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Abstract

In the domain of Space Situational Awareness (SSA), the challenges related to orbit determination and catalog correlation are notably
pronounced, exacerbated by data scarcity. This study introduces an initial orbit determination methodology that relies on data obtained
from a single surveillance radar, with the need for fast algorithms within an operational context serving as the main design driver. The
result is a linearized least-squares fitting procedure incorporating an analytically formulated approximation of the dynamics under the J2
perturbation, valid for short-term propagation. This algorithm utilizes all available observables, including range-rate, distinguishing it
from other similar methods. A significant contribution of this paper is the enhancement of estimation quality by incorporating informa-
tion about the object’s predicted orbital plane into the methodology, a method denoted as OPOD. The proposed methods are evaluated
through a series of simulations against a classical range and angles fitting method (GTDS) to examine the effects of track length and
measurement density on the quality of full state estimation, including the impact of using arcs that are too short. The OPOD method-
ology shows promising results throughout a wide range of scenarios.
� 2024 COSPAR. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/
by-nc-nd/4.0/).
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1. Introduction

Over the last sixty years, human activities in space have
significantly increased the number of orbiting objects
(ESA, 2023), a concern heightened by the deployment of
mega-constellations like Starlink and OneWeb. This con-
gestion in low Earth orbit underscores the need for nations
and space agencies to enhance tracking and cataloging
efforts. Robust and efficient orbit determination (OD) algo-
rithms are crucial in this context, playing a pivotal role in
satellite tracking by swiftly identifying correlated tracks
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to maintain an accurate satellite database. The reliability
of these algorithms is essential for Space Situational
Awareness (SSA) and the safety of orbital operations.

Classical OD strategies involve an Initial Orbit Determi-
nation (IOD) phase to generate and initial estimate, which
is later refined (Schutz et al., 2004), encompassing methods
like those of Laplace, Gauss, and Gooding (Escobal, 1970;
Gooding, 1993). These methods require measurements with
at least six independent parameters to generate a six-
parameter orbit, with the quality of the initial estimation
benefiting from measurements originating from different
observation arcs, referred to as tracks3. Generally, multiple
ommons.org/licenses/by-nc-nd/4.0/).

3 A series of sequential observations delayed by seconds, which in turn
are composed of a set of measurements (of different nature) at a common
epoch.
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observation arcs lead to a linkage problem (Milani et al.,
2004), where information from different tracks is correlated
for proper OD (Milani et al. (2005);Ma et al. (2018)). This
study aims to develop a reliable IOD method for single
track radar measurements in the LEO regime, facilitating
the automatic cataloging of uncorrelated tracks and subse-
quent maneuver detection within the context of the Spanish
Space Surveillance and Tracking Surveillance Radar
(S3TSR) (Gomez et al., 2019), and addressing the challenge
of short arcs where arc length might be insufficient for
existing methods (Tao et al., 2020). A significant contribu-
tion of this study is incorporating orbital plane data into
the IOD process to enhance estimation quality.

The well-known range and angles method of the Goddard
Trajectory Determination System (GTDS) (Long et al.,
1989) is used as a reference for single track IOD in this work.
However, this method is limited to inertial position informa-
tion and cannot utilize the full set of observables provided by
modern radars. Related to the method introduced here,
Vallado and Carter (1998) apply a classical differential cor-
rection method for IOD with dense observation arcs and
numerical propagation models. In contrast, this work
focuses on leveraging analytical methods for scenarios with
low-density radar tracks, where data scarcity is the primary
challenge. The inclusion of extra information to aid in the
estimation problem is an approach already present in other
IOD methods proposed in the literature. The idea of initial-
izing tracks with angles and angle-rates data, as explored in
DeMars et al. (2012), is only suitable for optical-based sen-
sors and not applicable to the LEO radar measurements used
here. Other studies, such as Shang et al. (2018) and Zhang
et al. (2019), involve multiple stations or very short tracks
with extra radial measurements, which are beyond the scope
of this work. For a more general review, see Pastor et al.
(2021), which highlights the trade-off between speed and
accuracy in combined Initial Orbit Determination and Orbit
Determination methods.

Building on prior investigations (Montilla et al., 2023a;
Montilla et al., 2023b), this work seeks to utilize all infor-
mation from a single radar track, including range, range-
rate, and line-of-sight data (azimuth and elevation). Conse-
quently, we establish an IOD process based on radar-
acquired data to estimate the satellite’s full state. The use
of attributables (Montilla et al., 2023a; Reihs et al., 2021)
is replaced by a procedure that includes dynamics informa-
tion, similar to the GTDS range and angles method
(Siminski, 2016; Vananti et al., 2017). GTDS remains rele-
vant for IOD, and it is a good alternative to classical 3
points methods such as Herrick-Gibbs (Kaushik, 2016),
but leveraging all available observables, including range-
rate data, should lead to better results. The unexpected
need to incorporate Earth’s flattening in short track orbital
determination is a notable outcome explored in this study,
given the relative importance of the J2 perturbation
compared to the main Keplerian term. For long-term
2

non-Keplerian propagation, while approximated semi-
analytical (Amato et al., 2019) or analytical methods
(Martinusi et al., 2015) could be used, these are not suited
for short track IOD applications. Numerical methods for
uncertainty propagation (Hernando-Ayuso et al., 2023)
also do not meet the computational efficiency requirements
for real-time track association (Pastor et al., 2021).

The proposed method strikes a balance between error
and speed, suitable for short propagations. The generalized
equinoctial orbital elements in Baù et al. (2021) are used
due to their explicit inclusion of potential-derived perturba-
tions and slow evolution, making them ideal for short-term
propagation through a Taylor expansion of the solution.
This study produces the analytical time derivatives of these
orbital elements, up to the fourth order, and calculates the
error state transition matrix through the derivation of the
resulting polynomial’s coefficients. This is then used in a
differential correction algorithm (Vallado, 2001) for IOD
with the J2 zonal harmonic included, along with an
extended application involving past orbital data.

Thus, the main innovation of this work is the develop-
ment of a comprehensive state estimation algorithm. This
algorithm employs a basic linear least-squares method to
directly fit radar observations, with state and uncertainty cal-
culations performed using an analytical (approximated) J2
propagator. Furthermore, the method is enhanced by incor-
porating expected orbital plane information—referred to as
OPOD—into the process. In the LEO regime, this orbital
plane can be reliably predicted based on prior estimates, even
when considering potential maneuvers. The newly proposed
methodologies are evaluated against a widely recognized
orbit determination approach, demonstrating significant
improvements in IOD for simulated tracks, while preserving
the analytical framework essential for practical use.

The remainder of this paper is organized as follows. In
Section 2, the problem and notation are defined. Section 3
describes the full state estimation algorithm first as a gen-
eral linear least-squares method, then particularized to
three different alternatives reliant only on data from a sin-
gle radar track. This section includes an extra methodology
that employs past orbital information to improve the esti-
mation. Section 4 compiles detailed testing of the estima-
tion methods based on simulated tracks. All methods are
then applied to various scenarios that introduce variability
in track length and measurement frequency. The document
is closed with conclusions in Section 5. A includes most of
the formulation needed in the presented work.

2. Problem statement and notation

This work seeks algorithms for IOD using a dynamical
model to fit various satellite state-derived variables and
radar observables from a single track (Fig. 1). It defines a
radar station with known inertial position (Rr), velocity
(V r), and antenna orientation (given by the rotation matrix



Fig. 1. The estimation problem from a single radar track is shown as
iterative fitting of radar observables: range, azimuth, elevation, and range-
rate qm;Azm; elm; _qmð Þ, creating a track of n observations from the same
Resident Space Object.

4 The propagation generally requires to specify the reference epoch t0,
but potential-based dynamics that go up to the second zonal harmonic
does not depend on the reference instant, so only the total propagation
time Dtm is included in the formulation for brevity.
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TR
I ) for any required instant. The radar has a designated

Field of Regard (FoR) characterized by a specific revisit
time rt. When a Resident Space Object (RSO) passes
through the sensor’s FoR, it generates a track composed
of observations (also referred to as plots), which are sets
of measurements taken at a common epoch tm. Here,
m 2 1; n½ �, where n is the number of individual plots. Typi-
cally, radar observables for LEO objects include range qm,
azimuth Azm, elevation elm, and range-rate _qm. Each mea-
surement has an error characterized by a known standard
deviation, included in a covariance matrix Czm for the set,
with potential correlations between different observables.
Here the letter z denotes a general observed data point, typ-
ically a radar observable, but it can be any state derived
quantity used for fitting. The notation is modified to ẑ
when said quantity is computed from the state that is being
estimated in the fitting process.

It is assumed that the observation function
rm ¼ OBSfun qm;Azm; elmð Þ maps the radar observation of
range and angles to an inertial position, which can then be
treated as the measurement. This is needed for the GTDS
method as it fits positions computed from the radar observ-
ables of range, azimuth and elevation. The covariance of
such position measurement Crm is calculated from the origi-
nal radar measurement uncertainty (Czm ) using the
Unscented Transform (UT) (Goff, 2015). The sigma points
are reconstructed in inertial space to obtain the covariance
matrix Crm , offering a more conservative uncertainty repre-
sentation than the linear method (Siminski, 2016).

