
Singular Perturbation Control of the Longitudinal

Flight Dynamics of an UAV

Sergio Esteban

Department of Aerospace Engineering

University of Seville

Seville, Spain 41092

Email: sesteban@.us.es

Damián Rivas

Department of Aerospace Engineering

University of Seville

Seville, Spain 41092

Email: drivas@.us.es

Abstract—This paper presents a singular perturbation control
strategy for regulating the longitudinal flight dynamics of an
Unmanned Air Vehicle (UAV). The proposed control strategy is
based on a four-time-scale (4TS) decomposition that includes the
altitude, velocity, pitch, and flight path angle dynamics, with
the control signals being the elevator deflection and the throttle
position. The nonlinear control strategy drives the system to
follow references in the aerodynamic velocity and the flight path
angle. In addition, the control strategy permits to select the
desired dynamics for all the singularly perturbed subsystems.
Numerical results are included for a realistic nonlinear UAV
model, including saturation of the control signals.

I. INTRODUCTION

Historically, classical linear control techniques have been

sufficient to obtain reasonable control responses of aerospace

systems, but the evolution of the aerospace industry, and the

consequent improvement of technologies, have increased the

performance requirements of all systems in general, which

has called for better control designs that can deal with more

complex systems. Specifically, in the area of aerospace sys-

tems, a wide range of different nonlinear control techniques

have been studied to deal with the nonlinear dynamics of

such systems. From singular perturbation [1], [2], feedback

linearization [3], dynamic inversion [4], sliding mode control

[5], or backstepping control methods [6], [7], to name a few.

Neural Networks (NN) are also included within the realm of

nonlinear control techniques, and seem to provide improved

robustness properties under system uncertainties. Some of

works include Adaptive Critic Neural Network (ACNN) based

controls, originally presented by Balakrishnan and Biega [8],

and later extended to many other aerospace systems [9].

One of the most challenging tasks in control is the modeling

of systems in which the presence of parasitic parameters, such

as small time constants, is often the source of a increased order

and stiffness [10]. The stiffness, attributed to the simultaneous

occurrence of slow and fast phenomena, gives rise to time-

scales, and the suppression of the small parasitic variables

results in degenerated, reduced-order systems called singularly

perturbed systems (SPS), that can be stabilized separately, thus

simplifying the burden of control design of high-order systems.

The application of singular perturbation and time-scale

techniques in the aerospace industry can be traced back to

the 1960s when it was first applied to solve complex flight

optimization problems [11]. Since then, singular perturbation

and time-scale techniques have been extensively used in the

aerospace industry as described in the extense literature review

conducted by Naidu and Calise [10]. In recent years these

techniques have been also extended to UAVs [2], [12].

The objective of this paper is to develop a singular per-

turbation control strategy for the longitudinal dynamics of

an aircraft, that be able to follow references in aerodynamic

velocity and flight path angle, using as control actuators

the elevator deflection and the throttle position. In addition,

the proposed singular perturbation control strategy permits

to select the desired closed-loop dynamics of each of the

resulting reduced-order and boundary-layer subsystems using

a time-scale analysis similar to those presented in [2], [13].

Simulations are included for a realistic UAV model including

nonlinear dynamics and actuator saturation on both the eleva-

tor deflection and throttle setting. The model used corresponds

to the Cefiro aircraft [14], an UAV recently designed and

constructed by the authors at the University of Seville.

This paper is structured as follows: Section II presents the

flight dynamics used throughout this work; Section III presents

the time scales selection; Section IV describes the proposed

4-time-scale analysis; the singular perturbed control strategies

are presented in Section V; numerical results for the UAV

model considered in this paper are given in Section VI; and

finally, some conclusions are drawn in Section VII.

