunov function candidate for the Y g-subsystem, uses the Lyapunov-BU (£-BU) methodology
previously presented, where by applying the stretched time-scale given by 75 = t/e1e2, yields the reduced
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(slow) X gp-subsystem defined by

& = ao(@+ ") (sin(hy (7, 9) + 27) — sinhygy) — be 7, (5.58)
e = i, (5.59)
e192 = (Z42%)? (02 + e3(hy (2, 9) + 27) — \/04 + c5(hy (2, 9) + zf)) + a9l

+  a9fis + e, (5.60)

and the boundary layer (fast) subsystem for the BU subproblem is defined by the X;-subsystem

dz -
d_T; = C7Zz9, (561)
dz 2
d—j_Q = ag(zl + ZT) + c9Zo + Jo |:<1 + Sg’[)(:i‘, :I))) — 1:| s (562)
2
with the quasi-steady-state equilibria being given by
. ~ hy (7, 7
0=h(2,9,2) > z2=h(1,9) = qu), (5.63)
h2(‘ra y)
with
- ~ 2
hi(Z,9) = 21 =59 {(1 ++/s30(Z, y)) - 1] — 2 (5.64)
ho(Z,9) = 22=0, (5.65)

and with so defined in Eq. (4.103). The associated Lyapunov function for the ¥ g-subsystem is obtained
by recognizing that the boundary layer X gp-subsystem, Eqns. (5.58-5.60) can be treated again like a
two-time-scale singular perturbation problem by applying the stretched-time-scale given by 7 = t/eq,

resulting in the new reduced (slow) ¥ g-subsystem, which is now defined by

Po= J(@8) 8 9) = aw@+o)? [sin(h (@, §) + 27) — sinhi] — b, (5.66)
and where the new boundary layer (fast) ¥ p-subsystem is defined as

dy N

29l _ 5.67

dTl C1Y2, ( )

dy: - N ~ . -

D= @) et esin(@9) + D) — yen+es(hu(@,9) + zi‘)]

1

+  aglje + ao¥s + cs. (5.68)

After substituting the Xy-subsystem equilibria, Eqns. (5.64-5.65), into the X p-subsystem, Eqns. (5.67—
5.68), reduces to

din ~

— 5.69
dTl C1Y2, ( )
W~ gy — b (5.70)
d7'1 ’

where it can be identified that the resulting ¥ p-subsystem can be expressed in state space form as
dy

= Ary 71
dr FY, (5.71)

being

0
AF:< S ), (5.72)
7by1 7by2
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therefore being the quasi-steady-state equilibria for the X p-subsystem, G‘(i), being given by

B 91(7)
0=9G.5.5) > g=8@=| 17|, (5.73)
92()
with the equilibria defined by
0@ = i .
B(E) = o, (5.75)
therefore reducing the X g-subsystem, Eq. (5.66), as
& = f(#,8(2),h(8() = ~b.7. (5.76)

With this in mind, it is easy to define the associated Lyapunov function for the slow ¥ g-subsystem as
the natural quadratic Lyapunov function of the selected target dynamics, that is
- 1 5
Vs (2) = 2P5:c ) (5.77)

where Pg is the solution of the associated Lyapunov function for the selected target dynamics and given
by

PsAgs+ AsPs + Qs =0, (5.78)
where Qg is also a positive constant, Ag = —b,, and Pg is given by
Qs
Pg === .
5= (5.79)

where Qg is a positive constant. Note that for completeness, and to avoid confusion due to the use of
similar parameters that defined the Lyapunov functions, V.j, the elements of the associated Lyapunov
function, Py and Q(.), the closed-loop state-space systems, A(.), and other parameters throughout the
rest of the thesis, the subindexes of these parameters will identify to which model is referring, that is,
the parameters that deal with the simplified model, will be denoted with lower case, i.e. V, while for the

helicopter model will be denoted with capital letters, i.e. Vg.

5.4.2.2 Lyapunov Function Candidate for the Helicopter Model ¥ p-Subsystem

The Lyapunov function candidate for the X p-subsystem is obtained using the Lyapunov-TD (L£-TD)
methodology, by applying the Top-condition, which results in the reduced order (slow) X g-subsystem
defined by Eq. (5.66), and the boundary layer (fast) X py-subsystem given by

din _
Zd 5.80
dT1 C1Y2, ( )
i
d—?f = (j+z*)2 <c2 +es(Zr427) — e+ es(z +zi‘)> +a9§2+a9§§+c6, (5.81)
1
dz -
sgd—; = 13, (5.82)
dz —\ 2
g2d—j_2 = ag(Z1 4+ 2) + coFa + T [(1 + /530(7, y)) - 1] . (5.83)
1

The associated Lyapunov functions for the ¥ p-subsystem is obtained by recognizing that the boundary
layer ¥ py-subsystem, Eqns. (5.80-5.83), can be decoupled into a two-time-scale singular perturbation
problem by applying the stretched time-scale given by 72 = 71 /2 = t/e1€2, where the new reduced (slow)
Y p-subsystem for the helicopter model is defined by Eqns. (5.69-5.70), which reduces to the selected
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target fast-dynamics

dy _

m = o

dyo s s

dTl - 7by1y1 - byzyQa (584)

which can be rewritten in state-space as seen in Eq. (5.71). and where the new boundary layer Y-
subsystem of the ¥ py-subsystem is given by Eqns. (5.61-5.62). It is therefore easy to select a natural
Lyapunov function Vi (y) of the form
_ 1. -
Ve(9) = 59" Pry, (5.85)

with P is a positive definite matrix that solves the associated Lyapunov equation
PrAp+ ALPr+ Qp =0, (5.86)

where @ and Py are a positive definite matrices of the form

an 0

Qr = < d ) : (5.87)
0 g5

pp = [P PR (5.88)
Pfs Pfa

where Pp = PL. Solving Eq. (5.86) yields the Lyapunov function for the ¥ p-subsystem
- 1. - 1 ~ 1 - .
Ve(9) = 59" Pry = 5pp i + 5050 + Prinds, (5.89)

with the solutions to the associated Lyapunov Eq. (5.86) given as

qf1 (byl ¢+ bzz) + bzﬂ]ﬁ

P = = 7 :Cfqu1+cf2qf2a (5'90)
2by1by2cl
df.
= = =Cpap, 5.91
P, 2, 248 (5.91)
qr,c1+ qrb
Prs = wzcﬂxqﬁchf&squ' (5'92)
2by1by2
with
l~7 c +E)2
Cp, = 21— v (5.93)
2by1byzcl
62
2bylby2cl
1
C = ——, 5.95
oo T a0, (5.95)
C1
Cf4 = 26 6 ) (5'96)
Y17Y2
C = Eyl (5 97)
s by, bys '

The Y p-subsystem, as seen previously, serves as both the boundary layer of the ¥ gp-subsystem, and
the reduced order of the X py-subsystem, becoming the interconnection subsystem between both the Y gp

and X py-subsystems.
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5.4.2.3 Lyapunov Function Candidate for the Helicopter Model ¥ Subsystem

The associated Lyapunov functions for the Xy-subsystem is obtained by recognizing that the Xpy-
subsystem, Eqns. (5.80-5.83), can be treated again like a two-time-scale singular perturbation problem
by applying the stretched time-scale given by 79 = 71 /62 = t/e162, where the new reduced (slow) X p-
subsystem reduces to the target fast dynamics, Eqns. (5.69-5.70), and and where the boundary layer
Y y-subsystem is given by Eqns. (5.61-5.62).

Recall that it is necessary to ensure that the boundary layer Yy-subsystem does not to shift from
the equilibrium z = B(:i, ¥), since it is the equilibrium that defines the nature of the different reduced
order subsystems, g and X p-subsystems. It is therefore necessary to introduce a change of variables so
that the equilibrium of this boundary-layer system is centered at zero, and thus permitting to select a
natural Lyapunov function candidate to maintain the given equilibrium z = fl(i‘, 4). This is obtained by

introducing a change of variables defined by

= Z-hE) (5.98)
2! — Z1 - Bl (‘i'a )
[ % ] - [ 7 —ha(7,9) ] ’ (5.99)

with hy (Z, §), and hy(Z, ) being defined in Eqns. (5.64) and (5.65) respectively. This change of variables

permits to express the boundary layer subsystem, Eqns. (5.61-5.62), as a linear function of Z, which can
be viewed as the true error dynamics vector for the ultra-fast dynamics, therefore rewriting the Xg-

subsystem as
dz
— = z 5.100
o crZa, ( )

~ 2
fl—: = ag(F1 4+ 2) + coFa + Iy [(1 + \/53@(:2,@)) - 1]
= ag (21 — by (2, 27)) + ¢ (52 — ha(a, f/))

= a9Z1 + c9gZo. (5.101)

It can be recognized that the ¥y can be rewritten in state space form as

dz

— = Agpgz 5.102
- Auk (5.102)
where
0
Ay = ( “ ) . (5.103)
ag Co

With this in mind, it is easy to define the associated Lyapunov function for the ultra-fast dynamics

Yy-subsystem as the natural quadratic Lyapunov function of the error-dynamics, that is

Vo (3,9, 2) = Vo (2) = %ATPUi, (5.104)
where Py is a positive definite matrix that solves the associated Lyapunov equation

PyAy + ALPy+ Qy =0, (5.105)

where @ and Py are positive definite matrices of similar structure as Pr and Qp, that is

Qu = <q“1 ! ) (5.106)

0 Qu,

Py - <pul Pus ) (5.107)

p’u.g, puz
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with Py = P?] being the solution of Eq. (5.105). This yields an associated Lyapunov function of the
form
. 1l . 1 5 1 .
Vu(2) = 3 Pyz= 5Pu#1 + SPus?2 + Puy 2122, (5.108)

with the solutions to the associated Lyapunov Eq. (5.105) given as

2 2
Qu, Qg + CoGu, — A9CT7qu,

Pu ST 1 Qur + Cus Gus (5.109)
qu
qu = 720/; = Cquula (5110)
C7quy — Guy A9
wy = —————— =Cf,qu, + Cuqu,- 5.111
Pus 2a9cy FaQui T 54d ( )
with
62 — agcCy
C,, = =1 5.112
! 2agc7cy ( )
as
Cu, = ) 5.113
2 2@96709 ( )
1
Cuy = —7\ (5.114)
2a9
Cr
Cuy = ) 5.115
. Doce (5.115)
ag
Cuy = — . 5.116
? 2agcy ( )

5.5 Stability Analysis for General  Three-Time-Scale
Systems

Following with the philosophy of the proposed three-time-scale analysis methodologies employed up to
this point, the proposed three-time-scale asymptotic stability analysis takes advantage of this same phi-
losophy by employing a sequential time-scale analysis in order to prove the asymptotic stability properties
of the resulting autonomous three-time-scale system. This stability analysis is based on a double appli-
cation of the standard two-time-scale stability analysis (Kokotovié¢ et al., 1999; Kokotovié¢ et al., 1986;
Kokotovi¢ et al., 1987) on the X gpy full system, which is given by

i = f(i,9,%),%eR?, (5.117)
ey = §(2,9,%),5€RY, (5.118)
c1605 = h(%,§,%), 2 € R, (5.119)

with Bz C R¥, By C RY, B; C R* denoting closed sets of the variables Z, § and Z, respectively. It is
assumed that Lyapunov function candidates are available for all three subsystems, which were derived
and proposed in section 5.4. Up to this point, the obtention of the control laws, and the associated
Lyapunov function candidates required the use of a combination of both the T'D and BU methodologies
in order to create the necessary interconnection properties among the 7D and the BU subproblems.
These interconnection properties between the ¥ gp-subsystem from the BU methodology and the X py-
subsystem from the TD methodology, are signified through the interconnectivity playing role of the
intermediate X p-subsystem which serves, as indicated previously, as both the reduced order subsystem
of the Y py-subsystem, and also as the boundary layer for the ¥ gp-subsystem. These interconnection

properties are better depicted in Figure 3.9.

In the control design, the pursued strategy is to select the appropriate control law that first stabilize

the X py-subsystem, by applying the T'D time-scale analysis, which ultimately provide the control signal
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that stabilizes the ¥ p-subsystem, and once stable, and using the ¥ p-subsystem as the interconnection
subsystem, proceed with the design of the control law that stabilizes the ¥ g-subsystem. This control
design philosophy is required in order to satisfy the natural flow required to design a stable three-time-scale
system, in which the stable ultra-fast variable z evolves through the configuration space of the boundary
layer Xy-subsystem, as seen in Figure 3.9(a), towards the surface that defines the quasi-steady-state

equilibrium of the Yy -subsystem, that is Z = h(Z, 3), while Z and § behave as fixed parameters.

This evolution of the ultra-fast variable is denoted by the BU time-scale analysis decomposition of the
full ¥gpy full system in section 3.4.2, which is obtained by applying first the stretched time-scale given
by 7o = t/e1€2, thus becoming the reduced (slow) Xgp-subsystem defined by Eqns. (3.69-3.70), while
the boundary layer Xy-subsystem for the BU subproblem is given by Eq. (3.71), where the boundary
layer Yy-subsystem represents the movement of the ultra-fast variable z through its configuration space,

given by iz(j, ¥,%) = 0, which also provides its quasi-steady-state equilibrium, that is Z = ﬁ(j, 7).

As seen in Figure 3.9(a), during these first instants, the variables of the reduced order ¥gp-subsystem,
Z and g, in Eqns. (3.69-3.70), remain almost unchanged. This movement is defined as the ultra-fast
movement. To understand what happens after the ultra-fast variable reaches its configuration space,
iL(QE, ¥, Z) = 0, it can be recognized that the reduced order ¥ gp-subsystem can be treated again like a two-
time-scale singular perturbation problem by applying the second stretched time scale of the BU analysis,
and given by 7 = t/e1, which results in a new reduced (slow) Y g-subsystem defined by Eq. (3.73), and
a new boundary layer X p-subsystem given by Eq. (3.74) where the new boundary layer ¥ p-subsystem,
Eq. (3.74), represents the movement of the fast variable § as it moves on the configuration space of the
boundary layer ¥-subsystem towards the surface that defines the quasi-steady-state equilibrium of the
Y p-subsystem, and given by g(z, 7, ﬁ(:i, 7)) = 0, that is § = g(Z), as it can be seen in Figure 3.9(b).

It can also be observed that the slow variable x behaves as a fixed parameter, and z evolves on its
manifold. This movement is defined as the fast movement. Finally, the slowest movement is defined by
the evolution of the slow variable x as it moves in the manifold of the ¥ g-subsystem, which is given
by the intersection between the planes §(Z, ﬂ,fl(j,gj)) =0 and fz(i,gj, z) = 0. The slowest movement is
continued through §(Z, g, B(i,g)) N iz(:i,gj, Z) until it reaches the equilibrium, which in Figure 3.9(c) is
depicted at the origin. This natural flow of the variables for a stable three-time-scale system, are best
described in the BU analysis, section 3.4.2, and is this analysis the one that serves as the basis to prove

the asymptotic stability properties of the resulting closed-loop system.

The presented asymptotic stability analysis for the general three-time-scale autonomous system,
similarly to the intuitively description of the three-time-scale decomposition above described, only the
BU methodology is employed through a double application of the standard two-time-scale asymptotic
stability analysis (Kokotovié et al., 1986; Kokotovié¢ et al., 1987) similar as described in Figure 3.7. The
stability analysis focusses its attention on proving the evolution of the different time-scale subsystems of

the autonomous Y gpy full system.

The stability analysis is divided in two stages. In the first stage the stability analysis focusses on
proving the stability properties of the degenerated ¥ gp-subsystem, while in the second stage, and using
the results obtained, focuses on proving the stability properties for the full ¥ gz system. Thus the first
stage will be denoted as X.gp Stability Analysis, while the second stage will be denoted as Xgpy Stability
Analysis.

The first stage of the asymptotic stability analysis for the general three-time-scale system is applied,
by decomposing the X gpy full system into a two-time-scale subsystem by applying first the Bottom-
condition, that is, applying first the stretched time-scale given by 7o = t/e1£2, and assuming that the ultra-

fast variable Z evolves on its quasi-steady-state equilibrium, that is, zZ = fl(i, 7). The resulting reduced
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order (slow) Y gp-subsystem is given by Eqns. (3.69-3.70), while the boundary layer 3 -subsystem for
the BU subproblem is given by Eq. (3.71), the quasi-steady-state of the boundary layer Xy-subsystem
is given by fl(:i, 7), with fl(i, 7) evolving on its own configuration space, and both & and § are considered
like fixed parameters. Figure 5.2 describes the Bottom-sequence of the BU time-scale decomposition,
where, the solid-line box represents the full X gpy system, while the ¥ gp-subsystem is encapsulated with
the dotted-line box.

