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A B S T R A C T

Electric Solar Wind Sails (E-Sails) are a new type of spacecraft propellantless propulsion system
that gathers its energy from solar wind protons and is potentially useful for interplanetary
missions. Although optimal interplanetary trajectories have been the subject of thorough
research, the substantial variability of the solar wind necessitates the adoption of active guidance
strategies, an area that has received significantly less scholarly attention. This paper proposes
guidance algorithms for E-Sails based on Model Predictive Control (MPC), a modern control
methodology based on online re-planning of the trajectory. To this end, first, properties of E-
sail time-optimal orbits are studied applying Pontryagin’s Minimum Principle, and then time-
optimal orbits for missions to Mars and Jupiter are computed via direct transcription methods.
Next, solar wind perturbations are modeled, posing a challenging saturation problem due to
their high variability. Guidance strategies based on Shrinking Horizon and Receding Horizon
Model Predictive Control (RHMPC) are developed, analyzed and compared using Monte Carlo
simulations, successfully implementing MPC to E-sail guidance. Lastly, the RHMPC strategy is
successfully tested with accurate historical solar wind data from the WSA-Enlil model.

1. Introduction
Since the dawn of the Space Age, the exploration of the Solar System has been one of the main drivers of

space technology. However, going beyond Earth’s closest neighbours is exceedingly challenging due to the enormous
energetic costs involved in orbital transfers. This limitation motivated the study of more efficient propulsion methods,
such as propellantless systems.

The Electric Solar Wind Sail (E-sail) falls into the broader category of propellantless propulsion systems, a in
particular, belongs to those designed to extract from the Sun the energy needed for orbital transfers. The solar sails,
also known as photon sails, conceived by K. Tsiolkovsky [1] and F. Tsander [2] among others, use sunlight photons as
the source of energy. They work similarly to a sailing boat, hence their name. The idea is to deploy a large reflective
surface around the spacecraft to reflect photons from the solar wind. By Maxwell’s Theory of Electromagnetism, a
resultant force and moment (not necessarily perpendicular to the surface) are exerted on the spacecraft. Therefore,
both orbit and attitude can be modified. This type of solar sails is the most common to date; LightSail 2 [3] and
IKAROS [4] are examples of successful missions carried out using this technology. Looking ahead, the ACS3 [5] or
Solar Cruiser [6] missions are representative of the advancements that can be achieved in the coming years.

Later, in 1988, D. Andrews and R. Zubrin, proposed the concept of magnetic solar sail [7]. It works by creating a
magnetic field around the sail that deflects the solar plasma, and therefore extracts its momentum. However, technical
challenges in regards to the magnetic field source are still unsolved, and no real mission has used this type of sail yet.

Lastly, the Electric Solar Wind Sail concept, which is the one considered in this article, was initially conceived
by P. Janhunen in 2004 [8]. Inspired by the development of photonic solar wind sails, he studied the feasibility of
a similar model that produced thrust by modifying the momentum of protons using an electric field generated by a
mesh of wires, thus creating repulsive Coulomb forces. From there, many investigations were conducted around its
design [9–11], deployment [12], applications [13], thrust modeling [14, 15] and performance [16, 17], among other
topics. In terms of the orbital mechanics problem, techniques for computing optimal trajectories [18–21], applications
to potentially viable missions [22–25] or basic algorithms for trajectory correction [26, 27] are examples of research
carried out. Investigations around attitude dynamics have also been conducted [28, 29], some of the latest related to
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the development of control laws with realistically shaped tethers [30–33], the study of the effects in dynamics and
control of important variables such as spin rate using FEMs [34, 35], the deduction of propulsive models taking into
account more complex phenomena like coning angle dynamics [36], or the study of tethers’ oscillations using dynamic
multibody models [37]. In regards to the suitability of this propellantless system, the ESTCube-2 CubeSat is planned
to be launched in the second half of 2023, and will serve to demonstrate the E-sail technology.

While the optimal trajectory problem has been extensively studied, the guidance problem due to solar wind
uncertainty is a much more challenging problem [38, 39]. Although this problem has been previously tackled by
repetitively solving the trajectory indirect problem in [26], this work aims to solve this challenge using conventional
control strategies based on Model Predictive Control (MPC). This concept, which originated in the late seventies, is
a family of control strategies that use a system model to predict future values of state variables up to a future time
horizon in terms of the past and present state and control values, and then minimizes a cost function in order to
obtain the optimal future control values. Each sampling time, this process is repeated. MPC is therefore very suited for
slow systems that require a robust control due to the presence of significant disturbances. In fact, it has already been
considered for spacecraft missions such as rendezvous [40] or attitude control for spacecraft rendezvous [41] or E-sail
attitude maneuver [32, 33]. Due to the high solar wind variability, MPC is well-suited for the development of guidance
strategies for the E-sail, which is crucial to its applicability, since thrust produced is directly related to solar wind.
This fact is of great importance, because until now, solar wind fluctuations interfered with interplanetary spacecrafts
as variations in radiation pressure or similar physical phenomena, which were relatively small in terms of magnitude.
However, variations in solar wind can potentially double or halve the thrust produced by the E-sail.

This dramatic variability has to be taken into account in the guidance strategy. One of the simplest ways to deal with
uncertainty, and the one chosen in this work, is the consideration of worst-case scenarios or safety margins taking into
account the distribution of uncertainty. In MPC, similar ideas have been used in the past, by setting the constraints to
the worst possible case, see e.g. [42] or using chance constraints from which safety margins are derived [43, 44].
In addition, the scope of robust design methodologies is broad and diverse, offering a multitude of avenues for
enhancing guidance robustness in the face of uncertainty. Indeed, the most recent literature contains a variety of such
methodologies, such as tube-based MPC [45], direct adaptive control [46], robust learning methods [47], reinforcement
learning [48], stochastic optimal control [49], belief Markov decision processes and belief optimal control [50], or
robust epistemic uncertainty optimization [50]. These approaches are particularly pertinent when facing indeterminate
models of uncertainty, wherein the identification and characterization of uncertainty become essential [42, 45, 51].
Each of these methodologies can contribute in different ways to the robustness of guidance systems, expanding the
toolbox available for dealing with for dealing with uncertainty in optimal trajectory design.

The main contributions of this work can be summarized as follows. Firstly, the performance of the guided trajectory
problem formulation is evaluated under solar wind uncertainty, employing both shrinking and receding strategies for
missions to Mars and Jupiter. Beyond feedback’s own ability to reject disturbances, uncertainties are dealt with by
using worst-case scenarios and safety margins (taking into account the distribution of solar wind variability), which
inevitably leads to sub-optimal solutions. The proposed strategy is applicable to various planetary or interplanetary
missions, including destinations within the inner planets. However, Mars and Jupiter are chosen based on the superior
performance attributed to the E-sail when operating farther from the Sun compared to other propellantless systems
relying on solar wind, owing to its lower decay [16]. Furthermore, a study of the influence of the safety margin for
nominal acceleration on trajectory recalculations and its impact on the success rate through Monte Carlo analysis
is presented. For the receding horizon strategy, various objective functions are proposed and compared. Finally, the
viability of receding horizon MPC is demonstrated by considering time-varying solar wind variations derived from
accurate models.

In this work, a two dimensional problem is considered for simplicity and circular orbits are assumed for planet’s
orbits [16, 39]. Sun-based canonical units are used in the formulation. The cited hypothesis allows to keep the focus
on the guidance problem and the solar wind variability by eliminating the influence of the planets’ orbits but do not
diminish the value of the main contribution of this work. The consideration of a more detailed 3D problem with more
realistic orbits has already been assessed for E-sail and its feasibility demonstrated [52].

This paper is organized as follows. Section 2 introduces the models used for orbital motion, E-sail thrust and solar
wind uncertainty. Next, Section 3 presents the optimal trajectory planning under nominal solar wind for interplanetary
missions to Mars and Jupiter. Subsequently, in Section 4, the formulation of the Shrinking Horizon and Receding
Horizon MPC guidance strategies is discussed, taking into account the effects of solar wind uncertainties. Additionally,
the results of the Monte Carlo analysis carried out for both approaches are provided. In Section 5, a successful mission
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to Mars is computed using actual historical solar wind data and employing the Receding Horizon MPC strategy. Finally,
the conclusions drawn from the obtained results are presented in Section 6 and the future works are identified.

2. Models for E-Sail trajectories
In this section a model for the E-sail thrust is introduced and the equations of motion are presented. Next, solar wind

uncertainty is introduced and modeled as a probability distribution. Additionally, model limitations and assumptions
are also discussed.

For convenience, canonical units are used, with the acronym AU meaning Astronomical Unit, and UV Units of
Velocity (that is, AU divided by the canonical Unit of Time UT ). In this sense, 1AU ≈ 1.496 ⋅1011 m, 1UT ≈ 58.1324
days and 1UV ≈ 29.785 km/s.

