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a b s t r a c t

For a class of stabilizing boundary controllers for nonlinear 1D parabolic PDEs introduced in a companion
paper, we derive bounds for the gain kernels of our nonlinear Volterra controllers, prove the convergence
of the series in the feedback laws, and establish the stability properties of the closed-loop system. We
show that the state transformation is at least locally invertible and include an explicit construction
for computing the inverse of the transformation. Using the inverse, we show L2 and H1 exponential
stability and explicitly construct the exponentially decaying closed-loop solutions. We then illustrate
the theoretical results on an analytically tractable example.
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1. Introduction

For a class of stabilizing boundary controllers for nonlinear 1D
parabolic PDEs introduced (in full detail and with examples) in
a companion paper (Vazquez & Krstic, 2008), we derive bounds
for the gain kernels of our nonlinear Volterra controllers (in the
Appendix), prove the convergence of the series in the feedback
laws (in Section 4) and establish the stability properties of
the closed-loop system (in Section 5). We show that the state
transformation is at least locally invertible and include an explicit
construction for computing the inverse of the transformation
(in Section 6). Using the inverse, we show L2 and H1 local
exponential stability and explicitly construct the exponentially
decaying closed-loop solutions. We then illustrate (in Section 6.1)
the theoretical results on an analytically tractable example,
introduced in Vazquez and Krstic (2008, Section 5).

2. Preliminaries

Define, as in Vazquez and Krstic (2008), ξ0 = x and for i ≤ n,
ξ̂ ni = (ξi, . . . , ξn). Let Tn(x, ξ) = {ξ̂ n1 : 0 ≤ ξn ≤ · · · ≤ ξ1 ≤
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x ≤ 1} and Tn = Tn(1, ξ). Define also

n∏
u =

n∏
j=1

u(t, ξj), (1)

∫
Tn(x,ξ)

f (ξ̂ n0 )dξ̂
n
1 =

∫ x

0

∫ ξ1

0
· · ·

∫ ξn−1

0
f (ξ̂ n0 )dξn · · · dξ1. (2)

We first formalize the concept of convergence of Volterra series
with L2(Tn) kernels. Consider a Volterra series F [u] with kernels
fn(ξ̂ n0 ), i.e.,

F [u](t, x) =
∞∑
n=1

Fn[u](t, x)

=

∞∑
n=1

∫
Tn(x,ξ)

fn(ξ̂ n0 )
n∏
udξ̂ n1 . (3)

The following definition quantifies the convergence of (3) in
L2(0, 1) (in what follows, we will write just L2 for simplicity).

Definition 2.1. Given (3) with kernels fn ∈ L2(Tn), we define the
radius of convergence ρ as

ρ =

lim sup
n→∞

(
‖fn‖2L2(Tn)
n!

)1/n−1 , (4)
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and the gain bound function f (s) : [0, ρ)→ [0,∞) as

f (s) = 2
∞∑
n=1

n2‖fn‖2L2(Tn)
n!

sn. (5)

Using ρ and f from Definition 2.1 we can state a result that
guarantees convergence of the Volterra series (3) in L2 (a similar
result in the L∞ space for L∞ kernels is standard (Boyd, Chua, &
Desoer, 1984)).

Theorem 1 (Gain Bound Theorem). Given a Volterra series F [u] as in
(3), with kernels fn ∈ L2(Tn), radius of convergence ρ > 0 and gain
bound function f , the following results hold.

(1) If u ∈ L2 verifies that ‖u‖2L2 < ρ , then the integrals and sums in
(3) converge (in L2).

(2) F [u] satisfies ‖F [u]‖2
L2
≤ f (‖u‖2

L2
) and consequently F maps balls

of L2 into balls of L2.

Proof. From definition (3), and using the Cauchy–Schwartz
inequality,

Fn[u]2 ≤ ‖fn‖2L2(Tn)

(∫
Tn(x,ξ)

n∏
u2dξ̂ n1

)

=

‖fn‖2L2(Tn)‖u‖
2n
L2

n!
, (6)

hence,

F [u]2 =

(
∞∑
n=1

Fn[u]

)2

≤

(
∞∑
n=1

n2Fn[u]2
)(

∞∑
n=1

1
n2

)

≤ 2
∞∑
i=1

n2‖fn‖2L2(Tn)‖u‖
2n
L2

n!
, (7)

where we used that
∑
∞

n=1
1
n2
=

π2

6 ≤ 2. Thus we obtain

‖F [u]‖2
∞
= max
x∈(0,1)

F [u]2 ≤ 2
∞∑
i=1

n2‖fn‖2L2(Tn)‖u‖
2n
L2

n!
. (8)

Then from elementary theory of power series and noting that
limn→∞

n√n2 = 1 and that ‖F [u]‖2
L2
≤ ‖F [u]‖2

∞
, the result follows.

�

We give now some examples illustrating Theorem 1.

Example 2.1. Let F [u] be a Volterra series with kernels fn and let C
and D be generic positive constants.

(1) If the kernels fn verify the uniform bound ‖fn‖2L2(Tn) ≤ D, then
ρ = ∞ and the series is everywhere convergent for u ∈ L2.
We also have that f (s) = 2s(s + 1)D exp(s). Note also that
f (s) ≤ 2D (exp(3s)− 1).

(2) If the kernels fn grow exponentially as ‖fn‖2L2(Tn) ≤ DC
n, then

again ρ = ∞ and the series is everywhere convergent. We
have in this case that f (s) = 2sC(sC + 1)D exp(Cs). Note also
that f (s) ≤ 2D (exp(3Cs)− 1).

(3) If the kernels fn grow as fast as ‖fn‖2L2(Tn) ≤ n!DCn, then
ρ = 1/C and the series convergence can only be guaranteed if
‖u‖L2 ≤ 1/C . We have in this case that f (s) =

2sC(sC+1)D
(1−sC)3

. Note

that f (s) ≤ 2D(sC)2

(1−sC)4
.

Remark 1. Since ‖fn‖2L2(Tn) ≤
‖fn‖2∞
n! , if fn ∈ L

∞(Tn), similar results
to Theorem 1 can be stated in terms of the L∞ norms of the fn’s.
Note also that by (8) the L∞ norm of F [u] is well defined for u ∈ L2.

3. Control strategy

In the companion paper (Vazquez&Krstic, 2008)we considered
the stabilization problem for the plant

ut = uxx + λ(x)u+ F [u] + uH[u], (9)
ux(0) = qu(0), u(1) = U, (10)

where F [u] and H[u] are Volterra nonlinearities defined respec-
tively by kernels fn and hn, and U the actuation variable. We solved
the problem by mapping u into a target systemw which verifies

wt = wxx − cw, (11)
wx(0) = q̄w(0), w(1) = 0, (12)

where q̄ = max{0, q}. For mapping u into w we use a Volterra
transformation

w = u− K [u] = u−
∞∑
n=1

∫
Tn(x,ξ)

kn(ξ̂ n0 )
n∏
udξ̂ n1 , (13)

where the kernels kn in (13) are obtained from the set of PIDEs
(40)–(47) in Vazquez and Krstic (2008).
The control law is determined by (13) at x = 1

U =
∞∑
n=1

∫
Tn(1,ξ)

kn(1, ξ̂ n1 )
n∏
udξ̂ n1 . (14)

Remark 2. From (13),

wx = ux − u(x)
∞∑
n=1

∫
Tn(x,ξ)

kn+1(x, x, ξ̂ n1 )
n∏
udξ̂ n1

− k1(x, x)u(x)−
∞∑
n=1

∫
Tn(1,ξ)

knx(x, ξ̂ n1 )
n∏
udξ̂ n1

= ux − k̄(x)u(x)− u(x)K̄ [u] − K̃ [u], (15)

where K̄ [u] and K̃ [u] are Volterra series in u (not in ux) with kernels
k̄n = kn+1(x, x, ξ̂ n1 ) and k̃n = knx(x, ξ̂ n1 ). Note that from the
boundary condition (Vazquez & Krstic, 2008, (43)), we have that

k̄ = q̂−
1
2

∫ x

0
λ(s)ds, k̄n = −

1
2

∫ x

ξ1

hn(s, ξ̂ n1 )ds, (16)

where q̂ = min{0, q}. Hence,

‖wx‖
2
L2 ≤ 4

(
‖ux‖2L2 + ‖u‖

2
L2‖k̄‖

2
∞
+ ‖u‖2L2‖K̄ [u]‖

2
∞

+ ‖K̃ [u]‖2L2
)
, (17)

which means that the H1 norm ofw can be computed from the H1
norm of u (note that by Remark 1, ‖K̄ [u]‖2

∞
is well defined).

In the following sections we study the convergence of (13) and
(14) and the properties of the closed-loop system (9), (10) and (14).