II. MODEL DEFINITION

The problem discussed in this article considers a constant-
mass UAV with an electrical propulsion plant, for which the
point-mass longitudinal flight dynamics equations are

ḣ = V sin γ, (1)

V̇ =
1

m
(T −D −mg sin γ) , (2)

θ̇ = q, (3)

γ̇ =
1

mV
(L−mg cos γ) . (4)

q̇ =
M

Iy
, (5)

where h is the altitude; V the aerodynamic speed; γ the flight
path angle; θ the pitch angle; q the pitch rate; T , D, and L
the thrust, drag, and lift forces, respectively; M the total pitch
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moment; m and Iy the mass and the moment of inertia of the
UAV. The thrust-force model used is given by

T = δT (T0 + T1V + T2V
2), (6)

where δT is the throttle setting, 0 ≤ δT ≤ 1 and T0, T1, T2 are
known coefficients obtained through wind tunnel experiments.
The lift, drag and pitch moment are given by the following
expressions

L = q∞SCL, D = q∞SCD , M = q∞ScCM , (7)

where q∞ = 1/2ρV 2 is the dynamic pressure; S is the
reference wing area, c is the wing mean aerodynamic chord,
and CL, CD and CM are the lift, drag and pitch moment
coefficients, which are given by the following standard models
[15], [16] that have been widely used in the literature [11],
[17], [18]

CL = CL0
+ CLαα+ CLδ

δ, (8)

CD = CD0
+ kC

2

L, (9)

CM = CM0
+CMαα+CMδ

δ + CMqq, (10)

where α is the angle of attack, given by α = θ − γ, δ is
the elevator deflection, −40◦ ≤ δ ≤ 40◦, and CL0

, CLα
,

CLδ
, CD0

, k, CM0
, CMα

, CMδ
, and CMq

are known aerody-
namic coefficients. In this paper the simplifying assumption of
constant air density is considered, and, therefore, the altitude
equation becomes decoupled from the rest, and can be solved
a posteriori. Equations (1–5) are expanded using Eqns. (8–10),
resulting in

ḣ = V sin γ, (11)

V̇ = δT (a1 + a2V
2 + a3V ) + V

2 [a4 + a5 + a6 (θ − γ)

+ a7 (θ − γ)2 + a8δ + a9δ
2 + a10 (θ − γ) δ

]

+ a11 sin γ, (12)

θ̇ = q, (13)

γ̇ = V [a12 + a13 (θ − γ) + a14δ] +
a11

V
cos γ, (14)

q̇ = V
2 [a15 + a16 (θ − γ) + a17δ + a18q] , (15)

where a1 = T0/m, a2 = T2/m, a3 = T1/m, a4 =
−c2CD0

, a5 = −c1C
2

L0
, a6 = −2c1CL0

CLα
, a7 = −c1C

2

Lα
,

a8 = −2c1CL0
CLδ

, a9 = −c1C
2

Lδ
, a10 = −2c1CLα

CLδ
,

a11 = −g, a12 = c2CL0
, a13 = c2CLα

, a14 = c2CLδ
,

a15 = c3CM0
, a16 = c3CMα

, a17 = c3CMδ
, a18 = c3CMq

with c1 = ρSk/(2m), c2 = ρS/(2m), and c3 = ρSc/(2Iy).
The underactuated structure of the system requires that two

variables need to be used as references. In this work, the

nonlinear control strategy will seek to drive the system to

follow references in the aerodynamic velocity and the flight

path angle, that is V = Vref and γ = γref .

III. TIME SCALES SELECTION

The appropriate selection of time scales is an important
aspect of the singular perturbation and time-scales theory
[10], [19]–[21], and can be categorized into three approaches:
1) direct identification of small parameters (such as small
time constants); 2) transformation of state equations; and 3)
linearization of the state equations. Ardema [19] proposes a
rational method of identifying time scales separations that does
not rely on an ad hoc selection of time scales based largely on
physical insight and past experiences with similar problems.

The proposed method only requires a knowledge of the state
equations. Considering a dynamical systems of the form

ẋ = f(x, u), u ∈ U, (16)

subject to suitable boundary conditions, where x is an n-
dimensional state vector, u an r-dimensional control vector,
and U the set of admissible controls. It is assumed that bounds
have been established on the components of the state vector,
either by physical limitations or by a desire to restrict the
state to a certain region of state space, xi,m ≤ xi ≤ xi,M ,
with xi,m and xi,M representing the minimum and maximum
values of the state variables. As noted in [19], most ad hoc
assessments of time-scale separation are based on the concept
of state variable speed [11], [22]. The speed of a state variable
xi is defined as the inverse of the time it takes that variable
to change across a specified range of values, which can be
expressed as

