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ABSTRACT 

In this thesis an adaptive critic based neural network is developed to obtain near-

optimal control laws for a robust nonlinear flight control system.  The adaptive critic 

approach consists of two neural networks.  The first network, called the critic, captures 

the mapping between the states of a dynamical system and the co-states that arise in an 

optimal control problem.  The second network, called the action network, maps the states 

of a system to the control.  Ultimately the purpose of the nonlinear flight control system 

developed in this work is to pave the way for an adaptive reconfigurable nonlinear 

controller that would make aviation a safe way of transportation even in the presence of 

control failures and/or damaged aerodynamic surfaces. 

In order to show the effectiveness of the nonlinear adaptive critic neurocontroller 

used in this thesis, the author first shows the nonlinear properties using a nonlinear 

aircraft model to increase its stall envelope, then he proceeds to conduct a sensitivity 

study of the neurocontroller to unmodeled uncertainties to show the inherent robustness 

properties of the neurocontroller.  Finally the author implements the neurocontroller 

design in a nonlinear tracker control system for a simplified version of the previous 

model. 
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1. INTRODUCTION 

1.1. MOTIVATION – RECONFIGURABLE FLIGHT CONTROL 
It is a proven fact that aviation transportation is the most secure media of 

transportation existing today.  Statistically speaking, the risk of being involved in a 
commercial accident, with multiple fatalities, is approximately one in three million [1].  
In other words, you would have to fly everyday for more than 8200 years to accumulate 
three million flights. 

Just in the United States (U.S.) alone, the number of U.S. highway deaths in a 
typical six-month period — about 21,000 — roughly equals to all commercial jet 
fatalities worldwide since the dawn of jet aviation four decades ago.  In fact, fewer 
people have died in commercial airplane accidents in America over the past 60 years than 
are killed in U.S. auto accidents in a typical three-month period.  

Despite these encouraging statistics, civil aviation transportation continues to be 
considered by many people as a dangerous media of transportation, making people afraid 
of flying.  Many aviation industries and partners keep trying to transform the image of 
aviation into a safer transport media by working together with the world-wide aviation 
community to reduce the accidents by continuously introducing improvements that will 
guarantee the safety of the passengers.   

The National Aeronautics and Space Administration (NASA) and the National 
Transportation Safety Board (NTSB) have in recent years launched a series of initiatives 
among them the NASA Aviation Safety Program, which is part of the “Three Pillars for 
Success” [2], that has as a goal to reduce the aircraft accident rate by a factor of five 
within 10 years, and by a factor of 10 within 25 years [3].  

Initiatives like the ones taken by NASA and NTSB have encouraged a new brand 
of engineers that are trying to introduce new technologies that have long been prove to be 
a good candidate to solve many of the problems that have caused aviation accidents.  
Many of the reported commercial accidents are related to the loss or malfunctioning of 
actuator surfaces, such physical damage of control or aerodynamic surfaces, control 
saturation, or stuck control surfaces.  
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When one of these malfunctions are present, due to the natural ability of the 
human brain to solve extremely complex problems, if a pilot is given enough time to 
detect the malfunction, he or she would be able to determine the controls available, adapt 
to the existing model, and have a chance to control the damaged aircraft.  But in reality, 
when a malfunction with the potential of causing a crash occurs, the pilots have limited 
amount of time to react, and generally they have no knowledge of the nature of the 
failures.  This makes it almost impossible to determine the amplitude of the failures and 
react on time according to those malfunctions.  

Researchers are hopping that neural networks (NN), and/or similar technologies 
that possess natural abilities to solve extremely complex problems, adapt and learn from 
unknown situations, will pave the way to solving many of the problems presented by the 
different aviation safety boards to try to reduce the rate of accidents. 

It is important to note that the events here described as malfunctions or accidents 
are extremely rare, but despite the low percentage rate of accidents, it is the duty of the 
aviation industry to find ways to reduce that rate of accidents to a minimum.  A major 
breakthrough in aviation control laws would be being able to design a Reconfigurable 
Flight Control (RFC) system that would adapt in real-time to compensate for in-flight 
aircraft damage and system failures, with the important feature that the RFC would not 
have a priori knowledge of the nature of the failures or damages. 

This task seems difficult if not impossible a priori, but in recent years, a great deal 
of research has been dedicated to solve this problem.  RFC, in the form of a 
neurodynamic programming system, has been suggested by Werbos [4] as the best 
possible candidate for trying to “minimize the probability of a crash after and aircraft has 
experienced unforeseen, unpredictable damage so severe that no controller can absolutely 
guarantee stability” [4].  According to Werbos, another type of controller could not meet 
the necessary reconfigurability requirements, and despite some good results that have 
been shown by reconfigurable models using methods other than neurocontrollers, they 
have been done so by taking unreasonable assumptions that would not be realistic in real 
life situations.  The purpose of this thesis is not to debate whether neurocontrollers are the 
appropriate choice for RFC, but to show that the Adaptive Critic Neural Network 
(ACNN) design described in this work shows very promising results towards the 
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common goal of solving the RFC problem.  As it will be seen in section 1.3.5, several 
alternatives to neurocontrollers have also been suggested and have shown promising 
results.  

NASA and the National Science Foundation (NSF) have been indicating their 
interest in the past decade to provide the means and resources that will allow the 
possibility of designing a feasible neurocontroller to increase the possibilities of 
survivability of an aircraft in the case of malfunctions and/or damages to an airplane.  
RFC really took off as a major research investment after an initial $4 million contract 
from NASA-Ames to McDonnell-Douglas in St Louis.  The contract was managed by 
Charles Jorgensen and the funding for that project was made possible by breakthrough 
results by Whites and Urnes, described in Chapter 7 of [5]. 

The Neuro Engineering Laboratory at NASA Ames Research Center is 
developing flight control software that uses NN to compensate for failures resulting from 
control surface damage or system malfunctions [6].  A NN is defined by the Neuro 
Engineering Laboratory at NASA Ames as a piece of software that works through pattern 
recognition, and thus is able to "learn" from sensory input, resulting in systems that can 
adapt to changes in their external circumstances.  A more detailed definition of what is a 
neural network, and what it can do, will be done in sections 1.2.2, 1.2.3, and 1.2.4.  NN 
have been the subject of theoretical and applied research since the early 1960's.  They 
have been applied to a wide range of problems: from investment analysis to the control of 
modern equipment.  The Information Technology Base Program (ITBP) has funded 
intelligent flight control research since 1997 as part of its Intelligent System, Controls, 
and Operations Project [6].  One of the fundamental objectives of the ITBP is to 
understand neuron processing in the human brain in order to produce computing 
architectures that make use of new biologically inspired capabilities.  Section 1.2 will try 
to provide a background for the understanding of how neuron processing works in the 
human brain, and how that understanding has motivated many scientists.  

 
1.2. NEUROBIOLOGY.   

The author has taken the path of neurocontroller to try to solve some of the 
challenges that involve making aviation a safer place despite the existence of many other 
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controller architectures that are considered as more conventional controllers for today’s 
aviation, such PID controllers, gain scheduling, feedback linearization, sliding mode to 
name few.  It is imperative that before the author proceeds into describing in more detail 
the different neurocontrollers used today, to take the time to introduce the origins of 
neurobiology, and define some concepts of modern neurobiology, which have been an 
inspiration to many modern NN architectures, and especially to the author. 

1.2.1. Origins of  Neurobiology.  Santiago  Ramón  y Cajal was one of the  most 
outstanding neuroscientists of all time.  He has been considered the father of modern 
neurobiology for his contributions and revolutionary views on the structure and 
functioning of the human brain, which are still used in today’s modern neurobiology 
studies.  Dr. Ramón y Cajal was born in Petilla de Aragón, a small village in the North of 
Spain.  He studied medicine in the Faculty of Medicine in Zaragoza [7]. 

Dr. Ramón y Cajal received numerous prizes, honorary degrees and distinctions, 
among the most important being the Nobel Prize for Physiology or Medicine in 1906.  To 
describe the work of Dr. Ramón y Cajal is a rather difficult task, and beyond the scope of 
this thesis because, unlike other great scientists, he is not known for only one discovery, 
but for his many and important contributions to our knowledge of the organization of the 
nervous system.  For references in Dr. Ramón y Cajal’s work, the reader can refer to 
some of his published work [8]. 

At the break of the 19th century little was know about the functioning or the 
structure of the human brain, although it was believed to be the center of the human 
thinking.  It was also wrongly believed that human thinking was achieved by a 
continuous organ that spanned the entire human body.  Dr. Ramón y Cajal disagreed with 
that view, and believed that human thinking was formed by a series of interconnected 
organs, but at the time he did not have the means of proving his theories.  

Around 1885 Dr. Ramón y Cajal’s studies turned around 180 degrees.  At the age 
of 35 he was first exposed to a new visualization technique that had been around for 
almost 14 years introduced by Camillo Golgi, an Italian scientist that was born in July 
1843 in Corteno, a village in the mountains near Brescia in northern Italy [9].  This new 
visualization technique consisted in a new impregnation technique of the cells, which was 
incredibly far more advanced than some of the existing staining techniques of the time.  



 

 

5

This impregnation technique was the fruit of a work that started in 1872, when 
due to financial problems, Golgi had to interrupt his academic commitment, and accept 
the post of Chief Medical Officer at the Hospital of Chronically Ill (Pio Luogo degli 
lncurabili) in Abbiategrasso, a village near Pavia and Milan.  In the seclusion of this 
hospital, he transformed a little kitchen into a rudimentary laboratory, and continued his 
search for a new staining technique for the nervous tissue.  In 1873 he published a short 
note in the Gazzetta Medica Italiana, in which he described that he could observe the 
elements of the nervous tissue "studying metallic impregnations... after a long series of 
attempts" [10].  This was the discovery of the black reaction, also known as reazione 
nera.  The reazione nera was based on the property of nervous tissue hardening in 
potassium bichromate and impregnated with silver nitrate.  This revolutionary staining 
technique, which is still in use today, was named after him, Golgi staining or Golgi 
impregnation.  The revolution of the process consisted in the fact that only a limited 
number of neurons were impregnated at random once the nervous cells were exposed 
with the silver nitrate.  The reason for the random impregnation is still a mystery today.  
This new impregnation technique permitted for the first time a clear visualization of a 
nerve cell body with all its processes in its entirety [11]. 

This was what Dr. Ramón y Cajal needed to prove his theories, and by 1891, was 
receiving wide support from studies pursued in other laboratories that were using Golgi's 
new staining technique.  This new visualization technique provided Dr. Ramón y Cajal 
with the means to prove that the architecture of the neural system was formed by a huge 
amount of individuals rather than one single organ.  At the time, the best way to get his 
discoveries to other scientists was to draw by hand the images that he observed in the 
rudimentary microscopes of the time.  These drawings were shown in symposiums more 
or less like we do today, with the only difference that today we use computers and 
transparencies.   

The transcendence and importance of Dr. Ramón y Cajal’s work towards the 
learning of how the human brain works has granted him the importance, and the privilege 
that his original glass microscope slides were the first historically important scientific 
artifacts to be flown in space.  A series of these slides and some of the drawings made by 
Dr. Ramón y Cajal were stowed aboard Columbia in one of the NeuroLab Missions. The 
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slides and drawings included every part of the nervous system to be studied on the 
Neurolab missions [12]. 

Through initiatives of NASA and other international space agencies the Neurolab 
Mission, which specialized in the study of cerebral functions, began on April 17 1998 
with the launching of the space shuttle Columbia, flight STS90, from Kennedy Space 
Center, Cape Canaveral, Florida.  Studies were centered on the analysis of micro-gravity 
effects on the nervous system.  Two Instituto Ramón y Cajal laboratories, conducted by 
Javier DeFelipe and Luis Miguel García-Segura, participated in the scientific project. 

In honor of Dr. Ramón y Cajal, NASA included a sample of his scientific legacy 
in the Neurolab mission, thus recognizing the many and important contributions of the 
illustrious Nobel Prize in Medicine and Physiology to neuroscience.  Twelve histological 
preparations and nine original scientific drawings, belonging to the Dr. Ramón y Cajal 
Legacy [13], traveled through space.  Once the space flight ended, the histological 
preparations and scientific drawings, temporally lent to NASA, were exhibited to the 
general public at the NASA Museum for one year [13].  Dr. Ramón y Cajal’s 
observations and theories remain strongly valid at present, and have encouraged a vast 
amount of scientist and researchers that have seen in artificial neurobiology, the door to 
be able to make this world a better and safer place. 

1.2.2.  Modern  Neurobiology.  The questions that intrigues scientists, engineers, 
and doctors all over the world, is: How does the human brain really work?  What is in the 
human brain that makes it so fascinating?  What can and cannot be accomplished by  the 
human brain?  The answer to these questions, and many more that have intrigued 
scientists, are not as clear as we would like, and although scientists have been able to 
locate the areas of the brain that get activated when we conduct everyday tasks like 
hearing, seeing, speaking, or creating, its complexity leaves lots of room for speculation 
and imagination.  The human brain is an organ that has more than 100 billion cells all 
working in unison, in a complex connected network.  Dr. Ramón y Cajal’s intuitive 
description of the neural net was very accurate according to studies that have been 
conducted in recent years.  The neurons that form these nets, which Dr. Ramón y Cajal 
called the butterflies of the soul [14], have been described as polarized cells that receive 
signals on highly branched extensions of their bodies, called dendrites, and send 
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information along unbranched extensions, called axons.  One of the questions that 
intrigued Dr. Ramón y Cajal was to find out how those butterflies of the soul flapped 
their wings and were able to communicate with each other.  A more detailed knowledge 
of how the neurons work, and interact with each other, has been produced in recent years. 

When a neuron has been excited, it conveys information to other neurons by 
generating impulses known as action-potentials.  These signals propagate like waves 
down the length of the cell’s single axon and are converted to chemical signals at the 
synapses, which are the contact point between neurons [14].  Figure 1.1 shows a drawing 
of a typical interaction between neurons. 

 
 
 

 
Figure 1.1.  Typical Interaction Between Neurons. 
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When a neuron is at rest, its external membrane maintains an electric potential 
difference of about –70 millivolts.  This means that the inner surface is negative relative 
to the outer surface.  At rest the membrane is more permeable to potassium ions than to 
sodium ions, as indicated by the length of the arrows in Figure 1.2. 
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Figure 1.2.  Sodium-Potassium Permeability. 
 
 
 
When the cell is stimulated by another neuron, the permeability to the sodium 

increases to an inrush of positive charges, which is defined as inrusha in Figures 1.2 and 
1.3.  This inrush triggers an impulse or momentary reversal of the membrane potential, as 
seen in reversala in Figure 1.3.  This impulse is initiated at the junction of the cell body and 
the axon and is conducted away from the cell body towards the next neuron.   

When the impulse reaches the axon terminals of the pre-synaptic cleft of the 
neuron, it induces the release of neurotransmitter molecules.  These neurotransmitters 
diffuse across a narrow cleft and bind to receptors in the postsynaptic membrane.  The 
binding of the neurotransmitters to the receptors of the postsynaptic membrane leads to 
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the opening of ion channels and often, in turn, to the generation of action potentials in the 
postsynaptic neuron [14].  This can be seen in Figure 1.4. 

The synaptic cleft mentioned in the previous paragraph is the small gap that exists 
between the neurons.  Dr. Ramón y Cajal felt there was a gap, but he had no idea how 
small it was.  With the advance in electronic microscopes, the gap has been measured to 
be around 20-30 nm, that is nanometers, or millionth of a millimeter, which probably 
explains why Dr. Ramón y Cajal was not able to see it with a regular light microscope 
[15]. 
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Figure 1.3.  Detail of the Membrane Potential Reversal. 
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Figure 1.4.  Detail of the Neural Synaptic Cleft. 
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1.3. ARTIFICIAL NEURAL NETWORKS. 
The complexity of the human brain has long fascinated human kind, not only the 

last few decades.  During the last century, the idea of trying to use the knowledge 
obtained in human neurobiology to solve the most complex, difficult and challenging 
problems gained wide acceptance.  With more than 100 billion neurons all working at the 
same time, the human brain forms an incredible complex biological  neural net that is 
able to solve extremely complicated tasks in tenths of a second.  Some of these tasks, 
which seem so easy to perform to the eyes of any kid, seem impossible to solve or mimic 
even with the advance of today’s technology:   

 
- A baseball outfielder being able to track and catch a baseball despite not 

having any empirical knowledge about the speed or the trajectory of the ball. 
- A tennis player being able to return a service that comes at speeds in excess of 

100 miles per hour and hit it with the precision required to place the ball at 
will.  

- A person that catches almost instantaneously a glass of water that has been 
tipped over the table. 

- Remembering a list of telephone numbers, and associate them to a particular 
face or place. 

- Maintaining balance with one leg, and if we think about it, even maintaining 
balance with two legs!   

- Learning to read or write, and speak more than one language with fluidity. 
- Painting, composing songs, and many more everyday tasks that we take for 

granted.   
 
Do we realize the job that out brain does when performing these and many other 

tasks?  Some of these tasks seem so simple because they belong to events that we 
perform or see being performed everyday, but we have to remember that when we are 
little kids, all these tasks seem almost impossible to accomplish for us.  To be able to 
excel in those tasks, lots of training is required, and what some people might call natural 
abilities or skills when we observe the grade of perfection that they have achieved 
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performing some of the more complex tasks, the truth is that person has a better 
predisposition to learn.  The readiness of the human brain to learn makes people stand out 
and seem different in all areas of our society.  These learning capabilities are what have 
inspired the branch of artificial intelligence (AI). 

But not all tasks that the human brain performs everyday require extensive 
training and skills.  Tasks that are crucial to us to survive are regulated by the involuntary 
region of the brain.  Breathing, pumping blood, regulating temperature in the body, 
generating energy, sensing, vision, smelling, touch, taste, and many more vital tasks, are 
regulated and controlled by the brain at the same time, and again we seem to take them 
for granted.  Only when we try to model these tasks into everyday engineering problems, 
such as controlling chemical process, room temperature control, robots actuators, and 
many more, we then realize how complicated these tasks are.  

The quest for systems that would be able to emulate some of these tasks that seem 
so simple for so many of nature’s creations, has been the holy grail for many scientists 
and engineers over the years, and the path to that success has always been linked to the 
understanding of the functioning of the human brain.  Scientists have tried since the early 
1940’s to use artificial neurons like formulations to try to solve complex problems.  The 
following section tries to describe some of the relevant historic events that define the 
origins of artificial NN.  

1.3.1. History of Artificial Neural Networks. During the second half of the 20th  
century the connection between the brain and digital computers was made and generated 
a great deal of interest.  This led to the creation of the first models on how the human 
brain could work.  In 1943, neurophysiologist Warren McCulloch and mathematician 
Walter Pitts wrote a paper on how neurons might work by modeling a simple neural 
network using electrical circuits [16]. 

McCulloch and Pitts showed that networks of artificial neurons could, in 
principle, compute any arithmetic or logical function [17]. Their work is often 
acknowledged as the origin of the neural network field.  The main feature of their neuron 
model was that the weighted sum of input signals was compared to a threshold to 
determine the neuron output.  When the weighted sum of input signals was greater than 
or equal to the threshold, the output  was set to zero.  
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McCulloch and Pitts were followed in 1949 by Donald Hebb [18], whose work 
pointed out the fact that neural pathways are strengthened each time they are used, a 
concept fundamentally essential to the ways in which humans learn.  Hebb argued that if 
two nerves fire at the same time, the connection between them is reinforced.  Hebb 
proposed a possible mechanism for synaptic modifications of the brain, which has been 
used since then to train artificial NN [19].  

As computers became more advanced in the 1950's, it was finally possible to 
simulate hypothetical NN.  Nathaniel Rochester made the first step towards these 
simulations from the IBM research laboratories.  Unfortunately for him, the first attempt 
to do so failed [16].  The first practical application of artificial NN did not come until the 
late 1950s, with the invention of the perceptron network and associated learning rule by 
Frank Rosenblatt [20]. Rosenblatt and his colleagues built a perceptron network and 
demonstrated its ability to perform pattern recognition.  This early success generated a 
great deal of interest in neural network research.  For a more detailed description of what 
a perceptron is refer to section 1.3.2 in this thesis.  Unfortunately, it was later shown that 
the basic perceptron network design could solve only a limited class of problems.   
Minsky and Papert [21] demonstrated that due to the limitation of the perceptron, this 
design was not able to implement certain elementary functions, but this problem was 
solved later on in the 1980’s with the introduction of multiplayer perceptron networks 
and advancements in learning rules.  

In 1959, Bernard Widrow and his graduate student Marcian Hoff, of Stanford, 
developed NN models called the "ADALINE" (ADAptive LInear NEuron) network.  The 
ADALINE network had the limitation that could only solve linearly separable problems 
[22].  The ADALINE network was developed to recognize binary patterns so that if it 
was reading streaming bits from a phone line, it could predict the next bit.  ADALINE 
was the first real world application of a neural network using an adaptive filter that 
eliminated echoes on phone lines.  In 1962, Widrow and Hoff developed a learning 
procedure called the Least Mean square (LMS), which minimized the mean square error 
and therefore tried to move the decision boundaries as far from the training pattern as 
possible [19].  



 

 

13

Despite their initial success, both Rosenblatt’s and Widrow’s networks suffered 
from the limitations described by Minsky and Papert [21].  At that point many 
researchers, influenced by the ideas proposed by Minsky and Papert, believed that the 
research in NN had reached a dead end and this, along with the arrive of the digital 
computers, helped to put a stop on the field of NN for an entire decade.  In addition to 
Minsky and Papert’s paper, many people in the field were using a learning function that 
was fundamentally flawed because it was not differentiable across the entire line.  As a 
result, research and funding went down drastically.  Traditional von Neumann 
architectures took over the computing scene, and the neural research was left behind.  
John Louis von Neumann was the synthesizer and promoter of the stored program 
concept, whose logical design of the Institute for Advanced Studies (IAS) became the 
prototype of most of its successors.  The von Neumann Architecture corresponds to the 
basic structural computer model with memory units, processing units, control units and 
input/output (I/O) units.  Ironically, John von Neumann himself suggested the imitation 
of neural functions by using telegraph relays or vacuum tubes [23]. 

Research in NN emerged again during the 1970s with scientists that believed in 
NN.  Some of the most important scientists that emerged during the 1970s were 
Kohonen, Anderson and Grossberg.  In 1972, Kohonen [24] and Anderson [25] 
developed a similar network architectures, independently of one another, which could act 
as memories.  The Kohonen rule allowed the weights of the neuron to learn an input 
vector that was suitable for recognition applications [26].  Grossberg’s work was geared 
towards modeling specific functions of mind and brain by using nonlinear mathematics 
[27].   Grossberg was highly influenced by the interdisciplinary work done in brain 
function by Helmholtz, Maxwell and Mach and this was shown in the diversity of his 
research which could not be placed in one research area, but in several.  Grossberg 
acknowledged that in order to solve the intelligence problem with NN it was necessary to 
equally approach the areas of mathematics, psychology and neurophysiology [19].  

In 1982, John Hopfield of Caltech, again renewed interest in the field of NN.  
Hopfield presented a paper to the National Academy of Sciences, using the approach of 
creating more useful neural network machines by using bidirectional connection lines 
[29].  Previously, the connections between neurons were only one way.  Hopfield used 
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statistical mechanics to explain the operation of certain classes of recurrent networks, 
which could be used as an associative memory.  Hopfield’s papers were identified as a 
close analogy between his neural network and the Ising memory model of magnetic 
materials, which was used in statistical physics.  This attracted many physicists’ attention 
towards the field of NN [19].  Hopefield’s views of NN emphasized their use for practical 
problems instead of trying to solve very complex problems.  It was a clear statement that 
in order to run, first it was needed to crawl.  Some of those applications were described in 
several of his papers [28] and [29] such analog-to-digital conversion and optimization 
problems such as the salesman problem. 

That same year, Reilly and Cooper used a “Hybrid network” with multiple layers, 
each one using a different problem-solving strategy.  Also in 1982, there was a joint US-
Japan conference on Cooperative/Competitive NN in which Japan announced a new Fifth 
Generation computing effort, which involved AI on NN, which generated worry among 
US researchers that felt the US could be left behind in the field of NN.  The importance 
in announcing Fifth generation computing efforts can be understood by defining the 
different generations of computing.  The first generation computing effort used switches 
and wires, second generation used transistors, third generation used solid-state 
technology like integrated circuits and higher level programming languages, and the 
fourth generation consisted in code generators.  As a result, there was more funding and 
thus more research in the field [16].  

A second revolution emerged in the middle 1980s, with the introduction of 
backpropagation algorithms for training multilayered perceptron networks and hence 
overcoming the inherent limitations of single layer perceptrons that Minsky and Papert 
described in the 1960s.  The first description of an algorithm to train multilayer networks 
was contained in the dissertation of Ph D. Candidate Paul Werbos [30].  The thesis 
presented a generic algorithm in the context of general networks and was not that 
extended among the neural network community.  It wasn’t until the mid 1980s, when 
backpropagation was rediscovered independently and widely publicized by David 
Rumelhart, Geoffrey Hinton and Ronald Williams [31], David Parker [32], and Yann Le 
Cun [33].  Backpropagation represented a generalization of the learning rules introduced 
by Widrow and Hoff by sharing some of the concepts with LMS, such that both were the 
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approximate steepest descent algorithms with the performance index being the mean 
square error.  Backpropagation learning rules signified a breakthrough in neural network 
training in the way in which the derivatives for the update rules were calculated.  For a 
single layer linear network the error was an explicit linear function of the networks 
weights, and its derivatives with respect to the weights, which in return could easily be 
computed.  In multilayer networks, weights and the errors are more complex and in order 
to calculate the derivatives, the chain rule of calculus is required [19]. 

From this point on, the history of NN has been engrossing their arcs with 
thousands of papers in the area of NN. What seemed to be a lost end research in the 
1960´s, has become a widely popular and mature technology that has found its place in 
many areas of research, including medicine, engineering, learning and many others.   

1.3.2.  What  is  an Artificial  Neural  Network?   Neural  networks are part of a  
group of intelligence technologies for data analysis that differ from other classical 
analysis techniques by learning about a subject from the data provided to the networks 
rather than being programmed by the user in a traditional sense.  NN gather their 
knowledge by detecting the patterns and relationships in the sets of data, learning from 
relationships and adapting to change [34]. Through the years, biological models of the 
brain were developed and inspired scientists to try to solve complex problems.  The 
introduction of the perceptron by Rosenblatt in 1959 opened the door for trying to mimic 
biological neurons.  

The perceptron is a mathematical model of a biological neuron.  While in actual 
biological neurons, the dendrite receives electrical signals from the axons of other 
neurons. In the perceptron, these electrical signals are represented as numerical values.  
At the synapses between the dendrite and axons, electrical signals are modulated in 
various amounts.  As described in section 1.1.3, the synapses lead to the generation of 
action-potentials in the postsynaptic neuron, which in turn, is the ultimate cause of the 
decision-making process.  This is also modeled in the perceptron by multiplying each 
input value by a value called the weight.  An actual biological neuron fires an output 
signal only when the total strength of the input signals exceeds a certain threshold.  This 
is modeled in artificial neurons by calculating the weighted sum of the inputs to represent 
the total strength of the input signals, and applying an activation or transfer function on 
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the sum to determine its output.  As in biological NN, perceptrons are interconnected 
with each other such that the output of each perceptron is fed to other perceptrons.  
Figure 1.5 shows a sample of an artificial neuron in which the connections to the left of 
the weights represent the inputs that might come from the connections of other 
perceptrons.  After the different inputs, or signals are summed, an activation or transfer 
function is used to map the inputs to satisfy the specifications of the problem being 
solved.  
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Figure 1.5.  An artificial Neuron or Perceptron. 

 
 
 
The choice of transfer functions is left to the user.  The transfer functions, also 

called activation functions, can be linear or nonlinear, continuous or non-continuous 
functions depending on the nature of the problem to be solved.  Some of the transfer 
functions used are hard limit, linear, saturation, sigmoid, hyperbolic tangent sigmoid, or 
competitive functions.  The reader can refer to [19] for further details about transfer 
functions.  Section 3.1 will explain in more detail the type of nonlinear continuous 
transfer function chosen for the NN design used in this thesis. 
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1.3.3.  Classification of Neural Networks.  In  recent  years,  many  papers  have  
been published on NN controllers.  According to Werbos [35], these fall under five 
classes, and he describes each one as: 

 
- Supervised Control: in which a neural net learns the mapping from sensor 

inputs to desired actions by adapting to a training set of examples of what it 
should have done. 

- Direct Inverse Control: in which a neural net learns the inverse dynamics of a 
system so that it can make the system follow a desired trajectory. 

- Neural Adaptive Control: linear mappings are replaced by neural nets 
resulting in greater robustness and ability to handle nonlinearities.  

- Back Propagation Through Time: adapts an optimal controller essentially by 
solving a calculus of variations problem.  

- Adaptive Critic Methods: approximate the Bellman equation of dynamic 
programming. 

 
Adaptive critic designs include a large family of methods, which attempt to 

approximate dynamic programming in the general case.  The dynamic programming 
approach for solving the optimal control problem will be discussed in more detail in 
section 2.1.3.  A version of the adaptive critic approach, first introduced by Balakrishnan 
and Viega [36], is used in this thesis and uses two sets of NN, one named the Critic 
Neural Network (CNN), which captures the relationship between states and co-states, or 
Lagrange multipliers at the node points.  The other set of networks, named the Action 
Neural Network (ANN), captures the relationship between states and control.  After 
successful synthesis of both networks, the results yield an optimal control in a feedback 
form.  A more detailed description on the synthesis of Adaptive Critic Neural Network 
(ACNN) methodology presented in this study is described in section 3.  In this study, the 
ACNN is developed to obtain a near optimal controller to extend the stall regime for an 
aircraft. 
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1.3.4. What Can and Cannot be Done with  Artificial Neural Networks?   NN  
have the capability to solve extremely complex problems due to their ability to form 
highly complex architectures.  These capabilities have not been fully utilized in real 
world applications, but can be seen in every day applications that include voice, image or 
pattern recognition.   

