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A B S T R A C T

The increasing accumulation of space debris poses significant risks to spacecraft, making the development of
effective debris mitigation technologies necessary. This paper explores the Ion Beam Shepherd (IBS) method
as a potential contactless solution for deorbiting large debris objects. The IBS system concept involves a
spacecraft equipped with an ion thruster to direct a controlled ion beam at the debris, generating a small
force that gradually lowers its orbit. A proposed configuration of the chaser’s actuator system integrates
radial and out-of-plane cold-gas thrusters along with in-track ion thrusters to enhance control and safety while
maintaining low mission costs. A robust Model Predictive Control (MPC) strategy is implemented, using the
theory of MPC for Tracking to ensure accurate positioning and effective deorbiting. This theoretical approach
addresses uncertainties and perturbations to robustly guarantee safe distances between the chaser and the
debris. Additionally, a new ray-marching-based algorithm is introduced to estimate the force and torque exerted
by the ion beam on the target, considered as a 6 degrees of freedom object, improving simulation accuracy
and control performance assessment. A comprehensive simulation of the deorbit of a large debris object is
performed, demonstrating the potential of the IBS technology for future large-debris removal missions. This
research advances the conceptual framework and control techniques for the IBS technology, advancing towards
its future implementation in space debris mitigation.
1. Introduction

The proliferation of space debris has become a critical issue in
contemporary space exploration and satellite operations. According
to [1], there are more than 30 000 tracked debris objects orbiting
Earth, with millions of smaller fragments posing additional risks. These
debris objects, traveling at high velocities, can cause significant damage
to operational spacecraft, endangering space missions and the lives of
astronauts aboard the International Space Station. The accumulation
of debris also raises concerns about the potential onset of Kessler syn-
drome [2], a scenario where cascading collisions among space objects
lead to a self-sustaining chain reaction of debris generation, further
aggravating the problem.

To mitigate this risk, the space industry has proposed various debris
removal strategies [3], which can be broadly categorized as contact
and non-contact methods. Contact methods often require precise ma-
neuvering and docking capabilities, whereas contactless methods can
operate at a distance, but may require high power or advanced tech-
nology to achieve the desired effects. Examples of contact methods
are net captures, harpoons, or robotic arms, while the main proposed
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technologies for contactless removal are laser ablation and ion beams.
Ongoing efforts are focused on translating these strategies into practical
applications. For example, Astroscale, a Japanese company, recently
demonstrated its capabilities by capturing images of a rocket upper
stage from a distance of several hundred meters using the ADRAS-J
satellite. This mission aims to remove the debris using a robotic arm.
Moreover, NASA’s Office of Technology, Policy, and Strategy recently
published an analysis on the costs and benefits of contact methods for
space debris remediation [4]. While contact methods are effective, they
require direct contact with the debris, making them less suitable for
faster spinning objects.

The Ion Beam Shepherd (IBS) technology (which was nearly simul-
taneously proposed by [5–7]) represents a promising alternative for
space debris mitigation. The IBS system uses a spacecraft equipped with
an ion thruster to project a controlled stream of charged particles (ions)
towards a target debris object. This ion beam generates a small force,
allowing the debris to be gradually deorbited into Earth’s atmosphere
for disintegration. Usually, a target with an almost circular orbit is
chosen (although some studies consider higher eccentricities, such
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Fig. 1. Ion Beam Shepherd concept.

as [8] or [9]), and the shepherd (or chaser) is set to travel the same
orbit but a bit ahead. The chaser then points its ion beam backwards
to slow down the debris (see Fig. 1). This technology offers several
advantages: (i) it avoids direct contact with debris, increasing the safety
of operations; (ii) it works independently of the target shape, rotational
state or material; (iii) it is reusable until fuel depletion, potentially
enabling multi-target Active Debris Removal (ADR) missions; (iv) tak-
ing into account that the momentum exchange is performed remotely,
it is relatively efficient given its high specific impulse and that ions
are concentrated in a narrow cone; and (v) it is based on mature
and space-tested electric propulsion technology. Moreover, the IBS is
well suited to tackle large space debris objects, which are of special
interest. Indeed, according to [4], the deorbiting of large debris objects
is highly beneficial, because it not only eliminates the necessity of
spacecraft to constantly maneuver to avoid collisions, but also mitigates
the generation of smaller debris resulting from surface degradation.
Additionally, the deorbiting of these large objects effectively neutralizes
their high potential for further debris creation. However, the ion beam
also poses demanding challenges; the relative position between the
chaser and the target must be accurately kept for the method to be
effective, and formation flying with the target at such a small distance
requires a robust control that guarantees no collision and deals with
uncertainty and perturbations.

For the IBS method to be effective, the ion beam should be ac-
curately and efficiently characterized, in order to properly compute
its interaction with the debris. Efforts towards these tasks were made
in [10–12], and even some in-house software was developed to study
such interaction [13]. The next task was to build a subsystem ca-
pable of generating such a beam and optimize it to improve the
beam convergence [12] and minimize power consumption [14]. Guide-
lines and constraints to be taken into account in the preliminary
design of an IBS mission were outlined in [15]. Some algorithms
for on-board force computation (although not torque) have also been
developed [16,17], the latter leveraging deep learning techniques.
Furthermore, additional research has investigated more advanced con-
sequences of the ion beam–target interaction such as surface sputtering
and backscattering contamination, through numerical simulations [18]
and experiments [12,19], with the aim of further improving the models.

In terms of the relative positioning and control of the chaser with
respect to the target, different configurations have been developed.
Conventionally, the shepherd satellite consists of the main ion beam
thruster, usually called the Impulse Transfer Thruster (ITT), which is
the one that points to the space debris object (target), and another
Impulse Compensation Thruster (ICT) in the opposite direction, to
counteract the reaction force generated by the ITT [7]. In order to
extract energy as efficiently as possible, the ion beam should act in
the opposite direction of the target’s velocity, that is, it should be
positioned in front of the debris. Initially, as part of a preliminary study,
in [20] it was assumed that the chaser had control thrusters capable
of continuous control in all directions, assumed no measurement errors
and a spherical target (and thus no considerations in terms of attitude).
690 
Then, [21] extended the formulation to include state errors while pre-
serving robustness, and made use of Pulse-Width Modulated hydrazine
thrusters, while maintaining the spherical form hypothesis. Later, the
attitude evolution of the target was thoroughly studied [22,23], along
with possible strategies to control it [9,24].

The efficiency of the relative position control presented in [20]
can be further enhanced by considering alternate control strategies.
For instance, control in the in-track direction could be achieved by
modulating the force exerted by the ICT. This approach was investi-
gated in [25], where the problem was simplified to a planar case, and
the system was controlled solely through ICT modulation, without any
control in the radial direction. This control strategy demonstrated the
potential for reduced fuel consumption. To achieve this, and 𝐻∞ based
controller was implemented for a time-varying and parametric uncer-
tain plant. However, the chaser remained subject to periodic relative
position errors due to the low controllability of the system and the small
but non-zero eccentricity of the orbits. Later, more eccentric orbits
were considered in [8], where a periodic Linear Quadratic Regulator
(LQR) with a periodic reference input was implemented to minimize
periodic errors due to the time-varying plant. These relative position
errors were reduced to around 1 m for a LEO orbit with 0.1 eccentricity.
Moreover, the work in [26] extended the formulation in [25] to the
three-dimensional case, and discovered that it was also feasible to
control the system in the out-of-plane direction by only performing
yaw attitude deviations, which reduces fuel consumption since there
is no need for an additional thruster. More recently, a new work
proposes multiple ITTs to control the relative position of the chaser and
the attitude of the target simultaneously, while deorbiting the target
faster [27].

Although the developments mentioned above are interesting and
crucial, some of them may not be suitable for implementation in the
near future given the low Technology Readiness Level (TRL) of the
IBS technology. For example, even if the yaw control in [26] works
in simulations, it might not be safe to send such a satellite without
a highly responsive controller in the out-of-plane direction. Similarly,
although it is technically possible to control in-plane dynamics just with
modulation of the ICT [25], adding an actuator in the radial direction
is a reasonable way to reduce the probability of impact between the
chaser and the target. Lastly, as powerful as the idea of using multiple
beams for simultaneous attitude and relative position control [27]
sounds, for an initial mission, it is advisable to aim for a minimal
number of ion beams to mitigate the risk of component or system
malfunction. By reducing the complexity of the propulsion system, the
overall reliability of the spacecraft can be enhanced, thereby increasing
the likelihood of mission success.

This paper proposes a new configuration of the chaser actuator
system, where the ITT and ICT in the in-track directions are maintained,
but on–off cold-gas thrusters are added in the radial and out-of-plane
directions (see Fig. 2). Cold-gas thrusters are simple and reliable ac-
tuators, especially the ones that operate in a binary on–off mode, and
the addition of them in the radial and out-of-plane directions ensures
controllability and security, while not increasing the mission budget
too much. For the control, a Robust Model Predicitive Controller for
Tracking is implemented.

Model Predictive Control (MPC) [28] is an advanced control strat-
egy used in a variety of industries, including aerospace. Unlike tradi-
tional control methods, MPC looks into the future by predicting the
system’s behavior over a specified time horizon and optimizing control
actions accordingly. It utilizes a dynamic model of the system, which
is usually Linear Time-Invariant (LTI), to simulate future behavior and
selects control inputs that minimize a defined cost function, accounting
for constraints on states and inputs. MPC has already been used in
similar use cases, such as rendezvous [29], also in the presence of
on–off thrusters [30].

There are important aspects that must be taken into account in the
design of an MPC controller, mainly feasibility, stability, and robust-
ness [31]. Feasibility refers to the ability of the MPC controller to find
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a solution that satisfies all the constraints imposed on the system while
achieving the control objectives. Stability is the ability of the closed-
loop system to remain bounded and converge to a desired operating
point or trajectory over time. Lastly, robustness indicates the ability of
the controller to maintain satisfactory performance in the presence of
uncertainties, disturbances, and model mismatches. There are several
formulations in which these aspects can be tackled. In this work,
a Model Predictive Controller based on the formulations developed
in [32,33] is implemented, which combines MPC for Tracking and
Robust MPC. Robust MPC has been merged with MPC for Tracking
before (see [34]), employing the notion of tubes to ensure robust-
ness. Here, however, to ensure robustness, the constraint tightening
approach in [32] is taken instead, and thus the final controller is
different.

MPC for Tracking [33] was initially developed to enable systems to
follow piece-wise changing references without losing the feasibility of
the controller. This is not of much use in this work, since the chaser
should regulate itself to a nominal nonchanging relative position with
respect to the target. However, another consequence of implementing
the MPC for Tracking scheme is that the region of attraction of the
controller (region in which the controller successfully operates) is
expanded, enhancing its capabilities and, in this case, further reducing
fuel consumption.

Robust MPC (for example, the formulation in [32]) was developed
to account for uncertainties in the dynamic model given to the MPC.
These uncertainties could be caused by perturbations, linearization
errors, or others. Assuming the uncertainties are unknown but bounded,
the goal of the Robust MPC scheme is to find a solution that minimizes
the cost function while ensuring the constraints are met for any value of
the uncertainties, and guaranteeing recursive feasibility and stability.
This formulation is extremely useful for the IBS deorbiting scenario,
since robust constraints on the position of the chaser can be set so
that the ion beam always impacts the target efficiently for any target’s
attitude state.

The contribution of this work lies in the conceptual design of a
robust control system for a realistic IBS mission scenario, utilizing
a new actuator configuration. Following the literature [25,27], the
deorbiting of a large debris object has been considered. However,
it must be acknowledged that, once in very low orbits, the process
of reentry from such large objects would be random with associated
unacceptable risks on ground and thus a secondary mechanism to
ensure a safe reentry would be required, which is beyond the scope
of this paper. The mission aims to deorbit the current most statistically
concerning debris object according to [35], the Zenit-2 second stage
rocket body (NORAD ID: 28353), down to an orbit of 340 km, although
in principle this framework can be used to deorbit many other debris
objects. Perturbations and unmodeled dynamic effects are bounded and
fed to the controller to ensure the chaser maintains a safe distance from
the target, while preserving a fairly large region of attraction and not
impacting fuel consumption. This proposed configuration incorporates
cold-gas thrusters in the radial and out-of-plane directions, alongside
the existing in-track ion thrusters (ITT and ICT). This design concept
aims to enhance controllability and safety without significantly increas-
ing the mission budget. Additionally, this paper introduces a novel
method for computing the force and torque exerted by the ion beam
on the target using a ray-marching algorithm that is integrated into the
mission simulator. In this way, the performance of the controller can
be measured more accurately. By addressing these aspects, this work
advances the theoretical understanding and control algorithms of the
IBS technology for large space debris mitigation, providing a potential
solution for future implementation.

This paper is organized as follows. In Section 2, the problem state-
ment is presented and the equations of motion are introduced, together
with the modeled perturbations. Section 3 includes an exhaustive ex-
planation of how the ion beam is modeled, introducing a new algorithm
based on ray-marching to compute the force and torque exerted on the
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Fig. 2. Proposed IBS configuration.

target. Next, Section 4 tackles all aspects related to control, introducing
a linear model of the system, the constraints to meet by the controller,
and the controller itself. Disturbance bounding is also performed in
this section, and considerations regarding recursive feasibility, conver-
gence, and the tuning of the controller are present. In Section 5, a
simulation of the whole deorbiting mission is performed, and relevant
results are shown and discussed. Lastly, the conclusions are summarized
in Section 6, along with possible future work.

2. Problem statement and equations of motion

The deorbiting of a large space debris object using IBS technology
is considered in this paper. Depending on the dimensions of the target
body, and leaving security margins to account for differences between
the target’s Center of mass (COM) and geometric center, the distance
between the chaser’s COM and the ion beam source, and some extra
space in case of malfunctioning, the chaser will be positioned a certain
distance 𝑑𝐶𝑇 in front of the target.1 The chaser has to maintain this
distant position accurately, because due to the separation between the
two bodies, small deviations in the chaser position means the beam hits
the target only partially, notably reducing efficiency.

To perform the deorbit, the chaser must maintain a precise relative
position with the target to correctly transfer the momentum of the
ion beam. Thus, the spacecraft must have the proper actuators, and a
suitable controller must be designed. The spacecraft is equipped with
an ITT that maintains its thrust constant with a value of 𝐹𝐼𝑇 𝑇 and an
ICT in the opposite direction that can vary its thrust 𝐹𝐼𝐶𝑇 for control
purposes. In the perpendicular directions, the chaser is equipped with
cold-gas thrusters.

It is assumed that the chaser possesses an attitude control system
capable of always orienting the ITT in the negative in-track direction,
which in perfect circular orbits coincides exactly with the target direc-
tion. The chaser is assumed to have sensors capable of estimating the
relative state of the target and also some orbit parameters used by the
controller such as the mean motion 𝑛 of the orbit. These parameters are
estimated with a certain error that is bounded.

