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a b s t r a c t 

We study state estimation of the linearized Schrödinger equation within a prescribed terminal time. We 

make use of a time–varying, complex–valued observer gain and boundary measurements to construct the 

observer, where the gain is designed such that the estimate error converges to zero within the terminal 

time. The observer gain proposed herein is developed via the backstepping method by selecting a target 

error equation that stabilizes to zero within the terminal time. Our time–varying observer gain diverges 

as time approaches the terminal time. Nevertheless, we can guarantee prescribed–time stabilization of 

the estimator error equation by characterizing the growth–in–time of the observer gain and comparing 

it to the stability of the target error equation. We develop the full–state feedback dual result, and we 

combine the boundary estimation and control results to develop prescribed–time output regulation. 

© 2020 European Control Association. Published by Elsevier Ltd. All rights reserved. 
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. Introduction 

We consider the problem of finite–time estimation and control

f the linearized Schrödinger equation, 

 t (x, t) = − jv xx (x, t) , (1)

y use of boundary measurements and actuation. Control and esti-

ation problems for the linearized Schrödinger equation have re-

eived interest in the controls community in the past [4,22] . In

hese works, the guaranteed stabilization is of exponential type:

he state or state estimate error are ensured to converge to zero at

n exponential rate in time. 

Our study differs from existing results in that we impose a

ore demanding type of stabilization: we require the quantities of

nterest to converge to zero within a finite time which is prescribed

ndependently of the initial conditions . This type of stabilization, first

ntroduced in [16] and later extended in [37] , is a subclass of the

redefined–, fixed–, and finite–time stabilization problems, which

hemselves are subclasses of asymptotic stabilization. Finite–time

tability is when the attractivity property occurs within a bounded

ime which depends on the initial conditions [5,18,19,27,29] .

ppearing later on in [3] is the stronger notion of fixed–time

tability, where the convergence time admits a uniform upper

ound (with respect to initial conditions). In particular, concerning
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xed–time convergence: for a survey on sliding mode control,

ee [28] , and for a related application (an exact differentiator),

ee [9] ; for nonlinear feedback design using the block control and

liding mode approaches, see [26] ; and for the implicit Lyapunov

unction approach, see [27] . 

The more recent notion of predefined–time stability requires

ttractivity to be achieved within a time T c := T c ( ρ) defined a

riori independently of initial conditions but depending on system

arameters ρ . Related to continuous deadbeat control (e.g., [34] ),

ut having an autonomous system structure without delay terms,

redefined–time convergence for some nonlinear systems can

e established via a Lyapunov approach [20,21,33] and naturally

xtend to uncertain systems so long as T c can be expressed by

nown parameters (see [21 , Def. 2.5]). 

Most of the aforementioned methods have yet to be extended

or treating infinite–dimensional systems. The stability we estab-

ish for (1) eliminates any constraints on the bounded convergence

ime such that it is prescribed rather than dependent on system

roperties/parameters, which has immediate theoretical and phys-

cal ramifications. This is achieved by using time–varying feedback,

eading to a non–autonomous system. For a comprehensive discus-

ion on the merits of prescribed–time stabilization, we refer the

eader to [37 , Section 3.2]. Another important difference between

ur work and others (e.g., [17] , where sliding mode control is used

or finite–time boundary stabilization of the Schrödinger equation,

r [11] , where sliding mode control is used for the heat equation)

s that the proposed feedback is continuous . 
rved. 

cribed–time estimation and output regulation of the linearized 
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An application of the work to follow arises due to the connec-

tion of the Schrödinger equation to the Euler–Bernoulli beam equa-

tion [25] , given by 

w tt + w xxxx = 0 (2)

and used to model the deflection of a beam due to applied loads.

Indeed, by performing the change of variables v = w t − jw xx , one

recovers (2) from (1) . Exponential stabilization of thin beam/plate

models have been studied extensively in the literature [24] . Seek-

ing to stabilize these elastic systems in finite–time can be very

desirable in structural dynamics which have strict performance

requirements. 

Perhaps the most recognized application of the Schrödinger

equation is to model the wave function of a non–relativistic

particle in quantum mechanical system. In these systems the ap-

propriate model is (1) with interior control which is multiplied by

the state, forming the bilinear Schrödinger equation [6,31] which is

different than the linearized boundary–controlled version studied

herein. In Section 8.2 we present a connection between boundary

and interior distributed control of (1) ; while the bilinear structure

is not exactly recovered, the analysis suggests a potential direction

of research. 

Recently, advances have been made to establish finite–time

stabilization results for distributed–parameter systems [8,12,38] .

In [8] , the backstepping method is applied sequentially within the

finite time domain to obtain a piecewise–continuous boundary

controller which guarantees finite–time stabilization. This work’s

key idea differs from that in [37] in that, rather than rescaling the

state, it uses a stabilizing reaction term which grows at every point

in the sequence. This idea is extended in [12] , where the stabilizing

reaction term is scaled by a growing time–varying function. The

authors of [12] leverage results from [8 , 36] to obtain an explicit

and elegant representation for the control gain. This allows them

to characterize the gain’s growth–in–time, which allows them to

guarantee prescribed–time stabilization under the assumption that

the initial controller gain be chosen large enough. 

1.1. Contributions 

We utilize a time–varying, complex–valued backstepping trans-

formation which necessitates a new study of the ensuing observer

and controller gains. We develop new growth–in–time bounds for

these gains by relying on their connection to their time–invariant

counterparts. We utilize these bounds to develop an observer

whose error converges to zero within the terminal time. Next,

we demonstrate that the same results hold for the dual problem

of stabilization via full–state feedback boundary control. Since

the spectrum associated to the linearized Schrödinger equation

consists of purely imaginary objects, we are not required to choose

the initial observer and controller gains to be larger than some

constant, as was the case in [12] for the reaction–diffusion equa-

tion. Finally, we combine these results to develop output feedback

regulation under some modest assumptions on the choices of the

initial controller and observer gains. 

2. Estimation problem formulation 

We study the linearized Schrödinger equation 

v t (x, t) = − jv xx (x, t) (3)

for (x, t) ∈ (0 , 1) × [ t 0 , t 0 + T ) , where T > 0, with initial condition

v 0 (x ) := v (x, t 0 ) ∈ H 

2 (0 , 1) and boundary conditions 

v x (0 , t) = 0 and v (1 , t) = u (t) , (4)

where v (x, t) is the complex–valued state, j is the imaginary

unit and u ( · ) is the controller. We study solutions of (3) –(4) in
Please cite this article as: D. Steeves, M. Krstic and R. Vazquez, Pres
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he space v ∈ C 1 ([ t 0 , t 0 + T ) ; L 2 (0 , 1)) ∩ C 0 ([ t 0 , t 0 + T ) ; H 

2 (0 , 1)) (cf.

ection 8.1 for a discussion on well–posedness for a controller of

nterest). 

The choices of boundary conditions in (4) correspond to the fol-

owing ones for the Euler–Bernoulli beam equation: at x = 0 , the

eam is permitted to slide, whereas at x = 1 , the beam is actuated

hrough deflection and applied moment [35] . 

Suppose we have access to measurement quantity v x (1 , t) at

ll times. For the Euler–Bernoulli beam problem, this choice of

easurement is associated to measuring the beam’s shear force

nd angle of deflection. We wish to estimate v (x, t) for x ∈ (0, 1)

uch that our estimate error, denoted by ˜ v (x, t) , converges to zero

ithin a terminal time which is prescribed independently of v 0 (x )

nd 

˜ v 0 (x ) := ̃

 v 0 (x, t 0 ) . 

While this work specializes to boundary conditions (4) , we can

lso accommodate the boundary condition v (0 , t) = 0 , which is the

ypical one used to describe the wave function of a free parti-

le [31] . The necessary adaptations to the ensuing analysis are cov-

red in [36 , Rk. 2]. The case of interior distributed control/sensing

s discussed in Section 8.2 . 

In this work, we assume the absences of measurement/model

ncertainties and input disturbances. Let ˆ v (x, t) denote our esti-

ate of v (x, t) ; it follows that ˜ v (x, t) = v (x, t) − ˆ v (x, t) . Replicating

he design in [23 , Section 5.1], we propose the observer 

ˆ 
 t (x, t) = − j ̂ v xx (x, t) + p 1 (x, t − t 0 ) 

[
v x (1 , t) − ˆ v x (1 , t) 

]
, (5)

ˆ 
 x (0 , t) = 0 , (6)

ˆ 
 (1 , t) = u (t) , (7)

hich is a copy of the plant (3) –(4) with output measurement in-

ection, and where p 1 (x, t − t 0 ) is the observer gain to be designed.

he major difference between previous works (e.g., [10] ) and this

ne is the time–dependence of p 1 (x, t − t 0 ) , which we leverage to

stablish the more demanding prescribed–time estimation rather

han exponential estimation. 