4. Convergence analysis for the transformation

In what follows, we make the following very reasonable
assumption on the plant kernels.
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Assumption 4.1. Let Dh, Df , ρh and ρf be positive constants. Then,
the following hold.

(1) λ(x) ∈ C1[0, 1], hn ∈ C1[Tn], fn ∈ C0[Tn].
(2) The parameter λ(x) verifies

max
x∈[0,1]

{|λ(x)|} ≤ Dh. (18)

(3) The sequence hn(ξ̂ n0 ) verifies the following bound

max
(ξ̂n0 )∈Tn

{∣∣∣hn(ξ̂ n0 )∣∣∣+ n∑
i=0

∣∣∣hnξi(ξ̂ n0 )∣∣∣
}
≤
n!Dh
ρn−1h

. (19)

(4) The sequence fn(ξ̂ n+10 ) verifies the following bound

max
(ξ̂n0 )∈Tn

{∣∣∣fn(ξ̂ n0 )∣∣∣} ≤ n!Df
ρn−1f

. (20)

In Assumption 4.1, points (3) and (4) quantify the divergence
rate bound for plant kernels to ensure convergence of the plant
nonlinearities H and F . We also assume the following:

Assumption 4.2. Under the above assumptions, for each n, there
exists an H1(Tn) solution kn of the kernel PIDE equations (Vazquez
& Krstic, 2008, Equations (40)–(47)).

We next show a result that relates the convergence of the
transformation and the feedback law series, respectively (13) and
(14), to the convergence of the plant nonlinearities F [u] and H[u].

Theorem 2. Under Assumptions 4.1 and 4.2, the Volterra series in the
transformation (13), the control law (14) and the wx transformation
(15) are convergent with radius of convergence

ρk =

(
min{ρf , ρh}

2

)2
exp

(
−2
√
γ
)
, (21)

where γ = max{1, ‖f1‖∞ + ‖λ‖∞}. Moreover, kn verifies

‖kn‖2L2(Tn) ≤ (n− 1)!4D
2C2n−2e2n

√
γ+2Υ+|q̂|, (22)

‖knx‖2L2(Tn) ≤ n!2D
2C2n−2e2n

√
γ+2Υ+|q̂|, (23)

where D = Df + ρhDh + 2((1 + ρh)Dh)(|q| + 1) exp(1 +

|q̂|)
√
(1+ ρh)2D2h + D

2
f , C =

(
min{ρf ,ρh}

2

)−1
and Υ = 4D

2(1+2 4
√
γ )2

γ 2
.

See the Appendix for a proof.

Remark 3. In the above theorem, if q = ∞ (meaning the plant has
a Dirichlet boundary condition at the uncontrolled end), then the
above bounds hold setting q = 0.

Corollary 4.1. Under the same assumptions of Theorem 2, if the
Volterra series nonlinearity of the plant is globally convergent in L2,
then the transformation Volterra series (13), the control (14) and the
wx transformation (15) converge globally in L2 as well.

Proof. If the Volterra series nonlinearities of the plant F and H are
everywhere convergent, then by the limit (4) being infinity, for any
ε > 0 (possibly very small), there exists Dε > 0 (possibly very
large) such that both fn and hn verify

max{|hn|, |fn|} ≤ n!Bεεn−1. (24)

Hence under the assumptions of Theorem 2, the kernel solution kn
verifies

‖kn‖2L2(Tn) ≤ (n− 1)!4D
2
ε

(ε
2

)2n−2
e2n
√
γε+2Υε+|q̂|, (25)
Fig. 1. Commutative diagram for the closed-loop system.

where Dε and Υε are defined as in Theorem 2 replacing Dh = Df =
Bε and ρh = ρf = 1/ε, but note that γ = max{1, ‖f1‖∞+‖λ‖∞+
c} does not depend on ε. Then the radius of convergence of the
Volterra series defined by kn is ρk ≥

4 exp(2
√
γ )

ε2
. Since this holds for

any positive ε, we must have ρk = ∞. �

5. Stability analysis

To analyze the behavior of the closed-loop system,we study the
invertibility of the change of variables (13). It is natural to seek also
a Volterra formulation for this inverse change of variables, which
is assumed as having the following form

u = w + L[w], (26)

which is expanded as

u(t, x) = w(t, x)+
∞∑
n=1

∫
Tn(x,ξ)

ln(ξ̂ n0 )
n∏
wdξ̂ n1 . (27)

The existence of this inverse change of variables can be
guaranteed employing the theorem for inversion of Volterra series,
which is proved in Boyd et al. (1984, Theorem 3.3.1.).

Theorem 3 (Volterra Series Inversion). A Volterra series has a local
inverse at the origin if and only if its first (linear) kernel is invertible.

In that context, the word ‘‘local’’ means that a unique Volterra
series representation can be found for the inverse transformation,
which has the form specified by (27), and whose radius of
convergence (in the sense of Definition 2.1 and Theorem 1) is
possible finite, even if the transformation is globally convergent.
The direct and inverse transformations give a relation between

u andw that can be exploited to obtain properties of u (governed by
a complex nonlinear equation) from properties ofw (that verify an
easy to analyze heat equation). The commutative diagram of Fig. 1
illustrates our strategy. We have denoted the initial conditions for
u and w as u(0, x) = u0 and w(0, x) = w0, respectively. In the
left, Tu(t) is the semigroup that governs the behavior of uwhen the
loop is closed, so that u(t) = Tu(t)u0; its generator can be obtained
homogenizing (9) and taking (14) into account. In the right,Tw(t) is
the semigroup generated by the Laplacian operator in (11), so that
w(t) = Tw(t)w0. Above and below are respectively the direct and
inverse transformations, Id− K and Id+ L that relate u andw. We
are interested in the properties of u, but direct analysis of Tu(t) is
very difficult—it is generated by a nonlinear operator. Instead, from
Fig. 1, we use that Tu(t) = (Id+ L) ◦ Tw(t) ◦ (Id− K), dividing the
analysis into smaller, more tractable pieces. The transformations
Id + L and Id − K are still nonlinear but time invariant, and are
analyzedwithin the framework of Volterra series,whereas the heat
equation semigroup Tw(t) is linear and simple, producing even
explicit solutions. We begin by analyzing Tw , whose behavior is
summarized in the following lemma, which follows from standard
estimates for the heat equation (Evans, 1998; Liu, 2003).
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Lemma 5.1. Consider the system (11)with boundary conditions (12).
Then, the equilibrium w ≡ 0 is exponentially stable in the L2 and H1
norms, i.e., ∀t ≥ 0

‖w(t)‖2L ≤ e
−t
‖w0‖

2
L, (28)

whereL is either L2 or H1.

Using Lemma 5.1 and the relations illustrated by Fig. 1, we get
the following result about the stability properties of the closed-
loop system.

Theorem 4. Let Assumptions 4.1 and 4.2 hold and assume that there
is an L2 (resp. H1) solution u to the closed-loop system (9) with
boundary conditions (10) and control law (14). Then, the origin u ≡ 0
of the closed-loop system is locally exponentially stable in the L2 (resp.
H1) norm, i.e., denoting the initial condition for u as u(0, x) = u0(x),
there exists C1, C2 > 0 such that, if ‖u0‖2L ≤ C1, then ∀t ≥ 0

‖u(t)‖2L ≤ C2e
−t
‖u0‖2L, (29)

whereL is either L2 or H1, and C1, C2 depend on the plant parameters,
but not on u0.

Proof. Under Assumptions 4.1 and 4.2, the transformation (13)
exists and converges for ‖u(t)‖2

L2
≤ ρK , where ρK denotes the

radius of convergence of the transformation Volterra series. The
first kernel of (13) is Id − K1 and constitutes the linear part of
the transformation. In Smyshlyaev and Krstic (2004) it is shown
that this linear part is always invertible. Hence, using Theorem 3,
the whole transformation is locally invertible and the inverse
transformation has the form specified by (27). Therefore there
exists ρL > 0 such that, if ‖w(t)‖2L2 < ρL, then (27) converges.
Denote by k(s) and l(s) the gain bound functions of the direct

and inverse Volterra series transformations, Id − K and Id + L
respectively, as defined in (5).
From (13), we have that

w0 = u0 − K [u0]. (30)

Set C1 = k−1(ρL)/2 < ρK . Hence, if u0 ≤ C1 we get that

‖w(t)‖2L2 ≤ ‖w0‖
2
L2 ≤ k(‖u0‖

2
L2) ≤ k(C1) < ρl (31)

for all time t . Therefore, the inverse (26) converges and the
relations of Fig. 1 hold for all time t ≥ 0. Set now C3 =

k(C1)
C1
and

C4 =
l(C1C3)
C1C3

. Then, for‖u0‖2L2 < C1, since‖w(t)‖
2
L2
≤ C3C1 andboth

k(s) and l(s) are classK functions (Khalil, 2002), we have that

‖u(t)‖2L2 ≤ l(‖w(t)‖
2
L2) ≤ C4‖w(t)‖

2
L2 ≤ C4e

−t
‖w0‖

2
L2

≤ C3C4e−t‖u0‖2L2 , (32)

so setting C2 = C3C4, (29) follows for the L2 norm. To obtain the
bound for the H1 norm we use (15) and (17), and note that

ux = wx + k̄(x)(w + L[w])+ (w + L[w])K̄ [w + L[w]]