In the subsequent sections, the following reference frames are used:

• Earth-Centered-Inertial (ECI) 𝑂𝐼𝑥𝐼𝑦𝐼𝑧𝐼 , which is an inertial ref-
erence frame centered on the Earth, coincident with J2000.

• Local-Vertical Local-Horizontal frame (LVLH) 𝑂𝐿𝑥𝐿𝑦𝐿𝑧𝐿.
Although this frame is not used by itself, it helps us introduce
later frames. Generically, an LVLH frame is a frame centered on
an object that orbits a certain body, and their axes are defined as
follows. The 𝑥𝐿 axis points towards the object position vector as
measured from the orbited body, 𝑧𝐿 points towards the angular
momentum vector of the object, and 𝑦𝐿 completes the Cartesian
right-handed coordinate system.

• Chaser-centered LVLH frame (CLVLH) 𝑂𝐶𝑥𝐶𝑦𝐶𝑧𝐶 . It is the LVLH
frame centered on the chaser’s COM and orbiting the Earth (see
Fig. 3).

1 See Nomenclature at end of paper
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Fig. 3. Chaser-centered LVLH frame definition.

Fig. 4. Block diagram of the problem.

• Target-centered LVLH frame (TLVLH) 𝑂𝑇 𝑥𝑇 𝑦𝑇 𝑧𝑇 . Analogous to
the CLVLH, but the origin is now the target’s COM, which is
assumed to coincide with its geometric center.

• Target Body Axes (TBA) 𝑂𝐵𝑥𝐵𝑦𝐵𝑧𝐵 . With its origin at the target’s
COM, it is fixed to the target, with its 𝑧𝐵 axis coinciding with the
cylinder revolution axis.

The state variables of the problem are the position and velocity of
both the chaser and the target in the ECI frame, 𝐫𝐼𝐶 , 𝐯𝐼𝐶 , 𝐫𝐼𝑇 , 𝐯𝐼𝑇 ; the
attitude quaternion of the target with respect to ECI 𝐪𝐵𝐼 ; the angular
velocity of the target in the body axes 𝝎𝐵

𝑇 ; and the mass of the chaser
𝑚𝐶 . A schematic view of the system is included in Fig. 4.

2.1. Equations of translational motion

The target and chaser dynamics are given by the restricted two-body
problem with added perturbations. More specifically, the equations of
motion of the COMs of the chaser and target in the ECI frame are

𝐫̈𝐼𝐶 = −
𝜇𝐸
𝑟3𝐶

𝐫𝐼𝐶 + 𝐚𝐼𝐶,𝐵 + 𝐚𝐼𝐶,𝐶 + 𝐚𝐼𝐶,𝐷 + 𝐚𝐼𝐶,𝐽2 (1)

𝐫̈𝐼𝑇 = −
𝜇𝐸
𝑟3𝑇

𝐫𝐼𝑇 + 𝐚𝐼𝑇 ,𝐵 + 𝐚𝐼𝑇 ,𝐷 + 𝐚𝐼𝑇 ,𝐽2 , (2)

where 𝜇𝐸 = 3.9860044 ⋅ 105 km3/s2 is the geocentric gravitational
constant, and the subscripts 𝐶, 𝑇 represent the chaser and target re-
spectively. The first term of both equations represents the unperturbed
dynamics of the two-body problem, while the rest are accelerations due
to the ion beam (𝐚𝐼𝐶,𝐵 and 𝐚𝐼𝑇 ,𝐵 , 𝐵 subscript from beam), control (𝐚𝐼𝐶,𝐶 ,
𝐶 subscript from control), drag (𝐚𝐼𝐶,𝐷 and 𝐚𝐼𝑇 ,𝐷, 𝐷 subscript from drag)
and J2 perturbation (𝐚𝐼𝐶,𝐽2 and 𝐚𝐼𝑇 ,𝐽2). Drag and J2 perturbations are
chosen because they are the most prominent for a satellite in a Low
Earth Orbit (LEO).

2.1.1. Ion beam acceleration
The force 𝐅𝐶

𝐵 exerted by the ion beam on the target is calculated
using the method explained in Section 3, and it is expressed in the
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CLVLH frame. Therefore, the acceleration is obtained as

𝐚𝐼𝑇 ,𝐵 = 𝑅𝐼
𝐶

𝐅𝐶
𝐵

𝑚𝑇
, (3)

where 𝑅𝐼
𝐶 is the DCM that transforms from CLVLH to ECI. The equilib-

rium state of the system is chosen so that the ion beam fully impacts the
target, maximizing the force transmitted to it (𝐹𝐶,𝑚𝑎𝑥

𝐵 = 𝐹𝐼𝑇 𝑇 ) and thus
imparting a maximum acceleration of 𝐚𝐼,𝑚𝑎𝑥𝐵,𝑇 . For the system to remain
in this equilibrium (ignoring perturbations and unmodeled dynamics),
the nominal value of the ICT must be such that the acceleration of the
chaser and the target due to the beam are equal

𝐚𝐼𝐶,𝐵 = 𝐚𝐼,𝑚𝑎𝑥𝑇 ,𝐵 . (4)

Note that during the mission, the ion beam may impact the target
only partially. The assumption in (4) is only considered to linearize the
system along that configuration.

2.1.2. Control acceleration
There is a component of the acceleration that the chaser experi-

ments that comes from the action of controlling the system, 𝐚𝐼𝐶,𝐶 . The
design of the controller as well as the actuators’ behavior are explained
in Section 4. Logically, there is no such acceleration term for the target.

2.1.3. Drag perturbation
To model drag, the next simple model is used

𝐚𝑖,𝐷 = −1
2
𝜌𝑎(ℎ𝑖)𝑣𝑟𝑖𝐯𝑟𝑖

𝐴𝑓,𝑖

𝑚𝑖
𝑐𝐷,𝑖, (5)

where the subindex 𝑖 stands for chaser 𝐶 and target 𝑇 respectively;
𝜌𝑎(ℎ𝑖) is the atmosphere density, which is computed using the Inter-
national Standard Atmosphere (ISA) model knowing the height ℎ𝑖; 𝐯𝑟𝑖
is the relative velocity between the object and the air (the latter is
assumed to rotate in solidarity with the Earth); 𝐴𝑓,𝑖 is the frontal area;
and 𝑐𝐷,𝑖 is the drag coefficient. The chaser frontal area is assumed to be
constant since it always points in the same direction, while the target
frontal area depends on its attitude. Knowing the attitude with respect
to the TLVLH frame 𝑅𝐵

𝑇 , the relative velocity in that same frame 𝐯𝑟𝑇𝑇 ,
and that the cylinder symmetry axis goes along 𝑧𝐵 , the frontal area can
be computed as

𝛿 = min

(

arccos

(

[

0 0 1
]

𝑅𝐵
𝑇

𝐯𝑟𝑇𝑇
𝑣𝑟𝑇

)

,

arccos

(

[

0 0 −1
]

𝑅𝐵
𝑇

𝐯𝑟𝑇𝑇
𝑣𝑟𝑇

))

, (6)

𝐴𝑓,𝑇 = 2𝑅𝑐𝐻𝑐 sin 𝛿 + 𝜋𝑅2
𝑐 cos 𝛿, (7)

where 𝑅𝑐 is the cylinder radius, 𝐻𝑐 its height, and 𝛿 is the angle
between the cylinder axis and the in-track direction (which is between
0 and 90 degrees).

2.1.4. J2 perturbation
J2 perturbation, with its origin in Earth’s oblateness, is also in-

cluded. This kind of harmonic perturbations, which appear due to
the fact that the Earth is not a perfect sphere, are computed in the
Earth-Centered Earth-Fixed frame (ECEF) for obvious reasons. How-
ever, taking into account that the 𝑧 axes of both ECI and ECEF are
almost coincident, and that J2 only depends on the latitude of the satel-
lite (and not longitude), the J2 perturbation can be expressed directly
in the ECI frame almost without losing accuracy. The acceleration due
to J2 is

𝐚𝐼𝑖,𝐽2 =
3
2
𝜇𝐸𝐽2

𝐫𝐼𝑖
𝑟3𝑖

(

𝑅𝐸
𝑟𝑖

)2
◦
⎛

⎜

⎜

⎝

5

(

𝑧𝐼𝑖
𝑟𝑖

)2
⎡

⎢

⎢

⎣

1
1
1

⎤

⎥

⎥

⎦

−
⎡

⎢

⎢

⎣

1
1
3

⎤

⎥

⎥

⎦

⎞

⎟

⎟

⎠

, (8)

where again the subscript 𝑖 stands for chaser 𝐶 and target 𝑇 respec-
tively, 𝐽2 = 0.0010826269 and 𝑅𝐸 = 6378.1366 km is the radius of the
Earth. The operator ◦ denotes the Hadamard product or element-wise
product of two vectors.
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2.2. Equations of rotational motion

When the beam impacts the space debris object, it exerts not only
a force but also a torque, which is also computed by the algorithm
presented in Section 3. This torque changes the angular velocity of
the debris, and it could potentially accelerate it indefinitely, which is
not desirable since phenomena such as centrifugal fragmentation could
occur. To ensure this does not happen, and to simulate a more realistic
scenario (the frontal area of the debris changes depending on its
attitude), the rotational dynamics are also included in the simulation:

𝐪̇𝐵𝐼 = 1
2
𝐪𝐵𝐼 ∗

[

0
𝝎𝐵
𝑇

]

, (9)

𝝎̇𝐵
𝑇 = −1 (𝐌𝐵

𝐵 − 𝝎𝐵
𝑇 × 𝝎𝐵

𝑇
)

, (10)

where 𝐪𝐵𝐼 is the scalar-first attitude quaternion that represents the
attitude of the target with respect to ECI, ∗ represents quaternion
multiplication, 𝝎𝐵

𝑇 is the target angular velocity, 𝐌𝐵
𝐵 is the torque

exerted by the beam, and  is the inertia tensor of the target, with the
latter three quantities expressed in the body frame. In this work, the
target is modeled as a cylinder with constant density, which means that
the COM and the geometric center coincide. With these assumptions,
the inertia tensor is computed as

𝑥 = 𝑦 =
1
12

𝑚𝑇𝐻
2
𝑐 + 1

4
𝑚𝑇𝑅

2
𝑐 , (11)

𝑧 =
1
2
𝑚𝑇𝑅

2
𝑐 , (12)

𝑥𝑦 = 𝑦𝑧 = 𝑥𝑧 = 0, (13)

where 𝑚𝑇 is the target mass, and 𝑅𝑐 and 𝐻𝑐 are the cylinder radius and
height respectively. Note that the only torque source for the rotational
dynamics is assumed to be the ion beam. There could be more, such
as gravity gradient or drag, but they are small and slow, and have
been neglected for simplicity since they would have little impact on
rotational motion.

2.3. Fuel consumption

As the chaser is controlled with both cold-gas thrusters and ion
beams, it uses fuel and thus loses mass. This mass variation is im-
portant, as it changes the force that the actuators need to exert to
produce the same acceleration. Note that the rules that are commanded
to the actuators are computed at the sampling time, even if they are
applied some time later. The forces actuating on the chaser are the
ITT and the ICT in the in-track direction, and the cold-gas thrusters in
the radial and out-of-plane directions. Recall from Section 2.1.1 that
ignoring perturbations and unmodeled dynamics, and assuming that
the beam completely impacts the target, the ICT force must be such
that the system remains in equilibrium with no control (𝐚𝐼𝐶,𝐶 = 0,
𝐚𝐼𝐶,𝐶 is now referred to as 𝐮̃ for clarity). In that scenario, at a generic
time instant, the in-track accelerations of the target and the chaser are
𝑎𝑇 ,𝑖𝑡 = −𝐹𝐼𝑇 𝑇 ∕𝑚𝑇 and 𝑎𝐶,𝑖𝑡 = (𝐹𝐼𝑇 𝑇 −𝐹𝐼𝐶𝑇 )∕𝑚−

𝐶 respectively, where 𝑚−
𝐶

represents the chaser mass at the most recent sampling time. Therefore,
for a generic acceleration 𝑢̃𝑦 commanded in the in-track direction, the
ICT must be such that 𝑢̃𝑦 = 𝑎𝑖𝑡,𝐶 − 𝑎𝑖𝑡,𝑇 , that is

𝐹𝐼𝐶𝑇 = 𝐹𝐼𝑇 𝑇

(

1 +
𝑚−
𝐶

𝑚𝑇

)

− 𝑚−
𝐶 𝑢̃𝑦. (14)

Thus, the complete fuel consumption equation is given by

̇ 𝐶 = −

(

2 +
𝑚−
𝐶

𝑚𝑇

)

𝐹𝐼𝑇 𝑇 − 𝑚−
𝐶 𝑢̃𝑦

𝑔0𝐼𝑠𝑝,𝐼𝐵
−

𝑚−
𝐶
(

|𝑢̃𝑥| + |𝑢̃𝑧|
)

𝑔0𝐼𝑠𝑝,𝐶𝐺
, (15)

where 𝐼𝑠𝑝,𝐼𝐵 and 𝐼𝑠𝑝,𝐶𝐺 are the specific impulses of the ion beam and the
cold-gas thruster respectively, while 𝑔0 = 9.80665 m∕s2 is the standard
gravity.
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Fig. 5. Depiction of the impact of the ion beam in the target, with a generic relative
position and attitude of the later.

2.4. System uncertainties

Within the system, uncertainties related to sensoring and actuation
are included. These uncertainties are modeled as uniform distributions
so that they have a bounded maximum value. This is necessary to
ensure the robustness of the controller in Section 4. If uncertainties
were to be modeled as normal distributions or similar, a chance-based
approach can be used, in which it is possible to give a probability
(which is now not 100%) that the constraints will be met (see, for
example, [29]).

The spacecraft has sensors that estimate the relative position and ve-
locity of the target with respect to the chaser, and these measurements
are assumed to have some error. If some advanced sensoring system
based on lidar/radar is considered, bounding values of the relative
position errors are of the order of ±1 cm for the relative position
and ±5 cm/min for the relative velocity. Moreover, the ion beam
force is assumed to be not completely stationary, slightly changing the
divergence angle of the beam. This effect is modeled by considering
that the force exerted on the target can vary as much as ±5% of the
nominal value.

3. Ion beam modeling. Force and torque computation

Modeling the ion beam is crucial for an accurate simulation of the
controlled system. However, computing the force and torque that the
beam exerts on the target is not trivial. With an arbitrary position and
attitude of the target, perhaps only part of the beam impacts the object
and the rest does not (see Fig. 5), and the points where it impacts are
crucial for force and torque calculations. To solve this task, some groups
discretize the target surface as a triangle mesh and locally compute
the force and torque on each one [22]. Others use properties of the
assumed ion beam model to project the force and compute it in two
dimensions [16]. Another group has even developed internal software
for this task [13], based on finite element methods and a shadowing
algorithm. In this work, another approach based on ray-marching is
chosen, and it is explained in this section.