2.1. E-sail thrust model
The E-sail thrust model used for this work is the one presented in [14], which is developed from a geometrical

standpoint, and proposes simple yet precise expressions of radial and tangential accelerations produced by the E-sail.
It should be noted the thrust model is reliable in the solar wind near 1 AU and for typical E-sail parameters. Outside of
those conditions, the accuracy of the model may be diminished. The radial and tangential accelerations are given by

𝑎𝑟 = 𝜏
𝑎𝑐
2

(𝑟⊕
𝑟

)

(

1 + cos2 𝛼𝑛
)

,

𝑎𝜃 = 𝜏
𝑎𝑐
2

(𝑟⊕
𝑟

)

cos 𝛼𝑛 sin 𝛼𝑛.
(1)

Note that the acceleration produced by the E-sail is inversely proportional to the distance from the Sun, 𝑟 . In this
model, 𝜏 ∈ [0, 1], which is a control variable, represents the throttle level of the E-sail, with 0 meaning that no thrust
is produced and 1 representing maximum thrust. The value 𝑎𝑐 is the spacecraft characteristic acceleration (i.e. the
maximum value of acceleration measured at 1AU from the Sun, 𝑟⊕). The sail pitch angle, which is denoted 𝛼𝑛, has an
influence not only in the acceleration direction, but also in the modulus. A concept visualization of this thrust model
is presented in Fig. 1. In this study, it is assumed that the throttle level and the sail pitch angle can be instantaneously
controlled at will, i.e., they are the control variables. In reality, controlling the sail pitch angle presents an attitude
problem that is also being addressed (see [30], [34]), although it occurs on a much shorter timescale.

Defining 𝑎 as the acceleration modulus computed from the components described in Eq. (1), the dimensionless
propulsive acceleration modulus, considering 𝜏 = 1, is defined as 𝛾 = 𝑎∕

(

𝑎𝑐
(

𝑟⊕∕𝑟
))

and is represented Fig. 2 as a
function of the sail angle 𝛼𝑛. The the thrust cone angle 𝛼, is also depicted. There is a maximum value of 𝛼𝑛, which
recent studies approximate to be in the range of 60◦ to 70◦ [11], since going beyond that limit implies dealing with
non-desirable instabilities. However, looking at the evolution of 𝛾 , it can be seen that, assuming an optimal transfer,
there is no apparent reason for going beyond the sail pitch angle that yields maximum thrust cone angle 𝛼𝑚𝑎𝑥 (marked
in Fig. 2), since the non-dimensional acceleration 𝛾 is strictly decreasing with 𝛼𝑛. The results provided in Section 3.2
corroborate that, for optimal mission planning, the sail angle value remains within the feasible range.
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Figure 1: Conceptual E-sail thrust model illustration
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Figure 2: Variation with respect to 𝛼𝑛 of 𝛾 (in blue) and 𝛼 (in orange)

2.2. Equations of motion
First, the orbital equation of motion including the E-sail acceleration,

𝒓̈ = −
𝜇
𝑟2

𝒓
𝑟
+ 𝒂 + 𝒂𝑝 (2)

where 𝜇 = 1.327124 ⋅ 1011 km3/s2 is the Standard Gravitational Parameter of the Sun, 𝒓 denotes the position vector in
the Heliocentric Inertial reference frame (HCI), 𝒂 accounts for the E-sail acceleration and 𝒂𝑝 represents the acceleration
caused by disturbances, such as third-body perturbations. The equations of motion are obtained by conveniently
expressing the equation of motion as a set of first order differential equations expressed in polar coordinates, yielding

𝑟̇ = 𝑣𝑟,

𝜃̇ =
𝑣𝜃
𝑟
,

𝑣̇𝑟 =
𝑣2𝜃
𝑟

−
𝜇
𝑟2

+ 𝜏
𝑎𝑐
2

(𝑟⊕
𝑟

)

(

1 + cos2 𝛼𝑛
)

,

𝑣𝜃 = −
𝑣𝑟𝑣𝜃
𝑟

+ 𝜏
𝑎𝑐
2

(𝑟⊕
𝑟

)

cos 𝛼𝑛 sin 𝛼𝑛.

(3)

Note that perturbations are omitted, which will be taken care of by the closed loop guidance strategy.

2.3. Solar wind uncertainty model
According to [53], the force per unit length exerted by each one of the tethers that make up the E-sail follows the

expression

𝑓𝑙 = 0.18max(0, 𝑉0 − 𝑉1)
√

𝜖0 𝑝⊕, (4)

where 𝑉0 denotes the tether voltage, 𝑉1 the solar wind electric potential, 𝜖0 is the vacuum permittivity and 𝑝⊕ denotes
the dynamic pressure of the Sun at 1 AU distance from it, all expressed in the International System of Units. Since
typically 𝑉0 ≫ 𝑉1, it can be assumed that the force per unit length generated by a tether is proportional to the square
root of the dynamic pressure. Moreover, the total force generated by a tether can be computed knowing the force per
unit length and applying a correction factor 𝑘1 (𝑓𝑡 = 𝑘1 𝑓𝑙 𝑙) which depends on the geometry. Similarly, the total force
is obtained by multiplying the force of an individual tether by the number of tethers 𝑛𝑡, and applying another geometric
correction 𝑘2 (𝐹 = 𝑘2 𝑛𝑡 𝑓𝑡). Therefore, the total force is proportional to the force per unit length, and thus acceleration
is proportional to the squared root of the dynamic pressure (i.e. 𝑎 ∝ 𝑝1∕2⊕ ). Thus, the modeling of dynamic pressure
uncertainties is crucial, since it directly impacts the performance of the E-sail.

Predicting the dynamic pressure of the Sun is remarkably difficult. The intrinsic chaotic and turbulent processes
happening in its interior make the fluctuations of solar wind rather unpredictable [54]. Fig. 3 represents a histogram of
the dynamic pressure obtained from data gathered from the NASA OMNIWeb Data Explorer, as proposed in [38]. The
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Figure 3: Gamma distribution of 𝑝⊕ (red line) compared with real data gathered from NASA (bars)

mean dynamic pressure at 1 AU can be estimated to be around 𝑝⊕ ≈ 2 nPa, with an standard deviation of approximately
𝜎𝑝⊕ ≈ 1.56 nPa.

Following [38], the distribution function of the solar wind dynamic pressure at 1AU is approximated by a gamma
distribution. A comparative of both the real distribution and gamma approximation can be observed again in Fig. 3.
The probability density function of 𝑝⊕ is given by

𝑓 (𝑝⊕) =
𝛽−𝛼

Γ(𝛼)
𝑝𝛼−1⊕ exp(−𝑝⊕∕𝛽), (5)

where the coefficients 𝛼 = 1.6437, 𝛽 = 1.2168, are considered to adjust the mean and standard deviation.
As shown in Fig. 3, the gamma probability density function (PDF) tends to overestimate the likelihood of having

values of 𝑝⊕ smaller (or slightly greater) than the mean value 𝑝⊕. Simultaneously, it underestimates the peak near 𝑝⊕
and the values in the tail. This leads to a certain level of conservatism in the considered solar pressure distribution
compared to the actual one. It’s worth noting that the guidance strategies proposed in this study could potentially be
applied to other models of solar pressure PDFs, and better results could be achieved if a more precise uncertainty model
is considered [55]. Finally, since the real data for solar wind dynamic pressure available corresponds to 1 AU, it should
be acknowledge that the representativeness of the uncertainty model used is anticipated to diminish with increasing
distance to the Sun.

3. Optimal mission planning under nominal solar wind
The optimal orbit control problem is tackled in the current Section. Time-optimal orbits for rendezvous missions to

Mars and Jupiter are obtained assuming nominal solar dynamic pressure. However, the solar wind uncertainty described
in Section 2.3, is considered during mission planning by applying a control margin of 40%, equivalent to a saturation
probability of 20%, to the nominal characteristic acceleration, 𝑎𝑐 = 0.6m∕s2, used. This results in the characteristic
acceleration 𝑎̃𝑐 = 0.36,m∕s2 used. The relation between saturation probability and control margin is shown in Figure
4. Since the time-dependency of the planets’ position is not explicitly considered, this problem can be seen as an orbit-
to-orbit transfer. However, due to the rotational symmetry of the problem (which comes from considering circular
orbits), the orbit-to-orbit transfer becomes a planet-to-planet transfer simply by choosing the appropriate launch date.