The error equation associated to (3) –(4) and (5) –(7) is 

˜ 
 t (x, t) = − j ̃ v xx (x, t) − p 1 (x, t − t 0 ) ̃ v x (1 , t) , (8)

˜ 
 x (0 , t) = 0 , (9)

˜ 
 (1 , t) = 0 . (10)

otice that for p 1 (x, t − t 0 ) ≡ 0 , (8) –(10) displays oscillatory behav-

or: every eigenvalue lies along the imaginary axis. The goal is to

esign p 1 (x, t − t 0 ) to eliminate these oscillations within the ter-

inal time T > t 0 such that ˜ v (x, t 0 + T ) ≡ 0 . We accomplish this

y utilizing a Volterra–type backstepping transformation involv-

ng a time–varying kernel, giving rise to the time–dependence of

p 1 (x, t − t 0 ) . 

.1. Notation 

For a complex-valued function f (x, t) = u (x, t) + jv (x, t) , we

ollow convention and denote its complex conjugate by f (x, t) :=
 (x, t) − jv (x, t) , and its real and imaginary parts by Re{ f ( x ,

 )} := u ( x , t ) and Im { f (x, t) } := v (x, t) , respectively. We denote its

odulus by | f (x, t) | 2 := f (x, t) f (x, t) . 

. Main results 

Motivated by [37] , we define two functions which are indis-

ensable in the treatment to follow: for t ∈ [ t 0 , t 0 + T ) , let 

(t − t 0 ) := 

(
1 − t − t 0 

T 

)
, (11)
cribed–time estimation and output regulation of the linearized 
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a

nd for ˜ μ0 > 0 , let 

˜ (t − t 0 ) := 

˜ μ0 

ν2 (t − t 0 ) 
. (12)

otice that ν(0) = 1 and decreases linearly to zero at t = t 0 + T .

he power of ν(t − t 0 ) within the denominator of (12) is

hosen as the smallest integer that is sufficiently large to

uarantee the ensuing prescribed–time stabilization results.

arger powers within (12) can be considered, as was done in

n [38] (for prescribed–time stabilization with integer power three)

nd [13] (kernel well–posedness for arbitrary power); choosing a

arger power affects the trajectory of the prescribed–time stabiliza-

ion (it causes the state estimate’s approach to the true state to be

ore flat near the terminal time). However, achieving prescribed–

ime stabilization results for these larger powers is much more

nvolved, and is still an open problem in most cases (see

13 , Rk. 2] for details). We specialize to the case of denomi-

ator power of two. 

We now present our first main result concerning the

bservation of (3) –(4) . 

heorem 3.1. Consider the observer (5) –(7) and let the time–varying

bserver gain be 

p 1 (x, t − t 0 ) = 

√ 

˜ μ0 e 
− j(1 −x 2 ) 
4 Tν(t−t 0 ) 

ν(t − t 0 ) 
√ 

2(1 − x 2 ) 

×
[ 
( j − 1) ber 1 

(√ 

˜ μ(t − t 0 )(1 − x 2 ) 
)

− (1 + j) bei 1 

(√ 

˜ μ(t − t 0 )(1 − x 2 ) 
)] 

. (13) 

here ber 1 ( ·) and bei 1 ( ·) are the Kelvin functions (see [1 , Defini-

ion 9.9.1]). Then the observer error satisfies 

 ̃

 v (·, t) ‖ L 2 (0 , 1) ≤ C 3 ̃  μ3 / 2 (t − t 0 ) e 
− ˜ μ0 T 

ν(t−t 0 ) ‖ ̃

 v 0 (·) ‖ L 2 (0 , 1) , (14)

or C 3 > 0 and for t ∈ [ t 0 , t 0 + T ) . In particular, 

 ̃

 v (·, t) ‖ L 2 (0 , 1) → 0 as t → t 0 + T . (15)

We now consider the case where u (t) = K[ v x (1 , t)](t − t 0 )

n (4) . We present our second main result concerning output reg-

lation of (3) –(4) . 

heorem 3.2. Suppose we select the time–varying boundary output

eedback controller 

 (t) = 

√ 

μ0 

ν(t − t 0 ) 

∫ 1 

0 

e 
j(1 −y 2 ) 

4 Tν(t−t 0 ) √ 

2(1 − y 2 ) 

[ 
( j − 1) ber 1 

(√ 

μ(t − t 0 )(1 − y 2 ) 
)

− (1 + j) bei 1 

(√ 

μ(t − t 0 )(1 − y 2 ) 
)] 

ˆ v (y, t) dy, (16) 

here ˆ v (x, t) satisfies (5) –(7) . Provided that one chooses 

0 > 

(
4 + π2 

T π2 

)2 

(17) 

nd 

˜ 0 > 

μ0 

2 

, (18) 

hen 

 ̂

 v (·, t) ‖ L 2 (0 , 1) + ‖ ̃

 v (·, t) ‖ L 2 (0 , 1) → 0 as t → t 0 + T . (19) 

oreover, 

 u (t) | → 0 as t → t 0 + T . (20)

We now discuss advantages of the proposed output feed-

ack (16) . The feedback (16) is explicit and can be readily pre–

omputed, which is not the case for fixed–time optimal controllers
Please cite this article as: D. Steeves, M. Krstic and R. Vazquez, Pres
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ith terminal constraints [32] . It is also continuous , which is not

he case for sliding–mode controllers and can lead to undesirable

ffects [5] . The acquired stability due to (16) is prescribed by the

ser in a finite time which is independent of the initial conditions .

inally, the convergence that we establish (cf. (116) ) has a flatness

eature which implies that the state’s convergence to zero be

ssentially flat near the terminal time; this in turn implies that

ubsequent time derivatives also be zero, and can be useful in

pplication. 

. Backstepping design 

We can view (3) –(4) formally as a heat equation with an imag-

nary diffusion coefficient. Motivated by [8,12,22] , we apply the

ackstepping transformation 

˜ 
 (x, t) = 

˜ ψ (x, t) −
∫ 1 

x 

p(x, y, t − t 0 ) ˜ ψ (y, t) dy, (21)

o error Eqs. (8) –(10) and select the target error equation 

˜ 
 t (x, t) = − j ˜ ψ xx (x, t) − ˜ μ(t − t 0 ) ˜ ψ (x, t) , (22) 

˜ 
 x (0 , t) = 0 , (23) 

˜ 
 (1 , t) = 0 . (24) 

ote that ˜ μ(t − t 0 ) applies unbounded positive damping to (22) as

ime approaches the terminal time. 

The backstepping transformation (21) and our choice of target

qs. (22) –(24) lead to the kernel equation 

p xx − p yy = j ( p t − ˜ μ(t − t 0 ) p ) , (25) 

p x (0 , y, t − t 0 ) = 0 , (26) 

p(x, x, t − t 0 ) = − j ̃  μ(t − t 0 ) x 

2 

, (27) 

or (x, y ) ∈ 

˜ T := { (x, y ) ∈ (0 , 1) 2 | 0 ≤ x ≤ y ≤ 1 } , provided that we

hoose our observer gain to be 

p 1 (x, t − t 0 ) = jp(x, 1 , t) . (28)

We propose the inverse transformation 

˜ 
 (x, t) = 

˜ v (x, t) + 

∫ 1 

x 

q (x, y, t − t 0 ) ̃ v (y, t) dy, (29)

hich, together with (22) –(24) , lead to the inverse kernel equation

 xx − q yy = j ( q t + ˜ μ(t − t 0 ) q ) , (30) 

 x (0 , y, t − t 0 ) = 0 , (31) 

 (x, x, t − t 0 ) = − j ̃  μ(t − t 0 ) x 

2 

. (32) 

We now study the solutions to (25) –(27) , (30) –(32) and derive

everal important properties. 