3.1. Ray-marching basics

Ray-marching is a rendering technique used in computer graphics
to generate images by casting rays into a scene and incrementally
advancing along each ray to find intersections with objects [36]. In
this paper, no images are generated using this technique, but rather
the technique is used to compute the distance from a point to the first
intersecting object in some given direction, that is, from the ion beam
cone vertex to the target in some given direction. The idea is that one
can find the distance by iteratively advancing along the ray a distance
equal to the shortest distance to the closest object, as Fig. 6 shows.
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Fig. 6. Ray-marching depiction.

Fig. 7. Relationship between a target differential surface element d𝑆 and a beam
differential surface element d𝑆′.

If that shortest-distance computation is cheap (which is the case for
simple geometrical shapes, such as a cylinder, as shown in Section 3.3),
then the algorithm converges rapidly to the desired distance. Ray-
marching may not be suited for more complex geometries, but to the
authors’ knowledge, no complex geometry for the space debris object
has been used yet for the study of a potentially viable IBS deorbit
mission, and even then, more complex shapes generated from Boolean
operations applied on simple mathematical shapes are also suited for
ray-marching.

3.2. Beam-focused discretization of the force

Under some typical simplifying assumptions [20], the differential
force that the ion beam exerts in a differential surface element of the
target is given by

d𝐅𝐵 = 𝑚𝐼𝑛𝐼𝐔 (−𝐍 ⋅ 𝐔)d𝑆, (16)

where 𝑚𝐼 is the ion mass, 𝑛𝐼 is the number density of ions, 𝐔 is the
ion velocity vector, and 𝐍 is the external unit normal vector to the
elementary area d𝑆. Under the same assumptions, a self-similar model
of the fluid can be developed to determine the ion number density and
velocity at any point far from the beam source, which is the region of
interest. This model assumes the beam expands in a conical shape, dis-
regarding factors like internal ambipolar electric fields [10]. However,
this simplification is common in similar studies [16,20,25,27], as it has
limited impact on the overall behavior of the beam.

For the ray-marching-based algorithm implementation, however, it
is more interesting to discretize the force in terms of a differential
surface element of the beam, not the target. To do this, observe Fig. 7,
where a generic differential surface element of the target d𝑆 is shown
along with a differential surface element of the beam d𝑆′. Note that,
since the ions move radially away from the source, 𝐔 and d𝑆′ are
always perpendicular. Furthermore, since d𝑆 and d𝑆′ are arbitrarily
small, they can be considered flat surfaces, and 𝐔 is assumed constant
throughout their span. Note that Fig. 7 is not a 2D simplification of the
3D case, it represents the actual 3D flat differential surfaces seen from
a convenient point of view: perpendicular to the plane that contains
the normal vectors of both d𝑆 and d𝑆′.

Looking at Fig. 7, it is not difficult to see that since −𝐍 ⋅𝐔 = 𝑈 cos 𝛾,
and cos 𝛾d𝑆 = d𝑆′, the differential force can be expressed in terms of
a differential surface element of the beam as

d𝐅𝐵 = 𝑚𝐼𝑛𝐼𝐔𝑈d𝑆′. (17)

Now, spherical coordinates as in Fig. 8 are defined, where

𝑂𝐶𝑥𝐶𝑦𝐶𝑧𝐶 represents the CLVLH frame and 𝑑𝑉 is the distance from the

694 
Fig. 8. Definition of spherical coordinates for the ion beam computation.

Table 1
Ion beam characteristics.
𝑅0 [m] 𝑚𝐼 [kg] 𝑛0 [m−3] 𝑈0 [m/s] 𝛼0 [deg]

0.1894 2.18 ⋅ 10−25 4.13 ⋅ 1015 71,580 7

COM of the chaser to the cone vertex of the ion beam. The value of 𝛼
ranges between 0 and 𝛼0, which is the angle of divergence of the beam,
and 𝜌 ∈ [0,∞), 𝛽 ∈ [0, 2𝜋). In these coordinates, a differential surface
element of the beam, the ion number density, and the ion velocity are
given by

d𝑆′ = 𝜌2 sin 𝛼d𝛼d𝛽, (18)

𝑛𝐼 =
𝑅2
0𝑛0

𝜌2 tan2 𝛼0 cos2 𝛼
exp

(

−𝐶 tan2 𝛼
2 tan2 𝛼0

)

, (19)

𝐔 =
𝑈0
cos 𝛼

𝝆̂, (20)

where 𝝆̂ is the radial unit vector, 𝑅0 is the radius at a reference plane of
the plasma tube that contains 95% of the ion beam mass flow, 𝑛0 is the
density at the center of that reference plane, 𝐶 ≈ 6 is an integration
constant related to that 95%, and 𝑈0 is the ion velocity magnitude
at the cone axis (see [16]). Therefore, the differential force can be
computed as

d𝐅𝐵 =
𝑚𝐼𝑛0𝑅2

0𝑈
2
0 tan 𝛼

tan2 𝛼0 cos3 𝛼
exp

(

−𝐶 tan2 𝛼
2 tan2 𝛼0

)

𝝆̂d𝛼d𝛽. (21)

Note that this expression does not depend on the distance between
the ion beam impact point and the source point. However, it is still
necessary to compute the distance for two reasons. The first is that,
even if the distance itself does not appear, it must be known if the
beam in that specific direction (given by 𝛼 and 𝛽) intersects the target,
ecause if it does not, then d𝐅𝐵 is zero. The second reason is that even
f the distance is not needed for the force computation, it is needed
or the torque, and that is probably why algorithms in [16,17] do not
ompute it. For the actual computation, taking into account that the
hosen ion thruster is Xenon-based, the same value as in [16,17] is
sed for the ion mass. The ion density at the center of the reference
lane, the ion velocity magnitude at the cone axis, and the divergence
ngle are also taken from those studies. What is modified, then, is 𝑅0,
hich is adapted so that the force that the ion beam exerts in an object
hen it impacts entirely is 𝐹𝐼𝑇 𝑇 = 164.8 mN (the value in Table 6). The

haracteristics of the beam are included in Table 1.

.3. Ray-marching to compute the distance

For a cylinder of radius 𝑅𝑐 and height 𝐻𝑐 centered at the origin and
ith its symmetry axis along 𝑧, the distance 𝜌(𝛼, 𝛽) from an arbitrary
oint 𝐐𝐵 in the target body axes to the cylinder can be computed with
ust one formula as

=
‖

‖

‖

‖

‖

⎛

⎜

⎜

max
(

√

𝑄𝐵
𝑥
2 +𝑄𝐵

𝑦
2 − 𝑅𝑐 , 0

)

( 𝐵 )

⎞

⎟

⎟

‖

‖

‖

‖

‖

, (22)

‖

‖

⎝
max |𝑄𝑧 | −𝐻𝑐∕2, 0 ⎠

‖

‖
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and, with the cylinder center in a certain position with respect to the
CLVLH frame 𝐫𝐶𝑂𝐶𝑦𝑙 and an arbitrary attitude 𝑅𝐵

𝐶 , 𝐐𝐵 can be easily
obtained as

𝐐𝐵 = −𝑅𝐵
𝐶

(

𝐫𝐶𝑂𝐶𝑦𝑙 − 𝐝𝐶𝑉
)

, (23)

where 𝐝𝐶𝑉 is the position vector of the ion beam cone vertex in the
CLVLH frame. If the ion beam is always pointed towards −𝑦𝐶 , then
𝐝𝐶𝑉 = [0,−𝑑𝑉 , 0]𝑇 .

3.4. Discretizing the beam

To discretize the beam, simple linear spacings in both 𝛼 and 𝛽 are
taken. In Section 3.5 it is shown that 𝑁𝛼 = 100 and 𝑁𝛽 = 20 points for
𝛼 and 𝛽 respectively are enough to approximate the beam force to an
accuracy of around 0.15% of relative error, while still being fairly fast.
For each 𝛼𝑖, 𝛽𝑗 , one computes

𝝆̂𝐶
𝑖𝑗 =

⎛

⎜

⎜

⎝

cos 𝛽𝑗 sin 𝛼𝑖
−cos 𝛼𝑖

sin 𝛽𝑗 sin 𝛼𝑖

⎞

⎟

⎟

⎠

, (24)

𝛥𝐅𝐶
𝐵,𝑖𝑗 =

𝑚𝐼𝑛0𝑅2
0𝑈

2
0 tan 𝛼𝑖

tan 𝛼20 cos
3 𝛼𝑖

exp
(

−𝐶
tan2 𝛼𝑖
2 tan2 𝛼0

)

𝝆̂𝐶
𝑖𝑗𝛥𝛼𝛥𝛽𝑏𝑖𝑗 , (25)

where 𝑏𝑖𝑗 is a boolean variable that is 0 if the beam does not intersect
the cylinder and 1 if it does. The force in the CLVLH frame, and torque
in the TBA frame, which are the outputs of the algorithm, can be
retrieved as

𝐅𝐶
𝐵 =

𝑁𝛼
∑

𝑖=1

𝑁𝛽
∑

𝑗=1
𝛥𝐅𝐶

𝐵,𝑖𝑗 , (26)

𝐌𝐵
𝐵 = 𝑅𝐵

𝐶

𝑁𝛼
∑

𝑖=1

𝑁𝛽
∑

𝑗=1
𝐫𝐶𝑂𝐶𝑦𝑙,𝑃 𝑖𝑗

× 𝛥𝐅𝐶
𝐵,𝑖𝑗 , (27)

where 𝐫𝐶𝑂𝐶𝑦𝑙,𝑃 𝑖𝑗
is the vector that goes from the cylinder center to the

impact point of the beam, and can be computed as

𝐫𝐶𝑂𝐶𝑦𝑙,𝑃 𝑖𝑗
= 𝜌𝑖𝑗 𝝆̂𝐶

𝑖𝑗 −
(

𝐫𝐶𝑂𝐶𝑦𝑙 − 𝐝𝐶𝑉
)

. (28)

3.5. Sensitivity analysis and results validation

After applying the discretization to the model, it is left to choose the
appropriate values of 𝑁𝛼 and 𝑁𝛽 . Logically, for 𝑁𝛼 → ∞, 𝑁𝛽 → ∞, the
discretized solution converges to the real one. However, as the number
of points increases, so does the computation time, and, given that this
function is called multiple times by the integrator, it is mandatory that
it takes very few to execute. Because of this, even if the programming
environment used for the development of this paper is MATLAB, a C++
MEX function has been programmed precisely for this computation of
force and torque.

To choose 𝑁𝛼 and 𝑁𝛽 , a large value is first set for both 𝑁𝛼 =
𝑁𝛽 = 10,000 and the force and torque are calculated with them,
results that can be assumed to be very close to the real solution and
thus are denoted 𝐅𝐵,ℎ𝑝 and 𝐌𝐵,ℎ𝑝, with the subscript ℎ𝑝 denoting high
precision. Then a series of values lower than 10,000 are tested for both
𝑁𝛼 and 𝑁𝛽 , and the force 𝐅𝐵 and torque 𝐌𝐵 are computed for each of
them. Lastly, the relative error between each obtained result and the
one corresponding to the high precision computation is calculated and
shown in Table 2 for the force and Table 3 for the torque, to calculate
the quality of the results. For these computations the relative position
of the target with respect to the chaser in a chaser-centered LVLH frame
is 𝐫𝐶𝑂𝐶𝑦𝑙 = [1,−𝑑𝐶𝑇 , 0]𝑇 (with 𝑑𝐶𝑇 = 12 m), and its attitude, described in
Euler angles, is 𝜃1 = −45◦, 𝜃2 = −30◦, 𝜃3 = 0 for the YXZ sequence. They
re chosen so that the beam hits the target in a rather arbitrary attitude
nd just partially so that torque is generated (otherwise, torque relative
rrors would just be computer numeric noise), but the same trends are

ound in other relative positions and attitudes.
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Table 2
Values of 100 ‖𝐅𝐵−𝐅𝐵,ℎ𝑝‖

‖𝐅𝐵,ℎ𝑝‖
[%], where 𝐅𝐵 is computed for each 𝑁𝛼 , 𝑁𝛽 , and 𝐅𝐵,ℎ𝑝 is the

value for 𝑁𝛼 = 𝑁𝛽 = 10000.

𝑁𝛼 \𝑁𝛽 10 20 50 100 1000 10,000

10 0.8638 0.8637 0.7932 0.7931 0.7614 0.7618
20 0.5330 0.5330 0.5426 0.5426 0.5319 0.5336
50 0.3418 0.2981 0.2621 0.2621 0.2648 0.2643
100 0.1955 0.1513 0.1394 0.1394 0.1358 0.1357
1000 0.0635 0.0213 0.0133 0.0133 0.0122 0.0124
10,000 0.0521 0.0097 0.0014 0.0010 0.0000 0

Table 3
Values of 100 ‖𝐌𝐵−𝐌𝐵,ℎ𝑝‖

‖𝐌𝐵,ℎ𝑝‖
[%], where 𝐌𝐵 is computed for each 𝑁𝛼 , 𝑁𝛽 , and 𝐌𝐵,ℎ𝑝 is the

value for 𝑁𝛼 = 𝑁𝛽 = 10000.

𝑁𝛼 \𝑁𝛽 10 20 50 100 1000 10,000

10 0.6860 0.7484 0.6410 0.6583 0.6112 0.6132
20 0.3350 0.4071 0.4377 0.4526 0.4368 0.4399
50 0.3450 0.2878 0.2309 0.2323 0.2377 0.2369
100 0.2049 0.1386 0.1244 0.1270 0.1212 0.1212
1000 0.1133 0.0234 0.0105 0.0123 0.0105 0.0109
10,000 0.1112 0.0205 0.0031 0.0022 0.0000 0

Table 4
Computation time [ms] computed for each 𝑁𝛼 , 𝑁𝛽 .

𝑁𝛼 \𝑁𝛽 10 20 50 100 1000 10,000

10 0.049 0.058 0.124 0.233 2.005 18.43
20 0.054 0.079 0.190 0.373 3.691 34.53
50 0.110 0.191 0.460 0.882 8.871 85.78
100 0.202 0.375 0.904 1.776 17.01 168.7
1000 1.806 3.606 8.932 17.86 168.7 1659
10,000 17.61 36.04 87.61 173.2 1699 16,653

It can be seen that the model is relatively precise even for a small
number of points, achieving a less than 1% error with only 𝑁𝛼 =
𝑁𝛽 = 10. The computation times for each combination are included in

able 4. The calculations were performed using a Windows 11 laptop
quipped with an Intel Core i7-12700H processor and 32 GB of RAM.
oting that the accuracy is much more sensitive to 𝑁𝛼 than to 𝑁𝛽 , and

aking a look at the computational times, it seems reasonable to choose
𝛼 = 100, 𝑁𝛽 = 20 as the values with which to perform the simulations.

Now, to validate the results of the model with 𝑁𝛼 = 100, 𝑁𝛽 = 20,
one can check the force it gives compared to the results obtained in [16]
using both direct integration and central projection. For this task the
cylinder is modified to have the same measurements, which are a radius
of 1.1 m and a height of 2.6 m; and the beam characteristics are
changed to coincide with those in [16]. The forces obtained for the
three methods and the 15 cases they present (which are depicted in
Fig. 9) are included in Table 5, concluding that the mean relative error
is around 0.15%, as expected. However, this beam marching algorithm
is also able to compute torque while still being efficient.