At the midpoint t0 ¼ t1 þ ðtn � t1Þ=2 of the radar track,
the satellite’s state estimation ŷ0 ¼ r̂0 v̂0½ �and its covariance
Cy are computed. Note that r̂0 and v̂0 are the estimated
inertial position and velocity in the Cartesian frame I. This
approach requires calculating predicted measurements, ẑm,
from the estimate ŷ0, necessitating the propagation of the
orbital state to the instant tm. The propagation step is
encapsulated within ŷm ¼ r̂m v̂m½ � ¼ P ŷ0;Dtmð Þ, where
Dtm ¼ tm � t0 is the propagation duration from the refer-
3

ence instant t0, which is omitted 4. The details of the prop-
agation process will be discussed in Sections 3.1 and 3.3.
The function z ¼ h y; tð Þis defined to convert an inertial
state y at an instant t to any observable z, allowing the
computation of the predicted measurement ẑm ¼ h ŷm; tmð Þ.

3. Iterative linearized least-squares fitting algorithm

This Section 3 reviews a general linear least-squares
algorithm for any observable and propagation model. Sec-
tion 3.1 adapts this algorithm to the GTDS, fitting position
measurements with Keplerian dynamics. In Section 3.2,
radar observables are fitted using a Kepler model,
enhanced by a Taylor expansion for a more accurate com-
putation of the derivatives. Section 3.3 applies generalized
equinoctial orbital elements and a Taylor expansion for the
inclusion of J2 dynamics in short-track IOD. Finally, Sec-
tion 3.4 proposes incorporating orbital plane information
to enhance the orbit determination algorithm.

To maintain a broad scope, the fitting algorithm is
derived from a general scalar observable zm at time tm with
known standard deviation rm. The predicted measurement
ẑm ¼ h ŷm; tmð Þ generally differs from the estimated state ŷ0,
even without considering model inaccuracies in
ŷm ¼ P ŷ0;Dtmð Þ. Thus, zm ¼ ẑm þ nm, where nm is the resid-

ual. The goal is to minimize
Pn

m¼1ðwmnmÞ2, where
wm ¼ 1=rm:

J z ¼ min
ŷ0

Xn
m¼1
ðwmnmÞ2: ð1Þ

A prerequisite is that the number of measurements must
exceed the state dimension (n > 6). This leads to a non-
linear minimization problem, typically solved iteratively
for efficiency. Assuming a good initial estimate of ŷ0, the
predicted observable ẑm is approximated at iteration i as

a linearization around ẑðiÞm for a variation DŷðiÞ0 :

hðŷm; tmÞ � h P ŷ
ðiÞ
0 ;Dtm

� �
; tm

� �
þ @h
@ŷ0

�
ðŷðiÞ

0
;tmÞ

DŷðiÞ0

¼ hðŷðiÞm ; tmÞ þ @h
@y

�
ðŷðiÞm ;tmÞ

@P
@ŷ0

�
ðŷðiÞ

0
;DtmÞ

DŷðiÞ0 : ð2Þ

Considering all measurements z ¼ z1; � � � ; zn½ �|, and the pre-

dicted measurements ẑðiÞ ¼ ẑðiÞ1 ; � � � ; ẑðiÞn
h i|

from ŷ
ðiÞ
0 , the

error DzðiÞ ¼ z� ẑðiÞ is defined. The derivatives of the pre-
dicted value for the last iteration @h=@ŷ0cðŷðiÞ

0
;tmÞ are stacked

in the matrix A to get the linear equation

DzðiÞ ¼ ADyðiÞ0 þ n. With this expression, the same mini-
mization problem as in Eq. 1 can be solved as a linear
least-squares problem:
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DzðiÞ ¼ ADŷðiÞ0 þ n;

Jz ¼ min
DŷðiÞ

0

n|Wn ¼ min
DŷðiÞ

0

ðDzðiÞ �ADŷðiÞ0 Þ
|
WðDzðiÞ �ADŷðiÞ0 Þ;

DŷðiÞ0 ¼ A|WAð Þ�1ðA|WDzðiÞÞ;
ð3Þ

where Cy ¼ A|WAð Þ�1 is the estimation covariance. Resid-

ual normalization is required, with W ¼ C�1z (inverted mea-

surement covariance) and Cz ¼ diag r2
1; � � � ; r2

n

� �
, for

example. This differential correction approach simplifies
the problem to iterations of a linear least-squares problem.
While general convergence is not assured due to potential
local minima, a close initial estimate offers a favorable
speed-accuracy trade-off (Vallado, 2001). Iterations con-

tinue until the position displacement norm j Dr̂ðiÞ0 j is below
a threshold.

The propagation method Pðŷ0;DtmÞ and the relationship
between spacecraft state and measurements in hðy; tÞ are
particularized next with three analytical methods.

3.1. Keplerian fitting of non-weighted Cartesian position -

GTDS

The GTDS range and angles method (Siminski, 2016;
Vananti et al., 2017) is a specific case of the general algo-
rithm from Section 3. This method fits measurements in
inertial position, represented by rm at each instant tm, so
the vector of all measurements is z ¼ r|1 ; r

|
2 ; � � � ; r|n

� �|
.

Predicted measurements r̂m are an explicit function of
the propagated estimation ŷm, given by r̂m ¼ h ŷm; tmð Þ.
The propagation function P ŷ0;Dtð Þ ensures Keplerian
dynamics. This is achieved using the universal variable v,
which is applicable to all orbit types and allows computa-
tion of the f and g Kepler functions, yielding the propa-
gated state as a linear combination of the initial conditions:

ŷm ¼ P ŷ0;Dtmð Þ ¼ r̂ðŷ0;DtmÞ
v̂ðŷ0;DtmÞ

	 

¼ f ðr̂0; v̂0;DtmÞr̂0 þ gðr̂0; v̂0;DtmÞv̂0

_f ðr̂0; v̂0;DtmÞr̂0 þ _gðr̂0; v̂0;DtmÞv̂0

	 

:

ð4Þ
The details for computing f and g are provided in Algo-

rithm 8 of Vallado (2001). For the iterative method, the

predicted position r̂ðŷ0;DtÞ must be linearized around r̂
ðiÞ
0

and v̂
ðiÞ
0 for variations Dr̂ðiÞ0 and Dv̂ðiÞ0 :

r̂ðr̂0; v̂0Þ � r̂ðr̂ðiÞ0 ; v̂
ðiÞ
0 Þ þ @ r̂

@r̂0
cðiÞDr̂ðiÞ0 þ @ r̂

@v̂0
cðiÞDv̂ðiÞ0 ;

@r̂
@ r̂0
cðiÞ ¼ f ðiÞ @ r̂0

@ r̂0
þ r̂

ðiÞ
0

@f
@r̂0
cðiÞ þ v̂

ðiÞ
0

@g
@r̂0
cðiÞ;

@r̂
@v̂0
cðiÞ ¼ gðiÞ @v̂0

@v̂0
þ r̂

ðiÞ
0

@f
@v̂0
cðiÞ þ v̂

ðiÞ
0

@g
@v̂0
cðiÞ:

ð5Þ

The dependence over Dt has been dropped for conciseness.
The GTDS method simplifies this by setting
@f =@r0 ¼ @f =@v0 ¼ @g=@r0 ¼ @g=@v0 ¼ 0|, reducing the

derivatives to @r̂=@r̂0cðiÞ � f ðiÞI3and @r̂=@v̂0cðiÞ � gðiÞI3. The
matrix I3 is the identity matrix of order 3. Applying this
technique to the linearization of the predicted position
results in:
4

r̂ðr̂0; v̂0Þ � r̂ðr̂ðiÞ0 ; v̂
ðiÞ
0 Þ þ @r̂

@r̂0
cðiÞDr̂ðiÞ0 þ @r̂

@v̂0
cðiÞDv̂ðiÞ0

� f ðiÞr̂ðiÞ0 þ gðiÞv̂ðiÞ0 þ f ðiÞDr̂ðiÞ0 þ gðiÞDv̂ðiÞ0
¼ f ðiÞðr̂ðiÞ0 þ Dr̂ðiÞ0 Þ þ gðiÞðv̂ðiÞ0 þ Dv̂ðiÞ0 Þ ¼ f ðiÞr̂ðiþ1Þ0 þ gðiÞv̂ðiþ1Þ0 :

ð6Þ
Thus, the predicted measurement at tm can be expressed as:

r̂m ¼ r̂ðr̂0; v̂0;DtmÞ � f ðiÞm I3r̂
ðiþ1Þ
0 þ gðiÞm I3v̂

ðiþ1Þ
0

¼
f m 0 0 gm 0 0

0 f m 0 0 gm 0

0 0 f m 0 0 gm

2
64

3
75
ðiÞ

r̂
ðiþ1Þ
0

v̂
ðiþ1Þ
0

" #
:

ð7Þ

Using the form in Eq. (7), the vector of predicted positions
(ẑ) can be expressed by linearly combining the estimation

ŷ
ðiþ1Þ
0 with the Kepler functions at the corresponding

instants. The position residuals in z ¼ Aŷ
ðiþ1Þ
0 þ n are thus

an explicit linear function of the estimation ŷ
ðiþ1Þ
0 . By solv-

ing the linear least-squares in Eq. (3) with W being the
identity matrix (non-weighted), the solution is given by:

ŷ
ðiþ1Þ
0 ¼ A|Að Þ�1A|z ¼ Hz;

Cy ¼ HCrH
|; whereCr ¼ diag Cr1 ; � � � ;Crnð Þ; ð8Þ

is that of the GTDS method. Emphasis has to be placed on
the choice of not weighting position residuals despite the
availability of an uncertainty characterization. The result
is a fit that minimizes errors in all directions equally. The
covariance of the estimation is computed from the matrix

H ¼ A|Að Þ�1A| as a linear approximation after the estima-
tion is computed (in the last iteration). For a more compact
form of the solution to Eq. (8), see Siminski (2016).