− K̃ [w + L[w]]. (33)

Hence ux can be recovered from wx when the Volterra series in
(33) converge. If ‖u0‖2H1 ≤ C1, then obviously ‖u0‖

2
L2
≤ C1, and

since the radius of convergence of both K̄ and K̃ is at least ρK , all
the series in the right-hand side in (33) converge. Then we use
Lemma 5.1 and proceed in the sameway as in (32) for theH1 norm
(using the gain bound functions for K̄ and K̃ ), obtaining possibly
a different C2; to get the same C2 for both L2 and H1 we pick the
maximum of the two. Then the result follows. �
Remark 4. In Theorem 4 we have assumed well-posedness of the
closed-loop system. For the case q = ∞ (Dirichlet boundary
condition at x = 0), since (11) and (12) are well-posed in H1
and since (15) and (33) allow proving local equivalence of the
H1 norms of u and w, the assumption can be dropped, provided
u0 verifies some compatibility conditions (Smyshlyaev & Krstic,
2004) (see Proposition 6.2 for an example). For other values of
q, (11) and (12) are well-posed in H2 and this argument is not
enough.

Remark 5. Note that (11) can be solved explicitly. Thismeans that,
when ‖u0‖L < C1, u can be obtained explicitly for all times. We
give an illustration for the simplest case, when q = ∞. Then, u is
given as

u(t, x) = 2
∞∑
n=1

e−π
2n2t sin(πnx)

∫ 1

0
sin(πnξ) [u0(ξ)

− K [u0](ξ)] dξ + L

[
2
∞∑
n=1

e−π
2n2t sin(πnx)

×

∫ 1

0
sin(πnξ) [u0(ξ)− K [u0](ξ)] dξ

]
. (34)

For other values of q similar formulas can be written.

The constant C1 for which Theorem 4 holds determines the ‘‘basin
of attraction’’ of the equilibrium at the origin for the closed-loop
system. Since C1 = k−1(ρL), if ρL and some bound on the kn’s
are known then C1 can be more precisely quantified. We state a
corollary for Theorem 4 for some particular cases, introduced in
Example 2.1, that occur frequently in practice.

Corollary 5.1. Let ρK , ρL > 0 denote the radii of convergence
of the direct and inverse Volterra transformations, (13) and (27),
respectively. Let C and D denote generic positive constants.
(1) If ρK = ρL = ∞, then Theorem4holds globally, i.e., for all u ∈ L2.
(2) If the kernels kn verify ‖kn‖2L2(Tn) ≤ D, then ρK = ∞ and

Theorem 4 holds at least for ‖u‖2L2 ≤
1
3 log

(
1+ ρL

2D

)
.

(3) If the kernels kn grow like ‖kn‖2L2(Tn) ≤ DC
n, then ρK = ∞ and

Theorem 4 holds at least for ‖u‖2
L2
≤

1
3C log

(
1+ ρL

2D

)
.

(4) If the kernels kn grow as ‖kn‖2L2(Tn) ≤ n!DC
n, then ρK = 1/C and

Theorem 4 holds for

‖u0‖2L2 ≤
1
C

1+
√
D
2ρL
−

4

√
D
2ρL

√√√√√ D
2ρL
+ 2

 > 0.

6. Inverse transformation

Theorem4 depends critically on the inverse transformation and
its properties. Nextwe give explicit formulas that allow computing
the inverse from the kernels kn.
Define l1 as the unique function that verifies the followingwell-

posed (Smyshlyaev & Krstic, 2004) PIDE

∂xxl1(x, ξ1) = ∂ξ1ξ1 l1(x, ξ1)− λ(x)l1 − f1(x, ξ1)

−

∫ x

ξ1

l1(s, ξ1)f1(x, s)ds, (35)

with boundary conditions

l1(x, x) = q̂−
1
2

∫ x

0
λ(s)ds, (36)

l1ξ1(x, 0) = ql1(x, 0). (37)
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The following result holds.

Proposition 6.1. The first kernel l1 of the inverse (26) is given by the
solution of (35)–(37), whereas for n ≥ 2, ln is given by the following
formula

ln(ξ̂ n0 ) = gn(ξ̂
n
0 )+

∫ x

ξ1

l1(x, s)gn(s, ξ̂ n1 )ds. (38)

In (38), the gn are functions defined as follows:

gn =
∑

i1,...,ij≥1,j≥2
i1+···+ij=n

pj[kj; li1 , . . . , lij ], (39)

where the function pj[kj; li1 , . . . , lij ] is recursively computed in the
following way. Let

p1[kj; li1 , . . . , lij ]

=


kj(ξ̂

j
0)+

∫ ξj−1

ξj

kj(ξ̂
j−1
0 , s)l1(s, ξj)ds, ij = 1,∫ ξj−1

ξj

kj(ξ̂
j−1
0 , s)lij(s, ξ̂

j+ij−1
j )ds, ij > 1,

(40)

and for 1 ≤ m ≤ j − 1, pm+1[kj; li1 , . . . , lij ] is computed from
pm[kj; li1 , . . . , lij ] as follows:

pm+1[kj; li1 , . . . , lij ]

=

{
pm[kj; li1 , . . . , lij ] + qm[pm], ij−m = 1,
qm[pm], ij−m > 1.

(41)

In (41),

qm[pm] =
∫ ξj−m−1

ξj−m

D
αm,ij−m
j−m [lij−m(s, ξ̂

αm+ij−m−1
αm )

× pm[kj; li1 , . . . , lij ](ξ̂
j−m−1
0 , s, ξ̂αm−1j−m )]ds, (42)

where αm = j−m+
∑j

β=j−m+1 iβ and the function D
αm,ij−m
j−m is given

in Vazquez and Krstic (2008, Equation (53)).

Proof. Consider the transformation (13) and the inverse (27),

w = u− K [u], (43)
u = w + L[w]. (44)

We expand (43) as a sum of K1 (the linear transformation) and the
rest of the transformation (which is nonlinear). Then, we get

w = u− K1[u] − K̂ [u], (45)

where K̂ [u] =
∑
∞

n=2 Kn[u]. Denoting z = w + K̂ [u], we get

z = u− K1[u], (46)

which is the equation of a linear Volterra transformation; hence,
we can use the result of Smyshlyaev and Krstic (2004) to show that
it is invertible and explicitly compute the kernel l1 of the (linear)
inverse L1, obtaining

u = z + L1[z]. (47)

Substituting now the definition of z in (47),

u = w + K̂ [u] + L1[w + K̂ [u]], (48)

and using the linearity of L1,

u = w + L1[w] + K̂ [u] + L1[K̂ [u]]. (49)
Replace now (44) in (49). Then,

u = w + L1[w] + K̂ [w + L[w]] + L1[K̂ [w + L[w]]]. (50)

We define G[w] = K̂ [w + L[w]], the composition of two Volterra
series. Introducing G in (50) and using the definition of the inverse
series (44) we get

L[w] = L1[w] + G[w] + L1[G[w]], (51)

which when expanded for each n ≥ 2, gives (38). The
expression for g given by (39)–(42) follows from repeatedly
applying Lemma A.1 to the definition of G as the composition of
two Volterra series. �

Remark 6. From (39)–(42) we get that the nth kernel gn depends
only on the kernels k1, . . . , kn−1 and l1, . . . , ln−1. Hence, Eq. (38)
gives a recursive, explicit formula to compute the kernels ln
beginning at n = 2 (l1 is computed directly from (35)–(37)) up
to any desired order.