The asymptotic stability analysis of this first stage is continued by recognizing that the resulting ¥ gp-
subsystem, Eqns. (3.69-3.70), can be treated again like a two-time-scale singular perturbation problem by
dealing with the subsystem that results after applying the stretched time-scale given by 71 = t/e1, where
the new reduced (slow) X g-subsystem is now defined by Eq. (3.73), and the new boundary layer (fast)
Y p-subsystem is now given by Eq. (3.74), with § = g(Z) being an isolated root of 0 = §(z, g,ﬁ(j,g)),
and with Z being treated like a constant. Figure 5.3 describes the Up-sequence of the BU time-scale
decomposition where, again, the solid line box represents the full Xgpy system, the X gp-subsystem
is encapsulated with the dotted line box, and the ¥ g-subsystem is depicted with the dash-dotted line

box.

The stability analysis of the X gp-subsystem, Eqns. (3.69-3.70), is performed assuming that the X;-
subsystem variables evolve in their own configuration space. The analysis of this first stage is performed
using the standard method for two-time-scale systems (Kokotovié et al., 1986; Kokotovié¢ et al., 1987;
Kokotovié¢ et al., 1999), in which the associated Lyapunov functions for the ¥ and X subsystems, must
satisfy certain growth requirements on f (z,9, B(j, 7)) and g(, 7, fl(j, 7)) by satisfying certain inequalities.
These growth requirements are described in detail in Section 5.5.1 for the general three-time-scale problem,
and extended to the helicopter model in Chapter 6. As a result of the fulfillment of these growth
requirements, a new Lyapunov function, V1 (&, 3), is obtained for the singularly perturbed ¥ g p-subsystem

as a weighted sum of the associated Lyapunov functions Vs(Z) and Vg (Z,7), resulting in

where 0 < d; < 1. This concludes the Y gr Stability Analysis. Figure 5.4 resumes this first stage of
the Ygp Stability Analysis, including the growth requirements on f (f,g,ﬁ(i,gj)) and § (f,g,ﬁ(i,gj))
which are described in detail in Section 5.5.1. In the second stage of the stability analysis, denoted as the
Ygru Stability Analysis, the standard two-time-scale stability analysis method is applied again taking

advantage of the results obtained in the previous stage.

The Y gp Stability Analysis analyzed and proved the asymptotic stability properties of the resulting
reduced order Y gp-subsystem, Eqns (3.69-3.70), which is treated like a two-time-scale system in which
the boundary layer ¥y-subsystem is assumed to be moving through it configuration space. The Xgp
Stability Analysis yielded a Lyapunov function for the ¥gp-subsystem, Vi (Z,§), that can now be used
to conduct the stability analysis for the complete Ygpy system, which, for convenience, is rewritten

as
X = F(x2), x€RY, (5.121)
e1625 = h(%, %), 2 € R, (5.122)

with By C RX, B; C R? denoting closed sets, and with F(Y, Z) being given by Eqgs. (5.117) and (5.118),
that is given by

F()Z,Z) N l f(f(ag) ] _ [ Jf(j’g’z:) ] : (5.123)

X 2)

Q>
—
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where y represents the augmented state vector given by
N T
2 { i } . (5.124)

The Lyapunov function obtained in the first stage of the stability analysis, Vi (%, ) = V1(X), becomes
the Lyapunov function for the F (X, 2) system. The newly augmented singularly perturbed Ygpy system,
Eqns. (5.121-5.122), can be treated like a two-time-scale singular perturbed system by applying again
the Bottom-condition, that is making €2 = 0, yielding the reduced order ¥ gp-subsystem, given by

~ S~ 1~ f()?,fl(f())
X = F(uh(x) = l , (5.125)

9(x%, h(x))
which is equivalent to the X gp-subsystem defined previously in the first stage of the stability analysis,
Equs. (3.69-3.70), while the boundary layer X;-subsystem is defined by
dz t

Rl NI - 5.126
dTQ (Xaz)a T2 5152, ( )

with the associated Lyapunov function for the ¥y-subsystem given by Vi (X, 2) = Vu (2 —h(x)) = Vu (%),
where fl()Z) represents the equilibria of the boundary layer Yy-subsystem, Eq. (5.126), which is given
by

0=h(X,2) = %2 =h(x) = h(z,7). (5.127)

Figure 5.5 describes Y gpy stability analysis where again, the solid-line box represents the full X gpy
system, while the > gp-subsystem is encapsulated with the dotted-line box. In a similar analysis to the
one conducted in the first stage, the new Lyapunov functions must satisfy certain growth requirements
for F(x, %) and fz()z, Z) by satisfying certain inequalities. These growth requirements are described in
detail in Section 5.5.3, and as a result of the fulfillment of these growth requirements, a new Lyapunov
function, Va(x, 2), is obtained for the full ¥ gpy system as a weighted sum of both V;(x) and Vy (%),

resulting in
VQ()Z? 2) = (1 - dQ)Vl ()2) + dQVU(Xa 2)7 (5128)

where 0 < dy < 1. Figure 5.5 describes the complete Y gpy asymptotic stability analysis, including the
growth requirements on F (¥, 2) and fz()z, Z) which are described in detail in Section 5.5.3, while Figure
5.6 depicts both the Y¥gr and the Y gpy asymptotic stability analysis for the generic three-time-scale
singularly perturbed system, where it can be observed the existing interconnection properties between
both stages, such that the composite Lyapunov function V;(x) for the reduced order ¥ gp-subsystem
in the Xgpy Stability Analysis is the composite Lyapunov function that was obtained during the Xgp
Stability Analysis. Recall that the Lyapunov function candidate for the entire singular perturbation
problem, V2 (Vs, Vr, Vi), is defined as a weighted sum of the three Lyapunov functions of each of the

three singularly perturbed subsystems, Vg, Vg, and Vy, respectively, and therefore can be rewritten

as

Vg(.i‘, Y, 2) = Oqu(.i‘) + CYQVF(Q) + asVy (i, Y, 2), (5.129)
with

(5] = (17d1)(17d2):17d17d2+d1d2,

9 = (1 — dg),

Q3 = dg.

The resulting g, X and 3y-subsystems, defined by Eqns. (3.73), (3.74), and (5.126), respectively, ap-
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proximate the X gy system according to the theory of singular perturbed systems (Kokotovié¢ et al., 1999;
Kokotovié¢ et al., 1986; Kokotovi¢ et al., 1987). Following sections describe the proposed three-time-scale
asymptotic stability analysis for a generic model. For completeness purposes only the asymptotic stabil-
ity analysis for the generic model is described in this chapter. The asymptotic stability analysis for the
helicopter model is left for chapter 6, while the asymptotic stability analysis for the simplified example,

is left, for completeness, to Appendix C.

5.5.1 General Ygr Stability Analysis

This section describes in detail the general asymptotic stability requirements for the X gp-subsystem
by applying the BU-methodology. The stability analysis of the ¥ gp-subsystem is performed assum-
ing that the Xy-subsystem variables evolve in their own configuration space. The analysis of this
first stage is performed using the standard method for two-time-scale systems (Kokotovié¢ et al., 1986;
Kokotovié¢ et al., 1987; Kokotovié et al., 1999), in which the previously derived Lyapunov functions for
the ¥g and X p subsystems, that is Vg and Vp, respectively, must satisfy certain growth requirements
on f (z,9, fl(j, 9)) and §(z, 7, fl(j, ¥)) by fulfilling certain inequalities. These growth requirements for the
Y gr-subsystem take the form of inequalities that must be satisfied by the Lyapunov functions, and can

be divided in three main groups:

e Reduced order growth requirements, if they refer to the properties that must posses the reduced order
subsystem, f(Z,§(Z),h(,7)) in Eq. (3.73).

e Boundary layer growth requirements, if they refer to the properties that must posses the boundary

layer subsystem, ¢(z,7,h(z,7)) in Eq. (3.74).

e Interconnection growth requirements, if they refer to the properties that must posses both subsys-
tems in conjunction to prove the continuity between both the reduced order and the boundary layer

subsystems.

The properties for the isolated equilibrium at the origin are discussed in Assumption 5.5.1. The growth
requirements of both, the reduced, and boundary layer subsystem are addressed in Assumptions 5.5.2
and 5.5.3, respectively, while the growth requirements that combine both reduced and boundary layer
system requirements, called interconnection conditions, are defined in Assumptions 5.5.4 and 5.5.5. These

Assumptions are all described in detail bellow.

Assumption 5.5.1 Isolated Equilibrium of the Origin
The origin (z =0, y =0) is a unique and isolated equilibrium of the Ygp-subsystem, Eqns. (3.69-5.70),

1.€.

0= f(0,0,h(z, 7)), (5.130)
0 = §(0,0,h(z, 7)), (5.131)

moreover, § = (&) is the unique root of

0=4 (x 7, B(i,g)) : (5.132)

0 = §(2,8(%),h(, 7)), (5.133)
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and there exists a class k function pi(-) such that

| &@) I<p(lz ). (5.134)

The reduced order growth requirements are obtained by first considering the system given by Eq.
(3.69), and adding and subtracting f(&, (), h(Z, 7)) to the right-hand side of Eq. (3.69), resulting in
the expression given by

= f(58@).0@.9) + 7 (7.0.0.9) - F (2.80).0.5)) (5.135)
where the term f(:i, z, ﬁ(j, 7)) — f(:i, g(x), fl(i, 7)) can be viewed as a perturbation of the reduced order
Y g-subsystem, Eq. (3.73). Being therefore natural to first satisfy the growth requirements for Eq. (3.69)
and then consider the effect of the perturbation term f(z, 7, h(%,4)) — f(&, &(&),h(Z,7)). Therefore let

proceed to define first the reduced order growth condition.

Assumption 5.5.2 Reduced System Conditions
There exists a positive-definite and decreasing Lyapunov function candidate Vs(Z) that satisfies the

following inequality

Ws(@)\" 7 (x pos o 2z
) F(2.86).0.9) < —avi@), (5.136)
where ¥1(+) is a scalar function of vector arguments which vanishes only when its argument are zero, and

satisfying that & = 0 is a stable equilibrium of the reduced order system.

Assumption 5.5.3 Boundary-Layer System Conditions
There exists a positive-definite and decreasing Lyapunov function candidate Vp(Z,3) such that for all

(%,9) € Bz x By satisfies

Ve(2,5) > 0, Vi§ # &(&) and Vi (2, §(2)) = 0, (5.137)
and
T
(52) 4 (5.05.) < ~assi (G- @), (5.138)

where Vr(Z,9) is the Lyapunov function candidate of the boundary layer X p-subsystem, Eq. (3.74), in
which & is treated as a fized parameter, and ¢1(-) is a scalar function of vector arguments which vanishes
only when its arguments are zero, and satisfying that § — g(Z) is a stable equilibrium of the boundary

layer system.

Both 91 (-) and ¢1(-) are scalar functions of vector arguments that vanish only when their arguments

are zero, i.e., 11 (Z) = 0 if and only if £ = 0, and will both be referred as comparison functions.

Assumption 5.5.4 First Interconnection Condition

The Lyapunov functions Vs(Z) and Vg(Z,q) must satisfy the so called interconnection conditions. The
first interconnection condition is obtained by computing the derivative of Vs(Z) along the solution of Eq.
(5.1385), yielding

Vs@) = 257 (a,8@),0.9) + D2 [ (5.0.505) -  (5.80),50.9)]
< —on@) + 22 [} (2.0.56.9) - 7 (.80),56.9)] (5.139)
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thus assuming that

(ngfc@)T 7 (2.9.0.9) - [ (#.8@).02.9)] < Bren@ o (7). (5.140)
so that
Vs < —a1di (&) + B (@)1 (7 - §(3)). (5.141)

Inequality (5.140) determines the allowed growth of f (i,gj,fl(i,gj)) in ¢, and in typical problems,

verifying Assumption 5.5.4 reduces to verifying the inequality
|7 (2,5.8.9)) = 7 (2.8@),89)) | < 1@)e1(5 - 8(@)), (5.142)

which implies that the rate of growth of f (50, 7, B(i, g)) cannot be faster than the rate of growth of the

comparison function ¢ ().

Assumption 5.5.5 Second Interconnection Conditions

The second interconnection condition is defined by the inequality

(%)T f (:c 9 B(i,ﬂ)) < 1¢1(9) + Botb1 (2)¢1(9), (5.143)

where 11 (+) and ¢1(-) have been both previously defined by satisfying Assumptions 5.5.2 and 5.5.2.

5.5.2 Fulfillment of the General >Xsr Stability Analysis

If assumptions 5.5.1, 5.5.2, 5.5.3, 5.5.4, and 5.5.5 are all satisfied, then the growth requirements of
f(z,9,0(&,9)) and §(&,7,h(Z,Z)) are satisfied, and with the Lyapunov functions Vs(z) and Vg (%, %)
defined, a new Lyapunov function candidate V;(Z, ) is considered and defined by the weighted sum of

Vs(Z) and Vr(Z,9), results in
Vi(Z,9) = (1 = d1)Vs(Z) + i Ve(y), di € (0, 1), (5.144)

for 0 < d; < 1. The newly defined function V;(Z, ) becomes the Lyapunov function candidate for the
singular perturbed ¥ gp-subsystem, Eqns. (3.69-3.70). To explore the freedom in choosing the weights,
lets take d; as an unspecified parameter in the interval (0,1). From the properties of Vs(Z) and Vp(Z, 7)
and inequality (5.134), that is || g(Z) ||< p1 (|| Z ||), where p1(-) is a & function, it follows that V1 (Z, ) is
positive-definite. Computing the time derivative of V; (Z, 7) along the trajectories of f (i, 7, h(z, gj)) and

g (~a ga B(j, g)) , resulting in

Moo= - d) D (5 0h@) + 2 (2.0.0@0) + b G F (2.0.56.)
= 0-a) 25 (7.80).0,9)
b =) 22 [ (2.0.56.9) - 7 (7.80),56.9)]
+ Z—i%A f,gﬁ(@,g))+d1%f(:z,g,ﬁ(5c,g)). (5.145)

The fulfillment of inequalities defined in Assumptions 5.5.2, 5.5.3, 5.5.4 and 5.5.5, implies that Eq.
(5.145) can be expressed as

Vi < —(1—d)ardi (&) + (1 — di)Brin (2) 1 (5 — E(E))

- Z—iazqﬁ(@ — &(7)) + di7191 (5 — 8(%)) + d1 2t (2)61(§ — (7))
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h@ ] (1= di)as L= )P — Ldifo
o1(p) | | ~L0-d)B - Ldis (5_12 _%)

: [ 1(/;1550)) ] ' (5.146)
1\Y

This translates into that the right hand side of Eq. (5.146) is a quadratic form in ¢ (%) and ¢1(3—8g(z)),
where the quadratic form is negative-definite when
o 1
d1(17d1>041 <€—12 ")/1> > Z[(l*dl)ﬂl +d152]2, (5147)
which is equivalent to
1

—_ >
€1 [e5Ke%)

[aw + (1 —d)B1 + dB2)?] . (5.148)

1

4(1 —d)d

It is important to note that in the above development only a1 and as are required by definition to be
positive. The other three parameters, 31, 82, and 7 could, in general, be positive, negative or zero. In
most problems, however, when trying to satisfy the interconnection inequalities defined by Eqns. (5.140)
and (5.143), it is common to do so using norm inequalities, leading automatically to nonnegative values of
B1, B2, and ;. Therefore, as suggested in the literature (Kokotovi¢ et al., 1986; Kokotovi¢ et al., 1987;
Kokotovié¢ et al., 1999) throughout the reminder of this thesis it is assumed that 8; > 0, f2 > 0, and
v > 0. Inequality (5.148) can be rewritten as

e < 192 =ey,. (5.149)

arm + 4(1_716[1% [(1—d1)B1 + di Ba)?

Inequality (5.149) shows that for any choice of dy, the corresponding V; is a Lyapunov function for the
singular perturbed Y gp-subsystem, Eqns. (3.69-3.70), for all £; satisfying Eq. (5.149). The dependance
on the right-hand side of Eq. (5.149) on the unspecified parameter d; is sketched in Figure 5.7. It can

be easily seen that the maximum value of £;, occurs at

Sl
d; = , 5.150
LB+ B ( )
yielding also the upper bounds on ¢; such
19
&f=—"- 5.151
Y aim + B ( )

Therefore, it can be inferred that the equilibrium point of the singularly perturbed Xgp-subsystem,
Equns. (3.69-3.70), is asymptotically stable for all 1 < ej. The number e} is the best upper bound
on €1 that can be provided by the above presented stability analysis. Assumptions 5.5.2, 5.5.3, 5.5.4
and 5.5.5 are summarized in Table 5.1, where it can be seen the similarities between the two-time-scale
growth requirements described in Section 5.2.1, and the three-time-scale growth requirements for the

Y. gp-subsystem. The asymptotic stability analysis presented can be summarizes in Theorem 5.5.1.

Theorem 5.5.1 : Let inequalities (5.136), (5.138), (5.140), and (5.143) be satisfied. Then the origin is
an asymptotically stable equilibrium of the singularly perturbed ¥gp-subsystem, Eqns. (3.69-3.70) for all
g1 € (0,e7), where €% is given by Eq. (5.151). Moreover, for every number di € (0,1)

Vi(2,9) = (1 — d1)Vs(Z) + diVr(E,7), (5.152)

is a Lyapunov function for all e1 € (0,e1,), where €1, < €7 is given by Eq. (5.149).

