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Now, the true title!

   But… this requires an explanation…!

We still don’t know how to control 
the Steinway at the keyboard but 
know how to control a pizza slice at 
the crust



Miroslav’s email 
workflow
1. You spend two hours crafting 

careful email for Miroslav 
(well now… perhaps a bit less… 
thanks to ChatGPT!).



Miroslav’s email 
workflow

1. You spend two hours crafting careful email for Miroslav

2. Immediate answer. Email server auto-response: ON TRAVEL



Miroslav’s email 
workflow

We have to make reviewers feel respected and feel they 
have not wasted time and made bad suggestions - even 
when most of what they have suggested is bad. Paper 
text is “compressible” matter, especially when one puts 
in the time, which one must, when it comes to the fragile 
egos of reviewers.

Example. Advice after receiving a particularly bad review :



The origin of the title today…!!
But perhaps let’s blend the old and new title into something a bit more serious and already start!

On controlling pizzas and grand pianos: 
Exploiting Symmetry in Higher-Dimensional 
PDE Control 
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Extension to Higher Dimensions: Key Challenge

• Original backstepping focused on 1D reaction-di↵usion equations

• Challenge: extending to higher dimensions
• Integral transformations become more complex and many possibilities emerge
• Associated PDEs governing kernels are harder or impossible to solve
• Need for special properties and symmetries

• Two main approaches have emerged:
• Exploit specific geometries and simmetries
• Use spatial invariance for specific configurations



Simplest Result: Andrey’s 2D Design in a Square
Consider the 2D reaction-di↵usion equation on a unit square:

ut = ✏(uxx + uyy ) + �u, (x , y) 2 [0, 1]⇥ [0, 1]

u(t, 0, y) = 0, u(t, 1, y) = U(t, y) (control)

u(t, x , 0) = u(t, x , 1) = 0 (Dirichlet boundary conditions)

x

y

U(t, y)

u = 0

u = 0

u = 0



Solution: Extension of 1D Backstepping
Target System: Extend the same typical stable 1D system to 2D

wt = ✏(wxx + wyy )� cw

w(t, 0, y) = w(t, 1, y) = 0

w(t, x , 0) = w(t, x , 1) = 0

where c > 0 ensures stability.

Key Insight: Use the same 1D transformation for each y -slice

w(t, x , y) = u(t, x , y)�
Z x

0
k(x , ⇠)u(t, ⇠, y)d⇠

Control law: Evaluate transformation at x = 1. Control law gets y -dependence from
u only.

U(t, y) =

Z 1

0
k(1, ⇠)u(t, ⇠, y)d⇠



Why Does This Work?

Key Property: y -derivatives commute with the transformation

wyy = @yy

✓
u �

Z x

0
k(x , ⇠)u(t, ⇠, y)d⇠

◆

= uyy �
Z x

0
k(x , ⇠)uyy (t, ⇠, y)d⇠

wt = . . . uyy . . .�
Z x

0
k(x , ⇠)uyy (t, ⇠, y)d⇠ . . .

This commutation property means the design work exactly as in 1D!

• The kernel PDE remains exactly the same as in 1D

• Thus kernel k(x , ⇠) identical to 1D case: Modified Bessel function

• However the design is fragile to any y -dependence.



First ”true” Higher-Dimensional Results

• Loops and channels: Early successes
• Thermal convection loops (Vazquez & Krstic, 2006)
• 2D Navier-Stokes Poiseuille flow (Vazquez & Krstic, 2007)
• Channel MHD flow (Vazquez & Krstic, 2008)

• Key features:
• Periodic or infinite domains
• Exploit special geometric properties
• Fourier analysis key tool

• Di↵erent approach and systematic treatment by Meurer (2012) (another talk).



Progress in Bounded Domains

• General n-dimensional ball, constant coe�cients (Vazquez & Krstic, 2016)

• Radially-varying with total angular simmetry, disk domain (Vazquez & Krstic,
2016)

• Extension to sphere (Vazquez & Krstic, 2019)

• Latest: Power series for radially varying reaction (Vazquez et al., 2023)

Key mathematical tools:

• Ultraspherical coordinates

• Ultraspherical harmonics

• Power series methods
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Spatial Invariance Approach

• Concept by Bamieh, Paganini & Dahleh (2002)

• Key insight: many distributed parameter systems have symmetries

• For control design:
• Transform spatial derivatives into algebraic multiplication
• Convert spatial dependence into parameter dependence

• Result: Original PDE becomes an ensemble of simpler systems

• Each member of ensemble easier to control independently



When Can We Use It?

