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Abstract
In this study an adaptive critic based neural network

controller is developed to obtain near optimal control1

laws for a nonlinear automatic flight control system.
The adaptive critic approach consists of two neural
networks. The first network, called the critic, captures
the mapping between the states of a dynamical system
and the co-states that arise in an optimal control
problem. The second network, called the action
network, maps the states of a system to the control. This
study uses nonlinear aircraft models in the stall regions
from a paper (Garrad and Jordan2^ to develop optimal
neural controllers for an aircraft; we then compare the
results with singular perturbation based nonlinear
controllers developed in the literature. The results show
that with the neural controllers the aircraft can operate
in a broader region of angles of attack beyond stall as
compared to other linear and nonlinear controllers.

Introduction
Neural networks have gained a lot of attention in the

field of control in the last ten years. There are many
reasons for this phenomenon. In many fields, including
aerospace, engineering systems whose response we
want to control are becoming more and more complex.
An example is the dynamics of an aircraft at high
angles of attack. With dwindling funds for development
of new aircraft, missile, space systems etc., activities
have increased in using currently existing systems in
more stressed environments. A basic requirement for
good performance or even stable performance in such
situations is the development of proper control systems.
Traditional control designs based on classical control
theory have proved to be inadequate in such situations.
Although a huge amount of time and studies over the
past twenty years have been devoted to linear system

based robust control, there hardly exists any actual
system with robust controllers obtained from norm
based theories. Nonlinearities of many dynamic
systems have generated interest in the studies beyond
the linearized notions in their development. This sets
the stage for the field of neural networks (NN), which
are basically nonlinear mappings, to offer some
solutions. [3"8]

In recent years, many papers have been published in
neural network controllers. According to Werbos7,
these fall under five classes:

1. Supervised Control.
2. Direct Inverse Control.
3. Neural Adaptive Control.
4. Back Propagation Through Time.
5. Adaptive Critic Methods. Adaptive critic designs

include a large family of methods, which attempt to
approximate dynamic programming in general
case.

Werbos concludes that the fifth method mimics the
working of human brain more than any other technique.

The purpose of this study is to demonstrate that for
such complex problems, as the aircrafts operating in
high angles of attack or near and beyond the stall
regions, the use of proper trained adaptive critic based
neural networks can effectively produce the control that
can keep the aircraft stable for a wider range of initial
conditions.

This paper is organized as follows; Introduction to the
dynamics of the problem is given in Section I. A fairly
general optimal control problem is formulated in
Section II. The Adaptive Critic Neural Network
(ACNN) ant their architecture are introduced in the
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third section. Numerical results from using the ACNN
and comparison with some other existing controllers
are presented in fourth section. Models to test the
robustness characteristics of the ACNN are presented in
Serction V. Results from the robustness study are
discussed in section VI. Conclusions and future work
are presented in sections Section VII.
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The optimal linear control law1 (to minimize the cost in
Eq.(6))is obtained through solving an associated matrix
Riccati equation

Section I: Nonlinear Automatic Flight Control
Systems

Garrad and Jordan2 express the nonlinear equations of
motion to describe the longitudinal motion of the F-8
Crusader as

X = AX + (t>(X) + b^t (1)
where X describes the states of the system,

X = [x (2)
where KI is the angle of attack, x2 is the pitch angle,
and x3 is the pitch rate. The matrix A represents the
linearized plant of the system:

A = (3)-0.877 0 1
0 0 1

-4.208 0 -0.396_
and b represents the control derivative matrix of the
system,

b =
-0.215

0
(4)

-20.967
The nonlinear aerodynamics due to high angles of
attack are embedded in the extra term

-jt,;c3 -O. 0.019;c2
2 + 0.47*,2 + 3.S46*,3 (5)

The control problem is to minimize the quadratic
performance index given by

(6)

where the state weights are,

"0.25 0 0
0 0.25 0
0 0 0.25

and the controller weight r is set at 1. The linearized
model of the equations to obtain a linear control law is