Theorem 5.5.1 can be summarized by understanding that £ = 0 is an asymptotically stable equilib-
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rium of the reduced Y g-subsystem, Eq. (3.73), and § = g(Z) is an asymptotically stable equilibrium of
the boundary-layer X p-subsystem, Eq. (3.74), uniformly in Z, that is, the ¢ — ¢ definition of Lyapunov
stability and the convergence § — g(Z) are uniform in & (Vidyasagar, 2002), and if f (i, 7, fl(i, g)) and

g (i, 7, h(z, g)) satisfy certain growth conditions on the reduced and boundary-layer systems, Assump-
tions 5.5.2, 5.5.3, 5.5.4, and 5.5.5, then the origin is an asymptotically stable equilibrium of the sin-
gularly perturbed Y gp-subsystem, Eqns. (3.69-3.70), for sufficiently small £;. (Kokotovié¢ et al., 1986;
Kokotovié¢ et al., 1987; Kokotovi¢ et al., 1999).

Corollary 5.5.2 : Let assumptions of Theorem 5.5.1 hold for all &, § € R™ x R™ and let Vs(&) and
Vr(Z,79) be radially unbounded (i.e Vg(Z) — oo as ||Z]] — oo and Vr(Z,§) — o0 as ||§ — &(&)|| — o0).
Then, the equilibrium (T =0, § = 0) is globally asymptotically stable for all &1 < e7.

Corollary 5.5.3 : Let all the assumptions of Theorem 5.5.1 hold with 1 (Z) = ||Z|| and ¢1(§ — g(Z)) =
|7 — &(@)|| and suppose, in addition, that Vs(z) and Vp(Z,7) satisfy the inequalities

eapi(Z) < Vs(@) < expi(7), Vi € Bs, (5.153)
e3ds(§ — 8(2)) < Vr(%,9) < eadi(§ — 8(2)), V(Z,7) € Bz x By, (5.154)
where e1, ..., e4 denote positive constants. Then, the conclusions of Theorem 5.5.1 hold, with exponential

stability replacing asymptotic stability.

Corollary 5.5.4 : Let f (f,ﬂ,fl(:ﬁ,gj)), g (i,g,ﬁ(i,g)), and fl(i,gj) be continuously differentiable. Sup-
pose that & = 0 is an exponentially stable equilibrium of the reduced Lg-subsystem, Eq. (3.73), and
g = &(Z) is an exponentially stable equilibrium of the boundary layer L F-subsystem, Eq. (8.74), uni-

formly in T, i.e.
[9(m1) — &(@)[| < Kie™*™[|5(0) — g(2)], (5.155)

where o and Ky are independent of T. Then, the origin is an exponentially stable equilibrium of the

singularly perturbed g p-subsystem, Eqns. (3.69-3.70), for sufficiently small 1.

This concludes the first step of the asymptotic stability analysis, the Y gp Stability Analysis. The
results obtained in this first step, the composite Lyapunov function for the ¥ gp-subsystem, V;, and the
upper bounds, dj and €7, along with the demonstration that the singularly perturbed ¥ gpr-subsystem is
asymptotically stable for g1 € (0, &4, ), will be employed in the Xgpy Stability Analysis that is conducted

in the following section.

5.5.3 General Xgpy Stability Analysis

Once proven the asymptotic stability of the Y gp-subsystem, Eqns. (3.69-3.70), the Ygspy Stability
Analysis is conducted recalling that the Y gp Stability Analysis provides with a composite Lyapunov
function, Vi (Z,7), Eq. (5.144), that satisfies the growth requirements between both f(Z, 7, h(#,7)) and
g(z, ﬂ,ﬁ(j, 7)), therefore, and using these results, it can be continued to prove the asymptotic stability
properties of the full Xgpy system, which for convenience is rewritten , as noted in Eqns. (5.121-5.122).
The asymptotic stability of the newly defined, but equivalent X gpy full system, is studied by treating
the system like a two-time-scale problem, whose reduced (slow) X gp-subsystem is given in Eq. (5.125),

and the boundary layer Xj-subsystem given in Eq. (5.126).

The Lyapunov function obtained during the Xgp Stability Analysis, V1, Eq. (5.144) becomes the Lya-
punov function for the F (X, Z) system, while Vi becomes the Lyapunov function for the Xj-subsystem.

In a similar analysis to the one conducted in the first stage, the new Lyapunov functions must define the
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growth requirements for F (X, 2) and iL()Z, Z) by satisfying certain inequalities. These growth requirements

can be divided in three main groups:

e Reduced order growth requirements, if they refer to the properties that must posses the reduced order
subsystem, F(y,h(Y)) in Eq. (5.125).

e Boundary layer growth requirements, if they refer to the properties that must posses the boundary

layer subsystem, §(¥,h(¥)) in Eq. (5.126).
e Interconnection growth requirements, if they refer to the properties that must posses both subsys-
tems in conjunction to prove the continuity between both the reduced order and the boundary layer

subsystems.

The properties for the isolated equilibrium at the origin are assumed in Assumption 5.5.6. The growth
requirements of both the reduced and boundary layer system separately are addressed in Assumptions
5.5.7 and 5.5.8 respectively, while the growth requirements that combine both reduced ¥ gr and boundary
layer Xy-subsystem requirements, called interconnection conditions, are defined in Assumptions 5.5.9 and

5.5.10. These Assumptions are all described in detail bellow.

Assumption 5.5.6 Asymptotic Stability of the Origin

The origin (x =0, 2 =0) is a unique and isolated equilibrium of Eqns. (5.121-5.122), i.e.
0= F(0,0), (5.156)
0 = h(0,0), (5.157)

moreover, Z = fl(f() s the unique root of
0=h(x,2), (5.158)

m B)Z X Bg, i.€.

0 = h(%,h(x)), (5.159)
and there exists a class k function pa(-) such that

IR < p2 (X 1) (5.160)

The reduced order growth requirements are obtained by first considering the system given by Eq.
(5.121), and adding and subtracting F()E,fl(f()) to the right-hand side of Eq. (5.121) resulting in the
expression given by
where the term F(x, ) — F(%, B()Z)) can be viewed as a perturbation of the reduced order X gp-subsystem,
Eq. (5.125). Similarly, as in the Y gp Stability Analysis, it is natural to first satisfy the growth require-
ments for Eq. (5.125), and then consider the effect of the perturbation term F(¥,%) — F(¥,h(X)).

Therefore let proceed to define first the reduced order growth condition.

Assumption 5.5.7 Reduced System Conditions
There exists a positive-definite and decreasing Lyapunov function candidate V1 (X) that satisfies the fol-
lowing inequality

(%@)T F (%.5(0) < —0at3(2). (5.162)
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where 9(+) is a scalar function of vector arguments which vanishes only when its argument are zero, and

satisfying that x = 0 is a stable equilibrium of the reduced order system.

Assumption 5.5.8 Boundary-Layer System Conditions
There exists a positive-definite and decreasing Lyapunov function candidate Vy (X, Z) such that for all
(X, Z) € By x Bz satisfies

Vu(%,2) > 0, VZ £ h(X) and Vu(¥,h(%)) =0, (5.163)
and
(B2) hx.2) < iz~ B, a1 >0, (5.164)

where Vi (X, Z) is the Lyapunov function candidate of the boundary layer Yy -subsystem, Eq. (5.126), in
which X is treated as a fized parameter, and ¢2(-) is a scalar function of vector arguments which vanishes
only when its arguments are zero, and satisfying that z — B()Z) is a stable equilibrium of the boundary

layer Xy -subsystem.

Both 15(+) and ¢2(+) are scalar functions of vector arguments that vanish only when their arguments

are zero, i.e., 12(x) = 0 if and only if ¥ = 0, and both will be referred as comparison functions.

Assumption 5.5.9 : First Interconnection Condition

The Lyapunov functions V1(x) and Vu(X,Z) must satisfy the so called interconnection conditions. The
first interconnection condition is obtained by computing the derivative of Vs(Z) along the solution of Eq.
(5.161), yielding

no = DR (i) + 52 [Fns) - P (5.165)
< —aatdi+ ot [P - F ()], (5.166)
thus assuming that
(2200 [ 5,5) - 7 (1560)] < Atz ~ B0 (5.167)
so that
Vi < —ast3(X) + B3t (X)d2(X — h(X)). (5.168)

Inequality (5.167) determines the allowed growth of F (X, 2) in Z, and , similarly as in the Ygp Stability

Analysis, in typical problems, verifying Assumption 5.5.9 reduces to verifying the inequality
|F 2= F (2000) | < 020622~ B(R)), (5.169)

which implies that the rate of growth of F (X, Z) cannot be faster than the rate of growth of the comparison
function ¢y (-).

Assumption 5.5.10 : Second Interconnection Conditions

The second interconnection condition is defined by the inequality

ox
where 12 (+) and ¢2(-) have been previously defined by satisfying assumptions 5.5.7, and 5.5.8.

(M) F(X,2) < 7203(2) + Batha(X) ha(2), (5.170)
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5.5.4 Fulfillment of the General Xsr; Stability Analysis

If assumptions 5.5.6, 5.5.7, 5.5.8, 5.5.9, and 5.5.10 are all satisfied, then the growth requirements of F(¥, %)
and g(x, 2) are satisfied, and with the Lyapunov functions V;(x) and Vy (X, 2) defined, a new Lyapunov
function candidate Va(¥, Z) is considered and defined by the weighted sum of V; (¥) and Vi (X, Z), resulting

Va(X, 2) = (1 = d2)Vi(X) + d2Vu(2), d2 € (0,1), (5.171)

for 0 < d2 < 1. The newly defined function V»(x, ) becomes the Lyapunov function candidate for the
singular perturbed Y gpy system, Eqns. (5.121-5.122). To explore the freedom in choosing the weights,
lets take do as an unspecified parameter in the interval (0,1). From the properties of V;(x) and Vy (X, 2)
and inequality (5.160), that is || h(X) ||< p2 (|| X ||), where po(-) is a & function, it follows that Va(X, 2) is
positive-definite. Computing the time derivative of Vs (X, Z) along the trajectories of F (¥, 2) and § (X, %)

results in
o= (=) PR+ TG0 + G (1)
— (- &) P F (D)
+o-d) P [P - F (vi0)]
+ %%g(;},zwdz%ﬁ(y,z). (5.172)

The fulfillment of inequalities in Assumptions 5.5.7, 5.5.8, 5.5.9 and 5.5.10, implies that Eq. (5.172)

can be expressed as

Vo < —(1—da)ast? (i) + (1 — d2)Bstba(X)d2(X — h(X))

- Eazx%(i — (X)) + d2v2¢3(X — h(X)) + daBatha(X)Pa(X — h(X))
P2(X) ! (1 —dz)as —3(1 —ds)Bs — 3dafs
o l P2(Z — B(f()) ] *%(1 —d2)Bs — %d254 dsy (% — 72)
8 i (5.173)
¢2(Z —h(X))

The right hand side of Eq. (5.173) is a quadratic form in ¥, (x) and ¢o (¥ — h(Y)), where the quadratic

form is negative-definite when

« 1
d2(1 — d2)as <—4 - 72> > 2 [(1 = d2)Bs + dafa)” . (5.174)
E1E9 4
which is equivalent to
: +— (- )+ dB) (5.175)
— ! — (1 - . .
E1E9 Q304 37 4(1 — d)d 3 4

It is important to note that in the above development only a3 and a4 are required by definition to be
positive. The other three parameters, 83, 84, and ~ could, in general, be positive, negative or zero, and
similarly as in the X g Stability Analysis, and throughout the reminder of this thesis, it is assumed that
B3>0, B4 > 0, and 2 > 0. Inequality (5.175) can be rewritten as

s
g169 < 374 =e1,89,. (5.176)

1
agys + 0 —b)d [(1 — d2)B3 + dofa)?
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Recalling that in the Xgp Stability Analysis, e1 was selected as €1 < €7, therefore allowing to rewrite
inequality (5.176) as

30q

=E&2,4-
[(1—d2)ps+ d254]2)

£y < (5.177)

1
€1 (CY3'72 + m

Recall also that from the Ygp Stability Analysis, the maximum value of £; was given by Eq. (5.151)
therefore, by selecting €1 = €7, the smallest possible upper bound on €2, and thus the most conservative

upper bound, becomes

by < A B152 Q304 =e,. (5.178)

1
N2 gy + 10— [(1— d2)Bs + da B4

Inequality (5.178) shows that for any choice of ds, the corresponding Vs is a Lyapunov function for the
singular perturbed Ygpy system, Eqns. (5.121-5.122), for all e, satisfying (5.178). The dependance on
the right-hand side of Eq. (5.178) on the unspecified parameter ds is sketched in Figure 5.8. Therefore,

it can be easily seen that maximum value of 3, occurs at

B3
B3+ B’

yielding a conservative upper bound on &2

4 = (5.179)

« o+ BB aszay
€0 = . 5.180
2 ajay  asys + B384 ( )

Therefore, it can be inferred that the equilibrium point of the singularly perturbed X gpy full system,
Equs. (5.121-5.122), is asymptotically stable for all €5 < 5. The number &} is the best upper bound
on € that can be provided by the above presented stability analysis. Assumptions 5.5.7, 5.5.8, 5.5.9
and 5.5.10, are summarized in Table 5.2, where it can be seen the similarities between the two-time-scale
growth requirements described in Section 5.2.1, and the three-time-scale growth requirements for the full

Y.sru system. The asymptotic stability analysis presented can be summarizes in Theorem 5.5.5.

Theorem 5.5.5 : Let inequalities (5.162), (5.164), (5.167), and (5.170) be satisfied. Then the origin is
an asymptotically stable equilibrium of the singularly perturbed Yspy full system, Eqns. (5.121-5.122)
for all e5 € (0,e5), where €5 is given by Eq. (5.180). Moreover, for every number ds € (0,1)

VQ()??'g) = (1 *dQ)V1()~()+d2VU()?,2), (5181)

is a Lyapunov function for all e € (0,e2,), where €5, < €5 is given by (5.176).

Theorem 5.5.5 can be summarized by understanding that y = 0 is an asymptotically stable equilibrium
of the reduced Xgp-subsystem, Eq. (5.125), Z = B()Z) is an asymptotically stable equilibrium of the
boundary-layer ¥ -subsystem, Eq. (5.126) uniformly in X, that is, the e — § definition of Lyapunov
stability and the convergence Z — fl(f() are uniform in ¥ (Vidyasagar, 2002), and if F (Y, 2) and § (X, %)
satisfy certain growth conditions on the reduced and boundary-layer systems, assumptions 5.5.7, 5.5.8,
5.5.9 and 5.5.10, then the origin is an asymptotically stable equilibrium of the singularly perturbed
Yspy full system (5.121-5.122), for sufficiently small e2. (Kokotovi¢ et al., 1986; Kokotovié et al., 1987;
Kokotovi¢ et al., 1999).

Corollary 5.5.6 : Let assumptions of Theorem 5.5.5 hold for all X, Z € R™ x R™ and let V1(X) and
Vu(x, Z) be radially unbounded (i.e Vi(X) — oo as ||X|| = co and Vi (X, Z) — oo as |2 — h(X)| — o0).
Then, the equilibrium (x =0, Z = 0) is globally asymptotically stable for all e2 < 3.
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Corollary 5.5.7 : Let all the assumptions of Theorem 5.5.5 hold with v (%) = ||X| and ¢2(X —h(X)) =

IZ=h(x)| and suppose, in addition, that V1 (X) and Vy (X, Z) satisfy the inequalities

es¥i(X) < Wi(X) < evi(X), VX € By, (5.182)
erdy(X—D(X) < Vu(X2) < esdi(¥ —h(X)), V(X, %) € By x Bz, (5.183)
where es, ..., eg denote positive constants. Then, the conclusions of Theorem 5.5.5 hold, with exponential

stability replacing asymptotic stability.

Corollary 5.5.8 : Let F(X,%), §(X, %), and fl(f() be continuously differentiable. Suppose that x = 0
is an exponentially stable equilibrium of the reduced Ygp-subsystem, Eq. (5.125), and Z = B()Z) s an
exponentially stable equilibrium of the boundary layer Yy -subsystem, Eq. (5.126), uniformly in X, i.e.

12(72) = b(R)]| < Kae™*™[|2(0) — h(D)], (5.184)

where o and Ko are independent of x. Then, the origin is an exponentially stable equilibrium of the

singularly perturbed system (5.121-5.122), for sufficiently small 2.