. Kernel solution and properties 

Motivated be [36 , Section 5], we perform the changes of vari-

bles 

p(x, y, t − t 0 ) = − y 

2 

e 
∫ t 

t 0 
˜ μ(τ−t 0 ) dτ

f (z, t) (33)

nd z = 

√ 

j(x 2 − y 2 ) , which yield the PDE 

f t = f zz + 

3 

z 
f z , (34) 

f z (0 , t) = 0 , (35) 
cribed–time estimation and output regulation of the linearized 
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∫

 

f (0 , t) = j ̃  μ(t − t 0 ) e 
− ∫ t 

t 0 
˜ μ(τ−t 0 ) dτ

. (36)

The solution to (34) –(36) is given in [30 , Section 1.2.5] to be 

f (z, t) = 

∞ ∑ 

n =0 

z 2 n 

4 

n n !(n + 1)! 

d n f (0 , t) 

dt n 
. (37)

In [12 , Lemma 1], an explicit solution for (12) , (36) –(37) is given

(but with negative exponential power); this leads to 

p(x, y, t − t 0 ) = − j y ̃  μ(t − t 0 ) e 
− j(y 2 −x 2 ) 
4 Tν(t−t 0 ) 

I 1 

(√ 

j ̃  μ(t − t 0 )(y 2 − x 2 ) 
)

√ 

j ̃  μ(t − t 0 )(y 2 − x 2 ) 
. 

(38)

Applying [1 , Definition 9.9.1] yields 

p(x, y, t − t 0 ) = y 

√ 

˜ μ(t − t 0 ) 

2(y 2 − x 2 ) 
e 

− j(y 2 −x 2 ) 
4 Tν(t−t 0 ) 

×
[ 
( j − 1) ber 1 

(√ 

˜ μ(t − t 0 )(y 2 − x 2 ) 
)

− (1 + j) bei 1 

(√ 

˜ μ(t − t 0 )(y 2 − x 2 ) 
)] 

. (39)

For a fixed 

ˆ t ∈ [ t 0 , t 0 + T ) and ˆ μ := ˜ μ( ̂ t − t 0 ) , (38) can be written

as 

p(x, y, ̂  t − t 0 ) = e 
− j(y 2 −x 2 ) 

4 Tν( ̂ t −t 0 ) ˆ p (x, y ) , (40)

where ˆ p (x, y ) satisfies 

ˆ p xx − ˆ p yy = − j ̂  μ ˆ p , (41)

ˆ p x (0 , y ) = 0 , (42)

ˆ p (x, x ) = − j ̂  μx 

2 

. (43)

We can repeat the same treatment to solve (30) –(32) : 

q (x, y, t − t 0 ) = − j y ̃  μ(t − t 0 ) e 
− j(y 2 −x 2 ) 
4 Tν(t−t 0 ) 

J 1 

(√ 

j ̃  μ(t − t 0 )(y 2 − x 2 ) 
)

√ 

j ̃  μ(t − t 0 )(y 2 − x 2 ) 
, 

(44)

or equivalently, 

q (x, y, ̂  t − t 0 ) = e 
− j(y 2 −x 2 ) 

4 Tν( ̂ t −t 0 ) ˆ q (x, y ) , (45)

where ˆ q (x, y ) satisfies 

ˆ q xx − ˆ q yy = j ̂  μ ˆ q , (46)

ˆ q x (0 , y ) = 0 , (47)

ˆ q (x, x ) = − j ̂  μx 

2 

. (48)

We utilize a method similar to that in [8 , Lemma 2] to bound

the H 

1 –norms of ˆ p (x, y ) and ˆ q (x, y ) , which are complex–valued , in

terms of ˆ μ. Our proof of the following result does not rely on any

special properties of the Kelvin functions which form the solutions

of ˆ p (x, y ) and ˆ q (x, y ) . Instead, we generate estimates on ˆ p (x, y ) and

ˆ q (x, y ) by utilizing Eqs. (41) –(43) and (46) –(48) directly. 

Lemma 5.1. The solution to (41) –(43) satisfies 

‖ ̂

 p (·, ·) ‖ 

2 
H 1 ( ̃ T ) ≤

ˆ μ2 

4 

(
ˆ μ

12 

+ 

1 

2 

+ 

4 

π2 

)
, (49)

and the solution to (46) –(48) satisfies 

‖ ̂

 q (·, ·) ‖ 

2 
H 1 ( ̃ T ) ≤

ˆ μ2 

2 

(
ˆ μ

3 

+ 

1 

2 

+ 

2 

π2 

)
e 

(
4 

π2 +1 

)√ 

ˆ μ
. (50)
Please cite this article as: D. Steeves, M. Krstic and R. Vazquez, Pres
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roof. We multiply (41) by ˆ p y (x, y ) and integrate with respect to

 to obtain 

 y 

0 

(
ˆ p yy ̂  p y + 

ˆ p x ̂  p xy 

)
dx − ˆ p x (x, y ) ̂  p y (x, y ) | y 

x =0 
= j ̂  μ

∫ y 

0 

ˆ p ̂  p y dx, (51)

here we’ve employed Schwarz’ theorem and the smoothness of

ˆ p (x, y ) (deduced from (38) , (40) ) to ensure the symmetry of mixed

artial derivatives. Note that 

∂ 

∂y 
| ̂  p y | 2 = 

ˆ p yy ̂  p y + 

ˆ p yy ̂  p y 

= 2 Re 
{

ˆ p yy ̂  p y 
}
, (52)

nd similarly, 

∂ 

∂y 
| ̂  p x | 2 = 2 Re 

{
ˆ p x ̂  p xy 

}
(53)

nd 

∂ 

∂x 
| ̂  p | 2 = 2 Re 

{
ˆ p ̂  p x 

}
. (54)

urthermore, an application of the Cauchy–Riemann equations

ields 

e 
{

ˆ p ̂  p x 
}

= −Im 

{
ˆ p ̂  p y 

}
. (55)

aking the real part of (51) and applying (52) –(55) yields 

 y 

0 

∂ 

∂y 

(| ̂  p y | 2 + | ̂  p x | 2 
)
d x − 2 Re 

{
ˆ p x (y, y ) ̂  p y (y, y ) 

}
= ˆ μ

∫ y 

0 

∂ 

∂x 
| ̂  p | 2 dx. 

(56)

y integrating the righthand side of (56) and applying (43) , we ob-

ain 

d 

dy 

∫ y 

0 

(| ̂  p y | 2 + | ̂  p x | 2 
)
dx − ˆ μ2 

4 

= ˆ μ

[
ˆ μ2 y 2 

4 

− | ̂  p (0 , y ) | 2 
]
, (57)

rom which it follows that 

d 

dy 

∫ y 

0 

(| ̂  p y | 2 + | ̂  p x | 2 
)
dx ≤ ˆ μ2 

4 

(
1 + ˆ μy 2 

)
. (58)

ntegrating with respect to y yields 

 1 

0 

∫ y 

0 

(| ̂  p y | 2 + | ̂  p x | 2 
)
d xd y ≤ ˆ μ2 

4 

(
1 

2 

+ 

ˆ μ

12 

)
. (59)

n application of Poincaré’s inequality and integration by parts

ields 

 1 

0 

(∫ y 

0 

| ̂  p | 2 dx 

)
dy ≤ 4 

π2 

(∫ 1 

0 

| ̂  p (y, y ) | 2 dy + 

∫ 1 

0 

∫ y 

0 

∂ 

∂y 
| ̂  p | 2 d xd y 

)

= 

ˆ μ2 

3 π2 
+ 

4 

π2 

∫ 1 

0 

∫ 1 

x 

(
ˆ p y ̂  p + 

ˆ p ̂  p y 
)
d yd x 

= 

ˆ μ2 

3 π2 
+ 

4 

π2 

∫ 1 

0 

(| ̂  p (1 , 1) | 2 − | ̂  p (x, x ) | 2 )dx 

= 

ˆ μ2 

π2 
. (60)

nequalities (59) and (60) together give (49) . 

The treatment for (50) is similar, except (56) is replaced with 

d 

dy 

∫ y 

0 

(| ̂  q y | 2 + | ̂  q x | 2 
)
dx − ˆ μ2 

4 

= − ˆ μ

∫ y 

0 

∂ 

∂x 
| ̂  q | 2 dx. (61)

e perform the change of variables y̌ = 

√ 

ˆ μy and q̌ (x, ̌y ) =
ˆ  (x, y ) . Notice that ˆ q y (x, y ) = 

√ 

ˆ μq̌ y̌ (x, ̌y ) and hence, after integrat-

ng, (61) rewrites as 

 y̌ 

0 

(| ̌q y̌ | 2 + ˆ μ−1 | ̌q x | 2 
)
dx −

√ 

ˆ μy̌ 

4 

= −
∫ y̌ 

0 

∫ s 

0 

∂ 

∂x 
| ̌q (x, s ) | 2 d xd s. 