3.2. Keplerian fitting of radar observables - KEP

This method modifies GTDS by fitting measurements
directly with Keplerian dynamics, incorporating range-
rate information. The measurement vector includes all
observables directly, denoted as z ¼ q1;Az1; el1; _q1; . . . ;½
qn;Azn; eln; _qn�|. The function hðy; tÞ for these measure-
ments, as well as the derivatives @h=@y, is found in the
A.1. Incorporating range-rate requires predicted position

and velocity, computed via _f and _g functions, as shown
in Eq. (4).

The computation of @h=@ŷ0, see Eq. (2), requires the
predicted full state derivatives, @P=@ŷ0. The position part
is found in Section 3.1, Eq. (5). Predicted velocity deriva-
tives are also required, but the GTDS approximation
neglecting Kepler function derivatives is unsuitable here.

An analytical approximation for f ; g; _f , and _g derivatives
has been employed using a fourth order Taylor expansion
around r̂0 and v̂0. Detailed expressions are omitted for
brevity but can be found in Vallado (2001). Thus, the ele-
ment @P=@ŷ0 can be computed at each Dtm with the neces-
sary precision.

With @h=@ŷ0 computed, all elements to solve the linear
least-squares problem in Eq. (3) are available. Errors

DzðiÞ are computed using the propagated estimates ŷðiÞm ,
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via Eq. (4), evaluated in the observation function (A.1).
This is the second analytical method, denoted simply as
KEP.

3.3. J2 fitting of radar observables - KEP + J2

A third algorithm incorporating J2 perturbation has
been developed. While analytical methods exist for oblate
planet perturbations, they often sacrifice precision and
are valid only for specific eccentricity ranges (Martinusi
et al., 2015). This work uses an solution valid for short time
spans, based on the generalized equinoctial orbital ele-
ments (GEqOE) described in Baù et al. (2021).

3.3.1. GEqOE formulation

Given a perturbation force derivable from a potential
energy U, the GEqOE incorporate the perturbing potential
in their definition, generalizing the classical equinoctial ele-
ments (Broucke and Cefola, 1972). This formulation yields
the generalized semi-major axis (a) and Laplace vector
(lg), defining a non-osculating ellipse in the orbital plane.
The elements p1 and p2 are projections of g along in-plane
axes, while Kepler’s equation is written using the general-
ized mean longitude L:
L ¼ Kþ p1 cosK� p2 sinK; ð9Þ
where K is the generalized eccentric longitude. The general-
ized mean motion m derives from the total energy, which
includes U. Elements q1 and q2 (equal to the classical p
and q) complete the GEqOE set v ¼ ½m; p1; p2; q1; q2;L�.
The first-order time derivatives of these elements are expli-
cit functions of U and other forces contained in P (drag,
luni-solar perturbations,. . .). This general formulation can
be simplified to include the J2 perturbation only:

_m ¼ 0;

_p1 ¼ p2
h�c
r2 � I ẑ
� �� 1

c
X
a þ 2p2
� �U;

_p2 ¼ p1 I ẑ� h�c
r2

� �þ 1
c

Y
a þ 2p1
� �U;

_q1 ¼ �I Y
r ;

_q2 ¼ �I X
r ;

_L ¼ mþ h�c
r2 � I ẑ� 1

c
1
aþ a 1� r

a

� �� �U:

ð10Þ

Here, m is constant since the only perturbation is conserva-
tive and therefore the total energy is conserved. Some def-
initions needed for the use of the GEqOE can be found in
the A.4.2. Algorithms 1,2 in the A.7 convert between iner-
tial position/velocity and GEqOE.

Numerical integration of Eq. (10) requires the X and Y
values. Given initial GEqOE values, the generalized
Kepler’s equation is solved, see Eq. (9), with the output
K used then to compute r;X , and Y:

r ¼ a 1� p1 sinK� p2 cosKð Þ;
X ¼ a ap1p2 sinKþ ð1� ap21Þ cosK� p2

� �
;

Y ¼ a ap1p2 cosKþ ð1� ap22Þ sinK� p1
� �

:

ð11Þ
5

In Baù et al. (2021), GEqOE’s slower evolution is reported
to reduce numerical integration error. Applying a Taylor
expansion in this state representation is thus an interesting
alternative. This section aims to derive an analytical solu-
tion for IOD.

3.3.2. Taylor expansion in GEqOE

A special notation is introduced to differentiate the
ODEs in Eq. (10). The function f s ¼ 1=s simplifies the
application of the chain rule in derivation when an element
is dividing. For example, _r ¼ l=c p2 sin L� p1 cos Lð Þ,
expressed with the true longitude L, can be rewritten as

_r ¼ lf crpl. The time derivative becomes €r ¼ l _f crplþ
�

f c _rplÞ, requiring _f s ¼ �_s=s2. A function that computes time
derivatives of f s has been implemented, taking the vector
s; _s;€s; � � �½ � as input (see A.2). The function gs ¼ s_s is also

introduced, appearing when differentiating s2 (see A.3 for
time derivatives of gs).

First-order derivatives of the Taylor expansion involve
evaluating the ODEs. For higher orders, elements in
Eq. (10) are split into easily derivable parts, as shown in
Eq. (A.9) for ẑ. This method compacts the equations of
motion, see Eq. A.6. Full derivation up to fourth order
and symbol definitions are given in A.4.

After computing the derivatives at the epoch, a Taylor
expansion propagates the state vector v v0;Dtmð Þ ¼
m; p1; p2; q1; q2;L½ �|to all Dtm, which is then converted to
Cartesian using Algorithm 2. The analytical derivative of

v v0;Dtmð Þ with respect to v0 is computed to obtain @v
@v0
. This

involves differentiating the functions f s and gs (and their
time derivatives) with respect to a generic orbital element
(see A.5). The resulting analytical derivatives have been
validated using Taylor differential algebra with
Hipparchus.

To convert between GEqOE and Cartesian states (see
Algorithms 1 and 2) and derivatives, the Jacobians of both

transformations, RV2GEQOE @v
@X

� �
and GEQOE2RV

@X
@v

� �
, are used (Baù et al., 2021). Cartesian derivatives

are obtained by multiplying the Jacobians evaluated at
the correct instant:

@X

@X0

¼ @X

@v

�
t

@v

@v0

� �
@v

@X

�
t0

; ð12Þ

validated by numerically integrating the variational equa-
tions with the J2 perturbation added. This completes the
method, referred to as KEP + J2.

3.4. Adding extra information: Orbital Plane-based Orbit

Determination - OPOD

Precise initial orbit determination using a single radar
track is challenging due to the scarcity of data. This section
presents an alternative approach, Orbital Plane-based
Orbit Determination (OPOD), to improve the quality and
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reliability of the estimation by exploiting information from
a known past state. The key assumption is that for LEO
objects maneuvers are usually performed to maintain alti-
tude and do not significantly affect the orbital plane, as
changing the inclination (i) or right ascension of the
ascending node (RAAN, X) is expensive.

In OPOD, the orbital plane is predicted from the known
past orbit with relatively high precision, assuming that pro-
cess noise (primarily drag uncertainty) does not directly
affect the i and X prediction, even in the presence of maneu-
vers. The predicted orbital plane information is then added
as virtual measurements at the radar epoch (t0), indepen-
dent of the measurements, to constrain the region of iner-
tial space that the spacecraft could occupy at that
instant. This reduces the uncertainty of the estimation, with
the level of improvement depending on the uncertainty
assigned to these virtual measurements.

It is important to note that OPOD does not decouple
plane attitude estimation from the in-plane estimation,
nor does it assume the plane to be deterministic or even
constant. The state is still estimated using the same least-
squares fitting approach, considering all measurements
(radar track and virtual orbital plane) through the dynam-
ical model. The addition of orbital plane information at the
radar epoch simply provides extra constraints to improve
the estimation accuracy. In fact, when the fitting dynamics
include the J2 perturbation, even if the orbital plane is
assumed partially known at a given instant it does change
along the track.

The measurement function hðy; tÞ for these new observ-
ables, as well as the analytical derivative with respect to the
Cartesian state @h=@y are in the A.6. The addition of these
virtual measurements can be applied to either the KEP or
KEP + J2 fitting of radar measurements, but not the
GTDS method as it only works with position information.