System must be spatially invariant:

• Spatial coordinates form a group
• Infinite domain: R (channels)
• Periodic domain: S (loops, disks, spheres)

• Actuation/sensing fully distributed over that coordinate

• Dynamics and geometry invariant under translations



Example: Heat Equation in Semi-Infinite Strip

Consider:

ut = ✏(uxx + uyy ) + �u

uy (t, x , 0) = 0

uy (t, x , 1) = U(t, x)

on (x , y) 2 (�1,1)⇥ [0, 1]
x

y
U(t, x)

Key property: Invariant in x (infinite domain)



Power of Fourier Transform

After Fourier transform in x :

ut = ✏(�4⇡2k2u + uyy ) + �u

uy (t, k , 0) = 0

uy (t, k , 1) = U(t, k)

• Original 2D PDE ! Family/ensemble of 1D PDEs

• Each parameterized by wavenumber k : continua of PDEs

• x-derivatives become algebraic terms!

• Key property: Higher wavenumbers are more damped (�4⇡2k2 term)

• Controllers designed for each k independently up to a certain wave number N

• Design in Fourier space, reconstruct in physical space (inverse Fourier transform)



Control Design in Fourier Space

• Divide wavenumbers in two regions:
• Controlled: |k | < N (finite number of modes)
• Uncontrolled: |k | � N (naturally damped by �4⇡2k2 term)

• Target system for controlled modes:

wt = ✏(�4⇡2k2w + wyy )� cw

wy (t, k , 0) = 0, wy (t, k , 1) = 0



Backstepping Solution

Use transformation for each k :

w(t, y , k) = u(t, y , k)�
Z y

0
(y , ⌘)u(t, ⌘, k)d⌘

with kernel (�0 =
�+c
✏ )

(y , ⌘) = ��0⌘
I1(
p

�0(y2 � ⌘2))p
�0(y2 � ⌘2)

where I1 is the first order modified Bessel function of the first kind.
Controller for each mode:

U(k) = �
Z 1

0
�0⌘

I1(
p

�0(1� ⌘2))p
�0(1� ⌘2)

u(⌘, k)d⌘



Reconstruction in Physical Space
For each controlled mode |k | < N, apply controller:

U(k) = �
Z 1

0
�0⌘

I1(
p

�0(1� ⌘2))p
�0(1� ⌘2)

u(⌘, k)d⌘

Final physical control obtained by inverse Fourier transform:

U(t, x) =

Z 1

�1
U(k)e2⇡ikxdk =

Z N

�N
U(k)e2⇡ikxdk

= �
Z 1

0

Z N

�N
�0⌘

I1(
p

�0(1� ⌘2))p
�0(1� ⌘2)

u(⌘, k)e2⇡ikxdkd⌘

Properties:

• Low wavenumbers: actively controlled

• High wavenumbers: naturally damped by di↵usion

• Results in spatially-distributed control law

• Exponential stability in L2 norm



Reconstruction in Physical Space
Substituting Fourier transform of u(t, ⌘, x):

U(t, x) = �
Z N

�N

Z 1

0
�0⌘

I1(
p
�0(1� ⌘2))p
�0(1� ⌘2)

✓Z 1

�1
u(t, ⌘, ⇠)e�2⇡ik⇠d⇠

◆
e2⇡ikxd⌘dk

= �
Z 1

0

Z 1

�1
�0⌘

I1(
p

�0(1� ⌘2))p
�0(1� ⌘2)

u(t, ⌘, ⇠)

✓Z N

�N
e2⇡ik(x�⇠)dk

◆
d⇠d⌘

After exchanging integrals and computing
R N
�N e2⇡ik(x�⇠)dk :

U(t, x) = �
Z 1

0

Z 1

�1
�0⌘

I1(
p
�0(1� ⌘2))p
�0(1� ⌘2)

[2Nsinc(2⇡N(x � ⇠))] u(t, ⌘, ⇠)d⇠d⌘

where:

• sinc(z) = sin(z)
z is the cardinal sine function

• 2Nsinc(2⇡N(x � ⇠)) is the spatial filtering kernel in x direction

• The kernel splits into two parts: Bessel function part from the backstepping
design and Sinc function part from the wavenumber cuto↵.