Si =
ẋi

∆xi

=
fi(x, u)

∆xi

. (17)

where ∆xi = xi,M − xi,m. Two methods are proposed [19]
to determine if two variables are candidates for time-scale
separation, which is ultimately defined if the two variables
have widely separated speeds. In this work, the method that
considers a reference value of the state in the region of interest,
x̄, is adopted, hence

Si =
1

∆xi

max
u∈U

fi(x̄, u). (18)

Since the maneuvers being considered for the UAV are those

of climb performance, the reference states can be selected

as those associated to the condition of maximum rate of

climb Vvmax
, condition that has been investigated in [14]. The

bounds for the UAV model considered in this article [14] are

therefore: 0 ≤ h ≤ 1000, where the maximum altitude is

defined by desired operation limits; Vm ≤ V ≤ Vmax, with

Vm = 1.2 ∗ Vstall, and Vmax obtained in the performance

analysis [14]; −γdmax
≤ γ ≤ γVm

, where γdmax
represents

the maximum descent glide angle, and γVm
represents the

maximum flight path angle at Vm; αtrimVm
≤ α ≤ αtrimVmax

,

where αtrimVm
and αtrimVmax

corresponds to the trim angle

for Vm, and Vmax, respectively; θm ≤ θ ≤ θM with

θm = γm + αm and θM = γM + αM ; and finally, the bounds

for the pitch rate qm ≤ q ≤ qM are selected by desired

operation limits.

From [14], the UAV being studied in this article has the

following geometric properties, S = 1.088 m2, c = 0.393
m, m = 23.186 kg, Iy = 7.447 kgm2, CD0

= 0.0286,

k = 0.0426. From the stability analysis conducted in [14], the

derivatives are: CL0
= 0.408, CM0

= 0.0617, CLα
= 3.823

per rad, CMα
= −0.455 per rad, CLδ

= 0.284 per rad, CMδ
=

−0.914 per rad, CMq
= −13.590 s/rad, T0 = 127.53N , T1 =

−2.9052× 10−1Ns/m and T2 = −5.9616× 10−2Ns2/m2.

From the performance study in [14], it can be obtained that

the maximum vertical climb speed is Vvmax
= 27.00 m/s,

the reference horizontal speed is V̄ = 22.90 m/s, the stall

velocity is given by Vstall = 14.38 m/s, for CLmax
= 1.65,

the maximum velocity Vmax = 38.47 m/s, the flight path

angle for V̄ is given γV̄ = 19.06◦, the gliding angle for

minimum flight path angle is given by γVd
= −7.63◦, the trim
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angles for V̄ are given by αtrimV̄
= 3.47◦ and δtrimV̄

= 2.14◦

respectively. The final bounds and speeds of the state variables

are resumed in Table I. It can be seen four clearly differentiated

time-scales, since the speeds for altitude and velocity dynamics

are not that separated, therefore, it will be assumed that they

move in the same stretched time scale, and will be denoted

by the augmented state vector χ = [h V ].

TABLE I
BOUNDS AND speeds OF THE STATE VARIABLES.

Variable xi,m xi,M ∆xi x̄i Si

h [m] 0 1000 1000 200 0.0074
V [m/s] 17.25 38.47 21.21 22.90 0.011
θ [deg] −7.58 32.84 40.42 22.53 0.41
γ [deg] −4.53 23.31 27.83 19.06 2.21
α [deg] −3.06 9.53 12.59 3.47 N/A
q [deg/s] −264.44 264.44 528.88 0 82.43

With this in mind, Eqns. (11–15) are rewritten as a four-
time-scale (4TS) singular perturbed model of the form

χ̇ = fχ(χ, θ, γ, δ, δT ), χ ∈ Bχ, (19)

ε1θ̇ = fθ(q), θ ∈ Bθ, (20)

ε1ε2γ̇ = fγ(χ, θ, γ, δ), γ ∈ Bγ , (21)