NN have gained a lot of attention in the field of control in the last ten years.  In 
many fields, including aerospace, engineering systems whose response we want to 
control are becoming more and more complex.  With dwindling funds for development of 
new aircraft, missile, space systems etc., activities have increased in trying to use current 
existing systems in more stressed environments.  A basic requirement for good 
performance or even stable performance in such situations is the development of proper 
control systems.  Traditional control designs, based on classical control theory, have 
prove to be inadequate in such situations.  Although a huge amount of time and studies 
over the past twenty years have been devoted to linear system based robust control, there 
are few actual systems with robust controllers obtained from norm-based theories.  
Nonlinearities of many dynamic systems have generated interest in the studies beyond the 
linearized notions in their development.  This sets the stage for the field of NN, which are 
basically nonlinear mappings, some references are listed [35], [36], [37], and [38]. 

In 1988, the Defense Advanced Research Projects Agency (DARPA) presented 
the DARPA Neural Network Study, in which a series of possible applications for NN were 
listed.  Areas included, aerospace, automotive, banking, defense, electronics, 
entertainment, financial, insurance, manufacturing, medical, oil and gas, robotics, speech, 
securities, telecommunications and transportation [39].  The wide range of possible 
applications for NN shows that the limit of how far NN can go only depends in the 
imagination of the scientists. 

Many scientists, skeptics and believers, have raised the question of how far can 
NN go?  What are they good for and what are their limitations?   Can they ever model the 
human consciousness and emotions as we have seen in so many science fiction movies?  
If we ever reach the potential to do so, how far should we let NN go?  There are those 
scientists that think that with NN we will be able to have a better understanding of how  
the human brain works and thus both medical field and scientific fields will gain from 
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each other by trying to reproduce AI with computers.  On the other hand, there are also 
those that think human thought will never be simulated with NN or any other 
computational tool.  In his book Shadows of the Mind, Roger Penrose [40] suggests that 
deep problems in AI, physics, and the philosophy of mind are closely connected, also 
suggested by Grossberg [26].  Penrose presents a detailed argument, using Gödel's 
theorem, for the conclusion that human thought cannot, and will never be simulated by 
any computation [40].   

Feelings like pain, vision, touch, taste and smell, have all been physically linked 
to different parts of the brain and scientists have been able to describe, more or less, how 
they work.  But not even scientists can get a grasp of how love, fear, happiness or morals, 
to name a few, are generated in the brain.  Scientists have been able to locate the parts of 
the brain that regulate the release of chemicals that control some of those emotions but 
raises another question: Do we limit the explanation of the feelings of a person by 
associating them to mere chemical and hormone releases in certain parts of the brain?  Or 
is there much more to it?  The issue of AI is a very complex and sensitive one since there 
is much more to it than if scientists can ever model something with such complexities.  
Lots of moral issues will be raised if the technology one day reaches the point in which 
science fiction might not be a mere illusion, and robots my have dreams like the late 
Isaac Asimov wrote in his Robot Dreams.   

Again, this moral issue is not the purpose of this thesis, but the author felt it 
necessary to raise couple of these issues, to make the reader aware that the ultimate 
purpose of this work is not to just to show how well a certain NN performs relative to 
some conventional methods, but show that in order to create the ultimate RFC system, we 
need to focus our attention to the ultimate RFC machine, human beings, who are able to 
acquire large amounts of data and make decisions weighing all possible scenarios. 

1.3.5.  Other  Approaches?   NN  are  really  powerful  mapping tools that can  
be trained and thus learn by being fed with data related to the problem.  It has been 
proven that with the correct number of layer and artificial neurons, any nonlinear function 
can be modeled with artificial NN and be able to solve extremely complex problems 
which open the door to use tools that until now were not viable due to the restrictive 
computational requirements.  But NN also have problems and limitations when trying to 
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achieve intelligent control.  NN are extremely efficient tools when it comes to solving 
complicated problems, and have shown robustness for a large trained envelope, but what 
happens when the problem diverges completely from the envelope at which they were 
trained, or if the problem changes completely?   

It will be shown in section 2.2.2, that some non-classical optimal control 
techniques offer the possibility of designing controllers for a wider range of conditions by 
using a series of linear controllers that are parameterized in several operating points by 
one or more variables.  These systems are then linearized at the chosen points and linear 
feedback controllers are designed and implemented at each point.  A problem might be 
encountered if the parameterized variables used to determine which operating point the 
system is located at falls out of the range at which it was trained, or the problem is 
changed completely.  Similar problems will be encountered for any type of controllers 
that do not posses reconfigurability properties.  Humans possess the ability to make 
intelligent decisions under stress situations, even when they do not have all the necessary 
information or when the environment changes completely.  NN ability to solve extremely 
complex problems could benefit from some of the computational approaches that try to 
mimic the way in which humans think under those stress situations. 

One of those approaches is fuzzy logic.  Fuzzy logic was first introduced in 1965 
by professor Lotfi Zadeh, in the shape of defining the basis for fuzzy computer chips 
[41].  Despite their name, fuzzy logic is not a vague technology.  Fuzzy logic is a type of 
logic that recognizes more than simple true and false values, such as computers do, and 
provides a very precise approach for dealing with uncertainty, which grows out of the 
complexity of human behavior [42]. 

Traditional or classical logic tries to categorize information into binary patterns 
which are the basis of the computer language, while fuzzy logic looks at the partially true 
and partially false situations which make up 99.9% of human reasoning in everyday life.   
When analyzing human reasoning we observe that many of the choices we make are 
based on incomplete information that is not clearly defined as black or white.  
Simplifying problems when not all information is available, when only part of the 
information is available, or simply when we are not able to handle all the information, 
generates some of the best human decisions.  By reducing the complexity of the decision-
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making by relating similar information thus reducing the complexity of the problem we 
are able to react faster and more efficient in everyday situations.  When doing this, 
instead of trying to generate artificial mathematical models of the real world, fuzzy logic 
is able to extremely simplify some complex problems and provide solutions that although 
might not have the accuracy of some of the optimal solutions obtained with classical 
control theory or NN based controllers, they provide a solution that is cheaper, simpler 
and far more effective than other systems when it comes to real life implementations. 

By integrating fuzzy logic with the power of NN, we would be able to gain the 
consciousness of making fast and optimal decisions while being able to adjust to 
situations that are not well defined and might cause a computer not to understand.  Fuzzy 
logic and NN have been successfully integrated for uses as diverse as automotive 
engineering, applicant screening for jobs, the control of a crane and the monitoring of 
glaucoma [42].   

Mohammad Jamshidi [43] describes some of these innovative approaches, which 
combine fuzzy logic with other technologies, in his book Applications of Fuzzy Logic.  In 
this book, the world's leading fuzzy logic experts present detailed coverage of new 
applications that deliver exceptionally high levels of autonomy and adaptability.  These 
high machine intelligence quotient systems combine fuzzy logic with related techniques 
such as NN and genetic algorithms, leading to significantly improved performance in a 
wide variety of control systems. 

Another interesting approach taken by many researchers focus their attention on 
natural selection, which was first introduced by Charles Darwin in his book On the 
Origin of Species by Means of Natural Selection published in 1859.  Darwin described 
that nature favors the strongest and the fittest species to survive.  The fittest will move on 
and reproduce while the weak die out.  This natural selection is extrapolated to processes 
like Evolutionary Strategy (ES) and Genetic Algorithms (GA), which were first 
introduced by Rechenberg in 1973 [44], and Holland in 1975 [45], respectively.  

In 1963 two students at the Technical University of Berlin (TUB) met and were 
soon to collaborate on experiments, which used the wind tunnel at the Institute of Flow 
Engineering.  During the search for the optimal shapes of bodies in a flow, which was 
then a matter of laborious intuitive experimentation, the idea was conceived of 
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proceeding strategically.  However, attempts with the coordinate and simple gradient 
strategies were unsuccessful.  Then one of the students, Ingo Rechenberg hit upon the 
idea of trying random changes in the parameters defining the shape, following the 
example of natural mutation.  The ES strategy was born [46].  ES was invented to solve 
technical optimization problems (TOPs) like constructing an optimal flashing nozzle.  
Usually no closed form analytical objective function is available for TOPs and hence, no 
applicable optimization method exists, but the engineer's intuition. 

GA’s are models of machine learning, which derives its behavior from a metaphor 
of the processes of evolution as seen in nature.  This is done by the creation within a 
machine of a population of individuals represented by artificial chromosomes similar in 
concept to the base-4 chromosomes that we see in our own DNA.  The individuals in the 
population then go through a process of evolution following Darwin’s maxim that the 
fittest will move on and reproduce while the weakest dies out [46]. 

These different approaches, and many others that try to take advantage of the 
knowledge gained by Mother Nature by many different means such as evolution (GA), 
mutation (ES), the complexity of human behavior (fuzzy logic), and the power and 
complexity of human thinking (NN), paves the path for researchers to try to achieve the 
difficult task of obtaining RFC. 
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2. OPTIMAL CONTROL 

2.1. OPTIMAL CONTROL THEORY 
The development of the modern control theory, the state-space method, and the 

calculus of variations make it possible to introduce optimal control theory.  Optimal 
control is the unique method that can deal with a nonlinear system without any 
approximation.  It has no limitation either for linear or nonlinear systems, and either for 
single input-output (I/O) or multiple I/O systems.  It has been used to solve many 
complex nonlinear, multivariable problems in a variety of industrial settings, particularly 
in aerospace applications.  The application of optimal control theory needs to clearly 
define the problem and identify the performance measures, which will be introduced in 
the following sections.  It needs to be noted that since a computer will be used to 
implement the control in its feedback form, it is necessary to use the discrete-time 
formulation, which will be used in the following sections. 

2.1.1. Definition of Optimal Control.  The definition of optimal control is to find   
an admissible control, *

iu , which causes a system to follow an admissible trajectory, *
ix , 

that minimizes the discrete-time performance measure or cost function J [47].  Where the 
i subscript represents the control at time i of the discrete-time model. 
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where ( )iL i  is a scalar, also known as the utility function.  When N approaches 

infinity, ∞, this is equivalent to an infinite-time regulator problem. The class of problems 
solved in this thesis is defined by the discrete-time system model given as 

 
1 ( , )i i i ix f x u+ =                     (2) 

 
where ( )if i  can be either, a linear or nonlinear combination of the states that 

describe the dynamics of the system, and has dimensions of nx1; the states, xi, have 
dimensions nx1 and the control, ui, has dimensions of mx1.  Two approaches are 
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generally used to obtain a solution to the optimal control problem.  One is the 
Pontryagin’s minimum principle, also known as Hamiltonian formulation, the other 
dynamic programming.  The following sections will introduce both methods. 

2.1.2.   Pontryagin    Minimum    Principle:   Hamiltonian    Formulation.   In 
Hamiltonian formulation, the performance index described in Eq. (1) is optimized 
treating the state equations as constrains thus defining the discrete-time Hamiltonian, Hi, 
as  

 
1 1( , , ) ( , ) ( , )T

i i i i i i i i i i iH x u L x u f x uλ λ+ += +             (3) 
 
where Hi is a scalar, 1iλ +  is the co-state at i+1 with dimensions nx1.  The discrete-

time necessary conditions for optimality, or Euler-Lagrange equations, are obtained by 
applying the calculus of variation to the Hamiltonian with respect to the states, co-state 
and control respectively yielding 
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Equations (4), (5) and (6) become the optimality Euler-Lagrange equations.  A 

quadratic utility cost function is chosen such that  
 

1 1
2 2

T T
i i i i iL x Qx u Ru= +                (7) 
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where Q is the weighted state matrix and R is the weighted control matrix with 
dimensions nxn and mxm respectively.  Substituting Eq. (7) into Eq. (3) the Hamiltonian 
can be expressed as 

 

1 1
1 1( , , ) ( , )2 2

T T T
i i i i i i i i i i i iH x u x Qx u Ru f x uλ λ+ += + +           (8) 

 
And after substituting Eq. (8) into the general optimality equations (4), (5), and 

(6), the necessary conditions for optimality become 
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               (9) 
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where *

iu  is the discrete-time optimal feedback control law, which is obtained by 
simultaneously solving Eqs. (9) and (10) while minimizing the new defined cost function 
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2.1.3.  Dynamic  Programming.   Dynamic  programming  is  the other approach  

that can be used to obtain the solution to the optimal control problem, and as described in 
reference [4], the only exact and efficient method possible, in the general case for solving 
stochastic dynamic optimization problems.  Dynamic programming provides a 
computational technique to apply the principle of optimality to a sequence of decisions 
that define an optimal control policy.  The principle of optimality is described by 
Bellman [48] as follows: 
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“An optimal policy has the property that no matter what the previous decisions 
(i.e., controls) have been, the remaining decisions must constitute an optimal policy with 
regard to the resulting from those previous decisions.” 

The Hamilton-Jacobi-Bellman (HJB) equation, which is a general mathematical 
description of the optimality conditions, can also be used as a direct representation of the 
principle of optimality.  The Hamilton-Jacobi-Bellman equation for a discrete-time 
system is given by 

 

* * 1
1( ) ( , ) 1i i

i
i i i i iu

xJ x min L x u J d
+

+

  = +  +  
       (13) 

 
where *( )

i iJ x  is assumed to be the minimum cost associated with going from time 
i to the final time, and is a scalar. The optimal value is indicated by*.  This application 
calls for a minimization over time, thus the “min” in Eq. (13). ( , )i i iL x u  is a user-supplied 
utility function [23], which is the cost of going from time i to time i+1; d is a user-
supplied discount factor, generally assumed to be zero; “<>” denotes the expectation 
value; ui should be the value which maximizes the right hand side of equation (13).  
Finally *

1iJ +  is assumed to be the minimum cost associated with going from time i+1 to 
the final time.  For conventional tracking problems, the utility function is generally 
chosen as the tracking error at time i such that ( )2

i ix r− , where xi is the actual state, and 

ir  is the desired value for the tracking state.  In such case, dynamic programming gives 
the recipe for how to minimize the tracking error over all future time [23].  If both sides 
of equation (13) are partially differentiable with respect to the state i, and define 
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where λi and xi have dimensions of nx1, then 
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1 1
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From Eq. (15), it can be seen that if 1iλ + , ( ),i i iL x u , and the system model 

derivatives are known, then iλ  can be found.  Similarly, Eq. (14) needs to be solved 
backward in time starting from the final time and proceeding to the initial time.  Next, the 
optimality equation is defined as  
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Dynamic programming uses these equations to aid in solving either an infinite 

horizon policy or to determine the control policy for a finite horizon problem. 
2.1.4. The Optimal Tracking Problem.  For the class of problems defined in this  

thesis, infinite horizon problems, when minimizing the cost function defined in Eq. (1), 
given by the utility function defined by Eq. (7), the necessary conditions for optimality 
are satisfied by solving backwards Eq. (9) and using that result in the feedback control 
law, described in Eq. (11).  This formulation is only valid when we want to drive the 
perturbed states of the nominal system to zero, which is assumed to be the desired states.  
When the desired states are different than zero, then the utility function needs to be 
modified to minimize the tracking error of the state as 

 

[ ] [ ] [ ] [ ]1 1
2 2

T T
i i i i D i DL x r Q x r u u R u u= − − + − −                (17) 

 
where ix  is the state, r the desired value of the tracked states, iu  is the actual 

control, and Du  is the steady state control necessary to achieve the r.  If the redefined cost 
function is substituted into Eq. (8), and then into the necessary conditions for optimality, 
Eqs. (9)-(11), this produces a new set of necessary conditions that need to be solved to 
achieve the optimal tracking control problem defined by  
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From inspecting Eqs. (18) and (19), it can be observed that in order to solve the 

optimal tracking problem the desired tracking states, r, and steady state control, u , are 
required. This represents a challenge, as well as an inconvenience, for this formulation 
since it implies that in order to solve the optimal control law for tracking a desired state, 
it is necessary to know a priori the steady state control that drives the system to the 
desired steady state.  This approach will be tested in section 4.3 with a class of problems 
that allow the optimal tracking approach. 

2.1.5. A Special Case  -  Linear  Quadratic  Regulator.  A  special  case  of  the  
optimal control problem is that in which the discrete-time system model expressed in Eq. 
(2) can be expressed in the discrete-time state-space model such as: 

 
1i i ix Ax Bu+ = +            (20) 

 
where A represents the state matrix and B the control matrix.  In these types of 

problems the approach followed is to calculate an optimal feedback gain matrix K such 
that the state-feedback law is provided by i iu Kx= −  and minimizes a quadratic cost 
function of the form 
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Note that the utility function inside of the summation of Eq. (21) includes an extra 

term compared to the one defined in Eq. (12).  In the same manner as the weighted state 
matrix, Q, and the weighted control matrix, R, N represents a matrix that include the 
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weighted cost for the cross terms between the states and the control.  In the general case 
this matrix is zero.  The approach for solving the optimal control problem for this class of 
problems consist of solving the associated steady state Riccati equation: 

 
1( ) ( ) 0T T TA S SA SB N R B S N Q−+ − + + + =             (22) 

 
and assume a state-feedback gain K of the form  
 

1( )T TK R B S N−= +            (23) 
 
This is known as the discrete-time Linear Quadratic Regulator (LQR) problem 

and the feedback control law takes the form of  
 

1( )T T
i i iu Kx R B S N x−= − = − +                   (24) 

 
where S represents the solution for the associated steady state Riccati  equation.  

The conditions to guarantee a solution for the associated steady state Riccati  equation 
are: 

 
- The pair (A,B) is stabilizable. 
- 0R >  and 1 0TQ NR N−− ≥ . 
- 1 1,T TQ NR N A BR N− −− −  has no unobservable mode on the imaginary axis. 
 
Although a nonlinear system needs to be linearized about a operating point in 

order to be able to use the discrete-time LQR approach, the insight knowledge provided 
by the discrete-time LQR solution, was of invaluable help during the analysis process for 
both, comparison and initialization of the NN formulation as will be seen in the following 
sections.  Several mathematical optimization techniques are available to solve for the S 
that satisfies Eq. (22), and thus providing with the feedback control law, of the form 
described in Eq. (24).  This thesis uses a built in MATLAB function called “dlqr.m,” 
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which in return calls a function called “dare.m” that solves the discrete-time algebraic 
Riccati equation by using algorithms by Arnold and Laub [49].  Throughout the reminder 
of this thesis the discrete-time LQR will be referred as LQR for simplicity. 

 
2.2. NONLINEAR OPTIMAL CONTROL BACKGROUND 

This section provides a background to the different control theory approaches to 
the nonlinear problems, from classical control methods to non-classical methods and 
ending with some of the latest approaches in NN, which will serve as an introduction to 
section 3 where the NN approach used in this thesis will be discussed in detail. 

2.2.1. Classical Control.  Many  approaches  have  been  used  over  the  years  to 
solve the problem of automated control.  Classic control techniques try to obtain feedback 
control laws by conducting comprehensive analysis of the system model.  Some of these 
classic control techniques include design via root locus techniques, frequency response 
techniques and state space techniques to name a few.  Nise gives a detailed definition of 
all the classical controllers described above in his reference book Control Systems 
Engineering [50].  The author will try to recap some of the definitions contained in [50] 
in the next paragraphs. 

In the design via root locus, the designer is able to choose the proper loop gain to 
meet a transient response specification by graphically analyzing both the transient and the 
stability information provided by the root locus.  Since the transient response is dictated 
by the poles at a point in the root locus, this technique is limited to the transient responses 
and the steady-state error represented by points along where the root locus are available.   
In order to improve these limitations, cascade compensators are introduced in the form of 
ideal integral, or proportional-integral (PI) controller, ideal derivative or proportional 
derivative (PD) controller, proportional-plus-integral-plus-derivative (PID) controller, lag 
compensators, lead compensators, lag-lead compensators and feedback compensation.   

Steady-state design compensators are implemented via PI controllers or lag 
compensators.  PI controllers add a pole at the origin, thereby increasing the system type.  
Lag compensators, usually implemented with passive networks, do not place the pole at 
the origin but near it.  Both methods add a zero very close to the pole in order not to 
affect the transient response. 
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The transient response design compensators are implemented through PD 
controllers or lead compensators.  PD controllers add a zero to compensate the transient 
response, while lead compensators add a pole along with the zero.  Lead compensators 
are usually passive networks.  We can correct both transient response and steady-state 
error with a PID or lag-lead compensator.  Both of these are simply combinations of the 
previously described compensators.  

Feedback compensation can also be used to improve the transient response, where  
the compensator is placed in the feedback path.  The feedback gain is used to change the 
compensator zero or the system's open-loop poles, giving the designer a wide choice of 
various root loci.  The system gain is then varied to move along the selected root locus to 
the design point.  An advantage of feedback compensation is the ability to design a fast 
response into a subsystem independently of the system's total response. 

Other classical approach is the design via frequency response.  This approach 
follows the same lines of root locus via gain adjustment with the difference that the tools 
used do not require a computer.  Instead Bode plots and Nyquist diagrams are used along 
side each other to provide stability and transient information about the system that is used 
to design a desirable controller [50].  Nyquist criterion is used to determine if a system is 
stable by looking at the magnitude of the frequency response.  Increasing the phase 
margin reduces the percent of overshoot of the response, decreasing the bandwidth 
increases the speed of the response, and the steady-state error is improved by increasing 
the low-frequency magnitude responses.  

Another classical method is the state-space design, in which the desired system’s 
pole locations are specified and then a controller consisting of state-variable feedback 
gains is designed to meet these requirements.  Controller design consists of feeding back 
the state variables to the input of the system through specified gains that were found by 
matching the coefficients of the system’s characteristic polynomial with the coefficients 
of the desired characteristic polynomial.  If the state variables are not available, an 
observer is designed to emulate the plant and provide estimated state variables that will 
be used to obtain the gains.   

Today systems operate in wider regimes than those in which they were originally 
designed and therefore the controllers need to be much more robust to be able to operate 
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beyond the design envelope.  Classic control techniques lack the robustness that is 
necessary to approach the extreme situations that define problems like the RFC problem 
that has motivated this study.  These types of beyond-the-envelope systems use less 
classic approaches to solve the highly nonlinear problems. 

2.2.2. Nonlinear  Optimal  Control  Methods.   This section  describes  some  of 
tools used in nonlinear control.  Khalil [51] lists in his Nonlinear Systems textbook 
various common tools used for nonlinear design, such as linearization, integral control, 
gain scheduling, feedback linearization, sliding mode control, Lyapunov redesign, 
backstepping, passivity-based control, and high gain observers.  A brief description of 
each one of the methods without getting into the details of the formulation is provided by 
[51] and summarized below. 

In the design via linearization, the controller is guaranteed to work over the 
neighborhood of the single operating point that was used for the linearization.  This 
limitation is extended to a wider range of operating points with the gain scheduling 
method, by parameterizing several operating points by one or more variables.  The 
system is then linearized at the chosen points, and linear feedback controllers are 
designed and implemented at each point.  This creates a series of linear controllers that 
are activated by monitoring the scheduling variables and hence being able to operate at 
different points of the envelope.  This is one of the most commonly used design tools in 
the aviation industry today, due to the simplicity of the design and its capability to work 
at different operating points.   

The integral control approach ensures asymptotic regulation under all parameters 
that do not destroy the stability of the closed-loop.  The integral action is introduced by 
integrating the regulation error between the measured and desired states.  By regulating 
the integrated error to be zero at equilibrium, the feedback controller creates an 
asymptotically stable equilibrium point. 

Feedback linearization is one of the most widely used methods when trying to 
control nonlinear systems by taking a different perspective to linearization of the systems.  
The idea behind the feedback linearization problem consists in the stabilization of the 
nonlinear state equation into a controllable linear state equation by introducing terms in 
the controller to reduce or cancel the nonlinearities.  Feedback linearization can be 
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divided in full-state linearization, where the state equation is completely linearized, and 
input-output linearization, where the input-output map is linearized, and the state 
equation may be only partially linearized.   

In the sliding mode control approach, trajectories are forced to reach a sliding 
manifold in finite time and to stay on the manifold for all future time.  Motion on the 
manifold is independent of matching uncertainties.  By using a lower order model, the 
sliding manifold is designed to achieve the control objective.  The Lyapunov redesign 
uses a Lyapunov-like function of a nominal system to design an additional control 
component that makes the design robust to large matched uncertainties.  Both the sliding 
mode control and the Lyapunov redesign produce discontinuous controllers, which could 
suffer from chattering in the presence of delays or unmodeled high-frequency dynamics.  

Backstepping is a recursive procedure that interlaces the choice of Lyapunov 
function with the design feedback control.  It breaks a design problem for the full system 
into a sequence of design problems for low order subsystems, using this extra flexibility 
between the lower order and scalar subsystems to solve stabilization, tracking and robust 
control problems under less restrictive conditions.  

Passivity based controllers exploit passivity of the open-loop system in the design 
of feedback control by damping injection.  High-gain observers consider the fact that 
state feedback might not be available in many practical problems and extends previous 
control techniques to output feedback.  

These are some of the most important nonlinear methods that are available in the 
academic literature, but many other methods have emerged through the years by merging 
the best parts and pieces of the above methods described with the power of NN, fuzzy 
logic and GA, yielding very powerful methods that are able to solve some of the more 
complex nonlinear problems.  Some of these methods will be introduced along with a 
mention of authors for reference to the reader in section 2.2.3. 

2.2.3. Nonlinear Control and Neural Networks.   As mentioned in section 1.3.4,  
NN have gained a lot of attention in the field of control over the last ten years.  Optimal 
control formulations often lead to two point boundary value problems [47].  For this 
reason, except for a very special class of problems, like LQR problems, it is quite 
difficult to solve for the controller in state feedback form.  Moreover for nonlinear 
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problems, the solution depends on the initial conditions.  In real-life problems, however, 
it is difficult to predict the initial conditions a priori.  Hence, it is necessary to obtain 
control functions that apply to an entire range of initial conditions to retain the feedback 
nature of the solution.  The method of dynamic programming handles this problem by 
producing a family of optimal paths, or what is known as the field of extremals [47].  One 
great drawback of the dynamic programming approach, however, is that it requires a 
prohibitive amount of computation and storage in producing this entire field of extremals 
[47].  NN provides a solution to the problem of covering the entire field of extremals.  
This section intends to introduce some of the work done in the area of NN towards 
solving the highly demanded nonlinear control problems. 

NN have been used extensively in the control of lumped parameter systems, 
which includes control of nonlinear plants.  Various studies have realized neural network 
assisted controllers based on feedback linearization, dynamic inversion, reinforcement 
learning etc., in many fields like robotics, flight vehicles, chemical processes, motors, 
automobiles etc.  A survey paper [52] is cited for reference.  It should be noted, however, 
that so far almost all of the neural network applications on control systems reported in 
literature have been confined to lumped parameter systems.  The work conducted in this 
thesis presents the powerful adaptive-critic methodology for a systematic synthesis of 
optimal neuro-controllers for distributed parameter systems, in a much desirable state 
feedback form. 

The neural network approach presented in this paper has many resemblances to 
the Adaptive Critic Neural Network (ACNN) method presented in Balakrishnan and 
Biega  [53] and Balakrishnan and Saini [54].  Balakrishnan and Viega focus on the use of 
the ACNN architecture to obtain an optimal neurocontroller based in the dual network 
architecture formed by an action neural network (ANN) and a critic neural network 
(CNN).  The ANN maps the states of a system to the control, while the second network, 
the CNN, captures the mapping between the states of a dynamical system and the co-
states that arise in an optimal control problem.  The equations that satisfy the optimality 
of the problem are solved with the help of NN. This makes it possible to synthesize the 
closed loop controllers for this complex process.  It also allows the philosophy of 
dynamic programming to be carried out without the need for near impossible 
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computation and storage requirements.  Another advantage of this neural network 
approach include the fact that no a priori assumptions about the form of the feedback 
control are needed; i.e., one need not assume the control expressed in any particular form.  
The consequence of this off-line computational method is that the resulting control is 
available to be used as on-line state-feedback control for an entire envelope of initial 
conditions.  A more detailed explanation of the adaptive and critic methods used in this 
thesis will be described in section 3. 

Balakrishnan and Saini [54] use the ACNN architecture to design a controller for 
auto landing an aircraft.  Balakrishnan and Han [55] extend the ACNN formulation to 
solve a terminal constraint optimal control problem using an expanded form of the 
ACNN architecture where the optimization goal is for a trajectory in minimum time to 
reach a set of final state constraints.  The approach taken for the terminal constrain 
problem is to reformulate the state and optimal control equations to change the 
independent variable to that of one of the former states, generating a fixed final condition 
with respect to the independent variable.  This sets a hard constraint on the Hamiltonian 
equations so that the final conditions are met exactly though the one-dimensional state 
equation which is no longer invariant to the independent variable.  Thus a series of 
ACNN pairs are used in sequence along the trajectory to account for the variance. 

Plummer [56] touches a family of terminal control problems in which he extends 
one of the most popular training algorithms for feed forward NN, backpropagation-
through-time, to address the limitation that the feedforward NN algorithms have when 
dealing with the family of problems in which the cost function includes the elapsed 
trajectory-time.  He approaches these limitations by reforming the controller design as a 
constraint optimization problem defined over the entire field of extremals for which the 
set of trajectory-times is incorporated into the cost which correspond to standard 
backpropagation-through-time with the addiction of certain transversality conditions.  
The new gradient algorithm based on these conditions, called time-optimal 
backpropagation-throught-time, is tested on two benchmark minimum-time control 
problems. 