This concludes the second and final step of the Y gp; asymptotic stability analysis. The methodology
here presented is applied to the three-time-scale helicopter problem in chapter 6, and for completeness
and to help understanding the methodology, it is also applied to the simplified example and presented in
Appendix C. The following section extends the singularly perturbed stability analysis to a more general
N*'_time scale system by proposing a 4'"-order time-scale singularly perturbed system as an example,
as conducted in chapter 3, to describe the 7D and BU time scale analysis for the general N*"-time-scale

analysis.
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| Assumption 5.5.2 |
| Section 5.2 | 2L | f(z, h( ) o | v |
| Ssr | 20 [ FEe@)0h@g) | az0 | wi@ |
| Assumption 5.5.3 |
| Section 5.2 | L | 9(z, 2) | Qs | ¢(z—h(x)) |
| ome | (@) | seaiea) | w20 |aG- \
| Assumption 5.5.4 |
| Section 5.2 | ZX | flz,2) | flzh(z) | B |
s [(ZBD) | jeaben) | fea@hee) | szo |
| Assumption 5.5.5 |
| Section 5.2 | ¥ | flz,2) | o | Bo |
o (@) | sosiow | nzo | mzo |

Table 5.1: Parameters for the Comparison Functions and Inequalities that Guarantee the Asymptotic
Stability Requirements for the ¥ gr Subsystem.

| Assumption 5.5.7

| Section 5.2 | Y| f(z,h(z) |  az | ¥(z) :
| oSsr | BRSO FRA®) | esz0 | (0|
| Assumption 5.5.8 |
| Section 5.2 | LY | g(z,2) | as | @ ) |
| me () | s | w0 \@ \
| Assumption 5.5.9 |
| Section 5.2 | 22| f(x,2) | fleh@) | B |
s | (B®) | A | Feiq) | om0 |
| Assumption 5.5.10 |
| Section 5.2 | ¥ | f(z,2) | Ve | fa |
v () | Fwo | wxo | sz |

Table 5.2: Parameters for the Comparison Functions and Inequalities that Guarantee the Asymptotic
Stability Requirements for the Y gz Subsystem.
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5.6 Top-Down and Bottom-Up Stability Analysis Extension for
N'"-Time-Scale System

Similarly as conducted in section 3.6, in which the three-time-scale analysis was extended to a more
general N*'-time-scale system, the Ygpy Stability Analysis can be extended to a more general Nt/-
time-scale system, thus becoming a valuable tool that can be used to analyze the asymptotic stability
properties for any general singularly perturbed closed loop system. The major difference between the
three-time-scale Ygpy Stability Analysis previously presented, and the N'-time-scale general stability
analysis, here resented, lies in the fact that after each subsystem reduction that results when applying the
selected stretched time scale, the designer can continue with the selected time-scale decomposition using
either the T'D or the BU methodologies, depending on the system structure of the resulting reduced
order and boundary layer subsystems, and what suits better in order to proceed with the time-scale

decomposition. The methodology is divided in two steps

e In the first step the methodology defines the N — 1 decomposed two-time-scale subsystems that will

be used in the asymptotic stability analysis.

e In the second step, a stability analysis of the resulting N — 1 reduced order two-time-scale singularly

perturbed subsystem is conducted.

In the second step, the stability of each of resulting N — 1 reduced order two-time-scale singularly
perturbed subsystem is analyzed by starting with the smaller order reduced two-time-scale system, and
continues by using the obtained stability results to demonstrate the stability properties of the higher
order two-time-scale systems. Similarly as in section 3.6, to help in understanding the extension of the
Nt'_time-scale Stability Analysis, the author has chosen a general 4*-time-scale system similar to the
one previously defined in chapter 3, Eqns. (3.76-3.79), but expressed in error dynamics, that will allow to
simplify the proposed asymptotic stability methodology. The proposed 4‘"-time-scale system is rewritten

in its error dynamics form given by

i = f(&,7 %), iecR?, (5.185)

ey = §(&,9,%2,w), 5€RY, (5.186)
c1605 = k(& §,% W), € R, (5.187)
£169630 = (%, 9, 2,W), & € RY. (5.188)

with Bz C R, By C RY, B; C R?, and By C R™, denoting closed sets, and where for simplicity, Eqns.
(5.185-5.188) will be denoted as the gy, full system. Recall also that, the error dynamics are defined
by

Po— oo, (5.189)
i o= oy (5.190)
M (5.191)
b = w_w (5.192)

with z*, y*, z*, and w* being the desired values of the state vectors x, y, z, and w, respectively. Figure
5.9 presents a schematic of the four possible solutions for the 4‘"-time-scale, similarly to Figure 3.10,
where the columns defined by A, B and C' defined the three two-time-scale reduced order subsystems.
For conciseness, only the third of the combinations, Case 3, will be briefly described in this section since
uses a similar philosophy employed for the three-time-scale Xgpy Stability Analysis presented in this
chapter.
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5.6.1 1°-Sequential Two-Time-Scale Decomposition for a 4-Time-Scale

System

The first step, the sequential decomposition into the N — 1 two-time-scale system, is a simple algebraic
substitution in which the sequential order reduction is obtained after applying each of the three asso-
ciated stretched time scales. That is, for Case 3 that will be described in this section, the sequential
decomposition starts by first applying the stretched time scale given by

t

T3 = P (5.193)
resulting in the reduced order ¥ gpy, -subsystem given by

&= [(29,%175,2), (5.194)

ey = §(,9,21(7,9,2)), (5.195)

1622 = h (&, 9, %,1(%, 7, %)) , (5.196)

depicted with the short-dashed line box in Case A, Figure 5.9. The associated boundary layer system,
denoted as Xy, for simplicity, is given by

dii .
X (@95 W), (5.197)

is

0=1i(%7,20) = 0 =1(Z,7,2). (5.198)

The second sequential decomposition continues by applying the second stretched time scale given
by
t
Ty = : (5.199)
£1€2

to the Ygpy,-subsystem, Eqns. (5.194-5.196), resulting in the reduced order Y gp-subsystem given
by

G F (f,g,ﬁ(j,g),i(j,g)) : (5.200)
e1§ = § (2.9 8(2,9),1(7,9)) (5.201)

depicted with the dashed-dot line box in Case B, Figure 5.9. The associated boundary layer system,
denoted as Xy, for simplicity, is given by

dz - -

d7§
with h (Z, ) representing the quasi-steady-equilibrium of the Yu,,-subsystem when setting 2 = 0, that
is

0=h (27,21 7,2) — Z = h(@,§). (5.203)

Finally, the third and last sequential decomposition is obtained by applying the last stretched time
scale given by
t
"= (5.204)
€1
to the Y gp-subsystem, Eqns. (5.200-5.201), resulting in the reduced order ¥ g-subsystem given by
i=f(58@),0),

i(i)) ; (5.205)
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and with the boundary layer system, denoted as ¥y, for simplicity, is given by

dy (. =

d_ :g<$,y,h(1',y),l(1',y)) ) (5206)

T1

with g (%) representing the quasi-steady-equilibrium of the X, -subsystem when setting e; = 0, that
is

0= (#9.0(2.9),1@,5.1)) - § = &), (5.207)
where both subsystems can be seen in Case C' in Figure 5.9. The second step of the stability analysis starts
by analyzing the stability of the smallest two-time-scale subsystem which, for Case C, corresponds to the
Y gp-subsystem, Eqns. (5.200-5.201), which is decomposed into the reduced order ¥ g-subsystem, Eq.
(5.205), and the boundary layer 3 p-subsystem, Eq. (5.206). It is also assumed that the Lyapunov function
candidates are chosen following the same guidelines as in Section 5.4, in which they are derived considering

the natural Lyapunov functions for the associated equilibrium equations, resulting in Lyapunov functions

of the form

Vs = Vs(%), (5.208)
Ve = Vr(§-8@)=Vr@), (5.209)
Vo, = Vo, (2-0@9) =V, (), (5.210)
Vo, = Vu, (0—12,9,2) =V, (@), (5.211)
with
g = y—8@), (5.212)
2 = z-D(%,7), (5.213)
o= W —i(Z,7,2), (5.214)

where g, Z, and w represent the error between the state vectors and the quasi-steady-state equilibria of the
associated boundary layer subsystem which they form part. In following sections, the stability analysis

of the resulting decomposed two-time-scale subsystems, the second step, is briefly described.

5.6.2 2"?-Sequential Two-Time-Scale Decomposition for a 4-Time-Scale

System

The sequential stability analysis for the 3"%-order two-time-scale system, which for the Case C corresponds
to the X g subsystem, is performed, similarly as in the generic three-time-scale asymptotic stability analy-
sis, using the standard method for two-time-scale systems (Kokotovi¢ et al., 1986; Kokotovi¢ et al., 1987;
Kokotovié et al., 1999), in which the Lyapunov functions for the g and X subsystems, that is Vg(Z)
and Vg (7), Eqns. (5.208) and (5.208), respectively, must satisfy the growth requirements on f(Z, 7, h,1)
and §(Z, 7, B,I) by satisfying similar inequalities to the one described in section 5.2.1, which are described

bellow:

e Reduced System Conditions 5.2.2.

e Boundary-Layer System Conditions 5.2.3.
e First Interconnection Condition 5.2.4.

e Second Interconnection Conditions 5.2.5.

Assumption 5.2.2, applied to the X gp-subsystem, Eqns. (5.200-5.201), is satisfied by recognizing

that there exists a positive-definite and decreasing Lyapunov function candidate Vg (&) that satisfies the



5.6. TD AND BU STABILITY ANALYSIS FOR NTH_TS SYSTEM 213

following inequality

(%ﬁ) f(7,8(2), h(2),i(7)) < —o191(), (5.215)

where 11 () is a scalar function of vector arguments which vanishes only when its argument are zero, and
satisfying that £ = 0 is a stable equilibrium of the reduced order system. Assumption 5.2.3 applied to the
Y. gp-subsystem, is satisfied by recognizing that there exists a positive-definite and decreasing Lyapunov

function candidate Vp(Z, ) such that for all (Z,7) € B; x By satisfies the inequality given by

we\"
a5 g\x,y,

where ¢1(-) is a scalar function of vector arguments which vanishes only when its arguments are zero, and

=

(%,9),1(%, 7)) < —a2d? (5 — (%)), (5.216)

satisfying that § — g(Z) is a stable equilibrium of the boundary layer system. The first interconnection

condition for the Y gp-subsystem, Assumption 5.2.4, consist in satisfying the inequality given by

Vs () ~ ~

(W)T 7@,5.1(.9).1(2.9) - J (7.8@),5@),1@)) | < Aren @)1 (), (5.217)

while the second interconnection condition for the ¥ gp-subsystem, Assumption 5.2.5, consist in satisfying

the inequality given by

N\ T
(av%@(y)) f(f,gj,ﬁ(i,g),f(j,g)) < 185 (§) + Botp1 (%) 1 (7). (5.218)

The fulfillment of assumptions 5.5.1, 5.5.2, 5.5.3, 5.5.4, and 5.5.5, applied to the helicopter Y gp-
subsystem by the fulfillment of inequalities 5.215, 5.216, 5.217, and 5.218, proves that the growth re-
quirements of f(:i, 7, fl(j, 7),i(2, 7)) and §(z, 7, ﬁ(j, #),1(Z,7)) are satisfied, and with the Lyapunov func-
tions Vg (Z) and Vr(Z,7), a new Lyapunov function candidate V;(Z, ) is considered and defined by the
weighted sum of Vs (%) and Vr(Z,7), given by

Vl(j, ﬂ) = (1 — dl)VS(Zi') + d1VF(ﬂ), dy € (0, 1), (5219)

for 0 < dy < 1. The newly defined function V; (Z, §) becomes the Lyapunov function candidate for the sin-
gular perturbed system X gp-subsystem, Eqns. (5.200-5.201). Similarly, as conducted for the general two-

time-scale methodology, computing the derivative V1 (Z, §) along the trajectories of f(:i, 7, ﬁ(j, 7),1(2,7))

and §(z, 7, h(Z,7),1(Z,y)) results in the upper bounds for both dj and €} given by

b1
dr = : 5.220
LB+ Be ( )
and
19
e =—" . 5.221
Y agy + BiBe ( )

Therefore, it can be inferred that the equilibrium point of the singularly perturbed X gp-subsystem,
Eqns. (5.200-5.201), is asymptotically stable for all 1 < e}. The number &} is the best upper bound
on £7 that can be provided by the above presented stability analysis. The asymptotic stability analysis

presented can be summarizes in Theorem 5.6.1.

Theorem 5.6.1 : Let inequalities (5.215), (5.216), (5.217), and (5.218) be satisfied. Then the origin
is an asymptotically stable equilibrium of the singularly perturbed system Xgp-subsystem, Eqns (5.200-
5.201) for all e1 € (0,e7), where €5 is given by Eq. (5.221). Moreover, for every number di € (0,1),
the resulting Lyapunov function V1(%,9), Eq. (5.219), is a Lyapunov function for all £1(0,eq4,), where
g1 < &} is given by Eq. (5.221).
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Theorem 5.6.1 can be summarized by understanding that £ = 0 is an asymptotically stable equilib-
rium of the reduced Y g-subsystem, Eq. (5.205), and g = g(#) is an asymptotically stable equilibrium of
the boundary-layer 3 p-subsystem, Eq.(5.206) uniformly in Z, that is, the e — ¢ definition of Lyapunov
stability and the convergence § — (&) are uniform in Z (Vidyasagar, 2002), and if f(Z,7, h(Z,7)) and
(2,7, fl(i‘, 7)) satisfy certain growth conditions on the reduced and boundary-layer systems, assumptions
5.5.1, 5.5.2, 5.5.3, 5.5.4, and 5.5.5, then the origin is an asymptotically stable equilibrium of the singu-
larly perturbed Y gp-subsystem, Eqns. (5.200-5.201), for sufficiently small 1. (Kokotovi¢ et al., 1986;

Kokotovié¢ et al., 1987; Kokotovié et al., 1999).

5.6.3 3"%-Sequential Two-Time-Scale Decomposition for a 4-Time-Scale

System

Once demonstrated the asymptotic stability properties for the Xgp-subsystem, Eqns. (5.200-5.201),
resulting in a valid Lyapunov function, Eq. (5.219), and with the upper bounds dj and e} being given
by Equs. (5.220) and (5.221), respectively, the strategy shifts towards, demonstrating the asymptotic
stability properties for the next higher order two-time-scale subsystem, which is given by Case B, that
is the Xgpy,, Eqns. (5.194-5.196).