On controlling pizzas and grand pianos: Exploiting Symmetry in
Higher-Dimensional PDE Control

1. Quick Overview of 2D and Higher Backstepping

2. Spatial Invariance in PDE Control

3. Square Domains and Fourier Analysis: Breaking and mending Andrey’s result

4. The Pizza Control Problem

5. The Grand Piano Control Problem
• Control at the Keyboard
• Simultaneous control at the Back: Domain Extension Approach

6. Conclusions



Back to the Square Domain: Fourier Sine Series

Consider again the unstable 2D reaction-di↵usion:

ut = ✏(uxx + uyy ) + �u, (x , y) 2 [0, 1]⇥ [0, 1]

u(t, 0, y) = 0, u(t, 1, y) = U(t, y)

u(t, x , 0) = u(t, x , 1) = 0

Key insight: Use Fourier sine series in y direction

• Dirichlet conditions suggest sine series

• u(t, x , y) =
P1

n=1 un(t, x) sin(n⇡y)

• Each mode satisfies separate 1D equation



Equations for Each Mode

After projection, for each n:

un,t = ✏(un,xx � n2⇡2un) + �un

un(t, 0) = 0

un(t, 1) = Un(t)

Properties:

• Each mode is 1D reaction-di↵usion

• Natural damping �✏n2⇡2 increases with mode number

• Same structure as Fourier transform case, but discrete modes

• Can apply same backstepping design for each mode



Backstepping Design for All Modes

For each mode n, transform to target system:

wn,t = ✏(wn,xx � n2⇡2wn)� cwn

wn(t, 0) = wn(t, 1) = 0

Using backstepping transformation:

wn(t, x) = un(t, x)�
Z x

0
kn(x , ⇠)un(t, ⇠)d⇠

Key point: Even though n appears, kernel is the same!

kn(x , ⇠) = k(x , ⇠) = ��0⇠
I1(
p
�0(x2 � ⇠2))p
�0(x2 � ⇠2)



Control Law

Control for each mode:

Un(t) =

Z 1

0
k(1, ⇠)un(t, ⇠)d⇠

Physical space control:

U(t, y) =
1X

n=1

✓Z 1

0
k(1, ⇠)un(t, ⇠)d⇠

◆
sin(n⇡y)

Properties:

• Same kernel works for all modes!

• Series converges

• No need for mode truncation

• Naturally well-posed in L2



Final Control Law: Physical Space

Substituting Fourier coe�cient definition:

un(t, ⇠) = 2

Z 1

0
u(t, ⇠, ⌘) sin(n⇡⌘)d⌘

Physical space control:

U(t, y) =
1X

n=1

✓Z 1

0
k(1, ⇠)

✓
2

Z 1

0
u(t, ⇠, ⌘) sin(n⇡⌘)d⌘

◆
d⇠

◆
sin(n⇡y)

Properties:

• Double integral control law

• Series converges

• Well-defined transformation from 2D state to boundary control

• No truncation needed!



Final Control Law: Explicit Form
Let’s exchange order of integration and sum:

U(t, y) =

Z 1

0
k(1, ⇠)

 
2

Z 1

0
u(t, ⇠, ⌘)

 1X

n=1

sin(n⇡⌘) sin(n⇡y)

!
d⌘

!
d⇠

=

Z 1

0
k(1, ⇠)

✓
2

Z 1

0
u(t, ⇠, ⌘)

✓
�(y � ⌘)

2

◆
d⌘

◆
d⇠

(� function to be understood in the distributional sense rather than a strict pointwise
equality). Therefore, final physical control law:

U(t, y) = �
Z 1

0
�0⇠

I1(
p

�0(1� ⇠2))p
�0(1� ⇠2)

u(t, ⇠, y)d⇠

Key insight:
• Control is local in y (no integration in y)!
• Only integration in ⇠ direction needed
• Same kernel as 1D case for each y -slice. We recover Andrey’s result. What’s the

point???