Jagannathan and Lewis [57] introduced a family of novel multilayer discrete-time 
neural-net controllers for the control of a class of multi-input multi-output dynamical 
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systems.  The neural net controller includes modified delta rule weight tuning and 
exhibits an on-line learning instead of an off-line, so that control is immediate with no 
explicit learning phase needed.  The structure of the neural network controller is derived 
using a filtered error/passivity approach in which the linearity in the parameters is not 
required and certainty equivalence is not used, hence overcoming several limitations of 
standard adaptive control.  The stability analysis of the neurocontroller is done using the 
Lyapunov’s direct method to guarantee the performance and the stability of the weight 
tuning algorithms of the neural nets.  They make use of the passivity based controller 
properties described above despite the original system having not passivity properties, by 
using the neurocontroller to make the closed-loop system passive.  This allows that the 
additional unknown bounded disturbances do not destroy the stability and tracking 
performance of the system. 

Calise and Kim [58] demonstrated the power of the neural network within the 
realm of nonlinear control systems, with specific focus on aircraft control.  The strength 
of their design lays in the implementation of feedback linearization along with NN as an 
alternative to gain scheduling, which simplifies the problem of designing complex flight 
control system for high-performance fighter aircrafts.  Their design consists of a 
command and stability augmentation control system based on the feedback linearization, 
that uses an off-line trained network to invert the nonlinearities, while an online trained 
neural network is used to compensate for imperfections in the inversion and changes to 
the original dynamics and/or failures in the controls surfaces.  A stable weight adjustment 
rule for the weights of the on-line neural network is also presented using a Lyapunov-like 
function. 

Calise’s effort to demonstrate the power of merging nonlinear control theory with 
the NN ability to model nonlinearities has yielded an extensive series of papers for a wide 
range of problems, the aerospace realm being the one with the most contributions.  From 
helicopters to reusable launch vehicles, Calise and many more other authors have 
dedicated an incredible amount of work and resources to design neurocontrollers that 
would be able to approach the reconfigurable in an innovative and efficient approach.  
Some of these novel works are introduced below. 
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Calise, Pei and Prasad [59] show, in an actual flight system of an unmanned 
helicopter, the potential benefits of neural network direct adaptive control by designing 
an outer loop trajectory-tracking controller.  Calise, Johnson and Rysdyk [60], use the X-
33 Reusable Launch Vehicle technology demonstrator model to demonstrate a version of 
Calise’s neurocontroller.  The specific adaptive control method, called Pseudo-Control 
Hedging, is based in the concept of modifying a reference model to prevent an adaptation 
law from adapting to saturation of the vehicle input characteristic such as actuator 
position limits, actuator position rate limits and linear input dynamics.  The same 
methodology is applied by Calise and Johnson [61] to a type of failures that led to a 
reduction in total control authority of the X-33 model.  They accomplish this by 
preventing the outer loop dynamics to adapt to the inner-loop dynamics while operating 
at the control limits. Calise, Lee, and Sharma [62] [63] show the approach taken to the 
RFC problem using a model of a tailless fighter aircraft configured with multiple and 
redundant control actuation devices, which is later tested in both a piloted simulation and 
in flight test on the X-36 aircraft.  

Haley and Soloway [64] propose a Neural Generalized Predictive Control 
(NGPC) algorithm capable of real-time control law reconfiguration, model adaptation, 
and the ability to identify failures in control effectiveness by using an innovative user 
define cost function that can be associated to either the aircraft outputs or to the control 
inputs.  The NGPC algorithm operates in two modes, prediction mode, in which uses the 
aircraft model to predict the aircraft’s response, and control mode in which the control 
input that minimized the user specified function is passed to the aircraft as actuator 
position commands which then produce the desired aircraft response.  When failure 
simulations are introduced, such as frozen elevator, the NGPC algorithm learns the 
changed dynamics and reconfigures to use alternative controllers, like symmetric ailerons 
to stabilize the aircraft. 

Bull, Kaneshige, and Totah [65] introduce an innovative generic neural flight 
control and autopilots system to provide adaptive flight control, without requiring 
extensive gain-scheduling or explicit system identification.  The autopilot system is 
applied to a wide range of vehicle systems and is formed by a generic autopilot, a neural 
flight controller and a mode control panel, and a flight director.  The generic guidance 
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system performs automatic gain-scheduling using frequency separation, based upon the 
neural flight control system’s specified reference model.  The neural flight control 
architecture is based on the augmented model inversion controller developed by Calise  
and Rysdyk [66], which is a direct adaptive tracking controller that integrates feedback 
linearization theory with both pre-trained and on-line learning NN.  Pre-trained NN 
provide estimates of the aerodynamics stability and control characteristics required for 
model inversion.  The on-line learning NN are used to generate command augmentation 
signals to compensate for the errors in the estimates and from the model inversion.  The 
online learning NN also provide additional potential for adapting to changes in aircraft 
dynamics due to damage or failure.  The mode control panel is the pilots’ interface with 
the generic autopilot, and the flight directors, provide guidance commands to the pilot 
through the graphical display of pitch and bank errors.  The generic neural flight control 
is tested in the NASA Advanced Concepts Flight Simulator (ACFS) [67]. 

Reference [68] describes an intelligent fault tolerant flight control system that 
blends aerodynamic and propulsion actuation for safe flight operation in the presence of 
actuators failures.  Fault tolerance is obtained by a nonlinear adaptive control strategy 
based on on-line learning NN and actuator relocation scheme.  The adaptive control block 
incorporates a recently developed technique for adaptation in the presence of actuator 
saturation, rate limits and failure. The proposed integrated aerodynamic/propulsion flight 
control system is evaluated in a nonlinear flight simulation. 

Kim and Lee [69] propose a nonlinear flight control system using back-stepping 
and a NN controller that is tested in a non-linear six-degree-of-freedom simulation for an 
F-16 aircraft.  The back-stepping controller is used to stabilize all state variables 
simultaneously without separating the fast dynamics from the slow dynamics, while the 
adaptive NN controller is used to compensate for the effect of the aerodynamic modeling 
errors, by assuming that the aerodynamic coefficients include uncertainty.  The Lyapunov 
stability theorem is used to demonstrate that the tracking errors and weights of NN 
exponentially converge to a compact set under mild assumptions on the aerodynamic 
uncertainties and nonlinearities. 

Ferrari and Stengel [70] take the approach of designing a nonlinear control system 
that takes advantage of priori knowledge and experience gained from linear controllers, 
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while capitalizing in the broader capabilities of adaptive, nonlinear control theory and 
computational NN.  The importance of this novel approach lies in the fact that the 
gradients of the nonlinear control law represents the gain matrices of the equivalent 
locally linearized controllers by using a set of hypersurfaces expressed as NN that 
represent satisfactory linear controllers designed over the plant’s operating range. 

Other areas like fuzzy logic and GA have also shown good results in the areas of 
mobile robot navigation, and for reference, only a few papers are described in this 
section.  The author had the privilege to recently attend the 15th Triennial World 
Congress of the International Federation of Automatic Control (IFAC) that was held in 
July of 2002 in Barcelona, Spain, and came across the work done by some researchers in 
the fields of fuzzy logic and GA that were successfully applied in actual physical 
systems.  Despite the fact that these fuzzy logic and GA models did not seek to produce 
optimal solutions to the problems they were applied, they were implemented in real 
models, and were able, in general, to deal with the uncertainties that were present in the 
environments they operated.  

Hartana and Sasiadek [71] present a sensor fusion for dead-reckoning mobile 
robot navigation.  Odometry and sonar measurement signals are fused together using 
extended Kalman filter (EKF) and Adaptive Fuzzy Logic System (AFLS).  Two different 
methods are used to adapt EKF, the first uses two exponential data weighting functions to 
estimate the process and white noise covariance, while the second method only uses the 
white noise covariance.  The paper shows that the fused signal of odometry and sonar 
measurements along with the EKF and the AFLS is more accurate than any of the 
original signals considered separately, and the enhanced, more accurate signal, is used to 
successfully guide and navigate the robot. 

Green and Sasiadek [72] show the comparison results for tracking of a square 
trajectory by a two-link flexible robot manipulator, using as comparison an inverse 
dynamics control (IDC) and fuzzy logic control (FLC).  A repetitive control technique is 
used to train a robot on the premise that it must execute periodic motions so that its 
performance improves after each iteration.  The results show that while the repetitive 
learning inverse dynamics control (RLIDC) achieves no improvement in tracking, 
repetitive learning fuzzy logic control (RLFLC) achieves greater precision where cyclic 
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tracking enables the fuzzy inference system to self-adapt and further reduce tracking 
errors. 

Cuesta and Ollero [73] demonstrate the properties of a fuzzy reactive navigation, 
which is applied to a nonholonomic mobile robot ROMEO-3R.  Despite the fact that 
reactive navigation approaches usually present worse dynamic performance, since 
oscillations are very common in these techniques, they are an emerging alternative to (or 
in combination) planned schemes.  The influence of the own reactive navigation 
parameters (such as sensor range, computation time, control gains,...) in the stability of 
the system is analyzed, and stability conditions in terms of these parameters are also 
introduced. 

Martinez-de Dios and Ollero [74] present a study for a general infrared vision 
system to be used in robotic applications in natural outdoor environments. In these 
applications the robustness of the vision system and the automatic settings of the infrared 
cameras are very important issues.  A piecewise linear model of the infrared camera is 
used for the design and development of a fuzzy control method by applying visual 
feedback techniques.  The vision system included a new fuzzy-multiresolution threshold 
computation method, which considered knowledge of the application and information on 
the illumination conditions to select an appropriate threshold for the segmentation of the 
object of interest and described some experiments for surveillance. 

Anibal Ollero is Professor at the Ingeniería de Sistemas y Automática 
Department, University of Seville, Spain.  He has participated and has led more than 40 
research and development projects on robotics, intelligent control, computer vision and 
artificial intelligence, funded by Spanish agencies, regional agencies, the European 
Community (ESPRIT, Telematics Applications, Environment and Climate y CRAFT-
BRITE) and several industries.  Some of these projects can be seen at his World-Wide-
Web home page [75], and range from perception techniques for detection and tracking 
using infrared and visual cameras, distributed environmental disaster information and 
control systems, systems for estimation of the biomass of specimens in fish farms using 
computer vision and others techniques, forest fire monitoring using perception systems, 
automatic steering of large vehicles, intelligent control systems for mobile robots for 
greenhouse servicing, systems for automatic functional testing of airplanes and 
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functional, automation tests in the aeronautic industry, or research and development for 
planetary Rovers to name few. 

Armingol, de la Escalera, Mata and Salichs [76] describe a vision-based landmark 
learning and recognition system for use in mobile robot navigation tasks.  The system 
uses GA for both learning and recognition processes.  The system is able to learn new 
landmarks with very little human intervention.  The recognition system can read text 
inside landmarks, when present.  This learning ability is tested with two very different 
landmarks that have been successfully used for indoor topological robot navigation.  In 
addition, some new landmarks are learned, that will be tested for indoor-outdoor 
navigation in future works.  
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3. ADAPTIVE CRITIC NEURAL NETWORK DESIGN 

This section provides a more detailed description and the training synthesis 
approach of the NN architecture used in this thesis. 

  
3.1. NEUROCONTROLLER DEVELOPMENT. 

The ACNN is a feed forward backpropagation architecture consisting of two 
separate networks, an Action Neural Network (ANN) and a Critic Neural Network 
(CNN).  Each network has its own independent characteristics but at the same time their 
intrinsic relationship is a key point for obtaining the near optimal control law for a given 
system.  The general structure of one layer neural network is shown in Figure 3.1.   
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Figure 3.1.  General Structure of One Layer Neural Network. 

 
 
 
where p is the input to the NN, a is the output of each NN, W is the weight 

associated with the given layer, b is the bias associated with the weight-input 
combination, n represents the summation of the weight and the bias before being 
transformed by the activation function, and F is activation function or transfer function 
associated with the layer.   
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For this thesis, it has been chosen that both, the ANN and CNN architectures, 
consist of three layer NN. The three layer NN consists of two hidden layers with 
hyperbolic tangent sigmoid transfer function (HTS-TF), and an output layer with a linear 
transfer function.  Considering the schematics defined in Figure 3.1, where a represent 
the output of the NN, the output of the HTS-TF is defined as 
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Figure 3.2 shows a schematic of the 3-layer NN architecture used in the thesis. 
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Figure 3.2.  Three Layer Neural Network Architecture. 

 
 
 
where the output for both ANN and CNN networks is defined as 
 

3 3 2 2 1 1 1 2 3( ( ) )a W F W F W p b b b= + + +        (26) 
 
It is really important to make sure that the dimensions of the corresponding 

weight matrices, for each of the layers, be consistent with the dimensions of the inputs 
and the desired outputs.  The dimensions for both the ANN and CNN architecture are 
defined by the notation 1 2 3, , ,P S S SN , where the first subscript represent the dimension of the 
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inputs, P, the number of neurons in each one of the hidden layers layer is defined by S1 

and S2, and the dimension of the output is defined by S3.  For example, a NN architecture 
of the form N3,6,6,1, corresponds to 3 inputs, 6 neurons for the first and second hidden 
layers and 1 neuron corresponding to the single output.   

The NN training procedures are implemented in the software package MATLAB® 
version 5.3.0 Release 11 during the first part of the analysis and finalized in version 
6.0.0.88 Release 12 [77].  MATLAB® is a software package for technical computing.  It 
integrates computation, visualization, and programming in an easy-to-use environment 
where problems and solutions are expressed in familiar mathematical notation that 
provides a convenient interface to built-in state-of-the-art subroutine libraries, and 
incorporates a high-level programming language.  Figure 3.3 shows a screen shot of the 
command window interface for MATLAB® version 6.0.0.88 Release 12. 

 
 
 

 
Figure 3.3.  Screen Shot for the Command Window of the MATLAB® Release 12. 
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The different subroutine libraries, called M-files, are grouped in toolboxes, which 
provide different analytical tools for different applications.  The Neural Network Toolbox 
is the one used to train the NN architectures.  The feed-forward backpropagation network 
is created using the M-file “newff.m” which is defined as.   

 
net = newff(PR,[S1 S2...SNl],{TF1 TF2...TFNl},BTF,BLF,PF)            (27) 

 
The M-file receives the information of the architecture of the NN in the following 

manner: 
 
- PR is a Rx2 matrix that defines the minimum and maximum values for R input 

elements. 
- Si determines the number of neurons for each one of the Ni layers. 
- TFi - Transfer function of ith layer.       
- BTF defines the backpropagation network training function. 
- BLF defines the backpropagation weight/bias learning function. 
- PF defines the performance function used. 
 
As mentioned above, the HTS-TF is chosen for the hidden layers with a linear 

transfer function for the output layer.  At the beginning of the training procedure, several 
backpropagation training algorithms were considered: 

 
- Gradient descent backpropagation. 
- Gradient descent with momentum backpropagation. 
- Gradient descent with adaptive linear backpropagation. 
- Gradient descent with momentum and adaptive linear backpropagation. 
- Levenberg-Marquardt backpropagation. 
 
The Levenberg-Marquardt backpropagation algorithm being the one that 

produced the best results and being the fastest backpropagation algorithm although with 
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the limitation that it requires lots of computing memory.  A better description of this 
training algorithm is provided in the MATLAB® Neural Network Toolbox. [77].  

 
Levenberg-Marquardt algorithm was designed to approach second-order 

training speed without having to compute the Hessian matrix.  When the 
performance function has the form of a sum of squares (as is typical in training 
feed-forward networks), then the Hessian matrix can be approximated as: 

 
TH J J=       (28) 

 
and the gradient can be computed as 
 

Tg J e=      (29) 
 
where J is the Jacobian matrix that contains first derivatives of the network 

errors with respect to the weights and biases, and e is a vector of network errors.  
The Jacobian matrix can be computed through a standard backpropagation 
technique that is much less complex than computing the Hessian matrix.  The 
Levenberg-Marquardt algorithm uses this approximation to the Hessian matrix in 
the following Newton-like update: 

 
1

T T
k kX X J J I J eµ+  = − +        (30) 

 
When the scalar µ is zero, this is just Newton's method, using the approximate 

Hessian matrix.  When µ is large, this becomes gradient descent with a small step 
size. Newton's method is faster and more accurate near an error minimum, so the 
aim is to shift towards Newton's method as quickly as possible.  Thus, µ is 
decreased after each successful step (reduction in performance function) and is 
increased only when a tentative step would increase the performance function. In 



 

 

47

this way, the performance function will always be reduced at each iteration of the 
algorithm. 

 
This algorithm is used to update the weights during the training process in which 

data corresponding to the range of interest of the states is feed to the NN.  The training 
algorithm has the property that can train any network as long as its weight, net input, and 
transfer functions have derivative functions.  This is ensured since the activation function 
used in this work, Eq. (25), maps the data introduced into the vector n into a smooth and 
continuous function with hyperbolic tangent profile that smoothly squeezes the data in 
the ±1 range.  

 
3.2. TRAINING SYNTHESIS OF THE NEUROCONTROLLER. 

Both networks, the ANN and the CNN, are originally initialized with a stable 
solution, which will be described in more detail in section 4.2.3.3.  The inputs for the 
training of both NN, consist of randomized sets of data that enclose the entire domain of 
interest.  Target training outputs for both ANN and CNN are obtained using Eqs. (9) and 
(11) for the optimal control problem and  Eqs. (18) and (19) for the tracking formulation.  
For simplicity and to avoid confusion in the notation, when noting the equations used to 
obtain the training target values in the steps described bellow, the formulation for the 
optimal problem in section 2.1.2 will be used.  The reader can replace the equations by 
the corresponding optimal tracking problem described in section 2.1.4 for the training 
synthesis of the NN for the optimal tracking problem. 

3.2.1.  Training  Synthesis  of  the Action Neurocontroller.  The steps followed 
for the training of the Action NN are: 

 
1. The initial CNN is assumed to be optimal. 
2. The initial output ui, is obtained by feeding random values of the states xi, to 

the ANN. 
3. The discrete-time nonlinear equations of motion, Eq. (2), are propagated 

forward to obtain xi+1, using the states xi and the output ui of the ANN. 
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4. The Critic NN is feed the output form step-3, xi+1, to calculate the Lagrange 
multiplier, λi+1, associated with xi+1. 

5. The ANN is then trained using xi as input and the optimal control, *
iu , as 

target, which is calculated using the output from step-4, λi+1, and Eq. (11). 
 
Steps 1 through 5 are repeated until the desired level of accuracy for the ANN is 

achieved.  The level of accuracy is reached when the norm of the errors between the 
current ANN outputs and the previous trained outputs is below a pre-established error ε.  
Figure 3.4 shows a schematic of the steps described above for the synthesis of the Action 
NN. 
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 Figure 3.4. Training Synthesis of the Action Neural Network Controller. 

 
 
 
3.2.2. Training Synthesis of the Critic Neural Network.  The steps followed for 

the training of the Critic NN are: 
 
1. The ANN is assumed to be optimal. 
2. The initial output ui, is obtained by feeding random values of the states xi, to 

the ANN. 
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3. The discrete-time nonlinear equations of motion, Eq. (2), are propagated to get 
xi+1.  The Critic NN is feed this result to calculate Lagrange multiplier, λi+1, 
associated with xi+1.   

4. The discrete-time nonlinear equations of motion, Eq. (2), and the 
correspondent co-state differential equations, Eq. (9), are simultaneously 
solved backwards in time to obtain the target *

iλ . 
5. The CNN is then trained using xi as input and *

iλ  from step-4 as target. 
 
Steps 1 through 5 are repeated until the desired level of accuracy for the CNN is 

achieved.  The level of accuracy is reached when the norm of the errors between the 
current CNN outputs and the previous trained outputs is below a certain pre-established 
error ε.  Figure 3.5 shows a schematic of the steps described above for the synthesis of 
the Critic NN. 
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Figure 3.5.  Training Synthesis of the Critic Neural Network Controller. 

 
 
 
Step 5 in the CNN training marks the end of one training cycle for both the ANN 

and CNN.  Training cycles are continued until there is no acceptable change in the 
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outputs of the ANN and CNN relative to the previous training cycle.  Again the level of 
accuracy required to terminate the training cycles is reached when the 2-norm of the 
errors between the current NN outputs and the previous cycle outputs is below a pre-
established error ε.  At this point the output *

iu  of the Action NN is considered to be 
optimal.  Note that the assumption done in step-1, for the synthesis of both ANN and 
CNN training, is necessary in order to achieve the desired convergence of the NN.  
Although for the first iteration, the NN are initialized with a stable solution, after the first 
training synthesis iteration, each NN that is being trained, i.e. ANN training synthesis, is 
suboptimal relative to the NN assumed to be optimal in step 1, i.e. the ANN is suboptimal 
relative to the CNN during the ANN training synthesis.   
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4. PROBLEM DEFINITION 

4.1. AIRCRAFT MODEL. 
4.1.1.  Reference  Coordinate  System.   In  order to better understand the model 

that will be used in the formulation for the nonlinear neurocontroller, which will 
introduced in section 4.2, it is necessary to define the equations that govern the motion of 
a rigid airplane.  Roskam’s [78] formulation and definitions will be used, throughout the 
reminder of this section, to define the airplane’s equations of motion and the reference 
system where these equations are valid.  Figure 4.1 shows the two systems used to define 
the equations that govern the motion of a rigid airplane, the Earth-fixed system and the 
airplane body-fixed system.  The Earth-fixed system is denoted by X’Y’Z’, which will be 
considered the inertial reference frame in which the Newton’s laws of motion are valid.  
This model reference neglects rotational velocity of the Earth.  The airplane body fixed 
system is defined by XYZ. 

The XYZ airplane body fixed system is fixed relative to the airplane, where the 
positive X axis is along the fuselage, the positive Y axis is along the starboard (right) 
wing, and the positive Z axis is directed downward, perpendicular to the XY plane as 
shown by the directions of the arrows in Figure 4.1.  The origin is located at the 
geometric center of gravity.  The translational motion of the airplane is given by the 
velocity components of the velocity: forward velocity (U), side-slip velocity (V), and 
downward velocity (W) which are directed along the X, Y, and Z directions respectively.  
The free stream velocity, V∞, represents the vector sum resultant of the velocity 
component, U, V, and W.  The rotational motion is given by the angular velocity 
components: roll rate (P), pitch rate (Q), and yaw rate (R), about the X,Y, and Z axes 
respectively.  These rotational velocities are due to the moments about the airplane body-
fixed system: roll moment (L), pitch moment (M), and yaw moment (N) about the X,Y, 
and Z axes, respectively.  Section 4.1.2 will define the non-linear six-degrees-of-freedom 
(6-DOF) equations of motion for the general case. 

Figure 4.1 also shows that the airplane is assumed to consist of continuum mass 
elements, dm, that are kept track by a series of vectors, 'r� , which connect the origin 
X’Y’Z’ with each mass element.  Each mass element is subject to the acceleration of 
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gravity, g� , which is assumed to be oriented along the positive Z’-axis of the Earth-fixed 
coordinate system, thus assuming that the Earth is flat.  This creates a gravitational force 
acting in each element mass equal to Agdv gdmρ =� � , where Aρ  represents the local mass 
density of the airplane and dv is an airplane volume element.  The elements that are 
located in the surface of the airplane are also subject to combined aerodynamic and thrust 
forces per unit area denoted by F� .  These aerodynamic and thrust-combined forces will 
be expanded in the next section. 

 
 
 

'X

'Z

'pr�
'r� g�

X

Y

Z

Fds�

gdm�

'Y

 
Figure 4.1.  Definition of the Earth-Fixed and Body-Fixed Coordinate Systems. 

 
 
 
4.1.2.  Non-linear Six-Degrees-Of-Freedom Model.   By applying the Newton’s  

second law to Figure 4.1, such as the linear and angular momentum are equal to the 
externally applied forces and moments respectively, the results are the creation of the 
vector-integral form of the equations of motion for the linear and angular momentum 
defined as Eqs. (31) and (32) respectively: 
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  '
A A

v v S

d dr dv gdv Fdsdt dtρ ρ= +∫ ∫ ∫
� ��      (31) 

 '' ' 'A A
v v S

d drr x dv r x gdv r xFdsdt dtρ ρ= +∫ ∫ ∫
� �� � � �    (32) 

 
The left hand side of Eqs. (31) and (32) represent the linear and angular 

momentum respectively while the right hand side represents the applied forces and 
moments respectively.  After expanding these equations, see reference [78] for more 
details, the results yield the force and moment equations in the airplane body-fixed axis 
system XYZ: 

 

( ) 'sin
X XA Tm U VR WQ mg F F− + = − Θ + +

i
    (33) 

( ) sin cos
Y YA Tm V UR WP mg F F+ − = Φ Θ + +

i
    (34) 

( ) cos cos
Z ZA Tm W UQ VP mg F F− + = Φ Θ + +

i
    (35) 

( )xx xz xz zz yy A TI P I R I PQ I I RQ L L− − + − = +
i i

                (36) 

2 2( ) ( )yy xx zz xz A TI Q I I PR I P R M M+ − + − = +
i

     (37) 

( )zz xz yy xx xz A TI R I P I I PQ I QR N N− + − + = +
i i

              (38) 
 
where Ixx, Iyy, Izz and Ixz represent the moments of inertia, and m is the mass.  Note 

that in the right hand side of Eq. (33)-(38), the applied forces and moments have different 
subscripts depending if they correspond to the aerodynamic or thrust components 
respectively, i.e. ,

x yA TF F , while it can also be seen that the aerodynamic and thrust forces 
in Eqs. (33)-(35) also present a subscript that describes in which axes the force is exerted, 
i.e. ,

x xA TF F  for the forces acting along the X-axis in Eq. (33).  The orientation of the 
airplane relative to the Earth-fixed coordinate system X’Y’Z’, is obtained by introducing 
three sequential rotations over the Euler angles: heading angle (Ψ ), the pitch attitude 
angle (Θ ), and the bank o roll angle (Φ ).   
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In order to keep track of the three sequential rotations, coordinate system X’Y’Z’ 
is redefined with X1Y1Z1.  The first rotation is produced by rotating the coordinate 
system X1Y1Z1 over an angle Ψ  after which the coordinate system is re-labeled X2Y2Z2. 
The second rotation is produced by rotating the coordinate system X2Y2Z2 over an angle 
Θ  after which the coordinate system is re-labeled X3Y3Z3, and a third and final rotation is 
conducted about an angle Φ  to reach the body-fixed coordinate system XYZ.  These 
rotations are shown in Figures 4.2, 4.3 and 4.4.  The picture used to describe the three 
rotations is obtained from the public library of Dryden Flight Research Center Graphics 
Collection [79], and correspond to a F-8 Crusader, which will be the airplane model used 
in this thesis. 

 
 
 

Ψ
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1X
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Figure 4.2.  Rotation Over a Heading Angle of Ψ About Z1[79]. 
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Projection of the Vp
onto the X3-Y3-plane
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Figure 4.3.  Rotation Over a Pitch Angle of Θ About Y2[79]. 
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Figure 4.4.  Rotation Over a Bank Angle of Φ About X3[79]. 
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In return, these rotations generate the body-fixed axis kinematic equations [78]: 
 

tan ( sin cos )P Q RΦ = + Θ Φ + Φi
       (39) 

cos sinQ RΘ = Φ − Φi
         (40) 

sin cos
cos

Q RΦ + ΦΨ = Θ
i

         (41) 

 
The navigation equations that determine the location of the aircraft at any given 

time are given by [80] 
 

cos cos ( cos sin sin sin cos )
(sin sin cos sin cos )

Np U V
W

= Θ Ψ + − Φ Ψ + Φ Θ Ψ +
Φ Ψ + Φ Θ Ψ

i

    (42) 

cos sin (cos cos sin sin sin )
( sin cos cos sin sin )

Ep U V
W

= Θ Ψ + Φ Ψ + Φ Θ Ψ +
− Φ Ψ + Φ Θ Ψ

i

  (43) 

sin sin cos cos cosh U V W= Θ − Φ Θ − Φ Θi
              (44) 

 

where Np� , Ep�  and h
i

 represent the north, east, and vertical components of the 
aircraft velocity in the locally level geographic frame on the surface of the Earth.  One 
more change of coordinate system is necessary to be able to reduce the complexity of the 
mathematical models for the aerodynamic forces and moments and the thrust forces and 
moments.  This new coordinate system is called the stability axis system, defined by 
XSYSZS, and introduces the aerodynamic angle of attack angle, α, and the aerodynamic 
sideslip angle, β.  Figure 4.5 shows the stability axis system defined for an airplane in a 
steady state, wing level, straight line flight for zero initial sideslip angle, where α1 is the 
steady state angle-of-attack , γ1 is the steady state flight-path-angle, and  θ1 is the steady 
state pitch-attitude-angle.   
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Figure 4.5.  Definition of the Stability Axis System for Zero Sideslip[79]. 

 
 
 
For the zero sideslip angle case, the flight path angle can be expressed as in Eq. 

(63) 
 

1 1 1γ αΘ = +        (45) 
 
Figure 4.6 shows the stability axis system defined for the case in which the 

sideslip angle is not zero, where β1 is the steady state sideslip-angle, and VP is the true 
airspeed velocity.  The aerodynamic angle of attack and sideslip angles are related to the 
velocity components through 

 

1

1 1
1

1
arcsin

P

V V
V Uβ = �             (46) 

1

1 1
1

1
arcsin cosP

W W
V Uα β= �     (47) 
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Figure 4.6.  Definition of the Stability Axis System for the Case of Nonzero Sideslip 

Angle. 
 