6.1. Analytical example

For the analytic example of Vazquez and Krstic (2008, Section
5), we have K [u] = K2[u] = K̂ [u] and l1 = 0 because k1 = f1 = 0.
These facts greatly simplify the formulas for ln in Proposition 6.1.
We have that l2 = k2 and for n > 2,

ln =
∫ ξ1

ξ2

k2(x, ξ1, s)ln−1(s, ξ2, . . . , ξn)ds

+

n−2∑
i=2

∫ x

ξ1

Dn−i+1,i1

[
li(σ , ξ̂ nn−i+1)

×

(∫ σ

ξ1

k2(x, σ , s)ln−i(s, ξ̂ n−i1 )ds
)]
dσ

+

∫ x

ξ1

D2,n−11 [k2(x, s, ξ1)ln−1(s, ξ̂ n2 )]ds. (52)

Using formula (52) and symbolical software, we explicitly find
the first three kernels as l1 = 0 and

l2 = ξ1ξ2(x− ξ1)(x− ξ2), (53)

l3 = ξ1ξ2ξ3

[
(2x− ξ2 − ξ3)

(
ξ 51 − x

5

5
+
x4 − ξ 41
4

(x+ ξ1)

+
ξ 31 − x

3

3
xξ1

)
+ (x(ξ2 + ξ3)− ξ2ξ3)

(
x4 + ξ 41
4

+
ξ 31 − x

3

3
(x+ ξ1)+

x2 + ξ 21
2

xξ1

)
+ (x− ξ1)

×

(
ξ 52 − x

5

5
+
x4 + ξ 42
4

(x+ ξ2 + ξ3)+
ξ 32 − x

3

3

× (x(ξ2 + ξ3)+ ξ2ξ3)+
x2 + ξ 22
2

xξ2ξ3

)]
. (54)

Using (52) we can study the convergence of the inverse Volterra
series for the example. First we analyze the growth of the kernels.

Lemma 6.1. For ln defined as in (53) and (52), it holds that for n ≥ 2,

|ln(x, ξ1, . . . , ξn)| ≤ n!
1

16n−1
x5n−6. (55)

Proof. For n = 2, the claim of (55) is true since l2 = k2 ≤ 1
16x

4

as we found in Vazquez and Krstic (2008, Equation (75)). We now
assume (55) for n − 1, n − 2, . . . , 2 and prove it holds for n ≥ 3.



2796 R. Vazquez, M. Krstic / Automatica 44 (2008) 2791–2803
Taking absolute values in (52), using Vazquez and Krstic (2008,
Equation (53)) and (55) for n− 1, n− 2, . . . , 2, we get

|ln| ≤
x4

16

(
(n− 1)!
16n−2

∫ x

0
s5n−11ds

+

n−2∑
i=2

(
n
i

)
(n− i)!i!
16n−i−1+i−1

∫ x

0
s5(n−i)−6ds

×

∫ x

0
s5i−6ds+

n(n− 1)!
16n−2

∫ x

0
s5n−11ds

)
, (56)

where the binomial coefficients come from using Vazquez and
Krstic (2008, Remark 5). Hence,

|ln| ≤ n!
x4

16n−1

(
n+ 1
n

∫ x

0
s5n−11ds

+

n−2∑
i=2

∫ x

0
s5i−6ds

∫ x

0
s5(n−i)−6ds

)

≤ n!
x4

16n−1

(
n+ 1

n(5n− 10)
x5n−10 + x5(n−i)−5+5i−5

×

n−2∑
i=2

1
(5(n− i)− 5)(5i− 5)

)

≤ n!
x5n−6

16n−1

(
n+ 1

n(5n− 10)
+

1
5n− 10

×

n−2∑
i=2

(
1

(5(n− i)− 5)
+

1
5i− 5

))

≤ n!
x5n−6

16n−1

(
n+ 1

n(5n− 10)
+
n− 3
5n− 10

(
1
5
+
1
5

))
≤ n!

x5n−6

16n−1

(
5+ n(n+ 2)
5n(5n− 10)

)
, (57)

and since 5 + n(n + 2) ≤ 5n(5n − 10) for n ≥ 3, inequality (55)
follows for n. �

We now state the result of Theorem 4 for the example, illustrating
how to prove well-posedness for Dirichlet boundary conditions.

Proposition 6.2. Consider the closed-loop plant (9) and (10) where
F is given by Vazquez and Krstic (2008, (71)–(73)) and control
law (Vazquez & Krstic, 2008, (70)). Let u0 ∈ H1(0, 1) be the initial
condition for u, verifying the compatibility conditions

u0(0) = 0, u0(1) =
1
2

(∫ 1

0
ξ(x− ξ)u(ξ)dξ

)2
. (58)

Then, there is a unique solution u(t, x) such that u ∈ L2((0,∞),H1
(0, 1)) and the origin u ≡ 0 of the closed-loop system is locally
exponentially stable in the L2 and H1 norm, i.e., there exists C2 > 0
such that, if ‖u0‖2L ≤ 32, then ∀t ≥ 0

‖u(t)‖2L ≤ C2e
−t
‖u0‖2L, (59)

where L is either L2 or H1 and C2 > 0 does not depend on u0.
Moreover, we can write the closed-loop solution for u(t, x) as

u = 2
∞∑
n=1

e−π
2n2t sin(πnx)

∫ 1

0
sin(πnξ)

[
u0(ξ)−

1
2

×

(∫ ξ

0
η(ξ − η)u0(η)dη

)2]
dξ + L

[
2
∞∑
n=1

e−π
2n2t
× sin(πnx)
∫ 1

0
sin(πnξ)

[
u0(ξ)−

1
2

(∫ ξ

0
η(ξ − η)

× u0(η)dη
)2]

dξ

]
. (60)

Proof. Using Lemma 6.1, since x ≤ 1 we get that, for all n, |ln| ≤
n!

16n−1
. Hence, fromDefinition 2.1 and Example 2.1, we have that for

the inverse Volterra series defined by l2 = k2 and (52), the radius
of convergence is ρL = 162 = 256. The gain bound function for
the transformation (13), since k is finite, can be written as k(s) =
2s + s2/32. Using ρL and k(s), and proceeding as in Corollary 5.1,
we get the L2 and H1 results of Theorem 4 for initial conditions u0
verifying ‖u0‖2L ≤ C1 = k

−1(ρL)/2 = 32. Moreover, (58) implies
that w0(0) = w0(1) = 0 and since w0 ∈ H1, Eq. (11) has a unique
solutionw in L2((0,∞),H1(0, 1)) (Evans, 1998, Theorems 3 and 4,
pages 356–358) (in fact more regularity is obtained, but we do not
need it). Using that

wx = ux −
1
2

(∫ x

0
(2x− ξ)u(t, ξ)dξ

)2
, (61)

ux = wx +
1
2

(∫ x

0
(2x− ξ)L[w](t, ξ)dξ

)2
, (62)

are valid (L[w] converges) if ‖u‖2
L2
≤ 32 (which is also implied

in the L = H1 case if ‖u‖2
H1
≤ 32), then u also has an

L2((0,∞),H1(0, 1)) solution. The explicit solutions are obtained
solving the heat equation. �

As simulation results in Vazquez and Krstic (2008, Section 6)
show for the example, where u0 = 400x(1 − x) implying that
‖u0‖2L2 ≈ 5000, the result is far from limited to such a small
neighborhood of the origin. This illustrates the rather conservative
nature of Theorem 4.

7. Conclusions and open problems

The efforts on nonlinear boundary control of PDEs of parabolic
type have so far resulted primarily in negative results—results that
show that control cannot prevent finite time blow-up. While in
this paper we formulate the first general framework in which the
problem is tractable, there are some parts of the analysis that
could be filled in with additional details, though their engineering
relevance is minor.
In our formulation, finding the controller’s Volterra kernels is

themain design task. In Vazquez andKrstic (2008)wehave derived
the set of equations that the kernels need to verify, a recursive
set of linear hyperbolic PDEs on domains of increasing dimension
and decreasing volume, with moving boundaries. In Vazquez and
Krstic (2008, Section 5) we present a particular solution in detail,
and then we show numerical examples in Vazquez and Krstic
(2008, Section 6). However, beyond numerical evidence we have
not provided any general well-posedness proof for the kernel
equations and just assumed it. Nevertheless in Section 4 we
derived a priori estimates to show that the existence of an H1
solution to the kernel equations is enough to define a convergent
Volterra series in the transformation and the control feedback law.
In Section 5 we provided a result of L2 and H1 exponential

stability. We have not pursued the study of stability in higher
regularity functional spaces, like the H2 space—which would be
useful to establish well-posedness of the closed-loop system.
Such spaces are endowed with norms whose study under our
framework requires some manipulation (term-by-term second-
order differentiation) of the transformation Volterra series. Before
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justifying such an operation we need more insight into the
regularity of the kernel equation solutions.
The stability result is local in nature because it relies critically

on the properties of the inverse transformation (27). Even if
the transformation (13) is globally convergent in L2, it is not
possible to generically guarantee that it has an everywhere defined
inverse. We have shown through an example that this result is too
conservative and there is room for improvement. However, there
are plants falling in the class of (9) that are not globally stabilizable
(see Vazquez and Krstic (2008, Section 3.2 and Section 6.2)) and
therefore a global stability result is not possible for thewhole class.
Thus, to obtain a global result, we need to refine (9) and identify a
subclass of systems for which the Volterra series transformation
(13) is globally invertible. This implies, by Corollary 5.1, that those
plants are globally stabilized by feedback law (14).

Appendix

The next technical result, proved in Vazquez and Krstic (2008),
is heavily used throughout the text.