Recall that as discussed previously, the ¥ gpy,-subsystem can be decomposed into a two-time-scale
subsystem by applying the stretched time scale given by 72, Eq. (5.199), resulting in the reduced order
(slow) model given by the ¥ gp-subsystem, Eq. (5.200-5.201), while the boundary (fast) layer is given
by the ¥y, -subsystem, Eq. (5.202). Recall also that employing a methodology similar to the one used
in the Ygpy Stability Analysis presented for the three-time-scale model in section 5.5.3, the stability
analysis for the Y gpy, -subsystem, Eq. (5.194-5.196), is conducted by considering the results obtained
in the previous step. These results provide the associated Lyapunov function for the reduced order X gp-
subsystem, V1 (&, ), and recalling that Vy, (%), Eq. (5.210), is the associated Lyapunov function for the
Xy
with the asymptotic stability analysis of the ¥ spy, -subsystem, let first introduced a change of variables
that allows to rewrite the X gpp, -subsystem, Eqns. (5.194-5.196) as

,-Subsystem, Eq. (5.202), this permits to analyze the stability of the ¥ gpy;,-subsystem. Prior to start

-

X1 = Fi(%,%i(x,2), x1 € RY, (5.222)
e1822 = h(x1,%1(x1,2)), 7 € R, (5.223)
with By, € RX! and B; C R* denoting closed sets, and where 1:“1()21,2,{()21,2)) represent the slow

dynamics of the ¥ gpy,-subsystem, when applying the stretched time scale 75 = t/(£1£2), which is also

equivalent to the X gp-subsystem defined in Eqns. (5.200-5.201), therefore, resulting in

it sty 2 | 00 2i ) | [ AERai. ] 2
g(XlaZal(Xlaz)) g(xvyazal(xlaz)
where y1 represents the augmented state vector given by
. T
2 [ i } - (5.225)

Therefore, the Lyapunov function Vi(x), Eq. (5.219), that was obtained in the previous stage of
the stability analysis, becomes the Lyapunov function for the P (X1, 2,5()21, Z)) subsystem. Both Lya-
punov functions, Vi (x1) and Vi, (X1, 2), must fulfill certain growth requirements for F1 (Y1, Z,1(X1, 2)),
and fz()zl,é,f(f(l,é)), by satisfying similar inequalities to the one described in section 5.2.1. Assump-
tion 5.2.2 applied to the Xgpy,-subsystem, Eqns. (5.194-5.196) is satisfied by recognizing that there

exists a positive-definite and decreasing Lyapunov function candidate V; (%) that satisfies inequality given
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by

MV1(x1) TF~~~ 5 9 -

() A b)) < —aad) (5.226)
where 15(+) is a scalar function of vector arguments which vanishes only when its argument are zero,
and satisfying that x; = 0 is a stable equilibrium of the reduced order system. Assumption 5.2.3 applied
to the Y gy, -subsystem, is satisfied by recognizing that there exists a positive-definite and decreasing
Lyapunov function candidate Vi, (X1, 2) such that for all (x1,2) € By, x B: satisfies inequality given

by

Vo e e s 20s Toe
(%) Al 16.2) < —audd(z - i) (5.221)

where ¢ (+) is a scalar function of vector arguments which vanishes only when its arguments are zero, and

satisfying that Z — h(x1) is a stable equilibrium of the boundary layer system. The first interconnection

condition for the ¥ gy, -subsystem, Assumption 5.2.4, consist in satisfying the inequality given by

av X T - ~ ~ T/~ ~ - ~ T~ T~ ~ ~ =~
(%) {F1 (X1, 2,i(X1,2)) — 1 (leh(Xl), I(Xl))} < B3 (X1)d2(Z —h(x1)), (5.228)
while the second interconnection condition for the X gpy, -subsystem, Assumption 5.2.5, consist in satis-

fying the inequality given by

Vo, kL AO\T = o s Lo - o
( 6521 : Fi (X1, %1(X1, 7)) <7263(2 = h(x1)) + Batba(X1)92(Z — h(x1))- (5.229)
The fulfillment of assumptions 5.5.1, 5.5.2, 5.5.3, 5.5.4, and 5.5.5, applied to the X gpy,-subsystem
by the fulfillment of inequalities 5.226, 5.227, 5.228, and 5.229, proves that the growth requirements
of Fy ()}1,2,1()}1,2)) and h (5(1,2,1(5(1,2)) are satisfied, and with the Lyapunov functions V;(x1) and

Vu, (X1, 2), a new Lyapunov function candidate V2(X1, 2) is considered and given by
Va(X1,2) = (1 — d2)V1(X1) + d2Vu, (X4, 2), d2 € (0, 1), (5.230)

for 0 < da < 1. The newly defined function Vs(x1,21) becomes the Lyapunov function candidate for the
singular perturbed X gp,-subsystem, Eqns. (5.194-5.196). Similarly as conducted for the general two-
time-scale methodology, by computing the derivative V5(¥1, Z) along the trajectories of F} (X1, 2,1(X1, 2))
and h ()21, 2,{()21, 2)) results in the upper bounds for both d4 and 5 given by

(5.231)

and

1 30y
10372 + 3B’
where recalling that the upper bound on &1 was defined in Eq. (5.221), therefore, by selecting £ = &7,

*

et = (5.232)

the smallest possible upper bound on €5, and thus the most conservative upper bound, becomes

el = a1y1 + B152 (%1071 ’ (5.233)
aras azye + B384

where it can also be observed that the upper bound on the X gy, -subsystem is a function of the previously
derived lower order stability analysis upperbounds. Therefore, it can be inferred that the equilibrium
point of the singularly perturbed X gpy,-subsystem, Eqns. (5.194-5.196), is asymptotically stable for all
€2 < €5. The number ¢ is the best upper bound on e that can be provided by the above presented

stability analysis. The asymptotic stability analysis presented can be summarizes in Theorem 5.6.2.

Theorem 5.6.2 : Let inequalities (5.226), (5.227), (5.228), and (5.229) be satisfied. Then the origin is
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an asymptotically stable equilibrium of the singularly perturbed system Sgpy, -subsystem, Eqns. (5.194—
5.196) for all eo € (0,e%), where &5 is given by Eq. (5.232). Moreover, for every number da € (0,1),
the resulting Lyapunov function Vo(X1, 2), Eq. (5.243), is a Lyapunov function for all £2(0,£4,), where
eq < &5 is given by Eq. (5.233).

Theorem 5.6.2 can be summarized by understanding that y; = 0 is an asymptotically stable equilibrium
of the reduced Ygp-subsystem, Equs. (5.200-5.201), and Z = fl(f(l) is an asymptotically stable
equilibrium of the boundary-layer ¥y, -subsystem, Eq. (5.202), uniformly in X1, that is, the ¢ — § defini-
tion of Lyapunov stability and the convergence z — fl(f(l) are uniform in x; (Vidyasagar, 2002), and if
F ()21, 2,5(5(1, 2)) and h (f(l, E,i(f(l, 2)) satisfy certain growth conditions on the reduced and boundary-
layer systems, assumptions 5.5.1, 5.5.2, 5.5.3, 5.5.4, and 5.5.5, then the origin is an asymptotically stable
equilibrium of the singularly perturbed X gp,-subsystem, Eqns. (5.194-5.196), for sufficiently small e.

(Kokotovié et al., 1986; Kokotovié¢ et al., 1987; Kokotovié¢ et al., 1999).

5.6.4 4"-Sequential Two-Time-Scale Decomposition for a 4-Time-Scale

System

Finally, once demonstrated the asymptotic stability properties for the X gy, -subsystem, Eqns. (5.194-
5.196), resulting in a valid Lyapunov function, Eq. (5.230), and with the upper bounds being given by
Eqns. (5.231) and (5.233), the strategy shifts towards, demonstrating the asymptotic stability properties
for the original higher order two-time-scale subsystem, which is given by Case A, that is the original
Ysru, system, Eqns. (5.185-5.188).

As seen in Case A, Figure 5.9, the X gpyy, original system is decomposed into a two-time-scale subsystem
by applying the stretched time scale given by 73, Eq. (5.193), resulting in the reduced order (slow) model
given by the Y gpp,-subsystem, Eqns. (5.194-5.196), while the boundary (fast) layer is given by the
Yy,,-subsystem, Eq. (5.197).

The stability analysis for the Ygpy, system, Eqns. (5.194-5.196), is conducted by considering the
results obtained in the previous step. These results provide the associated Lyapunov function for the
reduced order subsystem, X gry,-subsystem, resulting when applying the stretched time scale given by
73, given by Va(X, 2), and recalling that Vy, (w), Eq. (5.210), is the associated Lyapunov function
for the ¥y, -subsystem, Eq. (5.197), which permits to analyze the stability of the full Xgpy, system.
Prior to start with the asymptotic stability analysis of the ¥ gpy,-subsystem, and similarly as previously
conducted, let extend the change of variables that allows to rewrite the X gpy,-subsystem (5.185-5.188)

as
X2 = Fa(Xe,1,), X2 € R, (5.234)

c16063W = (X2, W), W € RY, (5.235)

with By, C RX2 and By C RY denoting closed sets, and where 152()22, W) represents the slow dynamics

of the Y gpy, system, when applying the stretched time scale 73 = t/(g1£2¢3), which is given by Eqns.
(5.194-5.196), that is

- [ Ey (%@
Fo(ia,w) & | F102D) (5.236)
L h(X27 ’LU)
where F} was previously defined in Eq. (5.224) as
A 2 | 1029 | (5.237)
L g(X27 ’LU)
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with yo being the augmented state vector given by
T T
w=ln 2] =[z 39 2], (5.238)

Therefore, the Lyapunov function Vs2(Y2) that was obtained in the previous stage of the stability analy-
sis, Eq. (5.230), becomes the Lyapunov function for the F5(Y2,w) subsystem. Both Lyapunov functions,
Va(X2) and Vy, (X2, Z2), must fulfill the growth requirements for F5(Y2, @) and i(X2, @) by satisfying cer-
tain inequalities. These growth requirements for the Xgpy, system take the form of inequalities which
are described bellow. Assumption 5.2.2 applied to the X gpy,-subsystem, Equs. (5.185-5.188), is satisfied
by recognizing that there exists a positive-definite and decreasing Lyapunov function candidate Vo ()

that satisfies inequality given by

6V2(>22) T~ ~ T/~ 2/~
v, ) Frl2i(x2)) < —asts™(x2), (5.239)
X2
where 15(-) is a scalar function of vector arguments which vanishes only when its argument are zero,
and satisfying that yo = 0 is a stable equilibrium of the reduced order system. Assumption 5.2.3 applied
to the Y gpy,-subsystem, is satisfied by recognizing that there exists a positive-definite and decreasing

Lyapunov function candidate Vi, (X, Z) such that for all (X2,w) € By, x By satisfies
Vo, \" s e
(B2 i3 @) < —ate® @ i) (5.240)
where ¢3(-) is a scalar function of vector arguments which vanishes only when its arguments are zero, and

satisfying that w — I(f(g) is a stable equilibrium of the boundary layer system. The first interconnection

condition for the ¥ gpy,-subsystem, Assumption 5.2.4, consist in satisfying the inequality given by

W\ 1~ o )
( ;}E{Z{z)) {F2(X2; w) — Fy (X2, I(Xz))} < Bs3(X2)ds(w —i(X2)), (5.241)
while the second interconnection condition for the ¥ gpy,-subsystem, Assumption 5.2.5, consist in satis-

fying the inequality given by

NV, (Ko, @)\~ . NP
(%) Fy (X2, @) < 7303% (0 — 1(X2)) + Botbs(X2) 93 (@ — 1(X2))- (5.242)
The fulfillment of assumptions 5.5.1, 5.5.2, 5.5.3, 5.5.4, and 5.5.5, applied to the helicopter X gp-
subsystem by the fulfillment of inequalities 5.239, 5.240, 5.241, and 5.242, proves that the growth require-
ments of Fy (Y2,w)) and i (Y2, W) are satisfied, and with the Lyapunov functions Va(X2) and Vg, (X2, )

, a new Lyapunov function candidate V3(X2,w) is considered and given by
V3()22, 2) = (1 — dg)VQ()ZQ) + d3Vy, ()22, 2), ds € (0, 1), (5.243)

for 0 < d3 < 1. The newly defined function Vs(¥2,22) becomes the Lyapunov function candidate for
the singular perturbed X gp,-subsystem, Eqns. (5.185-5.188). Similarly as conducted for the general
two-time-scale methodology, by computing the derivative Vs(X2,w) along the trajectories of F (Y2, )

and %()22, W) results in the upper bounds for both dj and €} given by

(5.244)

and

1 506
£h = . 5.245
37 e1e asys + Bsfs ( )

Recalling that the selected upper bounds on e; and e2 were defined in Eqns. (5.221), and (5.232),

respectively, therefore, by selecting 1 = €}, and €3 = €5, the smallest possible upper bound on €2, and
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thus the most conservative upper bound, becomes

o aam +B1f2  aras  azye+ B384 asop
3 arae oy + PP azas s34 B0
azye + B30 asag

_ , 5.246
azay  asys + B586 ( )

where, again, it can be observed that the upper bound on the ¥ g, system is a function of the previously
derived lower order stability analysis upperbounds. Therefore, it can be inferred that the equilibrium
point of the singularly perturbed Xgpy, full system, Eqns. (5.185-5.188), is asymptotically stable for all
€3 < €3. The number €3 is the best upper bound on €3 that can be provided by the above presented

stability analysis. The asymptotic stability analysis presented can be summarizes in Theorem 5.6.3.

Theorem 5.6.3 : Let inequalities (5.239), (5.240), (5.241), and (5.242) be satisfied. Then the origin is
an asymptotically stable equilibrium of the singularly perturbed system Xgpu,-subsystem, Eqns. (5.185-
5.188) for all e3 € (0,e%), where % is given by Eq. (5.246). Moreover, for every number dsz € (0,1),
the resulting Lyapunov function Vs(X2, W), Eq. (5.243), is a Lyapunov function for all 3(0,eq4,), where
ea < €% is given by Eq. (5.246).

Theorem 5.6.3 can be summarized by understanding that yo = 0 is an asymptotically stable equilibrium
of the reduced Ygpy,-subsystem, Eqns. (5.194-5.196), and @ = i(X2) is an asymptotically stable
equilibrium of the boundary-layer ¥y, -subsystem, Eq. (5.197), uniformly in y2, that is, the e — ¢
definition of Lyapunov stability and the convergence w — i(x2) are uniform in Yo (Vidyasagar, 2002),
and if F (X2, w) and i (Y2, ) satisfy certain growth conditions on the reduced and boundary-layer sys-
tems, assumptions 5.5.1, 5.5.2, 5.5.3, 5.5.4, and 5.5.5, then the origin is an asymptotically stable equi-
librium of the singularly perturbed Xgpy, full system, Eqns. (5.185-5.188), for sufficiently small 3.
(Kokotovi¢ et al., 1986; Kokotovié et al., 1987; Kokotovi¢ et al., 1999).

This concludes the Case 3 of the four possible combinations that appear in Figure 5.9. Despite all four
combinations should provide equivalent results, from the author’s experience point view, Case 3 represents
the more natural and simpler methods out of the possible TD and BU time-scale decompositions. The
selection of Case 3 represents the simpler out of the possible combinations for the 3"?-time-scale reduction,
since follows the natural flow of time scales, starting with the stability analysis of the slowest, and simpler
model, the ¥ gp-subsystem, Eqns. (5.200-5.201), which has been considerably simplified due to the fact
that the quasi-steady-state equilibria of the associated boundary layer subsystems, fl(i), and i(Z), have

been assumed to reach their space of configuration.

The extension to the N*'-time scale can easily be identified from the analysis of the 4*-time-scale
example above described. The sequential strategy of decomposing the 4*-time-scale system, into simpler
two-time-scale subsystems provides a valuable tool that permits determining the stability properties of

any resulting singularly perturbed N*"-time-scale systems.
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Figure 5.9: 4*"-time-scale Top-Down and Bottom-Up analysis strategy
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5.7 Conclusions

A methodology that guarantee the asymptotic stability of the proposed control laws has been presented.
In order to do so, and after analyzing the complexity of the existing methods to demonstrate the asymp-
totic stability properties of multiple time-scale singularly perturbed system, understanding for multiple
time-scale systems those having at least three time-scales, a step-by-step sequential stability analysis

methodology for three-time-scale systems has been derived and presented.

The asymptotic stability analysis methodology is based on the T'D and/or BU time-scales analysis here
presented, although for the system here analyze, and for completeness, only the BU asymptotic stability
analysis is considered. The asymptotic stability analysis provides the necessary tools to guarantee the
stability properties for any three-time-scale singularly perturbed autonomous systems, which permits
to simplify the burden associated with the analysis multiple time-scale systems employing the existing
stability methods.

The same philosophy that permits to analyze the asymptotical stability of an autonomous singular
perturbed subsystem, provides, in a step-by-step process similar to the control strategy methodol-
ogy, with the associated Lyapunov functions for each of the subsystems based on the natural desired
closed loop response of each of the resulting subsystem. This methodology, much simpler that the one
employed in the existing multiparameter time-scale analysis (Abed, 1985d; Abed, 1985e; Abed, 1985b;
Kokotovi¢ et al., 1987; Kokotovié et al., 1986), permits to have Lyapunov function candidates for each
of the defined subsystems a priori of starting the stability analysis, and with a simple structure. The
Lyapunov structure is fixed a priori, reducing the fulfillment of the growth requirements among the differ-
ent time-scale subsystems to obtain the appropriate comparison functions and demonstrating the growth

requirements among the different subsystems.

The proposed stability analysis methodology permits to simplify the burden associated with the analysis
of non-autonomous singular perturbed systems by providing, in the same methodology, all the ingredients
needed to infer asymptotical stability to an autonomous singular perturbed subsystem. The proposed
sequential step-by-step two-step process allows to study the asymptotic stability properties of the closed
loop system, and also proposes a methodology to obtain Lyapunov function candidate for each of the
singularly perturbed subsystems. The validity of the methodology has been proved by obtaining the
stability upper bound limits on the boundary layers, €1 and €2, and ensuring that the selected parasitic
constants for the proposed three-time-scale model satisfy €1 < €] and €2 < €3 for the three-time-scale

model.

The TD and BU time scale analysis is also extended to the more general N*"-time scale analysis using
a 4th-time-scale general example. The sequential strategy of decomposing the 4*"-time-scale system,
into simpler two-time-scale subsystems provides a valuable tool that will help in analyzing the stability
properties of any general N*'-singularly perturbed time-scale system, and provide additional tools for

the time-scale analysis for singularly perturbed systems.



Chapter 6

Stability Analysis for the Helicopter
Model

6.1 Introduction

As noted in chapter 5, only the asymptotic stability analysis for helicopter problem is conducted in this
chapter, while, for completeness and conciseness of the thesis, the complete stability analysis for the three-
time-scale simplified model is left for Appendix C. The simplified example stability analysis can be used
by the reader for better understanding the scope of the presented three-time-scale asymptotic stability
analysis, following the same philosophy intended by the author throughout this thesis, which is to serve

as an instrument that will ease the comprehension of the presented stability analysis methodology.