4. Simulated results

For this section, simulations of the satellite’s trajectory
and radar measurements are used to evaluate IOD meth-
Table 2
Parameters defining the realistic satellites Sentinel-1A, Swarm-C and Starlink-

HF Satellite m (kg) xl (m) yl (m) zl (m)

Sentinel-1A 2270 1.02 1.34 3.2
Swarm-C 440 1.3 8 0.9
Starlink-1 1250 2.8 2.3 0.3
Starlink-2 800 2.5 2 0.2

Table 1
The two dynamical models defined, one for the true trajectory and the
other for the prediction. SRP stands for Solar Radiation pressure.

Model Earth harmonics Atmosphere Sun Moon SRP

True ½150; 150� DTM-2000 yes yes yes
Prediction ½40; 40� NRLMSISE-00 yes yes yes
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ods’performance. Orekit (Maisonobe et al., 2010) handles
all high-fidelity satellite dynamics and radar simulations,
see Section 4.1. Section 4.2 presents preliminary testing of
radar-only IOD methods, establishing baseline perfor-
mance and track length dependency. Section 4.3 tests the
orbital-plane enhanced method (OPOD), showing the
impact of adding orbital plane information and uncertainty
even in presence of maneuvers. Section 4.4 details the sim-
ulated testing methodology and scenarios, generating track

data for Section 4.5, where a k2 metric tests uncertainty
characterization of estimation errors.

4.1. Dynamical modeling and radar characterization

For IOD methods relying on sensor data, the testing
involves simulating ‘‘real” satellite trajectories and generat-
ing radar tracks. The OPOD algorithm, reliant upon pre-
dicted orbital plane, requires two distinct dynamics.
Table 1 lists the dynamical models for numerical simula-
tions. The main difference between True and Prediction

dynamics is the atmosphere model and harmonics degree.
NRLMSISE-00 (Picone et al., 2002) and DTM-2000
(Bruinsma et al., 2003) models account for tabulated solar
weather data, differing in order to reflect atmospheric
uncertainty in practice.

High-fidelity (HF) and low-fidelity (LF) satellite models
are defined in Tables 2 and 3, respectively. HF satellites are
defined by its dimensions, solar array area (As) and orien-
tation in local axis (Ax), drag (CD), absorption (ac) and
reflection (rc) coefficients. LF satellites use a simple spher-
ical drag model. HF models pair with True dynamics for
simulating trajectories and radar measurements, while LF
models use Prediction dynamics for orbital plane
predictions.

Satellites named for real-world equivalents vary in orbit
type: Sentinel-1A (700 km), Swarm-C (430 km), Starlink-1
and 2 (540 km). Table 4 provides initial conditions for sim-
ulated scenarios, generating diverse radar track lengths.
Only Sentinel-1A and Swarm-C have corresponding LF
models for OPOD testing. Other IOD methods (Sections
3.1, 3.2, 3.3) are tested on all satellites.

Simulations use Orekit (Maisonobe et al., 2010) for
dynamics and measurement generation. Orekit handles
sensor measurements, taking into account reflection time
and ionospheric delay. Measurement generation adds noise
with constant covariance and no biases, a simple model
suitable for limited orbital regimes. The radar’s uncertainty
characterization is assumed known for estimation. Table 5
1/2 using Orekit’s BoxAndSolarArraySpacecraft force model class.

As (m2) Ax [-] CD [-] ac [-] rc [-]

25.46 y 1.5 0.8 0.5
0.1 y 0.95 0.9 0.5
25.2 z 0.9 0.9 0.5
20 z 0.92 0.9 0.5



Table 3
Parameters defining the low fidelity satellites Sentinel-1A1 and Swarm-C1

using Orekit’s isotropic drag and radiation force model classes. These
parameters are: mass, drag cross section, drag coefficient, solar radiation
cross section and reflection coefficient.

LF Satellite m (kg) S (m2) CD [-] SRPs (m2) rc [-]

Sentinel-1A1 2200 9.5 2 10 1.4
Swarm-C1 420 4 2.56 4 1.4
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specifies radar parameters for three different stations used
separately in the simulations, enriching track length vari-
ability and data density across scenarios. Radar location
is given by its geodetic coordinates longitude (k), latitude
(/) and height (h). The radar antenna orientation is given
by 3 consecutive rotations ðux;uy ;uzÞ around its local

x; y, and z axes. Initially, it is parallel to the XY plane of
the topocentric frame. The field of regard (FoR) is defined
by scanning angles U and V, limited in both positive and
negative directions, forming a volume outside two inter-
secting concentric cones. Radar 1 is a simulation of
S3TSR (Gomez et al., 2019), and some of its characteristics
have been omitted for confidentiality. Radars 2 and 3 have
been defined for testing purposes, with similar characteris-
tics to the S3TSR simulation. In all cases radar character-
ization is assumed perfectly known.

4.2. Preliminary testing of the IOD algorithms

With the simulation and fitting methods in place (see
Section 3), a controlled test is needed to compare them.
Understanding each method’s limitations helps to interpret
the estimation statistics (see Section 4.5.1). The approach
involves applying the three IOD algorithms to a single
radar track using only radar data. To study the effect of
track length on estimation accuracy and uncertainty, a long
track is shortened incrementally by removing measure-
ments from the ends and repeating the fitting.

The longest track from Radar 3, simulating Sentinel-1A
over 4 days, is chosen. It consists of 72 measurements span-
ning 284 s.

4.2.1. Fitting of noiseless measurements

First, it is essential to consider the true values of the
measurements, rather than the noisy ones, to emphasize
the base limitations of each method. Propagating the true
position and velocity at the epoch of the test track with
Kepler dynamics results in position errors on the order of
Table 4
Initial condition (I.C.) for the reference orbit defined for the scenarios in Tab
epoch t0 is at 00:00:00 UT.

I.C. x (km) y (km) z (km)

S1A-1 1459.975 436.989 �6916.264
SWC-1 254.597 �241.108 6792.396
SRL-1 4970.721 3941.433 602.664
SRL-2 5030.115 3838.607 754.660
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100 meters and range errors over 50 m (Fig. 2, Left). This
trajectory coincides with the true one at the epoch, yet
the Kepler model incurs range errors an order of magni-
tude greater than the radar measurements’uncertainty.

Applying the GTDS algorithm to the true position mea-
surements results in the estimation with errors shown in
Fig. 2 (Center). The square sum of errors (n|n) is mini-
mized, and without weights, the position errors are lower
on average along the complete trajectory, but not necessar-
ily the range errors.

In Fig. 2 (Right), the position fitting is done by minimiz-

ing n|Wn, with W ¼ C�1r . The position covariance com-
puted with an UT has greater variance in the range
direction than the original measurement space uncertainty,
but it is still a thin disk in Cartesian space. The estimation
error is on the order of a kilometer, while still fitting exact
position values. The increased weight of the error in the
range direction forces lower residuals in that direction,
while residuals in perpendicular directions are less relevant,
especially for measurements further from the radar. The
problem lies in pairing Kepler dynamics with a strongly
directional weighting, as the model cannot maintain low
range residuals for such a long pass (Fig. 2, Left), so the fit-
ting algorithm has to change the trajectory considerably.

When fitting true radar observables directly with a
Kepler model (see Section 3.2), the problem exacerbates
(Fig. 3, Left), with an epoch position error of 1.5 km. This
is due to the range being even more relevant to the weight-
ing and the addition of a range-rate constraint with very
low uncertainty.

The approximated J2 propagator (Section 3.3.2) is tested
up to the fourth term of the Taylor expansion (see Table 6
for constants). Absolute position errors compared to
numerical propagation are below 1 cm for a 100-s propaga-
tion (Fig. 4). Fig. 3 (Center) shows the errors when the true
state is propagated from the epoch using the J2 propagator,
with range residuals barely over 1 meter at worst. Conse-
quently, the radar observables fitting is much more similar
to the original trajectory (Fig. 3, Right), indicating this
might be superior to GTDS if only position errors are
considered.

Fig. 5 compares the methods for different track lengths
with noiseless measurements, representing the error at the
epoch when the fitted trajectory gets shorter as measure-
ments are extracted in pairs from the sides of the test track.
A shorter trajectory can be better fitted with simplified
dynamics. The KEP fit of measurements is the worst of
le 8, in Cartesian coordinates (Earth EME2000 inertial frame). The initial

vx (km=s) vy (km=s) vz (km=s) t0

�3.8952 �6.282 �1.219 01/05/2022
7.151 2.655 �0.1728 06/07/2020
�4.458 4.973 4.244 27/08/2023
�4.040 4.249 5.315 27/08/2023



Fig. 3. Position and range errors using true radar measurements, including r
fitting. Center: Analytical J2 propagation from the true state at t0. Right: Ana

Fig. 2. Kepler-based trajectories vs. true positions for a 284-s radar track. Rang
Trajectory starting from the true state at epoch. Center: Fitting of true positio

Table 5
Complete characterization of the radar stations used for the simulated
testing.