Lemma A.1. The following two identities hold.∫
Tn(x,ξ)

fn(ξ̂ n0 )dξ̂
n
1

=

∫
Tn−1(x,ξ)

∫ ξm−1

ξm

fn(ξ̂m−10 , s, ξ̂ n−1m )dsdξ̂ n−11 , (A.1)∫
Tn(x,ξ)

fn(ξ̂ n0 )
∫

Tm(ξj,σ )

gm(ξj, σ̂m1 )dσ̂
m
1 dξ̂

n
1

=

∫
Tn+m(x,ξ)

Dn,mj [fn(ξ̂
n
0 )gm(ξj, ξ̂

n+m
n+1 )]dξ̂

n+m
1 , (A.2)

whereDn,mj was defined in Vazquez andKrstic (2008, Equation (53)).

A.1. Proof of Theorem 2

Define the (x-dependent) L2(Tn) norm of kn(ξ̂ n0 ) as

‖kn(x)‖2L2(Tn(x)) =
∫

Tn(x,ξ)
k2n(ξ̂

n
0 )dξ̂

n
1 (A.3)

For simplicity we will write ‖kn(x)‖2L2(Tn).
The proof of the theorem requires a number of technical results.

The first result is used to get a simpler expression for the number
of terms in the right-hand side of the kernel PIDE equation.

Lemma A.2. For n ≥ m ≥ 0, we have that

n−m∑
j=0

(
m+ j
j

)
=

(n+ 1)!
(m+ 1)!(n−m)!

. (A.4)

Proof. We have that
n−m∑
j=0

(
m+ j+ 1

j

)
=

(
m+ 1
0

)
+

n−m∑
j=1

(
m+ j+ 1

j

)

= 1+
n−m∑
j=1

(
m+ j
j

)
+

n−m∑
j=1

(
m+ j
j− 1

)

=

n−m∑
j=0

(
m+ j
j

)
+

n−m−1∑
j=0

(
m+ j+ 1

j

)
, (A.5)
where we have used the fact that(
n+ 1
k+ 1

)
=

(
n
k+ 1

)
+

(
n
k

)
. (A.6)

Hence, from (A.5) we get

n−m∑
j=0

(
m+ j
j

)
=

n−m∑
j=0

(
m+ j+ 1

j

)
−

n−m−1∑
j=0

(
m+ j+ 1

j

)

=

(
n+ 1
n−m

)
, (A.7)

and the result follows. �

The next result allows estimating the various norms arising in
the proof of the theorem.

Lemma A.3. The following estimates hold.

(1) For D defined in Vazquez and Krstic (2008, Equation (53)), we
have that for any function gn,

‖Dn,mj [gnfm](x)‖
2
L2(Tn+m)

≤ xm
‖fm‖2∞
m!

(m+ n− j)!
m!(n− j)!

‖gn(x)‖2L2(Tn). (A.8)

(2) For B defined in Vazquez and Krstic (2008, Equation (54)), we
have that

‖Bmn [kn−m+1, fm](x)‖
2
L2(Tn)

≤ xm
(n+ 1)!(n−m+ 1)
(m+ 1)!(n−m)!

‖fm‖2∞
m!

× ‖kn−m+1(x)‖2L2(Tn−m+1). (A.9)

(3) For C defined in Vazquez and Krstic (2008, Equation (55)), we
have that

‖Cmn [kn−m, hm](x)‖
2
L2(Tn)

≤
xmn!(n−m)

(m+ 1)!(n−m− 1)!
‖hm‖2∞
m!

× ‖kn−m(x)‖2L2(Tn−m). (A.10)

Proof. Using the definition of D, we have that

‖Dn,mj [gn fm](x)‖
2
L2(Tn+m)

=

∫
Tn+m(x,ξ)

Dn,mj [gn fm]
2(ξ̂ n+m−10 )dξ̂ n+m1

=

∫
Tn+m(x,ξ)

 ∑
γ̂
n−j+m
1 ∈Pn−j(ξ̂

n+m
j+1 )

gn(ξ̂
j
0, γ̂

n−j
1 )fm(ξj, γ̂

n+m−j
n−j+1 )


2

× dξ̂ n+m1 . (A.11)

Since Pn−j(ξ̂ n+mj+1 ) has
(n+m−j)!
m!(n−j)! elements and as

(∑n
k=1 pk

)2
≤

n
∑n
k=1 p

2
k , (A.11) yields

‖D[gnfm](x)‖2L2(Tn+m) ≤
(n+m− j)!
m!(n− j)!

×

∫
Tn+m(x,ξ)

∑
γ̂
n−j+m
1 ∈Pn−j(ξ̂

n+m
j+1 )

(
g2n (ξ̂

j
0, γ̂

n−j
1 )f 2m(ξj, γ̂

n+m−j
n−j+1 )

)
× dξ̂ n+m1

=
(n+m− j)!
m!(n− j)!

∫
Tn+m(x,ξ)

Dn,mj [g
2
n f
2
m](ξ̂

n+m
0 )dξ̂ n+m1 . (A.12)
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From Lemma A.1∫
Tn+m(x,ξ)

Dn,mj [g
2
n f
2
m](ξ̂

n+m
0 )dξ̂ n+m1

=

∫
Tn(x,ξ)

g2n (ξ̂
n
0 )

(∫
Tm(ξj,σ )

f 2m(ξj, σ̂
m
1 )dσ̂

m
1

)
dξ̂ n1

≤
‖fm‖2∞x

m

m!

∫
Tn(x,ξ)

g2n (ξ̂
n
0 )dξ̂

n
1 , (A.13)

hence

‖Dn,mj [gnfm](x)‖
2
L2(Tn+m)

≤
(n+m− j)!
m!(n− j)!

‖fm‖2∞x
m

m!
‖gn(x)‖2L2(Tn), (A.14)

which gives (A.8). For (A.9), and using Lemma A.1, we get

‖Bmn [kn−m+1, fm](x)‖
2
L2(Tn)

=

∫
Tn(x,ξ)

(
n−m+1∑
j=1

∫ ξj−1

ξj

Dn−m+1,mj

[
kn−m+1

(
ξ̂
j−1
0 , s,

ξ̂
j
n−m

)
fm
(
s, ξ̂ nn−m+1

)]
ds

)2
dξ̂ n1

≤ (n−m+ 1)
n−m+1∑
j=1

∫
Tn(x,ξ)

∫ ξj−1

ξj

Dn−m+1,mj

×

[
kn−m+1

(
ξ̂
j−1
0 , s, ξ̂ jn−m

)
fm
(
s, ξ̂ nn−m+1

)]2
dsdξ̂ n1

= (n−m+ 1)
n−m+1∑
j=1

∫
Tn+1(x,ξ)

Dn−m+1,mj

×

[
kn−m+1

(
ξ̂ n−m+10

)
fm
(
ξj, ξ̂

n+1
n−m

)]2
dξ̂ n+11

= (n−m+ 1)
n−m+1∑
j=1

‖Dn−m+1,mj

×[kn−m+1fm](x)‖2L2(Tn+1). (A.15)

Using then (A.8) we get

‖Bmn [kn−m+1, fm](x)‖
2
L2(Tn)

≤ (n−m+ 1)

(
n−m+1∑
j=1

(n+ 1− j)!
m!(n−m+ 1− j)!

)

× xm
‖fm‖2∞
m!
‖kn−m+1(x)‖2L2(Tn−m+1). (A.16)

Applying Lemma A.2 on the sum in (A.16), we obtain
n−m+1∑
j=1

(n+ 1− j)!
m!(n−m+ 1− j)!

=

n−m∑
j=0

(m+ j)!
m!j!

=

n−m∑
j=0

(
m+ j
j

)

=
(n+ 1)!

(m+ 1)!(n−m)!
, (A.17)

hence,

‖Bmn [kn−m+1, fm](x)‖
2
L2(Tn)

≤ xm
(n+ 1)!(n−m+ 1)
(m+ 1)!(n−m)!

‖fm‖2∞
m!

× ‖kn−m+1(x)‖2L2(Tn−m+1). (A.18)
The estimate for C is obtained in the same way as the estimate for
B. The result then follows. �

Remark 7. Since I[kn, f1] = B1n[kn, f1], we get

‖I[kn, f1](x)‖2L2(Tn) ≤
n2(n+ 1)
2

‖f1‖2ξ∞‖kn(x)‖
2
L2(Tn)

. (A.19)

The next lemma is useful to treat the Robin boundary condition.