Note that in Table 5, cases 1, 4, 7, 10 and 13 give the same
exact force result. This is no coincidence. With the hypotheses made
in Section 3.2, in which the ion beam expands as a cone, and the force
magnitude does not depend on the distance, the force can be computed
by projecting the debris surface impacted by the ion beam on a certain
perpendicular plane (that is the base of how they compute the force
in [16]). Therefore, if the ion beam completely impacts the target, the
projected shape is a circle regardless of the attitude, and the force is
the same. Thus, as long as the ion beam completely impacts the target,
the target’s attitude does not change its acceleration. If the impact is
partial, attitude will influence the result.

4. Control design

To control the relative position of the chaser with respect to the
target, a Robust MPC for Tracking controller is designed, based on
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Table 5
Comparison of force results obtained for both methods 1 and 2 in [16] vs using beam marching.

Case Direct integration Central projection Beam marching

𝐹𝐵,𝑥 [N] 𝐹𝐵,𝑦 [N] 𝐹𝐵,𝑧 [N] 𝐹𝐵,𝑥 [N] 𝐹𝐵,𝑦 [N] 𝐹𝐵,𝑧 [N] 𝐹𝐵,𝑥 [N] 𝐹𝐵,𝑦 [N] 𝐹𝐵,𝑧 [N]

1 0.000 0.000 2.986e−2 0.000 0.000 2.975e−2 0.000 0.000 2.979e−2
2 0.000 3.431e−5 2.943e−2 0.000 3.459e−5 2.943e−2 0.000 3.451e−5 2.947e−2
3 0.000 5.332e−4 1.764e−2 0.000 5.327e−4 1.766e−2 0.000 5.336e−4 1.768e−2
4 0.000 0.000 2.974e−2 0.000 0.000 2.975e−2 0.000 0.000 2.979e−2
5 −7.700e−6 8.587e−5 2.888e−2 −7.487e−6 8.636e−5 2.887e−2 −7.681e−6 8.671e−5 2.891e−2
6 −7.496e−6 5.313e−4 1.834e−2 −7.120e−6 5.318e−4 1.833e−2 −3.458e−6 5.359e−4 1.825e−2
7 0.000 0.000 2.975e−2 0.000 0.000 2.975e−2 0.000 0.000 2.979e−2
8 6.939e−6 4.858e−6 2.967e−2 6.720e−6 5.464e−6 2.968e−2 7.354e−6 6.098e−6 2.971e−2
9 1.314e−4 1.352e−4 2.747e−2 1.303e−4 1.374e−4 2.745e−2 1.297e−4 1.368e−4 2.752e−2
10 0.000 0.000 2.975e−2 0.000 0.000 2.975e−2 0.000 0.000 2.979e−2
11 6.939e−6 4.858e−6 2.967e−2 6.720e−6 5.464e−6 2.968e−2 7.354e−6 6.098e−6 2.971e−2
12 1.314e−4 1.352e−4 2.747e−2 1.303e−4 1.374e−4 2.745e−2 1.297e−4 1.368e−4 2.752e−2
13 0.000 0.000 2.975e−2 0.000 0.000 2.975e−2 0.000 0.000 2.979e−2
14 1.311e−5 1.321e−5 2.959e−2 1.297e−5 1.297e−5 2.959e−2 1.243e−5 1.243e−5 2.964e−2
15 1.575e−4 2.259e−4 2.578e−2 1.566e−4 2.261e−4 2.578e−2 1.529e−4 2.281e−4 2.583e−2
Fig. 9. The 15 different configurations in which the force results are compared to
those in [16].

the formulation in [34]. As typical in MPC, the system model for the
controller is a linear approximation of the real system. Errors due to
these approximations and from other sources are bounded and fed to
the controller to make it robust. In addition, one must take into account
that the controller output is continuous and is applied to the system via
a zero-order-hold (ZOH). However, the cold-gas thrusters operate in a
binary on–off mode, regulating the time they are actuating. To convert
from one type of actuation to the other, an on–off filter is also included.
This section is organized as follows: the on–off filter is explained in
Section 4.1, the linear model approximation of the system is presented
in Section 4.2, the system constraints are introduced in Section 4.3, the
set that bounds the disturbances is computed in Section 4.4, and finally,
Section 4.5 includes the controller design.

4.1. On–off filter for the cold-gas thrusters

The control output as computed by the MPC lies in the reals and
is assumed to be applied as a ZOH. Indeed, this is possible in the
in-track direction, where the force of the ITT can be modulated as
needed. However, one must remember that in the radial and out-of-
plane directions the actuators operate in a binary on–off mode, which
means they apply only either zero or maximum thrust, and are able
to correctly actuate on the system by conveniently adjusting the times
they are switched on and off. To convert the MPC control output into
a feasible actuation, a centered equal-area filter is applied, so that the
696 
real control commanded to the actuators is

𝑢̃𝑖(𝑡) =

⎧

⎪

⎨

⎪

⎩

0 0 ≤ 𝑡 < 𝑇 𝑜𝑛
𝑖

𝑢𝑚𝑎𝑥,𝐶𝐺 ⋅ sgn(𝑢𝑖) 𝑇 𝑜𝑛
𝑖 ≤ 𝑡 ≤ 𝑇 𝑜𝑓𝑓

𝑖

0 𝑇 𝑜𝑓𝑓
𝑖 < 𝑡 ≤ 𝑇𝑐 ,

(29)

where 𝑇 𝑜𝑛
𝑖 = 𝑇𝑐

2

(

1 − |𝑢𝑖|
𝑢𝑚𝑎𝑥,𝐶𝐺

)

, 𝑇 𝑜𝑓𝑓
𝑖 = 𝑇𝑐

2

(

1 + |𝑢𝑖|
𝑢𝑚𝑎𝑥,𝐶𝐺

)

; 𝑖 = {𝑥, 𝑧}, that is,
this filter is applied only in the radial and out-of-plane directions; and
𝑢𝑚𝑎𝑥,𝐶𝐺 = 𝐹𝐶𝐺∕𝑚−

𝐶 is the maximum acceleration the cold-gas thrusters
can produce at the control sampling time. The control is assumed to be
recomputed every 𝑇𝑐 seconds. Note that this filter centers the actuation
in the middle of the control interval and adjusts the control so that
‘‘control areas’’ are preserved (that is, ∫ 𝑇𝑐

0 𝑢̃𝑖d𝑡 = ∫ 𝑇𝑐
0 𝑢𝑖), which forces

both controls to have a ‘‘similar’’ impact on the system.
There is one last feature of this filter. If the control action |

|

𝑢𝑖||
commanded by the MPC is so small that 𝑇 𝑜𝑓𝑓

𝑖 −𝑇 𝑜𝑛
𝑖 < 𝛥𝑇𝑙𝑖𝑚 (where 𝛥𝑇𝑙𝑖𝑚

is a small value), the filter is ordered not to act at all. This behavior is
added to deal with the fact that cold-gas thrusters have a minimum-
width pulse that they can perform. More details on this are given in
Section 4.4.1.

4.2. Linear model

Sensors on-board the chaser estimate its absolute state 𝐫𝐼𝐶 , 𝐯
𝐼
𝐶 and

the relative state of the target with respect to the chaser-centered LVLH
frame 𝐫𝐶𝑇 , 𝐯

𝐶
𝑇 . The target is to be kept at a distance 𝑑𝐶𝑇 behind the

chaser in the negative in-track direction, so 𝐫𝐶𝑇 ,𝑟𝑒𝑓 = [0,−𝑑𝐶𝑇 , 0]𝑇 ,
𝐯𝐶𝑇 ,𝑟𝑒𝑓 = [0, 0, 0]𝑇 . Therefore, for the controller, the virtual state 𝐱 =
(

𝐫𝐶𝑉 , 𝐯
𝐶
𝑉
)

, is defined, where 𝐫𝐶𝑉 = 𝐫𝐶𝑇 ,𝑟𝑒𝑓 − 𝐫𝐶𝑇 , 𝐯
𝐶
𝑉 = 𝐯𝐶𝑇 ,𝑟𝑒𝑓 − 𝐯𝐶𝑇 . The

task of the controller is to regulate the virtual state 𝐱 to the origin.
The dynamics of the virtual state can be approximated by a modified
version of the Hill–Clohessy–Wiltshire (HCW) equations:

𝐱̇ = 𝐴𝑐𝐱 + 𝐵𝑐𝐮 + 𝐰𝑐 , (30)

where

𝐴𝑐 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

3𝑛2 + 𝑐 0 0 0 2𝑛 0
0 −2𝑐 0 −2𝑛 0 0
0 0 −𝑛2 + 𝑐 0 0 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, 𝐵𝑐 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0 0 0
0 0 0
0 0 0
1 0 0
0 1 0
0 0 1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

,

(31)

and 𝐰𝑐 is an unknown but bounded state disturbance. In 𝐴𝑐 , 𝑛 is the
mean motion of the chaser, which can be obtained from 𝐫𝐼𝐶 , 𝐯

𝐼
𝐶 , and

𝑐 is a new term that accounts for the gradient effect the ion beam

has on the target when the chaser and the target are not properly
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aligned (see [20]). This term 𝑐 is computed assuming that the target is
perfectly spherical (the so-called cannonball model), which is logically
not the case, but allows the controller to have some kind of information
about the effect of the ion beam on the system, enhancing performance.
Coming from a cylinder, setting the radius of the apparent sphere is not
straight-forward. In this work, it is chosen to be the mean between the
cylinder radius and its semiheight, 𝑅𝑎𝑠 = (𝑅𝑐 +𝐻𝑐∕2)∕2. This is a good
compromise value for its simplicity and because, for cylindrical targets
with height to radius ratios between 3.5 and 16.3, it lies between
the equivalent sphere radius obtained by computing the mean frontal
area of the cylinder (𝑅𝐴 =

√

2𝑅𝑐∕𝜋
(

𝑅𝑐∕𝜋 + 2𝐻𝑐
)

), and the equivalent

radius of a sphere with the same volume (𝑅𝑉 = 3
√

3𝑅2
𝑐𝐻𝑐∕4). Another

way to compute this equivalent sphere radius may be convenient for
other 𝐻𝑐∕𝑅𝑐 proportions.

The system in (30), with 𝑛𝑥 = 6 states and 𝑛𝑢 = 3 control inputs,
is an LTI continuous system, while the controller acts discretely. The
discrete version of the system is

𝐱𝑘+1 = 𝐴𝐱𝑘 + 𝐵𝐮𝑘 + 𝐰𝑘, (32)

where, again, 𝐰𝑘 is an unknown but bounded state disturbance. Assum-
ing that the controller acts every 𝑇𝑐 seconds, matrices 𝐴 and 𝐵 can be
computed using the State Transition Matrix (STM) 𝛷(𝑡) as

𝛷̇ = 𝐴𝑐𝛷, 𝛷(0) = 𝐈6, (33)

𝐴 = 𝛷(𝑇𝑐 ), (34)

𝐵 = ∫

𝑇𝑐

0
𝛷(𝜏)d𝜏 𝐵𝑐 , (35)

where 𝐈6 is the 6 × 6 identity matrix. Although there are simple analytic
solutions for 𝐴,𝐵 in the classical HCW model, these solutions become
much more cumbersome with the addition of the 𝑐 term, and their
numerical calculation becomes a better choice. However, (35) is not
an efficient way of computing 𝐵, since it performs a quadrature of a
function that performs a numerical integration each time it is evaluated.
Instead, differentiating (35), applying the Fundamental Theorem of
Calculus, and reordering the equations, one obtains the next system of
Ordinary Differential Equations (ODEs):

𝛷̇ = 𝐴𝑐𝛷, 𝛷(0) = 𝐈6, (36)

𝛱̇ = 𝐴𝑐𝛱, 𝛱(0) = 𝟎6×3, (37)

𝛹̇ = 𝛱, 𝛹 (0) = 𝐵𝑐 , (38)

in which 𝛷(𝑇𝑐 ) = 𝐴, 𝛹 (𝑇𝑐 ) = 𝐵. Note that, since the system is LTI,
these matrices are calculated once and then stored; they do not need
to be recomputed at each sampling time, except when the controller is
re-tuned (since the chaser and target orbits slowly change, after some
time the mean motion 𝑛 must be updated and the controller re-tuned).

4.3. System constraints

In accordance with the MPC formulation, the constraints that the
system must meet at each time instant are expressed as polytopes. In the
case of the state, a certain polytope that ensures full impact of the ion
beam is defined for position, and maximum values are set for velocity.
For the control, there are maximum values that the actuators can input
into the system.

4.3.1. State constraints
In terms of position, the chaser should not deviate significantly from

the virtual reference, since that would imply only partially hitting the
target (or potentially not hitting it at all), which in turn means a longer
mission time and more fuel consumption, since the ion thrusters would
be more time activated. Note, however, that it may not be convenient to
impose very strict constraints in position either. The chaser has some
clearance to move while still completely hitting the target (or, more
697 
Fig. 10. Visualization of the position constraints polytope.

precisely, the cone that represents the 95% of the ion beam contribution
completely hits the target). So, if the chaser is in that vicinity, it can
be left unactuated while not draining mission performance; quite the
contrary, it would increase efficiency because less fuel would be used.

To compute the clearance region, it is assumed that within that
region, the ion beam completely hits the target regardless of the target’s
attitude. This is equivalent to saying that the ion beam must hit the
sphere inscribed in the cylinder, that is, a sphere with radius 𝑅𝑐 . With
a divergence angle 𝛼0, recalling that in the nominal relative position
the COMs of the target and chaser are separated by 𝑑𝐶𝑇 , and that the
distance between the chaser’s COM and the ion beam source is 𝑑𝑉 ,
the maximum displacement in the in-track direction while still entirely
hitting the target can be computed to be

𝛥𝑦𝑚𝑎𝑥 =
𝑅𝑐

sin 𝛼0
−
(

𝑑𝐶𝑇 − 𝑑𝑉
)

. (39)

From there, if one moves towards the negative in-track direction with
an angle less than 𝛼0, the target would still be completely hit, so this
region is actually a cone. Another limit must be imposed on the other
side, since the chaser should not get too close to the target. Assuming
that in the worst attitude case the ion beam source should be at 𝑑𝑚𝑖𝑛 = 3
m of the target’s closest point and not less, the maximum movement in
the negative in-track direction is

𝛥𝑦𝑚𝑖𝑛 = −
⎛

⎜

⎜

⎝

𝑑𝐶𝑇 − 𝑑𝑉 −

√

𝑅2
𝑐 +

(

𝐻𝑐
2

)2
− 𝑑𝑚𝑖𝑛

⎞

⎟

⎟

⎠

. (40)

For the simulation case studied in Section 5, this truncated cone is
shown in Fig. 10, along with an inner approximation made with an
eight-plane polytope, which is the actual region input into the con-
troller. To build the inner approximation, the next approach was fol-
lowed:

• The cone vertex is denoted as 𝑃0 =
{

0, 𝛥𝑦𝑚𝑎𝑥, 0
}

.
• Eight points are defined at the minimum 𝑦 distance, inscribing an

octagon inside the cone intersection circle: 𝑃𝑖 =
{(

𝛥𝑦𝑚𝑎𝑥 − 𝛥𝑦𝑚𝑖𝑛
)

tan 𝛼0 cos 𝛽𝑖, 𝛥𝑦𝑚𝑖𝑛,
(

𝛥𝑦𝑚𝑎𝑥 − 𝛥𝑦𝑚𝑖𝑛
)

tan 𝛼0 sin 𝛽𝑖
}

, where 𝛽𝑖 = 0, 𝜋4 ,
𝜋
2 ,

… , 7𝜋4 for 𝑖 = 1,… , 8, and 𝑃9 ∶= 𝑃1.
• Eight planes are defined with the three-point definition: 𝑃0𝑃𝑖𝑃𝑖+1,

for 𝑖 = 1,… , 8.
• Eight plane inequalities are set using those planes, such that all

of them contain the origin.
• The last inequality is given by 𝑦 > 𝛥𝑦𝑚𝑖𝑛.

