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Abstract: We report on recent progress made towards the development of a real-time
planning tool for multiple-mission Earth Observation Satellites (EOSs). The problem under
consideration is to decide which acquisitions are needed to fulfill a series of criteria, such as
the minimization of the total acquisition cost or the maximization of the area covered. The
underlying Computational Geometry problem has been reduced to the computation of a matrix,
which allows one to use standard Integer Programming tools and software. Given the complexity
of the problem and the requirements of obtaining solutions in real time, heuristic algorithms,
yielding (possibly sub-optimal) solutions to the problem are needed. A greedy and a GRASP
algorithm have been implemented. Preliminary computational results are presented, comparing
the heuristic algorithms with the exact solution.
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Earth observation satellites (EOSs) are a class of geocen-
tric satellites whose task is to collect data of the Earth
using advanced sensing technology. Such data are useful
in disciplines that study the Earth lands, oceans, and
atmosphere and their interaction, such as cartography,
meteorology, oceanography, biology, geology, geodesy, or
atmospheric science. The field of EOSs is quickly evolving
and new applications are emerging: fire detection, cri-
sis management or fishing zone identification. For these
reasons, EOSs have become an important resource for
global Earth surveillance and research. Nowadays, many
countries and companies all over the world are actively de-
veloping and deploying EOSs. However, although the fleet
of EOSs is growing, their number is not high enough to
satisfy the ever-increasing global requirements for remote
sensing data. Hence, EOSs resources have to be efficiently
managed to obtain the maximum possible benefit.

Currently, most remote sensing activities require manual
coordination of satellites and observations by mission plan-
ners or shceduling algorithms Sun et al. (2008); Muraoka
et al. (1998); Chien et al. (1998). However, with the ex-
isting number of EOSs and demands for observation time,
it is becoming unfeasible to manually plan coordinated
EOSs activities. Instead, observation requests should be
processed by automatic planning algorithms which select
and schedule a subset of satellites yielding the maximum
profit under operational constraints, such as satellite avail-
ability, power, thermal, data capacity, clouds, duty cycles

of the sensors and the limited time each satellite spends
over a target.

This problem has traditionally been studied for the case of
one single satellite. However, nowadays Earth Observation
operations are increasingly moving towards multisatellite
scheduling, shorter revisiting times and quicker access to
space resources. Thus, since requests might be satisfied by
several satellites, in more than one of their revolutions,
the problem is not separable by satellite or orbit. Instead,
planning must be performed simultaneously for all satel-
lites and orbits considered.

In addition, many missions require rapid decision and
management (for instance, humanitarian assistance or
damage assessment), or they depend on rapidly changing
data, such as clouds. Hence, planning algorithms should
ideally find the optimal solution in (almost) real-time.
However, taking into account the number of operating
satellites, the total number of observations they can per-
form, and the number of existing constraints and options
for each observation, the search space for EOSs schedul-
ing problems might become too large. In general, exact
algorithms cannot be expected to be feasible for real-
time operation and instead heuristic algorithms have to
be developed. Using new data-handling techniques and
parallel computing, these algorithms are able to quickly
find an almost-optimal solution.

An explicit example generated with SaVoir (Swath Acqui-
sition Viewer, Taitus (2011)) is shown in figures 1 and 2.



In this example, the region of interest is Italy, and it can
be seen how acquisitions from several satellites overlap,
providing redundant images. The unoptimized solution in
figure 1 is formed with acquisitions generated automati-
cally with a simple ”maximal-coverage” algorithm, with
no memory. Each acquisition is planned independently
of the others. SaVoir selects the best sensor steering to
maximize the coverage. Because there is no memory the
output tends to overlap previous data takes leaving many
parts uncovered. The results shown in figure 2 are selected
with a similar strategy but with memory. The sensor steer-
ing will be selected with a ”maximal-coverage” criteria,
but incrementally discarding coverage of previous data
takes. It produces a solution with less acquisitions but not
necessarily the best choice (in time, coverage, cost or a
combination of these criteria).

Fig. 1. A real-world example produced with SaVoir Taitus
(2011). Swaths from different satellites produce a
redundant and overlapping set of acquisitions. Each
acquisition is planned independently of the others.
SaVoir selects the best sensor steering to maximize
the coverage. Because there is no memory the output
tends to overlap previous data takes leaving many
parts uncovered.