Lemma A.4. Let n ≥ 1, q > 0, kn(ξ̂ n0 ) ∈ H
1(Tn). Then

q
∫

Tn−1(x,ξ)
k2n(ξ̂

n−1
0 , 0)dξ̂ n−11 ≤ q

∫
Tn−1(x,ξ)

k2n(x, x, ξ̂
n−1
1 )dξ̂ n−11

+ q2‖k2n(x)‖L2(Tn) +
n∑
j=1

‖k2nξj(x)‖L2(Tn). (A.20)

Proof. By the fundamental theorem of calculus,

q
∫

Tn−1(x,ξ)
k2n(ξ̂

n−1
0 , 0)dξ̂ n−11

− q
∫

Tn−1(x,ξ)
k2n(ξ̂

n−1
0 , ξn−1)dξ̂ n−11

= −q
∫

Tn(x,ξ)
∂ξnk

2
n(ξ̂

n
0 )dξ̂

n
1

= −2q
∫

Tn(x,ξ)
knknξn(ξ̂

n
0 )dξ̂

n
1 . (A.21)

Similarly, using Lemma A.1, for j = 0, . . . , n− 2,

q
∫

Tn−1(x,ξ)
k2n(ξ̂

j
0, ξj+1, ξ̂

n−1
j+1 )dξ̂

n−1
1

− q
∫

Tn−1(x,ξ)
k2n(ξ̂

j
0, ξj, ξ̂

n−1
j+1 )dξ̂

n−1
1

= −q
∫

Tn(x,ξ)
∂ξjk

2
n(ξ̂

n
0 )dξ̂

n
1

= −2q
∫

Tn(x,ξ)
knknξj+1(ξ̂

n
0 )dξ̂

n
1 , (A.22)

hence

q
∫

Tn−1(x,ξ)
k2n(ξ̂

n−1
0 , 0)dξ̂ n−11

− q
∫

Tn−1(x,ξ)
k2n(x, x, ξ̂

n−1
1 )dξ̂ n−11

= −2q
∫

Tn(x,ξ)
kn

(
n∑
j=1

knξj

)
(ξ̂ n0 )dξ̂

n
1

≤ q2‖k2n(x)‖L2(Tn) +
n∑
j=1

‖k2nξj(x)‖L2(Tn), (A.23)

and the result follows. �

The next lemma is used to get a precise estimate of the kernel
growth.

Lemma A.5. Let n > 2, x ∈ [0, 1] and Υ > 0. Then∫ x

0
ξ
n−1
2 exp (Υ ξ) dξ ≤

x
n
2 exp (Υ x)
√
n+ 1

√
D
. (A.24)
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Proof. Using the Cauchy–Schwartz inequality,∫ x

0
ξ
n−1
2 exp (Υ ξ) dξ ≤

x
n
2 exp (Υ x)
√
n+ 1

√
D

≤

√(∫ x

0
ξ n−1dξ

)(∫ x

0
exp

(
Υ

2
ξ

)
dξ
)

=

√
xn
(
exp

(
Υ

2 x
)
− 1

)
2nΥ

≤
x
n
2 exp (Υ x)
√
n+ 1

√
Υ
, (A.25)

wherewe have used that n+1 ≤ 2n. Hence the result follows. �

The next result is the main ingredient in the proof of Theorem 2.

Proposition A.1. Let gn(x) ≥ 0 be a sequence of differentiable
functions defined for n ≥ 1, x ∈ [0, 1], and verifying gn(0) = 0.
Assume the following estimate holds for n ≥ 1,

d
dx
gn ≤ (nB+ E)gn(x)+ Cn−1D

√
xnn!
2

+

√
(n+ 1)!
B

n∑
m=2

Cm−1Dgn−m+1(x)

×

√
xm

m(n−m+ 1)!

(
1+

2
√
(n+ 1)x

)
, (A.26)

where B, C, E > 0 and D ≥ B2. Then, gn(x) verifies the following
bound:

gn(x) ≤
√
n!DCn−1xn/2 exp (((nB+ E + Υ )x)) , (A.27)

where Υ = 4D
2(1+2

√
B)2

B4
> 1.

Proof. We prove the claim by complete induction. For n = 1, the
bound for g1 is not dependent on other gn’s:

d
dx
g1(x) ≤ (B+ E)g1 + D

√
x
2
. (A.28)

Using the comparison principle (Khalil), since g1(0) = 0,

g1(x) ≤ D
1
√
2

∫ x

0

√
ξ exp (((B+ E)(x− ξ))) dξ

≤ D
√
x exp ((B+ E)x)

≤ D
√
x exp ((B+ E + Υ )x) , (A.29)

so the result follows for n = 1. For n ≥ 2, we assume that the claim
holds for gj if j = 1, . . . , n− 1. Then g ′n(x) is bounded as follows

d
dx
gn(x) ≤ (nB+ E)gn(x)+ Cn−1D

√
xnn!
2

+

√
(n+ 1)!
B

n∑
m=2

Cn−1D2
√
(n−m+ 1)!

× e(B(n−m+1)+E+Υ )x
√

xn+1

m(n−m+ 1)!

×

(
1+

2
√
(n+ 1)x

)
= nBgn(x)+ Cn−1D

√
xnn!
2
+ Cn−1

D2

B

×

√
(n+ 1)!

√

xn+1e(Υ+E)x
n∑
m=2

eB(n−m+1)x

×
1
√
m

(
1+

2
√
(n+ 1)x

)
. (A.30)

Now, denote z = exp (Bx). Note that the sum in the last line of
(A.30) can be written as
n∑
m=2

exp (B(n−m+ 1)x)
1
√
m
=

n∑
m=2

zn−m+1
√
m

≤
1
√
2

n−1∑
m=1

zm

=
1
√
2

zn − z
z − 1

. (A.31)

Since z = exp (Bx), we have that z − 1 ≥ Bx, which implies that
n∑
m=2

exp (B(n−m+ 1)x) ≤
exp (Bnx)− exp (Bx)
exp (Bx)− 1

≤
exp (Bnx)
Bx

. (A.32)

Similarly, we can also write

n∑
m=2

exp (B(n−m+ 1)x) ≤

√√√√ n∑
m=2

eB(n−m+1)x

√√√√ n∑
m=2

eB(n−m+1)x

≤

√
exp (Bnx)
Bx

√
(n− 1) exp (B(n− 1)x)

=

√
n+ 1
Bx

exp (Bnx) . (A.33)

We use (A.33) for the part of (A.30) affected by 2
√
(n+1)x

, and (A.32)
for the rest. Then (A.30) yields

d
dx
gn(x) ≤ (nB+ E)gn(x)+ Cn−1D

√
xnn!
2

+ Cn−1
D2

B2
√
(n+ 1)!

√

xn−1

×
1
√
2
eBnx+Ex+Υ x

(
1+ 2

√
B
)
. (A.34)

Integrating and since gn(0) = 0,

gn(x) ≤ Cn−1
√
n!
2

[
D
∫ x

0
e(Bn+E)(x−ξ)ξ n/2dξ +

D2

B2

×
√
n+ 1

(
1+ 2

√
B
) ∫ x

0
e(Bn+E)xξ

n−1
2 eΥ ξdξ

]
≤ Cn−1D

√
n!
2
e(Bn+E)x

∫ x

0
ξ n/2dξ

+ Cn−1
√
(n+ 1)!

D2

B2
√
2

(
1+ 2

√
B
)
e(Bn+E)x

×

∫ x

0
ξ
n−1
2 eΥ ξdξ

≤ Cn−1D

√
n!
2
xn/2+1

2
n+ 2

e(Bn+E)x

+ Cn−1
√
(n+ 1)!

D2

B2
√
2

(
1+ 2

√
B
)
e(Bn+E)x
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×
x
n
2

√
n+ 1

eΥ ξ

2D(1+2
√
B)

B2

≤
√
n!xn/2Cn−1DeBnx+Ex+Υ x

1
√
2

(
2
n+ 2

+
1
2

)
≤
√
n!xn/2Cn−1DeBnx+Ex+Υ x, (A.35)

where we have used Lemma A.5 and the definition of Υ =

4D
2(1+2

√
B)2

B4
. This completes the proof. �

Proposition A.2. Let Assumptions 4.1 and 4.2 hold. Define for each
n ≥ 1 the function ψn(ξ n0 ) as the solution of the wave equation

ψnxx =

n∑
i=1

ψnξiξi , (A.36)

with boundary conditions

ψn(x, x, ξ n2 ) = φ̂n(x, ξ
n
2 ), (A.37)

ψnξi−1(ξ
n
0 )
∣∣
ξi−1=ξi = ψnξi(ξ

n
0 )
∣∣
ξi−1=ξi

, i = 2, . . . , n, (A.38)

ψnξn(ξ
n−1
0 , 0) = qψn(ξ n−10 , 0), (A.39)

where φ̂1(x) = q̂ − 1/2
∫ x
0 λ(s)ds, and for n ≥ 2, φ̂n(x, ξ

n
2 ) =

−1/2
∫ x
ξ2
hn−1(s, ξ n2 ). Then

‖ψn(x)‖2L2(Tn) + ‖ψnx(x)‖
2
L2(Tn)

≤ 4((ρh + 1)Dh)2xn(1+ |q|)2e1+|q̂|
(n− 1)!