ε1ε2ε3q̇ = fq(χ, θ, γ, q, δ), q ∈ Bq, (22)

with Bχ, Bθ, Bγ , Bq denoting closed sets of the variables χ,
θ, γ and q, respectively, being χ the slowest variable, θ the
intermediate variable, γ the fast variable, and q the ultra-fast
variable, and holding that 0 < ε1ε2ε3 ≪ ε1ε2 ≪ ε1 ≪ 1.
In order to express the original set of differential Eqns. (11–
15) in the standard 4TS singular perturbation formulation,
a series of algebraic modifications using the speeds of the
different variables are conducted. Let consider the different
speeds as if they were the inverse of the inertias multiplying
the time derivatives such Ih = 1/Sh = 133.722, IV =
1/SV = 89.221, Iθ = 1/Sθ = 2.411, Iγ = 1/Sγ = 0.451,
Iq = 1/Sq = 0.012, where it can be easily identified that
IV >> Iθ >> Iγ >> Iq , therefore, in order to express
the equations of the 4TS in the correct multi-time singular
perturbation formulation, all the perturbation parameters are
normalized with respect to the slowest coefficient, that is Ih,
yielding the parasitic constants selected for this problem given
by ε1 = Iθ/Ih = 1.803×10−2, ε1ε2 = Iγ/Ih = 3.375×10−3,
and ε1ε2ε3 = Iq/Ih = 9.0722× 10−5, resulting in

ḣ = V sin γ, (23)

V̇ = δT
(

a1 + a2V
2 + a3V

)

+ V
2 [a4 + a5 + a6 (θ − γ)

+ a7 (θ − γ)2 + a8δ + a9δ
2

+ a10 (θ − γ) δ] + a11 sin γ, (24)

ε1θ̇ = ε1q, (25)

ε1ε2γ̇ = V [ā12 + ā13 (θ − γ) + ā14δ] +
ā11

V
cos γ, (26)

ε1ε2ε3q̇ = V
2 [ā15 + ā16 (θ − γ) + ā17δ + ā18q] , (27)

with ā11 = ε1ε2a11, ā12 = ε1ε2a12, ā13 = ε1ε2a13,
ā14 = ε1ε2a14, ā15 = ε1ε2ε3a15, ā16 = ε1ε2ε3a16, ā17 =
ε1ε2ε3a17, and ā18 = ε1ε2ε3a18. In addition, the following
approximations are considered in this article (which have been
widely used in the literature for aircraft trajectory optimization

using singular perturbation techniques [11])

sin γ ∼= γ − γ3

6
, cos γ ∼= 1− γ2

2
, (28)

The following section describes the four-time-scale analysis

that will permit to derive the singular perturbation control

strategy.

IV. 4-TIME-SCALE ANALYSIS

This section presents a sequential time-scale methodology
that provides an approach in which, for a specific class of
singularly perturbed nonlinear systems, a step-by-step proce-
dure can be employed to design the proper control laws that
guarantee a desired degree of stability of each of the time-
scale subsystems. The approach is based on the sequential
time-scale analysis similar to the one presented in [2], [13],
which is an extension of the two-time-scale analysis presented
in [1]. The approach consists in decomposing the original
singularly perturbed system, Eqns. (23–27), denoted as ΣSIFU

for simplicity, into a sequential set of two-time-scale (2TS)
SPS. Each one of the letters in ΣSIFU denotes a time scale,
Slow, Intermediate, Fast, and Ultrafast, and will be used as a
reference to describe each time-scale subsystem or combina-
tion. The time-scale decomposition is achieved by applying,
in a sequential manner, the associated stretched time scales
for each of the subsystems, resulting in reduced order models.
The time-scale decomposition is started by applying first the
stretched time scale given by τ3 = t/(ε1ε2ε3), resulting in a
2TS SPS formed by the reduced order ΣSIF -subsystem

ḣ = V

(

γ − γ3

6

)

, (29)

V̇ = δT
(

a1 + a2V
2 + a3V

)

+ V
2 [a4 + a5 + a6 (θ − γ)

+ a7 (θ − γ)2 + a8δ + a9δ
2

+ a10 (θ − γ) δ] + a11

(

γ − γ3

6

)

, (30)

ε1θ̇ = ε1Hq(θ, γ, δ), (31)

ε1ε2γ̇ = V [ā12 + ā13 (θ − γ) + ā14δ] +
ā11

V

(

1− γ2

2

)