 
 

4.1.3. Airplane Controls.  There are three basic types of controls on an airplane  
that are designed to change and control the moments about the XYZ axis.  These control 
surfaces are the ailerons, the elevators, and the rudder, which can be deflected at the 
command of the pilot, or the control system, trying to change the moments about the 
XYZ system.  The ailerons are generally mounted at the trailing edge of the wing, near 
the wingtips, while the elevators are generally located on the horizontal tail with the 
variation that in some modern aircraft the complete horizontal stabilizer is rotated instead 
of having an elevator.  The rudder is located at the trailing edge on the vertical tail.  
Control in an airplane is achieved by deflection of the control surfaces such that can 
effectively change the aerodynamic forces on the surface, i.e. if there is a downward 
deflection of the elevator, this will increase the lift of horizontal tail, which will in return 
create a pitch down moment about the center of gravity of the airplane.  The opposite 
happens when the deflection is upwards for the case of the wing or the tail.  The increase 
or decrease in aerodynamic lift is beyond the scope of this thesis and some references can 
be look at [80], [81], [82] and [83] to name few ones.  Figure 4.7 shows a description of 
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the three control surfaces available for the F-8 Crusader used in this thesis, and it can be 
seen that horizontal tail that rotates completely. 

 
 
 

Vertical Tail

Rudder
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Figure 4.7.  General Definition of the Airplane Control Surfaces [79]. 

 
 
 

4.1.4.   Perturbed  State  Equations of  Motion Model.  In order to simplify the  
highly nonlinear equations of motion defined in Eqs. (33)-(41), two special flight 
conditions, are considered in more detail:  

 
- Steady state flight condition. 
- Perturbed state flight condition.   
 
Only the second flight condition will be discussed in this thesis, yielding the 

equations that form the basis for the airplane model that will be used this study.  
Although the perturbed state equations of motion yield a linearized model, this study will 
use a modification of such model that is highly nonlinear in the angle of attack and will 
be further discussed in section 4.2.1.  Roskam [78] defines the perturbed state flight as: 
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“A perturbed state flight condition is defined as one for which ALL motion 
variables are defined relative to a known steady state flight condition“ 

For that case, according to Roskam [78], the substitutions are applied to all 
motion variables, forces and moments in the original Eqs. of motion (33)-(41).  For 
example, the forward velocity state, U, uses the substitution 1U U u= + , where the 
subscript in U1 defines the steady state flight condition, and the lower case variable, u, 
defines the perturbed state flight condition.  Similar substitutions are conducted for the 
rest of the states.  Table 4.1 shows the associated substitutions between the states and the 
perturbed and steady state flight conditions.   

 
Table 4.1.  Associated Symbols for the States, Perturbed States and Steady States.  

States Variables State Variable 
Symbol 

Perturbed State 
Variable Symbol 

Steady State 
Variable Symbol 

Forward Velocity U u U1 
Side-slip Velocity V v V1 
Downward Velocity W w W1 
Roll Rate P p P1 
Pitch Rate Q q Q1 
Yaw Rate R r R1 
Roll Angle Φ φ Φ1 
Pitch Attitude Angle Θ θ Θ1 
Heading Angle Ψ ψ Ψ1 

 
The new perturbation equations of motion are defined in Eqs. (48)-(56) 
 

1 1

1 1 1 1

1

( ( )( ) ( )( ))
sin( )

x x x xA A T T

m u V v R r W w Q q
mg F f F fθ
− + + + + + =

− Θ + + + + +

i

      (48) 

1 1

1 1 1 1

1 1

( ( )( ) ( )( ))
sin( ) cos( )

y y y yA A T T

m v U u R r W w P p
mg F f F fφ θ

+ + + − + + =
Φ + Θ + + + + +

i

        (49) 
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1 1

1 1 1 1

1 1

( ( )( ) ( )( ))
cos( )cos( )

z z z zA A T T

m w U u Q q V v P p
mg F f F fφ θ

− + + + + + =
Φ + Θ + + + + +

i

        (50) 

1 1

1 1 1 1( )( ) ( )( )( )xx xz xz zz yy

A A T T

I p I r I P p Q q I I R r Q q
L l L l

− − + + + − + + =

+ + +

i i

      (51) 

1 1

2 2
1 1 1 1( )( )( ) ( ) ( )yy xx zz xz

A A T T

I q I I P p R r I P p R r
M m M m

 + − + + + + − + = 
+ + +

i

    (52) 

1 1

1 1 1 1( )( )( ) ( )( )zz xz yy xx xz

A A T T

I r I p I I P p Q q I Q q R r
N n N n

− + − + + + + + =

+ + +

i i

    (53) 

 1 11 1( ) ( )sin( )P p φ ψ θ+ = Φ + − Ψ + Θ +
i i i i

         (54) 

111 1 1 1( ) cos( ) ( ) cos( )sin( )Q q θ φ ψ θ φ+ = Θ + Φ + + Ψ + Θ + Φ +
i i i i

    (55) 

1 11 1 1 1( ) cos( )cos( ) ( )sin( )R r ψ θ φ θ φ+ = Ψ + Θ + Φ + − Θ + Φ +
i i i i

         (56) 
 
After some trigonometric manipulations and approximations, which include some 

restrictions to the allowable magnitude of the motion perturbations, see reference [78] for 
further analysis, Eqs (48)-(56) are simplified by eliminating the small perturbations and 
neglecting the nonlinear terms compared with the linear terms, thus yielding 

 

1 1 1 1 1( ) cos
x xA Tm u V r R v W q Q w mg f fθ− − + + = − Θ + +

i
  (57) 

1 1 1 1

1 1 1 1

( )
sin sin cos cos

y yA T

m v U r R u W p Pw
mg mg f fθ φ

+ + − − =
− Φ Θ + Φ Θ + +

i

          (58) 

1 1 1 1

1 1 1 1

( )
cos sin sin cos

z zA T

m w U q Q u V p Pv
mg mg f fθ φ

− − + + =
− Φ Θ − Φ Θ + +

i

                       (59) 

1 1 1 1( ) ( )( )xx xz xz zz yy A TI p I r I Pq Q p I I R q Q r l l− − + + − + = +
i i

                (60) 

1 1 1 1( )( ) (2 2 )yy xx zz xz A TI q I I Pr R p I P p R r m m+ − + + − = +
i

                 (61) 
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1 1 1 1( )( ) ( )zz xz yy xx xz A TI r I p I I Pq Q p I Q r R q n n− + − + + + = +
i i

               (62) 

1 1 1cos sinp φ θ ψ= − Ψ Θ − Θi i i
                          (63) 

11 1 1 1 1

1 1 1 1 1

sin cos cos cos
sin sin cos sin

q φ θ φ
θ ψ

= −Θ Φ + Φ +Ψ Θ Φ
−Ψ Θ Φ + Θ Φ

i i i

i i   (64) 

1 11 1 1 1

11 1 1 1

cos sin sin cos
cos cos cos sin

r φ θ
ψ φ θ
= −Ψ Θ Φ −Ψ Θ Φ

+ Θ Φ −Θ Φ − Φ

i i

i i i           (65) 

 
which form the nine perturbed equations of motion relative to a very general 

steady state in which all motion variables are allowed to have non-zero steady state 
values.  By considering that the majority of airplane dynamic stability problems are 
concerned with perturbed motions relative to a wings level, steady state, straight line 
flight conditions with a relative small flight path angle, the following conditions hold and 
allow a further simplification of the perturbed equations of motion: 

 
- No initial steady state side velocities exists; V1=0. 
- No initial steady bank angle exists; Φ1=0. 

- No initial angular velocities exists; P1=Q1=R1= 1 11Ψ = Θ = Φi i i
=0 

 
thus yielding a simplified perturbed state equations: 
 

1 1( ) cos
x xA Tm u W q mg f fθ− = − Θ + +

i
           (66) 

1 1 1( ) cos
y yA Tm v U r W p mg f fφ+ − = Θ + +

i
                        (67) 

1 1( ) sin
z zA Tm w U q mg f fθ− = − Θ + +

i
                        (68) 

xx xz A TI p I r l l− = +
i i

                                             (69) 

yy A TI q m m= +
i

                                               (70) 
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zz xz A TI r I p n n− = +
i i

                                          (71) 

1sinp φ ψ= − Θi i
                                              (72) 

q θ=
i

                                                     (73) 

1cosr ψ= Θi
                                               (74) 

 
The perturbed state equations of motion need to be augmented using the perturbed 

aerodynamic forces and moments, and the perturbed thrust forces and moments.  The 
perturbed aerodynamic forces and moments, and the perturbed thrust forces and moments 
are expressed in state space form [78] as: 

 

( ) ( )
( ) ( )

( )

1 1

1 1

1

1

1

1 1

1 1

2

2
2

2
2

X

u q e

Z
u q e

u q e

A

D L D L D D D

A
L L L D L L L

A m m m m m m

e

u
Uf

q S C C C C C C C
f cC C C C C C Cq S U
m C C C C C C qc
q cS U

α δα

α δα

α δα

α
α

δ

          − + − + − − −          = − + − − − − −               +            

i

i

i

i

 (75)  
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1
1

1
1

2

2

2

Y

p r a r

p r a r

p r a r

A

y y y y yy
A

l l l l ll

n n n n nA n

a

r

bf
UC C C C C Cq S
pbl C C C C C C Uq cS
rbC C C C C Cm Uq cS

β δ δβ

β δ δβ

β δ δβ

β
β

δ
δ

                  =                          

i

i

i

i

            (76) 
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( )

( )

1

1

1

1
1

1

2 0
0 0

2

X

Xu

Z

Xu T

A

T Tx
A

M Mx m
A

f
q S C C uf Uq S

C C Cm
q cS

α
α

     +       =           +       

                      (77) 

1

1

1

0
0

Y

T

T

T

n
T

f
q S
l
q S Cn
q cS

β

β

        
=           

                        (78) 

 
where q1 is the steady state dynamic pressure defined by 2

1 112q Uρ= , S is the 

wing area, b is the span of the wing, and c  is the mean aerodynamic chord of the wing. 
The coefficients in Eqs. (75)-(78) represent stability and control dimensionless 
coefficients that capture the relationship of the partial derivatives of the forces and 
moments with respect to the state vectors.  A more detailed description of these 
dimensionless coefficients is provided in reference [78]. 

4.1.5.   Longitudinal  Linearized  Model.   In  order  to simplify the stability and  
control analysis problem for airplanes, the perturbed equations of motion are generally 
decoupled into longitudinal and lateral-directional modes.  Only the first one will be 
developed in this section, since the work described here only looks at the longitudinal 
dynamics for the model airplane that will be described in section 4.2.  For the 
longitudinal model Eqs. (66). (68), (68) and (73) are selected.  The term W1, which 
corresponds to the steady state velocity along the Z-axis, is by definition equal to zero 
since the stability axis system is selected as the coordinate system.  By making the 
substitutions q θ= �  and 1w U α=  in Eqs. (66), (68), (70) and (73), these equations can 
now be expressed in terms the perturbed forward velocity, u, the perturbed aerodynamic 
angle-of-attack, α, the perturbed pitch attitude angle, θ, and the perturbed pitch rate, q.  In 
order to simplify the state space notation, after substituting Eqs. (75) and (77) into the 
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perturbed longitudinal equations of motion, the dimensional stability derivatives are 
introduced [78]: 

 

1

1

( 2 )
uD D

U
qS C CX mU

+
= −        (79) 

  1

1

( 2 )
Xu X

U

T T
T

qS C CX mU
+

=         (80) 

1

1

( )D LqS C CX mU
α

α
+

= −                 (81) 

 e
e

DqSCX m
δ

δ = −            (82) 

1

1

( 2 )
uL L

U
qS C CZ mU

+
= −                (83) 

1
( )L LqS C CZ m

α
α

+
= −              (84) 

2 1
LqScC

Z mU
α

α
•

• = −     (85) 

12
qL

q
qScCZ mU= −               (86) 

1

1

( 2 )
uM M

U
yy

qSc C CM I U
+

=          (87) 

1

1

( 2 )
Tu T

U

M M
T

yy

qSc C CM I U
+

=            (88) 

M

yy

qScCM I
α

α =              (89) 

TM
T

yy

qScCM I
α

α =              (90) 
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2

12
M

yy

qSc C
M I U

α
α

•

• =             (91) 

2

12
qM

q
yy

qSc CM I U=            (92) 

e
e

M

yy

qScCM I
δ

δ =            (93) 

 
The perturbed longitudinal equations with dimensional stability derivatives 

become: 
 

1cos
eleu Tu eleu g X u X u X Xα δθ θ α δ= − + + + +�    (94) 

1 1 1sin
eleu q eleU U g Z u Z Z Z Zα α δα θ θ θ α α θ δ− = − + + + + +�� �� �      (95) 

eleu Tu T q eleM u M u M M M M Mα α α δθ α α α θ δ= + + + + + +��� ��      (96) 
qθ =�           (97) 

 
The state-space matrix model for the longitudinal mode can be expressed as 
 

1 1
lon lon lon lon lon lon lonX E A X E B U− −= +
i

         (98) 
 
where the state and the control vectors are defined respectively as  
 

[ ]T
lonX u qα θ=          (99)  

[ ]lon eU δ=             (100) 
 
where  δe is the elevator deflection and the matrices in Eq. (98) are defined by 
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1

1 0 0 0
0 0 0
0 1 0
0 0 0 1

lon

U Z
E M

α

α

•

•

  − 
=  −   

     (101) 

( )
( )

( ) ( )

1

1 1

cos
sin
0

0 0 1 0

U TU q

U q
lon

U TU T q

X X X X g
Z Z Z U gA

M M M M M

α

α

α α

θ
θ

 + −  
+ − =  + +   

         (102) 

0

e

e
lon

e

X
ZB M

δ
δ
δ

   =    

        (103) 

 
After substituting Eqs. (101), (102) and (103) into Eq. (98), the longitudinal 

differential equations in state space become: 
 

( )
( )

( ) ( ) ( )

1

1 1

1 1 1 1

1

1 1 1

1

1

cos
sin

0

0 0 1 0

U TU q

qU

qU
U TU T q

e

e

e

X X X X g
Z Uu uZ Z g

u Z u Z u Z u Z
q qM Z UM Z M ZM M M M Mu Z u Z u Z

X
Z

u Z
M Z
u Z

α

α
α α α α

αα α α
α α

α α α

δ
δ

α
α δ

α

θ
θ

α α

θ θ

 + −  
+  −       − − − −    = +    +    + + + + +   − − −    

−
+−

� � � �

�� �

� � �

�

�

�

�
�
�
�

0

ele

eM δ

δ

          

    (104) 

 
4.1.6.   Phugoid  and   Short   Period   Approximations.   The  analysis  of   the 

dynamic response of the longitudinal state-space model can be conducted via modal or 
eigenvector analysis, which shows that the longitudinal motion can be differentiated in 
two modes according to the nature or the behavior of the system:  short period mode and 
Phugoid, or long-period mode.  Each one of the two modes describes a completely 
different characteristic of the behavior of the aircraft being modeled, and it is crucial for 
the aerospace engineer to consider the existence of both modes. 
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According to Nelson [84] “We can think of the long-period or Phugoid mode as a 
gradual interchange of potential and kinetic energy about the equilibrium attitude and 
airspeed.”  The long-period mode is characterized by changes in pitch attitude, altitude 
and velocity at a nearly constant angle of attack.  An approximation to the Phugoid mode 
can be obtained by neglecting the pitch moment equation and assuming that the change in 
angle of attack is zero.  

 
1cos

eleu Tu eleu g X u X u X δθ θ δ= − + + +�      (105) 

1 1sin
eleu eleU g Z u Zδθ θ θ δ− = − + +�             (106) 

 
being the state-space approximation for the long-period mode: 
 

1

1

1 1 1

( ) cos
sin

ele

ele

u Tu

eleu

XX X gu u ZZ g
U U U

δ
δ

θ
δθθ θ

+ −         = +      − −         

�
�          (107) 

 
Out of the two modes, the long-period mode is the one that occurs so slowly, that 

the pilot can easily counteract and eliminate the disturbance by small control movements. 
The second of the modes, the short period, is the more important of the two when 
considering the stability and control behavior of the aircraft.  If an airplane has a high 
frequency and a heavily damped short period, then the airplane will respond rapidly to an 
elevator input without any undesirable overshoot, yet to the contrary the short-period 
mode is lightly damped or has a relatively low frequency, the airplane will be difficult to 
control and in some case may even be dangerous to fly [84].  The approximation for the 
short-period can be made by assuming that the change in forward velocity is zero and 
dropping the X-force Eq. (94) yielding 

 

( )
1

1 1 1

eleq
ele

ZZ UZ qU Z U Z U Z
δα

α α α
α α δ+

= + +− − −� � �
�    (108) 
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( )
( )1

1 1 1

ele
ele

q
T q ele

M Z U M ZM Zq M M M q MU Z U Z U Z
α α δα α

α α δ
α α α

α δ +    = + + + + + +      − − −    
� ��

� � �
� (109) 

 
The  state-space approximation for the short-period mode is defined as 
 

 ( )

( )
( )

1

1 1 1

1

11 1

ele

ele
ele

q

ele
q

T q

Z UZ Z
U Z U Z U Z

M Z Uq q M ZM Z MM M M U ZU Z U Z

α δ
α α α

α α δα α
δα α

αα α

α α δ

+      − − −      = +       +        ++ + +     −− −       

� � �

� ��

�� �

�
�

(110) 

 
Defining the Short period approximation for this thesis is important as it will be 

used in section 4.3 when defining the model to be used for the tracking controller.  
 

4.2. NONLINEAR HIGH ANGLE OF ATTACK PROBLEM 
This section introduces and describes in detail the nonlinear aircraft model that 

will be used to develop an optimal NN controller that will try to extend the range of angle 
of attack beyond the stall regions at which the airplane can operate.  The model is 
extracted from a paper written by Garrard and Jordan [85], and uses a model of a F-8 
Crusader fighter aircraft.  Figure 4.8 shows a picture of the F-8 Crusader in flight taken 
from the public Dryden Flight Research Center Graphics Collection library [79].  As 
mentioned earlier, for this type of aircraft, the horizontal stabilizer rotates completely as 
if the entire tail was an elevator.  The control deflection will be referred as tail rotation 
throughout the reminder of this thesis. 

4.2.1. Problem Formulation.  The nonlinear model used in this thesis is obtained  
from Garrard and Jordan [85].  The model described in this section is in the continuous-
time domain, and will be discretized prior to implementation in the computer.  Figure 4.9 
shows the coordinate system used in the formulation.  From the coordinate system 
described in Figure 4.9, the lift component is separated into its wing and tail components 
[86] yielding the basic decoupled longitudinal equations of motion: 
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( ) sin sin sinw t tm u w mg L Lθ θ α α+ = − + +��    (111) 

1( ) cos cos cosw t tm w U mg L Lθ θ α α− = − −��                (112) 
cos cosyy w w t t tI M lL l L cθ α α θ= + − −�� �             (113) 

 
 

 
Figure 4.8.  F-8 Crusader in Flight[79]. 
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Figure 4.9.  F-8 Aircraft Dynamic Coordinate System[79]. 
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where Lw and Lt are the wing and tail lift respectively, Mw is the wing moment 
about the center of gravity, l is the distance between the wing aerodynamic center and the 
aircraft center of gravity, lt is the distance between the tail aerodynamic center and the 
aircraft center of gravity, and cθ�  is the damping moment.  Note that this model considers 
the drag contribution small compared with the lift and weight and therefore is neglected 
the analysis.  The Lw and Lt terms are defined as 

 
ww LL C qS=        (114) 

tt L tL C qS=                 (115) 
 
where 

wLC  and 
tLC  represent the lift coefficient for the wing and tail respectively, 

q  is the dynamic pressure, S is the wing area and St is the tail area.  Garrard and Jordan 
[85] show that for large angles of attack, cubic approximations of the lift coefficient are 
more accurate in predicting the lift capabilities of an aerodynamic surface, i.e. wing or 
tail, thus they approximate both the wing and tail lift coefficients with cubic 
approximations which are defined in Eqs. (116) and (117) 

 
0 1 2 3

w w w wL L L LC C C Cα α= + −      (116) 
0 1 2 3

t t t tL L L t L t e eC C C C aα α δ= + − +         (117) 
 
where 0 1 2 0 1 2, , , , ,

w w w t t tL L L L L LC C C C C C  are constants peculiar to the individual aircraft, 

eδ  represents the tail rotation, and ea  represents the variation in tail lift coefficient with 
respect to the tail rotation, 

tL eC δ∂ ∂ .  Recalling that the entire tail of the F-8 Crusader 
rotates, then the tail angle of attack can be redefined as 

 
t eα α ε δ= − +       (118) 

 
where ε is the downwash angle.  The downwash angle is a consequence of the 

trailing vortices created by the wing tips, which can effectively change the direction of 
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the flow that the tail sees, i.e. t wα α≠ .  When the tail is within the wing wake, this effect 
cannot be ignored, and this is the case for the F-8 Crusader.  The downwash can be 
expressed as: 

 
0 aεε ε α= +               (119) 

 
where 0ε  is a constant that represent the downwash angle at zero angle of attack 

and aε represents the rate of change in downwash with respect to the angle of attack, 
aε∂ ∂ .  Garrard and Jordan [85] introduce the following approximations:  

 
3

1 1tan 3w U U αα α 
= +  

�             (120) 

2 2
1 1 1tan sec secw U U Uα α α α α= + ≈�� � �        (121) 

 
A nominal flight condition of 0 0θ =  is assumed so that θ θ= ∆  and the 

following trigonometric assumptions are made: 
 

 
2

cos 1 2
θθ −�         (122) 

2
cos 1 2

αα −�                   (123) 

3
sin 6

θθ θ −�                              (124) 

3
sin 6

αα α −�                   (125) 

 
Substituting Eqs. (120)-(125) into Eqs. (111)-(113) yield the nonlinear equations 

of motion: 
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( ) ( )( )
( )

3 3 3
0 1 2

30 1 2
0 0

3
0

0

3 6 6
(1 ) (1 )

(1 )(1 ) 6

w w w

t t t

L L L

L L e L e e e

te
e

qU U g C C C Sm
C C a C a a

q Sa ma

ε ε

ε
ε

α θ αα θ α

α ε δ α ε δ δ
α ε δα ε δ

     
= − + Θ − − + + − +          

 + − − + − − − + +   − − +  − − + −     

i �

       (126) 

( )

( ) ( )( )
( )

32 2 3
2 2 0 1 2 3 0 1

30 1 2
0 0

2
0

3 31 1 2 2 2
(1 ) (1 )

(1 )1 2

w w w w w

t t t

L L L L L

L L e L e e e
t

e

g qSC C C C CU mU
C C a C a a

qS
a mU

ε ε

ε

θ α αα θ α α α α

α ε δ α ε δ δ
α ε δ

   
= − + − − − + − − − −      

 + − − + − − − + +   − − +  −     

��

   (127) 

( )

( ) ( )( )
( )

2
1 0 1 2 3 1

30 1 2
0 0

12
0 1

1 2
(1 ) (1 )

(1 )1 2

w w w

t t t

w yy L L L yy

L L e L e e e

yye
t yy

M I C C C qSlI

C C a C a a
c Ia qSl I

ε ε

ε

αθ α α

α ε δ α ε δ δ
θα ε δ

− −

−
−

 
= + + − − −  

 + − − + − − − + +   − − − +  −     

��

�
     (128) 

 
Considering disturbances of an F-8 Crusader in level, unaccelerated flight at 

Mach=0.85, and an altitude of 30,000 ft, substituting the data provided in [85] for the F-8 
Crusader, introducing the trim conditions [85], and ignoring Eq. (126) the equations, 
become: 

 
2 2 3 2

2 2 3 2
0.088 0.877 0.47 3.846 0.01618 0.00367

0.215 0.28 0.47 0.63 0.019
e e

e e e e

α θ α θ αθ α α α δ α δ
δ δ α δ α δ θ

= − − − + + + +

− + + + −
� � ��    (129) 

2 3

2 2 3
0.396 4.208 0.47 3.564 0.7916

20.967 6.265 46 61.4
e

e e e e

θ θ α α α δ α
δ δ α δ δ

= − − − − −
− + + +

�� �
             (130) 

 
For the nonlinear equations (129) and (130), the terms involving , 2,3,4...n

e nδ =  
and , , 1, 2,3,...n m

e n mα δ =  are eliminated since these terms are small. The resulting 
continuous-time nonlinear equations of motion can be expressed in the form 
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( ) ex Ax x bφ δ= + +�                                (131)  

 
where x describes the states of the system,   
 

[ ]Tx qα θ=                              (132) 
 
The A matrix represents the linearized plant of the system: 
 

0.877 0 1
0 0 1

4.208 0 0.396
A

−  =   − − 
     (133) 

 
and b represents the control matrix of the system 
 

0.215
0

20.967
b

−  =   − 
      (134) 

 
The nonlinear aerodynamics due to high angles of attack are embedded in the 

extra term ( )xφ   
 

2 2 2 3

2 3

0.088 0.019 0.47 3.846
( ) 0

0.47 3.564

q q
x

α α θ α α
φ

α α

 − − − + + =   − − 
    (135) 

 
In order to be consistent with the discrete-time formulation, the nonlinear 

equations of motion described in Eq. (131) are discretized so they can be implemented in 
the computer. 
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4.2.2.  Optimal  Control  Formulation. The control problem consist is  minimize 
the quadratic performance index given by 

 
2

( )
0

1
2

T
i i e iJ x Qx Rδ∞  = + ∑      (136) 

 
The state and control weight matrices used in this thesis are defined by [85] 
 

0.25 0 0
0 0.25 0
0 0 0.25

Q
  =    

     (137) 

 
and the controller weight is R=1.  In order to analyze the implications of the state 

and control weighting used in this thesis, the state weight matrix is assumed to be of the 
form described in Eqs. (138) and (139) 

 

2

2

2

1 0 0

10 0

10 0

MAX

MAX

MAX

Q

q

α

θ

    
=       

     (138) 

 
where MAXα , MAXθ , and MAXq  define the maximum allowable states by the cost 

function.  Using the magnitudes described in Eq. (137), the maximum allowable states 
are 2 114.59MAX MAX radα θ= = ≈ � , and 2 sec 114.59 secMAXq rad= ≈ � , which seem to 
be unrealistically high allowable states, unless you realize that the purpose of this 
controller is to extend the range of angle of attack beyond the stall regions, and then after 
reaching those extreme angles of attack conditions, the controller needs to be able safely 
recover to the zero-steady-state.  If the weight cost function penalizes the higher values of 
the states, then the controller will not be able to extend the stall region beyond the 
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penalized values.  Analyzing the physical dynamics of the airplane shows that the angle 
of attack, pitch angle and pitch rate are coupled in such a way that if only the pitch angle 
and pitch rate were penalized, the initial angle of attack would not be extended, thus it 
was required to have a cost function that would not be penalized the extreme values.  
Similarly, if the control weight matrix is considered to be of the form 

 

2
1
eMAX

R δ
 

=    
                 (139) 

 
where eMAXδ  defines the maximum allowable control by the cost function, then 

, 1 57.29e MAX radδ = ≈ �  which exceeds the maximum allowable control ±25º.  Again, the 
same logic described above holds for explaining the fact that the weight matrix does not 
penalize the controller for being above the maximum allowable control in greater extent.  
The physical limits on the controller are enforced by logic in the integration routines such 
that only a maximum tail rotation of ±25º is allowed, and similarly a maximum tail 
rotation rate of  ±60º/sec, is also enforced [85].   

Garrard and Jordan propose three different controllers to extend the stall regime.  
These controllers will be used as a benchmark against the NN controller developed in this 
thesis.  The first model represents the LQR solution of the linear model of Eq. (131).  The 
linear model used is defined by removing the nonlinear dynamics such that Eq. (131) 
becomes 

 
0.877 0 1 0.215

0 0 1 0
4.208 0 0.396 20.967

e
q q

α α
θ θ δ

− −              = +              − − −       

�
�
�

  (140) 

 
Solving the associated steady state Riccati equation yields the gain matrix  
 

[ ]0.052559 0.5 -0.521044K = −         (141) 
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which is expressed in the discrete-time feedback LQR linear control as 
 

1,( ) 0.053 0.5 0.521e i i i i iKx qδ α θ= − = − + +                      (142) 
 
Garrard and Jordan [85] propose a second and third order controllers to help 

reduce the loss of attitude when the angle of attack exceeds the stall limit by using 
singular perturbations to solve the Hamiltonian-Jacobi partial differential equation [85] 
defined in Eq. (143) 

 
11 04

T T T T
T TV V V VAx bR b x Qxx x x xφ −∂ ∂ ∂ ∂+ − + =∂ ∂ ∂ ∂                   (143) 

 
with (0) 0V = . As demonstrated by Lee and Markus [87], the unique optimal 

feedback control using this approach is provided by 
 

11
2

T
e

VR b xδ − ∂= − ∂         (144) 

 
Due to the complexity involved in analytically solving Eq. (143), perturbational 

procedures are used to obtain approximate solutions, [88], [89], [90], [91] and [92].  The 
optimal solution can be presented in series format as 

 

0
( ) ( )n

n
V x V x

∞

=

=∑         (145) 

 
If the nonlinear dynamics is defined   

 

1
1

( ) ( )
N

n
n

x f xφ +
=

=∑         (146) 
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2 2 3 2

1
1 2 3

0.47 0.088 0.019 3.846
( ) ( ) 0 0

0.47 3.564

N
n

n

q q
x f x

α α θ α α
φ

α α
+

=

   − − −   = = +      − −   
∑     (147) 

 
The Vn’s terms are given by the following equations: 
 

10 0 01 04
T T T

T TV V VAx br b x Qxx x x
−∂ ∂ ∂− + =∂ ∂ ∂                   (148) 

1 11 1 0 0 1 0
2

1 1 04 4
T TT T T T

T TV V V V V VAx bR b bR b fx x x x x x
− −∂ ∂ ∂ ∂ ∂ ∂− − + =∂ ∂ ∂ ∂ ∂ ∂  (149) 

1 10 0 0
1

1 1
1

1
1 1

1 1
4 4

1 04

T TT T T T
T Tn n n

n

T T Tn n
TK K n K

n K
K K

V V V V V VAx bR b bR b fx x x x x x
V V Vf bR bx x x

− −
+

− − − −
+ −

= =

∂ ∂ ∂ ∂ ∂ ∂− − + +∂ ∂ ∂ ∂ ∂ ∂
∂ ∂ ∂− =∂ ∂ ∂∑ ∑

 (150) 

 
The resulting optimal control is  
 

1

0

T n
e

n

VR b xδ ∞−
=

∂= − ∂∑     (151) 

 
Determination for the nonlinear controller via perturbation methods is really 

laborious complex with simple algebra involved but tedious.  The solution for the first 
equation of Eq. (145) is 

 
0

TV x Px=                (152) 
 
where P is the solution to the steady state Riccati equation, Eq. (22). 
 