It is important to note that the simplified example has been an active part to the development of the
selected strategies in both, the control and the asymptotic stability analysis, to the point that, in the final
stages of this thesis, the simplified example has been the tool employed by the author for both, generate
mathematical proofs, and validate the generality of the proposed strategies that have been later applied to
the helicopter model. Furthermore, in order to reduce the readers’s task, the simplified example stability
analysis, presented in Appendix C, can be used as the solely source for understanding the asymptotic
stability methodology here presented, and leave the asymptotic stability analysis for the helicopter model,

for later reading, once the methodology have been fully understood.

Also for simplicity and conciseness of the thesis, the asymptotic stability analysis is only conducted
on the TD control design for both the helicopter model in this chapter, and the simplified example
in Appendix C, while the stability analysis for the CF — TD control design, although it has also been
conducted with similar results to those obtained for the T'D control design, are omitted to reduce the
length of the thesis.

Similarly as in the general three-time-scale asymptotic stability analysis, section 5.5, the asymptotic
stability analysis for the helicopter Y gpy full system is based on a double application of the standard
two-time-scale stability analysis (Kokotovié et al., 1999; Kokotovié¢ et al., 1986; Kokotovi¢ et al., 1987).
Following sections describe in detail the asymptotic stability analysis for the helicopter model, although
first, and for completeness of the chapter, a resumed description of the closed-loop helicopter model, with

the different reduced and boundary layer subsystems is presented.

221
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6.2 Helicopter Model for the Asymptotic Stability Analysis

This section describes the closed-loop error-dynamics for the helicopter model, which for conciseness,
as previously mentioned, is only analyzed for the closed-loop error dynamics of the T'D control design.
Recall the original three-time-scale helicopter model given by Eqns. (3.56-3.60), and recall also that
the closed-loop dynamics are obtained using the laws derived in T'D control design, Eqns. (4.82) and
(4.115),

Resulting in the three-time-scale closed-loop helicopter model given by

& = ajor?[sin(z1) — sinhig (7)) — ba(x — 2*), (6.1)

g1y1 = 1Yz, (6.2)
e12 = a%(co+csz1 — Vea + e521) + agys + agys + co, (6.3)
€16921 = ¢r2a, (6.4)
g1€229 = a9z + coza + Jo {(1 + \/W)Q - 1] . (6.5)

These closed-loop equations can be rewritten into its error dynamics formulation recalling the in-
troduced error dynamics state vector, Eqns. (5.30-5.32), thus defining the closed-loop error dynamics

as
= aw@+z")? [sin(,%l +27) — sinhigg (5:)] b, (6.6)
€1§1 = c1Y2, (6.7)
e1jp = (E+2")? <02+C3(51+ZT)— C4+Cs(51+2f)) + aofiz + asf + co, (6.8)
c162%1 = o, (6.9)
. 2
E1€222 = a9(21 + ZT) + c9Zo + Jo |:(1 =+ £/ 8317(@7 g})) — 1:| s (6.10)
where
Cq
Ke=Kc—aip2=——""—, (6.11)
C5C11C13
and
~9 7 ~ 7 ~
. a9z + (ag + by, )¥2 + by, §1 + co
= - 6.12
’U(ZE,y) (.i'+$*)2 ) ( )
~ o~y Cg
= —— 6.13
Uss(Z, (7)) Gra ) (6.13)

s (2.8@) = s |(14 Vo) 1. (6.14)

See section 4.4 for further details in the control design. To help with the proof of the growth require-
ments that will be conducted in following sections, the following sections recap on the degenerated sub-
systems for the helicopter model, that is the Xg, X, Xy, Xgp, and Xy p-subsystems. It also describes
the quasi-steady-state equilibria for the X and Xy-subsystems, that is ¥ = g(Z) and z = fl(fc, ),
respectively, and also, the associated Lyapunov functions for the three degenerated subsystems, Vg, Vr
and Vy. Recall that both § = g(Z) and z = fl(:i, y) are expressed as in vector form to account for
the equilibria of both the vertical displacement and collective pitch dynamics, Eqns. (6.35) and (6.23)

respectively.
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6.2.1 Degenerated Subsystems for the Helicopter Model

For completeness, and to help while reading the asymptotic stability analysis, this section collects the
different degenerated subsystems employed throughout the rest of the asymptotic stability analysis for
the helicopter model, that is the associated Xg, Xp, Xy, Xsr, and Xy p-subsystems. The associated
quasi-steady-state equilibria for the Yz and Yy -subsystems are also collected. These subsystems were
previously derived to determine the appropriate Lyapunov functions, thus the complete derivations will
not be conducted again, and only a brief description is presented in this section. Further detains can be

found in section 5.4.2.

Recalling from section 5.4.2, the reduced order X gp-subsystem is given by

i = aio(Z+x")(sin(hy (&, 9) + 27) —sinhy.) — bai, (6.15)
a1 = i, (6.16)
e192 = (Z42%)? (02 +C3(f11(5c,@) +27) — \/04 +C5(f11(5c,i/) +zf))

+  aofa + a9l + cs, (6.17)

therefore being f’(j, 7, ﬁ(j, 7)) given by

i = ap(@+z")2(sin(hy (2, ) + 27) — sinhygg) — e, (6.18)

and (%, §,h(Z, §)) being defined by

ain = o, (6.19)
e = (540 (e ealiad) + ) - Ver+ i) +50)
+  agl + aoi + cs. (6.20)

The boundary layer for the Xgpy system is given after applying the stretched time-scale Y-

subsystem
dz;
o = 0z 6.21
dry Cr22, ( )
dz 2
d_j'2 = ag(Z1 + 7)) + coZa + Jo [(1 + \/s30(Z, :T/)) — 1] , (6.22)
2

with fl(:i, ¥) being the quasi-steady-state equilibria of the boundary layer Yy -subsystem, Eq. (6.21—
6.22),

- hi(Z. 4
g = | 0 (6.23)
h2 (‘Ta y)
with the quasi-steady-state equilibria given by
- 2
0(7,9) = Z = s {(1 + Vo307, 9)) -~ 1] — (6.24)
ho(Z,9) = Z=0. (6.25)
The Yy-subsystem can be reorganized resulting in
dzy
— = Z 6.26
T om, (6.26)

dz o N —=—=)’
d_72 = ag(Z1 + 27) + coZa + Jo [(1+\/m) _1]
9

= ag (21 ~ I (3, @)) + co (22 ~ o3, @)) . (6.27)
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The Yy-subsystem is rewritten in state space form by considering the change of variables given by
2 =z — h(&, ), reducing to
&
L= Ay, (6.28)
dTQ

where

0
Ay = ( “ ) . (6.29)
ag Cg

The f(:i, 7, fl(:i, ¥)) subsystem reduces to

i o= aio(@+a")? [sin (52 {(1 + \/W)Q - 1D - sinﬁlss] b7, (6.30)

and the X gp-subsystem, §(Z, ¥, h(Z, g)), reduces to

i
_dZi = i, (6.31)
A (6.32)
dT1 Y1 Y22y

The Y p-subsystem can also be expressed in state space form as

dy . = .
T1
being
0
Ap={ - % ). (6.34)
_byl _by2
The quasi-steady-state equilibrium of the X p-subsystem, g(), is given by
- g1(7)
gT) = ~ (~ , (6.35)
82(7)
with
gi(z) = w1, (6.36)
g(x) = 0. (6.37)

i o= [(% &) h(&9) = f(&&),h( g7)
= a10(F +a¥)? sin(ﬁl(:z,g(:z))Jrz;)—sinﬁlss} ~byd
(6.38)

I

|
S
8
8

|
N
%
&

6.2.2 Lyapunov Function Candidates for the Helicopter Problem

This section recaps on the associated Lyapunov functions for the different degenerated subsystems ob-
tained in section 5.4, being the selected associated Lyapunov function for the slow X g-subsystem given

as

1
Vs (%) = 2Pg§:2, (6.39)

with

Qs
Po — 6.40
s 2b,’ ( )
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therefore resulting in

Vs (&) = =Pg#® = <232, (6.41)

The selected associated Lyapunov function candidate for the fast ¥ p-subsystem is given by

N 1. - 1 N 1 - .
Ve(9) = 59" Pry = 5pp i + 5050 +Prpinds, (6.42)
with
qfi (I; 11+ 622) + 621qf2
pPp = ! 2?) Ey B = = Cf1Qf1 + szqua (643)
y1Yy2C1
- I _¢ 6.44
Pfa = = = U4y, ( . )
2by1
qr C1 +4q 26 1
Pra = W = Cf4qf1 + Cfsqf27 (645)
y1 Y2
with
b ,c1+ b2
cp = Lt lv (6.46)
bylbyZCl
62
bylby2cl
1
o= = (6.48)
Y1
Cp = (6.49)
. 2Bylgyz, .
C = St 6.50
F 2by1by2 ( )

Finally, the selected associated Lyapunov function candidate for the ultra-fast ¥;-subsystem is given
by

. 1. . 1 R 1 . PN
Vu(z) = §zTPUz = §pulzf + §pujz§ + Puy 2122, (6.51)
with
2=2—h(9), (6.52)
and with
2 2
a9C7qu; — quy g — CoQu
Pu = mm R = Cuss + Cua s, (6.53)
qu
Puy = *T“;:Cug(]ul, (6.54)
C7qu; — QusG9
Pus = Ty ey Tuwalm + Cus Qus (6.55)
agCg
with
2
Co, = 209 (6.56)
2@96769
ag
Cu, = — ) 6.57
) Do (6.57)
1
Cpe = —— 6.58
V= oo (6.59)
Coup = —2 (6.59)
2&969
Cow = ——20 (6.60)
2(1969



226 CHAPTER 6. STABILITY ANALYSIS FOR THE HELICOPTER MODEL

6.3 Ygp Stability Analysis for the Helicopter Model

This section provides the proof for the asymptotic stability requirements for the helicopter model X gp-
subsystem by applying the Bottom-Up-methodology using the same methodology as the one described
previously for the general three-time-scale model in chapter 5. These requirements are defined by applying
Assumptions, 5.5.1, 5.5.2, 5.5.3, 5.5.4, and 5.5.5, to the helicopter resulting autonomous system, Equns.
(6.6-6.10).

Similarly as in the Y gp general asymptotic stability analysis presented in section 5.5.1, the stabil-
ity analysis for the helicopter Xgp Stability Analysis is performed assuming that the Xy-subsystem
variables evolve in their own configuration space. The analysis of this first stage is performed us-
ing the standard method for two-time-scale systems (Kokotovi¢ et al., 1986; Kokotovi¢ et al., 1987;
Kokotovié et al., 1999), in which the previously derived Lyapunov functions for the g and Xp-
subsystems, that is Vg, and Vg, Eqns. (6.41) and (6.42), respectively, must fulfill certain growth re-
quirements on f(Z, 9, h(Z, 9)) and §(z, 9, h(Z, 7)), Eqns. (6.30) and (6.31-6.32), respectively, satisfying
certain inequalities. The fulfillment of these inequalities for the X g helicopter subsystem are described

bellow.

6.3.1 Isolated Equilibrium of the Origin for the Helicopter Y ¢r-Subsystem:
Assumption 5.5.1

The origin (Z = 0, g = 0) is a unique and isolated equilibrium of the X gp-subsystem, Eqns. (6.15-6.17),

i.e.

moreover, y = g(Z) is the unique root of

0= g(‘%’@aﬁ(‘%a@))v (663)
in Bz X Bg, i.e.
0= g(#, &), h(7, ), (6.64)

and there exists a class x function p;(+) such that

| &@) [I<p(l ). (6.65)

The reduced order growth requirements are obtained by first considering the system given by Eq.
(6.30), and adding and subtracting f(Z, &(Z), h(Z, 7)), Eq. (6.38), to the right-hand side of Eq. (6.30)
yielding

i=f(2.8@).h9)+

(& 9.0(z.9)) - f (2.8(). 8 9)) (6.66)

gy

where the term f’(j, Y, fl(i, v))— f(j, g(x), fl(i, ¥)) can be viewed as a perturbation of the reduced order
Y g-subsystem, f’(:i,g(:i),ﬁ(:i, ¥)). It is therefore natural to first satisfy the growth requirements for
Eq. (6.38) and then consider the effect of the perturbation term f(Z, 9, h(z, §)) — f (i,g(i), h(z, f/))

Therefore let proceed to define first the reduced order growth condition.
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6.3.2 Proof of Assumption 5.5.2: Reduced System Conditions for the
Helicopter Y gp-Subsystem

Recalling from Assumption 5.5.2, the Yg-subsystem Lyapunov function candidate, Vg(Z), must be

positive-definite and decreasing, and must also satisfy the following inequality

WVs(@\" 2/ o = N
(%582 7 (2,805 ) < ~arvt(a) (6:67)
where 11 (+) is a scalar function of vector arguments which vanishes only when its argument are zero, and
satisfying that £ = 0 is a stable equilibrium of the reduced order system. The left-hand side of inequality

(6.67) is given by recalling that

1
Vs (2) = §P55;2, (6.68)
being therefore easy to see that
aVs(@)\ " N
— = P 6.69
( 0z ST (6.69)
therefore substituting f(z, (), h(z, 9)), Eqns. (6.38), and Eq. (6.69) (6.67), and recalling that Pg = 2%5
yields ’
WVs@\" 7 = - 1
(P52 (0200, B, 3) = - Pabud® =~ 55 (6.10)
therefore assumption (6.67) can be satisfied by selecting ; and 1 (Z) such
a < 1, (6.71)

() = 1/Qsi?, (6.72)

with

Qs = 305 (6.73)

6.3.3 Proof of Assumption 5.5.3: Boundary-Layer System Conditions for the
Helicopter Y gp-Subsystem

Recalling from Assumption 5.5.3, the ¥ Lyapunov function candidate Vg (Z, ¥) must be positive-definite
and decreasing, such that for all (Z, ) € Bz x By satisfies inequality

Ve(z,9) >0, Vg #g(&) and Vp(Z,g(z)) =0, (6.74)
and
(52) 9603.5.9) < 26y - 2@, (6.75)

where ¢1(+) is a scalar function of vector arguments which vanishes only when its arguments are zero,
and satisfying that g — g(#) is a stable equilibrium of the boundary layer ¥ p-subsystem. The left-hand
side of inequality (6.75) is defined after recalling that

I P
Ve(y) = 59" Pry, (6.76)
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where P represents the solution to the associated Lyapunov function given by

P ( ph P ) 7 (6.77)
Pr, Pfs
with py,, py,, and py, defined in Eqns. (6.43), (6.44), and (6.45) respectively, being therefore easy to see
that
ave\" T
—_— = (Pry 6.78
(52) = wea)”. (6.78)

and also recalling Eq. (6.33), results in

and therefore, substituting Eqns. (6.78) and (6.79), into Eq. (6.75) results in

ove\' ., .
W g(%ya

with M g defined by

Mp=PpAp = ( M e ) : (6.81)

Mmpy,,  MFyy

t

(,9)) = (Pry)" Ary =9 " PrAry = 3" My, (6.80)

being
mp, = 7pfzz’y1a (6'82)
My = PRHCG— pfzbyw (6'83)
Mmp, = _pfsl;yl’ (684)
Mry, = PfC1— pfsl;yza (685)

where by substituting the solutions to the associated Lyapunov equation py,, py,, and py,, Eqns. (6.43),
(6.44), and (6.45), respectively, into Eq. (6.80) results in

T
(%) 9(,9,0(7,9) = 9" Mry = *% (37 Qry) = f% (#2q, + #245,) » (6.86)
with @y being defined in Eq. (5.87), and let QF = —5* and where
i = %’ (6.87)
i = %’ (6.88)

and therefore rewriting Eq. (6.80) as

Ve . P
therefore, inequality (6.89) can be satisfied by selecting ao and ¢(y — g(Z)) such
ay <1, (6.90)

0§ -&@) = (97Qrd) = (07} + ir3)

=

(6.91)

For simplicity, from now on the comparison function ¢ (g — g(z)) it is refereed as ¢1(g).
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6.3.4 Proof of Assumption 5.5.4: First Interconnection Condition for the
Helicopter Y gp-Subsystem

The Lyapunov functions Vs(Z) and Ve (y), Eqns. (6.41), and (6.42) respectively, must satisfy the so called
interconnection conditions. The first interconnection condition is obtained by computing the derivative
of Vs (Z) along the solution of Eq. (6.66), resulting in a expression similar to Eq. (5.139), which provides
the first interconnection inequality