(62)
cribed–time estimation and output regulation of the linearized 
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valuating the righthand side of (62) yields 

∫ y̌ 

0 

(| ̌q y̌ | 2 + ˆ μ−1 | ̌q x | 2 
)
dx 

≤
√ 

ˆ μy̌ 

4 

+ 

∫ y̌ 

0 

| ̌q (0 , s ) | 2 ds 

≤
√ 

ˆ μy̌ 

2 

(
1 

2 

+ 

y̌ 2 

3 

)
+ 

(
4 

π2 
+ 1 

)∫ y̌ 

0 

∫ s 

0 

| ̌q s (x, s ) | 2 d xd s. (63) 

here we’ve employed [23 , Lemmas 2.1, 2.4] and the Cauchy–

iemann equations. Defining V 1 ( ̌y ) := 

∫ y̌ 
0 

(| ̌q y̌ | 2 + ˆ μ−1 | ̌q x | 2 
)
dx and

sing the fact that 0 ≤ y̌ ≤
√ 

ˆ μ, we obtain 

 1 ( ̌y ) ≤ ˆ μ

2 

(
ˆ μ

3 

+ 

1 

2 

)
+ 

(
4 

π2 
+ 1 

)∫ √ 

ˆ μ

0 

V 1 ( ̌y ) d ̌y . (64)

An application of Grönwall’s inequality yields 

 1 ( ̌y ) ≤ ˆ μ

2 

(
ˆ μ

3 

+ 

1 

2 

)
e 

(
4 

π2 +1 

)√ 

ˆ μ
. (65)

We return to the original variables and integrate to obtain 

 1 

0 

∫ y 

0 

(| ̂  q y | 2 + | ̂  q x | 2 
)
d xd y ≤ ˆ μ2 

2 

(
ˆ μ

3 

+ 

1 

2 

)
e 

(
4 

π2 +1 

)√ 

ˆ μ
, (66)

hich, together with an argument identical to that for (60) , estab-

ishes (50) . �

emark 5.2. Lemma 5.1 differs from [8 , Lemma 2] in

hat (41) and (46) contain terms scaled by the imaginary unit,

hich effectively causes a rotation in the complex plane as seen

n (55) . For example, one could view (41) as a set of coupled

quations, where the new states are the real and imaginary parts

f the original states. Furthermore, the constant within the expo-

ential of (50) is explicitly recovered, which will be important in

ection 8 . 

We now relate the bounds obtained in Lemma 5.1 to their

ime–varying counterparts. 

orollary 5.3. The solution to (25) –(27) satisfies 

 p(·, ·, t − t 0 ) ‖ H 1 ( ̃ T ) ≤ C 1 ̃  μ3 / 2 (t − t 0 ) , (67)

or C 1 := 

√ 

1 
48 + 

1 
8 ̃ μ0 

+ 

1 
π2 ˜ μ0 

, and the solution to (30) –(32) satisfies 

 q (·, ·, t − t 0 ) ‖ H 1 ( ̃ T ) ≤ C 2 ̃  μ3 / 2 (t − t 0 ) e 

(
2 

π2 + 1 2 

)√ 

˜ μ(t−t 0 ) 
, (68)

or C 2 := 

√ 

1 
6 + 

1 
4 ̃ μ0 

+ 

1 
π2 ˜ μ0 

. 

The proof follows directly from Lemma 5.1 and (40) , (45) . 

. Prescribed–time stabilization of estimate error 

We first demonstrate the utility of choosing target Eqs. (22) –

24) in the following result. 

emma 6.1. The solution to (22) –(24) satisfies 

 

˜ ψ (·, t) ‖ L 2 (0 , 1) = e 
− ˜ μ0 T 

ν(t−t 0 ) ‖ 

˜ ψ 0 (·) ‖ L 2 (0 , 1) . (69)

roof. Define 

 2 (ψ) := 

1 

2 

∫ 1 

0 

| ˜ ψ (x, t) | 2 dx. (70)
Please cite this article as: D. Steeves, M. Krstic and R. Vazquez, Pres
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he derivative of V 2 along the trajectory of (22) is given by 

˙ 
 2 = 

1 

2 

∫ 1 

0 

[ 
˜ ψ t (x, t) ˜ ψ (x, t) + 

˜ ψ (x, t) ˜ ψ t (x, t) 
] 

dx 

= −2 ̃  μ(t − t 0 ) V 2 + 

j 

2 

∫ 1 

0 

[
˜ ψ xx (x, t) ˜ ψ (x, t) − ˜ ψ xx (x, t) ˜ ψ (x, t) 

]
dx 

= −2 ̃  μ(t − t 0 ) V 2 + 

∫ 1 

0 

Im 

{ 

˜ ψ xx (x, t) ˜ ψ (x, t) 
} 

dx, (71) 

ince for a complex–valued function α( x , t ), 

j 

2 

[
α(x, t) − α(x, t) 

]
= Im { α(x, t) } . 

ntegrating by parts and applying (23) –(24) reveals ∫ 1 

0 

Im 

{ 

˜ ψ xx (x, t) ˜ ψ (x, t) 
} 

dx 

= 

∫ 1 

0 

(
Im 

{
˜ ψ xx 

}
Re 

{
˜ ψ 

}
− Re 

{
˜ ψ xx 

}
Im 

{
˜ ψ 

})
dx 

= 0 ; (72) 

he result follows from (12) and (71) –(72) . �

We can now establish Theorem 3.1 . 

roof of Theorem 3.1. We begin by relating stability result (69) to

he observer error Eqs. (8) –(10) . Note that by applying the triangle

nd Cauchy–Schwarz inequalities to (21) , we obtain 

 ̃

 v (·, t) ‖ L 2 (0 , 1) ≤
(
1 + ‖ p(·, ·, t − t 0 ) ‖ H 1 ( ̃ T ) 

)‖ 

˜ ψ (·, t) ‖ L 2 (0 , 1) . (73)

epeating the same treatment for (29) , we obtain 

 

˜ ψ (·, t) ‖ L 2 (0 , 1) ≤
(
1 + ‖ q (·, ·, t − t 0 ) ‖ H 1 ( ̃ T ) 

)‖ ̃

 v (·, t) ‖ L 2 (0 , 1) . (74)

e apply (67) and (69) to (73) to obtain 

 ̃

 v (·, t) ‖ L 2 (0 , 1) ≤
(
1 + C 1 μ

3 / 2 (t − t 0 ) 
)
e 

− ˜ μ0 T 

ν(t−t 0 ) ‖ 

˜ ψ 0 (·) ‖ L 2 (0 , 1) . (75)

e evaluate (74) at t = t 0 , employ (50) and apply the result

o (75) to obtain 

 ̃

 v (·, t) ‖ L 2 (0 , 1) ≤ C 3 μ
3 / 2 (t − t 0 ) e 

− ˜ μ0 T 

ν(t−t 0 ) ‖ ̃

 v 0 (·) ‖ L 2 (0 , 1) , (76)

or C 3 := (1 + C 2 ̃  μ3 / 2 
0 

e 

(
2 

π2 
+ 1 

2 

)√ 

˜ μ0 
)( 1 

˜ μ3 / 2 
0 

+ C 1 ) . Claim (15) follows

rom the definitions of (11) , (12) . �

. Dual result 

Next, we study the prescribed–time stabilization of (3) –(4) ,

here we select u (t) = K[ v (·, t)](t − t 0 ) to be a full–state bound-

ry controller in feedback form. We employ the backstepping

ransformation 

(x, t) = v (x, t) −
∫ x 

0 

k (x, y, t − t 0 ) v (y, t) dy, (77)

nd we select the target equation 

 t (x, t) = − jψ xx (x, t) − μ(t − t 0 ) ψ(x, t) , (78) 

 x (0 , t) = 0 , (79) 