This contribution formulates the swath acquisition prob-
lem (SAP) arising in multi-satellite and constellation man-
agement as a mathematical programming problem and
proposes a heuristic algorithm to provide a feasible so-
lution. Current approaches to solve SAP are mostly based
on simple enumeration of possible solutions, which may
be too time consuming, mainly when different criteria or
satellites priorities are taken into account. Moreover, duty
cycle constraints and other similar constraints of dynamic
nature (batteries, recorders, downlink capacity) are not
frequently incorporated within the optimization process.
Hence, the output of existing procedures may be far from
optimal. However, if these dynamical constraints are not
relevant, an adequate customization of well-known Math-
ematical Optimization methods can yield several feasible
algorithmic strategies to address SAP.

We present our preliminary work, including a mathemat-
ical model for describing SAP, the study of several sim-
plified models, a heuristic algorithm to solve the prob-
lem, and some preliminary results. Our ultimate goal is
to design, develop and implement a real-time tool for
EOSs planning, which includes several multiple-mission,
multiple-constellation algorithms able to handle realistic
operational constraints and its integration into SaVoir Tai-

Fig. 2. Optimized solution with an heuristic two steps
approach. The acquisitions are selected with a similar
strategy as in figure 1 but with memory. The sensor
steering will be selected with a ”maximal-coverage”
criteria, but incrementally discarding coverage of pre-
vious data takes. It produces a solution with less ac-
quisitions but not necessarily the best choice (in time,
coverage, cost or a combination of these criteria).

tus (2011), a visual, simple-to-use tool for satellite mission
planning and management. One of the advantages of using
SaVoir is that its visual engine implements computational
geometry algorithms that can compute (as in Fig. 1)
the subregions in which the region of interest is divided
by the different available swaths, and what swaths cover
each subregion. These computations are performed with
embedded GIS capabilities and 3-D geometry. The geo-
metrical algorithms include provisions to cope with Earth
ellipsoid singularities over the poles and line of date (180
degree), such that the areas of interest may be positioned
anywhere on the Earth without calculation or visualization
restrictions.

1. METHODOLOGY

Our approach towards an efficient, visual swath acquisition
planning algorithm can be summarized in four steps:

(1) Formulating the EOSs planning problem in an ade-
quate mathematical setting, which allows us to use
standard optimization algorithms.

Several models of increasing complexity have been
developed. First, a simplified model is constructed
for simple regions, simplified satellite ground tracks,
and fixed satellite sensors. Later, real-world regions
and ground tracks, and steerable satellite sensors are
included.

(2) Solving the involved computational geometry prob-
lem, which implies calculating intersections between
Earth regions and different satellite swaths.

These problems are not difficult for the initial sim-
plified models, but their complexity increases with the
model. The algorithms should be fast and efficient,
and able to handle complex regions, possibly non-
convex and with holes. The algorithms should be free
of projection distortion, and they should successfully
work with regions located anywhere in the world.

The computational geometry problem can be sum-
marized as the computation of all the subregions
generated by the intersections of the satellite swaths



within the region of interest. Based on such intersec-
tions, one can compute a matrix Q, whose entry (i, j)
takes the value 1 if subregion i is covered by swath j,
and takes the value 0 otherwise.

(3) Implementation of exact and heuristic algorithms to
solve the problem.

Given the matrix Q from the previous step, the
SAP can be seen as a so-called set covering problem,
Schilling et al. (1993), solvable by means of standard
Integer Programming software. However, it has been
shown that the swath segment selection problem
is an NP-hard combinatorial optimization problem
Cordone et al. (2008), thus only small-size instances
are expected to be solved exactly in short time.

Hence, given the complexity of the problem and
the need of obtaining solutions in real time, the use
of exact algorithms is, in general, unfeasible. There-
fore, heuristic algorithms have to be developed and
implemented to rapidly find a (possibly sub-optimal)
solution to the problem. To measure the quality of the
solutions provided by those heuristic algorithms, it
would be important to implement methods that pro-
duce the exact solution, though with a much higher
computational cost. Then, comparisons can be carried
out to give an idea of what is lost in terms of costs
when heuristics are used.

(4) Integration of the planning algorithms in the SaVoir
visual satellite simulation environment.

Once the problem has been modeled and solved, the
developed algorithms should be integrated in a visual
satellite simulation tool, friendly for users (satellite
planners). The tool should allow one to to select a set
of real satellites, a region to be observed, a cost index
and a set of constraints, and it should give in real
time the optimal (or almost-optimal) subset of time-
observation frames for the satellites. To do this, the
tool will use realistic propagators to compute future
satellite orbits based on existing orbital elements,
solve the involved computational geometry problems,
and apply the previously developed heuristic algo-
rithms to find a good solution.