Name Radar 1 Radar 2 Radar 3

ðk;/Þ (�) ð�5:59; 37:17Þ ð22:3; 78:49Þ ð175:68;�37:86Þ
h (m) 142.32 22.14 36.2

ðux;uy ;uzÞ (�) - ð40; 0; 0Þ ð30; 0; 0Þ
ðUmin;UmaxÞ (�) - ð�30; 30Þ ð�20; 20Þ
ðV min; V maxÞ (�) - ð�20; 20Þ ð�45; 45Þ

rq (m) 7 6:5 6:5
r _q (m/s) 0:4 0:35 0:35
rAz (�) 0:3 0:25 0:25
rel (�) 0:2 0:15 0:15
nAz;el 0:043 0:043 0:043
rt (s) 7 4 4
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the three, but very short tracks do not degrade as much in
terms of estimated position bias. The KEP + J2 fit with J2
perturbation seems to be the best in this regard, but GTDS
has a small advantage in velocity errors, which can only
occur under the condition of perfect position measure-
ments. Since the GTDS method assigns equal weight to
all residuals, errors stemming from the basic dynamics
are effectively averaged out.

4.2.2. Fitting of noisy measurements

When noise is introduced (Fig. 6) and results are aver-
aged over multiple fittings, there is little difference between
the methods for tracks shorter than 100 s in terms of aver-
age position error. GTDS has a slight disadvantage in
ange-rate, for the same sample track as in Fig. 2. Left: Kepler dynamics
lytical fitting with J2.

e error is the position error projected along the satellite-radar vector. Left:
ns without weights. Right: Fitting of true positions with weights.
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velocity errors for the first half of the interval, due to the
lack of range-rate information. As the track lengthens,
the Keplerian fitting of measurements shows its fundamen-
tal flaw, with added information deteriorating the estima-
tion due to the pairing of non–homogeneous data (disk-
shaped covariance), with an unsuitable dynamical model.
Fig. 4. GEqOE Taylor expansion relative error improves by an order of magn
relative error computation) is the numerical propagation output with 10�

approximation (4b).

Fig. 5. Fitting errors (at t0) for decreasing radar track durations using the thre
and 3 is used. All fittings use true measurement values.

Table 6
Constants used for the analytical J2 propagator developed in Section 3.3.2.

l (km3=s2) Re (km) J2

398600:4418 6378:137 1:082626683553 � 10�3
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GTDS suffers less from the Kepler approximation thanks
to the lack of weighting, enabling error averaging. The
approximated J2 method performs best overall, particularly
for the longest radar tracks.

Fig. 7 shows the uncertainty evolution for different track
lengths. GTDS is more conservative in uncertainty estima-
tion, partly due to the absence of range-rate data and the
indirect use of measurement uncertainty. The information
in Fig. 7 does not consider correlations, providing an
incomplete picture of the covariance. The evolution is com-
patible with the errors, suggesting correct behavior of this
estimation method. The Keplerian fit of radar observables
suffers from overconfidence for tracks longer than 100 s,
itude with each added term for the first 200 s. The normalizing value (for
14 tolerance (4a). Cartesian error is computed with the fourth-order

e main IOD algorithms from Section 3. The same radar track as in Figs. 2



Fig. 6. Fitting errors for decreasing radar track durations using the three main IOD algorithms from Section 3, with added noise and averaged over
multiple samples. All fittings use noisy measurements.

Fig. 7. Estimation uncertainty using the three main IOD methods from Section 3, with added noise and averaged over multiple samples. Uncertainty
displayed: square root of the sum of eigenvalues for position and velocity blocks of the uncertainty matrix Cy , a conservative representation not
considering correlations.
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with uncertainty decreasing as more measurements are
added, but the error not evolving accordingly. A more
comprehensive exploration of uncertainty realism is con-
ducted in Section 4.5.1 using a broader dataset.

4.3. Preliminary testing of OPOD

The IOD method that includes information of inclination
(i) and right ascension of the ascending node (X), see Sec-
tion 3.4, is tested here. First a check is performed on the
degree of predictability of the orbital plane and the expected
uncertainty for two different LEO. The presence of maneu-
vers is also considered. The fitting method is then assessed
with varying virtual measurement uncertainties on the same
test track as in Section 4.2 and different track lengths.
10
4.3.1. Orbital plane predictability check

Orbital plane predictability is first tested with a circular
LEO (a ¼ 8600 km, i ¼ 60�). Fig. 8a compares high-fidelity
dynamics versus a simple propagation, showing prediction
errors for i and X. The high-fidelity model uses True
dynamics (Table 1) with the Sentinel-1A HF model, while
the simple model uses LF dynamics without atmospheric
effects, including only luni-solar perturbation and degree/
order 4 harmonics. A Monte-Carlo approach samples posi-
tion (rr � 30 m) and velocity (rv � 0:2 m/s). Results indi-
cate high predictability with angular errors for i and X
around 10�4 degrees, r values up to 10�3, contrasting with
position errors up to 13 km after 5 days. The second

example (Fig. 8b), with a ¼ 6900 km and e ¼ 10�4,
requires higher fidelity (degree/order 20 harmonics) and



Fig. 8. Prediction error for inclination and RAAN is low using only degree/order 4 Earth harmonics and luni-solar perturbation for a ¼ 8600 km (8a).
For a ¼ 6900 km, higher fidelity with degree/order 20 harmonics and a simple Harris-Priester atmosphere model is needed, resulting in good orbital plane
predictions after 5 days (8b).
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includes atmospheric effects (Modified Harris-Priester
model in Orekit, Hatten and Russell (2017)). Errors for
the orbital plane remain similar, but position error
increases to 33 km.

These findings indicate that even a low-fidelity propaga-
tor can accurately predict the orbital plane in the absence
of maneuvers. The next step is to assess the effects of
maneuvers on this prediction. This was tested for a series
of maneuvered cases with variations in maneuver instant
and direction (5 directions, 2 instants after t0). An impul-
sive value of 0:2 m/s, considered high from previous works
(Montilla et al., 2023b), was used. Error evolution for all
cases is shown in Fig. 9. Notable changes in inclination
Fig. 9. For 10 maneuvered cases, predicted errors of i and X can exceed those
after 5 days.
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and RAAN occur for out-of-plane maneuvers, while pro-
grade and retrograde maneuvers significantly affect X due
to changes in the semi-major axis, affecting the J2 secular
rate. These examples illustrate expected errors in orbital
plane prediction despite maneuvers.

The proposed method uses predicted i and X at the esti-
mation epoch as extra measurements. Considering possible
maneuver effects, it is crucial to use reasonable uncertain-
ties for these virtual measurements. Overconfident values
would impose constraints incompatible with measurements
of a maneuvered spacecraft, inducing estimation errors.

These uncertainties should be around 5 � 10�3 degrees; their
validity and impact on estimation are discussed next.
in the non-maneuvered case (Fig. 8b), but remain around 5 � 10�3 degrees
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4.3.2. Effect of the i and X virtual measurements on the

estimation error

This section tests the OPOD method and the effect of
orbital plane uncertainty on estimation error. Using initial
conditions S1A-1 (Table 4), the Sentinel-1A HF model is
simulated with 4 maneuvered cases. A long track from
Radar 3, occurring 3.6 days after t0, is sampled and used
to derive average results for varying track durations. The
predicted orbital plane is calculated using the LF model.
Identical i and X values are used for all tests with the J2 fit-
ting method.

Fig. 10 summarizes expected improvements for different
uncertainty magnitudes. The orbit here is higher than in
Fig. 9, and the prediction model has higher fidelity
(Table 1), resulting in lower prediction errors (about 10%
weaker J2 effect).

The non-maneuvered case serves as a reference, showing
that precise predicted i and X always improve the estimation.

However, with large uncertainties (e.g., 5 � 10�2 degrees), the
improvement is reduced. Compared to Fig. 6 (Left), there is
a slight reduction in estimation error, especially for shorter
tracks. Reducing uncertainty by an order of magnitude sig-
nificantly lowers error, particularly for very short tracks
(1 km decrease in position error). Further reduction mainly
affects longer tracks, with diminishing improvements when
uncertainty becomes unreasonably low.

Maneuvers affect estimation accuracy, sometimes nega-
tively. For Out-of-plane maneuvers, overconfidence in extra
information increases prediction error for longer tracks.
The estimation uncertainty always decreases with reduced
ri;X, leading to an overconfident estimation. This shows

that uncertainties smaller than ri;X ¼ 5 � 10�3 degrees are
not recommended for the maneuvers considered here.
The Prograde maneuver also shows a slight error increase
Fig. 10. Average error with orbital plane information added using the J2 an
measurement samples. Different maneuvered cases are compared, focusing on
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when orbital plane information is assumed too precise, pri-
marily affecting X due to J2 perturbation. The Radial-out

case shows negligible error increase.
For maneuvers up to 0:2 m/s, assuming a standard devi-

ation of ri;X ¼ 5 � 10�3 degrees for predicted orbital plane
error is safe for state estimation. The impact on estimation
statistics for this augmented method is discussed in
Section 4.5.2.

4.4. Simulated scenarios

The goal of this testing is to establish realistic expecta-
tions for the estimation algorithms with varying track
lengths and data density. In each scenario, the satellite’s
true state at t0 sets the true orbit, which remains invariant.
Testing the OPOD method requires computing the pre-
dicted orbital plane. To introduce variability in prediction
accuracy, scenarios include a non-maneuvered case and
various combinations of impulse value (Nimp), maneuver
direction (Ndir), and maneuver instant after t0 (Nt). Each
of these NimpNdirN t þ 1 cases generates a battery of tracks
(Nint) in a radar station within a given integration window.
All tracks are individually sampled Nms times to generate
estimation statistics. The Mahalanobis Distance squared

of the estimation error (k2) is computed and compared to
the theoretical distribution.