First, the Optimal Control Problem (OCP) is formulated in Section 3.1. Then, it is solved by both an indirect
(Section 3.2) and a direct (Section 3.3) approach. On the one hand, indirect methods apply optimality conditions
first, which makes it possible to obtain local laws for the control variables converting the problem into a Two-Point
Boundary Value Problem. On the other hand, direct transcription discretizes the problem in time, converting the set of
optimization variables into a finite set of parameters, that is, a Non-Linear Programming (NLP) problem. Additionally,
direct methods tend to be more stable and less dependent on initial conditions compared to indirect approaches.
Therefore, the optimal orbits are first computed solving the NLP problem. Finally, the results obtained with both
methodologies are compared in Section 3.4, in order to validate the solution and implementation of the direct method.
This is particularly relevant as the same method is employed for the guidance phase described in Section 4.
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Figure 4: Saturation probability with respect to control margin

3.1. Optimal control problem formulation
The classical formulation for an OCP involves a cost function of the type

𝐽
[

𝒙(⋅), 𝒖(⋅), 𝑡0, 𝑡𝑓
]

= 𝜑
[

𝒙(𝑡0), 𝑡0,𝒙(𝑡𝑓 ), 𝑡𝑓
]

+ ∫

𝑡𝑓

𝑡0
 [𝒙(𝑡), 𝒖(𝑡), 𝑡] d𝑡 (6)

subject to the following state equations, path constraints and boundary conditions:

𝒇 [𝒙(𝑡), 𝒖(𝑡), 𝑡] = 𝒙̇, (7)
𝒉 [𝒙(𝑡), 𝒖(𝑡), 𝑡] ≤ 0, (8)

𝒈
[

𝒙(𝑡0), 𝑡0,𝒙(𝑡𝑓 ), 𝑡𝑓
]

= 0. (9)

The bold notation is used to denote a vector. For this particular case, 𝒙 = {𝑟, 𝜃, 𝑣𝑟, 𝑣𝜃} and 𝒖 = {𝜏, 𝛼𝑛}. In this
manner, the minimum time OCP can be expressed as

min
𝜏,𝛼𝑛

𝑡𝑓

s.t.

𝑟̇ = 𝑣𝑟

𝜃̇ =
𝑣𝜃
𝑟

𝑣̇𝑟 =
𝑣2𝜃
𝑟
−
𝜇
𝑟2

+𝜏
𝑎̃𝑐
2

(𝑟⊕
𝑟

)

(

1+cos2𝛼𝑛
)

𝑣𝜃 = −
𝑣𝑟𝑣𝜃
𝑟

+𝜏
𝑎̃𝑐
2

(𝑟⊕
𝑟

)

cos 𝛼𝑛 sin 𝛼𝑛

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
state equations

0 ≤ 𝜏 ≤ 1
−𝛼𝑚𝑎𝑥𝑛 ≤ 𝛼𝑛≤𝛼𝑚𝑎𝑥𝑛

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
path constraints

𝑟(0) = 𝑟⊕
𝜃(0) = 0
𝑣𝑟(0) = 0
𝑣𝜃(0) = 𝑣⊕
𝑟(𝑡𝑓 ) = 𝑟𝑝
𝑣𝑟(𝑡𝑓 ) = 0
𝑣𝜃(𝑡𝑓 ) = 𝑣𝑝,
⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟

boundary conditions

(10)

where, without loss of generality, it has been imposed that 𝑡0 = 0. The terms 𝑟𝑝 and 𝑣𝑝, with 𝑝 = ♂,X, represent the
distance from the Sun and the velocity of Mars and Jupiter respectively. Using astronomical units: 𝜇 = 1 AU UV2,
𝑟⊕ = 1 AU, 𝑟♂ = 1.5237 AU, 𝑟X = 5.2043 AU, 𝑣♂ = 0.8101 UV, 𝑣X = 0.4384 UV. Lastly, the value of 𝛼𝑛 is bounded
by the previously introduced value 𝛼𝑚𝑎𝑥𝑛 = 70◦. The characteristic acceleration chosen for optimal planning is denoted
as 𝑎̃𝑐 . Note that the path constraints only affect the control variables. These constraints can be simply represented as
𝒖 ∈  , where  = {𝒖 ∈ ℝ2 ∶ 0 ≤ 𝜏 ≤ 1,−𝛼𝑚𝑎𝑥𝑛 ≤ 𝛼𝑛 ≤ 𝛼𝑚𝑎𝑥𝑛 } is the admissible control set.

Notice that in (10), no restriction is imposed on 𝜃𝑓 . That is because the launch date becomes “free to choose” under
the assumed orbits of the planets (coplanar and circular) due to rotational symmetry. Once the problem is solved, the
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launch date can be adjusted to effectively meet the corresponding planet when the spacecraft reaches its orbit. As a
final remark, it should be acknowledged that due to the non-convexity of the problem constraints, the global nature of
the optimal solutions found cannot be ensured, and the obtained solutions may be regarded as local optima.

3.2. Indirect approach
The difficulty of solving OCPs lies in the fact that input variables are functionals rather than discrete quantities,

which makes it rather different compared to the standard parametric optimization problem. However, local laws that
control parameters need to follow for the solution to be optimal can be found using indirect methods, and thus they
transform the OCP into a Two Point Boundary Value Problem (TPBVP), which can then be solved numerically,
although reaching convergence is not trivial. Indirect approaches have been previously used to characterize the
performance of the E-sail [16, 19, 22, 23, 26].

To proceed, the state variables are expanded to the costate space, obtaining the set 𝝀 = {𝜆𝑟, 𝜆𝜃 , 𝜆𝑣𝑟 , 𝜆𝑣𝜃}, which
satisfies the Euler-Lagrange equations 𝜆̇𝑖 = − 𝜕𝐻

𝜕𝑖 , with 𝑖 = 𝑟, 𝜃, 𝑣𝑟, 𝑣𝜃 . The variable 𝐻 is the Hamiltonian of the
system, defined as 𝐻 =  + 𝝀⊺𝒇 , where  is the integrand in (6).

The next step is to obtain the optimal control laws 𝒖 = 𝒖(𝒙,𝝀, 𝑡), which can be done by applying Pontryagin’s
Minimum Principle, that establishes a necessary condition (although not sufficient) for 𝒖 to be optimal. Pontryagin’s
Minimum Principle states that for a cost function 𝐽 to be minimized, the control parameters must minimize the
Hamiltonian at every instant of time, i.e., 𝒖⋆ = argmin

𝒖∈
𝐻 ∀𝑡 ∈ [0, 𝑡𝑓 ], where ⋆ denotes optimality. For this particular

system, the Hamiltonian is given by

𝐻 =𝜆𝑟𝑣𝑟 + 𝜆𝜃
𝑣𝜃
𝑟

+ 𝜆𝑣𝑟

(

𝑣2𝜃
𝑟

−
𝜇
𝑟2

)

− 𝜆𝑣𝜃
𝑣𝑟𝑣𝜃
𝑟

+ 𝜏
𝑎̃𝑐
2

(𝑟⊕
𝑟

) [

𝜆𝑣𝑟
(

1 + cos2 𝛼𝑛
)

+ 𝜆𝑣𝜃 cos 𝛼𝑛 sin 𝛼𝑛
]

.

(11)

If the optimal control is not located on the boundary of the admissible set, that is, 𝒖⋆ ∉ 𝜕 , the minimum value
of a Hamiltonian must be a critical point. Therefore, 𝜕𝐻

𝜕𝛼𝑛
is computed, which yields

−𝜆𝑣𝑟 sin(2𝛼𝑛) + 𝜆𝑣𝜃 cos(2𝛼𝑛) = 0, (12)

obtaining two solutions, 𝛼𝑛1 = 1
2 arctan 2

(

𝜆𝑣𝜃 , 𝜆𝑣𝑟
)

and 𝛼𝑛2 = 1
2 arctan 2

(

−𝜆𝑣𝜃 ,−𝜆𝑣𝑟
)

, where arctan 2 is the two-

argument inverse tangent function. Computing 𝜕2𝐻
𝜕𝛼2𝑛

it is easy to see that the solution that corresponds to a minimum is
𝛼𝑛2 . However, that point could be outside of the admissible region, so the complete expression is

𝛼⋆𝑛 =

{

𝛼𝑛2 if |𝛼𝑛2 | ≤ 𝛼𝑚𝑎𝑥𝑛 ,
𝛼𝑚𝑎𝑥𝑛 ⋅ sgn

(

𝛼𝑛2
)

if |𝛼𝑛2 | > 𝛼𝑚𝑎𝑥𝑛 . (13)

Regarding 𝜏, a linear dependency is seen in 𝐻 . Thus, to minimize the Hamiltonian, the best possible strategy for
𝜏 is to have minimum value when it is multiplied by a positive expression, and maximum in the opposite case.

𝜏⋆ =
{

0 if 𝜆𝑣𝑟
(

1 + cos2 𝛼⋆𝑛
)

+ 𝜆𝑣𝜃 cos 𝛼
⋆
𝑛 sin 𝛼⋆𝑛 > 0,

1 if 𝜆𝑣𝑟
(

1 + cos2 𝛼⋆𝑛
)

+ 𝜆𝑣𝜃 cos 𝛼
⋆
𝑛 sin 𝛼⋆𝑛 ≤ 0. (14)

It can be computed that 𝜏⋆ switches to 0 whenever 𝛼⋆𝑛 > arccos
(

1∕
√

3
)

≈ 54.7◦, effectively turning the E-sail off.