Position constraints are therefore given by 𝐴𝑟𝐫 ≤ 𝐛𝑟, where 𝐴𝑟 and
𝑏𝑟 are defined according to the polytope in Fig. 10.

In terms of velocity, a maximum velocity 𝑣𝑚𝑎𝑥 = 1 m/min is
imposed, to increase safety in operations. Thus, velocity restrictions are
expressed as 𝐴𝑣𝐱 ≤ 𝐛𝑣, where

𝐴𝑣 =
[

𝟎3 𝐈3
]

, 𝑏𝑣 = 𝑣𝑚𝑎𝑥𝟏6×1. (41)
𝟎3 −𝐈3
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Therefore, the state admissible set is

 =
{

𝐱 ∈ R6 ∶ 𝐴𝑥𝐱 ≤ 𝐛𝑥
}

, (42)

where 𝐴𝑥 =
[

𝐴𝑟
𝐴𝑣

]

, 𝐛𝑥 =
[

𝐛𝑟
𝐛𝑣

]

.

.3.2. Control constraints
Actuators have a maximum force that they can provide, which is

𝐶𝐺 and 𝐹𝐼𝐶𝑇 ,𝑚𝑎𝑥 for the cold-gas thruster and ICT respectively. This
orce is transformed into acceleration (the actual control input in (32))
y dividing it by the chaser mass. Thus, in the radial and out-of-plane
irections, the maximum acceleration is given by

𝑚𝑎𝑥,𝐶𝐺 =
𝐹𝐶𝐺

𝑚𝐶
, (43)

where 𝑚𝐶 denotes the mass of the chaser at the tuning of the controller.
ote that there is no constraint on the minimum value of |

|

𝑢𝑥||, ||𝑢𝑧||, since
he filter introduced in Section 4.1 already handles these cases. The
iscrepancy in the state due to the difference between what the con-
roller commands and what the cold-gas thrusters perform is deduced
nd bounded in Section 4.4.1.

However, in the in-track direction, it is a little different. Recalling
14), one can obtain the maximum control value 𝑢𝑚𝑎𝑥,𝐼𝐶𝑇 (that is, the
aximum acceleration in the positive in-track direction) by setting
𝐼𝐶𝑇 to zero, and the minimum control value 𝑢𝑚𝑖𝑛,𝐼𝐶𝑇 (the maximum
cceleration in the negative in-track direction) by setting 𝐹𝐼𝐶𝑇 =
𝐼𝐶𝑇 ,𝑚𝑎𝑥, thus obtaining

𝑚𝑎𝑥,𝐼𝐶𝑇 = 𝐹𝐼𝑇 𝑇

(

1
𝑚𝑇

+ 1
𝑚𝐶

)

, (44)

𝑢𝑚𝑖𝑛,𝐼𝐶𝑇 = −
𝐹𝐼𝐶𝑇 ,𝑚𝑎𝑥 − 𝐹𝐼𝑇 𝑇

𝑚𝐶
+

𝐹𝐼𝑇 𝑇
𝑚𝑇

. (45)

It is appropriate to note that the force 𝐹𝐼𝑇 𝑇 that affects the chaser does
not depend on the ion beam impacting the target or not. Rather, 𝑚𝑇
appears because it determines the acceleration of the target, and recall
that, as explained in Section 2.1.1, in the equilibrium configuration
the acceleration of the chaser must be equal to that of the target. The
control admissible set ends up being

 =
{

𝐮 ∈ R3, ∶ 𝐴𝑢𝐮 ≤ 𝐛𝑢
}

, (46)

where 𝐴𝑢 =
[

𝐈3
−𝐈3

]

, 𝐛𝑢 =
[

𝑢𝑚𝑎𝑥,𝐶𝐺 , 𝑢𝑚𝑎𝑥,𝐼𝐶𝑇 , 𝑢𝑚𝑎𝑥,𝐶𝐺 , 𝑢𝑚𝑎𝑥,𝐶𝐺 ,

−𝑢𝑚𝑖𝑛,𝐼𝐶𝑇 , 𝑢𝑚𝑎𝑥,𝐶𝐺
]𝑇 .

Note that mass 𝑚𝐶 was defined as the mass that the chaser has
when the tuning of the controller is performed, even if mass actually
decreases during operations. The controller has been implemented in
this way because otherwise the admissible sets would change contin-
uously and a continuous re-tuning of the controller (which, of course,
is not viable) would be needed. Note, however, that these limits are a
conservative estimation of the actual limits of the actuators, since when
𝑚𝐶 decreases, 𝑢𝑚𝑎𝑥,𝐶𝐺 , 𝑢𝑚𝑎𝑥,𝐼𝐶𝑇 increase and 𝑢𝑚𝑖𝑛,𝐼𝐶𝑇 decreases, so this
approach may have an impact on the performance of the controller
(which has been tested to be virtually nonexistent for the chosen
re-tuning frequency), but not on its feasibility.

4.4. Disturbances bounding

There are certain behaviors of the real system that the linear model
does not include. One example of them is the presence of the on–off
filter, which of course modifies the trajectory of the body with respect
to what the controller expects. Another such example is unmodeled
dynamics, such as J2 and drag perturbations, or the linearization of
the equations itself. While these cannot be precisely included in the
linear model, they can be bounded into an uncertainty polytope  .
If that uncertainty polytope is small enough, then the MPC controller
is able to compute a non-empty region in which it can control the
system no matter the value of the disturbances 𝐰 provided that they are
contained in  (more details in Section 4.5). This section is devoted to

the bounding of such disturbances.
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4.4.1. Bounding the on–off filter mismatch
Taking a look at (31), it is clearly seen that the in-plane dynamics

(in the 𝑥𝑦 plane) and the out-of-plane dynamics are decoupled. This
fact is also true for the equivalent discrete system given by 𝐴,𝐵. It
s therefore convenient, for simplicity, to decouple the dynamics into
n-plane dynamics, governed by 𝐴𝑥𝑦, 𝐵𝑥𝑦; and out-of-plane dynamics,

governed by 𝐴𝑧, 𝐵𝑧. The matrix 𝐴𝑥𝑦 is constructed by taking rows
and columns 1,2,4,5 of 𝐴, while 𝐵𝑥𝑦 is built taking rows 1,2,4,5 and
columns 1,2 of 𝐵. Similarly, to build 𝐴𝑧, take rows and columns 3,6 of
𝐴, and for 𝐵𝑧 take rows 3,6 and column 3 of 𝐵. Moreover, 𝐵𝑥𝑦

𝑥 denotes
the first column of 𝐵𝑥𝑦, and 𝐵𝑥𝑦

𝑦 the second. Denoting the commanded
control by the MPC as 𝐮 =

[

𝑢𝑥, 𝑢𝑦, 𝑢𝑧
]𝑇 , the evolution of the linear

system, divided by in-plane and out-of-plane dynamics, if there was no
on–off filter is described by

𝐱𝑥𝑦𝑘+1 = 𝐴𝑥𝑦 (𝑇𝑐
)

𝐱𝑥𝑦𝑘 + 𝐵𝑥𝑦
𝑥

(

𝑇𝑐
)

𝑢𝑥 + 𝐵𝑥𝑦
𝑦

(

𝑇𝑐
)

𝑢𝑦, (47)

𝐱𝑧𝑘+1 = 𝐴𝑧 (𝑇𝑐
)

𝐱𝑧𝑘 + 𝐵𝑧 (𝑇𝑐
)

𝑢𝑧, (48)

where 𝐱𝑥𝑦 =
[

𝑥, 𝑦, 𝑣𝑥, 𝑣𝑦
]𝑇 , 𝐱𝑧 =

[

𝑧, 𝑣𝑧
]𝑇 , and the 𝑇𝑐 inside the paren-

thesis means that equations in (36)–(38) are integrated from 0 to 𝑇𝑐 .
There is, however, an on–off filter that alters this behavior, and it can
be shown that, in terms of matrices 𝐴 and 𝐵, the response of the system
is then

𝐱̃𝑥𝑦𝑘+1 = 𝐴𝑥𝑦 (𝑇𝑐
)

𝐱𝑥𝑦𝑘 + 𝐴𝑥𝑦
(

𝑇𝑐
2

(

1 −
|

|

𝑢𝑥||
𝑢𝑚𝑎𝑥,𝐶𝐺

))

× 𝐵𝑥𝑦
𝑥

(

𝑇𝑐
|

|

𝑢𝑥||
𝑢𝑚𝑎𝑥,𝐶𝐺

)

𝑢𝑚𝑎𝑥,𝐶𝐺 sgn
(

𝑢𝑥
)

+ 𝐵𝑥𝑦
𝑦 (𝑇𝑐 )𝑢𝑦, (49)

𝐱̃𝑧𝑘+1 = 𝐴𝑧 (𝑇𝑐
)

𝐱𝑧𝑘 + 𝐴𝑧
(

𝑇𝑐
2

(

1 −
|

|

𝑢𝑧||
𝑢𝑚𝑎𝑥,𝐶𝐺

))

× 𝐵𝑧
(

𝑇𝑐
|

|

𝑢𝑧||
𝑢𝑚𝑎𝑥,𝐶𝐺

)

𝑢𝑚𝑎𝑥,𝐶𝐺 sgn
(

𝑢𝑧
)

. (50)

To bound the error due to the on–off filter, the corresponding states are
now subtracted

𝛥𝐱𝑥𝑦 = 𝐵𝑥𝑦
𝑥

(

𝑇𝑐
)

𝑢𝑥 − 𝐴𝑥𝑦
(

𝑇𝑐
2

(

1 −
|

|

𝑢𝑥||
𝑢𝑚𝑎𝑥,𝐶𝐺

))

× 𝐵𝑥𝑦
𝑥

(

𝑇𝑐
|

|

𝑢𝑥||
𝑢𝑚𝑎𝑥,𝐶𝐺

)

𝑢𝑚𝑎𝑥,𝐶𝐺 sgn
(

𝑢𝑥
)

, (51)

𝛥𝐱𝑧 = 𝐵𝑧 (𝑇𝑐
)

𝑢𝑧 − 𝐴𝑧
(

𝑇𝑐
2

(

1 −
|

|

𝑢𝑧||
𝑢𝑚𝑎𝑥,𝐶𝐺

))

× 𝐵𝑧
(

𝑇𝑐
|

|

𝑢𝑧||
𝑢𝑚𝑎𝑥,𝐶𝐺

)

𝑢𝑚𝑎𝑥,𝐶𝐺 sgn
(

𝑢𝑧
)

, (52)

where 𝛥𝐱𝑥𝑦 = 𝐱𝑥𝑦 − 𝐱̃𝑥𝑦 and 𝛥𝐱𝑧 = 𝐱𝑧 − 𝐱̃𝑧, where the subscripts 𝑘 and
𝑘 + 1 are omitted since the value of the state errors is not dependent
on the prior state. Note that these state errors are odd with respect to
𝑢𝑥 and 𝑢𝑧 respectively. Thus, they are guaranteed to be bounded by
−𝛥𝐱𝑥𝑦𝑚𝑎𝑥 ≤ 𝛥𝐱𝑥𝑦 ≤ 𝛥𝐱𝑥𝑦𝑚𝑎𝑥 and −𝛥𝐱𝑧𝑚𝑎𝑥 ≤ 𝛥𝐱𝑧 ≤ 𝛥𝐱𝑧𝑚𝑎𝑥, in which each
element of 𝛥𝐱𝑥𝑦𝑚𝑎𝑥 and 𝛥𝐱𝑧𝑚𝑎𝑥 is obtained as:

𝛥𝐱𝑥𝑦𝑚𝑎𝑥,𝑖 =
|

|

|

|

|

max
𝑢𝑥∈[0,𝑢𝑚𝑎𝑥,𝐶𝐺 ]

𝛥𝐱𝑥𝑦𝑖
(

𝑢𝑥
)

|

|

|

|

|

, 𝑖 = 1, 2, 3, 4, (53)

𝛥𝐱𝑧𝑚𝑎𝑥,𝑖 =
|

|

|

|

|

max
𝑢𝑧∈[0,𝑢𝑚𝑎𝑥,𝐶𝐺 ]

𝛥𝐱𝑧𝑖
(

𝑢𝑧
)

|

|

|

|

|

, 𝑖 = 1, 2, (54)

where the subscript 𝑖 denotes the 𝑖th row of the corresponding vector.
Finally, concatenating the previous vectors as 𝛥𝐱𝑓𝑖𝑙,𝑚𝑎𝑥 =
[

𝛥𝐱𝑥𝑦𝑚𝑎𝑥,1, 𝛥𝐱
𝑥𝑦
𝑚𝑎𝑥,2, 𝛥𝐱

𝑧
𝑚𝑎𝑥,1, 𝛥𝐱

𝑥𝑦
𝑚𝑎𝑥,3, 𝛥𝐱

𝑥𝑦
𝑚𝑎𝑥,4, 𝛥𝐱

𝑧
𝑚𝑎𝑥,2

]𝑇
, one has

−𝛥𝐱𝑓𝑖𝑙,𝑚𝑎𝑥 ≤ 𝛥𝐱 ≤ 𝛥𝐱𝑓𝑖𝑙,𝑚𝑎𝑥, ∀𝐮 ∈  . (55)

There is one more aspect that should be taken into account. Until
now, no limitation has been imposed on how small the difference
in the activation and deactivation instants 𝑇 𝑜𝑛

𝑖 − 𝑇 𝑜𝑓𝑓
𝑖 of the cold-gas
thrusters can be. However, in reality, there is a minimum duration due
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to the transient behavior of the actuator, which is around 10 ms in
state-of-the-art cold-gas thrusters. This could mean that, if the MPC
commanded a control input 𝑢𝑖 very close to zero, the actuator may not
e able to perform it. Fortunately, this does not pose a problem in this
ormulation. In fact, imagine that the MPC does not command control
n the radial direction, then 𝛥𝐱𝑥𝑦

(

𝑢𝑥 = 0
)

= 𝐱𝑥𝑦 (0)−𝐱̃𝑥𝑦 (0) = 0, which is
bviously within the limits of 𝛥𝐱𝑥𝑦𝑚𝑎𝑥. Assume now that a small control
s commanded by the MPC but not performed by the actuator; the state
rror is thus

𝐱𝑥𝑦
(

𝑢𝑥
)

= 𝐱𝑥𝑦
(

𝑢𝑥
)

− 𝐱̃𝑥𝑦 (0) = 𝐵𝑥𝑦
𝑥

(

𝑇𝑐
)

𝑢𝑥. (56)

From this equation, it is clear that there must be some maximum
limit value 𝑢𝑥,𝑙𝑖𝑚 > 0 for which 𝐵𝑥𝑦

𝑥
(

𝑇𝑐
)

𝑢𝑥 is still bounded by 𝛥𝐱𝑥𝑦𝑚𝑎𝑥.
Therefore, if the control commanded by the MPC is less than 𝑢𝑥,𝑙𝑖𝑚,
the cold-gas thruster can simply not act, and the error would still be
bounded by the same previously computed polytope. Similar reasoning
can be used in the out-of-plane dynamics to obtain a value for 𝑢𝑧,𝑙𝑖𝑚. For
this specific problem, this ends up meaning that when less than 0.15 s
are commanded to the cold-gas thrusters, they do not need to act, since
the controller is able to handle the mismatch. Since this value is much
higher than the minimum possible impulse width in state-of-the-art
cold-gas thrusters, this limitation does not pose any problems.