If the fitting methodology does not require information
outside radar observables, the scenario variability only
generates more (slightly) different tracks. Scenarios
STARL-1 and STARL-2, which do not consider maneu-
vers, increase track length variety for testing the 3 main
IOD algorithms. Thus, these scenarios do not require LF
satellite model or initial state uncertainty information.
The uncertainty aspect is relevant when including predicted
alytical estimation method for a radar track 3.6 days after t0, with 500
the uncertainty in i and X.
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i and X, derived from a sampled initial state around the
true one. A total of Nsp initial samples are propagated indi-
vidually, with one randomly chosen for the estimation
computation.

Five different scenarios are used to generate statistics on
the methods under study. Table 8 details these scenarios.
The two maneuver instants considered are 0.1 and 0.5 days
after t0. The Low uncertainty is locally defined with values
of 5; 30:4, and 5 meters in position, and 0:002; 0:01, and
0:006 m/s in velocity (diagonal covariance in the LVLH
frame). The integration window (with Nint variations) goes
up to a maximum of 4 days (10 for STARL-1 and 2),
depending on initial conditions and the radar station. Dur-
ing the maximum window, Nint different radar tracks are
considered independently, with no combination to increase
available information. The 5 impulse values used are
20; 10; 8; 5; 2 (cm/s). The impulse directions, in Table 7,
are locally defined, so þx is the direction of the position
vector and þz is the direction of the orbit angular momen-
tum. From 1 to 6 these are (approximately) prograde, ret-
rograde, radial-in, radial-out, in-plane (45� from �x and
þy in LVLH) and out-of-plane (at þz).
4.5. k2 metric statistics

This section provides an in-depth analysis of the perfor-
mance of the estimation methods. A series of tests evaluate
the accuracy and uncertainty realism of the methods for
different radar tracks from the established scenarios. Ini-
tially, a single radar pass was studied (Sections 4.2 and
4.3) without considering correlation information. The cur-
rent approach uses all radar tracks from Table 8.

Following the methodology in Reihs et al. (2021), the k2

metric (independent of predictions) is used to assess estima-
Table 8
Scenarios used for the simulated data generation and metric testing. All of the
initial conditions.

SC Name HF Satellite LF Satellite Radar Station I.C.

SEN-1A-1 Sentinel-1A Sentinel-1A1 Radar 1 S1A-1
SEN-1A-2 Sentinel-1A Sentinel-1A1 Radar 2 S1A-1
SW-C-1 Swarm-C Swarm-C1 Radar 1 SWC-1
STARL-1 Starlink-1 - Radar 1 SRL-1
STARL-2 Starlink-2 - Radar 1 SRL-2

Table 7
The six impulse directions used in all scenarios are defined in the LVLH
frame (or QSW in OREKIT).

Direction dx dy dz

1 0 0.9397 0.3420
2 0 �0.9397 0.3420
3 �0.9397 0 0.3420
4 0.9397 0 0.3420
5 �0.7071 0.7071 0
6 0 0 1
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tion uncertainty realism. This metric is k2 ¼ dTCyd, with d
being the vector of the difference between the fitted state
and the ground truth.

For an adequate fitting model and near-linear relation
between the estimated state and measurements (close to

the estimated state), the k2 statistics for a set of samples
from a given track should follow a chi-square distribution

with p degrees of freedom. Consequently, the mean of k2

should be l ¼ p, the variance r2 ¼ 2p, and 10% of the sam-
ples should exceed v2invð0:9; pÞ, the chi-square inverse cumu-
lative distribution function of p degrees of freedom at the
90th percentile.

4.5.1. k2 statistics on the IOD methods

For Radar 1 simulations in Table 8, Figs. 11–13 show k2

statistics for full state, position, and velocity estimations.
The horizontal black line indicates the expected value.
Radar 1 and 2 results are treated separately due to mea-
surement rates affecting fitting behavior.

KEP and KEP+J2 fittings perform poorly for very short
tracks (<21 s or 4 measurements), at least in regards to the
uncertainty realism of the estimations. Fig. 14 shows veloc-
ity errors for a short track fitted with GTDS and KEP+J2.
The distribution of the proposed method differs from the
analytical covariance due to the linear approximation in
the least-squares algorithm being inaccurate. As the radar
tracks get shorter the uncertainty region increases, and
the linear approximation ceases to be sufficiently good. In
other words, the linear approximation of the covariance
given by the linear least-squares method is only good when
the uncertainty is localized close to the estimate, and
degrades when this region becomes too large. Position esti-
mation on the other hand has a slight bias in the smaller

variance direction (not shown here), penalizing k2. This
leads to abnormally high v2invð0:9; pÞ outliers, indicating
potential reliability issues for maneuver detection metrics
on short tracks. GTDS behaves as expected for short
tracks.

For more than 5 measurements, KEP and KEP+J2
improve as non-linearity and position bias decrease. KEP
+J2 full state estimation behaves as indicated by the analyt-
ical covariance, even for longer Starlink-2 tracks. KEP
velocity estimation degrades due to bias from 50 s and
upwards, but position is unaffected.

Despite no visible degradation in position and velocity

separately, GTDS has increased full state k2 values for
m use the same 6 different maneuver directions, in Table 7. I.C stands for

I.Uncertainty Nsp Nimp Ndir N t Nint Nms

Low 50 5 6 2 4 600
Low 35 5 6 2 15 600
Low 50 5 6 2 4 600
- - 0 - - 13 600
- - 0 - - 16 600



Fig. 11. Estimation only k2 mean values for Radar 1 (rt ¼ 7 seconds). Each radar track in the scenarios SEN-1A-1, SW-C-1, STARL-1 and STARL-2 is
sampled 600 times and the k2 statistics of the corresponding method are computed.

Fig. 12. Estimation only k2 variance values for Radar 1 (rt ¼ 7 seconds). Each radar track in the scenarios SEN-1A-1, SW-C-1, STARL-1 and STARL-2
is sampled 600 times and the k2 statistics of the corresponding method are computed.

Fig. 13. Estimation only k2 percentage of anomalous estimations for Radar 1 (rt ¼ 7 seconds). Each radar track in the scenarios SEN-1A-1, SW-C-1,
STARL-1 and STARL-2 is sampled 600 times and the k2 statistics of the corresponding method are computed.
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longer tracks, see Fig. 13, likely due to unrealistic covari-
ance correlations, making full state estimation not recom-
mendable for longer than 50 s tracks.

For these 7s measurement rate scenarios, short track
state estimation is more reliable with GTDS, but longer
tracks benefit from observable fitting with range-rate using
the method in Section 3.3, as KEP+J2 velocity errors are
lower than GTDS (Fig. 14). Modifying the covariance to
account for non-linearity in short tracks or inflating the
14
position covariance in the bias direction could improve
the reliability of the proposed method, but this is not con-
sidered here.

Radar 2 results (4s measurement rate) are slightly differ-
ent (Figs. 15–17). The SEN-1A-2 scenario includes longer
tracks, showing an extended range of metric performance.
KEP degrades sooner in velocity and deviates from the
ideal distribution in position for > 120 s tracks (similar
to Fig. 6 for Radar 3). These issues make KEP almost



Fig. 14. Velocity error distribution for very short tracks (2–4 measurements in Radar 1) fitted with GTDS and KEP+J2. The real distribution differs from
the analytical least-squares covariance in the KEP+J2 case, making the estimated covariance unrealistic for such short tracks.

Fig. 15. Estimation only k2 mean values for Radar 2 (rt ¼ 4 seconds).

Fig. 16. Estimation only k2 variance values for Radar 2 (rt ¼ 4 seconds).
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unusable for the whole track length range when consider-
ing the full state metric (Fig. 17). GTDS shows similar
behavior, with metric degradation exacerbated for around
90 s tracks but recovering for > 120 s tracks, indicating
compatible position-velocity correlations with the error
distribution for very long tracks. However, generalizing
this behavior for long single track estimation using GTDS
is not recommended, as a separate test with Radar 3
15
showed it might not always provide adequate full state
covariance correlations for very long radar tracks.

Notably, KEP+J2 performs excellently throughout
almost the complete range, only failing for very short
tracks (Fig. 17). This method is not only a good estimator
in terms of covariance representation realism but also
offers increased accuracy due to the use of measurement
uncertainty in the fitting and the inclusion of range-rate.



Fig. 17. Estimation only k2 percentage of anomalous estimations for Radar 2 (rt ¼ 4 seconds).

Fig. 18. Estimation only k2 mean values for Radar 2 (rt ¼ 4 seconds), including the information of the orbital plane with ri;X ¼ 5e� 3� in the KEP and
KEP+J2 methods.

J.M. Montilla et al. Advances in Space Research xxx (xxxx) xxx
4.5.2. k2 statistics on OPOD

The SEN-1A-2 scenario has been used to test the estima-
tion algorithms’performance, now including predicted
orbital plane information. For each sampled radar track,
the propagated initial condition information (randomly
chosen from the I.C. sampling) was used to include pre-
dicted inclination and RAAN in the fitting. This was only
done with the radar observables fitting methods, as GTDS
is unweighted and does not allow for non-position
measurements.
Fig. 19. Estimation only k2 variance values for Radar 2 (rt ¼ 4 seconds), includ
KEP+J2 methods.