In our opinion SaVoir gives a perfect match to the
requirements above, since it is easy to use, inexpensive
compared with other solutions in the market, and it
already implements a computational geometry engine
which can be used to compute the matrix Q.

2. FORMULATION OF THE EOSS PLANNING
PROBLEM

In this section we introduce several mathematical models
that aim at describing the problem introduced before.
We begin with several definitions of the key concepts
that play a role in our model. Then, we show how to
express different versions of the EOSs planning problem
as optimization problems. We start with a simplified
model, in which the involved satellites have fixed sensors;
this model clarifies the integer programming formulation
of the problem. The model is illustrated with several
simple examples. Next, a straightforward extension in
which satellites have steerable sensors follows. Finally we
comment on an heuristic approach to solve the problem.

2.1 Statement of the problem and notation

To formulate the EOSs planning problem, the following
concepts are defined:

• R is the region of interest, i.e., the region of the Earth
that needs to be covered. No assumptions are imposed
on the shape of R.

• T is the time-frame for the planning problem. T is
assumed to be an interval [T0, Tf ] given by initial the
and final times T0 and Tf .

• S is the set of satellites considered in the planning
problem. To avoid dealing with orbit propagators, it
is assumed that the position of each satellite in S is
known and it can be computed with enough precision
for each time instant in T .

• For each satellite s ∈ S, Ps is the set of possible sensor
angle positions for s.

• Given a satellite s ∈ S, a sensor position p ∈ Ps and
a time interval [t0, t1], an acquisition a(s, p, t0, t1) is
defined as the surface of the Earth covered by the
swath of satellite s during [t0, t1] in its position p.
Define also the cost of the acquisition a as ca > 0.

• A is the set of all possible acquisitions given the set of
satellites, their possible sensor positions and the time
frame T ,

A = {a(s, p, t0, t1) : s ∈ S, p ∈ Ps, [t0, t1] ⊂ T}.
• Subregions SR: The intersection of the set A with

the region R defines a set of subregions whose union
is equal to the region of interest.

Several concepts from these definitions are illustrated in
Fig. 4.

Based on these concepts, we now define admissibility of
acquisitions for the EOSs planning problem. We say a
selection of n acquisitions {ai(si, pi, ti0, ti1), i = 1, . . . , n} ⊂
A is admissible if:

• Each individual satellite s in the selection is not
used more than once for any given time instant, i.e.,
∀ i, j = 1, . . . , n, si = sj ⇒ [ti0, t

i
1] ∩ [tj0, t

j
1] = ∅.

• If a satellite s in the selection is used more than once
with different sensor positions, a time ∆tps is needed
to change its sensor position, i.e.,

∀i, j = 1, . . . , n, si = sj , pi 6= pj ⇒
[ti0, t

i
1 + ∆tpi] ∩ [tj0, t

j
1 + ∆tpj ] = ∅.

• Depth of coverage dj : if a subregion ofR, SRj , is spe-
cially relevant, it is advisable to have it recorded more
that once. Parameter dj is a non-negative integer
which allows these “specially interesting” regions to
be acquired more than once. It also allows to include
subregions with dj = 0, which means that they are
“not so interesting”, and therefore not required to be
acquired at all.

With this notation we are in position to formulate the
EOSs planning problem as follows.

EOSs planning problem: Find an optimal selection
of admissible acquisitions {ai(si, pi, [ti0, ti1]) ∈ A, i =
1, . . . , n} such that R ⊂ ∪ni=1ai. If some of the subregions
SRj are marked as not so interesting through the depth
of coverage parameter dj = 0, the last condition should be
changed to ∪j:dj 6=0SRj ⊂ ∪ni=1ai.

The selection is optimal in the sense that a certain func-
tion F ({a1, . . . , an}) is minimized; F can have different
definitions according to the objective, for instance:

• F = n (minimal number of acquisitions).
• F =

∑n
i=1 cai

(minimum cost of acquisitions).
• F = maxi=1,...,n t

i
1 (minimal final time).



• A combination of any of the above.

Alternatively, the objective could be to maximize the
surface covered having a threshold value for the final time
and/or maximum budget, etc.