0V Pxx
∂ =∂                (153) 
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and substituting Eq. (153) into Eq. (151) 
 

1 T
e R b Pxδ −= −        (154) 

 
with  
 

0.16090086046144 -0.08882707457570 -0.00415667734054
-0.08882707457570 0.35915318511485 0.02475784905012
-0.00415667734054 0.02475784905012 0.02489329375966

P
  =    

 

 
yielding the same results as described previously: 
 

1 -0.0526 +0.5 +0.521qeδ α θ=              (142) 
 
  Determination of the rest of the terms in Eq. (145), ie. Vn, n=1,2,3,… is as 

follows 
 
Assume, where x1=α, x2=θ and x3=q 
 

2 2 2
2 , , 1 2 30 0

n k n n n j k j k
n n j k j kk jV a x x x+ − + + − −

+ − −= =
=∑ ∑               (155) 

 

Calculate nV
x

∂
∂ . 

Substitutes nV
x

∂
∂  into Eq. (150). 

Set the sum of coefficients of like terms equal to zero. 
Solve the resulting simultaneous algebraic equations for 2 , ,

n
n j k j ka + − −  

After Vn is obtained, then nV
x

∂
∂  can be calculated and substituted into Eq. (151) to 

obtain the , 1e nδ +  
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For the second order control, ten unknown coefficients must be found, where four 

coefficients are almost zero, thus yielding the resulting expression for V1 
 

3 2 2 2 3
1 1 1 2 1 3 1 2 2 1 2 30.058 0.077 0.002 0.045 0.015 0.003V x x x x x x x x x x x= − − + − −  (156) 

 

the resulting expression for 1V
x

∂
∂ is  

 
2 2
1 1 2 1 3 2 2 3

21
2 1 2 2 1 3

2
1 1 2

0.174 0.154 0.004 0.045 0.003
0.077 0.09 0.045 0.003

0.002 0.003

x x x x x x x xV x x x x x xx x x x

 − − + −∂  = − + − − ∂  − − 
        (157) 

 
and substituting Eq. (157) into Eq. (151) yielding 
 

2 2
,2 1 1 2 1 3 2 2 30.04 0.048 0.0004 0.005 0.0003e x x x x x x x xδ = − + + −          (158) 

 
where only the first two terms are significant.  When expressing the non-linear 

control up to the 2nd Order terms in the discrete-time form yields: 
 

 2
2( ) -0.0526 +0.5 +0.521q +0.04 0.048e i i i i i i iδ α θ α α θ= −               (159) 

 
Using the similar methodology the nonlinear discrete-time controller up to the 

third order terms the 3rd-Order controller is  
 

2 3 2
3( ) -0.0526 +0.5 +0.521q +0.04 0.048 0.374 0.312e i i i i i i i i i iδ α θ α α θ α α θ= − + −     (160) 
 
Equations (142), (159) and (160) yield the controllers proposed by Garrard and 

Jordan [82] which will be used as bench marks against the neurocontroller developed in 
this work. 
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This thesis uses the NN based architectures and Hamiltonian formulation, 
described previously in section 2.1.2, to develop near optimal feedback control laws for 
the aircraft problem outlined in Section 4.2.1.  The Hamiltonian for this optimal control 
problem, defined previously in Eq. (8), is redefined to include the system model 
described in Eq. (131) 

 

( ) ( )2
1

1 ,2
T T

i i i e i i i iiH x Qx R f x uδ λ += + +                                 (161) 

 
Expanding the right hand side of Eq. (4) and using Eq. (161), the discrete-time co-

state or Lagrange multipliers differential equations become. 
 

1( )
i

i
i

Hλ α
∂= ∂            (162) 

2( )
i

i
i

Hλ θ
∂= ∂                    (163) 

3( )
i

i
i

H
qλ ∂= ∂                 (164) 

 
Note that the discrete-time sub-index is set in parenthesis to avoid confusion 

where other sub-indexes are present. The necessary condition for optimal control [47] is 
defined by Eq. (6) 

 

0i

i

H
u

∂ =∂             (6) 

 
which leads to the optimal control equation 
 

* 1
( 1)

T
e ii R bδ λ−

+= −             (165) 
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4.2.3.  Approach  to Solving the Nonlinear High Angle of Attack Problem.  At   
the flight conditions described in section 4.2.2, of Mach=0.85 and at 30000 feet, the F-8 
stalls when the angle of attack is above 23.5˚, which means that the wings start loosing 
lift and thus the airplane cannot sustain flight.  Therefore the stall angle of attack of 23.5˚ 
becomes the reference point of the training procedure.  A series of ordered steps were 
followed in order to have an organized training procedure.  The steps followed are 
outlined bellow: 

 
- Simulation of the results from Garrard and Jordan to obtain a benchmark for 

the work. 
- Determine the training range conditions. 
- Train the neurocontroller to model the linear controller (discrete-time LQR 

solution) to control the liner model described in Eq. (140), bellow the stall 
conditions (i.e. 23.5α < � ). 

- Train the neurocontroller to model the linear controller (discrete-time LQR 
solution) to control the nonlinear model described in Eq. (131) controller 
bellow the stall conditions. 

- Train the neurocontroller to control the nonlinear model bellow the stall 
conditions using the Action and Critic NN training procedures described in 
section 2.3.2. 

- Train the neurocontroller to control the nonlinear model above the stall 
conditions using the Action and Critic NN training procedures described in 
section 2.3.2. 

 
4.2.4.  Testing  the  Bench Mark Controller.  In  order  to  determine  the  bench   

mark limits for Garrard and Jordan’s controllers, a fixed-step Runge-Kutta 4th order 
integration routine was written in the MATLAB® interface.  Several initial angles of 
attack, α(0), were tested for the controller laws defined in Eqs. (142), (145), and (146), 
while the initial pitch angle and pitch rate were kept at zero to test the limits of the angle 
of attack.  The time integration step-size used for this simulations was ∆t=0.01 seconds.  
Figures 4.10-4.14 show the simulation results that test the limits of all three benchmark 
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controllers for varying initial angles of attack, and keeping at zero the initial pitch angle 
and pitch rate.   

Figure 4.10 shows the simulation results for an initial angle of attack that lays just 
bellow the stall region, initial angle of attack of α(0)=23º for zero pitch angle of θ(0) =0º, 
and pitch rate of q(0) =0º/sec.  The figure is divided in 4 subplots, angle of attack and 
pitch angle in the top left and top right subplots respectively, while the bottom subplots 
depict the pitch rate and the flight path angle, respectively.  The units for the states are 
degrees (º) for the angle of attack, pitch angle and flight path angle, while the pitch rate 
has units of degrees-per-second (º/sec).   

 
 
 

 
Figure 4.10.  States Results (α(0)=23º, θ(0)=0º, q(0)=0º/sec). 

 
 
 
Figure 4.11 is also divided in 4 subplots and shows the simulation results for the 

correspondent altitude loss, altitude loss-rate, tail rotation and cost for the above 
conditions.  The altitude loss has units of feet (ft), the altitude loss-rate has units of feet-
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per-second (ft/sec), and the tail rotation has units of degrees.  Throughout the reminder of 
this section, the figures describing different initial conditions will hold the same structure 
and units.  The three controllers are compared in the plots, where the solid blue line 
corresponds to the LQR controller, the dotted red line and dashed black line correspond 
to the 2nd-Order and 3rd-Order controller proposed by Garrard [85], respectively.   

 
 

 
Figure 4.11.  Altitude, Control and Cost Results (α(0) =23º, θ(0) =0º, q(0) =0º/sec). 

 
 
 
In order to aid in the analysis of the results, and to provide the reader with a better 

understanding of the behavior of the airplane throughout the recovery maneuver from the 
stall region, the flight path angle and the drop in altitude are introduced in this section, 
and will be used in the remainder of the thesis.  The flight path angle is introduced by 
using Eq. (45), which was previously introduced in section 4.1.2., to obtain the flight path 
angle as a linear function of the angle of attack time history and the pitch angle time 
history such that: 
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i i iγ θ α= −                                    (45) 
 
Remember that this is possible only for the zero-sideslip angle case, and since 

only the longitudinal plane is considered in this study, the assumption is a valid one.  The 
drop in altitude is introduced into the analysis by simplifying Eq. (49) for the longitudinal 
case such that V=Φ=0, thus yielding Eq. (166), and then substituting Eq. (120) into Eq. 
(166), yielding Eq. (167), which becomes a simplified differential equation for the 
altitude for the longitudinal plane of the model described in section 4.2. 

 

1 sin cosh U Wθ θ= −i
                      (166) 

1 1sin tan cosh U Uθ α θ= −i
                       (167) 

 
Equation (167) provides an analogous differential equation to the nonlinear 

problem defined in section 4.2, which can provide an insight of the behavior of the 
airplane in addition to the flight path angle.  Figures 4.12 and 4.13 show the simulation 
results that, according to the literature [85], represent the initial conditions at which the F-
8 Crusader stalls, which correspond to α(0) =23.5º, θ(0) =0º, and q(0) =0º/sec.  At these 
initial conditions, all three proposed controllers are able to recover from the stall 
condition, with the only difference that the 3rd-Order controller has a slightly better 
performance than the 2nd-Order, which has also a slightly better performance than the 
LQR controller.  This can better be observed when analyzing and comparing the drop in 
altitude and the cost comparison for all three controllers.   

Figures 4.14 and 4.15 show the limiting case for which the LQR controller 
effectively recovers the airplane from stall, which corresponds to α(0) =25.73º, θ(0) =0º, 
and q(0) =0º/sec.  The difference in performance is more accentuated for these initial 
conditions, and it can be clearly seen in Figures 4.14 and 4.15, that the 3rd-Order 
controller has better performance than the 2nd-Order, which has also a better performance 
than the LQR controller.  Beyond this initial angle of attack, the LQR controller cannot 
effectively recover from stall.  The initial angle of attack is slowly increased to test the 
limits for the other two nonlinear controllers, while the LQR controller is disregarded in 
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the analysis.  The flight path angle time-history, located in the lower right corner of 
Figure 4.14, indicates the loss in altitude of the aircraft for all controllers.  The loss in 
altitude becomes dictated by the negative sign in the flight path angle.  The loss in 
altitude is also reflected in the altitude loss time-history and the altitude loss-rate time 
history described in Figure 4.15.  The 3rd-Order controller provides the smallest loss in 
altitude relative to the other two controllers since it achieves the zero flight path angle 
faster than any of the controllers proposed by Garrard and Jordan [85].  It needs to be 
noted that a negative flight path angle does not imply a dive-nose attitude of the aircraft, 
since the attitude is determined by the angle of attack and the pitch angle.  The flight path 
angle determines the angle of the path of the aircraft relative to the Earth-Fixed 
coordinate system, which in return, if the angle is negative describes a descending path or 
loss in altitude, or an ascending path if positive.  Figure 4.15 also shows the control effort 
of the tail rotation, for all three controllers.   

 
 

 

 
Figure 4.12. States Results (α(0) =23.5º, θ(0) =0º, q(0) =0º/sec). 
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Figure 4.13.  Altitude, Control and Cost Results (α(0) =23.5º, θ(0) =0º, q(0) =0º/sec). 

 
 
 

 
Figure 4.14.  States Results (α(0) =25.73º, θ(0) =0º, q(0) =0º/sec). 
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Figure 4.15.  Altitude, Control and Cost Results (α(0) =25.73º, θ(0) =0º, q(0) =0º/sec). 

 
 
 
Figures 4.16 and 4.17 show the limiting case for which the 2nd-Order controller 

effectively recovers the airplane from stall, which corresponds to an initial angle of attack 
of α(0)=25.99º, θ(0)=0º, and q(0)=0º/sec.  Beyond this angle the controller cannot 
effectively recover from stall.  It is noted that the second order controller offers only a 
small improvement in extending the stall-recovery-region relative to the LQR controller.  
Despite that both the 2nd-Order and the 3rd-Order reach steady state conditions almost at 
the same time, the differences in performance are evident in the simulations described in 
Figures 4.16 and 4.17.  While the 3rd-Order controller has a loss in altitude of 
approximately 1600 ft, the 2nd-Order controller drops almost 4000 ft.  The difference is 
more drastic when comparing the cost as seen in Figure 4.17.  Figures 4.18 and 4.19 
show the limiting case for which the 3rd-Order controller effectively recovers the airplane 
from stall, which corresponds to an initial conditions of α(0) =27.09º, θ(0) =0º, and 
q(0)=0º/sec.  Beyond these initial conditions, none of the controllers proposed by Garrard 
and Jordan [85] can effectively recover from stall. 

 



 

 

89

 
Figure 4.16.  States Results (α(0) =25.99º, θ(0) =0º, q(0) =0º/sec). 

 
 
 

 
Figure 4.17.  Altitude, Control and Cost Results (α(0) =25.99º, θ(0) =0º, q(0) =0º/sec). 
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Figure 4.18.  States Results (α(0) =27.09º, θ(0) =0º, q(0) =0º/sec). 

 
 
 

 
Figure 4.19.  Altitude, Control and Cost Results (α(0) =27.09º, θ(0) =0º, q(0) =0º/sec). 
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The limitation in the initial pitch angle and pitch rate to θ(0) =0º and q(0) =0º/sec 
respectively, considerably reduces the analysis of the three controllers, therefore a more 
detailed analysis of the maximum allowable initial angles of attack for the three proposed 
controllers is conducted by varying the initial pitch angle by θ(0)=±20º, and the initial 
pitch rate by q(0)=±20º/sec.  Tables 4.2, 4.3 and 4.4 provide the maximum allowable 
initial angle of attack for different initial pitch angles and pitch rates for the three 
propossed controllers by Garrard and Jordan [85].  The units displayed in Tables 4.2-4.4 
are degrees for the angle of attack, pitch angle and tail rotation, while the pitch rate has 
units of degrees-per-second. 

Figures 4.20. 4.21, and 4.22 show the results of the the tabulated tables.  Figure 
4.23 shows how all three controllers compared with each other as a function of variable 
initial pitch angle and pitch rate.  The top part of Figure 4.23 provides a better 
understanding of how the 3rd-Order controller, top surface, provides the maximum 
extension in the initial angles of attack for variable initial pitch angle and pitch rate, while 
the 2nd-Order controller, second from the top,  generates only a slight improvement in the 
extension of the maximum initial angle of attack, relative to the LQR controller. 

 
Table 4.2.  Maximum Allowable Initial Angle of Attack for Different Initial Pitch Angles 

and Pitch Rates for the LQR Controller. 
Initial Pitch Rate q(0) 

 -20º/sec -15º/sec -10º/sec -5º/sec 0º/sec 5º/sec 10º/sec 15º/sec 20º/sec 
 -20º 19.37º 19.26º 19.14º 19.02º 18.89º 18.77º 18.65º 18.51º 18.38º 
 -15º 21.56º 21.43º 21.31º 21.17º 21.02º 20.9º 20.76º 20.62º 20.47º 

Initial -10º 23.41º 23.27º 23.13º 22.99º 22.84º 22.7º 22.55º 22.4º 22.25º 

Pitch -5º 24.97º 24.83º 24.69º 24.55º 24.39º 24.24º 24.09º 23.94º 23.79º 

Angle 0º 26.32º 26.18º 26.03º 25.88º 25.73º 25.58º 25.43º 25.27º 25.11º 

θ(0) 5º 27.49º 27.34º 27.2º 27.05º 26.9º 26.75º 26.59º 26.44º 26.28º 
 10º 28.51º 28.37º 28.22º 28.07º 27.92º 27.77º 27.62º 27.47º 27.31º 
 15º 29.42º 29.28º 29.13º 28.98º 28.84º 28.69º 28.54º 28.38º 28.23º 
 20º 30.23º 30.09º 29.95º 29.8º 29.65º 29.51º 29.36º 29.21º 29.06º 
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Table 4.3.  Maximum Allowable Initial Angle of Attack for Different Initial Pitch Angles 
and Pitch Rates for the 2nd Order Controller. 

Initial Pitch Rate q(0) 
 -20º/sec -15º/sec -10º/sec -5º/sec 0º/sec 5º/sec 10º/sec 15º/sec 20º/sec 

 -20º 19.97º 19.83º 19.69º 19.56º 19.43º 19.29º 19.15º 19.01º 18.87º 
 -15º 22.04º 21.9º 21.76º 21.63º 21.48º 21.34º 21.2º 21.06º 20.92º 

Initial -10º 23.81º 23.66º 23.51º 23.37º 23.2º 23.05º 22.9º 22.75º 22.6º 

Pitch -5º 25.3º 25.15º 25º 24.86º 24.72º 24.57º 24.42º 24.27º 24.12º 

Angle 0º 26.61º 26.45º 26.29º 26.14º 25.99º 25.83º 25.67º 25.51º 25.35º 

θ(0) 5º 27.72º 27.56º 27.4º 27.25º 27.1º 26.94º 26.78º 26.62º 26.46º 
 10º 28.7º 28.54º 28.38º 28.23º 28.08º 27.92º 27.76º 27.6º 27.44º 
 15º 29.55º 29.4º 29.25º 29.11º 28.96º 28.81º 28.66º 28.51º 28.36º 
 20º 30.33º 30.18º 30.03º 29.89º 29.74º 29.59º 29.44º 29.29º 29.14º 

 
 
 

Table 4.4.  Maximum Allowable Initial Angle of Attack for Different Initial Pitch Angles 
and Pitch Rates for 3rd Order Controller. 

Initial Pitch Rate q(0) 
 -20º/sec -15º/sec -10º/sec -5º/sec 0º/sec 5º/sec 10º/sec 15º/sec 20º/sec 

 -20º 21.77º 21.65º 21.52º 21.39º 21.26º 21.12º 20.98º 20.85º 20.71º 
 -15º 23.66º 23.52º 23.38º 23.24º 23.1º 22.96º 22.81º 22.66º 22.51º 

Initial -10º 25.24º 25.09º 24.95º 24.8º 24.65º 24.5º 24.35º 24.2º 24.04º 

Pitch -5º 26.57º 26.42º 26.27º 26.12º 25.97º 25.81º 25.66º 25.5º 25.34º 

Angle 0º 27.7º 27.55º 27.4º 27.24º 27.09º 26.93º 26.78º 26.62º 26.46º 

θ(0) 5º 28.67º 28.52º 28.37º 28.21º 28.06º 27.9º 27.74º 27.58º 27.42º 
 10º 29.51º 29.36º 29.21º 29.06º 28.9º 28.75º 28.59º 28.43º 28.27º 
 15º 30.25º 30.1º 29.95º 29.8º 29.65º 29.5º 29.34º 29.18º 29.02º 
 20º 30.91º 30.76º 30.61º 30.46º 30.31º 30.16º 30º 29.85º 29.69º 
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Figure 4.20.  Maximum Allowable Initial Angle of Attack for Different Initial Pitch 

Angles and Pitch Rates for the LQR Controller. 
 
 

 
Figure 4.21.  Maximum Allowable Initial Angle of Attack for Different Initial Pitch 

Angles and Pitch Rates for the 2nd-Order Controller. 
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Figure 4.22.  Maximum Allowable Initial Angle of Attack for Different Initial Pitch 

Angles and Pitch Rates for the 3rd-Order Controller. 
 
 

 
Figure 4.23.  Maximum Allowable Initial Angle of Attack for Different Initial Pitch 

Angles and Pitch Rates Comparison of the 3 Controller. 
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Simulations for the maximum initial allowable angles of attack for the three 
proposed controllers, listed in Tables 4.2-4.4, were conducted to observe the behavior of 
the states.  Only few simulations for the 3rd order controller will be shown and discussed 
here to simplify the discussion.  These simulations will be shown in Figures 4.24 through 
4.38.   Figures 4.24 through 4.28 show the time history simulations for the angle of 
attack, pitch angle, pitch rate, flight path angle and drop in altitude respectively, 
corresponding to the maximum initial values corresponding to the first column in Table 
4.4, that is the maximum initial angles of attack at which the 3rd-Order controller can 
safely recover the airplane from the stall region, which corresponds to the variable pitch 
angles, θ(0)=±20º and for a pitch rate of q(0)=-20º/sec. 

 
 
 
 

 
Figure 4.24.  Angle of Attack Time History for the 3rd-Order Controller  

(θ(0)=±20º and q(0)= -20º/sec). 
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Figure 4.25.  Pitch Angle Time History for the 3rd-Order Controller  

(θ(0)=±20º and q(0)= -20º/sec). 
 
 

 
Figure 4.26.  Pitch Rate Time History for the 3rd-Order Controller 

(θ(0)=±20º and q(0)= -20º/sec). 
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Figure 4.27.  Flight Path Angle Time History for the 3rd-Order Controller  

(θ(0)=±20º and q(0)= -20º/sec). 
 

 

 
Figure 4.28.  Drop in Altitude Time History for the 3rd-Order Controller  

(θ(0)=±20º and q(0)= -20º/sec). 
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Figures 4.29 through 4.33 show the time history simulations for the angle of 
attack, pitch angle, pitch rate, flight path angle and drop in altitude respectively, 
corresponding to the maximum initial values corresponding to the fifth column in Table 
4.4, that is the maximum initial angles of attack at which the 3rd-Order controller can 
safely recover the airplane from the stall region, which corresponds to the variable pitch 
angles, θ(0)=±20º and for a pitch rate of q(0)= 0º/sec.   

Figures 4.34 through 4.38 show the time history simulations for the angle of 
attack, pitch angle, pitch rate, flight path angle and drop in altitude respectively, 
corresponding to the maximum initial values corresponding to the ninth column in Table 
4.4, that is the maximum initial angles of attack at which the 3rd-Order controller can 
safely recover the airplane from the stall region, which corresponds to the variable pitch 
angles, θ(0)=±20º and for a pitch rate of q(0)= 20º/sec.   

 
 
 
 

 
Figure 4.29.  Angle of Attack Time History for the 3rd-Order Controller  

(θ(0)=±20º and q(0)= 0º/sec). 
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Figure 4.30.  Pitch Angle Time History for the 3rd-Order Controller  

(θ(0)=±20º and q(0)= 0º/sec). 
 
 

 
Figure 4.31.  Pitch Rate Time History for the 3rd-Order Controller  

(θ(0)=±20º and q(0)= 0º/sec). 
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Figure 4.32.  Flight Path Angle Time History for the 3rd-Order Controller 

(θ(0)=±20º and q(0)= 0º/sec). 
 
 

 
Figure 4.33.  Drop in Altitude Time History for the 3rd-Order Controller 

(θ(0)=±20º and q(0)= 0º/sec). 
 



 

 

101

 
Figure 4.34.  Angle of Attack Time History for the 3rd-Order Controller  

(θ(0)=±20º and q(0)= 20º/sec). 
 
 

 
Figure 4.35.  Pitch Angle Time History for the 3rd-Order Controller  

(θ(0)=±20º and q(0)= 20º/sec). 
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Figure 4.36.  Pitch Rate Time History for the 3rd-Order Controller  

(θ(0)=±20º and q(0)= 20º/sec). 
 
 

 
Figure 4.37.  Flight Path Angle Time History for the 3rd-Order Controller  

(θ(0)=±20º and q(0)= 20º/sec). 
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Figure 4.38.  Drop in Altitude Time History for the 3rd-Order Controller  

(θ(0)=±20º and q(0)= 20º/sec). 
 
 
 
4.2.5. Neural Network Analysis. This section defines the NN architecture for the  

nonlinear problem, the NN initial training approach, and the limits for the trained Dual-
NN. 

4.2.5.1    Neural    network   architecture.   The   neurocontroller    development  
approach, described in section 3.1, the ACNN formulation used in this study is a feed 
forward backpropagation architecture, consisting of two hidden layers with hyperbolic 
tangent sigmoid transfer function, and an output layer with a linear transfer function.  The 
ANN architecture for the synthesis of the nonlinear tracker problem is defined by N3,4,4,1 
where the first subscript represents the three inputs to the NN, angle of attack, pitch angle 
and pitch rate, the second and third subscripts represent the number of neurons, four in 
each of the hidden layers, and the last subscript represents the single output of the Action, 
the control or tail rotation.  Similarly, the architecture of the CNN is defined by N3,6,6,3 
where the first subscript represents the three inputs to the NN, again angle of attack, pitch 
angle and pitch rate, the second and third subscripts represent the number of neurons in 
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the hidden layers and the last subscript represents the three outputs for the Critic, the co-
state or Lagrange multipliers associated to the three states.   

The complexity in mapping the co-states for the CNN makes it necessary to have 
a more complex NN architecture, thus the difference in the number of neurons between 
the Action and the Critic NN.  It needs to be noted that the number of neurons chosen for 
this work is not the only possibility, and not the optimal number of neurons either, but it 
was chosen trying to minimize the computational time required for the training process.  
Despite that, in general for nonlinear mappings, the more the neurons in the hidden layers 
the better the approximation that can be made, the amount of computational complexity 
and time required to train grows exponentially with the number of neurons per layer.  It 
also needs to be noted that if the numbers of neurons per layer exceeds the maximum 
number of points required to map the nonlinear function, then aliasing might produce 
errors in the mapping.  In order to have a feeling of how much more complex can the 
computations become, the reader can look at Eqs. (25) and (26), described in section 3.1, 
which describe the transfer function and the output  for both the Action and Critic NN.  
For example, the ANN output is defined as:  

 
3 2 2 1 1 1 2 3

1 1 1 4 4 4 4 3 3 1 4 1 4 1 1 1( ( ) )x x x x x x x xa W f W f W p b b b= + + +      (168) 
 
where 3 1xp  is the input vector, corresponding to the three states, and the output 

corresponding to the tail rotation is defined by 1 1xa .  The subscripts in the weights and 
biases denote their dimensions.  Figure 4.39 describes the NN architectures for the ANN 
in more detail.  Note that the first and second layers have 4 neurons each, denoted by 
circles, while the output layer has only one neuron.  Each neuron is interconnected with 
each other, therefore as the number of neurons are increased the connections increase as 
well.  To better understand this complexity, Figure 4.40 describes in more detail the 
structure of each one of the neurons, represented by circles in Figure 4.39, by expanding 
the 1st hidden layer. 
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Figure 4.39.  Expansion of the Action NN. 

 
 
 
The weight and bias vector for this 1st hidden layer is defined bellow to aid 

understanding the complexity of the model 
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Analyzing Figure 4.40, it can be observed that the output from the first neuron of 

the first hidden layer is defined by the activation function described in Eq.(25) 
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       (25) 

 
where 1

1n  is the input to the activation function which is defined as: 
 

1 1 1 1 1
1 11 12 13 1n W W W q bα θ= + + +            (169) 
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Figure 4.40.  Expanded View if the 1st Hidden Layer for the Action NN. 
 
 
 

4.2.5.2  Neural  network  initial  training  approach.  After careful analysis of  
the results from the system simulation it was determined that the training ranges would 
start from -5º to 30º for the angle of attack, ± 20º for the pitch attitude angle, and ±25º/sec 
for the pitch rate.  The first phase of the training procedure for the ANN and the CNN 
was to initialize both networks.  In order to assure the convergence of the training 
procedure, instead of using a random initialization, it was decided to train both NN to 
map a percentage of the optimal linear solution for the linear model described in Eq. 
(164).  By initializing the NN using targets as a percentage of the optimal solution, it was 
assured that the initial NN would be in the direction of the optimal linear problem, thus 
being stable.  At the same time, by not providing the NN with the exact optimal solution, 
it was assured that the NN was not biased with the LQR solution.  Once the mapping 
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initialization was achieved, the linear model was substituted by the nonlinear model 
described in Eq. (131).  The initial percentage used for the mapping initialization was 80 
so that the Action NN network would map a control of the form 

 
, ,e NN i iKxδ = −∆      (170) 

 
where ∆  represents the percentage of the direction, for this training procedure 

being 0.80∆ = .  Figure 4.41 shows the schematics for the initialization of the ANN.  The 
inputs are the three states and the output was the control associated to the three states. 
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Figure 4.41.  Initialization of the Action Neural Network. 

 
 
 
The Critic was initialized in the same manner using the solution to the steady state 

Riccati equation, where the optimal linear co-state history is defined by: 
 

i iSxλ =      (171) 
 
where S is the solution to the steady state Riccati Eq. (22).  The Critic NN 

network was initialized such that it would map the Lagrange multipliers as a percentage 
of the optimal linear solution as it is shown in Figure 4.42. 
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Figure 4.42.  Initialization of the Critic Neural Network. 

 
 
 
The sets of training inputs were three vectors of 2000 points each.  Each one of 

the three vectors had equally distributed points over the entire range of the respective 
state, that is for example for the vector corresponding to the angle off attack, 2000 
equally distributed points over the range of –5º to +30º were generated.  Once the three 
vectors were generated, they were randomized before being feed as the inputs to the 
training of the Action and Critic NN to increase their training capabilities.  