A More Realistic Problem: Finite-Dimensional Control

Instead of distributed control U(t, y), consider finite-dimensional:

ut = ✏(uxx + uyy ) + �u

u(t, 0, y) = 0, u(t, 1, y) =
mX

k=1

Uk(t)�k(y)

u(t, x , 0) = u(t, x , 1) = 0

where:

• {�k(y)}mk=1 are shape functions on [0, 1]

• Only m control inputs Uk(t)

• Cannot directly use previous kernel solution

Strategy: Use Fourier series to understand conditions of controllability



Mode Analysis with Finite Controls

Expand both state and shape functions:

u(t, x , y) =
1X

n=1

un(t, x) sin(n⇡y)

�k(y) =
1X

n=1

�k,n sin(n⇡y)

For each mode n:

un(t, 1) =
mX

k=1

Uk(t)�k,n = gn(t)



Mode-by-Mode Design
Each mode n satisfies:

un,t = ✏(un,xx � n2⇡2un) + �un

un(t, 0) = 0

un(t, 1) =
mX

k=1

Uk(t)�k,n = gn(t)

Key features:

• For n  N: Design control via backstepping

gn(t) =

Z 1

0
k(1, ⇠)un(t, ⇠)d⇠ =

mX

k=1

Uk(t)�k,n

• For n > N: Natural damping dominates by choosing

N �
r

c + �

✏
⇡



Control Design for First N Modes

For n  N, kernel solution gives desired boundary values:

gn(t) =

Z 1

0
k(1, ⇠)un(t, ⇠)d⇠

where k(1, ⇠) = ��0⇠
I1(
p

�0(1�⇠2))p
�0(1�⇠2)

Linear system for control:

0

B@
�1,1 · · · �m,1
...

. . .
...

�1,N · · · �m,N

1

CA

| {z }
�

0

B@
U1(t)

...
Um(t)

1

CA =

0

B@
g1(t)
...

gN(t)

1

CA

rank of matrix � of shape function coe�cients becomes crucial!



Stability Theorem

Theorem: For the system above, and given c , set N such that �✏n2⇡2 + � < �c for

n > N (this is N �
q

c+�
✏ ⇡). Then if matrix � of shape function coe�cients has

rank N the control law Uk(t) = (�†g(t))k achieves for some K > 0

ku(t, ·, ·)kL2([0,1]2)  Ke�ctku(0, ·, ·)kL2([0,1]2)

The proof is easy to complete noticing that the higher modes (n > N) exhibit ISS
stability w.r.t. to the boundary control (which only involves lower modes and decays to
zero).
Note: arbitrary convergence rate no longer achievable. The achievable c will depend
on the shape coe�cient matrix rank properties. It may also happen that there is no
possible value of c : system not stabilizable. Obviously need m � N (at least as many
controls as modes that need to be controlled.).



Conclusion of the Finite-Dimensional Control Strategy

• Starting from a PDE that was previously straightforward to solve with a full
functional control U(t, y), we introduced a finite-dimensional control
parameterization.

• Without the Fourier series paradigm, it’s unclear how to invert the relationship
between u(t, x , y) and U(t, y).

• By resorting to Fourier expansions, we break down the control problem
mode-by-mode.

• A finite-dimensional vector of controls Uk(t) is now related to a finite set of
critical modes of the PDE, governed by a linear algebraic condition on the chosen
support functions.

• This approach reveals the necessity of the Fourier method for tractability and
ensures that with appropriate choice of {�k}, one can systematically achieve
control over the system’s most influential modes.
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Next Challenge: Control a Pizza! ??

Consider reaction-di↵usion on a sector domain:

ut = ✏(urr +
1

r
ur +

1

r2
u✓✓) + �u

u(t, r , ✓1) = u(t, r , ✓2) = 0 (no toppings at the edges)

u(t,R , ✓) = U(t, ✓) (control at the crust)

U(t, ✓)

✓ = ✓1

✓ = ✓2

R



Dirichlet on the Sides of the Sector

Since we impose Dirichlet boundary conditions on the sides:

u(r , ✓, t) = 0 at ✓ = ✓1, ✓ = ✓2.

we now have sine-like eigenfunctions to satisfy the BCs at ✓ = ✓1, ✓2.
Angular Eigenvalue Problem:

d2�

d✓2
+ �2� = 0, �(✓1) = 0, �(✓2) = 0.