This value coincides with the value of 𝛼𝑛 that yields the maximum thrust cone angle 𝛼𝑚𝑎𝑥 = arctan
(

1∕2
√

2
)

so, as
conjectured in Section 2.1, there is no apparent reason for the sail pitch angle to go beyond 54.7◦. Therefore, since
𝛼𝑚𝑎𝑥𝑛 > arccos

(

1∕
√

3
)

, saturation never takes place in the sail pitch angle and the optimal control law simply becomes
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𝛼⋆𝑛 = 1
2
arctan2

(

−𝜆𝑣𝜃 ,−𝜆𝑣𝑟
)

,

𝜏⋆ =

⎧

⎪

⎨

⎪

⎩

0 if |𝛼𝑛| > arccos
(

1∕
√

3
)

,

1 if |𝛼𝑛| ≤ arccos
(

1∕
√

3
)

.

(15)

What is known as bang-bang control appears in 𝜏 due to its linear dependency with 𝐻 , meaning that for a solution
to be at least locally optimal, the throttle level must be at all times deactivated or at its maximum. Similar results are
obtained in [16], although a slightly different thrust model is used. The full TPBVP is formulated below:

𝑟̇ =𝑣𝑟,

𝜃̇ =
𝑣𝜃
𝑟
,

𝑣̇𝑟 =
𝑣2𝜃
𝑟

−
𝜇
𝑟2

+ 𝜏⋆
𝑎̃𝑐
2

(𝑟⊕
𝑟

)

(

1 + cos2 𝛼⋆𝑛
)

,

𝑣𝜃 = −
𝑣𝑟 𝑣𝜃
𝑟

+ 𝜏⋆
𝑎̃𝑐
2

(𝑟⊕
𝑟

)

cos 𝛼⋆𝑛 sin 𝛼⋆𝑛 ,

𝜆̇𝑟 =
𝜆𝜃 𝑣𝜃
𝑟2

+ 𝜆𝑣𝑟

(

𝑣2𝜃
𝑟2

−
2𝜇
𝑟3

)

− 𝜆𝑣𝜃
𝑣𝑟 𝑣𝜃
𝑟2

+
𝜏⋆ 𝑎̃𝑐
2 𝑟

(𝑟⊕
𝑟

) [

𝜆𝑣𝑟
(

1 + cos2 𝛼⋆𝑛
)

+ 𝜆𝑣𝜃 cos 𝛼
⋆
𝑛 sin 𝛼⋆𝑛

]

,

𝜆𝜃 = 0,

̇𝜆𝑣𝑟 = − 𝜆𝑟 +
𝜆𝑣𝜃𝑣𝜃
𝑟

,

̇𝜆𝑣𝜃 = −
𝜆𝜃
𝑟

−
2 𝜆𝑣𝑟𝑣𝜃

𝑟
+

𝜆𝑣𝜃𝑣𝑟
𝑟

,

(16)

where 𝛼⋆𝑛 and 𝜏⋆ are now optimal and given by (15). The system is subject to the following boundary conditions

𝑟 (0) = 𝑟⊕
𝜃 (0) = 0
𝑣𝑟 (0) = 0
𝑣𝜃 (0) = 𝑣⊕

𝑟
(

𝑡𝑓
)

= 𝑟𝑝
𝜆𝜃

(

𝑡𝑓
)

= 0

𝑣𝑟
(

𝑡𝑓
)

= 0

𝑣𝜃
(

𝑡𝑓
)

= 𝑣𝑝
𝐻

(

𝑡𝑓
)

= −1.

(17)

This TPBVP is solved by implementing a shooting algorithm in the full state-costate system that also keeps track
of the precise switching times of 𝜏 for numerical stability, similar to what is done in [56]. Several initial guesses are
tried until a feasible solution is obtained.

3.3. Direct approach
The aim of this section is to convert this OCP into a Non-Linear Programming (NLP) problem, i.e. an optimization

problem with a cost function subject to a set of algebraic equalities or inequalities. Thus, time is divided into𝑁 intervals
𝒕 =

[

𝑡0, 𝑡1,… , 𝑡𝑁
]⊺. This solving method is known for being considerably more robust than indirect approaches, which

highly depend on the initial guess. It has already been used for orbit optimization in low thrust spacecraft [57].
In this discretization, state variables are defined for each instant of time and control variables are assumed constant

during each time interval, resulting in 4 (𝑁 + 1) state variables and 2𝑁 control variables. Taking into account that 𝑡𝑓
is also a decision variable, and dividing the transfer in 𝑁 = 500 intervals, the total number of NLP variables is 3005.
Note that the value of N is relatively high because it considers not only the intervals for discretizing control but also
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determines the number of intervals used for discretizing the dynamic equations, as the direct transcription approach is
employed. Hence, a resolution higher than the one proposed in [58] is required.

Representing the values of the state variables at the instant 𝑡𝑘 and of the control parameters in the interval
[

𝑡𝑘, 𝑡𝑘+1
]

as 𝒙𝑘 and 𝒖𝑘 respectively, dynamic constraints of the type 𝒙𝑘+1 = 𝒇𝒅
(

𝑡𝑘,𝒙𝑘, 𝒖𝑘
)

can be constructed by applying
some integration scheme. A fourth-order Runge-Kutta is used in this work (details are skipped for simplicity). The
boundary conditions can be added by setting 𝒙0 and 𝒙𝑁 to the appropriate values. The path constraints 0 ≤ 𝜏𝑘 ≤ 1
and −𝛼𝑚𝑎𝑥𝑛 ≤ 𝛼𝑛𝑘 ≤ 𝛼𝑚𝑎𝑥𝑛 are set for each instant of time. With all these considerations, there are 4𝑁 + 7 equality and
4𝑁 inequality constraints.

To solve the NLP problem, the algorithm Interior Point OPTimizer (IPOPT) [59] is used by means of the CasADi
Toolbox for MATLAB [60]. As the problem constraints are not convex, one can not expect IPOPT to arrive to the
global optimal solution, but rather a local one.

3.4. Optimal planning results
This section presents and compares the optimal trajectories obtained with both direct and indirect methods

discussed in Sections 3.2 and 3.3. As already mentioned, a locally optimal solution is expected instead of a global,
because of the non-convexity of the problem. However, indirect and direct methods can be compared to see if the
solutions differ by much, giving insight into the quality of the solution, since both methods reach (local) optimality
by means of different paths. It is useful to remember that, as demonstrated using Pontryagin’s Minimum Principle, a
bang-bang control in 𝜏 is expected.

The results obtained for missions to Mars and Jupiter are shown. A typical value of 𝑎̃𝑐 = 0.36 mm/s2 has been used
for the characteristic acceleration. It should be noted that this value is lower than the maximum acceleration considered
in other works [26, 61]. This discrepancy can be attributed to a combination of factors. On one hand, anticipating
that a higher-than-usual payload fraction might be necessary for the interplanetary missions under consideration,
a conservative value for the nominal characteristic acceleration is selected, being 𝑎𝑐 = 0.6m∕s2. On the other
hand, taking into account the PDF distribution presented in Section 2.3, a control margin of 40%, equivalent to a
probability of saturation of 20%, has been applied to the nominal characteristic acceleration 𝑎𝑐 selected. Consequently,
the acceleration 𝑎̃𝑐 = 0.36m∕s2 considered for mission planning is obtained.

In Fig. 5, the resulting orbit to Jupiter using direct methods is shown, along with the evolution of state variables,
control inputs, semi-major axis 𝑎 and eccentricity 𝑒. Bang-bang structure in 𝜏 can be observed. The intervals in which
thrust is off are called coasting arcs. Moreover, a tendency to return to distances of ∼ 1AU can also be seen, and this
can be easily be explained by the fact that the closer the spacecraft is from the Sun, the higher the acceleration produced
by the E-sail. The total duration of the mission is around 15 years.

A comparison between the direct and indirect approaches for the Mars transfer orbit is included in Fig. 6. As can
be seen, the solutions obtained by both methods coincide, reaching Mars orbit in 1007 days. This does not guarantee
that the solution is global, but helps validate both planning methods. More specifically, it helps justify the use of the
direct method, since it can produce good results while being more reliable. Just for validation purposes, the transfer to
Mars is also computed for 𝑎̃𝑐 = 1.00 mm/s2, resulting in 502 days, which is in line with typical transfer times reported
in [26, 61].

Due to its higher stability, and given that the solutions obtained are similar between both methods, the direct
approach is used for the guidance problem. Moreover, this direct transcription scheme makes the model predictive
controller easier to implement. The values obtained for final time and polar angle are denoted as 𝑡𝑛𝑜𝑚𝑓,𝑗 and 𝜃𝑛𝑜𝑚𝑓,𝑗 (for
𝑗 = ♂,X), and are used in Section 4.