2.2 Simplified model I: q-satellites and fixed sensor

The first model to be studied involves q-satellites with a
fixed sensor; then the complete swath of the satellite can
be used, and the set of useful acquisitions is a finite set
consisting of the intersections of the complete swath with
R. In this case, given a maximum operation time Tmax,
we consider a time frame T = [0, Tmax]. The goal is to
select acquisitions during T so that the region of interest
R is covered at a minimum cost. Let a1, ..., an be the set
of possible acquisitions, increasingly sorted in time. Then,
an is the last acquisition that can be used, that is, an+1

would occur after Tmax. As input data, the time in which
acquisition ai starts scanning R and the time in which it
gets out of R, respectively t0i and t1i , are known. Note that,
for the model to be meaningful, we need to assume that
t0i ≤ t1i , t0i ≤ t0i+1 ∀ i, t01 ≥ 0, and t1n ≤ Tmax.

As a simplified example of this situation consider the
case depicted in Fig. 3. The region of interest is the

R

a2

a1 a3 a4

Fig. 3. Simplified example of swath acquisition problem.
The region R of interest (solid rectangle) is being
covered by 4 acquisitions {a1, a2, a3, a4} sorted in
arriving time. Acquisitions a3 is redundant and should
not appear in the optimal solution.

solid black rectangle R, the four possible acquisitions are
{a1, a2, a3, a4} (thin rectangles) sorted in arriving time.

We could think of a very simple algorithm that would first
choose a1, since it covers a certain area of the region of
interest. Then, it would iteratively pick acquisitions a2, a3
and a4, since all of them cover a certain new area of the
rectangle. This algorithm would stop as soon as the whole
region of interest R is covered.

With this process, the four acquisitions are necessary to
cover the whole region of interest. Note that this example
has been introduced just to show that any ad hoc non-
optimal approach will certainly provide feasible solutions
(if enough acquisitions are available), but the best one may
not be obtained.

We formulate our problem as a mathematical program-
ming (MP for short) problem. For a complete introduction
on MP see Bazaraa et al. (1990); Wolsey (1998).

Let xi be a binary variable (i.e., it can only take the values
0 and 1) saying if acquisition ai is to be used (xi = 1) or
not (xi = 0), and let ci be the cost of using acquisition ai
(ci > 0). The EOSs planning problem can be posed as

min

n∑
i=1

cixi

s.t.
⋃

i:xi=1

ai ⊃ R

xi ∈ {0, 1}, ∀ i = 1, 2, . . . , n.

(1)

Note that this problem can be infeasible. For instance,
if there is a subregion of R not covered by any of the
acquisitions available, then the constraint of (1) can never
be satisfied.

To be able to compute the solution of (1), we model
this problem as an Integer Linear Programming (ILP)
problem Bazaraa et al. (1990); Wolsey (1998). To that
end, the constraints in (1) must be expressed as linear
constraints. We show now how to do it. Let {SRi, ..., SRm}
be the subregions in which R is divided considering all
intersection of the acquisitions ai with R and among
themselves. From this set of subregions, we obtain a matrix
Q, whose entry qij takes the value 1 if subregion SRj is
covered by acquisition ai, and 0 otherwise. With this new
matrix, Problem (1) can be formulated as

min

n∑
i=1

cixi

s.t.

n∑
i=1

xiqij ≥ dj , ∀ j = 1, ...,m

xi ∈ {0, 1}, ∀ i = 1, 2, . . . , n.

(2)

Taking advantage of this formulation, in the constraints of
(2) we have included depth of coverage constraints, forcing
each subregion SRj to be covered by at least dj different
acquisitions.

We will now apply our ILP model (2) to the example of
Fig. 3, showing that some of the acquisitions might not be
needed. We consider that all costs are equal and therefore,
by the linearity of the problem, we can set ci = 1 for all
i = 1, ..., 4. In this example, the region of interest R is
subdivided in 18 subregions as shown in Fig. 4.
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Fig. 4. Subregions generated in R by the intersection of
the acquisitions with each other and with the region
of interest.

Matrix Q results:



QT =

 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 0 0
1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0
0 0 1 1 0 0 0 1 0 0 0 0 1 0 0 1 1 0
0 1 1 0 0 0 1 1 1 0 0 1 1 1 0 0 1 1



Let us explain the meaning of rows and columns. The
first row states that subregion SR1 is only covered by
acquisition a2. In contrast, the third column says that ac-
quisition a1 covers subregions SR3, SR4, SR8, SR13, SR16

and SR17.