(1 , t) = 0 (80) 

or 

(t − t 0 ) := 

μ0 

ν2 (t − t 0 ) 
, (81)

here μ0 > 0. These choices lead to the kernel equations 

 xx − k yy = j ( k t + μ(t − t 0 ) k ) , (82) 
cribed–time estimation and output regulation of the linearized 
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k y (x, 0 , t − t 0 ) = 0 , (83)

k (x, x, t − t 0 ) = − jμ(t − t 0 ) x 

2 

, (84)

for (x, y ) ∈ T := { (x, y ) ∈ (0 , 1) 2 | 0 ≤ y ≤ x ≤ 1 } . Comparing (82) –

(84) to (30) –(32) , and after taking into the account the difference

between 

˜ T and T , it follows that 

k (x, y, t − t 0 ) = x 

√ 

μ(t − t 0 ) 

2(x 2 − y 2 ) 
e 

j(x 2 −y 2 ) 
4 Tν(t−t 0 ) 

×
[ 
( j − 1) ber 1 

(√ 

μ(t − t 0 )(x 2 − y 2 ) 
)

− (1 + j) bei 1 

(√ 

μ(t − t 0 )(x 2 − y 2 ) 
)] 

. (85)

From (77) and (85) , we recover the full–state feedback controller 

u state (t) = 

√ 

μ0 

ν(t − t 0 ) 

∫ 1 

0 

e 
j(1 −y 2 ) 

4 Tν(t−t 0 ) √ 

2(1 − y 2 ) 

×
[ 
( j − 1) ber 1 

(√ 

μ(t − t 0 )(1 − y 2 ) 
)

− (1 + j) bei 1 

(√ 

μ(t − t 0 )(1 − y 2 ) 
)] 

v (y, t) dy. (86)

To recover the inverse of transformation (77) , one need only follow

a similar method that was used to recover (44) , yielding transfor-

mation 

v (x, t) = ψ(x, t) + 

∫ x 

0 

l(x, y, t − t 0 ) ψ(y, t) dy, (87)

with 

l(x, y, t − t 0 ) = j xμ(t − t 0 ) e 
j(x 2 −y 2 ) 

4 Tν(t−t 0 ) 

J 1 

(√ 

j μ(t − t 0 )(x 2 − y 2 ) 
)

√ 

j μ(t − t 0 )(x 2 − y 2 ) 
. 

(88)

We obtain the following result. 

Proposition 7.1. Consider the linearized Schrödinger Eqs. (3) –(4) . Im-

plementing the boundary controller (86) yields 

‖ v (·, t) ‖ L 2 (0 , 1) ≤ C 3 μ
3 / 2 (t − t 0 ) e 

− μ0 T 

ν(t−t 0 ) ‖ v 0 (·) ‖ 

2 
L 2 (0 , 1) , (89)

for t ∈ [ t 0 , t 0 + T ) , and in particular, 

‖ v (·, t) ‖ L 2 (0 , 1) → 0 as t → t 0 + T . (90)

Furthermore, 

| u state (t) | → 0 as t → t 0 + T . (91)

Proof. Employing a similar technique as used in Section 5 , we can

show that 

‖ k (·, ·, t − t 0 ) ‖ H 1 (T ) ≤ C 2 μ
3 / 2 (t − t 0 ) e 

(
2 

π2 + 1 2 

)√ 

μ(t−t 0 ) 
(92)

and 

‖ l(·, ·, t − t 0 ) ‖ H 1 (T ) ≤ C 1 μ
3 / 2 (t − t 0 ) . (93)

Notice that Lemma (6.1) also holds for (78) –(80) , that is, 

‖ ψ(·, t) ‖ L 2 (0 , 1) = e 
− μ0 T 

ν(t−t 0 ) ‖ ψ 0 (·) ‖ L 2 (0 , 1) . (94)

Applying the triangle and Cauchy–Schwarz inequalities to (77) , we

obtain 

‖ ψ(·, t) ‖ L 2 (0 , 1) ≤
(
1 + ‖ k (·, ·, t − t 0 ) ‖ H 1 (T ) 

)‖ v (·, t) ‖ L 2 (0 , 1) ; (95)
Please cite this article as: D. Steeves, M. Krstic and R. Vazquez, Pres
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epeating this treatment for (87) gives 

 v (·, t) ‖ L 2 (0 , 1) ≤
(
1 + ‖ l(·, ·, t − t 0 ) ‖ H 1 (T ) 

)‖ ψ(·, t) ‖ L 2 (0 , 1) . (96)

pplying (94) to (96) and then (95) at t = t 0 to the resulting in-

quality, and utilizing (92) , (93) yields 

 v (·, t) ‖ L 2 (0 , 1) ≤ C 3 μ
3 / 2 (t − t 0 ) e 

− μ0 T 

ν(t−t 0 ) ‖ v 0 (·) ‖ 

2 
L 2 (0 , 1) . (97)

valuating (87) at x = 1 and applying [23, Lemma 2.4] gives 

 u state (t) | ≤ Cμk (t − t 0 ) e 
− μ0 T 

ν(t−t 0 ) → 0 as t → t 0 + T , (98)

or C , k > 0, since the decaying exponential component dominates

he righthand side of (98) as t → t 0 + T . �

We now combine the results of Theorem 3.1 and

roposition 7.1 to demonstrate the claims in Theorem 3.2 . 

. Output feedback 

We now select the controller 

 (t) = 

∫ 1 

0 

k (1 , y, t − t 0 ) ̂ v (y, t) dy, (99)

hich can be rewritten as u (t) = u state (t) − ˜ u (t) , where 

˜ 
 (t) := 

∫ 1 

0 

k (1 , y, t − t 0 ) ̃ v (y, t) dy. (100)

e establish Theorem 3.2 . 

roof of Theorem 3.2. Studying the stability of the system (3) –

4) , (99) is equivalent to studying the stability of the ( ̂ v , ̃  v ) system.

e will accomplish the latter by first studying the ( ˆ ψ , ˜ ψ ) target

ystem, where the equation governing ˆ ψ is obtained via the same

ransformations (77) , (87) but replacing v , ψ with 

ˆ v , ˆ ψ . We obtain

he cascade system 

ˆ 
 t = − j ˆ ψ xx − μ(t − t 0 ) ˆ ψ + 

[ 
p 1 (x, t − t 0 ) 

−
∫ x 

0 

k (x, y, t − t 0 ) p 1 (y, t − t 0 ) dy 

] 
˜ ψ x (1 , t) , (101)

˜ 
 t = − j ˜ ψ xx − ˜ μ(t − t 0 ) ˜ ψ , (102)

ˆ 
 x (0 , t) = 

ˆ ψ (1 , t) = 0 , (103)

˜ 
 x (0 , t) = 

˜ ψ (1 , t) = 0 . (104)

et 

 3 ( ˆ ψ , ˜ ψ ) := 

1 

2 

∫ 1 

0 

[ 
| ˆ ψ | 2 + | ˜ ψ | 2 

] 
dx. (105)

ifferentiating V 3 along the trajectory of (101) –(104) gives 

˙ 
 3 = −μ(t − t 0 ) 

∫ 1 

0 

| ˆ ψ | 2 dx − ˜ μ(t − t 0 ) 

∫ 1 

0 

| ˜ ψ | 2 dx 

+ 

∫ 1 

0 

Re 

{ 

p 1 (x, t − t 0 ) ˜ ψ x (1 , t) ˆ ψ (x, t) 
} 

dx 

−
∫ 1 

0 

Re 

{(∫ x 

0 

k (x, y, t − t 0 ) p 1 (y, t − t 0 ) dy ˜ ψ x (1 , t) 

)
ˆ ψ (x, t) 

}
dx. 