4.4.2. Bounding J2 perturbation
This perturbation, although small, given sufficient time, can have

a noticeable effect on the orbit. Note, however, that since the chaser
and target are really close, the acceleration due to J2 (which does not
depend on the properties of the objects) is expected to be practically
the same for both. To demonstrate it, one can compute the gradient of
the perturbation. Indeed, let 𝐫𝐼𝐶 , 𝐫

𝐼
𝑇 be the position of the chaser and

target in the ECI frame respectively, and 𝛥𝐫𝐼 = 𝐫𝐼𝐶 − 𝐫𝐼𝑇 the relative
position. If 𝛥𝐫𝐼 ≪ 𝐫𝐼𝑇 , then

𝐚𝐽2
(

𝐫𝐼𝑇 + 𝛥𝐫𝐼
)

≈ 𝐚𝐽2
(

𝐫𝐼𝑇
)

+ ∇𝐚𝐽2||𝐫𝐼𝑇 𝛥𝐫𝐼 , (57)

where ∇𝐚𝐽2||𝐫 is the gradient matrix of 𝐚𝐽2 evaluated at a generic point
𝐫. Therefore, the difference in the accelerations due to the chaser and
target amounts to

𝛥𝐚𝐼𝐽2 = 𝐚𝐽2
(

𝐫𝐼𝐶
)

− 𝐚𝐽2
(

𝐫𝐼𝑇
)

≈ ∇𝐚𝐽2||𝐫𝐼𝑇 𝛥𝐫𝐼 . (58)

The gradient matrix can be computed as ∇𝐚𝐽2||𝐫 = 3
2𝜇𝐸𝐽2𝑅

2
𝐸

(

5𝑀1 (𝐫) −𝑀2 (𝐫)
)

, where

𝑀1 (𝐫) =
1
𝑟9

⎡

⎢

⎢

⎣

𝑧2
(

𝑟2 − 7𝑥2
)

−7𝑥𝑦𝑧2 𝑥𝑧
(

2𝑟2 − 7𝑧2
)

−7𝑥𝑦𝑧2 𝑧2
(

𝑟2 − 7𝑦2
)

𝑦𝑧
(

2𝑟2 − 7𝑧2
)

−7𝑥𝑧3 −7𝑦𝑧3 𝑧2
(

3𝑟2 − 7𝑧2
)

⎤

⎥

⎥

⎦

(59)

2 (𝐫) =
1
𝑟7

⎡

⎢

⎢

⎣

𝑟2 − 5𝑥2 −5𝑥𝑦 −5𝑥𝑧
−5𝑥𝑦 𝑟2 − 5𝑦2 −5𝑦𝑧
−15𝑥𝑧 −15𝑦𝑧 3𝑟2 − 15𝑧2

⎤

⎥

⎥

⎦

. (60)

Taking into account that J2 is more notable closer to Earth, and that
one seeks to find an upper bound of the error, assume that the target is
orbiting at an Earth radius distance, for example, 𝐫𝐼𝑇 = 𝑅𝐸

1
√

3
[1, 1, 1]𝑇 ,

nd that the separation between chaser and target is 𝛥𝐫𝐼 = [20, 20, 20]𝑇

(these values will actually always be smaller). Then, the norm of
he relative acceleration obtained is 𝛥𝑎𝐽2,𝑚𝑎𝑥 ≈ 3.3 ⋅ 10−7 m∕s2. Assum-

ing that this acceleration difference remains constant between control
intervals and that the control interval is around 120 s, it generates a
velocity error of 𝛥𝑣𝐽2,𝑚𝑎𝑥 ≈ 𝛥𝑎𝐽2,𝑚𝑎𝑥𝑇𝑐 ≈ 4 ⋅ 10−5 m∕s and a position
rror of 𝛥𝑟𝐽2,𝑚𝑎𝑥 ≈ 𝛥𝑎𝐽2,𝑚𝑎𝑥𝑇 2

𝑐 ∕2 ≈ 2 ⋅ 10−3 m. Thus, the state error in
2 is bounded by those values.

.4.3. Bounding drag perturbation
For the drag perturbation, a similar procedure is taken. However,

nalytical expressions of the gradient are now much more cumbersome

nd numerical methods are preferred. Assuming that the target cylinder
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mass is 𝑚𝑇 = 9000 kg with a height and radius of 𝐻𝑐 = 12 m
nd 𝑅𝑐 = 2 m respectively, its area–mass ratio can change between
𝐴𝑓∕𝑚)𝑇 ∈ [1.4, 5.4]⋅10−3 m2/kg, depending on whether the frontal area
s minimum (cylinder axis and velocity vector aligned) or maximum
cylinder axis and velocity vector perpendicular). The area–mass ratio
f the chaser, assuming its frontal area is of 4 m2, is around (𝐴𝑓∕𝑚)𝐶 ∈
8, 11] ⋅ 10−3 m2/kg, since it increases when it consumes fuel. For
his calculation, a maximum limit of 140 kg of fuel consumption was
onsidered. Therefore, to have the maximum possible difference, the
alues of (𝐴𝑓∕𝑚)𝑇 = 1.4 ⋅ 10−3 m2/kg and (𝐴𝑓∕𝑚)𝐶 = 11 ⋅ 10−3 m2/kg
re chosen.

For these calculations, the altitude of the orbit is assumed to be 340
m. This is a worst-case scenario, since at that point the mission is
onsidered finished, but at the same time is the point where density
nd velocity are maximum. The drag coefficient is set to a typical
alue of 2.2 for both the chaser and target. After performing some
alculations assuming a maximum relative distance between the chaser
nd the target of 𝛥𝐫𝐼 = [20, 20, 20]𝑇 (as done for the J2 perturbation),
he maximum acceleration difference obtained due to drag is 𝛥𝑎𝐷,𝑚𝑎𝑥 ≈
⋅ 10−6 m∕s2, meaning that errors in relative velocity and position are
𝑣𝐷,𝑚𝑎𝑥 ≈ 𝛥𝑎𝐷,𝑚𝑎𝑥𝑇𝑐 ≈ 4 ⋅ 10−4 m∕s, 𝛥𝑟𝐷,𝑚𝑎𝑥 ≈ 𝛥𝑎𝐷,𝑚𝑎𝑥𝑇 2

𝑐 ∕2 ≈ 2 ⋅ 10−2

; values considerably higher compared with those obtained for the J2
erturbation.

.4.4. Bounding position and velocity sensoring errors
The measurement error committed by the system that estimates the

elative state of the target must be taken into account in the robust
ormulation of the controller. Thus, since, as noted in Section 2.4, this
rror is as high as 0.05 m in position and 0.06 m/min in velocity,
he values 𝛥𝑟𝑠,𝑚𝑎𝑥 = 0.05 m, 𝛥𝑣𝑠,𝑚𝑎𝑥 = 0.06 m/min are added to the

uncertainty polytope, where 𝑠 stands for sensors.

4.4.5. Bounding linearization and mismatch errors
There are more subtle errors that arise in the linear model that the

controller has of the system. The main action of linearizing introduces
an approximation and, moreover, the controller assumes the mean
motion parameter 𝑛 remains constant during operation, and is only
updated when the controller is re-tuned, as remarked in Section 4.2.
This means that the re-tuning policy has an impact on this error,
which has been estimated to be small, and thus the controller has been
configured to be re-tuned each 100 km of mean altitude (altitude of
an equivalent circular orbit with the same semi-major axis). Assuming
that the target starts at an altitude of 840 km, the controller should
therefore be re-tuned at the mean altitudes of 740, 640, 540 and 440
kilometers.

If the mean motion 𝑛 varied only depending explicitly on time
(and not control), it would be a time-varying parameter, and specific
bounding techniques for Linear Time-Varying systems could be em-
ployed. However, here 𝑛 is affected by past control actions, so this
approach is not possible, and a numeric non-explicit bounding strategy
is implemented instead. Both chaser and target orbits are propagated
during a control time interval using two different models. First, the
restricted two-body problem equations (equations in (1), (2) with no
perturbations, since they have already been bounded), and second,
the linear model with the ‘‘worst possible’’ mean motion 𝑛. That is,
if satellites start from a height of 740 km, use an 𝑛 corresponding to
840 km, and so on. In addition, eccentricity is considered to be 0.01
(for both the chaser and target) for the propagation of the restricted
two-body problem equations to account for the possibly not perfectly
circular orbits. The results given by these two models are then com-
pared, and the differences are bounded. Then the maximum differences
are retrieved. This results approximately in

𝛥𝑟𝑙𝑖𝑛,𝑚𝑎𝑥 ≈ 9 ⋅ 10−3 m, 𝛥𝑣𝑙𝑖𝑛,𝑚𝑎𝑥 ≈ 3 ⋅ 10−5 m/s. (61)

There is another error due to the mismatch that could be considered.
s stated in 4.1, the controller model predicts that the acceleration
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produced by the cold-gas thrusters is given by the cold-gas thruster
force divided by the chaser mass at the control sampling time, 𝐹𝐶𝐺∕𝑚−

𝐶 .
owever, when the actions are commanded, the mass of the chaser is
ctually a bit smaller since it is applied later and it has already burned
uel. There is therefore a discrepancy in the acceleration. Estimating
hat the spacecraft burns a mean amount of around 0.01 kg/orbit, the
iscrepancy in acceleration is on the order of 10−10 m∕s2, so, even if it
xists, it is not taken into account due to its negligible impact.

.4.6. Bounding discrepancies in the beam model
As remarked in Section 4.2, a linear term 𝑐 is added to the model

o that the controller has some kind of knowledge about how the
ff-centered beam affects the movement of the target. Logically, this
odel is not the same as the one used in simulation and explained

n Section 3. Some discrepancy error exists between them and must
e bounded. However, note that since one of the constraints that the
ontroller ensures is that the chaser stays within the region  (see
ection 4.3.1), the beam completely impacts the target. Therefore,
here is no discrepancy in the force estimation, since the force exerted
owards the target is just the maximum, pointing towards the negative
n-track direction, as noted in Section 3.5. There would actually be

mismatch in terms of the torque produced on the target, but it is
ot relevant in this case. It is important to remark that this force
ifference vanishes because, as a consequence of the hypotheses stated
n Section 3.2, the force does not depend on the distance. In a real
cenario, attitude may influence the force even if the ion beam fully hits
he target, but this effect would nevertheless be small because it arises
rom higher-order terms. More in-depth analysis of the discrepancies
etween the ion beam model used by the controller and a real ion beam
re left for future work, as higher-fidelity models would need to be
mplemented to correctly test the results.

Thus, the relevant aspect regarding ion beam discrepancies is the
oise of the beam itself. As noted in Section 2.4, this error can be
s high as 5% of the nominal thrust, which in the case of the ICT
orresponds to 8.24 mN. This causes an acceleration perturbation of
10−6 m∕s2, which corresponds to

𝑟𝐵,𝑚𝑎𝑥 ≈ 6 ⋅ 10−3 m, 𝛥𝑣𝐵,𝑚𝑎𝑥 ≈ 10−4 m/s, (62)

here the subscript 𝐵 stands for beam.

.5. Formulation of the MPC controller

An MPC for Tracking controller that guarantees robust constraint
atisfaction is developed in this section, combining the constraints
ightening techniques in [32] for robustness along with the track-
ng formulation in [33]. With this approach, the controller computes
he control action by solving a unique Quadratic Programming (QP)
roblem, which can be efficiently done using specialized algorithms.