Note that matrix Q can be simplified by merging all
identical rows into one row only (which implies joining
the corresponding subregions). The same can be done
with columns. For instance, rows 12 and 14 are identical,
meaning that subregions SR12 and SR14 are covered by
the same satellites, and they can therefore be treated as
one single subregion. This way the size of the ILP problem
is reduced. Whether or not this reduction is worthy is still
an open question.

The computational complexity of matrix Q could become a
bottleneck of the algorithm, even bigger than the ILP, and
an efficient implementation of computational geometry
operations (union, intersection, subtraction) is needed. Be-
sides, a well structured area accounting system should be
introduced to deal with frequent area related constraints
in the applications (acquisitions with negligible covering
should not be included, for instance).

Setting dj = 1 ∀ j, the solution to Problem (2) with the
data of this example is x3 = 0, x1 = x2 = x4 = 1, which
means that, as we had anticipated, acquisition a3 is not
needed to cover the area of interest.

2.3 Simplified model II: q-satellites and steerable sensor

Assume now that the satellites have a steerable sensor,
that is, the sensor angle with respect to the nadir can
be changed in a certain range in order to better acquire
the region of interest. In the simplified model, we assume
that the mode (angle) of the satellite’s sensor can be
changed for each revolution, but it has to be maintained
during all the period that the satellite is scanning the
region of interest. We also assume that the sensor has K
possible discrete modes (typically K ≤ 256). The previous
simplified model (2) can be easily adapted to this case
just by adding a superscript k that specifies the mode
and a set of constraints that avoid the change of mode
along the same acquisition. Therefore, let xk

i be a binary
variable, which takes the value 1 if acquisition i is chosen
with the sensor in position k, and 0 otherwise. We now
have to build the subregions of R, taking into account
that every satellite revolution generates up to K different
acquisitions (at most one of which is to be chosen). Matrix
Q now becomes a 3-dimensional matrix. Its entry qkij is 1
if subregion SRj can be photographed by acquisition ai
using its kth position and it takes the value 0 otherwise.
Therefore, Problem (2) becomes

min

K∑
k=1

n∑
i=1

cix
k
i

s.t.

K∑
k=1

n∑
i=1

xk
i q

k
ij ≥ dj , ∀ j = 1, . . . ,m

K∑
k=1

xk
i ≤ 1, ∀ i = 1, . . . , n

xk
i ∈ {0, 1}, ∀ i = 1, . . . , n, ∀ k = 1, 2, . . . ,K.

(3)

The first set of constraints states that all subregions must
be covered by at least one acquisition at one of its possible
modes. The second set of constraints forces that the same
acquisition cannot be used in more than one position.

3. HEURISTICS

Due to the complexity of the problems to be solved, and
the need to obtain a “good” solution in a relatively short
time, heuristic and/or metaheuristic algorithms apply. A
heuristic algorithm is a method used to rapidly obtain a
solution that is hoped to be close to an optimal solution.
See Michalewicz and Fogel (2000) or Vazirani (2001) for
an introduction to heuristics.

In this work we will apply to the EOSs planning problem
a GRASP algorithm. GRASP algorithms (Greedy Ran-
domized Adaptive Search Procedure) have been widely
used for solving large-scale optimization problems since
the pioneering work by Feo and Resende Feo and Resende
(1989).

A GRASP procedure consists of randomly adding elements
to the problem’s solution set out of the set of k ∈ N
elements that individually yield the largest improvement
in the objective function when added to the previous
solution. This procedure is repeated, and each of the
(possibly) different obtained solutions form a set of feasible
solutions. The final solution chosen by GRASP is the best
out of the feasible solution set previously obtained. When
k = 1, that is, when we choose at each iteration the
element that individually yields the largest improvement
in the objective function, the procedure obtained is a
greedy algorithm.

We have used the algorithm for problem (2), although the
same philosophy could be used to handle problem (3) after
small modifications.

EOSs planning GRASP algorithm:

Input data: Q, k, R, {a1, ..., an}.
Set Reg = R, Aq = {a1, ..., an}, Sol = {}
(1) If |Aq| ≤ k, set Fq = Aq. Else, Fq is the set

constituted by the k acquisitions in Aq whose strips
individually cover the maximum area of Reg.

(2) Randomly pick one acquisition ai in Aq. Sol = Sol ∪
{ai}. Set Aq = Aq − {ai} and Reg = Reg \ Si (Si is
the region covered by acquisition ai).