, (32)

and the boundary layer (fast), denoted as ΣU -subsystem for
simplicity, given by

dq

dτ3
= V

2 [ā15 + ā16 (θ − γ) + ā17δ + ā18q] , (33)

where Hq(θ, γ, δ) represents the quasi-steady-state equilibrium
(QSSE) of the boundary layer ΣU -subsystem when setting
ε3 = 0, that is 0 = fq(χ, θ, γ, q, δ) → q̄ = Hq(θ, γ, δ),
resulting in

q̄ = Hq(θ, γ, δ) = − ā15 + ā16(θ − γ) + ā17δ

ā18

. (34)

Recall that in the space of configuration of the boundary
layer ΣU -subsystem, the variables, χ, θ, and γ, are treated
like fixed parameters. The time scale analysis continues rec-
ognizing that the reduced order ΣSIF -subsystem, Eqns. (29–
32), can be decomposed again into a 2TS SPS by applying
the stretched time scale τ2 = t/(ε1ε2), resulting in a new
reduced order (slow) subsystem, denoted as ΣSI -subsystem
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for simplicity, defined as

ḣ = V

(

Hγ −
H3

γ

6

)

, (35)

V̇ = δT
(

a1 + a2V
2 + a3V

)

+ V
2 [a4 + a5 + a6 (θ −Hγ)

+ a7 (θ −Hγ)
2 + a8δ + a9δ

2

+ a10 (θ −Hγ) δ] + a11

(

Hγ −
H3

γ

6

)

, (36)

ε1θ̇ = −ε1 (ā15 + ā16(θ −Hγ) + ā17δ)

ā18

, (37)

and with a new boundary layer (fast) subsystem, denoted as
ΣF -subsystem for simplicity, given by

dγ

dτ2
= V [ā12 + ā13 (θ − γ) + ā14δ] +

ā11

V

(

1− γ2

2

)

, (38)

where Hγ(χ, θ, δ) represents the QSSE of the boundary
layer ΣF -subsystem when setting ε2 = 0, that is 0 =
fγ(χ, θ, γ, δ) → γ̄ = Hγ(χ, θ, δ), resulting in

γ̄ = Hγ(χ, θ, δ) = A1 ± A2

√
A3 +A4θ + A5δ, (39)

with A1 = −a13V
2/a11, A2 = 1/a11, A3 = a2

13
V 4 +

2a11a12V
2 + 2a211, A4 = 2a11a13V

2 and A5 = 2a11a14V
2,

where it can be shown that the positive solution is the valid
one, and where χ, and θ are treated like fixed parameters.
Finally, it can be recognized that the ΣSI -subsystem can
be decomposed one more time into another 2TS SPS by
considering the last stretched time scale τ1 = t/ε1, resulting
in a new reduced order (slow) subsystem, denoted as ΣS-
subsystem for simplicity, and given by

ḣ = V

(

H̄γ −
H̄3

γ

6

)

, (40)

V̇ = δT
(

a1 + a2V
2 + a3V

)

+ V
2
[

a4 + a5 + a6

(

Hθ − H̄γ

)

+ a7

(

Hθ − H̄γ

)

2
+ a8δ + a9δ

2

+ a10

(

Hθ − H̄γ

)

δ
]

+ a11

(

H̄γ −
H̄3

γ

6

)

, (41)

with the boundary layer ΣI -subsystem given by

dθ

dτ1
= −ε1 (ā15 + ā16(θ −Hγ) + ā17δ)

ā18

, (42)

where Hθ(χ, δ) represents the QSSE of the boundary layer
ΣI -subsystem when setting ε1 = 0, that is 0 = fθ(χ, θ, δ) →
θ̄ = Hθ(χ, δ), resulting in

Hθ(χ, δ) = A6 ± A7

√
A8 + A9δ + A10δ, (43)

with A6 = A2

2
A4/2− ā15/ā16 +A1, A7 = A2/(2ā16), A8 =

ā2
16
A2

2
A2

4
−4ā15ā16A4+4ā2

16
A3+4ā2

16
A1A4, A9 = 4ā2

16
A5−

4ā16ā17A4, and A10 = ā17/ā16. Recall also that H̄γ(χ,Hθ, δ)
results from substituting the QSSE Hθ into Eq.(39), and given
by

H̄γ(χ,Hθ, δ) = A1 ± A2

√

A3 + A4Hθ +A5δ, (44)

where χ is treated as a fixed parameter. The control strategy

that will be presented in the following section uses this time-

scale separation strategy to obtain a sequential control strategy

that permits to stabilize each of the different subsystems (ΣS ,

ΣI , ΣF and ΣU ).