Ai, - -0.053*, + 0.5jt2 + 0.521*3 (9)
This linear control and two other nonlinear controllers2

will be used for comparison with the neurocontrollers
developed in this study. Garrard and Jordan2 obtain
second and third order controllers to help reduce the
loss of attitude when the angle of attack exceeds the
stall limit. These controllers are designed using singular
perturbations to solve the Hamiltonian-Jacobi partial
differential equation2

dV1 dVT • dVT

dXdx dX
with j/(0) = 0 • As demonstrated by Lee and Markus9,
the unique optimal feedback control is

0°)

_ lL r= —r lb ——
2 dX

(11)

Using singular perturbations of order two and three,
they obtain two controllers

A*2 = -0.053*, + 0.5*2 + 0.521*3 + 0.04*,2 - 0.048*,*2 (12)
jU3 = -0.053*, + 0.5*2 + 0.521*3 + 0.04*,2 - (13)

0.048*,*2 +0.374*,3 -0.312*,2*2

Section II: Optimal Control Formulation
We use Neural Network (NN) based architectures

and Hamiltonian formulation to develop near optimal
control laws for the aircraft problem outlined in Section
I. The Hamiltonian for this optimal control problem1 is

H = y2XTQX + y2uTRu + tf[AX + $(X) + bu] (I4)

The differential equations of the co-states of the system
are defined by

M-T(ax)
(15)

(7) Expanding the right hand side of Eq. (15):

• r^T-f ( \

A, - —— - -0.25*, - A,(- 0.877 - 2*,*3 - 0.088*3 + 0.94* +11.538*,2)a*,
- A,(-4.208- 0.94*, -10.692*,2)

=- ——= -(0.25*2 + A2(-2(0.019*2)))dx2

(16)
(17)
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- 0.088*, )+A 2 +-A 3 0.396)

(18)
The necessary condition for optimal control1 is

dH_
du

= 0

Eq. (19) leads to

(19)

(20)

Section III: Neurocontroller Development
The Adaptive Critic Neural Network is a feed

forward back-propagation architecture consisting of an
Action Neural Network (ANN) and a Critic Neural
Network (CNN). Each network has its own independent
characteristics but at the same time their intrinsic
relationship is a key point for obtaining the near
optimal control law for a given system. In our problem
we have chosen both the ANN and CNN to consist of
two hidden layers with hyperbolic tangent sigmoid
transfer function, and an output layer with a linear
transfer function. The general structure of a neural
network used in this study is given in Figure 1. The
output for both networks can be defined such:

a3 =W3f\W2f\Wlp + bl) + b2) + b3 (21)
where the superscript represents each one of the neural
network layers, p is the input to the neural network, a is
the output of each NN, W is the weight associated with
the given layer, b is the bias associated with the weight-
input combination and / is the transfer function
associated with the layer.

The ANN architecture is N3j661 ,i.e. 3 neurons
corresponding to the three state inputs, 1 neuron
corresponding to the single control output and 6
neurons for the first and second hidden layers. The
CNN architecture is N356,6,3 4-e. 3 neurons
corresponding to the three states as inputs and three co-
states as outputs and 6 neurons for the first and second
hidden layers. The training algorithm is implemented in
MATLAB using the Neural Network Toolbox.

Training of the Action and Critic Neural Networks
Two networks, the ANN and the CNN, are randomized
and trained using the following steps:

Training of the ANN

1) The initial CNN is assumed to be optimal.
2) The initial output uft), is obtained by feeding

random values of the states Xft), to the ANN.
3) The continuous time nonlinear equations of

motion (1) are used to integrate the next state

4)

6)

X(t) using the states Xft) and the initial
output u(t) of the ANN.
The Critic NN is feed the output form step 3,

X(t), to calculate
The ANN is then trained using Xft) as input
and the optimal control, u(t) * (20), as target.
Steps 1 through 5 are repeated until the desired
level of accuracy for the ANN is achieved. For
our problem the level of accuracy is reached
when the norm of the errors between the
current ANN outputs and the previous trained
outputs is below 0.08.

iilBillilB^̂ ^̂ ^

l|ii||f̂

Figure 1. General Structure of aNN

Training of the CNN

1)
2)

3)

4)

5)

The ANN is assumed to be optimal.
The initial output uft), is obtained by feeding
random values of the states Xft), to the of the
ANN.
The continuous time nonlinear equations of
motion (1) and the correspondent co-state
differential equations are integrated to obtain

The CNN is then trained using Xft) as input
and A(Jf(0)* fr°m step 3 as target.
Steps 1 through 4 are repeated until the desired
level of accuracy for the CNN is achieved. For
our problem the level of accuracy is reached
when the norm of the errors between the
current CNN outputs and the previous trained
outputs is below 0.08.