ρ
2(n−1)
h

, (A.40)

and

‖ϕn‖
2
L2(Tn)

≤ D2ϕ

(
1
ρϕ

)2(n−1)
n!xn, (A.41)

whereϕn = −
∑n
i=1 λ(ξi)ψn−In[ψn, f1]−cψn−

∑n
m=2 B

m
n [ψn−m+1,

fm] −
∑n−1
m=1 C

m
n [ψn−m, hm] and ρϕ =

min{ρf ,ρh}
2 , Dϕ = 2((ρh +

1)Dh)(|q| + 1) exp(1+ |q̂|)
√
(ρh + 1)2D2h + D

2
f .

Proof. Under Assumption 4.2, there is an H1 solution to (A.36)–
(A.39). Consider

Lψn(x) =
∫

Tn(x,ξ)

(1+ q̂2)ψ2n + ψ
2
nx +

n∑
j=1
ψ2nξj

2
dξ̂ n1

+
q
2

∫
Tn−1(x,ξ)

ψ2n (x, ξ̂
n−1
1 , 0)dξ̂ n−11

+
|q̂|
2

∫
Tn−1(x,ξ)

φ̂2n(x, ξ̂
n−1
1 )dξ̂ n−11 . (A.42)

By Lemma A.4, Lψn(x) ≥ 0. It is straightforward to show (see Proof
of Theorem 2), using (A.36)–(A.39), that for n ≥ 2,

L′ψn(x) = (1+ q̂
2)

∫
Tn(x,ξ)

ψnψnx(x, ξ̂ n1 )dξ̂
n
1

+ |q̂|
∫

Tn−1(x,ξ)
φ̂nφ̂nx(x, ξ̂ n−11 )dξ̂ n−11

+

∫
Tn−1(x,ξ)

(1+ q̂2)φ̂2n + φ̂
2
nx +

n∑
j=2
φ̂2nξj

2
(x, ξ̂ n2 )dξ̂

n
2

+
q
2

∫
Tn−2(x,ξ)

φ̂2n(x, ξ̂
n−2
1 , 0)dξ̂ n−21

+
|q̂|
2

∫
Tn−2(x,ξ)

φ̂2n(x, x, ξ̂
n−2
1 )dξ̂ n−21

≤ (1+ |q̂|)Lψn(x)+ (n− 1)!
2D2h

(
1
ρh

)2(n−2)
×

(
xn−1(1+ |q̂|)2

(n− 1)!
n+ 2
8
+
|q|
2

xn−2

(n− 2)!
x2

8

)
≤ (1+ |q̂|)Lψn(x)+ (n− 1)!x

n−1D2h

×

(
1
ρh

)2(n−2)
(1+ |q̂|)2(1+ |q|)

n+ 2
8

. (A.43)

Since Lψn(0) = 0, integrating (A.43) and using that ‖ψn(x)‖
2
L2(Tn)
+

‖ψnx(x)‖2L2(Tn) ≤ 2Lψn(x)we get (A.40) for n ≥ 2. For n = 1, (A.40)
follows similarly.
Finally, to get the estimate on ϕ we use (A.40) and Lemma A.3

in the definition of ϕ, obtaining (A.41). This finishes the proof. �

Now we prove the main theorem.

Proof of Theorem 2. We obtain the estimates (22) by a Lyapunov
method. First, we homogenize the equation defining k̂n(ξ n0 ) =
kn(ξ n0 )− ψn(ξ

n
0 ), where ψn was defined in Proposition A.2.

Then the kernels k̂n verify (Vazquez & Krstic, 2008, Equations
(40)–(47))with the equation in Vazquez andKrstic (2008, Equation
(43)) replaced by k̂n(x, x, ξ n2 ) = 0 and an additional right-hand-
side term, ϕn, as defined in Proposition A.2, in Vazquez and Krstic
(2008, Equation (40)). For simplicity, we drop hats and define γ =
max{1, ‖f1‖∞ + ‖λ‖∞}.
Consider, for each n ≥ 1, the following Lyapunov function

Ln(x) =
∫

Tn(x,ξ)

(n2γ + q̂2)k2n + k
2
nx +

n∑
j=1
k2nξj

2
dξ̂ n1

+
q
2

∫
Tn−1(x,ξ)

k2n(x, ξ̂
n−1
1 , 0)dξ̂ n−11 , (A.44)

which is positive definite by application of Lemma A.4. Note that
(A.44) is equivalent to the H1 norm in Tn(x):

Ln(x) =
n2γ ‖kn(x)‖2L2(Tn) + ‖knx(x)‖

2
L2(Tn)

2

+

n∑
j=1
‖knξj(x)‖

2
L2(Tn)

2
. (A.45)

If q = ∞ (Dirichlet boundary condition at x = 0), then set q = 0
in (A.44) and the rest of the proof.
Taking the x derivative of (A.44), we get

L′n(x) = (n
2γ + q̂2)

∫
Tn(x,ξ)

knknxdξ̂ n1

+

∫
Tn(x,ξ)

(
knxknxx +

n∑
j=1

knξjknξjx(x, ξ̂
n
1 )

)
dξ̂ n1

+

∫
Tn−1(x,ξ)

γ k2n(x, x, ξ̂
n−1
1 )+ k2nx(x, x, ξ̂

n−1
1 )

2

+

n∑
j=1
k2nξj(x, x, ξ̂

n−1
1 )

2
dξ̂ n−11
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+ q
∫

Tn−1(x,ξ)
knknx(x, ξ̂ n−11 , 0)dξ̂ n−11

+
q
2

∫
Tn−2(x,ξ)

k2n(x, x, ξ̂
n−2
1 , 0)dξ̂ n−21 . (A.46)

From the boundary conditions, k2n(x, x, ξ̂
n−1
1 ) = 0, so k2nξj(x, x,

ξ̂ n−11 ) = 0 for j ≥ 2, and knx(x, x, ξ̂ n−11 ) = −knξ1(x, x, ξ̂
n−1
1 ). Hence,

the third line of (A.46) is greatly simplified as follows.∫
Tn−1(x,ξ)

(n2γ + q̂2)k2n(x, x, ξ̂
n−1
1 )+ k2nx(x, x, ξ̂

n−1
1 )

2

+

n∑
j=1
k2nξj(x, x, ξ̂

n−1
1 )

2
dξ̂ n−11

=

∫
Tn−1(x,ξ)

k2nx(x, x, ξ̂
n−1
1 )dξ̂ n−11 . (A.47)

Using the kernel PIDE equation for the first term in the second
line of (A.46) we get∫

Tn(x,ξ)
knxknxx(x, ξ̂ n1 )dξ̂

n
1

=

n∑
j=1

∫
Tn(x,ξ)

knxknξjξj(x, ξ̂
n
1 )dξ̂

n
1

+

∫
Tn(x,ξ)

(
n∑
j=1

λ(ξj)

)
knxk(x, ξ̂ n1 )dξ̂

n
1

−

∫
Tn(x,ξ)

(knxfn + knxϕn)(x, ξ̂ n1 )dξ̂
n
1

+

∫
Tn(x,ξ)

knxI[kn, f1](x, ξ̂ n1 )dξ̂
n
1

+

n∑
m=2

∫
Tn(x,ξ)

knxBmn [kn−m+1, fm](x, ξ̂
n
1 )dξ̂

n
1

+

n−1∑
m=1

∫
Tn(x,ξ)

knxCmn [kn−m, hm](x, ξ̂
n
1 )dξ̂

n
1 . (A.48)

Now the first integral in the second line of (A.48) can be expressed
as
n∑
j=1

∫
Tn(x,ξ)

knxknξjξj(x, ξ̂
n
1 )dξ̂

n
1

=

n−1∑
j=1

∫
Tn−1(x,ξ)

∫ ξj−1

ξj

knxknξjξj(x, ξ̂
j−1
1 , s, ξ̂ n−1j )dsdξ̂ n−11

+

∫
Tn(x,ξ)

knxknξnξn(x, ξ̂
n
1 )dξ̂

n
1 . (A.49)

Integrating by parts in ξj in (A.49),
n∑
j=1

∫
Tn(x,ξ)

knxknξjξj(x, ξ̂
n
1 )dξ̂

n
1

= −

n−1∑
j=1

∫
Tn−1(x,ξ)

∫ ξj−1

ξj

knxξjknξj(x, ξ̂
j−1
1 , s, ξ n−1j )dsdξ̂ n−11

−

∫
Tn(x,ξ)

knxξnknξn(x, ξ̂
n
1 )dξ̂

n
1

+

n−1∑
j=1

∫
Tn−1(x,ξ)

(
knxknξj(x, ξ̂

j−1
1 , ξj−1, ξ̂

n−1
j )
− knxknξj(x, ξ̂
j−1
1 , ξj, ξ

n−1
j )