V. SEQUENTIAL SINGULAR PERTURBATION CONTROL

STRATEGY

The control strategy goal consists in designing feedback

control laws permits to follow known references in velocity

(Vref ) and flight path angle (γref ). Following γref is attained

by ensuring desired pitch rate, flight path angle and pitch

angle dynamics with the use of the elevator deflection (δ),

while following Vref is achieved with the throttle position

(δT ). The use of sequential time-scale decomposition permits

to design control strategies for δ based on the sum of three

components, δ = δθ + δγ + δq, where each component is

specifically designed to stabilize each one of the associated

boundary layer subsystems, that is, δq = Γq(χ, θ, γ, q) for the

ultrafast subsystem, Eq. (33), δγ = Γγ(χ, θ, γ) for the fast

subsystem, Eq. (38), and δθ = Γθ(χ, θ) for the intermediate

subsystem, Eq. (42).
In order to guarantee the validity of the sequential control

strategy, a series of requirements on the control strategies need
to be satisfied. The ultra-fast feedback control δq is designed to
satisfy two crucial requirements, as seen in [1]: when the ultra-
fast feedback function, δq, is applied to the boundary layer Eq.
(33), the closed-loop system should remain a standard SPS,
which translates to that the equilibrium of the boundary layer

0 = fq(χ, θ, γ, q,Γθ + Γγ + Γq), (45)

should have a unique root given by q̄ = Hq(θ, γ,Γθ +Γγ) in
Bχ×Bθ ×Bγ ×Bq. This requirement assures that the choice
of Γq will not destroy this property of function fq in the open-
loop system. The second requirement on Γq(χ, θ, γ, q) is that
it be inactive for q̄ = Hq(θ, γ,Γθ + Γγ), that is

Γq [χ, θ, γ,Hq(χ, θ, γ,Γθ + Γγ)] = 0. (46)

Similarly, two requirements need to be satisfied by the
(fast) control feedback δγ such that when applied to the
boundary layer Eq. (38), the closed-loop system should remain
a standard singularly perturbed system, which translates to that
the equilibrium of the boundary layer

0 = fγ(χ, θ, γ,Γθ + Γγ), (47)

should have a unique root given by γ̄ = Hγ(χ, θ,Γθ) in
Bχ×Bθ×Bγ . This requirement assures that the choice of Γγ

will not destroy this property of function fγ in the open-loop
system. The second requirement in δγ , is that it be inactive
for γ̄ = Hγ(χ, θ,Γθ), that is

Γγ [χ, θ,Hγ(χ, θ,Γθ)] = 0. (48)

With this in mind, the control strategy starts by applying

the stretched time-scale τ3 resulting in the reduced order

ΣSIF -subsystem, Eqns. (29–32) with the boundary layer ΣU -

subsystem given by Eq. (33), and with the quasi-steady-state

equilibrium given by Eq. (34). The reduced order order ΣSIF -

subsystem can be decomposed again by applying the stretched

time-scale τ2 resulting in the reduced order ΣSI -subsystem,

Eqns. (35–37), and the boundary layer ΣF -subsystem given

by Eq. (38), with the equilibrium Hγ(χ, θ, δθ) given by Eq.