4. Guidance strategies considering solar wind uncertainties
In this section the Sun variability is introduced along with its implications on saturation phenomena and control

margins. Two approaches based on Model Predictive Control (MPC) are implemented, involving shrinking and
receding time horizons. The selection of the propulsion strategy for control saturation periods and the impact of the cost
function definition are studied. Based on the results obtained, the most promising strategy and options are identified.

4.1. The effect of solar wind perturbations
Hereinafter, the nominal characteristic acceleration 𝑎𝑐 is defined as the acceleration of the spacecraft at 1 AU

with nominal wind at maximum tether voltage, whereas the characteristic acceleration 𝑎𝑐 considers a more realistic
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dynamic pressure in which solar fluctuation is considered according to the model in Section 2.3. Similarly, 𝑝⊕ denotes
the dynamic pressure and 𝑝⊕ its mean.

Recalling (4), it is seen that force per unit length (and therefore the characteristic acceleration) is proportional to the
tether grid voltage and to the square root of the dynamic pressure. Also, as seen in Section 2.3, the dynamic pressure
randomly changes following a gamma distribution. Assuming that tethers can change their voltage instantaneously,
and that the voltage change immediately translates into a change in the Coulomb’s force generated by the E-sail (such
a process’ timescale is in the order of minutes, while the duration of interplanetary mission is in the order of years),
one can compensate a change in 𝑝⊕ instantaneously with an appropriate modification of 𝑉0 in order to maintain the
needed spacecraft’s acceleration. However, a problem arises when the dynamic pressure becomes so low that, not even
with maximum voltage, the necessary acceleration can be obtained. Therefore, solar wind uncertainty may result in a
saturation problem, preventing the optimal trajectory tracking and manifesting the necessity of a guidance strategy.

Since the characteristic acceleration of the spacecraft becomes variable, it is no longer useful to use the throttle
level as a control input. Instead, an effective acceleration 𝜅 is defined, which can be expressed in terms of the throttle
level, the nominal characteristic acceleration, and the dynamic pressure ratio as

𝜅 = 𝜏𝑎𝑐 = 𝜏 𝑎𝑐

√

𝑝⊕
𝑝⊕

. (18)

If the same characteristic acceleration used in the optimal mission planning is utilized for guidance, saturation
occurs each time 𝑝⊕ < 𝑝⊕. Therefore, it is convenient to define a control margin to reduce the probability of saturation.
In fact, such a margin has already been considered considered in Section 3.4. Indeed, for the guidance strategy, a typical
value of the characteristic acceleration of 𝑎𝑐 = 0.6 mm/s2 is used [11], meaning that a control margin of 40% was
left when computing the optimal planning, in which the characteristic acceleration was set to 𝑎̃𝑐 = 0.36 mm/s2. For
reference, according to Fig. 4 which represents the saturation probability for a given control margin, it can be observed
that not leaving control margin means that the probability of saturation is about 60%, while considering a 40% control
margin (that is, 𝑎̃𝑐 = 0.6 𝑎𝑐) reduces the probability to around 20%. More control margin could be considered, but as
a trade-off mission times get progressively larger.

4.2. Shrinking Horizon MPC Strategy
Since the dynamics of the system are known, one could predict the evolution of the spacecraft’s orbit into the future

given the values of the control variables, and assuming the dynamic pressure is known during that prediction horizon (it
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Figure 5: Evolution of variables (left) and trajectory (right) in a transfer orbit to Jupiter using a direct approach

Javier Urrios: Preprint submitted to Elsevier Page 10 of 22



Optimal Planning and Guidance for Solar System Exploration using E-sails

1

1.5
r[

A
U

]

Direct Indirect

0
0.07

v
r [

U
V

]

0.8
0.9

1

v
 [
U

V
]

0

0.5

1

 [
-]

40
50
60

n
 [
º]

1

1.5

a
 [
A

U
]

0 200 400 600 800 1000

t [days]

0

0.1

0.2

e
 [
-]

0°

30°

60°

90°

120°

150°

180°

210°

240°

270°

300°

330°

0

0.5

1

1.5

Earth

Mars

Direct

Indirect
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is indeed assumed constant). Then, some error measurement can be used to quantify how far the spacecraft has steered
away from the reference trajectory. Of course, the dynamic pressure varies in the actual trajectory as opposed to the
constant behaviour assumed when predicting into the future, but this method becomes more exact as the trajectory
recalculation rate increases.

Using such orbit prediction, it is possible to formulate an OCP at a given mission time. The way in which the
problem is posed here is by adding final constraints on the arrival time 𝑡𝑛𝑜𝑚𝑓,𝑝 and phase angle 𝜃𝑛𝑜𝑚𝑓,𝑝 obtained from the
nominal planned orbit. Additionally, the modulus of the final velocity is fixed, while the cost function tries to minimize
the square of final radial velocity. Even if such relaxation results in the velocity not exactly being that of the reached
body, this small error can be handled by other specific propulsion systems to guarantee the rendez-vous.

The aim is to obtain the values for the control variables that minimizes such cost function, and the feedback loop is
closed by recomputing the optimal controls with a certain frequency. The term “Shrinking Horizon” Model Predictive
Control (SHMPC) comes from the fact that the arrival time is fixed, and the integration of the trajectory into the future
is always performed up to that time instant, which implies that the remaining time keeps shrinking, as illustrated in
Fig. 10(a).

Under the previous conditions and considering 𝑁𝑟,𝑝 recalculations, the successive OCPs can be formulated as

min
𝜅,𝛼𝑛

𝑣2𝑟 (𝑡𝑓 )

s.t.

𝑟̇ = 𝑣𝑟

𝜃̇ =
𝑣𝜃
𝑟

𝑣̇𝑟 =
𝑣2𝜃
𝑟
−
𝜇
𝑟2

+ 𝜅
2

(𝑟⊕
𝑟

)

(

1+cos2𝛼𝑛
)

𝑣𝜃 = −
𝑣𝑟𝑣𝜃
𝑟

+ 𝜅
2

(𝑟⊕
𝑟

)

cos 𝛼𝑛 sin 𝛼𝑛

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
state equations

0 ≤ 𝜅 ≤ 𝜅𝑚𝑎𝑥

−𝛼𝑚𝑎𝑥𝑛 ≤ 𝛼𝑛≤𝛼𝑚𝑎𝑥𝑛

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
path constraints

𝑟(𝑡𝑖) = 𝑟̂𝑖
𝜃(𝑡𝑖) = 𝜃̂𝑖
𝑣𝑟(𝑡𝑖) = 𝑣̂𝑟𝑖
𝑣𝜃(𝑡𝑖) = 𝑣̂𝜃𝑖
𝑟(𝑡𝑓 ) = 𝑟𝑝

𝑣2(𝑡𝑓 ) = 𝑣2𝑝
𝑡𝑓 = 𝑡𝑛𝑜𝑚𝑓,𝑝

𝜃(𝑡𝑓 ) = 𝜃𝑛𝑜𝑚𝑓,𝑝 ,
⏟⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏟

boundary conditions

(19)
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where for 𝑖 = [1, ..., 𝑁𝑟,𝑝], the solutions 𝑟𝑖(𝑡), 𝜃𝑖(𝑡), 𝑣𝑟𝑖 (𝑡) and 𝑣𝜃𝑖 (𝑡) define the time optimal partial trajectories for
𝑡 ∈

[

𝑡𝑖, 𝑡𝑓
]

. Additionally, the final time 𝑡𝑓 and the final polar angle 𝜃(𝑡𝑓 ) are now fixed and equal to 𝑡𝑛𝑜𝑚𝑓,𝑝 and 𝜃𝑛𝑜𝑚𝑓,𝑝
respectively, values obtained for the optimal planning presented in Section 3. Similarly, the final radius 𝑟(𝑡𝑓 ) is also
fixed to 𝑟𝑝, thus ensuring the spacecraft reaches the planet. Finally, the value of 𝑡𝑖 refers to the time at which the orbit is
recalculated, an instant at which the state variables 𝑟̂𝑖, 𝜃̂𝑖, 𝑣̂𝑟𝑖 and 𝑣̂𝜃𝑖 are assumed to be known thanks to the navigation
system. It is notable that they generally will differ from the optimal solution associated to the previous recalculation
𝑟𝑖−1(𝑡𝑖), 𝜃𝑖−1(𝑡𝑖), 𝑣𝑟𝑖−1 (𝑡𝑖) and 𝑣𝜃𝑖−1 (𝑡𝑖) . In addition 𝑝 = ♂,X depends on whether the spacecraft aims to reach Mars or
Jupiter, respectively.