Step 5 in the CNN training marks the end of one
training cycle for both the ANN and CNN. Training
cycles are continued until there is no acceptable change
in the outputs of the ANN between cycles. For our
problem the level of accuracy required to terminate the
training cycles is reached when the norm of the errors
between the current ANN outputs and the previous
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cycle outputs is below 0.08. At this point the output
u(t) * of the Action NN is considered to be optimal.

Section IV: Analysis of Numerical Results
The response of the aircraft to the three different

controllers derived by Garrard and Jordan2

( j U j , /^ 2andju 3 , Eqs. (9), (12) and (13) respectively)
were tested against the NN optimal control solutions.

At the flight conditions considered for this paper,
Mach=0.85 and 30,000 feet (9000 m), the F-8 stalls
when the angle of attack is 23.5°. Figure 2 shows the
time response of the three states and the elevator
deflection for an initial angle of attack of 25.69°, and a
pitch angle and pitch rate of 0° and 0°/sec respectively.
The initial angle of attack of Figure 2 corresponds to
the maximum angle for which the ju1 controller can
effectively recover from stall. Beyond this angle the
controller cannot effectively recover from stall. The NN
solution reaches equilibrium faster than any of the three
compared controllers. Figure 3 shows the cost
associated to recover from stall for each one of the
different controllers. It can be seen that the NN solution
has the smallest cost.

After these initial results, the initial angle of attack is
increased and since the maximum permissible initial
value of the angle of attack at which the p,} controller
can effectively recover was surpassed, only the ^2 and
ju3 controllers are compared with our NN solution.
Figure 4 shows the histories of the three states and the
elevator deflection for an initial angle of attack of 25.9°,
and a pitch angle and pitch rate of 0° and 0°/sec
respectively. The initial angle of attack of Figure 4
corresponds to the highest value for which the second
order controller ju2 can recover from stall. Once again
it can be seen that the NN solution reaches equilibrium
faster than any of the two remaining controllers, and it
has the smallest cost associated as seen in Figure 5. The
initial value of angle of attack is increased until 27°> At
this value, out of the three controllers proposed by
Garrad and Jordan2, only the ju3 controller can
effectively recover from stall. Figure 6 shows the time
response for the three states and the elevator deflection
for an initial angle of attack of 27°, and a pitch angle
and pitch rate of 0° and 0°/sec respectively. Again it can
be observed that the NN solution performs better by
reaching equilibrium faster. Figure 7 shows the cost
associated to recover from stall for the ju3 controller
and the NN solution and again it can be seen that the
NN controller has the smaller cost.

After this initial angle of attack of 27°, none of the
three controllers presented by Garrad and Jordan2 can
recover from stall. In order to test the limits of our NN
solution, we decided to further increase the initial value
of angle of attack. Figure 8 shows the results for an
initial angle of attack of 30°, and a pitch angle and pitch
rate of 0° and 0°/sec respectively. The NN is still able to
recover from stall at this angle of attack. Figure 9
shows the cost associated to recover from stall for the
NN controller and needs to be noted that even at an
initial value of angle of attack of 30°, the cost
associated with the NN is smaller than the one from the
ju3 controller at 27°. With these results in mind, the
initial angle of attack was further increased. Figure 10
shows the time response of the states and the controller
history for an initial angle of attack of 35°, and a pitch
angle and pitch rate of 0° and 0°/sec respectively. The
NN solution is still able to recover from stall, but as
seen in Figure 11 the cost associated to recover from
stall jumped by an order of magnitude of approximately
5. Beyond an initial angle of attack of 35°, the NN
controller was still able to recover from stall but not
without exceeding the maximum deflection of 25° that
we imposed on the controllers.