After the initialization was finished the training procedure followed the training 
steps outlined in sections 3.2.1 and 3.2.2 for the Action NN and Critic NN respectively.  
In order to avoid that the Action and Critic NN would not be able to map the 
characteristics at one region or another of the training range, a telescoping training 
procedure was conducted, that is, the training procedure was started around the origin of 
the angle of attack, pitch angle and pitch rate, and after each successful training iteration, 
the training range was slowly increased so that the controllers would be able to map the 
origin area.  For example, the initial training range set for the angle of attach started from 
±5º, and after each successful training iteration in which there was no significant change 
between the outputs of the Action and Critic NN, the which the NN were considered to 
be suboptimal for those ranges, then the ranges were progressively extended until 
reaching the desired training ranges.  It is important to note that as the range in the angle 
of attack was increased, more points were dedicated to the area surrounding the origin 
such that the telescoping training was more efficient.   

Despite this telescoping training, when the NN feedback controllers were tested in 
simulations it was observed that despite the NN was able to considerably extend the stall 
region, there seem to be a small steady state error in the pitch angle such that the 
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controller would not completely drive the pitch angle to zero, being that steady state error 
of about 1 degree.  This can be seen the top-right figure in Figure 4.43. 

 
 
 

 
Figure 4.43.  Demonstration of Pitch Angle Steady State Error. 

 
 
 
Although the steady-state error in pitch angle is really small and the controller, is 

able to effectively bring the airplane to zero angle of attack and zero pitch rate, it is 
inadmissible to accept that steady-state error.  A non-zero steady state value of the pitch 
angle means that the flight path angle is not, and according to Eq. (45), which in return 
means, that the airplane would not be able to hold altitude, and would loose or increase 
altitude, depending if the flight path angle was negative or positive respectively. 

After careful study and analysis of the NN, it was determined that the problem 
was caused by the fact that while extending the range of initial angle of attack, pitch 
angle and pitch rate, despite the telescoping training procedure, and that more points were 
allocated to the center region as the range for the training states were increased, the 
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resulting NN lacked the necessary mapping properties near the origin, which would 
assure a zero flight path angle steady state.  This had a quick and easy fix, which 
considering the enormous amount of training and simulation time, was favored instead of 
doing all the training again increasing the numbers of neurons in the NN to avoid this 
problem. 

The fix consisted of training a second NN around the origin for all three states and 
when the angle of attack was near the origin, then the feedback controller would switch 
from the 1st training ANN to the 2nd ANN, thus using a Dual-NN architecture.  The value 
of angle of attack at which the feedback controller would be activated was determined to 
be 2º, which shows again that the error was minimal, but again was also inadmissible to 
allow the pitch angle to go to a steady state error despite of how small it might have been.  
Figure 4.44 shows the results for the Dual-NN feedback controller. 

 
 
 
 

 
Figure 4.44.  Fixed Pitch Angle Steady State Error 
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In order to improve the overall training process, during the training of the Action 
and Critic NN, the new target inputs, ,e NEWδ ∗  and NEWλ ∗  respectively, were not used in 
their totality to adjust the new targets.  In order to avoid that the new target vectors used 
to train the NN differ considerably from the previous training network, and thus avoiding 
a huge change in the gradient of the direction towards the optimal solution, learning rates 
are introduced so that only a percentage of the new target vector is used to provide the 
correct direction to the optimal solution.  These learning rates are modeled as such that 
the new target directions are provided by: 

 
*

, 1 , 1(1 )e NEW e OLD eδ γ δ γ δ∗ = − +                (172) 

2 2(1 )NEW OLDλ γ λ γ λ∗ ∗= − +                 (173) 
 

where *
,e OLDδ  and *

OLDλ  represent the old targets inputs for the Action and Critic 
NN respectively, where 1γ  and 2γ  are the learning rates for the Action and Critic NN 
respectively that determine the percentage of the optimal target that is given to the next 
training iteration.  They have values of 1 1γ <  and 2 1γ < , which does not necessarily 
meant that 1 2γ γ=  since the Action and the Critic will need different learning rates in 
order to avoid arriving to a local minima.  The values for the learning rates were varied 
during the training procedure depending the convergence results of the training iterations.  
Figure 4.45 is a modification of Figure 3.3 previously described in section 3.2, which 
includes the learning rates for the training targets.   

As described in section 4.2.3, Steps 1 through 5 for the Action NN and Critic NN 
are repeated until the desired level of accuracy for the NNs is achieved and there is no 
acceptable change in the outputs of the trained NN after a cycle.  For this problem the 
level of accuracy is reached when the 2-norm of the errors between the current outputs 
and the previous trained outputs is below 0.008e ε< = .  Once the training was considered 
finished, the ANN was tested as a feedback controller of the form described in Figure 
4.46. 

 



 

 

112

Action NN Training

Optimal
Equation

System
model

Critic
NNAction

NN

e

1ix + 1iλ +
iu

ix
*
iu

* *
1 1(1 )NEW i ii

if e
then train with
u u u

ε

γ γ

>

= − +

ie

 
Figure 4.45.  Action NN with Modified Training Target. 
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Figure 4.46.  Feedback Neurocontroller Implementation. 

 
 
 

4.2.5.3  Trained  neural  networks  limits.   Once  the Dual-NN was trained, in  
order to compare its performance with the proposed controllers by Garrard and Jordan 
[85], an analysis similar to that conducted in section 4.2.4 to test the limits of the 
maximum allowable initial angles of attack for the three controllers, is conducted for the 
Dual-NN.  Table 4.5 shows the maximum initial angles of attack at which the Dual-NN 
can successfully recover from the stall region for varying initial pitch angle by θ(0)=±20º, 
and varying initial pitch rate by q(0)=±20º/sec.   

When compared with the 3rd-Order, which generated the best performance out of 
the three  controllers proposed by Garrard and Jordan [85], the Dual-NN shows apriori 
that the values of maxiumum initial angle of attack are much larger that any of the values 
shown in Table 4.4.  Figure 4.47 shows the comparison between the maximum allowable 
initial angles of attack for the 3rd-Order controller and the Dual-NN.  It can be seen that 
the Dual-NN extends considerably the maximum allowable initial angle of attack for all 
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the ranges, but in order to determine the feasibility of the Dual-NN, simulations need to 
be made to determine magnitude of the states to determine if the performance of the 
Dual-NN is admissible.  

 
 
 
 

 
Figure 4.47.  Comparison of the Maximum Allowable Initial Angle of Attack for the 3rd-

Order and the Dual-NN Controller. 
 
 
 
Figures 4.48 through 4.52 correspond to the time history simulations for the angle 

of attack, pitch angle, pitch rate, flight path angle and drop in altitude respectively, 
corresponding to the maximum initial values corresponding to the fifth column in Table 
4.5, that is the maximum initial angle of attack at which the Dual-NN controller can 
safely recover the airplane from the stall region, which corresponds to the variable pitch 
angles, θ(0)=±20º and for a pitch rate of q(0)= 0º/sec.   
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Table 4.5.  Maximum Allowable Initial Angle of Attack for Different Initial Pitch Angles 
and Pitch Rates for the Dual-NN Controller. 

Initial Pitch Rate q(0) 
 -20º/sec -15º/sec -10º/sec -5º/sec 0º/sec 5º/sec 10º/sec 15º/sec 20º/sec 

 -20º 38.86º 38.64º 38.42º 38.18º 37.94º 37.69º 37.43º 37.17º 36.89º 
 -15º 38.91º 38.69º 38.47º 38.23º 37.99º 37.74º 37.48º 37.21º 36.93º 

Initial -10º 38.93º 38.72º 38.51º 38.28º 38.03º 37.78º 37.53º 37.25º 36.98º 

Pitch -5º 38.96º 38.75º 38.54º 38.31º 38.06º 37.81º 37.54º 37.27º 36.99º 

Angle 0º 38.96º 38.74º 38.52º 38.29º 38.01º 37.79º 37.53º 37.25º 36.97º 

Θ(0) 5º 38.91º 38.69º 38.47º 38.23º 37.99º 37.74º 37.48º 37.21º 36.92º 
 10º 38.8º 38.6º 38.38º 38.15º 37.91º 37.66º 37.4º 37.13º 36.83º 
 15º 38.67º 38.46º 38.25º 38.03º 37.79º 37.54º 37.29º 37.02º 36.74º 
 20º 38.5º 38.3º 38.09º 37.87º 37.64º 37.4º 37.14º 36.88º 36.6º 

 
Despite that the Dual-NN controller is able to recover the airplane from the stall 

region for all the extreme initial conditions, above described, when looking at the 
physical implications of the dynamics of the simulations, it can be seen that large values 
are encountered in the angle of attack, pitch angle, pitch rate and flight path angle during 
the first few seconds of the recovery maneuver.  Figure 4.48 shows that the Dual-NN 
brings down the initial values of angle of attack, listed in the 5th column of Table 4.5, to a 
change of about 80º in approximately a second, creating an overshoot corresponding to 
values in the angle of attack of (0) 40α ≈ − � .  The Dual-NN brings back the angle of attack 
to values of (0) 11α ≈ �  in the next second of the recovery maneuver, and from it brings the 
airplane smoothly to the steady state of zero angle of attack.  The same trends of 
overshoot are observed in the magnitudes of pitch angle and pitch rate, which show 
values in excess of (0) 140θ ≈ − �  for the pitch angle and (0) 300 / secq ≈ − �  for the pitch rate 
during the first second of the recovery maneuver and relaxes considerably in the next 
second of the maneuver to values near the desired steady state.  The magnitudes of 
responses for the maximum allowable initial angle of attack for different initial pitch 
angles and pitch rates for the Dual-NN Controller need to be analyzed in more detail 
taking into consideration that: 
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- The extreme changes in angle of attack, pitch angle and pitch rate, and 
consequently the drop in altitude, are only encountered during the first few 
seconds of the recovery maneuver. 

- The model used in this thesis uses a simplified longitudinal model of the 
dynamics of the aircraft with nonlinearities in the angle of attack, which does 
not fully describe the dynamics of the 6-DOF aircraft model. 

- The airplane used for this thesis corresponds to a highly maneuverable fighter 
which can be safely assumed to be able to sustain extreme conditions. 

- The model used in this thesis does not include dynamics for the structural 
integrity of the aircraft, which is beyond the scope of this thesis. 

 
Recalling the analysis done in section 4.2.2, regarding the magnitude of the states 

and control weighting matrices, Eqs. (138) and (139), in which it was determined that if 
the weight cost function penalized the states and the control to lower values, i.e. Q and r 
used in this thesis, the controller would not have been able to extend the stall region 
beyond the penalized values.  Despite that the Dual-NN controller is only doing what it 
has been asked to do, which is extending the stall-regime without penalizing the effort 
done by the control or the airplane, and as mentioned above the model used in this work 
is a simplified one that does not include the full nonlinear behavior of the dynamics, 
neither include the dynamics for the structural integrity of the aircraft, as an engineer, the 
author needs to take the results described above with a grain of salt.  The physical 
implications of the magnitudes achieved by the state for the extreme limiting conditions 
at which the Dual-NN can recover the airplane from the stall region need to be taken into 
consideration.  

For that reason more relaxed initial conditions that allow for more reasonable 
magnitudes for the state, will be used for the Dual-NN simulations described in the next 
section.  As it will be seen in the next section, despite the relaxation of the initial 
conditions, the Dual-NN controller synthesized in the thesis, outperforms any of the three 
proposed controllers by Garrard and Jordan [85], and considerably extends the stall 
region. 
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Figure 4.48.  Angle of Attack Time History for the Dual-NN Controller  

(θ(0)=±20º and q(0)=0º/sec). 
 
 

 
Figure 4.49.  Pitch Angle Time History for the Dual-NN Controller  

(θ(0)=±20º and q(0)=0º/sec). 
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Figure 4.50.  Pitch Rate Time History for the Dual-NN Controller 

(θ(0)=±20º and q(0)=0º/sec). 
 
 

 
Figure 4.51.  Flight Path Angle Time History for the Dual-NN Controller 

(θ(0)=±20º and q(0)=0º/sec). 
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Figure 4.52.  Drop in Altitude Time History for the Dual-NN Controller 

(θ(0)=±20º and q(0)=0º/sec). 
 
 
4.2.6.  Analysis  of  Numerical  Results.   This  section  describes the simulations  

conducted to test the performance of the aircraft of the three different controllers derived 
by Garrard and Jordan [85] ( 1eδ , 2eδ and 3eδ , Eqs. (142), (145) and (146) respectively) 
against the Dual-NN solution.  As previously described, the initial flight conditions are 
Mach=0.85 and 30,000 feet (9000 m).  It needs to be noted that, as mentioned in section 
4.2.2, a limiter is placed in the simulations such that the tail rotation would not exceed a 
maximum rotation of ±25º, and a tail rotation rate of ±60º/sec.  This is achieved by 
introducing logic in the integration routine that checks that the commanded tail rotation, 
generated by the controllers, does not exceed the ±25º allowable tail rotation.  If the 
commanded tail rotation exceeds that value, then the logic in the integration routine limits 
the controller as such that 

 
     ( 1) ( 1)25 25e i e iif thenδ δ+ +> = ±� �            (174) 
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The ± in Eq. (174) indicates the correct sign of the tail rotation.  Secondly, to 
check that the tail rotation rate is limited to ±60º/sec, another logic routine is introduced 
as such that it checks the previously commanded control, i.e. ( )e iδ , and compares it with 
the current commanded control, i.e. ( 1)e iδ +  and makes sure that the new commanded 
control does not exceed the limit tail rotation rate.  Since the integration time-step used 
is 0.01t∆ = , then the maximum tail rotation rate at each integration time-step is set to 
0.6º/step.  The rotation rate at each time step is calculated using Eq. (174).  If the 
calculated rate at each step exceeds the maximum allowable tail rotation rate per step, 
then the new control is calculated using the previous control as indicated in Eq. (176) 

 
 

( ), ( ) ( 1) ( )e rate i e i e i tδ δ δ+= − ∆              (175) 

( 1) ( )e i e i e MAXrateδ δ δ+ = ±             (176) 
 

The ± indicates the correct sign of the tail rotation rate according to the magnitude 
of the previous rate.  It needs to be noted that at (0) 0t = , the initial tail rotation is 
assumed to be (0) 0eδ = � , therefore both the maximum tail rotation, and maximum tail 
rotation-rate are enforced for the initial commanded controller at t(1)=∆t, avoiding that 
way an unreasonable instantaneously initial tail rotation command. 

For simplicity, the performance analysis comparison of the three proposed 
controllers by Garrard and Jordan [85], and the Dual-NN controller, will only be 
conducted with the limiting initial angles of attack that correspond to initial pitch angle 
and pitch rates of θ(0)= 0º and q(0) = 0º/sec, for the three compared controllers.  Although 
these initial conditions seem a little bit unrealistic, due to the physical implication of zero 
pitch angle and pitch rate during a sudden increase in the angle of attack, these initial 
conditions are only used as a benchmark for comparison of the Dual-NN controller 
against the proposed controllers.  This simplification reduces the lengthy amount of plots 
to be displayed in this thesis, and allows centering the focus of the analysis in the 
performance of the Dual-NN controller.  After the Dual-NN is compared with the three 
controllers, different initial conditions are used to determine the limits and the 
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performance of the Dual-NN.  The limiting conditions for the LQR, the 2nd-Order and the 
3rd-Order controller, are α(0)=25.73º, α(0)=25.99º, and α(0)=27.09º respectively as seen in 
Tables 4.2, 4.3 and 4.4 in section 4.2.4.   

The comparisons of the NN with the limiting cases of the compared controllers 
are displayed in Figures 4.53 through 4.58.  Figures 4.53 and 4.54 show the time response 
for initial conditions of α(0)=25.73º, θ(0)=0º, and q(0)=0º/sec.  Figures 4.55 and 4.56 show 
the time response for initial conditions of α(0)=25.99º, θ(0)=0º, and q(0)=0º/sec.  Figures 
4.57 and 4.58 show the time response for initial conditions of α(0)=27.09º, θ(0)=0º, and 
q(0)=0º/sec.  It can be seen that the Dual-NN controller reaches equilibrium faster than 
any of the three compared controllers, and in addition has the lowest loss in altitude, the 
lowest cost and reaches the steady state of zero flight path angle faster than any of the 
three proposed controllers by Garrard and Jordan [85]. 

The flight path angle time history, depicted in bottom right hand corner of Figures 
4.53, 4.55 and 4.57, and the altitude time history, depicted in the top left corner of 
Figures 4.54, 4.56 and 4.58, show that the Dual-NN outperforms any of the other three 
compared controllers by reaching the steady state faster, and having the smaller altitude 
loss.  When comparing the flight path angle and the altitude loss-rate time-histories, 
similarities can be seen in their profiles.  Flight path angle provides a direct relationship 
for the altitude loss rate, which in return indicates a loss in altitude.  This is the main 
reason why it was considered inadmissible that a controller would create a negative 
steady state error in the pitch angle, no matter how small the steady state error was.  As 
described previously, a non-zero steady state error implies a non-zero altitude loss rate, 
which in return implies a continuous change in altitude, and for the case described in 
Figure 4.19, where there existed a negative steady state error, would have implied a 
continuous loss in altitude despite that the aircraft recovered from the stall condition.   

The tail rotation time-history and the cost associated to each control are depicted 
in the lower left corner and lower right corner respectively of Figures 4.54, 4.56 and 4.58, 
and it can be seen that the Dual-NN controller has the smallest control effort and cost 
associated.   
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Figure 4.53.  States Results (α(0) =25.73º, θ(0)=0º, q(0)=0º/sec). 

 
 
 

 
Figure 4.54.  Altitude, Control and Cost Results ((0) =25.73º, θ(0)=0º q(0)=0º/sec). 
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Figure 4.55.  States Results (α(0)=25.99º, θ(0)=0º, q(0)=0º/sec). 

 
 
 

 
Figure 4.56.  Altitude, Control and Cost Results (α(0)=25.99º, θ(0)=0º, q(0)=0º/sec). 
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Figure 4.57.  States Results (α(0)=27.09º, θ(0)=0º, q(0)=0º/sec). 

 
 
 

 
Figure 4.58.  Altitude, Control and Cost Results (α(0) =27.09º, θ(0) =0º, q(0)=0º/sec). 
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It needs to be noted that in order to bring the initial angle of attack much faster 
than any of the three other controllers, the Dual-NN controller allows the pitch angle and 
pitch rate to increase more than the other controllers during the first seconds of 
maneuver.  This can also be seen in the cost during the first seconds where the cost 
associated to the Dual-NN is greater during those few seconds, but the general 
performance of the Dual-NN controller is far superior than the rest of the proposed 
controllers.  This faster response reflects in the fact that the Dual-NN controller regains 
level flight faster than the other three controllers.  This higher value of pitch angle and 
pitch rate during the first two seconds of the recovery maneuver is the common feature 
for the dual-NN controller as the initial angle of attack is increased.   

As described in section 4.2.5.3, since the magnitude of the state and control 
weighting matrices used in this thesis allow for these high values of pitch angle and pitch 
rate, which in turn, are required in order to allow the control to extend the stall region, 
these high values in the pitch angle and pitch rate will be considered reasonable as long 
as they are not sustained for long periods of time, which might be considered a hazard for 
the structural integrity of even an agile fighter, and as long as the pitch angle does not 
create extreme instantaneous loss in altitude which can also be seen as a hazard for the 
structural integrity of the airplane.  

After this initial angle of attack of 27.09º, none of the three controllers presented 
by Garrard and Jordan [85] can recover from stall.  In order to test the limits of the NN 
control, it was decided to further increase the initial value of angle of attack to α(0)=30º, 
while keeping θ(0) =0º and q(0) =0º/sec.  Figures 4.59 and 4.60 show the time histories for 
the states, altitude loss control and cost for the Dual-NN controller. 

Figure 4.59 shows that the Dual-NN is able to bring down the initial angle of 
attack of α(0) =30º, to a little more than 10º, in little more than one second.  In order to 
achieve this fast response, the controller brings the initial pitch angle to approximately -
22º, and the initial pitch rate to approximately -50º/sec in the half second of the recovery 
maneuver.  After that, the Dual-NN brings the high values of pitch angle and pitch rate 
back to the desired steady state range by the end of the first second, allowing only those 
extreme conditions for a brief period of time.   
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Figure 4.59.  States Results (α(0)=30º, θ(0)=0º, q(0)=0º/sec). 

 
 
 

 
Figure 4.60.  Altitude, Control and Cost Results (α(0)=30º, θ(0)=0º and q(0)=0º/sec). 
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It is really important to note that the excessive pitch angle and pitch rate during 
the first instants of the recovery maneuver are extremely sensitive to the choice of initial 
conditions of pitch angle and pitch rate.  As mentioned previously, a change in the angle 
of attack with initial conditions of zero pitch angle and pitch rate, implies a sudden, 
almost instantaneous change in the initial angle of attack, more like an impulse, which is 
really an unrealistic behavior for an airplane encountering a wind gust of such magnitude.  
Recalling Figure 4.5 in section 4.1.2, it can be seen that the angle of attack represents the 
angle of the airplane relative to its velocity vector, while the pitch angle represents the 
angle of the airplane relative to the horizon.  A positive angle of attack with zero initial 
pitch angle represents a condition in which the flight path angle is equal to the angle of 
attack, but with opposite sign, i.e. negative.  This implies a high negative altitude loss-
rate.  Although a negative flight path angle and a drop in altitude are expected as the 
angle of attack increases beyond the stall region, due to the loss in lift, if the maneuver is 
done progressively, meaning that the pilot slowly increases the angle of attack beyond the 
stall angle, allowing the airplane’s flight path angle to be negative but small, then the 
pitch angle will be, according to Eq. (45), equal to the angle of attack plus the small 
negative flight path angle thus being a more reasonable initial pitch angle than that of 
zero.  This only proves that the Dual-NN controller is showing incredible control 
response for such extreme initial conditions as tested above.   

In order to analyze the case in which a more relaxed maneuver is used to extend 
the initial stall regime, more conservative initial conditions are used in the simulations.  
Figures 4.61 and 4.62 show the simulations results for initial conditions for the angle of 
attack of α(0) =30º, pitch angle of θ(0) =20º and a pitch rate q(0) =5º/sec.  When comparing 
these results with the previous results described in Figures 4.59 and 4.60, it can be 
observed that the NN performs much better for this combination of initial conditions, 
than those described in Figures 4.59 and 4.60, i.e. θ(0) =0º and q(0) =0º/sec.  This can be 
better observed in the altitude loss for both cases, as seen in the top left corner of Figures 
4.60 and 4.62, where for the more extreme initial condition the loss in altitude during the 
recovery maneuver is approximately –1900 ft., while for the more relaxed initial 
condition, the loss in altitude is approximately only -750 ft.  Figure 4.62 also shows that 
the tail rotation control effort is still within the limits. 
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Figure 4.61.  States Results (α(0)=30º, θ(0)=20º, q(0)=5º/sec). 

 
 
 

 
Figure 4.62.  Altitude, Control and Cost Results (α(0)=30º, θ(0)=20º, q(0)=5º/sec). 
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In order to have a better picture of the influence that different initial conditions 
have in the angle of attack recovery, a study is conducted by varying the initial conditions 
for the simulations for a range of θ(0)= ±20º and q(0) = ±20º.   

Figure 4.63 shows the time-history for the angle of attack, pitch angle, pitch rate, 
and flight path angle for different initial conditions of the pitch angle of θ(0)= ±20º, while 
maintaninig the initial conditions of α(0)=30º and q(0)=5º/sec constant.  It can be seen that 
as the initial pitch angle moves towards the negative side of the parametric range, a 
decrease in performance is observed in all graphs.  This is expected as the initial flight 
path angle becomes more negative as the initial pitch angle moves towards the negative 
region of the range.  These create a set of more extreme initial conditions that demand in 
return a higher pitch angle and pitch rate in the intial instants to bring down the initial 
angle of attack.   

Figure 4.64 shows the time-history for the altitude loss, altitude loss-rate, the 
associated cost and the tail rotation control for different initial conditions of the pitch 
angle of θ(0)= ±25º, while maintaninig the initial conditions of α(0)=30º and q(0)=5º/sec 
constant.  Again, the decrease in performance as the initial pitch angle conditions move 
towards the negative region of the range is evident in the loss in altitude and the cost 
associated.  The tail rotation time history shows that for the more extreme initial 
conditions, there is an initial saturation of the commanded tail rotation, indicated by 
achieving the maximum limit of +25º.  Despite that initial saturation, the Dual-NN 
controller is able to bring down the initial angle of attack of α(0)=30º to little more than 
11º in less than 1 second.  After that first second, and depending on the associated pitch 
angle and pitch rate initial conditions, the angle of attack is brought down to the steady 
state of zero with a faster or slower response.   

Figure 4.65 shows the time-history for the angle of attack, pitch angle, pitch rate, 
and flight path angle for different initial conditions of the pitch rate from q(0)= ±20º/sec, 
while maintaninig the initial conditions of α(0)=30º and θ(0)=20º constant.  It can be seen 
that as the initial pitch rate is varied, the change in performace varies too little, and the 
angle of attack, pitch angle, pitch rate, and flight path angle time-histories show little 
variation.   
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Figure 4.66 shows the time-history for the altitude loss, altitude loss-rate, 
associated cost and the tail rotation control for different initial conditions of the pitch rate 
from q(0)= ±20º/sec, while maintaninig the initial conditions of α(0)=30º and θ(0)=20º 
constant.  The same trends are observed for the altitude loss and altitude loss rate, with 
the only apparent difference observed in the associated cost and the initial commanded 
tail rotation, which requires a higher performance of the Dual-NN controller for the 
higher initial pitch rates since it needs to turn that high positive initial pitch rate down to 
a negative value in or  der to bring the initial angle of attack down to a steady state value 
of zero. 

The initial angle of attack in increased even further to test the limits of the Dual-
NN controller.  Figure 4.67 shows the angle of attack, pitch angle, pitch rate and flight 
path angle results for a more conservative initial conditions with initial angle of attack of 
α(0) =35º, pitch angle of θ(0) =20º and a pitch rate q(0) =5º/sec.  It can be observed that the 
Dual-NN is still able recover from the stall condition of α(0) =35º, which represents an 
extension to the stall regime of 49%.  It also needs to be noted that this initial angle of 
attack creates a response of pitch rate in excess of -90º/sec during the first half second of 
the maneuver, which recovers to smaller values of pitch rate by the end of the first 
second.  The flight path angle history shows the loss of altitude during the maneuver, 
which is accentuated during the first seconds of the maneuver in which the negative pitch 
angle and the negative pitch rate of the aircraft induce the change in the flight path of the 
aircraft.   

Figure 4.68 shows the altitude loss, altitude loss-rate, tail rotation control, and 
cost time-histories for the above initial conditions.  When comparing Figure 4.68 with 
Figure 4.66, which corresponds to a smaller initial angle of attack of α(0) =30º, it is 
observed the general decrease in performance. While the altitude loss is approximately -
700 ft for α(0) =30º, the altitude loss for the α(0) =35º case is more than 3 times higher, 
approximately –2500 ft.  The same trends are seen when comparing the tail rotation 
effort, and the associated cost. 
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Figure 4.63.  States Results (θ(0)=±20º, α(0)=30º, q(0)=5º/sec). 

 
 

 
Figure 4.64.  Altitude, Control and Cost Results (θ(0)=±20º, α(0)=30º, q(0)=5º/sec). 
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Figure 4.65.  States Results (q(0) =±20º, α(0)=30º, θ(0)=20º/sec). 

 
 

 
Figure 4.66.  Altitude, Control and Cost Results (q(0)=±20º , α(0)=30º, θ(0)=5º/sec). 
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Figure 4.67.  States Results (α(0) =35º, θ(0)=20º,  q(0)=5º/sec). 

 
 
 

 
Figure 4.68.  Altitude, Control and Cost Results (α(0) =35º, θ(0)=20º, q(0)=5º/sec). 
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In order to observe the variation of initial angle of attack, Figures 4.69 and 4.70 
show the time response simulations for different initial angles of attack, bellow the stall 
condition, α(0)= 22.9º, to well beyond the stall condition, α(0)= 35º.  Figure 4.69 shows 
the time-history responses for the angle of attack, pitch angle, pitch rate, and flight path 
angle.  Figure 4.69 show the time-history responses for the altitude loss, altitude loss-rate, 
cost and tail rotation control respectivelly.  The initial conditions of θ(0)=20º and 
q(0)=5º/sec are maintained constant while the initial angle of attack is varied.  It is 
observed that as the initial angle of attack is increased the initial responses for the pitch 
angle and pitch rate move towards more extreme regions with maximum values of 
approximatelly θ=-30º and approximately q=-90º/sec within the first seconds for the 
maximum analyzed initial angle of attack.  The pitch rate response quickly recovers after 
the first second, while the pitch angle recovery is a little bit more gradual.  This behavior 
is also depicted in the response of the flight path angle, that shows a great change in the 
flight path of the aircraft in excess of γ =-40º for the maximum initial angle of attack. 

Figure 4.70 shows the altitude loss, altitude loss-rate, cost and tail rotation for the 
initial conditions described above.  The altitude loss portion of figure 4.70 shows the 
drastic change in altitude loss as the initial angle of attack is increased.  This decrease in 
overall performance is even greater when you compare the cost time-history as the angle 
of attack is increased.  Figure 4.70 also shows that the saturation limits for the initial tail 
rotation need to be enforced for the conditions in which the initial angle of attack is above 
α(0)= 32º.  This saturation of the tail rotation is only encountered in the initial commanded 
control. 