The value of the maximum effective acceleration is 𝜅𝑚𝑎𝑥 = 𝑎𝑐 = 𝑎𝑐
√

𝑝⊕∕ 𝑝⊕, which changes over time. However,
it must be known in order to solve the OCP. Thus, some assumption has to be made. In this work, where the trajectory is
recomputed a total of 𝑁𝑟,♂ = 20 times for Mars and 𝑁𝑟,X = 50 times for Jupiter (so recalculation is performed every
few months, hereinafter the instants at which recalculation is performed are noted 𝑡𝑖 for 𝑖 = 1, ..., 𝑁𝑟,♂or𝑁𝑟,X) dynamic
pressure is assumed constant and equal to the value measured at 𝑡𝑖 for the next recalculation interval. Thus, 𝜅𝑚𝑎𝑥,𝑖 is
indeed equal to 𝑎𝑐 at the current time interval, but it may be convenient to limit it when predicting the trajectory in future
intervals, to encourage the spacecraft to use as much acceleration as possible at the current time, since the problem
becomes stiffer when approaching the target. Therefore, four distinct maximum values for effective acceleration in
future time intervals (denoted as 𝜅𝑚𝑎𝑥,+) are considered: (1) 𝜅𝑚𝑎𝑥,+ = 0.6 𝑎𝑐 = 0.36 mm/s2 (that is, a 40% reduction
from the real nominal characteristic acceleration, i.e., the value used in optimal planning), (2) 𝜅𝑚𝑎𝑥,+ = 0.8 𝑎𝑐 = 0.48
mm/s2 (a 20% reduction, i.e., the mean between the real value and the used in orbit planning), (3) 𝜅𝑚𝑎𝑥,+ = 𝑎𝑐 = 0.6
mm/s2 (no reduction), and (4) a linearly increasing value of 𝜅𝑚𝑎𝑥,+ between 20% reduction and its full nominal value
depending on the proximity to the end of the mission, that, is, 𝜅𝑚𝑎𝑥,+ = [0.8+ 0.2 (𝑖−1)∕(𝑁𝑟,𝑝 −2)] 𝑎𝑐 , where 𝑖 is the
current recalculation interval and 𝑁𝑟,𝑝 the total number of recalculation intervals depending on whether the mission is
to Mars or Jupiter. Note that 𝑖 can be 𝑁𝑟,𝑝 − 1 at maximum, since at the last recalculation interval there are no future
intervals.

Additionally, there is another issue that needs to be tackled. If the dynamic pressure at a given instant is low
enough, or the spacecraft is sufficiently far from the reference trajectory, the solver may not find a solution. The
impossibility of solving the OCP (even when relaxing the final conditions further) suggests the implementation of
an alternative sub-optimal control law strategy during that interval. Such a strategy must minimize the deviation of
the spacecraft trajectory with respect to the reference, to maximize the likelihood that the solver finds a solution in
the next recalculation. It can be argued that setting the tethers voltage to its maximum (that is, applying full thrust)
is convenient, since the infeasibility of the problem comes ultimately from a low value of 𝑝⊕. However, the angle
in which the E-sail should position itself is not obvious. Therefore, three sub-optimal control laws are considered in
this work: (1) full thrust (𝑎𝑚𝑎𝑥) with 𝛼𝑛 = arccos(1∕

√

3), which provides maximum thrust cone angle, (2) full thrust
with 𝛼𝑛 = 0◦, maximizing radial acceleration (𝑎𝑚𝑎𝑥𝑟 ), and (3) full thrust with 𝛼𝑛 = 45◦, which maximizes tangential
acceleration (𝑎𝑚𝑎𝑥𝜃 ). Because applying full thrust is convenient in these intervals, they are hereinafter denoted full thrust
arcs.

4.2.1. Results for SHMPC
In order to compare the guidance strategies and quantify their performance given the solar wind perturbations, the

following success and failure criteria are defined. A mission is considered successful (S) if the spacecraft is able to reach
the planet’s sphere of influence, while it is failed (F) depending on the miss distance, which is the distance at which
the satellite remains from the planet, or 𝑒 = ‖𝒓(𝑡𝑓 ) − 𝒓𝑝‖. In the case of a Jupiter transfer, a fail is a miss of ten times
(or more) the radius of Jupiter’s sphere of influence. For a Mars transfer, since its sphere of influence is considerably
smaller, failed missions are the ones with a miss distance of fifty times (or more) the radius of Mars’ sphere of influence.
These distances are considered high enough that no alternative propulsion system available can correct the error, hence
the mission failure. A mission which ends with a miss distance in between the limits to be considered successful and
failed is named partially successful, since it may be possible to reach the target, but employing considerable efforts
from other propulsion systems.

Since acceleration saturation phenomena depends on 𝑝⊕ as shown in Section 4.1 and thus are stochastic, no
deterministic metric of the performance of the strategies can be given. Instead, in order to statistically evaluate the
different strategies presented in Section 4.2, a Monte Carlo analysis is conducted, simulating 100 missions for each of
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Table 1
Monte Carlo results for SHMPC strategy for different 𝜅𝑚𝑎𝑥,+ and 𝛼𝑛. The value 𝑒 denotes the mean arrival error distance
to the planet and 𝜎𝑒 its standard deviation in units of fail distance [UF]

Mars Jupiter
𝜅𝑚𝑎𝑥,+ 𝛼𝑛 such that S [%] F [%] 𝑒 [UF♂] 𝜎𝑒 [UF♂] S [%] F [%] 𝑒 [UFX] 𝜎𝑒 [UFX]

40% reduction
𝛼𝑚𝑎𝑥 49 21 1.53 4.04 88 7 0.28 1.04
𝑎𝑚𝑎𝑥𝑟 22 55 3.21 4.18 57 19 0.57 1.32
𝑎𝑚𝑎𝑥𝜃 43 33 2.04 3.97 76 14 0.39 1.13

20% reduction
𝛼𝑚𝑎𝑥 52 9 0.31 0.66 90 8 0.28 0.92
𝑎𝑚𝑎𝑥𝑟 32 14 0.45 1.07 73 13 0.40 1.22
𝑎𝑚𝑎𝑥𝜃 56 13 0.29 0.82 91 18 0.29 1.06

No reduction
𝛼𝑚𝑎𝑥 18 27 0.86 1.36 68 28 1.09 1.92
𝑎𝑚𝑎𝑥𝑟 14 34 1.41 2.20 57 32 1.22 2.06
𝑎𝑚𝑎𝑥𝜃 18 26 0.62 0.87 65 28 0.88 1.72

Linear increase
𝛼𝑚𝑎𝑥 46 14 0.37 0.73 85 8 0.30 1.03
𝑎𝑚𝑎𝑥𝑟 28 14 1.00 2.79 65 10 0.83 1.35
𝑎𝑚𝑎𝑥𝜃 41 13 0.48 1.02 80 11 0.55 0.98

Figure 7: Histogram of the miss distance on missions to Mars with 20% 𝜅𝑚𝑎𝑥,+ reduction and 𝛼𝑛||𝛼=𝛼𝑚𝑎𝑥

them, giving a total of 4 ⋅ 3 ⋅ 2 ⋅ 100 = 2400 simulations (four different 𝜅𝑚𝑎𝑥,+ values and three full thrust arc strategies
for missions to both Mars and Jupiter).

A summary of the results obtained is presented in Table 1, where the mean miss distance 𝑒 (the average of the
error distances 𝑒 of each simulation) and its standard deviation 𝜎𝑒 are included to give an estimation on the precision
and dispersion of the different strategies, and are expressed as multiples of the failing distance. Looking at the results,
it becomes apparent that similar patterns emerge between missions to Mars and Jupiter regarding the most effective
strategies. The key finding is that optimal results are achieved when a 20% reduction is considered for 𝜅𝑚𝑎𝑥,+, and
during full thrust arcs, thrust is applied in the direction that maximizes the sail cone angle (𝛼𝑛 = arccos(1∕

√

3)).
The number of 100 simulations for each scenario was found to be a middle ground between computational effort
and representativeness of the data. To check the representativeness, the outputs were recomputed for several random
subsets of 50 of the 100 simulations, and the values obtained were sufficiently similar, justifying the chosen number
of simulations.