)
dξ̂ n−11

+

∫
Tn(x,ξ)

(
knxknξn(x, ξ̂

n−1
1 , ξn−1)

− knxknξn(x, ξ̂
n−1
1 , 0)

)
dξ̂ n−11

= −

n∑
j=1

∫
Tn(x,ξ)

knxξjknξj(x, ξ̂
n
1 )dξ̂

n
1

+

∫
Tn−1(x,ξ)

knxknξ1(x, x, ξ̂
n−1
1 )dξ̂ n−11

+

n−1∑
j=1

∫
Tn−1(x,ξ)

(
knxknξj+1(x, ξ̂

j
1, ξj, ξ̂

n−1
j )

− knxknξj(x, ξ̂
j−1
1 , ξj, ξ

n−1
j )

)
dξ̂ n−11

−

∫
Tn−1(x,ξ)

knxknξn(x, ξ̂
n−1
1 , 0)dξ̂ n−11 , (A.50)

and using the Neumann boundary conditions for ξj = ξj+1 and the
Robin boundary conditions for ξn = 0, we get

n∑
j=1

∫
Tn(x,ξ)

knxknξjξj(x, ξ̂
n
1 )dξ̂

n
1

= −

n∑
j=1

∫
Tn(x,ξ)

knxξjknξj(x, ξ̂
n
1 )dξ̂

n
1

−

∫
Tn−1(x,ξ)

k2nx(x, x, ξ̂
n−1
1 )dξ̂ n−11

− q
∫

Tn−1(x,ξ)
knxkn(x, ξ̂ n−11 , 0)dξ̂ n−11 , (A.51)

where we have used again that knξ1(x, x, ξ̂
n−1
1 ) = −knx(x, x, ξ̂ n−11 ).

Then some terms cancel out, leaving

d
dx
Ln = (n2γ + q̂2)

∫
Tn(x,ξ)

knknx(x, ξ̂ n1 )dξ̂
n
1

+

∫
Tn(x,ξ)

(
n∑
j=1

λ(ξj)

)
knxk(x, ξ̂ n1 )dξ̂

n
1

+

∫
Tn(x,ξ)

(knxϕn(x, ξ̂ n1 ))dξ̂
n
1

+

∫
Tn(x,ξ)

knxI[kn, f1](x, ξ̂ n1 )dξ̂
n
1

+

n∑
m=2

∫
Tn(x,ξ)

knxBmn [kn−m+1, fm](x, ξ̂
n
1 )dξ̂

n
1

+

n−1∑
m=1

∫
Tn(x,ξ)

knxCmn [kn−m, hm](x, ξ̂
n
1 )dξ̂

n
1

−

∫
Tn(x,ξ)

knxfn(x, ξ̂ n1 )dξ̂
n
1 , (A.52)

and using Cauchy–Schwartz and Young’s inequalities, and the
definition of γ (note that if f1 = 0 then I[kn, f1] = 0),

dLn
dx
≤ (n
√
γ + |q̂|)

∫
Tn(x,ξ)

(n2γ + q̂2)k2n + k
2
nx

2
dξ̂ n1

+

√∫
Tn(x,ξ)

k2nxdξ̂
n
1

(
‖fn‖∞

√
xn

n!
+

√∫
Tn(x,ξ)

ϕ2ndξ̂
n
1

)
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+

n∑
m=2

√∫
Tn(x,ξ)

k2nxdξ̂
n
1

√∫
Tn(x,ξ)

(
Bmn [kn−m+1, fm]

)2 dξ̂ n1
+

n−1∑
m=1

√∫
Tn(x,ξ)

k2nxdξ̂
n
1

√∫
Tn(x,ξ)

(
Cmn [kn−m, hm]

)2 dξ̂ n1
+ n
√
γ

∫
Tn(x,ξ)

k2nx +
I2[kn,f1]
n2‖f1‖∞

2
dξ̂ n1 , (A.53)

and using Lemma A.3,

dLn
dx
≤ (2n

√
γ + |q̂|)

∫
Tn(x,ξ)

(n2γ + q̂2)k2n + k
2
nx

2
dξ̂ n1

+

√∫
Tn(x,ξ)

k2nxdξ̂
n
1

(
‖fn‖∞

√
xn

n!
+

√∫
Tn(x,ξ)

ϕ2ndξ̂
n
1

)

+

√∫
Tn(x,ξ)

k2nx(x, ξ̂
n
1 )dξ̂

n
1

√
(n+ 1)!

×

[
n∑
m=2

‖fm‖∞
√
xm

m!

√
n−m+ 1
m(n−m)!

×

√∫
Tn−m+1(x,ξ)

k2n−m+1(x, ξ̂
n−m+1
1 )dξ̂ n−m+11

+
1

√
n+ 1

n−1∑
m=1

‖hm‖∞
√
xm

m!

√
n−m

m(n−m− 1)!

×

√∫
Tn−m(x,ξ)

k2n−m(x, ξ̂
n−m
1 )dξ̂ n−m1

]
≤ (2n

√
γ + |q̂|)Ln +

√
2Ln

×

(
‖fn‖∞

√
xn

n!
+ ‖ϕn‖L2(Tn)

)

+ 2

√
(n+ 1)!Ln

γ

n∑
m=2

‖fm‖∞
m!

√
xmLn−m+1

m(n−m+ 1)!

+ 2

√
n!Ln
γ

n−1∑
m=1

‖hm‖∞
m!

√
xmLn−m
m(n−m)!

. (A.54)

Using Assumptions 4.1 and 4.2, and Proposition A.2,

dLn
dx
≤ (2n

√
γ + |q̂|)Ln +

√
2Ln

((
1
ρf

)n−1
Df

+

(
1
ρϕ

)n−1
Dϕ

)
√
xnn! + 2

√
(n+ 1)!Ln

γ

×

n∑
m=2

(
1
ρf

)m−1
Df

√
xmLn−m+1

m(n−m+ 1)!

+ 2

√
n!Ln
γ

n−1∑
m=1

(
1
ρh

)m−1
ρhDh

√
xmLn−m
m(n−m)!

. (A.55)

Denote C = 1/ρϕ . Then 1/ρf ≤ C and 1/ρh ≤ C . Denote
D = Df + ρhDh + Dϕ . Dividing (A.55) by 2

√
Ln(x), we obtain

d
dx

√
Ln ≤

(
n
√
γ +
|q̂|
2

)√
Ln(x)+ Cn−1D

√
xnn!
2

+

√
(n+ 1)!
γ

n∑
m=2

Cm−1D

√
xmLn−m+1(x)
m(n−m+ 1)!

×

(
1+

2
√
x(n+ 1)

)
. (A.56)

Denoting gn(x) =
√
Ln(x) in (A.56), we get

dgn
dx
≤

(
n
√
γ +
|q̂|
2

)
gn + Cn−1D

√
xnn!
2
+

√
(n+ 1)!
γ

×

n∑
m=2

Cm−1Dgn−m+1(x)

√
xm

m(n−m+ 1)!

×

(
1+

2
√
x(n+ 1)

)
. (A.57)

Since gn > 0 and gn(0) =
√
Ln(0) = 0, we can use Proposition A.1

with B =
√
γ , E = |q̂|2 . Thus we obtain√

Ln(x) ≤
√
n!DCn−1xn/2en

√
γ x+ |q̂|2 x+Υ x, (A.58)

where Υ = 4D
2(1+2 4

√
γ )2

γ 2
> 1. Squaring (A.58) yields

Ln(x) ≤ n!D2C2n−2xne2n
√
γ x+|q̂|x+2Υ x. (A.59)

Hence, recovering the hat notation,

n2γ
2
‖k̂n(x)‖2L2(Tn) ≤ Ln(x) ≤ n!D

2C2n−2e2n
√
γ+|q̂|+2Υ , (A.60)

and since γ−1 ≤ 1,

‖kn(x)+ ψn(x)‖2L2(Tn) ≤ (n− 1)!2D
2C2n−2e2n

√
γ+|q̂|+2Υ , (A.61)

where ψn was defined in Proposition A.2. Then, using the
definitions of C and D,

‖kn(x)‖2L2(Tn) = ‖kn(x)+ ψn(x)− ψn(x)‖
2
L2(Tn)

≤ (n− 1)!4D2C2n−2e2(n
√
γ+Υ )+|q̂|, (A.62)

andwe get that the Volterra series defined by kn is convergentwith
the radius of convergence

ρk = C−2e−2
√
γ
=

(
min{ρf , ρh}

2

)2
e−2
√
γ . (A.63)

Similarly we get

‖knx(x)‖2L2(Tn) ≤ n!2D
2C2n−2e2(n

√
γ+Υ )+|q̂|, (A.64)

which used in (15) gives the convergence of the transformation for
wx, thus proving the theorem. �
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