~ T
(P52 (760350 90) - 70,800,506 9)] < o @) (6.92)

with the comparison function 1 (Z) and ¢1(¢), being defined in Eqns. (6.72) and (6.91) respectively.
Inequality (6.92) determines the allowed growth of f (z,9, fl(:i, ¥)) in g, and in typical problems, verifying
inequality (6.92) reduces to verifying the inequality

|F@ 9.5 9)) - f(#.8(@),h(@.9))|| < 1@ (9). (6.93)

which implies that the rate of growth of f (z,9, h(i, ¥)) cannot be faster than the rate of growth of the
comparison function ¢;(-). The left-hand side of inequality (6.92) is given by recalling the results of Eq.
(6.78), and recalling both f(Z,&(#), h(,§)) and f(Z,9,h(Z,¥)), Eqns. (6.38), and (6.30), respectively,
yielding

(Z,9)) = aro(T + x*)Q(sin(h (Z,9)+ 27) — sinfllss). (6.94)

)
—
\.HI
<
=4
—
Hz
N3
pud
S~—
[=nl]

Substituting Eqns. (6.78) and (6.94) into inequality (6.92) results in

(Ze@)'|

g
%%’% {ano G +2%) [sin (b1 (7, 9) + 27) —sinbug] } < B11(@)n (9). (6.95)

~h
2
2
=
ISH
S~—
S~—

\

~h
=
o
—
=

“:'1
—
&
<

In order to obtain the comparison function (%) that satisfies inequality (6.95), a series of algebraic

and trigonometric manipulations are conducted. Let first introduce the expressions

2
A = ha(E)+ 4 =5 [(H wi59) - 1], (6.96)
- _\2
B, = hlss = So |:(1 + \/831)55) — 1:| , (6.97)
where ¥ and Ugg are give in Eqns. (6.12-6.13), permitting therefore to rewrite Eq. (6.95) such
Vs @\ 15/ =
(T |:f (.Z',y,h(l',y)) —f(x,g(x),h(x,y))}

%%j (10 (7 + %) (sin A1 = sinB1)] < 8191 ()61 (). (6.98)

Recall the sum-to-product prosthaphaeresis trigonometric identity (Steele, 2004)

sin(a) — sin(b) = 2sin (“ S b> cos (“ ; b> , (6.99)

which can be used to rewrite the left-hand side of inequality (6.98) as

(259" (7 (0,5.500.) - (5.8, 5.0.9)]

1
5%30 [aw (% 4+ x*)? (sin A; — sin Bl)}
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= %%j a0 (7 + %)% 2sin (#) cos (#)} . (6.100)

Due to the sign nature of the coefficients in ¢ and vgg, Eqns. (6.12-6.13), and for the easiness while the
reading and understanding process of the trigonometric and inequality operations that will be conducted
to prove the different growth requirements, let introduce the following change in the variables to avoid

having constants with negative values, such

0 — —ap. (6.101)
Gs = —cg= (6.102)
as

where recalling that ag > 0, ¢ > 0, see sections 2.8.5 and 3.3.2.2 for further details. Using Eqns. (6.101)
and (6.102) into Eqns. (6.12-6.13), results in
ol + (@9 - l;yz) i — by, i1 + @

0(2,y) = G : (6.103)

ey Cé
ss(2,8(2)) = 7(:i+x*)2' (6.104)

Recalling that both I;yl > 0, I;yz > 0, it can be seen that with the proper selection of I;yl and l;yZ, results
in o >0 and 0gg > 0. In order to simplify the analysis let rewrite v, Eq. (6.103), such
aofs + (flg - Byz) J2 — by, i1 + Co

o(Z,9) = Gt+a)° = s3 (1105 + volio + v3l1 + v4) (6.105)

with vy ,v5 ,v3, and v4 being defined by

- ag
= — 6.106
l/l(-r) (i‘+$*)2’ ( )
; (0 ~b:) 6.107
() = ma (6.107)
v3(Z) = —L (6.108)
3 (T + x%)2’ '
- ~ Ce
= = ° 6.109
V4(:C) vss (,i'+$*)2, ( )
and recalling that s3 was previously defined in Eq. (4.88) as
s3 = depp =42 =422 125 (6.110)
Cs ascy a4a9
Recalling that
T+t =u, (6.111)

where = represents the angular velocity of the blades, and since x > 0, and s3 > 0, thus

n > 0, (6.112)
vy < 0, (6.113)
vy < 0, (6.114)
vy > 0. (6.115)

Let also introduce the functions

F@,9) = (n(@)ds +ve(@)d2+ vs(@)) (6.116)
- _ o Cg
C@) = w=7Uss= Gra (6.117)
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where 0 < F < 0 depending on the sign of g1, 72, which translates to different error in the altitude and
vertical speed of the helicopter, and also with C > 0. Recalling the definitions of both g; and g2 given

as

=y - Y1, (6.118)
U2 = Y2 — Y5 (6.119)

In order to provide an insight view of the helicopter physical meaning of the mathematic expression
here used, from a position of the helicopter perspective, a negative value of ¢, can be interpreted such
that the helicopter, at the instant where g; is evaluated, has an altitude lower than the desired set point
altitude, while a positive value of g1, implies that the helicopter has an altitude higher than the desired
set point altitude.

From the axial flight regime perspective, and recalling that a given desired altitude is achieved when the
vertical speed it is zero, i.e. y5 = 0, a negative value of o implies that the helicopter is descending trying
to reach a lower desired set point altitude, while a positive g, implies that the helicopter is ascending
trying to reach a higher desired set point altitude. With this in mind, and recalling that the helicopter
can conduct any of the two maneuvers, ascent and descent flight, let continue the analysis by rewriting
A, Eq. (6.96), using the expressions derived in Eqns. (6.106-6.110), and Eqns. (6.116-6.117), resulting

m

A = Ba(E )+ = s [(H Vel d) - 1]

2
S92 (1 + \/83 (1193 + vag2 + v3T1 + 1/4)) -1

2 (2\/53 (1173 + vafja + vl + va) + s3 (1173 + vala + vais + V4))

— s (2\/53 (F+C) + s5 (]-‘+C)), (6.120)

and rewriting By, Eq. (6.97), as
B =l = [(1 +Vaaiss) - 1}
. [(1 +/sa)? — 1} = 55 (24/5371 + s314)
. [(1 + \/53_6)2 - 1} . (2\/33_C+ 53C) : (6.121)

where recalling that as previously defined

Jo
- 2 6.122
52 0/9, ( )
Jy = 2399 (6.123)
a4

where it can be shown that so > 0 and Jo > 0. Recalling Eq. (6.100), let focuss only in the portion of Eq.
(6.100) inside of the brackets and recalling the inequality identity a < |a|, thus rewriting and simplifying

Eq. (6.100)
2a10(Z + x*)? sin (#) cos (#)

A1+ B A —B
< 2(Z+a” 2 cos ($)’Ja10 sin ()# HJ . (6.124)
Recalling also that due to\the Bosititd nature‘of thé cosfa) function, that is 1 > cos(a) > 0V a € R, it

can therefore also be shown that

0 < cos <#) <1, (6.125)
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further more, it can be shown that

B
0 < cos <%) <K <1, (6.126)
where it can be proven that the maximum value of Eq. (6.125) is achieved for
B
K1 = cos (W) <1, (6.127)

being A;,,,, and Bi,,,, the minimum possible value of Eqns. (6.96) and (6.97), respectively, and being
defined by

AlMIN = [h (:i' @)+21]MIN
2
= s (Jr 53v:cy)) 1]
MIN

= 52 (1 +V/s30m1IN (7, Y ) ] ; (6.128)
BlMIN = [hlsS]IV[IN

= (o vers@) 1]
- MIN
= s (1+\/M)21}, (6.129)

where Oprn and Uggs,,,y represents the minimum values for both ¢ and 0gg, Eqns. (6.12-6.13), respec-

tively, which are obtained when the variables attain their maximum values which are defined in section
2.8.5.2 such

P (6.130)
gl = gl]\lAX’ (6131)
g? = gQJVIAX ) (6132)

where Z 74 x implies that the helicopter is flying at the maximum allowable angular rotation of the blades,
U1, 4x implies that the helicopter is at its higher possible altitude, which is limited by the platform setup,
and it is commanded instantaneously to descent to the lowest possible altitude, and gs,,,, implies that
the helicopter has its maximum allowable ascending velocity. From a physical point of view, this translate
to a very extreme situation in which the helicopter reaches the maximum altitude at the highest possible
velocity, and instantaneously it is commanded to descent to the lowest possible altitude. This seems to
be a highly improbable flight condition, thus making this solution a very conservative analysis, since any
of the situations that will encounter the helicopter during both, the simulations and in the real setup, will

be much more less demanding and restrictive. With the above analysis, expressions var7n and Uss,,; x

reduce to
B dgg%MAX + (@9 - I;yz) Y2nax — Eylglj\lAX + Co
Garrn = ) , (6.133)
T Ax
- Cé
UVSSpyin = ZC2 . (6134)
MAX

Recalling also that Eq. (6.124) can be rewritten by using Eq. (6.127), and also considering the sin
inequality identity (Steele, 2004) given by

|sina| < |al, (6.135)
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therefore, allowing to rewrite Eq. (6.124) by using Eqns. (6.127), and (6.135), resulting in

2a10(% + x*)? sin <¥> cos (#)

< 2(Z + %) cos (#) ayp sin (#)‘
< 2(5:—}—90*)2IC1 a1 sin (#)‘
< (,f + x*)2K1 |a10 (.Al — Bl)l s (6136)

where from the physical properties of the helicopter model a1p < 0. Eq. (6.136) can be rewritten using
the functions F(z,y), and C(Z), Eqns. (6.116) and (6.117), respectively, resulting in

2a10(Z + x*)2 sin <7A1 ; Bl) cos (Ll ;L Bl)

(% 4+ 2%)2K4 |a10 (A1 — B1)|
821 (2 + 2™ ‘am [ (\/53 (Z,9) +C(%)) — \/53C(%) ) + s3F(Z, @)} ’ . (6.137)

IN

IN

Let redefine

F(&,9) = ssF(3,9), (6.138)
C(F) = s3C(), (6.139)

and recalling that, as noted previously, due to the nature of the helicopter model here presented

s3 > 0, (6.140)
C() > 0, (6.141)
0>F > 0, (6.142)

and also recalling that it can also be shown that
F4+C > 0, (6.143)

therefore, Eq. (6.137) can be further simplified by identifying that

7> 7 (6.144)
2

oo (6.145)
iC

Equation (6.145) can be rewritten by using Eq. (6.144), resulting in

f2
’}“’ Fe e (6.146)
and also recall that
~ ~ )
F<l|+ f_c” (6.147)

Ly

2/C

= | Vi+ (6.148)
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Taking the square root of both sides of inequality (6.148) yields

F
VE+C<Vi+ —’ ‘, (6.149)
21/C
Using the results obtained with inequalities (6.138), (6.139), and (6.149), into inequality (6.137)
yields
2a10(% + 2*)? sin (7'/41 ; Bl) cos (Ll —2|— Bl)
< SQ’Cl(i‘ +$*)2 aig {2 ( S3 (F+C) — \/836) + S3F”
= SQ’Cl(i‘-ﬁ-w*)Q aio {2( .7:—4—6— \/E) +.7:—:H
I
S SQ’Cl(j+ZE*)2 aio 2 \/Eﬂ*—.,*\/g +]'-
2\/C
e
= sKi(@+2")|aw | =+ F
C
1 N
= SQ’Cl(i‘ + :C*)Q (% + 1) ’GIO]:’ . (6150)

Recalling the definition of C(#), Eq. (6.139), which can be expanded such that
5 53C6

C(2) = s30ss(T) = (

—_— 151
Tt (6.151)

and as noted previously,  + z* = =z, and with the ranges defined by in section 2.8.5.2, it was defined

rpmIN < x < xprax, therefore it can be shown that

1 Z 4" TMAX ay
I+—==1+ — <1+ — =1+ ,/— TMAX
\/E \/53Cg \/53Cg agay MAX
where — 2% > 0. Recalling also that function F(Z,9), Eq. (6.138), was defined as
— ~2 _ o~ _ o~
S VY3 + Vaya + V3t
F = 6.152
(‘Ta y) 53 (.i' + ZC*)2 ’ ( )
with the new parameters being given by
S (6.153)
vy = (ag - By2) , (6.154)
v = 0, (6.155)

and recalling that s; was previously defined in Eq. (4.88) as

53 = 2295 (6.156)
a40a9

thus permitting to rewrite inequality (6.150) as

2a10(Z + x*)? sin (#) cos (#)

IN

521 (2 + z*)? (LN + 1) ‘alof‘

Ve

SQ’Cl(.i' + ac*)Q (% + 1)

1J3 + Uale + Usth
(7 + x*)2

1053
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- % a
< Ky (3 +2%)? (1 + \/—450MAX>
asar
For conciseness introduce
Ay
sS4 = S283|aio] <1 + 1/—$MAX> Ky
asar
dasas |aro| K a
dagas lawoKn () [ @ Y, (6.158)
ayel asar

thus simplifying inequality (6.150) as
- B B
2a10(Z + x*)? sin <L> cos <b>

2 2
. a D193 + Ualjo + U
50K (& + x%)? <1+,/a 2 :CMAX> — (@ jf*)z o
207

= 54 |nP5 + afia + sl - (6.159)

103 + Uale + U3th
(T 4 x*)?

(6.157)

a1053

IN

a1053

In order to simplify even further inequality (6.159), let also recall that, as defined in section 2.8.5.2
that

gQZ\/IIN < g2 < gQNIAX’ (6160)
therefore, it can be proven that
|?j2| < }N/QMAXa (6'161)

with Y3,,,, being the absolute value of the maximum vertical velocity of the helicopter, and given
by
f/QMAX = max (|Q2A41N| ) |g21\4AX |) ) (6-162)
thus allowing to rewrite
|7j2| Y/QMAxv (6163)
gg = Y/QMAX |7j2|a (6164)

therefore using Eqns. (6.163), and (6.164), into inequality (6.159), yields

2a10(Z + x*)2 sin <7A1 ; Bl) cos (Ll ;L Bl)

IN

A

< sy |5 + Do + 30 |
< sa (|mG5] + [7202] + 7301 )
< i (|7 Vo axie| + 272l + 73011 (6.165)

Let also introduce

. 4 by, K [ az
Ci(by,) = salvs]= a2a3|a,210| h <1+ - zMAX) (6.166)
azél azar

Calby,) = s4 (’ﬁl?waAx’+|172|)
4asas |aio| £ a ~ .
_ %(H o WAX) (Fossa lasl + a9 5, (6.167)
ayel asary

with zprax being the maxim angular velocity of the blades. Using Equns. (6.166), and (6.167), into
inequality (6.165) yields

2a10(% + x*)? sin <¥> cos (#)
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IN

S4 (‘Dl%AlAXg2‘ + |l72:&2| + |l73?]1|)
< Cilinl+C2 g2l (6.168)

N

Using the results obtained in inequality (6.168) into inequality (6.98), results in

OVs(@)\ [7= = 70m o Fpm mmn Fym =
(Z5) (o3 ) - 0,0 e, )|
T
1 _
- 56’5—:55 |:2a10($+l' )2 sin (Al 5 Bl) os (Al ;Bl)}
1 Qs 2 A — B3 A1+ By
< ‘gax {Qalo(qu:c ) sm( 5 5
1 - - .
< }§b—sx(cl 91| + Ca[Ga])| » (6.169)
which can be further simplified by defining
A ~ 1 ~
Clbab) = 52, (6.170)
S 1 _
Ca(bgby,) = E%Cg(byl). (6.171)
Substituting Eqns. (6.170) and (6.171) into inequality (6.169), results in
OVs(@)\  [7= = 7 on o Fpm mmn Fym =
(252 (79050 - 7(.2(0). Rz 5)
1 - - .
< |5l + calin)
< (CA1 \Z51] + Co |5cg2|), (6.172)
thus the original inequality , Eq. (6.92), becomes
OVs(@)\ [7= = 7rm o Fpm mmn Fym =
(252) (i@ 9.0. ) - 7(.200). Atz 5)
< (Glanl+C laial) < Aron(@)o(@), (6.173)

where recalling the selected comparison functions (%) and ¢1(g), Equs. (6.72), and (6.91), respectively,
it can be observed that satisfying inequality (6.173) is reduced to prove that

1

(C11201] +Co 1351 ) < Brion ()6(§) = (%52) (g tlg)t (6.174)

In order to obtain the constant 37 that guarantees the fulfillment of inequality (6.92), let square both
sides of inequality (6.174), resulting in

N o 2 ~
where the left-hand side of inequality (6.175) can be expanded as
2

<é1 2§1| + Ca |fﬂ2|) =z (C?ﬁ +C39% +2C:Co |371372|) ; (6.176)

which can be further reduced by using the absolute value version of Young’s inequality
(Steele, 2004)
a2+b2

jab] <
2

: (6.177)
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which permits to rewrite Eq. (6.176) as

# (G2t + C33 + 26:Co i

IN

~2 ~2
72 {C%g% 4 C22 4+ 26,0, (yl ; Y2 )]
= @ (G757 + G303 + G + CrCai3)