Section V: Robustness of the Neurocontroller to
Model Uncertainties

In this section, we formulate the perturbation to the
control derivative matrix to study the robustness of the
neurocontrollers to model/input uncertainties. Two
types of unmodeled uncertainties are studied here in the
formulation of the problem: time lag between
commanded and actual input control, and inaccurate
control effectiveness derivatives.

The time lag between commanded and actual input
control is modeled with a first order lag as

and the controller becomes

(22)

M (0 = uNN(t) + e~(p(t -1) - uNN(t)) (23)
where ju(/)is the elevator deflection, Um(t)^ the ANN
commanded control, ju(f-l) is the elevator deflection
in the previous step time, and T is the elevator time
constant. In this study 1 is varied from 0.1 to 0.01.

This type of modeled uncertainties relate to those
generated by the physical limitations of actuating a
control surface. Unless electrical actuators are used, the
hydraulic actuators commonly used in the control
surfaces tend to generate a time lag between the
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commanded control deflection and the actual control
seen by the control surfaces. The study of this type of
uncertainties is important since the time constants are
difficult to estimate accurately.

The second type of uncertainties addressed in this
study is inaccurate control effectiveness derivatives.
These uncertainties can be encountered in two
situations: inaccurate prediction of the elevator control
surfaces derivatives, CL5e and CMSe, or in the event of
the loss of a percentage of the control surface. This
uncertainty can be modeled as:

X = AX + (j>(X) + b(\ - Dun )n (24)

where Dm is the percentage of decrease in elevator

effectiveness (for example Dm =0.15 represents a loss

of 75% in the elevator effectiveness). In this study Dun

is varied from 0.0 to 0.75 (i.e. a decrease in elevator
effectiveness of 75%).

Section VI: Analysis of Robustness' Results
In order to analyze the inherent robustness of this

controller to model uncertainties, several cases were
studied by varying the elevator time constant r and the
elevator effectiveness Dm and are compared with the
desired ACNN solution free of model uncertainties. All
simulations have an initial pitch angle 9=5° and an
initial pitch rate g=5°/sec. In the first part of the
analysis, only T and a(0) are varied. After that, the
robustness to elevator effectiveness variation is
analyzed by varying Dm and a(0). Finally both 1 and

Dun , along with the initial value of the angle of attack
are varied.

Figure 12 shows the time response for the states and
Figure 13 shows the control history with a time lag
model uncertainty where x=0.1 and a(0)=3Q°. From
Figure 12, we observe that the response of the states
and reaching equilibrium is slower as compared to the
no-lag case, but the NN solution with time lag is still
able to recover from stall at these initial conditions.
Figure 13 shows that the elevator deflection response
for the NN solution with time lag uncertainties is
slower as expected than the desired ACNN control.

Figures 14 and 15 are representative cases of elevator
effectiveness model uncertainties, with Dm =0.75 (i.e.
75% decrease in elevator effectiveness) and a(0)=3Q°.
The model uncertainties introduced in the elevator
effectiveness produce a smaller available control

deflection as seen by Figure 15, and the states require
longer time to recover from the initial perturbation of
the states but the NN solution with model uncertainties
is still able to recover from stall at these initial
conditions.

Next stage of analysis involved testing the robustness
with the neurocontrollers when uncertainties exist in
both time lag and elevator effectiveness.

Figure 16 shows the time response for the following
initial conditions: Dun=Q.75, i=0.1 and a(0)=3Q°.
Figure 16 shows that despite the slower response of the
elevator deflection, the NN controller with model
uncertainties is still able to recover from stall after
decreasing the elevator effectiveness by 75% and with a
T=Q.l The influence of the reduction of the elevator
effectiveness and the time lag can be seen in Figure 17
when compared with the desired NN elevator
deflection.

After these results it was decided to further stress the
aircraft by starting with a high initial value of the angle
of attack, a(0)=35°. The model uncertainties were the
same as the previous case: Dw/7=0.75 and i=0.1. The
time response of the states is shown in Figure 18, and it
can be seen that they are slower than those of the
desired ACNN solution. Figure 19 shows that the
elevator deflection requires more control but is still able
to recover from stall even with such extreme model
uncertainties.

Section VII: Conclusions
A dual NN solution for nonlinear optimal control

problems has been presented. The neuro-controller
extends the stable region of operations for the aircraft
considered considerably. Further it has been shown that
the dual NN controller posses inherent robustness
characteristics that allow the aircraft to operate with
high levels of model uncertainties.