The solutions are of the form:

�n(✓) = sin

✓
n⇡(✓ � ✓1)

✓2 � ✓1

◆
, n = 1, 2, . . .

These form an orthonormal basis in L2([✓1, ✓2]) with Dirichlet boundary conditions.



Mode Decomposition in ✓

Using eigenfunctions verifying the Dirichlet conditions:

u(t, r , ✓) =
1X

n=1

un(t, r) sin

✓
n⇡(✓ � ✓1)

✓2 � ✓1

◆

Each mode satisfies:

un,t = ✏

✓
1

r
(run,r )r �

n2⇡2

(✓2 � ✓1)2
un
r2

◆
+ �un

un(t,R) = Un(t)

Key observation:

• Angular mode number n appears in denominator r2

• Higher modes (n � 1) naturally more damped

• Control design needed only for first N modes



Mode-by-Mode Backstepping Design

Target system for each mode n:

wn,t = ✏

✓
1

r
(rwn,r )r �

n2⇡2

(✓2 � ✓1)2
wn

r2

◆
� cwn

wn(t,R) = 0

Backstepping transformation:

wn(t, r) = un(t, r)�
Z r

0
kn(r , ⇢)un(t, ⇢)d⇢

Control law for each mode:

Un(t) =

Z R

0
kn(R , ⇢)un(t, ⇢)⇢d⇢



Physical Control Reconstruction

Physical control at the crust:

U(t, ✓) =
NX

n=1

✓Z R

0
kn(R , ⇢)un(t, ⇢)d⇢

◆
sin

✓
n⇡(✓ � ✓1)

✓2 � ✓1

◆

Properties:

• Only first N modes actively controlled

• Higher modes (n > N) naturally stable when:

�✏
n2⇡2

(✓2 � ✓1)2R2
+ � < �c



Backstepping Design

Kernel kn must satisfy:

@2kn
@r2

+
1

r

@kn
@r

� @2kn
@⇢2

+�1

⇢

@kn
@⇢

� kn
⇢2

� ↵2
n

✓
1

r2
� 1

⇢2

◆
kn(r , ⇢) =

�+ c

✏
kn(r , ⇢)

kn(r , r) = ��+ c

2✏r

where ↵n = n⇡
✓2�✓1

.

We try the change of variables:1

kn(r , ⇢) = gn(r , ⇢)⇢
⇣⇢
r

⌘↵n

1
Inspired by R. Vazquez and M. Krstic, ”Boundary Control of Reaction-Di↵usion PDEs on Balls in

Spaces of Arbitrary Dimensions,” ESAIM:Control, Optimization and Calculus of Variations, Vol. 22,

No. 4, pp. 1078-1096, 2016



Backstepping Design
We get the equation

@rrgn + (1� 2↵n)
@rgn
r

� @⇢⇢gn � (1 + 2↵n)
@⇢gn
⇢

=
�+ c

✏
gn

gn(r , r) = ��+ c

2✏
.

Whose solution is (based on the same ESAIM paper):

gn(r , ⇢) = ��+ c

✏

I1

q
�+c
✏ (r2 � ⇢2)

�

q
�+c
✏ (r2 � ⇢2)

,

with no ↵n dependency! Now undoing the change:

kn(r , ⇢) = ��+ c

✏
⇢
⇣⇢
r

⌘ n⇡
✓2�✓1

I1

q
�+c
✏ (r2 � ⇢2)

�

q
�+c
✏ (r2 � ⇢2)



Explicit Control Law
Kernel solution:

K (r , ⇢, ✓, ⌘) = 2
NX

n=1

⇢

0

BB@
�+ c

✏

⇣⇢
r

⌘ n⇡
✓2�✓1

I1

q
�+c
✏ (r2 � ⇢2)

�

q
�+c
✏ (r2 � ⇢2)

sin

✓
n⇡(⌘ � ✓1)

✓2 � ✓1

◆
sin

✓
n⇡(✓ � ✓1)

✓2 � ✓1

◆
1

CCA

Full control at the crust:

U(t, ✓) = �
Z R

0

Z ✓2

✓1

K (R , ⇢, ✓, ⌘)u(t, ⇢, ⌘)⇢d⌘d⇢

Properties:

• If choosing first N modes needed with

N >

r
c + �

✏

(✓2 � ✓1)R

⇡

one gets c decay rate as usual

• Modified Bessel function kernel scaled with angle di↵erence



So, how do you control a pizza at the crust?