(106)
cribed–time estimation and output regulation of the linearized 
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t 0 
eparating the real and imaginary parts within the last two terms

f (106) and applying Young’s inequality yields 

˙ 
 3 ≤ −

(
μ(t − t 0 ) − 1 

a 

)∫ 1 

0 

| ˆ ψ | 2 dx − ˜ μ(t − t 0 ) 

∫ 1 

0 

| ˜ ψ | 2 dx 

+ a 

∫ 1 

0 

∣∣p 1 (x, t − t 0 ) ˜ ψ x (1 , t) 
∣∣2 

dx 

+ a 

∫ 1 

0 

∣∣∣∣
(∫ x 

0 

k (x, y, t − t 0 ) p 1 (y, t − t 0 ) dy 

)
˜ ψ x (1 , t) 

∣∣∣∣
2 

dx 

(107) 

or a > 

1 
μ0 

. Now define 

 4 ( ˜ ψ ) := 

1 

2 

∫ 1 

0 

| ˜ ψ xx | 2 dx ; (108)

ifferentiating along the trajectory of (102) , (104) yields 

˙ 
 4 = 

1 

2 

∫ 1 

0 

[
− j ˜ ψ xxxx − ˜ μ(t − t 0 ) ˜ ψ xx 

]
˜ ψ xx dx 

+ 

1 

2 

∫ 1 

0 

[ 
j ˜ ψ xxxx − ˜ μ(t − t 0 ) ˜ ψ xx 

] 
˜ ψ xx dx 

= −2 ̃  μ(t − t 0 ) V 4 + 

j 

2 

[ 
− ˜ ψ xxx 

˜ ψ xx | 1 x =0 + 

˜ ψ xx 
˜ ψ xxx | 1 x =0 

] 
. (109) 

ssume ˜ ψ (·, t) ∈ C(0 , 1) for t ∈ [ t 0 , t 0 + T ) (this is ensured, for ex-

mple, if ˜ ψ 0 (x ) ∈ H 

1 
0 
(0 , 1) – see [14 , Section 7.1] for details). Then

t follows by evaluating (102) at x = 1 that ˜ ψ xx (1 , t) ≡ 0 ; simi-

arly, it follows by differentiating (102) and evaluating at x = 0 that
˜ 
 xxx (0 , t) ≡ 0 . Hence, 

˙ 
 4 = −2 ̃  μ(t − t 0 ) V 4 , (110) 

nd thus, 

 

˜ ψ xx (·, t) ‖ L 2 (0 , 1) = e 
− ˜ μ0 T 

ν(t−t 0 ) ‖ 

˜ ψ xx (·, t 0 ) ‖ L 2 (0 , 1) . (111) 

t follows by applications of Cauchy-Schwarz and [23 , Lemmas 2.1,

.4] that 

˙ 
 3 ≤ −

min 

{
μ0 − 1 

a 
, ˜ μ0 

}
ν2 (t − t 0 ) 

V 3 + aC 4 ‖ p(·, ·, t − t 0 ) ‖ 

2 
H 1 ( ̃ T ) 

× ‖ k (·, ·, t − t 0 ) ‖ 

2 
H 1 (T ) e 

− 2 ̃ μ0 T 

ν(t−t 0 ) ‖ 

˜ ψ xx (·, t 0 ) ‖ 

2 
L 2 (0 , 1) , (112) 

or C 4 > 0. Applying the comparison lemma, (67) , (92) and evaluat-

ng the resulting integral yields 

 3 (t) ≤ aC 4 ( μ0 ̃  μ0 ) 
3 
( C 1 C 2 ‖ 

˜ ψ xx (·, t 0 ) ‖ L 2 (0 , 1) ) 
2 

×
∫ t 

t 0 

e 

(
4 

π2 
+1 

)√ 

μ0 −2 ̃ μ0 T 

ν(s −t 0 ) e 
− ∫ t 

s 

min { μ0 − 1 
a , ̃ μ0 } 

ν(η−t 0 ) 
dη

ν12 (s − t 0 ) 
ds 

+ e 
− min { μ0 − 1 

a , ̃ μ0 } T 
ν(t−t 0 ) 

+ min { μ0 − 1 
a , ̃ μ0 } T V 3 (t 0 ) 

≤ aC 4 ( μ0 ̃  μ0 ) 
3 
( C 1 C 2 ‖ 

˜ ψ xx (·, t 0 ) ‖ L 2 (0 , 1) ) 
2 

× e 
− min { μ0 − 1 

a , ̃ μ0 } T 
ν(t−t 0 ) 

∫ t 

t 0 

e 

(
4 

π2 
+1 

)√ 

μ0 − ˜ μ0 T 

ν(s −t 0 ) e 
min { μ0 − 1 

a , ̃ μ0 } T− ˜ μ0 T 

ν(s −t 0 ) 

ν12 (s − t 0 ) 
ds 

+ e 
− min { μ0 − 1 

a , ̃ μ0 } T 
ν(t−t 0 ) 

+ min { μ0 − 1 
a , ̃ μ0 } T V 3 (t 0 ) 

≤ aCe 
− ( min { μ0 − 1 

a , ̃ μ0 } + ̃ μ0 ) T−
(

4 

π2 
+1 

)√ 

μ0 

ν(t−t 0 ) 

10 ∑ 

n =0 

(
b n 

ν(t − t 0 ) 

)n 

V 3 (t 0 ) , 

(113) 
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or C , b n > 0. Applying (29) , (68) and (77) , (92) at t = t 0 to the

ighthand side of (113) yields 

 

ˆ ψ (·, t) ‖ 

2 
L 2 (0 , 1) + ‖ 

˜ ψ (·, t) ‖ 

2 
L 2 (0 , 1) 

≤ aC 

ν10 (t − t 0 ) 
e 

− ( min { μ0 − 1 
a , ̃ μ0 } + ̃ μ0 ) T−

(
4 

π2 
+1 

)√ 

μ0 

ν(t−t 0 ) 

×
(‖ ̂

 v 0 (·) ‖ 

2 
L 2 (0 , 1) + ‖ ̃

 v 0 (·) ‖ 

2 
L 2 (0 , 1) 

)
. (114) 

urthermore, employing (21) , (67) and (87) , (93) yields 

 ̂

 v (·, t) ‖ 

2 
L 2 (0 , 1) + ‖ ̃

 v (·, t) ‖ 

2 
L 2 (0 , 1) 

≤
(
1 + C 1 μ

3 / 2 (t − t 0 ) 
)2 

(
‖ 

ˆ ψ (·, t) ‖ 

2 
L 2 (0 , 1) + ‖ 

˜ ψ (·, t) ‖ 

2 
L 2 (0 , 1) 

)
. 

(115) 

rom (114) and (115) , it follows that 

 ̂

 v (·, t) ‖ 

2 
L 2 (0 , 1) + ‖ ̃

 v (·, t) ‖ 

2 
L 2 (0 , 1) 

≤ aC 

ν16 (t − t 0 ) 
e 

− ( min { μ0 − 1 
a , ̃ μ0 } + ̃ μ0 ) T−

(
4 

π2 
+1 

)√ 

μ0 

ν(t−t 0 ) 

×
(‖ ̂

 v 0 (·) ‖ 

2 
L 2 (0 , 1) + ‖ ̃

 v 0 (·) ‖ 

2 
L 2 (0 , 1) 

)
. (116) 

uppose ˜ μ0 ≥ μ0 ; since the decaying exponential component

ominates the righthand side of (116) as t → t 0 + T , it suffices

o choose μ0 satisfying (17) to guarantee that (116) converges to

ero as t → t 0 + T . Now suppose ˜ μ0 < μ0 ; then one can choose
1 

μ0 
< a < 

1 
μ0 − ˜ μ0 

so that min { μ0 − 1 
a , ˜ μ0 } = ˜ μ0 . Hence, we must

estrict our choice of ˜ μ0 to satisfy 

4 + π2 

π2 

)√ 

μ0 

2 T 
< ˜ μ0 (117) 

o guarantee that (116) converges to zero as t → t 0 + T . Further-

ore, by utilizing (92) and (100) , is it straightforward to show that

hoice (18) also suffices to ensure 

 ̃

 u (t) | → 0 as t → t 0 + T . (118)

ence, (118) together with (98) guarantees (20) . This finishes the

roof. �

Notice from (13) and (16) that the parameters μ0 and ˜ μ0 

efine the controller and observer initial gains , respectively.

n (17) and (18) , we require that they not be designed indepen-

ently, and hence the controller and observer cannot immediately

e designed separately. A main topic in [38] is to design similar

bserver and controller kernels to (38) and (85) such that cer-

ainty equivalence holds for an equation related to (3) . The corre-

ponding analysis, which depends on the power of ν(t − t 0 ) within

he blow–up function (12) , is involved and is not presented in

his work. However, similar steps to those appearing in [38] can

e performed to separately design the controller (16) and the ob-

erver (5) –(7) with (13) . 

.1. Well–posedness of closed–loop system 

While the well–posedness of a similar closed–loop system

o the one presented here was studied in [22] using a semi-

roup method, our reliance on time–varying blow–up func-

ions (12) and (81) , which appear in our target system (101) –(104) ,

emands a different approach. 