- @ [(c? + c}c}) 7+ (é§ + c}c}) yg} . (6.178)

Using Eq. (6.178) permits to rewrite inequality (6.175) as

N o 2 o P o P
(Cl |71 + C2 |J~3?32|) < 7 [(612 + Clc2) 7i + <C22 + Clc2) Q%}
< B (37%)% (an 07 + dr03) (6.179)
therefore, satisfying the original inequality (6.92) reduces to find (; that satisfies the following
inequality
z? {(éf + élé2) 7i + ((f% + é1(f2) ﬂ%} <7 (QsiQ) (G105 +a5n03) . (6.180)
therefore inequality (6.92) can be satisfied by selecting 31 such
p1 = max (A1, B1,) (6.181)
where
((?12 + élég) 4 (é% + élég)
B, = —— = ; (6.182)
QRsdy, QRsqy,
((?22 + élég) 4 (é% + élég)
pr, = e = ) (6.183)
Qsqf, Qsqf,

with C; and C,, given by Equs. (6.170) and (6.171), respectively, and where Qg, is the Lyapunov matrix
for the Xg-subsystem, and gy, and gy, are the coefficients of the Lyapunov Matrix Qp of the ¥p-
subsystem, see section 5.4.2 for further details. With this in mind, Eqns. (6.182) and (6.183) can be
simplified to

(Cl + Cz) ﬁ

b, = Q ; 6.184

' TR g (6.184)
(C1 4 Cs) Ca

B, = 4/@Qs SR (6.185)

where recalling that for the problem here discussed Cy > C;, therefore the selection of 8, or 51, depends

on the ratio between the stability parameters qy, and gy, , such that if

C
C—j > qy,/ap — B =max (B1,,B1,) = Bu,, (6.186)
C
C—j <4qp/ap — B =max (B, B,) = Bi,. (6.187)

This translates into that by selecting the ration between both ¢y, and gy, , the analysis can be simplified,
therefore, for simplicity, as it will be seen in future sections, a relation between g, and g, can be defined
by equating Eqns. (6.184) and (6.185) resulting in

S(Cl +C) G Os (€1 +C2)§, (6.188)
b2 ap
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which reduces to

Co as
2 _ e Qr,,» 6.189
C1 qf ( )

this implies that if the ratio between ¢y, and gy, is given by expression (6.189) which implies that

Ci+Cy) C Ci+0C)C
By > B = B, = Qs G a 26 _ Qs(12 2) G2, (6.190)
bz 4f, bz df,
therefore reducing Eq. (6.181)
(CL+Co) C1
6.191
Br=1|Qs———5— ER—— ( )
where
U G (6.192)
qf
and satisfying that
~ C
Qr,y = Qry = C_Qa (6193)
1
which can be obtained by defining
QFy = 01QF,, (6.194)

with 6; > 1. It can be proven that the value of §; determines the range of permissible d; that fulfill the

asymptotic stability properties for the ¥ gp-subsystem as it will be shown in future analysis.

6.3.5 Proof of Assumption 5.5.5: Second Interconnection Condition for the

Helicopter > gp-Subsystem

The second interconnection condition is defined by the inequality

Ve @\ . = . s
(P50 09500, 3) < k@) + @) () (6.195)

Inequality (6.195) can be rewritten by adding and subtracting f(#, &(Z), h(z, §)) to the f(Z, ¥, h(z, §))
in the left-hand side of (6.195) resulting in

2r fe i n) < OF (g0 )
6@% f(.i‘,g,h(i‘,’y))—f(.i‘,@,fl(j,@))}
< Botn(2)01(9) +mdi(H). (6.196)

The resulting inequality Eq. (6.196), can be satisfied by first splitting into two simpler inequalities

given by
a@%f@, 9, h(z,9)) < Bothr (7)1 () (6.197)
e [Fa. 5.5 9) - F@.2(0). 5. 9)] <1630, (6.198)

therefore, assumption (6.195) will be proven, if both inequalities (6.197) and (6.198) are fulfilled. From
the definition of Vp(g), it can be seen that

=E . (6.199)
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Due to the fact that the associated Lyapunov function, Vr(g), does not depend on the variable Z,
implies that the fulfillment of inequality (6.195) is trivial and is achieved by selecting 81 > 0, and v, > 0,
thus, concluding that the sub-conditions (6.197) and (6.198) are satisfied by selecting

B2 = 0, (6.200)
o= 0. (6.201)

These results provide an additional degree of freedom that will be exploited in later sections in order

to determine desired upperbounds of the Ygp Stability Analysis.

6.4 Fulfillment of the Helicopter Y gr Stability Analysis

The fulfillment of assumptions 5.5.1, 5.5.2, 5.5.3, 5.5.4, and 5.5.5, applied to the helicopter ¥ gp-subsystem
by the fulfillment of inequalities 6.67, 6.75, 6.92, and 6.195, proves that the growth requirements of
f(j,:l),fl(j, 7)) and g(z, g},fl(i, ¥)) are satisfied, and with the Lyapunov functions Vg(z) and Vp(9),
Eqns. (6.41) and (6.42) respectively, satisfying the respective growth requirements, a new Lyapunov
function candidate V4 (Z, ) is considered and defined by the weighted sum of Vg(Z) and Vp(Z, §), given

by

Vi(@,y) = (1-d)Vs(@)+diVr(y), di € (0,1)
Qs.o di o di o
= (1 — dl)ESCQ + %pflyf + épfsyg + dlpf2y1y2, (6202)

for 0 < dy < 1. The newly defined function V;(Z,¥) becomes the Lyapunov function candidate for the
singular perturbed Y gp-subsystem, Eqns. (6.15-6.17). Similarly as in the general case, to explore the
freedom in choosing the weights, lets take d; as an unspecified parameter in the interval (0,1). From
the properties of Vg(z) and Vr(¢) and inequality (6.65), that is || &(z) ||< p1 (]| Z ||), where p1(-) is a
k class function, it follows that Vi (Z, ¢) is positive-definite. Computing the time derivative of Vi (Z, )
along the trajectories of f(Z,9,h(Z,9)) and g(Z, 9, h(z, 7)) yields an equation of similar structure as in
Eq. (5.145), which can express as a function of the comparison functions %1 (Z), and ¢1(g) by employing
the derived inequalities 6.67, 6.75, 6.92, and 6.195, resulting in

Vi < —(1—d)a?(@) + (1 —di)Bivn (2)61(9)
d
- E—iazﬂﬁ(@) + di7167(§) + d1Bothr (7)1 (9)
T (1—d)oy 11 —dy)B — 3di 2

_ | (@) .
—3(1—di)p1 — 5d1 32 dy <€—12 - ’Y1>

¢1(9)

T
\ Qs (1—di)n —5(1—d1)B1 — 5d1 s
- —3(1 = d1)B1 — 3d1 B2 di <% - ’Y1>

€1

x . (6.203)

In order to guarantee the negative-definiteness property of Eq. (6.203), and conducting the same
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algebraic transformations as in section 5.5.1, it can be obtained the following expression that defines the
requirement to be satisfied by the parasitic constant £; such that

e < a2 =ey,. (6.204)

1
a1y + m [(1—di)B + d1ﬁ2]2

Recalling from the general formulation, chapter 5, that although only a; and «y are required by
definition to be positive, 51, B2, and v; are also considered to be positive. Inequality (6.204) shows that
for any choice of dy, the corresponding V;(Z,y), Eq. (6.202), is a Lyapunov function for the singular
perturbed X gp-subsystem, Equs. (6.15-6.17), for all £; satisfying Eq. (6.204). It can be easily seen that

the maximum value of €1, occurs at

1
di = , 6.205
1 ﬁl +ﬁ2 ( )
yielding the upper bound on £; given by
* Qi
g =——""". 6.206
Yo + B ( )

Therefore, it can be inferred that the equilibrium point of the singularly perturbed X gp-subsystem,
Equns. (6.15-6.17), is asymptotically stable for all ;1 < €j. The number €] is the best upper bound
on €1 that can be provided by the above presented stability analysis. The results obtained from the
fulfillment of inequalities (6.67), (6.75), (6.92) and (6.195) are summarized in Table 6.1, where it can be
seen the similarities between the two-time-scale growth requirements described in Section 5.2.1, and the

three-time-scale growth requirements for the ¥ gp-subsystem.

The asymptotic stability analysis presented proves that by fulfilling inequalities (6.67), (6.75), (6.92),
and (6.195), then the origin is an asymptotically stable equilibrium of the singularly perturbed helicopter
Y gp-subsystem (6.15-6.17) for all e; € (0,¢7), where €} is given by Eq. (6.206), thus, for every number
dy € (0,1), Vi(2,9), Eq. (6.202), is a Lyapunov function for all £;(0,e4), where €1, < &7 is given by Eq.
(6.204), hence satisfying Theorem 5.5.1. As mentioned previously in section 6.3.4, it can be proven that
the value of §; determines the range of permissible d; that fulfill the asymptotic stability properties for
the Y gp-subsystem, therefore, such that in order to satisfy that for every number d; € (0,1), Vi(Z, 9),
is a Lyapunov function for all £1(0,&4), it is required that §; > 10.66. Nevertheless, as it will be proven
in the Ygpy Stability Analysis in section 6.5, in order to satisfy the stability analysis it is required that
&1 € (1.02,1.264).

The fulfillment of Theorem 5.5.1 for the helicopter ¥ gp-subsystem can be summarized by understand-
ing that £ = 0 is an asymptotically stable equilibrium of the reduced ¥g-subsystem, Eq. (6.30), and
Yy = g(&) is an asymptotically stable equilibrium of the boundary-layer ¥ p-subsystem, Eq. (6.19-6.20),
uniformly in Z, that is, the e —§ definition of Lyapunov stability and the convergence § — g(&) are uniform
in & (Vidyasagar, 2002), and since it has been proven that f(:i, g},ﬁ(i, ¥)) and g(Z, g},fl(j, ¥)) satisfy
certain growth conditions on the reduced and boundary-layer systems, assumptions 5.5.1, 5.5.2, 5.5.3,
5.5.4, and 5.5.5 applied to the helicopter X gp-subsystem, then the origin is an asymptotically stable equi-
librium of the singularly perturbed system (6.15-6.17), for sufficiently small £; (Kokotovi¢ et al., 1986;
Kokotovi¢ et al., 1987; Kokotovié et al., 1999).

Due to the fact that the system is expressed in its error dynamics form, and that the use of the full range
of reachable state variables has been required in order to satisfy the inequalities that guarantee the asymp-
totic stability properties at the origin of the ¥ gp-subsystem, these asymptotic stability properties are also
extended to semiglobal stability, by the definition in (Kokotovié¢, 1992; Sussmann and Kokotovi¢, 1991;
Braslavsky and Miidleton, 1996), by providing upper bounds on the parasitic singularly perturbed pa-

rameters for the entire range of admissible state values, thus extending the domain of attraction to that
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same rage of admissible states.

| Assumption 5.5.2 for the Helicopter ¥gp-Subsystem

|
| Section 5.2 | %—‘; | J(z,h(x)) | Qay | ¥(z) |
oz | B | fee@h@s) | a<t | w@=6 |
| Assumption 5.5.3 for the Helicopter X gp-Subsystem |
| Section 5.2 | %—VZ | g(x, 2) | Qo | o(z — h(x)) |
omee | (®)" | seah@e) | a<t | o) =i |
| Assumption 5.5.4 for the Helicopter ¥gp-Subsystem |
| Section 5.2 | %—‘; | f(z,2) | f(z,h(x)) | b1 |
s | (%9) | f@ekee) | @e@ k@) | 6> mex6,6,) |
| Assumption 5.5.5 for the Helicopter ¥gp-Subsystem |
| Section 5.2 | %—V;/ | flz, 2) | " | B |
s | (%®2) ] fewh@e) | mzo | mzo |

Table 6.1: Parameters for the Comparison Functions and Inequalities that Guarantee the Asymptotic
Stability Requirements for the Helicopter ¥ gr Subsystem.

6.4.1 Bounds for the Stability Parameter of the YXsr Stability Analysis

Needs to be noted that, due to the existent freedom on selecting 2 and =i, the upper-bound €7, Eq.
(6.206), and its dj parameter, Eq. (6.205), can be precisely obtained to match the required parameters
that guarantee the asymptotic stability for the full ¥ gz system by selecting the combination of v; and
B2 that generates the appropriate combination of both dj and ej. This is obtained by solving Eqns.
(6.205) and (6.206) such that yields

By a1 * 1 [arag
eF — N Xy = — _ 6.207
Y agy + BiBe mer) a < eX ﬁ162> ( )
and where 35 is defined by
* 61 * 61
1 ﬂl + 52 62( 1 ) dik 61 ( )

where recall that df and 51* are the selected values by the author that satisfy the asymptotic stability
properties of the full system, not to confuse with di and £7, that are given by Equs. (6.205) and (6.206),
respectively. The major difference between both, df, 5'1* and df, €7, is that the first appear only for the
special type of problems in which the degrees of freedom that appear during the stability analysis allow to
select ﬂg(df) and vp (5?’), thus permitting to select the desired values for both 1 and dy by selecting sf
and d¥ from Eqns. (6.207) and (6.208), respectively. This reduces Eqns. (6.205) and (6.206) to

o A _ (6.209)
B1 + Ba2(dY)
yielding the upper bound on g1 given by
ef = a1 (6.210)

o171 (X)) + B1Ba(dF)
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The power to select €], can be better understood since the fulfillment of the Xgp Stability Analysis
depends on the fulfillment that the chosen £1 in the time-scale selection (see selection 3.5) satisfies €1 < 7.
The power to select d} will be fully understood when completing the satisfy the X gpr Stability Analysis,
but initially can be thought as a requirement to calculate the upper bound on £7, Eq. (6.210), which
requires the calculation of both 82(d¥), and ~1(c¥), Equs. (6.208) and (6.207), respectively.

As it will be shown in section 6.6, in order to satisfy the Xgpy Stability Analysis, it is required that
dy € (0.0543,0.5243). Therefore, by selecting di = 0.5, the Xgpy Stability Analysis will be satisfied,
and in addition, the percentage contribution on the Lyapunov function V4 (Z, ), Eq. (6.202), is equally
distributed for both Lyapunov functions Vg(i) and Vi(g). The selection of e¥ is more straight forward,
recalling the time-scale of the helicopter problem here analyzed, which was selected as ¢; = 0.028.
Therefore, recalling Eq. (6.207), and identifying that for margin let 51* = 0¢,€1 = 0.02940, where it is
selected as d., = 1.05.

Recall also that need to select the stability parameters Qs, qyr,, and qy,, and where although arbitrary
values can be selected in order to satisfy the asymptotic stability properties of the X gp-subsystem,
as it will be proven in the stability analysis for the full Xgpy system, a specific ratio between all three

parameters is required in order to guarantee the stability properties of the X gy system, such that

9, = QsrQs, (6.211)

4 = Qr.QsrQs, (6.212)
where both Qgr = 61Qsp and Q r, = 01Qp,,, represent the required ratios to prove the asymptotic
stability analysis for the full ¥ gz helicopter system, and will be derived in the X gpy Stability Analysis
in section 6.5. These ratios, for the physical parameters of the helicopter here discussed, and recalling
that in order to satisfy that the range of permissible unspecified parameter dy is d; € (0.0543,0.5243),
and with d; = 1.05 results in

Qsr = 0.259974, (6.213)

Qr,, = 2.567205, (6.214)

therefore, by selecting Qs = 0.5, results in

qf, = 0.129987, (6.215)
qf, = 0.333703, (6.216)

which results, according to Eqns. (6.207) and (6.208), results in v; = 31.7007576, and f2 = 0.76260,

respectively, which results in the new coeflicients that fulfill the growth requirements

a; = 0.95,
as = 0.95,

B = 0.76260
By = 0.76260,
v = 31.7007576.

Figure 6.1 shows the dependance on the right-hand side of Eq. (6.204) on the unspecified parameter dy,
being able to identify that the maximum value is achieved at the selected dl* = 0.5, and with the value
of the also selected 51* = 7 = 0.02940, which satisfies the requirements ¢; < €7, and dl* = 0.5. This
concludes the first step of the asymptotic stability analysis, the X gp Stability Analysis. The following
section describes the second step of the asymptotic stability analysis, the YXgpy Stability Analysis for the

helicopter problem.
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Figure 6.1: Adjusted Stability Upper Bounds on ¢; for the Stability Analysis of the ¥gr Subsystem
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6.5 Ygpy Stability Analysis for the Helicopter Model

Once proven the asymptotic stability of the Y gp-subsystem, Eqns. (6.15-6.17), the Sgpy Stability
Analysis is conducted recalling that the X gp Stability Analysis provides a composite Lyapunov func-
tion, V1(z,¥), Eq. (6.202), that satisfies the growth requirements between 