In order to extend the analysis to observe the the influence of the variation of 
pitch angle in the higher initial angle of attack of α(0)=35º, Figures 4.71 and 4.72 show 
the time-history for different initial conditions of the pitch angle of θ(0)= ±20º, while 
maintaninig the initial conditions of α(0)=35º and q(0)=5º/sec constant.  Only the variation 
in pitch angle is shown as previosly in Figures 4.65 and 4.66, the variation of pitch angle 
has a greater effect that the variation in pitch rate.  As the initial pitch angle moves away 
towards the negative side of the parametric range, a decrease in performance is observed 
in all graphs. 
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Figure 4.69.  States Results (α(0)=22.9-35º, θ(0)=10º, q(0)=5º/sec). 

 

 
Figure 4.70.  Altitude, Control and Cost Results (α(0)=22.9-35º, θ(0)=10º, q(0)=5º/sec). 
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Figure 4.71 shows the fast recovery of the initial angle of attack during the first 
second of the recovery, and also shows that as the initial pitch angle is varied towards the 
more negative region of the range, the airplane experiences pitch angles during the first 
seconds of the recovery maneuver that range from aproximatelly θ(0)= -20º to θ(0)= -70º.  
The same trends are shown in the pitch rate time-histories with maximum values of pitch 
rate of aproximatelly q(0)= -80º/sec to q(0)= -125º/sec, during the first half second of the 
recovery maneuver.   

Figure 4.72 shows the drastic change in altitude loss and the associated cost as the 
initial pitch angle is varied.  Figure 4.72 also shows the tail rotation control and it can be 
seen that the saturation limits of δe,MAX=+25º need to be enforced at the initial tail 
rotation command for all different variations in pitch angle.  The δe,MAX=-25º saturation 
limit is also encountered at 0.5 seconds of the recovery maneuver of angle of attack for 
extreme negative portion of the initial pitch angle.  Despite the enforcement of the 
maximum tail rotation, the control is able to bring the aircraft back to a steady state 
condition of zero angle of attack, pitch angle, pitch rate and flight path angle after a little 
bit more than 10 seconds.  

Beyond this initial angle of attack, α(0) =35º, despite the fact that the Dual-NN 
controller can still recover to larger values of initial angle of attack as seen in Table 4.5 of 
section 4.2.5.3, it is considered that the the values of pitch angle, pitch rate, flight path 
angle and loss in altitude are not reasonable, despite that the controller is still able to 
bring the airplane back from the stall region.  Figures 4.73 and 4.74 show the time-history 
simulations for varying θ(0)=±20º with α(0) =36.5º and q(0) =5º/sec.  Despite the fast 
recovery of the initial angle of attack as seen in Figure 4.73, it encounters an overshoot 
by reaching negative values of angle of attack.  The flight path angle reaches values of 
almost -90º, while the pitch rate encounters values of -200º/sec for the most negative 
values of initial pitch angle.    

Figure 4.74 shows the tail rotation control history, being clear that the Dual-NN is 
commanding more than what the tail can actually physically allow since saturtation limits 
are observed in the first seconds of the recovery.  The cost time-history shows that the 
overall cost increases by 100% relative to the simulations described for an initial algle of 
attack of α(0)=35º described in Figure 4.72. 
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Figure 4.71.  States Results (θ(0)=±20º, α(0)=35º, q(0)=5º/sec). 

 
 

 
Figure 4.72.  Altitude, Control and Cost Results (θ(0)=±20º, α(0)=35º, q(0)=5º/sec). 
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Figure 4.73.  States Results (θ(0)=±20º, α(0)=36.5º, q(0)=5º/sec). 

 
 

 
Figure 4.74.  Altitude, Control and Cost Results (θ(0)=±20º, α(0)=36.5º, q(0)=5º/sec). 
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4.2.7.  Sensitivity  Study  of  the Neurocontroller to Unmodeled Uncertainties. 
The formulation presented in this section introduces unmodel uncertainties in the control 
derivative matrix to study the robustness of the designed neurocontroller to model/input 
uncertainties.  Two types of unmodeled uncertainties (UU) are considered: 
 

- Time lag between commanded and actual input control. 
- Inaccurate control effectiveness derivatives.   
 
The time lag between commanded and actual input control is modeled with a first 

order time-lag defined as 
 

( 1) ( ) , ( )
1 ( )e i e i e NN iδ δ δτ+ = −                       (177) 

 
where the actual control us defined by,  
 

( ) , ( ) ( 1) , ( )( )
t

e i e NN i e i e NN ie τδ δ δ δ
−∆

−= + −                    (178) 
 

( )e iδ represents the tail rotation, , ( )e NN iδ is the ANN commanded control, ( 1)e iδ −  is 

the tail rotation in the previous step time, and τ is the tail-time constant. In this study τ is 
varied from 0.4 to 0.02.  This type of UU relate to those generated by the physical 
limitations of actuating a control surface.  Unless electrical actuators are used, the 
hydraulic actuators, commonly used in the control surfaces of current aircraft, tend to 
generate a time lag between the commanded control deflection by the pilot or the 
autopilot system, and the actual control seen by the control surfaces.  The study of this 
type of uncertainties is important since time constants are difficult to estimate accurately. 

The second type of uncertainties addressed in this study are inaccurate control 
effectiveness derivatives. These uncertainties can be encountered in two situations:  

 
- Inaccurate prediction of the tail control surfaces derivatives, 

eLC δ and
eMC δ . 
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- Loss of a percentage of the control surface.  
 
In this thesis, this uncertainty is modeled by introducing a disturbance in the 

control matrix such that, 
 

1 ( )( ) (1 )i i i un e ix Ax x b Dφ δ+ = + + +              (179)  
 
Dun represents the percentage of decrease or increase in tail effectiveness, for 

example a value of Dun= -0.50 represents a loss of 50% in the tail effectiveness.  In this 
study Dun is varied from –0.50 to 0.50.  When Dun <0, it can be associated to either a loss 
in effective area of the control surface, i.e. hit by a missile which destroys a percentage of 
the effective tail surface area, or to an error in the estimation of the tail effectiveness 
derivatives as such that their real effectiveness is less than predicted.  When Dun >0, this 
can be associated to a an error in the estimation of the tail effectiveness derivatives 
meaning that their real effectiveness is greater than predicted, which also needs to be 
checked to assure that the airplane does not become unstable from over-control.  

4.2.8.   Analysis  of  Results  to  Unmodeled Uncertainties.  In order to analyze  
the inherent robustness to UU, several cases were studied varying the tail time constant τ, 
the tail effectiveness unD  and the initial angle of attack α(0).  All studied cases have 
initial conditions of pitch angle of θ(0)=20º and pitch rate of q(0)=5º/sec to limit the 
number of studied cases.  The simulations are compared with the Dual-NN controller 
simulations described in section 4.2.6, which will be referred in this section as the desired 
controllers since it is free of UU.  Needs to be noted that the Dual-NN controller with 
unmodel uncertainties (Dual-NN-UU) has no knowledge of the existence of these 
uncertainties.  The robustness analysis is divided in two parts: 

 
- Sensitivity study to varying τ and α(0), which will be referred as UU1 

throughout the reminder of the analysis. 
- Sensitivity study to varying only unD  and α(0), which will be referred as UU2 

throughout the reminder of the analysis. 
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4.2.8.1  Analysis  of the sensitivity study to varying time lag.  Figures  4.75 and  
4.76 show the time-history simulations for a time lag with unmodeled uncertainties of 
τ=0.01 and initial angle of attack of α(0)=30º.  Similar to the analysis conducted in 
previous sections, Figure 4.75 and 4.76 are divided in four subplots each.  The angle of 
attack and pitch angle are located in the top left and top right corners respectively of 
Figure 4.75, while the pitch rate and the flight path angle are located in the bottom left 
and right corners respectively of the same figure.  The altitude loss and altitude loss-rate 
are located in the top left and right corners respectively of Figure 4.76, while the 
associated cost and the flight path angle are located in the bottom left and right corners 
respectively of the same figure.  The units for the plots are the same as used in previous 
analysis, with the angle of attack, pitch angle, flight path angle and tail rotation having 
units of degrees; the pitch rate having units of degrees-per-second; the altitude loss 
having units of feet; the altitude loss-rate having units of feet-per-second, and the cost 
being dimensionless. 

 
 
 

 
Figure 4.75.  States Results (τ=0.01, α(0)=30º, θ(0)=20º, q(0)=5º/sec). 
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Figure 4.76.  Altitude, Control and Cost Results  

(τ=0.01, α(0)=30º, θ(0)=20º, q(0)=5º/sec). 
 
 
 
Figures 4.77 and 4.78 show the simulations for an increase in the time lag of 

τ=0.05.  The simulations show that the time lag slightly affects the control, as seen by its 
slower response in the bottom right hand corner of Figure 4.78.  This effect can also be 
observed in the simulations for the pitch angle, pitch rate and flight path angle.  The 
altitude loss difference between both controllers is almost negligible, but the difference in 
states is clearly present when obtaining the associated cost as seen in the bottom left 
corner of Figure 4.78. 

The time lag is increased to τ=0.1, and the results are displayed in Figures 4.79 
and 4.80.  The simulations show that the effects of the time lag in the states are greater 
than those described in the previous figures.  The time lag in the control can now be seen 
very distinctively in the bottom right hand corner of Figure 4.80.  The first few seconds 
of the simulations for the angle of attack, pitch angle, pitch rate and flight path angle, 
show the more accentuated difference between the desired Dual-NN controller and the 
Dual-NN-UU1, as seen in Figure 4.79.  The overall decrease in performance is observed 
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by the increase of associated cost of the controller with model uncertainties as seen in the 
bottom left corner of Figure 4.80. 

Results for further increase in the time lag constant of τ=0.2 are displayed in 
Figures 4.81 and 4.82.  The larger time lag constant introduced in the simulation, clearly 
reflects that the commanded tail rotation is having problems trying to keep up with actual 
states of the aircraft during the initial portion of the recovery maneuver.   Fluctuations of 
the states can be seen during the first 4 seconds of the recovery maneuver, after which the 
states normalize bringing the airplane to a zero-steady state.  The higher loss in altitude is 
evident in the top left portion of Figure 4.82, while the associated cost shows the 
reduction in performance as the time lag constant is increased.  Despite the decrease in 
performance, the Dual-NN-UU1 is able to successfully bring the airplane to zero steady 
state conditions about the same time that the desired Dual-NN.  These incredible results 
demonstrate the inherent robustness properties of  the neurocontroller used in this thesis 
to the type of UU1 described above. 

 
 
 

 
Figure 4.77.  States Results (τ=0.05, α(0)=30º, θ(0)=20º, q(0)=5º/sec). 
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Figure 4.78.  Altitude, Control and Cost Results (τ=0.05, α(0)=30º, θ(0)=20º, 

q(0)=5º/sec).  
 
 
 

 
Figure 4.79.  States Results (τ=0.1, α(0)=30º, θ(0)=20º, q(0)=5º/sec). 
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Figure 4.80.  Altitude, Control and Cost Results (τ=0.1, α(0)=30º, θ(0)=20º, q(0)=5º/sec).  

 
 
 

 
Figure 4.81.  States Results (τ=0.2, α(0)=30º, θ(0)=20º, q(0)=5º/sec). 
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Figure 4.82.  Altitude, Control and Cost Results (τ=0.2, α(0)=30º, θ(0)=20º, q(0)=5º/sec).  

 
 
 
Figures 4.83 and 4.84 show the results for the extreme case of time lag 

uncertainties with a time constant of τ=0.4, which although it is an extremely large time 
constant for a normal actuation system, the Dual-NN-UU1 is able to adapt to those 
unmodeled uncertainties and recover from the initial stall conditions.  The fluctuations of 
the states are even greater with this time constant as seen in Figure 4.83.  The drop in 
altitude is even more accentuated, as seen in the top left portion of Figure 4.84, and the 
control time-history shows the fluctuation of the tail rotation trying to keep up with the 
states.  Despite the fact that the Dual-NN-UU1 brings the airplane to a zero-steady-state at 
approximately the same time as the desired Dual-NN, the oscillations encountered in the 
angle of attack, pitch angle and pitch rate during the first 7 seconds of the recovery 
maneuver, are considered to be a bit unrealistic when looking at the physical dynamics of 
an airplane.  Again, despite the fact that the model used here neglects some dynamics, see 
section 4.2.1 for more detail, in order to focus in the nonlinearities in the high angle of 
attack, and considering that such simplifications are necessary in order to be able to have 
a reasonable model that would show the nonlinear capabilities of the nerucontroller here 
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described, the author considers that despite that the Dual-NN shows an incredible 
performance, the results need to be taken with a grain of salt, and only those results that 
show reasonable airplane behavior, despite that the airplane model used in this work does 
not include these higher order dynamics.  For the reasons mentioned above, Figure 4.83 
and 4.84 do not represent acceptable results, but are presented to show the reader the 
limits of the Dual-NN to UU1. 

The initial angle of attack is increased to α(0)=35º and the time lag constant is 
lowered to τ=0.1 in order to analyze the effects of the time lag as the initial angle of 
attack is increased.  Figures 4.85 and 4.86 show the time-history simulations for the new 
conditions.  As the initial angle of attack is increased to α(0)=35º, the time lag constant of 
τ=0.1 affects in greater measure the response of the Dual-NN controller and the states as 
is seen when comparing simulations in Figures 4.85 and 4.86 with the simulations 
described previously for Figure 4.79 and 4.80.  Figure 4.85 shows an overshoot of the 
angle of attack, pitch angle and pitch rate responses relative to the desired Dual-NN 
control solution during the first second of the recovery maneuver.  The larger loss in 
altitude is observed on the top left corner of Figure 4.86, while the greater effort in tail 
rotation control relative to the desired Dual-NN controller is observed in the bottom right 
corner of the same figure.  Despite the overall decrease in performance, the Dual-NN-
UU1 is still able to recover the airplane from the stall region. 

Figures 4.87 and 4.88 show the state and control responses for an initial angle of 
attack of α(0)=35º, and a time constant of τ=0.2.  The extreme time lag constant and the 
high initial angle of attack make the controller to be extremely slow, and to show 
oscillations like those seen in Figure 4.83 and 4.84.  Again, even though the Dual-NN-
UU1 is able to recover the airplane to zero-steady-state conditions the dynamics 
encountered are considered unacceptable.  At this point the analysis of the robustness to 
time lag UU1 is considered finished.  Next section describes the analysis conducted to 
elevator effectiveness unmodeled uncertainties (UU2).   
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Figure 4.83.  States Results (τ=0.4, α(0) =30º, θ(0) =20º, q(0)=5º/sec). 

 
 
 

 
Figure 4.84.  Altitude, Control and Cost Results (τ=0.4, α(0)=30º, θ(0)=20º, q(0)=5º/sec.)  
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Figure 4.85.  States Results (τ=0.1, α(0) =35º, θ(0)=20º, q(0)=5º/sec). 

 
 
 

 
Figure 4.86.  Altitude, Control and Cost Results (τ=0.1, α(0)=35º, θ(0)=20º, q(0)=5º/sec).  
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Figure 4.87.  States Results (τ=0.2, α(0) =35º, θ(0) =20º, q(0)=5º/sec). 

 
 
 

 
Figure 4.88.  Altitude, Control and Cost Results (τ=0.2, α(0)=35º, θ(0)=20º, q(0)=5º/sec).  
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In order to show the limits of the sensitivity study of the time lag unmodeled 
uncertainties, a parametric study was conducted for a set of initial angle of attack and 
varying the initial pitch angle and pitch rate, θ(0) =±20º and q(0)=±20º/sec respectively.  
The maximum values of time lags allowed for each of the initial conditions before the 
simulations blow up are shown in Table 4.6. 

 
Table 4.6.  Maximum Allowable Time-lag Constants for Different Initial Pitch Angles 

and Pitch Rates for the Dual-NN Controller. 
Initial Pitch Rate q(0) 

 -20º/sec -15º/sec -10º/sec -5º/sec 0º/sec 5º/sec 10º/sec 15º/sec 20º/sec 
 -20º 0.43 0.42 0.41 0.4 0.4 0.39 0.37 0.36 0.35 
 -15º 0.47 0.46 0.45 0.44 0.44 0.43 0.41 0.39 0.39 

Initial -10º 0.52 0.51 0.5 0.48 0.48 0.47 0.45 0.44 0.43 

Pitch -5º 0.6 0.58 0.56 0.53 0.53 0.52 0.49 0.48 0.46 
Angle 0º 0.69 0.66 0.63 0.62 0.59 0.58 0.57 0.54 0.5 

Θ(0) 5º 0.79 0.78 0.74 0.71 0.67 0.65 0.61 0.58 0.57 
 10º 0.96 0.91 0.87 0.84 0.79 0.73 0.72 0.67 0.62 
 15º 1.22 1.15 1.06 0.99 0.96 0.89 0.8 0.74 0.67 
 20º 1.66 1.68 1.5 1.25 1.22 1.1 0.97 0.87 0.78 

 
Table 4.6 shows that the allowable time-lag constant increases as pitch rate 

decreases, and as pitch angle increases.  The values range from 0.35 to 1.66, which 
represents an extreme time constant.  Figure 4.89 shows a representation of the values 
tabulated above.  It needs to be remember that the maximum allowable time-constants 
only represent the experimental results to test the limits of the sensitivity study. As 
mentioned earlier, beyond a maximum time-lag constant, the simulations show that the 
despite the Dual-NN brings the airplane back from the stall region, the magnitude and 
behavior of some encountered during the simulations need to be taken with a grain of salt 
due to the physical limitations of the model here used.  Figures 4.90 and 4.91 show the 
simulations results for the states, altitude, control and cost time histories for the 
maximum allowable conditions above described. 
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Figure 4.89.  Maximum Allowable Time-lag Constant  

(α(0)=30º, θ(0)=±20º, q(0)= ±20º/sec). 
 
 
 

 
Figure 4.90.  States Results (θ(0)=±20º, α(0)=30º, q(0) =5º/sec). 
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Figure 4.91.  Altitude, Control and Cost Results (θ(0)=±20º, α(0) =30º, q(0) =5º/sec). 

 
 
 
4.2.8.2  Analysis  of  the  sensitivity  study  to  varying  elevator  effectiveness. 

After the first part of the analysis of the inherent robustness of the Dual-NN controller is 
conducted, the analysis to tail effectiveness robustness is introduced by considering 
disturbances in the control matrix as described in Eq. (179).  The variations in the 
percentage of decrease in tail effectiveness studied in this section vary from Dun=± 50% 
of the predicted tail effectiveness.  During this portion of the study the time constant is 
assumed to be zero, and the initial pitch angle and pitch rate are kept constant at θ(0) 
=20º and q(0)=5º/sec respectively. 

Figures 4.92 and 4.93 show the simulations for a case of tail effectiveness UU2 of 
Dun=-0.10, i.e. 10% decrease in tail effectiveness, and α(0)=30º.  The simulation results 
show that a decrease in tail effectiveness of 10% is handled by the Dual-NN-UU2 with 
only a small deviation from the desired Dual-NN trajectory.  The major difference is 
observed in a larger loss of altitude by the Dual-NN-UU2 of approximately 30 ft relative 
to the desired Dual-NN.  Again, it needs to be emphasized that the Dual-NN-UU2 has no 
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knowledge of the type, the magnitude, or even the existence of the disturbances in the 
model.  

Figures 4.94 and 4.95 show the simulation results when the tail effectiveness is 
decreased by 25%.  The differences between the desired Dual-NN and the Dual-NN-UU2 
are more apparent for the UU2.  The overall decrease in performance can be seen in both 
Figures 4.94 and 4.95, as the Dual-NN-UU2 requires a bigger control effort in order to 
bring the airplane back to zero-steady-state.  Figures 4.96 and 4.97 show simulations with 
a decrease in the tail effectiveness of 50 %.  The Dual-NN-UU2 is still able to recover 
from the stall region despite the uncertainties generate a slower recovery to the zero-
steady-state, as seen in Figure 4.96, and a larger drop in altitude as seen in the top portion 
of Figure 4.197.  The cost increases considerably relative to the desired Dual-NN, which 
is expected, as the Dual-NN-UU2 needs to generate a greater effort during the first 
instants of the recovery maneuver to bring the airplane back form the stall region. 

 
 
 

 
Figure 4.92.  States Results  (Dun= -0.10, α(0) =30º, θ(0) =20º, q(0)=5º/sec). 
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Figure 4.93.  Altitude, Control and Cost Results  
(Dun= -0.10, α(0)=30º, θ(0)=20º q(0)=5º/sec).  

 
 
 

 
Figure 4.94.  States Results (Dun= -0.25, α(0) =30º, θ(0) =20º, q(0)=5º/sec). 
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Figure 4.95.  Altitude, Control and Cost Results  
(Dun= -0.25, α(0)=30º, θ(0)=20º q(0)=5º/sec).  

 
 
 

 
Figure 4.96. States Results (Dun= -0.50, α(0) =30º, θ(0) =20º, q(0)=5º/sec). 
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Figure 4.97.  Altitude, Control and Cost Results  
(Dun= -0.50, α(0)=30º, θ(0)=20º, q(0)=5º/sec).  

 
 
 
Figures 4.98 and 4.99 show an extreme case of decrease in elevator effectiveness 

which is beyond the limits considered in this study.  For the simulations shown in Figures 
4.97 and 4.99, the tail effectiveness is decreased by 75%, Dun=-0.75.  This analysis is 
conducted to show that despite the fact that Dual-NN-UU2 is able to recover the airplane 
from the extreme UU2 conditions, if the decrease in elevator effectiveness is associated to 
a loss in effective control area, these results might seem unrealistic in real life, and 
therefore unacceptable in this thesis.  Again this is due to the fact that the Dual-NN-UU2 
shows an incredible inherent robustness to the type of UU shown in this thesis, but for the 
model described in section 4.2.1.  Figures 4.100 and 4.101 show the simulation results for 
an increase of the initial angle of attack of α(0)=35º, and a tail effectiveness decreased of 
50%.  Again the oscillations encountered in the first instants, despite the Dual-NN-UU2 
being able to bring the airplane back to zero-steady-states, are unacceptable. 
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Figure 4.98.  States Results (Dun= -0.75, α(0) =30º, θ(0) =20º, q(0)=5º/sec). 
 
 
 

 
Figure 4.99.  Altitude, Control and Cost Results  
(Dun= -0.75, α(0)=30º, θ(0)=20º, q(0)=5º/sec.)  
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Figure 4.100.  States Results (Dun= -0.50, α(0) =35º, θ(0) =20º, q(0)=5º/sec). 
 
 
 

 
Figure 4.101.  Altitude, Control and Cost Results  
(Dun= -0.50, α(0)=35º, θ(0)=20º, q(0)=5º/sec).  
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In order to check for the case in which the tail effectiveness has been 
underestimated and the uncertainties encountered imply an increase in the control 
authority, several cases of positive tail effectiveness coefficient are simulated.  Figures 
4.102 and 4.103 and Figures 4.104 and 4.105 show the simulations for an increase in the 
tail effectiveness of Dun= 0.25 and Dun= 0.50 respectively.  Figures 4.102 and 4.104 show 
the states time histories and it can be seen that the states reach the steady-state of zero 
faster than the desired NN control.  Figures 4.103 and 4.105 show that the controller 
requires less control effort in order to achieve the faster zero-steady-state condition. 

The performance is also improved for the case with the increase in the tail 
effectiveness, which was expected but was necessary to check to make sure that an over 
control authority, caused by a wrong model, would not create an unstable configuration. 

 
 
 
 

 
Figure 4.102.  States Results (Dun= 0.25, α(0) =30º, θ(0) =20º, q(0)=5º/sec). 
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Figure 4.103.  Altitude, Control and Cost Results  

(Dun= 0.25 α(0)=30º, θ(0)=20º,  q(0)=5º/sec).  
 
 

 
Figure 4.104.  States Results (Dun= 0.50, α(0) =30º, θ(0) =20º, q(0)=5º/sec). 
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Figure 4.105.  Altitude, Control and Cost Results  

(Dun= 0.50, α(0)=30º, θ(0)=20º, q(0)=5º/sec).  
 
 

4.3. NON-LINEAR TRACKING PROBLEM.  
This section extends the ACNN controller formulation to a tracking problem.  The 

formulation used is based in a simplified model of the F-8 Crusader described in section 
4.2.1 with the same initial flight conditions of level, unaccelerated flight at Mach=0.85, 
and an altitude of 30,000 ft.  

4.3.1.  Problem  Formulation.   The  tracking  problem  described in this section,  
tries to track a commanded pitch rate, qD using only the simplified short period dynamics, 
see section 4.1.5.1 for more details.  The simplified nonlinear dynamics become: 

 
2 2 30.877 0.088 0.47 3.846 0.215 eq q qα α α α α α δ= − + − − + + −�            (180) 

2 34.208 0.396 0.47 3.564 20.967 eq qα α α δ= − − − − −�                    (181) 
 
The new state space model for the short period approximation can be represented  

by Eq. (182) 
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1 1 1 1( , ) ( )SP e SP SP ex f x A x x bδ φ δ= = + +�                             (182) 
 

where 
 

[ ]TSPx qα=                (183) 

1
0.877 1
4.208 0.396A − 

=  − −                              (184) 

1
0.215

20.967b − 
=  −                                               (185) 

2 2 3

1 2 3
0.088 0.47 3.846( ) 0.47 3.564SP

q qx α α α αφ α α
 − − + +

=  − − 
   (186) 

 
where x1 is the simplified state vector for the simplified short period mode,  A1 

represents the simplified plat matrix, b1 represents the simplified control weight matrix 
and 1 1( )xφ  represent the simplified nonlinear aerodynamics due to high angles of attack.  
Again it needs to be remember that the continuous-time equations defined above are 
discretized being consistent with the optimal control formulation. 

4.3.2.  Optimal   Tracking  Control  Formulation.  The optimal tracking control  
formulation as described in detail section 2.1.4, tries to find an admissible discrete-time 
control *

iu , which causes the system 1 ( , )i i ix f x u+ =  to follow an admissible trajectory *
ir  

that minimizes the cost function defined in Eq. (1) 
 

1

0
( , )

N
i i i

i
J L x u

−

=

=∑             (1) 

 
For the tracking problem the performance index, defined in Eq. (17) is substituted 

into Eq. (1) yielding the cost function to be minimized: 
 

[ ] [ ] [ ] [ ]( )1 1
0

1
2

T T
i i i D i DJ x r Q x r u u R u u

∞
= − − + − −∑          (187) 
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where for the problem defined in this section [ ]TSPx x qα= = ,  [ ]TD Dr qα= , 

eu δ=  and ,D e Du δ= .  The weighting state and control matrices are defined similarly to 
those defined in Eqs. (138) and (139). 

 

2
max

1

2
max

1 0

10
Q

q

α
   =     

                                   (188) 

1 2
max

1R δ
 

=   
         (189) 

 
In order to simplify the analysis the error dynamics state is introduced such that  
 

 T
x qe e eα =                      (190) 

deα α α= −      (191) 

q de q q= −                (192) 

,e e e Dδ δ δ= −                 (193) 
 
Substituting Eqs. (191)-(193) into Eqs. (180) and (181) yields the error dynamics: 
 

( ) ( ) ( ) ( )
( )( ) ( )
( ) ( )

2

2

3
,

0.877
0.088 0.47
3.846 0.215

D q D D q D

D q D D

D e e D

e e e q e e q
e e q e
e

α α α

α α

α

α α
α α
α δ δ

= − + + + − + +

− + + + +

+ + − +

�
   (194) 

( ) ( ) ( )
( ) ( )

2

3
,

4.208 0.396 0.47
3.564 20.967

q D q D D

D e e D

e e e q e
e
α α

α

α α
α δ δ

= − + − + − +

− + − +

�
  (195) 
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These continuous-time differential equations are discretized in order to be 
consistent with the discrete-time optimal tracking control formulation. The discrete-time 
cost function becomes 

 

( )( ) 1 ( ) ( ) 1 ( )
0

1
2

T T
x i x i e i e iJ e Q e Rδ δ

∞
= +∑       (196) 

 
The discrete-time Hamiltonian is defined as 
  

( )( ) ( )( ) ( ) ( ) ( ) 11 1 ,2 2
T T T

x i e ii x i x i e i e i i i eH e Qe R f δδ δ λ += + +                      (197) 

 
The discrete-time Euler-Lagrange necessary conditions for optimality define the 

state, co-state and the optimal control equation as 
 

 
( )

T
i

i
x i

H
eλ  ∂=   ∂ 

          (198) 

( )
0i

e i

H
δ
∂

=∂                (199) 

( 1)
1

T
i

x i
i

He λ+
+

 ∂=  ∂ 
                    (200) 

 
The discrete-time differential equations of the co-states of the tracking system are 

defined in Eqs. (201) and (202) 
 

1( )
( )

i
i

i

H
eα

λ ∂= ∂
       (201) 

2( )
( )

i
i

q i

H
eλ ∂= ∂            (202) 

 
The necessary condition for optimal control, as defined in Eq. (199) leads to  
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1

( ) ( ) , 1 1 1
T

e i e i e D iR bδ δ δ λ−
+= − = −                                      (203) 

 
and the discrete-time optimal control law becomes 
 

* 1
( ) 1 1 1 ,

T
e i i e DR bδ λ δ−

+= − +                                      (204) 
 
Note that as mention earlier in section 2.1.4, analyzing the error dynamics 

described in Eqs. (194) and (195) and the co-state differential Eqs. (201) and (202), in 
order to solve the optimal tracking problem, the desired tracking states and steady state 
control are required , i.e. αD, qD and δe,D.  Obtaining the commanded pitch rate is not a 
problem since for this study qD becomes the commanded state by the pilot/user, but 
obtaining the associated steady state angle of attack, αD, and the steady state tail rotation, 
δe,D,  is a great challenge.  Section 4.3.3 presents the method used to solve for the 
associated steady state angle of attack and tail rotation.  