We first demonstrate the well–posedness of the target sys-

em (101) –(104) and then leverage the boundedness of the trans-

ormations (29) , (87) for times t ∈ [ t 0 , t 0 + T̄ ] for any positive T̄ <

 . Since boundedness is valid until (but not including) the terminal

ime t 0 + T , the well–posedness result we provide is only valid up

o times arbitrarily close to t + T . 
cribed–time estimation and output regulation of the linearized 
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By performing the change of variables 

˜ ψ I (x, t) := 

˜ ψ (x, t) e 
∫ t 

t 0 
˜ μ(τ−t 0 ) dτ

, 

one recovers a simplified version of (102) , (104) whose well–

posedness was studied in [22 , Theorem 3.1] by using a Riesz basis

approach with the Lumer–Phillips result to obtain the solution 

˜ ψ I ∈ C 1 ([ t 0 , t 0 + T̄ ] ; L 2 (0 , 1)) ∩ C 0 ([ t 0 , t 0 + T̄ ] ; H 

2 (0 , 1)) 

provided that ˜ ψ I (·, t 0 ) ∈ H 

2 (0 , 1) . One can perform a similar

change of variables 

ˆ ψ I (x, t) := 

ˆ ψ (x, t) e 
∫ t 

t 0 
μ(τ−t 0 ) dτ

for (101) , (103) and then invoke [22 , Theorem 4.1] to obtain 

ˆ ψ I ∈ C 1 ([ t 0 , t 0 + T̄ ] ; L 2 (0 , 1)) ∩ C 0 ([ t 0 , t 0 + T̄ ] ; H 

2 (0 , 1)) 

provided that ˆ ψ I (·, t 0 ) ∈ H 

2 (0 , 1) . It follows from the bounded in-

vertibility of (29) , (87) and the above changes of variables that (3) –

(4) , (16) is well–posed with solution 

v ∈ C 1 ([ t 0 , t 0 + T̄ ] ; L 2 (0 , 1)) ∩ C 0 ([ t 0 , t 0 + T̄ ] ; H 

2 (0 , 1)) , 

provided that v 0 (x ) ∈ H 

2 (0 , 1) and it be compatible with (4)

(i.e., v 0 ,x (0) = 0 and v 0 (1) = u (0) ). 

The above analysis covers most applications where prescribed–

time stabilization is required: for example, in tactical missile guid-

ance, where not only the solution but also the system cease to ex-

ist at the terminal time, and thus well–posedness beyond this time

is unnecessary. For other applications where the system continues

to exist past time T (e.g., the Euler–Bernoulli beam), the control

law implementation discussed in Section 9.1 allows one to extend

the solution in practice . 

Remark 8.1. The above mathematical analysis does not hold for

 ≥ t 0 + T due to the unbounded damping term in (101) ; for these

times, mathematical well–posedness of (3) –(4) , (16) remains an

open problem. 

8.2. Connections to interior distributed control and observation 

The above results present a boundary controller and observer

that yield prescribed–time stabilization of (3) –(4) . We now form a

connection between these results and ones for interior distributed

control and observation, that is, where the controller and output

measurements appear within the domain of the equations. Our

treatment follows that of [2 , Theorem 2.2]. 

Consider the control problem given by 

v t = − jv xx + 1 ω u (x, t) , (119)

v x (0 , t) = 0 , (120)

v (1 , t) = 0 , (121)

for (x, t) ∈ (0 , 1) × [ t 0 , t 0 + T ) , where 1 ω denotes a smooth indica-

tor function with support in an open set ω ⊂ (0, 1); the goal is to

establish prescribed–time stabilization by designing the controller

u ( x , t ) appropriately. 

For demonstration purposes, we take t 0 = 0 and ω = 

(
1 
4 , 

3 
4 

)
. We

define the sets � := (0, 1), ω̌ := 

(
3 
8 , 

5 
8 

)
(we require ¯̌ω ⊂ ω, where

for any set κ , κ̄ denotes its closure) and �̌ := � \ ¯̌ω = 

(
0 , 3 8 

)
∪(

5 
8 , 1 

)
. We will show that the control problem (119) –(121) can be

solved by Proposition 7.1 for (3) –(4) for particular choice of u ( x , t ).

Let α satisfy the boundary controlled Schrödinger Eq. (3) on

the domain (x, t) ∈ �̌ × [ t 0 , t 0 + T ) , where we now actuate with

controllers ǔ 1 and ǔ 2 at the boundaries 

α
(

3 

8 

, t 

)
= ǔ 1 (t ) and α

(
5 

8 

, t 

)
= ǔ 2 (t ) , 
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nd where we impose the boundary conditions 

x (0 , t) = 0 and αx (1 , t) = 0 . 

ence, we allow α to evolve on two disjoint components of �,

here each component is actuated at its inner boundary. We select

ˇ 1 similarly to (86) but adapt it for the domain 

(
0 , 3 8 

)
to obtain 

ˇ
 1 (t) = 

√ 

μ0 

ν(t − t 0 ) 

∫ a 

0 

e 
j ( a 2 −y 2 ) 
4 Tν(t−t 0 ) √ 

2(a 2 − y 2 ) 

×
[ 
( j − 1) ber 1 

(√ 

μ(t − t 0 ) 
(
a 2 − y 2 

))

− (1 + j) bei 1 

(√ 

μ(t − t 0 ) 
(
a 2 − y 2 

))] 
α(y, t) dy (122)

or a = 

3 
8 . Notice from (3) –(4) that by performing the change of

ariables x̌ := 1 − x and α̌( ̌x , t) = α(x, t) on the connected compo-

ent 
(

5 
8 , 1 

)
of �̌, α̌ is equivalent to its counterpart on 

(
0 , 3 8 

)
and

ence we select ǔ 2 in the same way. Proposition 7.1 now directly

pplies to α on each connected component. 

In addition, let β satisfy (119) –(121) with u ( x , t ) ≡ 0 (that is, β
s the solution to the uncontrolled Schrödinger equation). 

Following the methodology of [15 , Theorem 8.18], define the

ollifier 

(x ) := 

{
e −

1 
x , x > 0 

0 , x ≤ 0 

nd the convolutions h 1 , h 2 : [0, 1] → [0, 1] given by 

 1 (x ) := 

∫ x 
1 
4 

g 
(
s − 1 

4 

)
g 
(

3 
8 

− s 
)
ds 

∫ 3 
8 

1 
4 

g 
(
s − 1 

4 

)
g 
(

3 
8 

− s 
)
ds 

, 

 2 (x ) := 

∫ x 
5 
8 

g 
(
s − 5 

8 

)
g 
(

3 
4 

− s 
)
ds 

∫ 3 
4 

5 
8 

g 
(
s − 5 

8 

)
g 
(

3 
4 

− s 
)
ds 

. 

e now define a smoothed square function θ : [0, 1] → [0, 1] as 

(x ) := ( 1 − h 1 (x ) ) + h 2 (x ) . 

t follows that θ (x ) = 1 for x ∈ 

[
0 , 1 4 

]
∪ 

[
3 
4 , 1 

]
, θ (x ) = 0 for x ∈

3 
8 , 

5 
8 

]
, and that θ ∈ C ∞ (0, 1). Finally, define the convolution

 3 : [0, T ] → [0, 1] as 

 3 (t) := 

∫ t 
T 
4 

g 
(
s − T 

4 

)
g 
(

3 T 
4 

− s 
)
ds 

∫ 3 T 
4 

T 
4 

g 
(
s − T 

4 

)
g 
(

3 T 
4 

− s 
)
ds 

nd the smoothed step function η: [0, T ] → [0, 1] as 

(t) := 1 − h 3 (t) . (123)

t follows that η(t) = 1 for t ∈ 

[
0 , T 4 

]
, η(t) = 0 for t ∈ 

[
3 T 
4 , T 

]
, and

∈ C ∞ (0, T ). By choosing the interior distributed controller 

 ω u (x, t) = j 
[
θ ′′ ( α − ηβ) + 2 θ ′ ( αx − ηβx ) 

]
+ ( 1 − θ ) η′ β, (124)

t is straightforward to show that 

 := θα + ( 1 − θ ) ηβ (125)

erifies (119) –(121) with ‖ v (·, t) ‖ L 2 (0 , 1) → 0 as t → T due to

roposition 7.1 and (123) . Hence, Proposition 7.1 can be extended

o ensure prescribed–time stabilization by means of the inte-

ior distributed control (124) . However, one cannot use (125) to

rite (124) in the form 

 ω K [ v (·, t) ] (t) 

or some operator K without dependence on α, β or their deriva-

ives: these virtual states are summed in (125) within �̌ ∩ ω � = ∅ ,
cribed–time estimation and output regulation of the linearized 
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Fig. 1. The real and imaginary parts of the open–loop (top) and closed–loop output feedback (bottom) responses of (3) –(4) . The real and imaginary parts of the con- 

troller (99) appear at the boundary of the bottom surface plots and are identified by the dotted lines. 