Controlling a pizza-shaped domain involves:

• Angular separation of variables and mode expansions.

• Identifying kernel PDEs that are more complex than in simpler geometries.

• Using advanced analytical or numerical methods to solve these kernel PDEs.

• Achieving exponential stability of the PDE state through a carefully constructed
boundary control at the crust.

The methodology ensures that, by addressing a finite set of troublesome modes and
relying on natural damping of higher modes, one can achieve exponential stabilization.
Though the kernel equations are harder, the underlying principle of backstepping
remains intact.
We have shown we can control a pizza at its crust!
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Grand Finale: The Grand Piano! ??
From pizza to piano:

U(t, x) (keyboard)

L

L

Challenge: Can we control vibrations/temperature from the keyboard?
• Previous domain: square with full control at one edge
• Now: Diagonal cut creates piano shape
• Question: can we cope with this change?



The Mathematical Setup

Consider reaction-di↵usion on this domain ⌦:

ut = ✏(uxx + uyy ) + �u in ⌦

u = 0 on all edges except keyboard

u = U(t, x) on keyboard (y = 0, 0 < x < L)

Key Di↵erences from Square:

• No separation of variables

• Previous technique cannot be used

• Other techniques may work, but we don’t know how to pose backstepping
transformation



Alternative Strategy: Control from the Back
Same piano shape, but control at the back walls:

U 1
(t
, s
)

U2(t, x)

L

L

New Challenge:

• Two control inputs: U1 on diagonal, U2 on top

• Di↵erent parameterization needed for each boundary



Control Strategy: Extending the Domain

U2Uv

U 1

Key Idea:

• Extend piano to full square

• Red triangle: virtual domain

• Uv : virtual control we know
(Andrey’s) completing U2.

• U1: matches solution across
diagonal



The Extension Strategy

The trick:

1. Start with Andrey’s solution for full square (we know this!)

2. Simulate dynamics in cut-o↵ triangle (red)
• Known virtual control Uv at top computed partly from real state, partly from

simulated triangle.
• Neumann conditions “measured” from the real state on the triangle.

3. Use value of solution on diagonal to set U1: this is dynamic feedback.

4. By uniqueness: piano behavior matches square behavior!

Advantage: Transform hard problem (piano) into known problem (square) +
simulation
Key insight: If solution exists, it must be unique. Therefore, if we can make the piano
match the square’s behavior on the diagonal, we’ve found our solution!



From Piano to General Domain Extension Method
Key concept: Target Domain (not just Target System)
• Extend non-symmetric domain to simpler one
• Virtual dynamics in extended region
• Match solutions at interface
• Known controller in extended domain

U2

U1

Requirements:
• Enough controls to match at interface
• Known control solution in target domain
• Well-posed virtual problem in extended region

Classical idea: Domain extension methods well-known in mathematics, here adapted
for control design



On controlling pizzas and grand pianos: Exploiting Symmetry in
Higher-Dimensional PDE Control

1. Quick Overview of 2D and Higher Backstepping

2. Spatial Invariance in PDE Control

3. Square Domains and Fourier Analysis: Breaking and mending Andrey’s result

4. The Pizza Control Problem

5. The Grand Piano Control Problem
• Control at the Keyboard
• Simultaneous control at the Back: Domain Extension Approach

6. Conclusions



Conclusions

Key Messages:

• Fourier methods and symmetries are powerful tools for PDE control
• Transform n-D geometries into tractable ensemble 1-D problems
• Enable mode-by-mode design
• Bridge infinite and finite-dimensional control at the boundaries

• New explicit solutions obtained for:
• Semi-infinite strip with cut-o↵
• Finite-dimensional control in squares
• Full pizza control at the crust (exploiting angular symmetry)

• Piano control from the back via domain extension

• New concept: Target domains as natural extension of target systems

Message for Miroslav: These new solutions, from squares to pizzas to pianos, are
dedicated to you - I know you love them, specially the explicit solutions!!



Thank You!!

Questions?

Special thanks to Miroslav Krstic
for inspiring this journey from 1D backstepping to pizzas and pianos