4.3.3. Calculation of  the  Steady State Values.  In order to obtain the associated  
steady state values for the angle of attack and tail rotation the short period dynamics at 
the instant in which these conditions are attained are studied in more detail.  At the exact 
instant when the desired commanded pitch rate is reached and maintained, the pitch rate 
derivative is zero, and the angle of attack and tail rotation are assumed to have zero rate, 
since they retain the steady state values of αD and δe,D.  Considering this, the left hand side 
of Eqs. (180) and (181) are equal to zero yielding a set of two equations with two 
unknowns, αD and uD 

 
2 2 3

,0 0.877 0.088 0.47 3.846 0.215D D D D D D D D e Dq q qα α α α α δ= − + − − + + −  (205) 
2 3

.0 4.208 0.396 0.47 3.564 20.967D D D D e Dqα α α δ= − − − − −     (206) 
 

Since the desired pitch rate, qD, is known, then αD and δe,D  need to be calculated 
by simultaneously solving Eqs (205) and (206).  Equation (206) is solved in terms of δe,D  
, yielding 
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3 2

,
3.564 0.47 4.208 0.396
20.967 20.967 20.967 20.967e D D D D Dqδ α α α= − − − −    (207) 

 
Substituting Eq. (207) into Eq. (205) yields: 
 

3 20.76626 0.101053.846 0.4720.967 20.967
0.90472 0.085140.877 0.088 1 020.967 20.967

D D D

D D D

q

q q

α α

α

   + + + − +      
   − − + + =      

                (208) 

 
Equation (208) is of the form of a cubic polynomial with three roots that satisfy 

the equation for a given qD.  Using the numerical solution routine “roots.m” from 
MATLAB®, the three roots for different qD are obtained and analyzed to determine which 
one of the three roots is the correct one.   

Figure 4.106 shows roots of Eq. (208) varying the commanded pitch rate from 
qD=±15 º/sec.  It is observed that when the commanded pitch rate, qD, is greater than 
7.37496233 º/sec or smaller than -11.61497518 º/sec, the roots of the cubic polynomial 
present imaginary parts for the second and third root.  Figure 4.105 shows the imaginary 
and real parts for the three roots after narrowing the limits of the qD to those described 
above.  This limits the effective range of commanded pitch rate for this tracking 
controller from –11.5 º/sec to 7.3 º/sec, since having an imaginary steady state angle of 
attack and tail rotation control makes no physical sense, thus limiting the effective 
envelope at which the tracking controller can work for the short period approximation. 

After narrowing the range of qD the results for the desired angle of attack, αD, and 
its correspondent desired tail after solving Eq. (208) are displayed in Figures 4.108, 4.109 
and 4.110 respectively for the three different roots.   

Figure 4.111 represents the error generated by the numerical routine that solves 
for the roots of the cubic polynomial in Eq. (208), and Figure 4.112 describes the error 
satisfying the left hand side of Eqs. (205) and (206) for the obtained desired values. 
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Figure 4.106.  Real and Imaginary Parts of the Roots for Eq. (208), qD=±15º/sec.  

 
 
 

 
Figure 4.107.  Real and Imaginary Parts of the Roots for Eq. (208) qD=-11.5 to +7.3 º/sec. 
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Figure 4.108.  1st Root of the solution to Eq. (208).  

 
 
 

 
Figure 4.109.  2nd Root of the solution to Eq. (208). 
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Figure 4.110.  3rd Root of the solution to Eq. (208). 

 
 
 

 
Figure 4.111.  Satisfaction of the Cubic Polynomial in Eq. (208). 
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Figure 4.112.  Satisfaction of the Left-hand Side of Eqs. (205) and (206). 

 
 
 
In order to determine which root is to be used in the neurocontroller, an extensive 

analysis is done by first analyzing the physical implications of each one of the roots, and 
secondly, implementation of the three possible roots with a LQR version of the problem 
to determine their effectiveness.  The discrete-time LQR version of the simplified short 
period dynamics, neglects the nonlinear terms in Eq. (182) such the model used is  

 
1 1 1 ( )i i e ix A x b δ+ = +                      (209) 

 
where the discrete-time LQR controller solution is defined as 
 

1
( ) ( ) , 1 1 ( ) ,

T
e i e i e D x i e DR B Seδ δ δ δ−= + = − +            (210) 

 



 

 

171

where S is the solution to the associated Riccati equation defined in Eq (22).  
Figure 4.113 shows a schematic of the model used to check the correctness of each one of 
the 3 roots. 

 
 
 

ΣLQR
Controller

Desired
Control

Σ ( )e iδ

( )D iδ
( )D iq

( )D ix ( )x ie-
Model Plant+

+

+
( )e iδ 1ix +

 
Figure 4.113.  Model to Check the Correctness of the 3 Roots. 

 
 
 
Analyzing the physical implications of the desired angles and their associated tail 

rotations for the three possible roots, it can be seen in Figures 4.108 and 4.109, which 
correspond to the solutions for the 1st and 2nd roots, that there exists a discontinuity for 
both roots at qD=–3.4832 º/sec.  This discontinuity divides the range of desired pitch rate 
in two sub-ranges, from qD=–11.5 º/sec to qD=–3.4832º/sec for the first range, and from 
qD=–3.4832 º/sec to qD=7.3 º/sec for the second range. 

This discontinuity is evident when looking at the results provided by the first two 
roots.  For the 1st root, as the desired pitch rate is increased from the negative value of –
11.5º/sec to the limiting value of qD=–3.4832, the range in the associated desired angle of 
attack varies from αD=27.6889º to αD=24.9393º, then the associated desired angle of 
attack jumps to approximately αD=-28.7237º, which corresponds to a jump of more than 
53º.  For the second range of desired pitch rate, corresponding to desired pitch rates from 
to qD=–3.4832º/sec to qD=7.3º/sec, the range of the associated desires angle of attack go 
from αD=-28.7237º to αD=-32.7364º. 

Similarly, for the 2nd root, as the desired pitch rate is increased from the negative 
value of –11.5º/sec to the limiting value of qD=–3.4832, the range in the associated 
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desired angle of attack varies from αD=-20.219º to αD=-28.7141º, then the associated 
desired angle of attack jumps to approximately αD=24.9314º, which corresponds to a 
jump of more than 53º.  For the second range of desired pitch rate, corresponding to 
desired pitch rates from to qD=–3.4832º/sec to qD=7.3º/sec, the range of the associated 
desires angle of attack go from αD=24.9314º to αD=-14.9269º.  These discontinuities in 
the desired angle of attack in the 1st and 2nd roots affect the desired tail rotation since they 
are related by Eq. (207). 

On the other hand, when comparing the previous results with those from the 3rd 
root, it is observed that the associated desired angle of attack goes continuously from 
αD=–17.439º to αD=12.6827º for the range desired pitch rate from qD=–11.5º/sec to 
qD=7.3º/sec.  In addition it is also observed that for a qD=0º/sec, the associated desired 
angle of attack is αD =0º and consequently δele,D =0º which is what would you expect in 
order to maintain the trim conditions for zero desired pitch rate.  This is not the case for  
the 1st and 2nd roots, where for a qD=0º a desired αD=-30.2863º and αD=23.2793º are 
generated  respectively, which does not make any sense.   

Therefore, it can be concluded that the 1st and 2nd roots are bad candidates.  In 
order to make sure that the above reasoning is correct, a series of simulations are 
conducted for a desired pitch rate of qD=5º/sec using the LQR controller as baseline to 
determine the effectiveness of the three roots.  The initial conditions assumed are α(0)=0 
and q(0)=0º/sec, such as that before commanding a desired pitch rate, the airplane has 
first achieved zero-steady-state initial conditions.  Table 4.7 shows the associated values 
of desired angle of attack and tail rotation for the three different roots. 

 
Table 4.7.  Associated Desired Values for a Commaded Pitch Rate of a qD= 5º/sec. 
 Commanded 

Pitch Rate (º/sec) 
Associated 

Angle of Attack (º) 
Associated 

Tail Rotation (º) 
1st Root qD=5º/sec αD=-32.0513º δe ,D=7.6411º 
2nd Root qD=5º/sec αD=19.5618º δe ,D=-4.5577º 
3rd Root qD=5º/sec αD=6.7702º δe ,D=-1.4872º 
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Figure 4.114 shows the time-histories simulations of the states and errors 
associated with the 1st root.  The figure is divided in 4 subplots, where angle of attack and 
pitch rate are shown in the top left and right corners respectively.  Each one of the time 
histories are compared with the desired value denoted by a dashed back line.  The bottom 
left and right corners depict the error of the angle of attack and the pitch rate relative o 
the desired values.  The units for the angle of attack and its associated error are degrees, 
while the units for the pitch rate and its associated error are degrees-per-second.  From 
table 4.6 it can be seen that the associated desired values from the 1st root solution for a 
qD=5º/sec are αD=-32.0513º and δe,D =7.6411º.   It can be seen in the top portion of Figure 
4.114, the angle of attack and the pitch rate are driven to steady states values that do not 
correspond to desired pitch rate of qD =5º/sec.  This is expected according to the analysis 
previously conducted, in which the 1st root was considered not a good candidate.  
Furthermore, the steady state at which states are taken, αD=1.9638º and qD=1.5968º/sec, 
correspond to the expected values for solving Eq. (208) with the 3rd root for a 
qD=1.5968º/sec.  Figure 4.115 shows the time history for the total tail rotation control, δe, 
and the control generated from the LQR, eδ , and it can be seen that again, neither the tail 
rotation control goes to the desired elevator deflection associated with the 1st root of δe,D 
=7.6411º, nor the control from the LQR goes to zero.  Again, the steady state for the total 
tail rotation, δe,D =-0.4262º, corresponds to the solution of Eq. (207) with the 3rd root for a 
qD=1.5968º/sec. 

Figure 4.116 shows the time-histories simulations of the states and errors 
associated with the 2nd root.  From table 4.6 it can be seen that the associated desired 
values from the 2nd root solution for a qD=5º/sec are αD=19.5618º and δe,D=-4.5577º.   It 
can be seen in the top portion of Figure 4.116, the angle of attack and the pitch rate are 
driven to steady states values that do not correspond to desired pitch rate of qD =5º/sec.  
This is expected according to the analysis previously conducted, in which the 1st root was 
considered not a good candidate.  Furthermore, the steady state at which the states are 
taken, αD=8.8183º and qD=6.101º/sec, correspond to the expected values for solving Eq. 
(208) with the 3rd root for a qD=6.101º/sec.  Figure 4.117 shows the time history for the 
total tail rotation control, δe, and the control generated from the LQR, eδ , and it can be 
seen that again, neither the tail rotation control goes to the desired elevator deflection 
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associated with the 1st root of δe,D =-4.5577º, nor the control from the LQR goes to zero.  
Again, the steady state for the total tail rotation, δe,D =-1.9509º, corresponds to the 
solution of Eq. (210) with the 3rd root for a qD=1.5968º/sec. 

Figures 4.118 and 4.120 shows the time-histories simulations of the states, errors 
and controls, associated with the 3rd root.  From table 4.6 it can be seen that the 
associated desired values from the 3rd root solution for a qD=5º/sec are αD=6.7702º and 
δe,D =-1.4872º.  Figure 4.119 shows that both the pitch rate and the angle of attack reach 
the desired values associated of αD=6.7702º and qD=5 º/sec.  Figure 4.119 shows that the 
3rd root takes the tail rotation to the associated desired δele,D =-1.4872º and the error 
control, eδ , goes to zero as an indication that the errors in the angle of attack and pitch 
rate are zero as seen in the bottom of Figure 4.118.  

The simulation results, in addition to the analysis performed previously about the 
physical implications of the magnitude and shape of the roots relative to the envelope of 
desired pitch rates, demonstrates that the 3rd root is the correct choice to be used in 
generating the NN controller, which will be explained in more detail in the next section. 

 
 

 
Figure 4.114 States and Errors, LQR Simulation for the 1st Root, qD=5 º/sec. 
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Figure 4.115. Total Elevator Control and eδ , LQR Simulation for the 1st Root, qD=5 

º/sec. 
 
 
 

 
Figure. 4.116 States and Errors, LQR Simulation for the 2nd Root, qD=5 º/sec. 
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Figure 4.117. Total Elevator Control and eδ , LQR Simulation for the 2nd Root, qD=5 

º/sec. 
 
 

 
Figure 4.118.  States and Errors, LQR Simulation for the 3rd Root, qD=5 º/sec. 
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Figure 4.119. Total Elevator Control and eδ , LQR Simulation for the 3rd Root, qD=5 

º/sec. 
 
 
 

4.3.4. Neural    Network     Architechture.     Recalling     the    neurocontroller   
development approach, described in section 3.3.1, and the NN architecture described in 
section 4.2.5.1, the Adaptive Critic NN is a feed forward back-propagation architecture, 
consisting of two hidden layers with hyperbolic tangent sigmoid transfer function, and an 
output layer with a linear transfer function.   

The ANN architecture is defined N3,4,4,1 ,i.e. 3 neurons corresponding to the three 
error state inputs, P, 6 neurons for the first and second hidden layers, and 1 neuron for the 
single control output, the error control, u .  The input to the NN is defined by  
 

[ ]TDP e e qα θ=          (211) 
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where the errors are calculated at each time step using Eqs. (191) and (192).  The 
CNN architecture is defined by N3,6,6,2 ,i.e. 3 neurons corresponding to the three inputs, P,  
6 neurons for the first and second hidden layers, and two co-states as outputs.  Again, the 
activation function used in the two-hidden layers is the Hyperbolic Tangent Sigmoid 
transfer function, defined in Eq. (25).  The training algorithm used to backpropagate the 
errors of the weight is the Levenberg-Marquardt training algorithm, and the training was 
implemented in MATLAB® using the Neural Network Toolbox. 

Again the complexity and time-to-train increases with the number of neurons in 
the Action and Critic NN, so it was tried to train with the least amount of neurons that 
would still output good training results without compromising the time-to-train.  Figures 
4.120 and 4.121 show the diagrams that represent the schematics of the inputs to both the 
Action and the Critic NN, and their correspondent outputs. 

 
 

Action
NN

eα
Dq

,e NNδ
qe

 
Figure 4.120.  Schematic of the Input-Output Relation for the Action Neural Network 

 
 

Critic
NN

eα
Dq

NNλ
qe

 
Figure 4.121.  Schematic of the Input-Output Relation for the Critic Neural Network 

 
 
 
4.3.5. Neural  Network  Training  Approach.   Following the same procedure as  

in section 4.2.5.2, the training ranges were determined after careful analysis of the results 
from the system simulation, and the results obtained in the nonlinear high angle of attack 
NN simulations and the robustness study conducted in the previous sections.  As seen in 
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Figures 4.120 and 4.121, the inputs to the NN are in the form of the errors of the actual 
angle of attack and pitch rate to the desired values, and the commanded pitch rate, qD.  
The range for the commanded pitch rate is set to slightly below the limits determined in 
section 4.3.3, qD =-11º/sec to qD =7 º/sec.  

The same telescoping strategy as described in section 3.2.2.3 was used for 
training both NN, slowly increasing qD and the errors in the desired angle of attack and 
the desired pitch rate from the origin and expanding it to the set limits.  For both the eα 
and eq the initial telescoping was started at ±10º and 10º/sec respectively. 

Analogous to the initial training procedure described in section 4.2.5.2, the first 
phase of the training procedure for the ANN and the CNN was to initialize both 
networks.  In order to assure the convergence of the training procedure, instead of using a 
random initialization, it was decided to train both NN to map a percentage of the optimal 
linear solution for the linear model described in Eq. (203).  By training the NN using as 
targets a percentage of the optimal solution it was assured that the initial NN would be in 
the direction of the optimal linear problem, thus being stable, but without providing the 
NN with the exact optimal solution which might bias the training procedure.  Once the 
mapping initialization was achieved, the linear model was substituted by the nonlinear 
model described in Eq. (200).  The initial percentage used for the mapping initialization 
was 80 so that the Action NN network would map a control of the form 

 
( ) ( )e i x iKeδ = −∆                   (212) 

 
where ∆  represents the percentage of the direction, for this training procedure 

being 0.80∆ = .  Figure 4.122 shows the schematics of the ANN such that the inputs 
would be the two errors and the desired pitch rate. 
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Figure 4.122.  Initialization of the Action Neural Network. 
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The Critic was initialized in the same manner using the solution to Riccati 
equation, where the optimal linear co-state history is defined by: 

 
( ) ( )i x iSeλ =      (213) 

 
where S is the solution to the Riccati Eq. (40).  The Critic NN network was 

initialized such that it would map the Lagrange multipliers as a percentage of the optimal 
linear solution as it is shown in Figure 4.123. 
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Figure 4.123.  Initialization of the Critic Neural Network. 

 
 
4.3.6. Training Synthesis of the Neurocontroller. As described in section 4.2.3,  

Steps 1 through 5 for the Action NN and Critic NN are repeated until the desired level of 
accuracy for the NNs is achieved and there is no acceptable change in the outputs of the 
trained NN after a cycle.  For this problem the level of accuracy is reached when the 2-
norm of the errors between the current outputs and the previous trained outputs is below 

0.008e ε< = .  Once the training was considered finished the ANN was tested as a 
feedback controller of the form described in Figure 4.124.  

4.3.6.1 Training synthesis of the action neurocontroller.  
 

1. The initial CNN is assumed to be optimal. 
2. The initial ANN output, ( )e iδ , is obtained by feeding random values of the 

states ( )x ie  and their associated commanded pitch rate, qD, to the ANN. 
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3. The discrete-time nonlinear differential equations of the error dynamics, Eqs. 
(194) and (195), are used to integrate forward to obtain ( 1)x ie + , and the 

associated qD using the states ( )x ie  and the output ( )e iδ  of the ANN. 
4. The Critic NN is feed the output form step 3, ( )x i ie +  and the associated qD, to 

calculate the Lagrange multiplier, ( 1)NN iλ + , associated with ( 1)x ie + . 
5. The ANN is then trained using ( )x ie and the associated qD as input and the 

optimal control, and *
( )e iδ  from Eq. (203), as target: 1

( ) 1 1 1
T

e i iR bδ λ∗ −
+= −  

 
Steps 1 through 5 are repeated until the desired level of accuracy for the ANN is 

achieved. For the nonlinear tracking problem the level of accuracy is reached when the 2-
norm of the errors between the current ANN outputs and the previous trained outputs are 
below 0.001. 

4.3.6.2 Training synthesis of the critic neurocontroller.  
 
1. The ANN is assumed to be optimal. 
2. The initial output ( )e iδ , is obtained by feeding random values of the states ( )x ie  

and the associated qD, to the ANN. 
3. The discrete-time nonlinear differential equations of the error dynamics, Eqs. 

(194) and (195), are used to integrate forward to obtain ( 1)x ie + , and the 

associated qD using the states ( )x ie  and the output ( )e iδ  of the ANN. 
4. The Critic NN is feed ( 1)x ie + and their associated qD, to calculate ( 1)NN iλ + .  
5. The discrete-time nonlinear differential equations for the error dynamics ,Eqs. 

(194) and (195) and the correspondent co-state error dynamic differential 
equations, Eqs.(201) and (202), are integrated backwards in time to obtain 

*
( )iλ . 

6. The CNN is then trained using ( )x ie and the associated qD as inputs and *
( )iλ  

from step 4 as target. 
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Steps 1 through 6 are repeated until the desired level of accuracy for the CNN is 
achieved. For the nonlinear tracking problem the level of accuracy is reached when the 2-
norm of the errors between the current CNN outputs and the previous trained outputs are 
below an established error of 0.001. 

After the NN has been trained it is implemented in the form of a feedback 
controller as described in Figure 4.124. 
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Figure 4.124.  Implementation of the Neural Network Tracking Feedback Controller. 

 
 
 
4.3.7. Analysis  of Numerical Results.  The simulation results are divided in two  

parts. In the first part, single commanded desired pitch rates are tested within the range of 
available commanded pitch rates, and in the second part of the analysis, multiple 
commanded pitch rates are introduced.  

Figures 4.125 and 4.126 show the time-histories simulations for a commanded 
pitch rate of qD=-2.5º/sec.  Figure 4.125 is divided in 4 subplots, where angle of attack 
and pitch rate are shown in the top left and right corners, respectively.  Each one of the 
time histories are compared with the desired value denoted by a dashed back line.  The 
bottom left and right corners depict the error of the angle of attack and the pitch rate 
relative to the desired values.  The units for the angle of attack and its associated error are 
degrees, while the units for the pitch rate and its associated error are degrees-per-second.   

Figure 4.126 is divided in two subplots, being the error control from the NN eδ  
located in the top portion, and the total tail rotation at the bottom, both with units of 
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degrees.  Is is seen that the NN controller successfully tracked the desired pitch rate, and 
that the associated desired angle of attack and total tail rotation also reach the desired 
steady states.  The NN is compared with the LQR controller, and is observed that the NN 
performs equally to the LQR controller.  This is the general trend that will be seen 
through the reminder of the tracking analysis a, and is due to the fact that the 
nonlinearities described in section 4.3.1 only come into importance significance when the 
operating ranges of angle of attack are above the stall conditions.  Despite that the 
controller always operates assuming that the airplane has always reached a zero-steady-
state angle of attack and pitch rate, before commanding a desired pitch rate, the results 
described in this section show the good performance of the tracking system.  Figure 4.127 
show the cost comparison between the NN and the LQR solution and it is seen that the 
Dual-NN offers a slightly lower cost. 

Figures 4.128, 4.129, and 4.130 show the show the simulation results for a 
commanded pitch rate of qD=2.5º/sec.  Figures 4.131, 4.132, and 4.133 show the show the 
simulation results for qD=-11º/sec.  Figures 4.134, 4.135, and 4.136 show the show the 
simulation results for qD=7º/sec.  All states simulations, Figures 4.128, 4.131 and 4.134 
show that the NN controller is able to track the desired pitch rate with a slightly better 
performance relative to the LQR as seen in the cost time history, Figures 4.130, 4.133 
and 4.136 respectively.  The better performance can also be seen on the control time 
history shows in Figures 4.129, 4.132 and 4.135.  The Dual-NN controller shows a 
smoother commanded tail rotation than the LQR controller. 

After the simulations for several single commanded pitch rates, the tracking 
formulation is extended to multiple commanded pitch rates in the same simulation.  Two 
combinations are analyzed, the first starting with commanded pitch rate of qD=-5º/sec for 
7.5 seconds and then changing a qD=5º/sec.  The second combination uses three different 
commanded pitch rates, being the first 7.5 seconds qD=3º/sec, the second set of 7.5 
seconds qD=-2.5º/sec, and qD=5º/sec for last 7.5 seconds.  The results for the two 
commanded pitch rates are shown in Figures 4.137, 4.138 and 4.139, while the 
simulations for the three commanded pitch rates are shown in Figures 4.139, 4.140 and 
4.141.  Again it can be seen that the NN has a slightly better performance relative to the 
LQR controller. 
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Figure 4.125.  States and Errors Simulation (qD=-2.5 º/sec). 

 
 
 

 
Figure 4.126.  Total Tail Rotation Control and eδ  Simulation (qD=-2.5 º/sec). 
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Figure 4.127.  Cost Time History (qD=-2.5 º/sec). 

 
 

 

 
Figure 4.128.  States and Errors Simulation (qD=2.5 º/sec). 
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Figure 4.129.  Total Tail Rotation Control and eδ  Simulation (qD=2.5 º/sec). 
 
 
 

 
Figure 4.130.  Cost Time History (qD=2.5 º/sec). 
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Figure 4.131.  States and Errors Simulation (qD=-11 º/sec). 

 
 
 

 
Figure 4.132.  Total Tail Rotation Control and eδ  Simulation for (qD=-11 º/sec). 
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Figure 4.133.  Cost Time History (qD=-11 º/sec). 

 
 
 

 
Figure 4.134.  States and Errors Simulation (qD=7 º/sec). 
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Figure 4.135.  Total Tail Rotation Control and eδ  Simulation (qD=7 º/sec). 
 
 
 

 
Figure 4.136.  Cost Time History (qD=7 º/sec). 
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Figure 4.137.  States and Errors Simulation (qD=-5º/sec, qD=5º/sec). 

 
 
 

 
Figure 4.138.  Total Tail Rotation Control and eδ  Simulation (qD=-5º/sec, qD=5º/sec). 
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Figure 4.139.  Cost Time History (qD=-5º/sec, qD=5º/sec). 

 
 
 

 
Figure 4.140.  States and Errors Simulation (qD=3º/sec, qD=-2.5º/sec, qD=5º/sec). 
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Figure 4.141.  Total Tail Rotation Control and eδ  Simulation  

(qD=3º/sec, qD=-2.5º/sec, qD=5º/sec). 
 
 

 
Figure 4.142.  Cost Time History for Variable (qD=3º/sec, qD=-2.5º/sec, qD=5º/sec). 
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5. CONCLUSIONS 

 
A Dual-NN solution for nonlinear optimal control problems has been presented. 

As seen in the analysis results described in section 4.2.6, the neurocontroller extends the 
stable region of operations for the aircraft model considered considerably.  Further it has 
been shown in section 4.2.7 that the Dual-NN controller possesses inherent robustness 
characteristics that allow an aircraft to operate with high levels of the unmodeled 
uncertainties associated with the time lag and the tail effectiveness. 

The equations that satisfy the optimality of the problem are solved with the help 
of NN. This makes it possible to synthesize the closed loop controllers for this complex 
process.  It allows the philosophy of dynamic programming to be carried out without the 
need for near impossible computation and storage requirements.  Another advantage of 
this Dual-NN approach includes the fact that no a priori assumptions about the form of 
the feedback control are needed; i.e., one need not assume the control expressed in any 
particular form.  The consequence of this off-line computational method is that the 
resulting control is available to be used as on-line state-feedback control for an entire 
envelope of initial conditions. 

Despite the fact that the model used here neglects some dynamics, see section 
4.2.1 for more detail, in order to focus the study in the nonlinearities in the high angle of 
attack, and considering that such simplifications are necessary in order to be able to have 
a reasonable model that would show the nonlinear capabilities of the neurcontroller here 
described, the author considers that the Dual-NN shows an incredible performance.  
When looking at the physical implications of some of the results, the reader needs to 
realize that the model here described, despite the high nonlinearities in the angle of 
attack, is a simplified longitudinal model of the full 6-DOF, which can not fully represent 
the dynamics of a real aircraft.  

When looking at the unmodeled uncertainties introduced in the system, it is not 
fair to say that the results described in this thesis are unreasonable because a real system 
aircraft most likely will not be able to show the dynamics described in some of the plots.  
This would be equivalent to comparing apples with oranges since the evident differences 
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between the model used in this thesis and the 6-DOF model described in section 4.1.2.  It 
is only fair to say that the Dual-NN architecture presented in this thesis performs really 
good for the model here provided for training.  

Also a NN solution for nonlinear optimal tracking control problems has been 
presented in section 4.3.  The neurocontroller approach is able to successfully track single 
and multiple commanded pitch rates within the range of available desired commands.  
The NN tracking controller performs identically to the LQR controller, providing no 
apparent improvement to the linearized controller.  This is caused by the fact that during 
the tracking phase, the angles of attack encountered are not sufficiently high to make the 
nonlinear terms in Eqs. (166) and (167) play a role in the dynamics of the problem.  The 
optimal tracking formulation described and used in this thesis is found to be limiting to 
the cases in which the desired states and control values associated with the commanded 
state are able to be found.  This limits the type of problems that can be used since not 
always can the dynamics be solved for all the variables.  

Future work on this NN architecture would include extending the NN capabilities 
to a more complex model, 6-DOF, with the ultimate goal of demonstrating the NN 
capabilities into a real aircraft system.  

There has been a great deal of controversy among researchers, both in the field 
and not in the field of NN, about the validity and capabilities of NN to be able to imitate 
artificial intelligence (AI) in the future. Some claim that AI will never be reached since 
there is much more to AI in humans that billions of neurons connected between each 
other learning at every impulse generated between each other, and even if the technology 
allows in the future the co-existance of multilayered nets of artificial neurons, the essence 
of human thinking, which has yet to be discovered, will lack of the essence that makes 
nature so complex, so simple, and so perfect.  

Again, the morality issue is not the purpose of this thesis, but the author felt 
necessary to raise a couple of these issues, to make the reader aware that the ultimate 
purpose of this work is not to just show how well or bad certain NN work relative to 
some conventional methods, but to show that in order to create the ultimate RFC system, 
we need to focus our attention to the ultimate RFC machine, human beings, who are able 
to acquire large amounts of data and make decisions weighting all possible scenarios. 
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The truth is that science today has only been able to disclose a tinny percentage of 
how the human brain works. Which regions of the brain are used for speech, which are 
used for thinking, which parts of the brain control emotions, etc… but the intent of this 
paper is not to demonstrate the feasibility or not of artificial neural nets to emulate AI, 
but to use the knowledge gain in AI up to date to solve problems that today’s scientific 
technology and thinking cannot and will not solve unless a different approach is used.  
The NN approach here discussed only represents a small stone in the road to achieving 
RFC.  As seen in section 2.2.3 many engineers have been able to successfully implement 
neurocontrollers that possess some reconfigurability capabilities, but the author of this 
thesis believes that researchers in the area of NN should take more into consideration 
Grossberg’s interdisciplinary approach of solving complex problems by including the 
areas of mathematics, psychology and neurophysiology into their problem-solution 
tactics, instead of limiting the solution to try to solve problems mathematically.  Some of 
today’s more complex nonlinear controllers that have tried to emulate the inherent 
abilities of the human brain have forgotten that the ability of humans to solve complex 
problems does not completely rely on the mathematical approach of the problem. 

But again these are only the thoughts of the author. 
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