Fig. 2. Logarithmic plot of the energy of the closed–loop output feedback sys- 

tem (3) –(4) , (13) , (16) compared to that proposed in [22] . 
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Fig. 3. Logarithmic plot of the energy of the closed–loop output feedback sys- 

tem (3) –(4) , (13) , (16) for terminal times T = 0 . 85 (solid line), T = 1 (dashed line) 

and T = 1 . 15 (dotted line) with initial conditions v 0 (x ) = 3(1 + j) x (1 − x ) (lower 

initial energy) and v 0 (x ) = 10 0 0(1 + 2 j) sin ( πx ) (higher initial energy). 
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a

nd since β evolves according to an uncontrolled equation and by

he product rule, additional terms in (124) are needed for cancel-

ation in (119) . Hence, the above does not imply that interior sta-

ilization of the bilinear Schrödinger equation can be recovered by

oundary stabilization of its linearized version. For rapid (exponen-

ial) stabilization of the linearized bilinear Schrödinger equation,

ee [7] . 

Using the same techniques, we can develop a state observer

hich utilizes interior measurements and ensures prescribed–time

tabilization of its error equation. The resulting error equation re-

embles 

˜ 
 t = − j ̃ v xx + 1 ω ( p(x, t) ̃ v x + g(x, t) ) , (126) 

˜ 
 x (0 , t) = 0 , (127) 

˜ 
 (1 , t) = 0 , (128) 

here the virtual state terms required for cancellation are gathered

ithin g ( x , t ). Let ˜ α solve the error Eqs. (8) –(10) on the domain

(x, t) ∈ �̌ × [ t 0 , t 0 + T ) , but now with two output measurement

njections at x = 

3 (with associated gain p 1 ( x , t ), defined on
8 
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0 , 3 8 

)
× [0 , T ) ) and x = 

5 
8 (with associated gain p 2 ( x , t ), defined

n 

(
5 
8 , 1 

)
× [0 , T ) ). Let ˜ β satisfy (8) –(10) but excluding output

easurement injection. By choosing 

 ω p(x, t) ̃ v x = θ
[ 

p 1 (x, t ) ̃ v x 
(

3 

8 

, t 

)
+ p 2 (x, t ) ̃ v x 

(
5 

8 

, t 

)] 

ne can verify that 

˜ 
 = θ ˜ α + ( 1 − θ ) η ˜ β

olves (126) –(128) with appropriate choice of g ( x , t ) to ensure can-

ellations. Furthermore, by Theorem 3.1 and (123) , ‖ ̃ v (·, t) ‖ L 2 → 0

s t → T . 

It is clear that the interior distributed controllers and observers

stablished above by their boundary counterparts are suboptimal

n design since they rely only on controlling/sensing at two distinct

oints in ∂ ̌ω ⊂ ω rather than the entirety of ω. An interesting po-

ential direction of future research is to apply the above method in

uccession to take advantage of the full control/sensing domain of

uthority ω. 
cribed–time estimation and output regulation of the linearized 
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Fig. 4. The open–loop (top) and closed–loop output feedback (bottom) responses of (2) . The beam is stabilized to a constant profile within the terminal time. 
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9. Simulation study 

We present the results of a simulation of the closed–loop sys-

tem (3) –(4) , (5) –(7) with observer gain (13) and boundary con-

troller (16) in Figs. 1 –2 . The simulation was generated using the

implicit Euler method , where the initial conditions were chosen to

be v 0 (x ) = 3(1 + j) x (1 − x ) and 

ˆ v 0 (x ) ≡ 0 , the initial controller and

observer gains were chosen to be μ0 = ˜ μ0 = 13 , and the termi-

nal time was assigned to be T = 1 . In Fig. 1 , surface plots of the

real parts of the open– and closed–loop responses of (3) –(4) are

shown. The top surface plot demonstrates the undamped oscilla-

tions of the open–loop system. The bottom surface plot shows the

suppression of these oscillations by the time–varying output feed-

back regulation. 

Fig. 2 compares the L 2 energies of the closed–loop output feed-

back system derived herein (which guarantees prescribed–time

stabilization) and that which is proposed in [22] (which guarantees

exponential stabilization). We saturate the controller and observer

gains given in (13) and (16) at t = 0 . 85 , which due to machine

precision, is sufficient to simulate v (·, t 0 + T ) ≡ 0 . 

Fig. 3 demonstrates that the closed–loop system is stabilized in-

dependently of initial conditions: we provide the results of simu-

lations where both the initial conditions and the stabilization time

are varied. 

As discussed in Sections 1 and 2 , the relation between

(2) and (3) is given by 

v = w t − jw xx . (129)

Hence, one can utilize the output feedback controller devel-

oped herein to stabilize the Euler–Bernoulli beam to a con-

stant profile within the terminal time (see [35] for more de-

tails). The particular beam we study is one which is allowed to

slide at x = 0 and is actuated at x = 1 : this is realized by the

boundary conditions w x (0 , t) = w xxx (0 , t) = 0 , w (1 , t) = u 1 (t) and

w xx (1 , t) = u 2 (t) , where u 1 ( t ) and u 2 ( t ) are controls. By compar-

ing (4) to (129) , one notices that u 1 ( t ) is given by integrating the

real part of (16) , whereas u 2 ( t ) is given as the negative imaginary

part of (16) . Due to the integration required to recover u ( t ), we
1 
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nly achieve prescribed–time stabilization to a constant profile. We

resent the results of a simulation of (2) in Fig. 4 , where we’ve

sed the same numerical methods as above and with initial condi-

ions ((w (x, 0) , w t (x, 0)) = (−4(x 2 − 1) , 0) . 

.1. Practical implementation 

Regardless of the boundedness of the input (20) , the controller

ain diverging at the terminal time can present some issues in

mplementation. Computing the feedback necessitates the inner

roduct between vectors with very large and very small magni-

ude, which may present numerical problems (e.g., machine preci-

ion). This high–gain challenge is not particular to our approach:

t is present in all fixed–time stabilizations results (e.g., in sliding–

ode control, the discontinuous control with high gain can mani-

est as chattering behavior near the sliding surface or excitation of

igh–frequency dynamics in flexible structures, and is also present

n finite–horizon optimal control with a terminal constraint). 

To address this problem, one could instead require the state

o converge to a small neighborhood around zero (imposing the

imitation of machine precision), and utilize the time–invariant

ontroller in [22] (which can be designed to have small gain)

hereafter. This implementation prevents the controller gain from

iverging, and moreover, allows mathematical well–posedness to

e extended past T . The same implementation method can be

mployed to ensure that the observer gain remain bounded. 

0. Conclusion and future work 

We have presented explicit and continuous boundary con-

rollers and observers that ensure stabilization of the linearized

chrödinger equation and observer error equation within a termi-

al time prescribed independently of the initial conditions . We have

emonstrated that our results can be used in conjunction for out-

ut feedback regulation while conserving the prescribed–time sta-

ilization property under modest assumptions on the initial con-

roller and observer gains. 
cribed–time estimation and output regulation of the linearized 
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We have recalled that the linearized Schrödinger equation

s connected to the Euler–Bernoulli beam equation, and we’ve

emonstrated that our results can be used to stabilize this beam to

 constant profile in within the terminal time. The methods used

n [35] (which ensure exponential stabilization of the beam) can-

ot be replicated to recover prescribed–time stabilization of the

eam to the zero profile due to the time dependence of the ker-

els within the backstepping transformations. Further research is

equired to fill this gap. 

Absent from our presentation was robustness analysis for the

roposed closed–loop system. A partial robustness result is re-

orted in [8 , Rk. 7] and [12 , Section 3] for incorporating an ad-

itional term 

˜ δ(t) v in (3) , where ˜ δ(t) is an uncertain but bounded

unction; this robustness extends to the above treatment if (16) is

mplemented with 

ˆ v ≡ v (i.e., for full–state feedback). Robust-

ess to other model uncertainties, controller and measurement

oise require several highly involved analyses due to the time–

arying gains employed herein. We aspire to address some of these

uestions in future works. 
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