Future Work
We have derived some analytical expressions for
robustness for unmodeled to input uncertainties using
extra control formulation10. It is expected that using
such expression the stability derivatives uncertainties
and input uncertainties such as those derived from time
lag can further be increased.

Acknowledgement
This study was supported in part by a grant from
National Science Foundation ECS-9976588 and a by a
U.S. Army Space and Missile Defense Command Grant
No. DAS60-99-C-0069.

American Institute of Aeronautics and Astronautics



(c)2001 American Institute of Aeronautics & Astronautics or Published with Permission of Author(s) and/or Author(s)' Sponsoring Organization.

References

1. A. E Bryson and Y. Ho, "Applied Optimal
Control," Hemisphere Publishing Co., 1975,
pp. 128-211

2. W. L. Garrard and M. Jordan, "Design of
Nonlinear Automatic Flight Control Systems."
Automatica. Vol 13, pp 497-505, 1977

3. D.A. White and D.A. and Sofge, "Handbook of
Intelligent Control", Van Nostrand Reinhold, New
York, 1992, Ch. 3,5,8,12,13

4. S. N. Balakrishnan and V. Biega, "Adaptive Critic
Based Neural Networks for Aircraft Optimal
Control," Journal of Guidance, Control and
Dynamics, Vol. 19, No. 4, July-August 1996, pp.
893-898

5. S.N. Balakrishnan and G. Saini, "Adaptive Critic
based Neurocontroller for Autolanding of Aircraft
with Varying Glideslopes," Proceedings of IEEE
International Conference on Neural Networks,
vol.4, 1997, pp. 2288-2291

6. C.W. Anderson, "Learning to Control an Inverted
Pendulum using Neural Networks," IEEE Control
Systems Magazine, April 1998, Vol. 9, pp. 33-37

7. P.W. Werbos, "Neurocontrol and Supervised
Learning: An Overview and Evaluation,"
Handbook of Intelligent Control, Van Nostrand
Reinhold, 1992

8. M. T. Hagan, H. B. Demuth, and M. Beale,
"Neural Network Design," PWS Publishing
Company, 1998, Boston.

9. E.B. Lee and L. Markus, "Foundations of Optimal
Control Theory." John Wiley, New York, 1967

10. S.N. Balakrishnan and Zhongwu Huang, "Robust
Adaptive Critic Neurocontrollers For Systems With
Input Uncertainties", Proceedings to the IEEE
conference 2000.

6
American Institute of Aeronautics and Astronautics



(c)2001 American Institute of Aeronautics & Astronautics or Published with Permission of Author(s) and/or Author(s)' Sponsoring Organization.

Figure 2. States & Control History for a(0) =25.69° Figure 5. Cost History for a(0) =25.9°

Figure 3. Cost History for a(0) =25.69° Figure 6. States & Control History for a(0) =21°
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Figure 4. States & Control History for a(0) =25.9
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Figure 7. Cost History for a(0) =27°
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Figure 8. States & Control History for a(0) =30' Figure 11. Cost History for a(0) =35°

Figure 9. Cost History for a(0) =30° Figure 12. State History for
1=0.1 and a(i9; =30°

Figure 10. States & Control History for a(0) =35°

isired control - |xd

levator deflection with model uncertainties -

Figure 13. Control History for
1=0.1 anda(0;=30°
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Figure 14. State History for Dm =0.15
(75% decrease in elevator effectiveness) and a(0) =30°

—— Desired control - u.d
..... Elevator deflection with model uncertainties - u.

Figure 17 Control History for
Dun =0.75,1=0.1 a(0)=30°

—— Desired control - u.d
- - - - Elevator deflection with model uncertainties - u.

Figure 15 Control History for Dm =0.75
(75% decrease in elevator effectiveness) and a(0) =30°

Figure 18. State History for
^=0.75,1=0.1 arc; =35°

Figure 16. Robustness State History for
1^=0.75,1=0.1

Desired control - |id
Elevator deflection with model uncertainties - u.

Figure 19. Robustness Control History for
Dun -0.75,1=0.1 a(0)=35°
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