As observed in Table 1, many missions to Mars fail. A histogram of the miss distance 𝑒 of the simulations with
the obtained optimal configuration is included in Fig. 7, while the spacecraft final position in each of the 100 missions
is shown in Fig. 9, and an example of a successful mission using this guidance strategy can be seen in Fig. 8. For the
obtained optimal configuration, the final radial velocity mean and standard deviation were found to be 𝑣𝑟(𝑡𝑓 ) = 0.37
km/s, 𝜎𝑣𝑟(𝑡𝑓 ) = 1.05 km/s. Although with a high variance, this mean value of the radial velocity is small enough for
another more specific propulsion system to handle the rendez-vous.
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Figure 8: Evolution of variables (left) and trajectory (right) in a successful mission to Mars in the presence of uncertainty
using SHMPC with 20% 𝜅𝑚𝑎𝑥,+ reduction and 𝛼𝑛||𝛼=𝛼𝑚𝑎𝑥

Figure 9: Final position error of the spacecraft in each of the Mars missions simulated for the 20% 𝜅𝑚𝑎𝑥,+ reduction and
𝛼𝑛||𝛼=𝛼𝑚𝑎𝑥 SHMPC strategy

4.3. Receding Horizon MPC Strategy
In contrast to SHMPC approach presented in Section 4.2, in which arrival time is imposed, this section explores

an alternative formulation that enables reaching the target planet in a greater time than initially planned, (𝑡𝑓 > 𝑡𝑛𝑜𝑚𝑓,𝑝 )
in exchange for robustness. To address this, a new optimization problem can be formulated with a cost function that
includes not only the arrival position error, but also the position error at future points in time. Note that the reference
orbit of the spacecraft is not only known for 𝑡 < 𝑡𝑛𝑜𝑚𝑓 , but also for future values, because, given that a rendez-vous is
desired, the spacecraft’s reference orbit coincides with the planet’s for 𝑡 > 𝑡𝑛𝑜𝑚𝑓 . Therefore, these errors can be predicted
by integrating the system into the future and comparing the obtained and the reference orbits. That means that now
there are no arrival constraints, as they are incorporated in the cost function. The idea therefore is to check for the error
at the nominal arrival time; if it is larger than an established value, the program continues and the spacecraft keeps
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getting closer to the target, until a new check is made, then the process repeats. Once it gets sufficiently close (inside
the sphere of influence), the mission ends.

This approach, called Receding Horizon Model Predictive Control (RHMPC), is schematically shown in Fig. 10(b)
and allows for the predicting horizon to recede rather than shrink. When the trajectory is recomputed for the first time,
the only instant at which the error is measured is the nominal arrival time 𝑡𝑛𝑜𝑚𝑓 . When recomputing at an arbitrary time
𝑖 =

[

1, ..., 𝑁𝑟,𝑝
]

, the current time is 𝑡𝑖, and the error is measured from 𝑡𝑛𝑜𝑚𝑓 until 𝑡𝑛𝑜𝑚𝑓 + 𝑡𝑖. That means that the controller
is always computing the orbit up to a time of 𝑡𝑛𝑜𝑚𝑓 into the future, although the cost function accounts for position errors
only for 𝑡 > 𝑡𝑛𝑜𝑚𝑓 .

𝑟 𝑡0
𝜃(𝑡0)

𝑟0 𝑡𝑓 = 𝑟𝑖−1 𝑡𝑓 = 𝑟𝑖 𝑡𝑓
𝜃0(𝑡𝑓) = 𝜃𝑖−1(𝑡𝑓) = 𝜃𝑖(𝑡𝑓)

Opt. Nominal 𝑟0 𝑡 , θ0 𝑡 𝑡 ∈ 𝑡0, 𝑡𝑓
Actual Ƹ𝑟 𝑡 , ෠θ 𝑡 𝑡 ∈ 𝑡0, 𝑡𝑘−1
Opt. 𝑟𝑖−1 𝑡 , θ𝑖−1 𝑡 𝑡 ∈ 𝑡𝑖−1, 𝑡𝑓
Actual Ƹ𝑟 𝑡 , ෠θ 𝑡 𝑡 ∈ 𝑡𝑘−1, 𝑡𝑘
Opt. 𝑟𝑖 𝑡 , θ𝑖 𝑡 𝑡 ∈ 𝑡𝑖, 𝑡𝑓
Domain 𝑖 for J

𝑟0 𝑡0
𝜃0(𝑡0)

𝑟0 𝑡𝑓
𝜃0(𝑡𝑓)

𝑟𝑖−1 𝑡𝑓 + 𝑡𝑖−1
𝜃𝑖−1(𝑡𝑓 + 𝑡𝑖−1)

𝑟𝑖 𝑡𝑓 + 𝑡𝑖
𝜃𝑖(𝑡𝑓 + 𝑡𝑖)

𝑟𝑖 𝑡𝑓
𝜃𝑖(𝑡𝑓)

𝑟𝑖−1 𝑡𝑓
𝜃𝑖−1(𝑡𝑓)

Ƹ𝑟 𝑡𝑖
෠𝜃 𝑡𝑖

Ƹ𝑟 𝑡𝑖−1
෠𝜃 𝑡𝑖−1 Ƹ𝑟 𝑡𝑖−1

෠𝜃 𝑡𝑖−1

Ƹ𝑟 𝑡𝑖
෠𝜃 𝑡𝑖

(a) (b)

Figure 10: Schematic view of (a) SHMPC strategy and (b) RHMPC strategy

The cost function formulated aims to minimize errors of the state variables. The following three position error
functions are proposed:

𝜀1(𝑡) = 𝑟2(𝑡) + 𝑟2𝑝 − 2 𝑟(𝑡) 𝑟𝑝 cos
(

𝜃(𝑡) − 𝜃𝑝(𝑡)
)

, (20)

𝜀2(𝑡) =
(𝑟(𝑡) − 𝑟𝑝

𝑟𝑝

)2

+ (𝜃(𝑡) − 𝜃𝑝(𝑡))2, (21)

𝜀3(𝑡) =
(𝑟(𝑡) − 𝑟𝑝

𝑟𝑝

)2

+ 𝑐1(𝜃(𝑡) − 𝜃𝑝(𝑡))2. (22)

It can be observed that the first error function is the exact error distance, but it is more computationally expensive.
The second is similar enough for small error values, and the third is a modification of the second in which radial and
angular errors are differently weighted. For the third, a weight coefficient 𝑐1 is fine-tuned following a brief study to
assess its impact on the success rate. A value of 𝑐1 = 5 is demonstrated to yield the optimal results.
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Moreover, time-dependent weights are considered, to give priority to minimizing errors closer to the current time.
The weight distribution 𝑤1(𝑡) assumes a constant distribution, and 𝑤2(𝑡) and 𝑤3(𝑡) decreasing linear and quadratic
distributions respectively. Therefore, given the definition of the cost function

𝐽𝑘𝑙 = ∫

𝑡𝑛𝑜𝑚𝑓 +𝑡𝑖

𝑡𝑛𝑜𝑚𝑓

𝑤𝑘(𝑡)𝜀𝑙(𝑡)d𝑡, (23)

a total of nine different cost functions are considered since 𝑘 = 1, 2, 3 and 𝑙 = 1, 2, 3.
With all these considerations the RHMPC strategy may be formulated for the successive 𝑁𝑟,𝑝 OCPs as

min
𝜅,𝛼𝑛

𝐽𝑘𝑙 𝑡 ∈
[

𝑡𝑖, 𝑡
𝑛𝑜𝑚
𝑓,𝑝 + 𝑡𝑖

]

s.t.

𝑟̇ = 𝑣𝑟

𝜃̇ =
𝑣𝜃
𝑟

𝑣̇𝑟 =
𝑣2𝜃
𝑟
−
𝜇
𝑟2

+ 𝜅
2

(𝑟⊕
𝑟

)

(

1+cos2𝛼𝑛
)

𝑣𝜃 = −
𝑣𝑟𝑣𝜃
𝑟

+ 𝜅
2

(𝑟⊕
𝑟

)

cos 𝛼𝑛 sin 𝛼𝑛
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

state equations

0 ≤ 𝜅 ≤ 𝜅𝑚𝑎𝑥

−𝛼𝑚𝑎𝑥𝑛 ≤ 𝛼𝑛≤𝛼𝑚𝑎𝑥𝑛

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
path constraints

𝑟(𝑡𝑖) = 𝑟̂𝑖
𝜃(𝑡𝑖) = 𝜃̂𝑖
𝑣𝑟(𝑡𝑖) = 𝑣̂𝑟𝑖
𝑣𝜃(𝑡𝑖) = 𝑣̂𝜃𝑖
𝑡𝑓 − 𝑡𝑖 = 𝑡𝑛𝑜𝑚𝑓,𝑝 ,

⏟⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏟
boundary conditions

(24)

where the value of 𝑡𝑖 refers to the time at which the orbit is recalculated, an instant at which the state variables 𝑟̂𝑖, 𝜃̂𝑖,
𝑣̂𝑟𝑖 and 𝑣̂𝜃𝑖 are assumed to be known thanks to the navigation system. Recalling the results from Section 4.2.1, a 20%
reduction in 𝜅𝑚𝑎𝑥 is applied when recomputing the orbit to leave some control margin and minimize saturation-related
problems.

4.3.1. Results for RHMPC
One hundred simulations are conducted for each of the nine cost functions, and for both Mars and Jupiter, resulting

in a total of 1800 simulations. Examples of missions to Mars and Jupiter are shown in Fig. 12 and 13 respectively. The
obtained results are included in Table 2, where Δ𝑡𝑓 = ( 𝑡𝑓 − 𝑡𝑛𝑜𝑚𝑓 )∕𝑡𝑛𝑜𝑚𝑓 is the increment in percentage with respect to
the nominal time, and 𝐶𝑉𝑡𝑓 = 𝜎𝑡𝑓 ∕ 𝑡𝑓 is the coefficient of variation of mission times, that is, the standard deviation
divided by the mean.