(39). The ΣSI -subsystem, Eqns. (35–37), can be decomposed

again by applying the last stretched time-scale τ1, resulting in

the new reduced order ΣS-subsystem, Eqns. (40–41), with the

boundary layer ΣI -subsystem given by Eq. (42).
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Recall that according to Eqns. (46) and (48), Γq and Γγ

become innactive when appearing in their respective equilibria

in the ΣI -subsystem, thus becoming δ = δθ. The control signal

δθ is therefore selected as a feedback linearization signal for

a target system of the form

dθ

dτ1
= −b̃θ (θ − θref ) , (49)

where b̃θ = ε1bθ , with bθ being the desired transient response
for the ΣI -subsystem, and θref defined in terms of Vref and
γref by the equilibrium analysis of the problem given by Eqns.
(11–15). The control signal is therefore selected as

δθ = B1 ±B2

√

B3 +B4θ +B5 (θ − θref ) +B6θ

+ B7 (θ − θref ) , (50)

with B1 = ā2
16
A2

2
A5/(2ā

2

17
) − ā15/ā17 + ā16A1/ā17,

B2 = −ā16A2/(2ā
2

17
), B3 = (ā16A2A5)

2
− 4ā15a17A5 +

4ā16ā17A1A5 + 4ā217A3, B4 = 4ā217A4 − 4ā16ā17A5, B5 =
4ā17ā18A5b̃θ , B6 = −ā16/ā17, and B7 = ā18b̃θ/ā17, and

where it can be shown that that positive solution of Eq.

(50) is the right one. With the boundary layer ΣI -subsystem

stabilized and δθ defined, the reduced order ΣS-subsystem

can be stabilized by selecting a feedback linearization control

signal δT such that the velocity dynamics has a desired target

dynamics of the form

V̇ = −bV (V − Vref ) , (51)

with bV being the desired transient response for the ΣS-
subsystem, thus selecting

δT = − 1

a1 + a2V 2 + a3V

[

(a4 + a5)V
2 + V

2 [(a6

+ a7

(

Hθ − H̄γ

)

+ a10δθ
) (

Hθ − H̄γ

)

+ (a8 + a9δθ) δθ
]

+ a11

(

H̄γ −
H̄3

γ

6

)

+ bV (V − Vref )

]

. (52)

The ΣF -subsystem, Eq. (38) is stabilized by selecting the
control signal δγ , recalling that needs to satisfy Eqns. (47–48).
This is achieved by substituting first δθ into the ΣF -subsystem,
and rewriting the result in terms of its equilibrium Hγ , Eq.
(39), by identifying that the original system is a function of
the two possible solutions, that is

dγ

dτ2
= − ā11

2V
[γ −Hγ(χ, θ, δθ)]

[

γ − H̃γ(χ, θ, δθ)
]

+ V ā14δγ , (53)

Note also that according to Eq. (46), Γq becomes innactive
when appearing in its equilibrium in the ΣF -subsystem, thus,
δ = δθ + δγ , with δθ being given by the control signal that
stabilizes the ΣI -subsystem, Eq. (50). Note that Hγ(χ, θ, δθ)
represents the positive solution of Eq. (39), while H̃γ(χ, θ, δθ)
represents the disregarded negative solution, but both being
necessary to complete the solution. The control signal δγ it
is selected as a feedback linearization control signal for a
selected target system of the form

dγ

dτ2
= −b̃γ [γ −Hγ(χ, θ, δθ)] , (54)

where b̃γ = ε1ε2bγ , with bγ being the desired transient
response for the ΣF -subsystem. The choice of this target
dynamics will satisfy that the choice of Γγ will not destroy
the property that the closed-loop system should have a unique

equilibrium γ̄ = Hγ(χ, θ,Γγ), and that Γγ it be inactive for
γ̄ = Hγ(χ, θ), resulting in

δγ =
(γ −Hγ)

[

−b̃γ + ā11

2V

(

γ − H̃γ

)]

ā14V
. (55)

With control signal δγ selected, the control signal δq that
stabilizes the ΣU -subsystem can be selected by ensuring
requirements (45-46). Recall that for the ΣU -subsystem, δ =
δθ + δγ + δq, therefore, by substituting δθ and δγ , Eqns. (50)
and (55), respectively, into the ΣU -subsystem, and rewriting
it using the definition of the Hq QSSE, Eq. (34), results in

dq

dτ3
= V

2 [ā18 [q −Hq(χ, θ, γ, δθ + δγ)] + ā17δq ] . (56)

Similarly, in order to satisfy Eqns. (45-46) on the control
signal δq, lets choose a feedback linearization control signal
for a selected target system of the form

dq

dτ3
= −b̃q [q −Hq(χ, θ, γ, δθ + δγ)] , (57)

where b̃q = ε1ε2ε3bq , with bq being the desired transient
response for the ΣU -subsystem, resulting in

δq = −

(

b̃q + ā18V
2

)

[q −Hq(χ, θ, γ, δθ + δγ)]

V 2ā17

. (58)

This finalizes the control strategy with the control signals

given by δ = δθ + δγ + δq , Eqns. (50), (55), and (58),

respectively, and δT , Eq. (52). Following section provides

some simulation results.