Ideally, the MPC must be able to reach any feasible equilibrium
eference state (𝐱𝑟,𝐮𝑟) (it is supposed that all state variables can be
easured). However, in a conventional MPC formulation, the QP fea-

ibility is not guaranteed for any given reference 𝐱𝑟, to be reached in
steps and departing from an arbitrary initial condition 𝐱0. To avoid

his, as suggested in [33], the tracking formulation adds an artificial
eference (𝐱𝑠,𝐮𝑠) to be followed, and deviations between this artificial
nd the real reference are penalized in the cost function, so that the
rtificial ends up converging to the real. In this way, it is ensured that
easibility is not lost despite changes in the reference. In this precise
roblem, there are no reference changes, but this implementation is
eneficial regardless. Indeed, it expands the feasibility region of the
ontroller, since a certain initial 𝐱0 may seem infeasible to a conven-
ional MPC controller, but can be steered to the correct reference (𝐱𝑟,𝐮𝑟)

by gradually modifying the artificial reference each sampling time.
To reduce the number of decision variables, as in [33], the artificial

reference is characterized by 𝜽 (of size 𝑛 ), and the state and control
𝜃 S
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inputs are computed as
[

𝐱𝑇𝑠 ,𝐮
𝑇
𝑠

]𝑇
= 𝑀𝜃𝜽, where 𝑀𝜃 = ker

([

𝐴 − 𝐈6, 𝐵
])

.
The performance index is then identical to that in [33] (particularized
to the case in which 𝐱𝑟 = 𝐮𝑟 = 0), where penalization is given to
discrepancies between the actual states and inputs and the ones of the
artificial reference, and discrepancies between the artificial reference
and the real reference are also penalized. The cost function therefore is

𝑉𝑁
(

𝐱;𝐮𝐹 ,𝜽
)

=
𝑁−1
∑

𝑖=0

(

‖

‖

𝐱(𝑖) − 𝐱𝑠‖‖
2
𝑄 + ‖

‖

𝐮(𝑖) − 𝐮𝑠‖‖
2
𝑅

)

+ ‖

‖

𝐱(𝑁) − 𝐱𝑠‖‖
2
𝑃 + ‖

‖

𝐱𝑠‖‖
2
𝑇 , (63)

where 𝐱(𝑖+1) = 𝐴𝐱(𝑖)+𝐵𝐮(𝑖) is the nominal system evolution (that is, ig-
noring disturbances), 𝐮𝐹 =

[

𝐮(0)𝑇 ,𝐮(1)𝑇 ,…𝐮(𝑁 − 1)𝑇
]𝑇 are the control

input vectors at each sampling time concatenated, and ‖𝐯‖2𝑀 = 𝐯𝑇𝑀𝐯
is the weighted euclidean norm. The current state 𝐱 is a parameter,
while the sequence of control inputs 𝐮𝐹 and the artificial reference 𝜽 are
decision variables. The optimization problem 𝑁 (𝐱) that the MPC must
be able to solve, taking now into account the effect of the disturbances,
is

min
𝐮𝐹 ,𝜽

𝑉𝑁
(

𝐱;𝐮𝐹 ,𝜽
)

(64)

𝑠.𝑡. 𝐱(0) = 𝐱, (65)

𝐱(𝑖 + 1) = 𝐴𝐱(𝑖) + 𝐵𝐮(𝑖), 𝑖 = 0,… , 𝑁 − 1 (66)
[

𝐱𝑠
𝐮𝑠

]

= 𝑀𝜃𝜽, (67)

𝐱(𝑖) ∈  ⊖(𝑖), 𝑖 = 1,… , 𝑁 − 1 (68)

𝐮(𝑖) ∈  ⊖𝐾𝑐(𝑖), 𝑖 = 0,… , 𝑁 − 1 (69)
[

𝐱(𝑁)
𝜽

]

∈ 𝛺𝑎 ⊖ 𝑎(𝑁), (70)

here  , are the state and control admissible sets (recall Section 4.3)
nd 𝛺𝑎 is the robust positive invariant set for tracking of the system
iven a terminal linear feedback controller 𝐮 = 𝐾𝑡

(

𝐱 − 𝐱𝑠
)

+ 𝐮𝑠 =
𝐾𝑡𝐱 + 𝐿𝜽 (where 𝐿 =

[

−𝐾𝑡, 𝐈𝑛𝜃
]

𝑀𝜃). The set 𝑎(𝑖) is the set of (𝑖)
extended to the tracking formulation (so that the projection of 𝑎(𝑖)
over the θ space is the null set), and the sets (𝑖),(𝑖) are defined as

(𝑖) =
𝑖−1
⨁

𝑗=0
𝐴𝑗
𝐾𝑐
 (71)

(𝑖) = 𝐴𝑖−1
𝐾𝑐

 , (72)

here 𝐴𝐾𝑐
= 𝐴 + 𝐵𝐾𝑐 is the matrix that governs the response of the

ominal system when a linear feedback controller 𝐮 = 𝐾𝑐 (𝐱 − 𝐱) + 𝐮
is used. The operators ⊕ and ⊖ represent the Minkowski sum and the
Pontryagin set difference, respectively, while ⨁ is the equivalent of
summation for sets applying the Minkowski sum.

First, note that the tightened constraints imposed in (68) and (69)
ensure that the state and control are feasible at every time instant
for any realization of the disturbances 𝐰(𝑖) ∈  . Note also that
hese reduced constraints depend on the gain 𝐾𝑐 of the terminal linear
ontroller, and that it can be chosen to reduce the sets (𝑖), which is

desirable since it corresponds to an enlargement of the tightened sets.
The calculation of 𝐾𝑐 and the reduced sets  ⊖(𝑖),  ⊖ 𝐾𝑐(𝑖) has
been carried out following the methods in [32], involving Linear Matrix
Inequalities (LMIs).

Note also that the gain 𝐾𝑐 of the linear controller used to tighten
he constraints is different from the gain 𝐾𝑡 used for the computation
f the robust positive invariant set, similar to what happens in [34].
owever, the computation of the robust positive invariant set differs,

ince to guarantee robustness, [34] uses the notion of tube of tra-
ectories, instead of the constraints tightening approach in [32]. The
ethod for computing this robust positive invariant set is explained in
ection 4.5.1. It is important to note that, to avoid numerical problems,
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it was necessary to perform all MPC set-related calculations using
meters and minutes as the length and time units, respectively.

Having solved the problem (𝐱), the MPC controller 𝜅𝑁 (𝐱) applies
the first input vector of 𝐮𝐹 (that is, 𝐮(0)) to the system. Then, at the
ext control instant, the optimization problem is solved again.

.5.1. Robust positive invariant set characterization
The robust invariant set for tracking 𝛺𝑎 ∈ R𝑛𝑥+𝑛𝜃 can be char-

cterized in terms of the properties it must have to ensure recursive
easibility. In the first place, it must meet, for all 𝐱𝑎 =

[

𝐱𝑇 ,𝜽
𝑇 ]𝑇

∈ 𝛺𝑎,
hat

𝐈𝑛𝑥 𝟎𝑛𝑥 ,𝑛𝜃
]

𝐱𝑎 ∈  ⊖(𝑁), (73)
[

𝐾𝑡 𝐿
]

𝐱𝑎 ∈  ⊖𝐾𝑐(𝑁 − 1), (74)

o that state and control constraints are robustly met. Moreover, the
rtificial reference must be admissible:

𝟎𝑛𝑥 𝑀𝜃
]

𝐱𝑎 ∈ 𝜆𝑡 ( ⊖(𝑁)) ×
(

 ⊖𝐾𝑐(𝑁 − 1)
)

, (75)

here 𝜆𝑡 = 0.99 is a factor added to shrink the set, as otherwise 𝛺𝑎
may not be finitely determined (see [34]). Lastly, the terminal linear
feedback controller 𝐮 = 𝐾𝑡

(

𝐱 − 𝐱𝑠
)

+𝐮𝑠 must be able to steer the system
into the equilibrium characterized by 𝜽 regardless of perturbations, so

𝑎 must also meet

𝐴 + 𝐵𝐾𝑡 𝐵𝐿
0 𝐈𝑛𝜃

]

𝛺𝑎 ⊕ 𝑎(𝑁) ⊆ 𝛺𝑎, (76)

here 𝑎(𝑖) can be interpreted as the set of possible deviations at
he time instant 𝑖 between the actual and the nominal model that a
isturbance 𝐰 ∈  at the initial time instant 𝑖 = 0 can cause if the
ystem is controlled according to 𝐮 = 𝐾𝑐

(

𝐱 − 𝐱
)

+ 𝐮. Therefore, since
the MPC has a control horizon 𝑁 , the impact an initial perturbation
as on the final state predicted by the controller is bounded by 𝑎(𝑁).

The robust positive invariant set is thus the largest set that meets
qs. (73)–(76).

.5.2. Recursive feasibility and convergence
To prove recursive feasibility, one must show that if the problem

𝑁 (𝐱(𝑘)) has a solution, so does 𝑁 (𝐱(𝑘+ 1)), where 𝐱(𝑘+ 1) = 𝐴𝐱(𝑘) +
𝜅𝑁 (𝐱(𝑘)) + 𝐰(𝑘). To do this, it is enough to find some 𝐮𝐹 (𝑘 + 1),

𝜽(𝑘+1) that meet the constraints of (𝐱(𝑘)), but they do not have to be
optimal. Let 𝐮∗𝐹 (𝑘), 𝜽

∗
(𝑘) denote the optimal solution of 𝑁 (𝐱(𝑘)), and

let us assume that 𝜽(𝑘 + 1) = 𝜽
∗
(𝑘) (that is, it remains constant); then

𝐱𝑠 and 𝐮𝑠 are known, and one can introduce the change of variables
𝐱(𝑖) = 𝐱(𝑖) − 𝐱𝑠, 𝛥𝐮(𝑖) = 𝐮(𝑖) − 𝐮𝑠. Taking into account this change of
ariables and noting that ‖𝐱𝑠‖2𝑇 is now a constant, one can set up the
ext cost function, which is equivalent to that in (63):

′
𝑁
(

𝐱;𝐮𝐹
)

=
𝑁−1
∑

𝑖=0

(

‖𝛥𝐱(𝑖)‖2𝑄 + ‖𝛥𝐮(𝑖)‖2𝑅
)

+ ‖𝛥𝐱(𝑁)‖2𝑃 . (77)

Moreover, regarding constraints, (67) is no longer necessary since 𝜽 is
not a decision variable. Constraint (65) becomes

𝛥𝐱(0) = 𝐱(0) − 𝐱𝑠, (78)

nd (66) is now

𝐱(𝑖 + 1) = 𝐴𝛥𝐱(𝑖) + 𝐵𝛥𝐮(𝑖), 𝑖 = 0,… , 𝑁 − 1. (79)

onstraints (68) and (69) become

𝛥𝐱(𝑖) ∈
(

 ⊕ (−𝐱𝑠)
)

⊖(𝑖), 𝑖 = 1,… , 𝑁 − 1 (80)

𝐮(𝑖) ∈
(

 ⊕ (−𝐮𝑠)
)

⊖𝐾𝑐(𝑖), 𝑖 = 0,… , 𝑁 − 1. (81)

Lastly, the terminal constraint (70) is now

𝛥𝐱(𝑁) ∈ 𝛺⊖ (𝑁), (82)
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where 𝛺, which is the terminal invariant set now in R𝑛𝑥 (since 𝜽
∗
(𝑘)

is fixed). To construct 𝛺, recall the definition of 𝛺𝑎. Condition (75) is
automatically satisfied, since 𝜽

∗
(𝑘) was a solution of the problem in the

revious time step. For any 𝛥𝐱 ∈ 𝛺, conditions (73), (74) and (76) must
be met. In this new notation, constraints (73) and (74) become

𝛥𝐱 ∈
(

 ⊕ (−𝐱𝑠)
)

⊖(𝑁), (83)

𝑡𝛥𝐱 ∈
(

 ⊕ (−𝐮𝑠)
)

⊖𝐾𝑐(𝑁 − 1). (84)

Lastly, regarding constraint (76), the last block row is not a condition
anymore, and the first block row now reads
(

𝐴 + 𝐵𝐾𝑡
)

𝛺⊕ (𝑁) ⊆ 𝛺. (85)

Finally, note that the QP problem given by the cost function (77)
and the constraints from (78) to (82) is the same as the one in [32],
for which recursive feasibility is demonstrated. There is only one subtle
difference, and that is that in [32] Eq. (80) is also imposed for 𝑖 = 0.
However, this is not an issue because what we want to demonstrate is
that if 𝑁 (𝐱(𝑘)) has a solution, 𝑁 (𝐱(𝑘 + 1)) does too. So the task is to
find a solution for 𝑁 (𝐱(𝑘 + 1)), and even if 𝐱(𝑘) is not in  , 𝐱(𝑘 + 1)
s. Thus, the problem returns a solution 𝛥𝐮′∗𝐹 (𝑘+1), and thus 𝐮′∗𝐹 (𝑘+1),
𝜽
∗
(𝑘) is a solution to 𝑁 (𝐱(𝑘 + 1)), proving recursive feasibility.
As for the convergence of this MPC scheme, it can be shown in a

similar way to how it is done in [33]. The key idea is to show that the
optimal cost is a Lyapunov function. That, together with the definite
positiveness of the optimal cost, implies that the system is steered
towards a vicinity of the reference.

4.5.3. Tuning of the proposed controller
There are a series of tuning parameters in the above controller

formulation. The most important ones are probably the refreshing rate
and the control horizon. Regarding the refreshing rate, ideally, one
would want a fast enough refreshing rate so that the system does not
deviate too much from the desired configuration due to perturbation
drifts. However, a higher refreshing rate is also more computationally
demanding, and, especially with on–off thrusters, it may end up con-
suming more propellant. A value of 𝑇𝑐 = 120 s was found to be a good
compromise value between both objectives.

In terms of control horizon, it must be such that the controller can
look ‘‘long enough’’ into the future so that the MPC can take advantage
of the linear dynamic model it uses to predict the states of the system.
In this scenario, that would be on the order of 2𝜋∕𝑛, which is the period
of the matrix 𝐴𝑐 . However, a higher control horizon also means more
computational burden, and, especially in this formulation, it might
mean not being able to build the controller (indeed, since state and
control constraints are tightened each prediction step into the future,
one could end up with an empty terminal invariant set). A control
horizon of 𝑁 = 10 (i.e., being able to predict one fifth of the initial
orbit into the future, and more as the mission progresses) was found to
be a good compromise.

Matrices 𝑄 and 𝑅 are the typical weighting matrices that penalize
deviations in the states and control inputs, respectively. These are
chosen to be

𝑄 = 𝐈6, (86)

𝑅 = diag ([100, 10, 100]) . (87)

In the units used by the controller, which are meters in length and
minutes in time, the relative velocity is generally an order of magnitude
lower compared to the relative position; thus, 𝑄 gives priority to
minimizing position error. In these units, the control acceleration is
generally an order of magnitude larger than the position error, so
the 𝑅 chosen focuses on reducing fuel consumption, especially in the
directions of cold-gas thrusters, since they have a lower specific impulse
and thus consume more propellant. All the previously mentioned errors

are with respect to the virtual reference. Since, as long as state and
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control variables remain within their polytopes, their exact values are
not that important, a not-so-high matrix 𝑇 is chosen to penalize the
deviation between the artificial reference and the real equilibrium (the
origin),

𝑇 = 𝐈6. (88)

The values of 𝐾𝑡 and 𝑃 were obtained by tuning a discrete LQR for
the matrices 𝐴 and 𝐵 in Section 4.2 with weighting matrices 𝑄 and 𝑅.
Lastly, the value of 𝐾𝑐 was obtained following the procedure based on
MI in [32].

. Simulation and results

The object considered for deorbit is the Zenit-2 second stage rocket
ody (NORAD ID: 28353), which, according to [35], is the statistically
ost concerning object in the space environment, at least at that time.
ot only that, this rocket body (approximated as a cylinder) is also
hosen because it is a challenging object to deorbit: it is only 2 m
n radius, while being 12 m long. This means that, assuming erratic
otational motion, the chaser should be at least

√

62 + 22 = 6.32 m away
from it (with the hypothesis that the COM and the geometric center
coincide). This number in reality would be more around 𝑑𝐶𝑇 = 12 m,
to account for the possible difference between the geometric center
and the COM, the distance between the chaser’s COM and the ion
beam source, and to have some margin in case of some malfunctioning.
A maximum value of the COM and geometric center offset can be
estimated to be around 2 m (assume that structure asymmetries account
for as much as 1 m, and that remaining fuel pushed into one of the
extremes displaces it another meter).

The Zenit-2 second stage rocket body has an apogee of 849 km and
a perigee of 839 km in a 71 deg inclined orbit [37], which corresponds
to a practically circular orbit. The goal is to reduce its altitude to 340
km as in [25]. A typical value of the drag coefficient 𝑐𝐷,𝑖 = 2.2 is chosen
for both the target and the chaser, and the chaser frontal area is set to
𝐴𝑓,𝐶 = 4 m2.