(3) If Reg = ∅, STOP. Sol is a feasible solution. Else, go
to 1.

This procedure gives a feasible solution to our problem,
Sol1, that is, a set of satellites whose strips cover the
whole region of interest R. In order to explore the feasible
solution set, we repeat this problem until we run out
of computational time, or we have calculated a fixed



Inst. n K m OPT GR(1) GR(2) GR(3) TQ

1 28 20 5966 5 8 6 6 784

2 22 6 2503 9 9 9 9 51

3 22 7 2900 8 9 8 8 70

4 23 10 4020 7 11 7 7 161

Table 1. Preliminary results.

maximum number of solutions. Let {Sol1, ...., Solm} be
the set of feasible solutions calculated. If Costj denotes
the cost of solution Solj , that is, Costj =

∑
i∈Solj

ci, our

algorithm finishes by choosing the best feasible solution
among all computed ones. That is, the final solution is
Solj∗ , where j∗ is such that minj=1,...,n Costj = Costj∗ .

In case the acquisitions have different costs, in step 1 we
could choose the acquisitions that maximize the ratio (area
covered/cost of acquisition).

4. PRELIMINARY RESULTS

We have implemented and solved the second model (a
number of satellites and steerable sensor) for four rel-
atively large random instances: the number of satellites
(n) ranging from 22 to 28, the number of possible modes
that each satellite could work (K) ranging from 6 to
20, and the number of subregion in which the region of
interest R was divided, denoted by m, ranging from 2503
to 5966. The computational effort goes more to calculating
matrix Q rather than to solving the ILP, which was done
using CPLEX 11 and the modeling system GAMS 23.
The GRASP procedure we have designed was implemented
in MATLAB. The results obtained in this preliminary
experience are shown in Table 1. The first four columns
denote the instance label, its number of available satellites,
number of available modes for each satellite and number
of subregions generated in R, respectively. Column OPT
is the minimum number of satellites needed to cover the
whole region (optimal, calculated with CPLEX). Columns
GR(1), GR(2) and GR(3) are the number of satellites of
the best solution found by by our GRASP algorithms for
k = 1, 2, 3. Note that GRASP(1) is the classical greedy
algorithm. The last column, TQ, is the time needed to
compute the Q matrix, the bottleneck of the process.

In all instances but the first one, the GRASP algorithm
found the optimal solution for k = 2, 3, whereas the greedy
algorithm only found the optimal solution in one instance.
This reinforces the idea that, greedy algorithms are not
an accurate option and therefore other more elaborated
heuristics (such as the GRASP algorithms we present here)
are needed in order to obtain good solutions.

5. CONCLUDING REMARKS

In this work, we have modeled an EOSs planning problem
in a mathematical setting which allows us to use well-
known optimization algorithms. The underlying computa-
tional geometry problem has been reduced to the compu-
tation of a matrix Q, and we have shown how to formulate
the problem as a standard Integer Programming problem.
However, given the problem complexity and the need of
obtaining real-time solutions, we have developed heuristic
algorithms (a greedy and a GRASP algorithms).

Preliminary tests with greedy and GRASP algorithms
have yielded encouraging results. We plan to test other
heuristic methods, such as genetic algorithms, tabu search

or variable neighborhood search. Exhaustive computa-
tional experiments on real data sets are planned to learn
which procedure is the most suitable for different scenarios
(possibly depending on features such as region size, or geo-
metrical properties of the region). We also plan to include
duty cycle constraints in the optimization algorithms.
Since it does not seem easy to reduce the resulting op-
timization problem to well-studied models such as the set
covering problem, we will adapt the heuristic algorithms
developed for the problem without duty cycle constraints.
The insight obtained will determine which heuristic(s) will
be chosen and how constraints should be modeled.

The heuristics yielding the best performance in terms
of quality of the solutions and speed will be integrated
in SaVoir, which provides an engine for computational
geometry calculations. SaVoir already provides an approx-
imated solver based on a simple sequential search of a valid
solution that avoids repeated area acquisitions as much
as possible. This algorithm is reliable and relatively fast,
but lacks any capabilities of tuning and configuration to
optimize given criteria. We expect that integrating the
developed heuristic algorithms in SaVoir will result in a
visual tool to solve the EOSs planning problem (including
realistic constraints) that can be extremely useful to mis-
sion planners worldwide, for a large number of scenarios.
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