VI. NUMERICAL RESULTS

This section presents some results corresponding to the

simulations conducted to analyze the proposed control law.

The numerical simulation uses a fourth-order Runge-Kutta

fixed step integration method, with a time step of 0.001
seconds, written in the MATLAB interface. The analysis

includes variation in the references Vref and γref . Actuator

saturations are also included, namely −40◦ ≤ δ ≤ 40◦, and

0 ≤ δT ≤ 1.

Different cases will be considered: varying Vref , while

maintaining γref = 0; varying γref , while maintaining Vref =
const; and varying both γref and Vref . Results for this last

case are presented in Fig. 1 and 2, where constant acceleration

and deceleration references are also generated, with 30 seconds

per maneuver. Figure 1 shows the states: the altitude and

aerodynamic airspeed, on the top row, pitch and flight path

angle on the middle row, angle of attack and pitch rate on the

bottom row; and Fig. 2 shows the control: elevator deflection

and throttle position. The different variable reference set points

are presented with a thinner red line. Note that it is also

included a reference in altitude given by href = Vref sin γref ,

despite that the control strategy is focused on following both

by separate, but serves to indicate that future control strategies

will be derived so follow altitude profiles. Despite the complex

reference profiles, the control strategy is able to follow them in

both aerodynamic velocity and flight path angle. Also note that

saturations are avoided by selecting the appropriate desired

dynamic coefficients, bV = bθ = bγ = bq = 0.35.
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VII. CONCLUSIONS

The presented control strategy permits to drive the UAV

to follow variable references in both aerodynamic velocity

and flight path angle by using a sequential strategy that

permits to easily obtain appropriate feedback control laws that

stabilize each of the subsystems. The control strategy provides

a closed-form solution. The simulations were conducted using

a realistic model of the Cefiro aircraft developed by the Dept.

of Aerospace Engineering at the University of Seville [14],

which will the platform where the future flight tests and

validation of the control strategies will be conducted.

0 20 40 60 80 100 120 140 160 180 200
150

200

250

300

350

400

450

500

550

Altitude vs. Time

A
lt
it
u
d
e
 −

 h
 [
m

]

time [s]
 

 

CF−4TS

z
REF

(a)

0 20 40 60 80 100 120 140 160 180 200
20

21

22

23

24

25

26

27

28

29

Airspeed vs. Time

A
ir
s
p

e
e

d
 −

 V
 [

m
/s

]

time [s]
 

 

CF−4TS

V
CMD

(b)

0 20 40 60 80 100 120 140 160 180 200
−4

−2

0

2

4

6

8

10

12

14

Pitch Angle vs. Time

P
it
c
h

 A
n

g
le

 −
 θ

 [
d

e
g

]

time [s]
 

 

CF−4TS

θ
CMD

(c)

0 20 40 60 80 100 120 140 160 180 200
−4

−2

0

2

4

6

8

10

12

Flight Path Angle vs. Time

F
lig

h
t 

P
a

th
 A

n
g

le
 −

 γ
 [

d
e

g
]

time [s]
 

 

CF−4TS

γ
CMD

(d)

0 20 40 60 80 100 120 140 160 180 200
−3

−2

−1

0

1

2

3

4

5

6

7

Angle of Attack vs. Time

A
n

g
le

 o
f 

A
tt

a
c
k
 −

 α
 [

d
e

g
]

time [s]
 

 

CF−4TS

α
CMD

(e)

0 20 40 60 80 100 120 140 160 180 200
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Pitch Rate vs. Time

P
it
c
h
 R

a
te

 −
 θ

 [
d
e
g
/s

]

time [s]
 

 

CF−4TS

(f)

Fig. 1. State history for simulations with variable V and γ.
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Fig. 2. Control history for simulations with variable V and γ.
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