The system is simulated in MATLAB with the aid of a custom C++
MEX function for the calculation of the force and torque of the ion
beam. The characteristics of the rocket body as well as those of the
chaser are presented in Table 6. The characteristics of the cold-gas
thrusters in the chaser were gathered from typical values in [38],
while the impulse transfer thruster is based on the XIPS 25 cm thruster
(see [39]). The initial values of the state variables are shown in Table 7,
where the chaser state is given in the TLVLH frame instead of ECI for
clarity. It is assumed that the target starts at its perigee and, without
loss of generality, that such perigee happens precisely in the 𝑥 direction
of the ECI frame. The chaser is assumed to start at the nominal relative
position. An arbitrary initial attitude quaternion is set for the target,
and its initial angular velocity is set to 0.2 deg/s with a 10 deg wobble
angle, which are typical values for rocket bodies.

In terms of translational dynamics, both satellites are subject to
the dynamic equations of the restricted two-body problem, with the
addition of J2 and drag perturbations, as stated in Section 2.1. More-
over, the chaser motion is also affected by its actuators (cold-gas
thrusters in the radial and out-of-plane directions and ion beams in
the in-track direction), while the target orbit is slowly altered by the
counterdirectional ion beam. Regarding rotational dynamics, they are
not considered for the chaser, as it is assumed to have an attitude
control system capable of keeping it aligned with its LVLH frame.
In the case of the target, its attitude dynamics are altered by the
action of the ion beam. This ion beam interaction is modeled with the
ray-marching-based algorithm explained in Section 3.

To control the system, an MPC is used to ensure that the chaser
remains in the correct region. Perturbations, unmodeled dynamics, and
uncertainties are bounded to ensure that state and control constraints
are always satisfied robustly. Moreover, a tracking formulation was

adopted in the controller to enhance its performance. A re-tuning of
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Table 6
Properties of the target and chaser: 𝑚𝐶,0, initial mass of the chaser; 𝑚𝑇 , mass of
the target; 𝐴𝑓,𝐶 , frontal area of the chaser; 𝑅𝑐 , 𝐻𝑐 , radius and height of the target
(assumed cylinder) respectively; 𝑑𝑉 , distance between chaser COM and ITT source,
𝐹𝐼𝑇 𝑇 , constant force of the ITT; 𝐹𝐼𝐶𝑇 ,𝑚𝑎𝑥, maximum force of the ICT; 𝐹𝐶𝐺 , force of
the cold-gas thrusters; 𝐼𝑠𝑝,𝐼𝐵 , 𝐼𝑠𝑝,𝐶𝐺 , specific impulses of the ion beams and cold-gas
thrusters, respectively; 𝑑𝐶𝑇 , distance between chaser and target COMs.
𝑚𝐶,0 [kg] 𝑚𝑇 [kg] 𝐴𝑓,𝐶 [m2] 𝑅𝑐 [m] 𝐻𝑐 [m] 𝑑𝑉 [m]

500 9000 4 2 12 1

𝐹𝐼𝑇 𝑇 [mN] 𝐹𝐼𝐶𝑇 ,𝑚𝑎𝑥 [mN] 𝐹𝐶𝐺 [mN] 𝐼𝑠𝑝,𝐼𝐵 [s] 𝐼𝑠𝑝,𝐶𝐺 [s] 𝑑𝐶𝑇 [m]

164.8 2 𝐹𝐼𝑇 𝑇 50 3613 100 12

Table 7
Initial conditions of the state variables.

Variable Value

𝐫𝐼𝑇 ,0 [km] [7217.14, 0, 0]𝑇

𝐯𝐼𝑇 ,0 [km/s] [0, 2.420, 7.029]𝑇

𝐫𝑇𝐶,0 [km] [0, 12, 0]𝑇

𝐯𝑇𝐶,0 [km/s] [0, 0, 0]𝑇

𝐪𝐵𝐼,0 [-] 1∕2 [1, 1, 1, 1]𝑇

𝝎𝐵
𝑇 ,0 [deg/s] [0.0347, 0, 0.1970]𝑇

𝑚𝐶,0 [kg] 500

the controller is done each 100 km to update its information regarding
the mean motion of the orbit, and the chaser mass (which decreases
due to fuel consumption).

Note that, as long as the chaser remains within the correct position
polytope (see Section 4.3.1), it will completely hit the target, and thus
the force (ignoring noise) will just be the maximum, as remarked at the
end of Section 3.5. The force therefore is independent of the attitude
as long as the controller maintains the chaser in the correct region.
Notice that this is a consequence of the assumed ion beam model and
the position polytope set for the chaser, not a simulation simplification.
Note also that the torque depends on the target’s attitude even when
completely hit by the beam.

The total duration of the mission is around 165 days. One may think
that this number is big, especially comparing it to the numbers in,
for example, [25], but it is important to recall that the target being
deorbited here is around six times heavier, and its orbit is 200 km
higher in altitude. This is the reason why no comparisons with other
publications are given in this section. Mainly because there are no
studies that deal with such massive objects in such high-altitude orbits.
This case scenario is nevertheless extremely relevant, as it provides a
viable alternative to remove the current statistically most concerning
object in the space environment.

The evolution of the height of the target and the force that the ion
beam exerts on the chaser are shown in Fig. 11. The height can be
seen to have a periodic component, which is mostly due to the initial
eccentricity of the target orbit. It is interesting to note that its evolution
is almost linear, although the slope decreases a little as the mission
progresses. The force of the ion beam, almost constant and around
the maximum value, means that the chaser is indeed staying where it
should, maximizing the efficiency of the mission. No zoom is made in
the force evolution plot, since no relevant information can be retrieved
from it; the chaser is constrained to stay inside the region where the
beam fully impacts the target, and thus the observed force variations
are only caused by the noise introduced in Section 2.4.

The relative position of the chaser with respect to the reference
in the radial and in-track directions of its LVLH frame is included
in Fig. 12. The points shown are those that belong to the control
instants (that is, each 120 s), so as not to overload the plot. Here,
although not much can be seen due to the high number of points
(consequence of the long duration of the mission), it can be inferred

that the chaser stays well within the imposed state polytope by the
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Fig. 11. Evolution of the height of the target (top) and the force in the in-track
direction exerted by the ion beam on the target (bottom) along the whole deorbiting
mission.

Fig. 12. Evolution of the relative state of the chaser with respect to the virtual
reference in the radial and in-track directions along the whole deorbiting mission.

controller. Moreover, note that the distribution of points is more or
less symmetric with respect to the radial axis, which helps to impart
torque to the target ‘‘symmetrically’’ so that its angular momentum
does not grow indefinitely. In the out-of-plane direction there is also
some movement due to J2, but it is periodic and so small that cold-gas
thrusters in this direction rarely fire during the mission (less than 20
times), as they do not pass the minimum control threshold explained
in Section 4.4.1.

This not-firing behavior is shown at the bottom of Fig. 13, which
shows the control actions in the radial, in-track and out-of-plane di-
rections. They are shown for a time interval of 500 min instead of
during the whole mission for the sake of clarity, and the interval is pur-
posely centered so that one of the few out-of-plane cold-gas thrusters
activations is included. In the radial and out-of-plane directions, since
the actuators are cold-gas thrusters, what is shown is the time they
fire. However, in the in-track direction, where the ion beams act, the
actual acceleration commanded by the controller is plotted. As can be
observed, the minimum control threshold helps the system to act only
when necessary, reducing the fatigue of the thrusters and potentially
minimizing fuel consumption.

The evolution of the angular velocity of the target in the body
axes is shown in Fig. 14. It can be seen that, thanks to the more or
less symmetric distribution previously remarked in Fig. 12, the angular
velocity of the target does not increase too much during the mission,
preventing potentially dangerous events such as fragmentation.

Fig. 15 shows the fuel consumption divided between the amount
used by the ion beams (both ITT and ICT), the CGTs in the radial
direction and the CGTs in the out-of-plane direction (in the chaser-
centered LVLH frame). The cold-gas thruster propellant is seen to be in
fact incomparably low to that of the ion beams (see Table 8. This fact
justifies this new actuator configuration, with cold-gas thrusters in the
703 
Fig. 13. Evolution of control variables during 500 min. The time interval was centered
so that activation of the out-of-plane CGTs is seen. Top and bottom: time that the
cold-gas thrusters are turned on during each control interval in the radial and out-of-
plane direction, respectively. Middle: relative acceleration commanded in the in-track
direction.

Fig. 14. Angular velocity evolution in target body axes along the whole deorbiting
mission.

Fig. 15. Fuel consumption along the whole deorbiting mission, divided by how much
fuel is consumed by the radial cold-gas thrusters, the ion beams (both ITT and ICT),
and the out-of-plane cold-gas thrusters.

radial and out-of-plane directions, since they enhance controllability
and ensure robustness while hardly impacting fuel consumption.

Lastly, to test the versatility of the controller, a set of simulations is
conducted for different relative initial states of the chaser. Specifically,
the chaser is set to start from a series of different points of a circle
which is at a distance of 1.5 meters from the virtual reference. Two
different circles are considered, one in the XY-plane and the other
in the YZ-plane of the CLVLH frame; and the results are shown in
Fig. 16, where the red-shaded region represents the position constraints
polytope imposed by the controller. Simulations were performed for
one orbit, enough time for the controller to stabilize the chaser around
the virtual reference. As seen, the controller converges for the majority
of the points, excluding the ones that are farthest from the position
constraints polytope (marked in red), since the controller enforces that
in just one iteration the relative state must be within that polytope.
In fact, this is clearly seen in the plot, since asterisks show when the
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Table 8
Total fuel consumption by radial CGTs, ion beams and out-of-plane CGTs.

Duration [days] Fuel by radial CGTs [kg] Fuel by ion beams [kg] Fuel by out-of-plane CGTs [kg]

165.6 0.67 136.3 0.0003
Fig. 16. Performance of the controller for different initial relative states of the chaser. The chaser starts from different positions of a 1.5 m in radius circle in the CLVLH XY-plane
(left) and YZ-plane (right). Red region denotes the position constraint polytope. Only the first orbit revolution is shown. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)
control is recomputed (and thus sensor measurements are used), and
excluding the departing asterisks, all the rest lie inside the red-shaded
region, which also validates the boundings performed for the controller.
As expected, symmetric behavior is seen in the YZ-plane, excluding
small differences due to sensor and force noise and hitting the target
from slightly different positions.

6. Conclusions

The proposed Ion Beam Shepherd system with an enhanced actuator
configuration, incorporating cold-gas thrusters alongside the typical
Impulse Transfer and Impulse Compensation Thrusters, has proven
to be a robust and viable solution for the deorbiting of large space
debris such as the Zenit-2 second stage rocket body. Simulation results
demonstrate that the system can successfully deorbit this statistically
concerning 9000 kg object in approximately 165.6 days, with a fuel
consumption of around 137 kg, less than 1% of which is attributed to
the cold-gas thrusters.

The inclusion of cold-gas thrusters together with a novel Model Pre-
dictive Controller ensure robustness without significant fuel penalties,
making the system practical for near-future missions. The development
of a fast and accurate ray-marching-based ion beam force and torque
computation algorithm speeds up simulation times.

While the results confirm the feasibility of using IBS for large debris
deorbiting, further investigation is required on aspects such as higher-
fidelity ion beam models, ion beam sputtering effects on the chaser,
long-term reliability of constant-thrust ion beams, or the use of state
observers to loosen the sensoring requirements. Nevertheless, the study
indicates that the IBS system is a promising candidate for future space
debris removal missions.
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Appendix A. Abbreviations and nomenclature

Vector quantities are represented as bold symbols. Except for Sec-
tion 4.4.1, if a vector has a superscript, it indicates the reference
frame in which it is measured, while the subscript indicates the object
it is related to (𝐶 for chaser and 𝑇 for target); i.e., 𝐚𝐼𝐶 denotes the
acceleration of the chaser measured from the ECI frame. The modulus
of a vector is simply denoted as the vector itself unbold. For clarity, in
the notation list, superscripts of vector quantities are omitted.

ADR Active Debris Removal
CGT Cold-Gas Thruster
CLVLH Chaser-centered LVLH frame
COM Center Of Mass
DCM Direction Cosine Matrix
ECEF Earth-Centered Earth-Fixed frame
ECI Earth-Centered-Inertial frame
HCW Hill-Clohessy-Wiltshire
IBS Ion Beam Shepherd
ICT Impulse Compensation Thruster
ISA International Standard Atmosphere
ITT Impulse Transfer Thruster
LEO Low Earth Orbit
LMI Linear Matrix Inequality
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LQR Linear Quadratic Regulator
LTI Linear Time-Invariant
LVLH Local-Vertical Local-Horizontal frame
MPC Model Predictive Control
ODE Ordinary Differential Equation
QP Quadratic Programming
STM State Transition Matrix
TBA Target Body Axes frame
TLVLH Target-centered LVLH frame
TRL Technology Readiness Level
ZOH Zero-Order-Hold

𝟎𝑖×𝑗 Zero matrix of size 𝑖 × 𝑗
𝟏𝑖×𝑗 Ones matrix of size 𝑖 × 𝑗
𝐴𝑓,𝑖 Frontal area of object 𝑖
𝐚𝑖,𝑗 Acceleration of object 𝑖 due to factor 𝑗
𝑐𝐷,𝑖 Drag coefficient of object 𝑖
𝑑𝐶𝑇 Distance between chaser and target COMs
𝑑𝑉 Distance between chaser COM and ITT
𝐅𝐵 Force exerted by the ICT on the target
𝐹𝐼𝐶𝑇 Force magnitude of ICT
𝐹𝐼𝑇 𝑇 Force magnitude of ITT
𝐻𝑐 Target cylinder height
ℎ𝑖 Height of object 𝑖
𝐈𝑖 Identity matrix of 𝑖th order
𝐼𝑠𝑝,𝐶𝐺 Specific impulse of CGTs
𝐼𝑠𝑝,𝐼𝐵 Specific impulse of ion beams
𝐌𝐵 Torque exerted by the ICT on the target
𝑚𝑖 Mass of object 𝑖
𝑁 MPC control horizon
𝑛 Instantaneous orbit mean motion
𝑛0 Ion number density at reference plane center
𝐪𝐵𝐴 Attitude quaternion from A to B frame
𝑅0 Radius of the 95% ion mass flow tube at the

reference plane
𝑅𝐵
𝐴 DCM from A to B frame

𝑅𝑐 Target cylinder radius
𝐫𝑖 Position of object 𝑖
𝑇𝑐 Control refreshing period
𝐮 Control variables vector
𝐯𝑖 Velocity of object 𝑖
𝐯𝑟𝑖 Relative velocity between object 𝑖 and air
𝐰𝑘 State disturbance at instant 𝑘
𝐱 Virtual state of the chaser
𝛼0 Ion beam divergence angle
𝝎𝑇 Target angular velocity
 Target’s inertia matrix
 Control constraints polytope
 State constraints polytope
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