Immediately, noticeable progress is seen with respect to results provided in Table 1. The spacecraft is able to reach
the target every single time, and with the proper cost function tuning, the mean time increment of the mission are as
low as 1.70% for Mars (for which a histogram is included in Fig. 11) and 0% for Jupiter, although these values can vary
and more Monte Carlo simulations may be conducted to reduce the uncertainty of the results obtained. Nonetheless,
a clear trend towards the use of 𝜖3 is seen, prioritizing angle error. In this case, according to Table 2, time-dependent
weights 𝜔2(𝑡) and 𝜔3(𝑡) are not useful when 𝜖3 is used.

5. Missions to Mars using WSA-Enlil solar wind data
The goal of this section is to compute missions to Mars starting at different dates and using realistic solar wind

data obtained from the WSA-Enlil model. The effectiveness of incorporating the RHMPC-based guidance approach,
which has demonstrated superior performance, is substantiated by the mission success rate achieved under a solar wind
uncertainty scenario.

5.1. Solar wind data extraction
For the solar wind data, the WSA-Enlil model is used [62]. The WSA-Enlil model uses a semi-empirical near-Sun

module that approximates the solar wind in the vicinity of the Sun, and a three-dimensional magneto-hydrodynamic
numerical model that propagates the resulting flow over greater distances. The data that emerge from this model are
public and can be downloaded in NetCDF format. These data include proton density 𝜌𝑝 and velocity 𝑣𝑝 for a series of
grid points in spherical coordinates, at various instants in time. The computation of the solar wind dynamic pressure
is then immediate: 𝑝𝑑𝑦𝑛 = 𝜌𝑝𝑣2𝑝.
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Table 2
Monte Carlo results for RHMPC strategy for different cost functions. The value Δ𝑡𝑓 denotes the mean mission time
increment with respect to the nominal, and 𝐶𝑉𝑡𝑓 the coefficient of variation of the mission time. The value of #|Δ𝑡𝑓=0

indicates the percentage of missions in which time is not increased

Mars Jupiter
Error Weights Δ𝑡𝑓 [%] 𝐶𝑉𝑡𝑓 [%] #|Δ𝑡𝑓=0[%] Δ𝑡𝑓 [%] 𝐶𝑉𝑡𝑓 [%] #|Δ𝑡𝑓=0[%]

𝜀1
𝑤1 6.20 11.20 70 0 0 100
𝑤2 6.10 12.58 65 0.06 0.44 98
𝑤3 7.80 15.44 69 0.26 1.31 96

𝜀2
𝑤1 6.00 14.49 74 2.72 4.50 69
𝑤2 3.50 6.98 73 4.54 8.95 73
𝑤3 4.30 9.39 74 0 0 100

𝜀3
𝑤1 1.70 6.42 90 0 0 100
𝑤2 4.90 12.52 77 0 0 100
𝑤3 12.90 22.57 71 0 0 100

Figure 11: Histogram of Mars missions duration using RHMPC and considering the cost function 𝐽13

There are a couple of reasons of why missions to Jupiter are not conducted in this section. As seen in Section 3.4,
a mission to Jupiter with a characteristic acceleration of 𝑎̃𝑐 = 0.36 mm/s2 takes approximately 15 years to complete.
However, WSA-Enlil cannot provide data prior to 2013, so the necessary data is simply unavailable. The other reason
is that WSA-Enlil can provide measures for distances to the Sun between 0.1 and 1.7AU. Therefore, there is no data
for the region in which Jupiter lies, at 5.2AU from the Sun.

Solar wind data is downloaded from July 2019 onwards until June 2023, that is, four years of data. Taking into
account that the nominal mission time to Mars is of around 3 years, the collected data is enough. Then, 12 different
missions are conducted, each starting on the first day of every month from July 2019 to June 2020.

5.2. Implementation and results
The way in which the realistic solar wind data is implemented into the simulation is straight-forward. As explained

in Section 4.3, at a given instant 𝑡𝑖, the controller recomputes the orbit that minimizes the cost function, from which the
control actions are obtained. For such computation, the mean value of the solar wind dynamic pressure is considered,
plus a 20% reduction for control margin purposes. Then, the system is integrated into the future using the control
actions previously obtained, and now applying the actual WSA-Enlil data for the solar wind dynamic pressure. This
integration is carried out until instant 𝑡𝑖+1, in which the process is repeated.

In Fig. 14, all the twelve missions are shown overlapped in the same picture. On the left, the evolution of the state
and control variables is shown, while on the right the evolution of the dynamic pressure is presented. There are several
things to notice in this figure. Trajectories start being very close to each other, since not sufficient time has passed
for the dynamic pressure uncertainty to propagate and produce noticeable deviations. Towards the end, and specially
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each time the on-line orbit recalculation is performed, trajectories start to deviate since the spacecraft are located
in slightly different places, difference that can make a noticeable change in terms of the optimal control computation.
Nevertheless, all twelve missions are capable of reaching Mars within the planned time, which evidences the suitability
of this guidance algorithm.

Regarding the dynamic pressure, one can compare its evolution with respect to what is expected, that is, the mean
value. From (1) it follows that the E-sail acceleration is inversely proportional to the Sun distance, while from (4) the
acceleration is proportional to the square root of the dynamic pressure. Combining both relations, it is derived that the
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Figure 12: Evolution of variables (left) and trajectory (right) in a mission to Mars in the presence of uncertainty using
RHMPC and considering the cost function 𝐽13.
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RHMPC and considering the cost function 𝐽33
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dynamic pressure is inversely proportional to the Sun distance squared, so its mean value 𝑝𝑑𝑦𝑛 can be obtained for any
𝑟 knowing the mean value at 1AU, that is,

𝑝𝑑𝑦𝑛 =
(𝑟⊕

𝑟

)2
𝑝⊕. (25)

The mean value, 𝑝𝑑𝑦𝑛 is shown with the dashed black line on the dynamic pressure evolution on Fig. 14, and it is clearly
concluded that the dynamic pressures obtained from WSA-Enlil throughout the missions follow the expected mean.

6. Conclusions
E-Sails, a novel spacecraft propulsion system harnessing energy from solar wind protons that have been considered

straightforward for interplanetary missions, necessitate further exploration into active guidance strategies due to the
significant variability of the solar wind, a topic previously under-studied. This work presents two main approaches
based on Model Predictive Control are developed and compared: Shrinking Horizon and Receding Horizon. The
consideration of variations on the cost functions and the guiding strategies are proposed and evaluated.

Analyzing the results for missions to Mars and Jupiter, it is demonstrated that the Receding Horizon Model
Predictive Control approach is superior to the Shrinking Horizon Model Predictive Control strategy. However, the
results obtained for Shrinking Horizon Model Predictive Control, allow to draw two main conclusions. On one hand, the
selection of the margin applied to the effective acceleration for the successive trajectory recalculation notably affect the
rate of success of the mission. On the other hand, the impact of the sub-optimal control law considered for the intervals
where the control is under saturation due to the severe decay of solar pressure, is recognized. In regards to the results
obtained for Receding Horizon Model Predictive Control strategy, the spacecraft is able to reach the target every time.
For Jupiter transfer missions, a 100% success rate is achieved and the nominal planning arrival time satisfied. In the case
of mission with destination to Mars, the best results are obtained by considering the 𝐽13 cost function. In 90% of the
cases, the planet is reached at the nominal planning arrival time, whereas for the remaining 10%, the mission arrival
times is slightly increased, on average by 1.70%, compared to the nominal planning. In addition, the effectiveness
of considering the cost function 𝜖3, giving extra weight to the error on the tangential velocity, can be outlined. To
further validate the utility of the Receding Horizon Model Predictive Control guidance strategy, twelve different Mars
missions are computed using solar wind historical data obtained from the WSA-Enlil model. In all of the missions, the
spacecraft successfully reached the target, confirming the robustness of Receding Horizon Model Predictive Control
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Figure 14: Evolution of variables (left) and solar dynamic pressure (right) in a mission to Mars using WSA-Enlil solar wind
data and RHMPC considering the cost function 𝐽13
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under accurate sun wind fluctuations. Therefore, the previous considerations allows to identify E-sails as a feasible
propellantless alternative for interplanetary missions, provided that the programmed guidance strategy is appropriate.

Nevertheless, more in-depth analyses of the problem need to be addressed, for instance by considering the real
orbits of the planets, opting for a more complex propulsive model, or addressing some other interplanetary missions
(for example, missions to inner planets or asteroids), among other possibilities. It is also left as future work the
parameterization of the trajectories, the study of a robust formulation of the MPC (an example on the rendezvous
domain is [40]), asymptotic stability guarantees, and characteristics of the terminal region and terminal cost of the
controller. Stochastic formulations may also be of interest.
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