16
Fig. 18 shows that including orbital plane information
has little effect on KEP fittings, only solving the issue with
very short tracks but not addressing the degradation for
longer ones. However, KEP+J2 sees its only drawback
fixed and now behaves more appropriately for all track

lengths. Although the obtained k2 values are lower than
expected (Fig. 20), a conservative covariance is generally
more desirable to avoid false correlations. This is due to
the virtual measurements being more consistent than indi-
cated by the used uncertainty value (ri;X ¼ 5e� 3� in all
ing the information of the orbital plane with ri;X ¼ 5e� 3� in the KEP and



Fig. 20. Estimation only k2 percentage of anomalous estimations for Radar 2 (rt ¼ 4 seconds), including the information of the orbital plane with
ri;X ¼ 5e� 3� in the KEP and KEP+J2 methods.
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cases), suggesting there is room for reducing the estimation
uncertainty. GTDS results are unchanged as no extra infor-
mation is added to the fit. (see Fig. 19)

Another considerably improved aspect not present in

the k2 statistics is the improved accuracy of the estimations
compared to the GTDS method. This is not surprising, as
the augmented methodology uses range-rate and orbital
plane data to generate a better estimation in all aspects,
including uncertainty realism.

5. Conclusions

This work introduces a novel approach to initial orbit
determination using data from a single radar track com-
bined with the predicted orbital plane of the object. Focus-
ing on the need for rapid algorithms in operational
scenarios, a least-squares fitting procedure incorporating
an analytically formulated approximation of the dynamics
under the J2 perturbation is developed. The algorithm
includes range-rate observables, distinguishing it from sim-
ilar methods. A comprehensive evaluation is conducted
through simulated tests, comparing its performance against
a classical range and angles fitting method (GTDS), explor-
ing the impact of track length and measurement density on
full state estimation.

Proper full state estimation using radar observables
directly does not work as intended with Keplerian dynam-
ics due to the magnitude of propagation errors being
greater than precise range measurements modeled after
modern radar technology. Improving the fidelity of the fit-
ting dynamics by including the J2 perturbation solves this
issue while maintaining the fully analytical aspect of the
methodology. The resulting fast IOD method is applicable
to maneuver detection and finding correlations between
cataloged objects and tracks.

The proposed method behaves as expected for tracks
longer than 40 s, especially with high data density. How-
ever, there is a problem for shorter arcs, where the non-
linear relation between the estimate and radar observables
affects the velocity part of the estimation. Covariance infla-
tion post-processing could be applied to take advantage of
the higher quality estimation.
17
The developed method admits the inclusion of chosen
parts of the predicted state as virtual measurements. Given
the orbital plane’s stability in LEO and relatively short
integration windows, the precision of predicted i and X jus-
tifies their inclusion in the estimation process. The resulting
method, denoted as OPOD, shows improved accuracy and
reliability for all track lengths.

The analytical time derivatives of the GEqOE equations
of motion developed in this work could be employed in an
enhanced numerical propagator that makes use of higher
order derivatives, potentially improving accuracy and
reducing the total number of steps needed for a given prop-
agation length and tolerance. This line of research is cur-
rently being pursued as an extended application of the
work presented here. Another promising avenue for future
research is the direct fitting of GEqOEs. This approach
would allow for the incorporation of range-rate informa-
tion into the estimation process and could potentially
improve uncertainty representation for the linear approxi-
mation of the covariance in the context of very short
tracks. By leveraging the inherent structure of GEqOEs,
where two elements are functions of inclination and longi-
tude of the node, this method could naturally integrate
orbital plane orientation information, as demonstrated in
our OPOD method.
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Appendix A. Auxiliary functions

A.1. Radar measurement function derivatives

The measurements provided by the radar in LEO are
range (q), azimuth (Az), elevation (el) and range-rate ( _q).
The observation function q;Az; el; _q½ � ¼ hðy; tÞ of these
observables is given by:

q ¼ ðr� PRÞ|ðr� PRÞ½ �1=2 ¼ q|q½ �1=2;
Az ¼ atan2 e|1qcR; e|2qcRð Þ ¼ atan2 e|1T

R
I q; e

|
2T

R
I q

� �
;

el ¼ arcsin
e
|
3
qcR
q

� �
¼ arcsin

e
|
3
TR
I q

q

� �
;

_q ¼ 1
q ðr� PRÞ|ðv� VRÞ ¼ q|u

q ;

ðA:1Þ

where q ¼ r� PR and u ¼ v� VR. The unit vectors
e1; e2; e3ð Þ form a Cartesian frame base. The fitting algo-
rithms in Sections 3.2 and 3.3 require the derivatives of
these measurements with respect to position (r) and veloc-
ity (v):

@h
@y
¼

qr qv

Azr Azv
elr elv
_qr _qv:

2
6664

3
7775: ðA:2Þ

The explicit functions of these derivatives are:

qr ¼ q|

q ; qv ¼ 0|;

Azr ¼ 1
1þtan2ðAzÞ e

|
1 � tanðAzÞe|2½ � TR

I
e
|
2
qcR ; Azv ¼ 0|;

elr ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�sin2ðelÞ
p e|3T

R
I � sinðelÞqr

� �
1
q ; elv ¼ 0|;

_qr ¼ ðu� _qqrÞ 1q ; _qv ¼ q

q ;

ðA:3Þ

which requires the knowledge of radar’s inertial position

(PR), velocity (VR) and orientation (TR
I ).
A.2. Time derivatives of the inverse function

In Section 3.3, the linear least-squares algorithm is
applied to a dynamical model that includes the J2 perturba-
tion using the GEqOE from Baù et al. (2021). To maintain
the analytical aspect of the fitting method, a Taylor expan-
sion has been developed. The coefficients of this expansion
are detailed in A.4, which extensively uses the inverse func-
tion f s ¼ 1

s and its time derivatives:
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_f s ¼ � _s
s2 ;

€f s ¼ 2 _s2

s3 � €s
s2 ;

f
...

s ¼ 6 €s_s
s3 � s

...

s2 � 6 _s3

s4 ;

f
ð4Þ
s ¼ 8 s

ð3Þ
_s

s3 þ 6 €s2

s3 � 36 _s2€s
s4 � s

ð4Þ

s2 � 24 _s4

s5 :

ðA:4Þ
A.3. Time derivatives of the function of s times _s

As with the inverse function in A.2, the function that
multiplies s by its time derivative _s; gs ¼ s_s, is repeatedly
used in the derivation of the J2 Taylor propagator (see
A.4). The time derivatives of gs are included here:
_gs ¼ _s2 þ s€s;

€gs ¼ 3_s€sþ s s
...

g
...
s ¼ 3€s2 þ 4_s s

ð3Þ þs s
ð4Þ
;

g
ð4Þ
s ¼ 10€s s

ð3Þ þ5_s s
ð4Þ þs s

ð5Þ
:

ðA:5Þ
A.4. Time derivatives of the J2 GEqOE equations of motion

To develop an efficient J2 perturbation propagator, this
work uses a Taylor expansion of the solution in terms of
GEqOE (Baù et al., 2021). First, the equations of motion
are simplified into a compact form (Eq. A.6), utilizing the
inverse function (see A.2). This section includes the time
derivatives of Eq. A.6 up to fourth order. All simplifica-
tions are defined in A.4.2, facilitating a systematic applica-
tion of the chain rule. From A.4.1–A.4.4, all steps for
computing the Taylor J2 propagator coefficients are
included.
A.4.1. First order derivatives
The first order time derivatives of the GEqOE can be

computed with:

_m ¼ 0; _p1 ¼ p2 d� whð Þ � f cn1U; _p2 ¼ p1 wh �dð Þ þ f cn2U;
_q1 ¼ �IsL; _q2 ¼ �IcL; _L ¼ mþd� wh � f cCU;

ðA:6Þ
where sL ¼ sin L; cL ¼ cos L. The rest of definitions for the
elements in Eq. (A.6) can be found next. Higher order
derivatives will require the computation of:

cos L ¼ X
r ;

sin L ¼ Y
r ;

_X ¼ _r cos L� h
r sin L;

_Y ¼ _r sin Lþ h
r cos L:

ðA:7Þ
A.4.2. Second order derivatives

The second order time derivatives of the GEqOE can be
computed with:
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€m ¼ 0; €q1 ¼ �_IsL � I _sL ;

€p1 ¼ _p2 d� whð Þ þ p2 _d� _wh

� �� _f cn1 þ f c
_n1

� �
U � f cn1

_U; €q2 ¼ �_IcL � I _cL ;

€p2 ¼ _p1 wh �dð Þ þ p1 _wh � _d
� �þ _f cn2 þ f c

_n2
� �

U þ f cn1
_U; €L ¼ _d� _wh � _f cCþ f c

_C
� �U � f cC

_U:

ðA:8Þ
All the elements that appear in Eq. (A.8) are computed
with the following formulation. The first time derivative
of ẑ is computed from:

ẑ ¼ 2 Yq2�Xq1ð Þ
rð1þq2

1
þq2

2
Þ ¼ C

D ¼ Cf D; _̂z ¼ _Cf D þ C _f D;
C ¼ 2 Yq2 � Xq1ð Þ; _C ¼ 2 _Y q2 þ Y _q2 � _Xq1 � X _q1

� �
;

D ¼ rð1þ q21 þ q22Þ ¼ rqs; _D ¼ _rqs þ r _qs;

qs ¼ ð1þ q21 þ q22Þ; _qs ¼ 2 q1 _q1 þ q2 _q2ð Þ;
ðA:9Þ

where _f D is calculated from _D. The first time derivative of
U and Uz are:

U ¼ � A
r3 ð1� 3ẑ2Þ ¼ �AUzf r3 ;

_U ¼ �A _Uzf r3 þ Uz
_f r3

� �
;

Uz ¼ ð1� 3ẑ2Þ; _Uz ¼ �6ẑ _̂z:
ðA:10Þ

The value _f r3 in Eq. (A.10) is computed from the derivative

of r3:

dðr3Þ
dt
¼ _rc ¼ 3r2 _r: ðA:11Þ

Given that the generalized semi-major axis is a ¼ ðl=m2Þ1=3,
the derivative of C and b, which in turn allows to compute
_f 1þb; _f b and _f a, are given by:

C ¼ f a þ a 1� r=að Þ; _C ¼ _f a þ _a 1� r
a

� �� a _r
a ;

a ¼ 1
1þb ¼ f 1þb; _a ¼ _f 1þb;

b ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� p12 � p22

q
; _b ¼ � _ps

2b ¼ � 1
2
_psf b;

ps ¼ 1þ p21 þ p22; _ps ¼ 2 p1 _p1 þ p2 _p2ð Þ:
ðA:12Þ

The first time derivative of I is given in:

I ¼ 3A
hr3

ẑð1� q21 � q22Þ ¼ 3A ẑd
h
¼ 3Aẑd f h; _I ¼ 3A _̂zdþ ẑ _d

� �
f h þ ẑd _f h

h i
;

d ¼ 1� q21 � q22; _d ¼ � _qs;

h ¼ hr3 ¼ hrc; _h ¼ _hrc þ h_rc;

h ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 � 2r2U
p

; _h ¼ gc � 2grU � r2 _U� �
f h;

c ¼ l2

m

� �1=3 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� p21 � p22

p
¼ l2

m

� �1=3
b; _c ¼ l2

m

� �1=3
_b:

ðA:13Þ
This includes the computation of _f h from _h, and _f h is com-

puted from _h for later use. The same goes for _f c and gc, cal-
culated from _c. The first time derivative of d is:

d ¼ h�c
r2 ¼ h� cð Þf r2 ;

_d ¼ _h� _c
� �

f r2 þ h� cð Þ _f r2 ;
dðr2Þ
dt ¼ _rs ¼ 2r _r ¼ 2gr;

ðA:14Þ

where _f r2 is computed from the derivation of r2. Finally,
the time derivatives of wh; n1; n2; sL and cL are:
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wh ¼ I ẑ; _wh ¼ _I ẑþ I _̂z;

n1 ¼ X
a þ 2p2; _n1 ¼ _X

a þ 2 _p2;

n2 ¼ Y
a þ 2p1; _n2 ¼ _Y

a þ 2 _p1;

sL ¼ Y
r ¼ Y f r; _sL ¼ _Y f r þ Y _f r;

cL ¼ X
r ¼ X f r; _cL ¼ _X f r þ X _f r:

ðA:15Þ

In this section the computation of every f s time derivative
has been explicitly written. In the following, these com-
ments are omitted for the sake of brevity, and it will be
assumed all instances can be computed with the corre-
sponding derivatives of s (to the needed order).

A.4.3. Third order derivatives

The third order time derivatives of the GEqOE can be
computed with:

m
... ¼ 0;

q
...

1

¼ �€IsL � 2_I _sL � I€sL;

q
...

2

¼ �€IcL � 2_I _cL � I€cL;

p
...

1
¼ €p2 d� whð Þ þ 2 _p2 _d� _wh

� �þ p2 €d� €wh

� �� €f cn1 þ 2 _f c _n1 þ f c
€n1

� �
U � 2 _f cn1 þ f c

_n1
� �

_U � f cn1
€U;

p
...

2

¼ €p1 wh �dð Þ þ 2 _p1 _wh � _d
� �þ p1 €wh � €d

� �þ €f cn2 þ 2 _f c _n2 þ f c
€n2

� �
U þ 2 _f cn2 þ f c

_n2
� �

_U þ f cn2
€U;

L
...

¼ €d� €wh � €f cCþ 2 _f c _Cþ f c
€C

� �
U � 2 _f cCþ f c

_C
� �

_U � f cC
€U:

ðA:16Þ

All the elements that appear in Eq. (A.16) are computed
with the following formulation. The second time derivative
of ẑ comes from:

€̂z ¼ €Cf D þ 2 _C _f D þ C€f D; €C ¼ 2 €Y q2 þ 2 _Y _q2 þ Y _q2 � €Xq1 � 2 _X _q1 � X€q1
� �

;

€D ¼ €rqs þ 2_r _qs þ r€qs ! €f D ; €qs ¼ 2 _q21 þ q1€q1 þ _q22 þ q2€q2
� �

:
ðA:17Þ

The second order time derivatives of X and Y are com-
puted with:

_X ¼ _r cos L� h
r sin L ¼ _rcL �wsL; €X ¼ €rcL þ _r _cL � _wsL �w _sL;

_Y ¼ _r sin Lþ h
r cos L ¼ _rsL þwcL; €Y ¼ €rsL þ _r _sL þ _wcL þw _cL;

w ¼ h
r ¼ hf r ; _w ¼ _hf r þ h _f r ;

_r ¼ l
c p2 sin L� p1 cos Lð Þ ¼ lf crpl; €r ¼ l _f crpl þ f c _rpl

� �
;

rpl ¼ p2sL � p1cL; _rpl ¼ _p2sL þ p2 _sL � _p1cL � p1 _cL:

ðA:18Þ

The second time derivative of U and Uz can be computed
with:

€U ¼ �A €Uzf r3 þ 2 _Uz
_f r3 þ Uz

€f r3
� �

; €Uz ¼ �6 _̂z2 þ ẑ€̂z
� �

; d2ðr3Þ
dt2
¼ €rc ¼ 3 2r_r2 þ r2€rð Þ:

ðA:19Þ

The second order derivatives of C and b are given by:

€C ¼ €f a þ €a 1� r
a

� �� 2 _a _r
a� a €r

a ; €a ¼ €f 1þb;

€b ¼ � 1
2

€psf b þ _ps _f b
� �

! €f 1þb; €f b; €ps ¼ 2 _p21 þ p1€p1 þ _p22 þ p2€p2
� �

:

ðA:20Þ



J.M. Montilla et al. Advances in Space Research xxx (xxxx) xxx
The second time derivative of I is completely defined in:

€I ¼ 3A €̂zdþ 2 _̂z _dþ ẑ€d
� �

f h þ 2 _̂zdþ ẑ _d
� �

_f h þ ẑd€f h
h i

;

€h ¼ €hrc þ 2 _h_rc þ h€rc;
€h ¼ _gc � 2 _grU � 4gr

_U � r2 €U� �
f h þ gc � 2grU � r2 _U� �

_f h;

€c ¼ l2

m

� �1=3
€b;

€d ¼ �€qs:
ðA:21Þ

The second time derivative of d results from:

€d ¼ €h� €c
� �

f r2 þ 2 _h� _c
� �

_f r2 þ h� cð Þ€f r2 ;
d2ðr2Þ
dt2

¼ €rs ¼ 2 _gr:
ðA:22Þ

The second order time derivatives of wh; n1; n2; sL and cL
are:

€wh ¼ €I ẑþ 2_I _̂zþ I€̂z;
€n1 ¼ €X

a þ 2€p2;
€n2 ¼ €Y

a þ 2€p1;

€sL ¼ €Y f r þ 2 _Y _f r þ Y €f r;

€cL ¼ €X f r þ 2 _X _f r þ X€f r:

ðA:23Þ
A.4.4. Fourth order derivatives
The fourth order time derivatives of the GEqOE can be

computed with:

m
ð4Þ ¼ 0;

q
ð4Þ

1

¼ � I
...

sL � 3€I _sL � 3_I€sL � I s
...

L
;

q
ð4Þ

2

¼ � I
...

cL � 3€I _cL � 3_I€cL � I c...
L
;

p
ð4Þ

1

¼ p
...

2

d� whð Þ þ 3€p2 _d� _wh

� �þ 3 _p2 €d� €wh

� �þ p2 d
...

�w
...

h

� �

� f
...

c
n1 þ 3€f c _n1 þ 3 _f c€n1 þ f c n

...

1

� �
U � 3 €f cn1 þ 2 _f c _n1 þ f c

€n1
� �

_U � 3 _f cn1 þ f c
_n1

� �
€U � f cn1 U

...

;

p
ð4Þ

2

¼ p
...

1

wh �dð Þ þ 3€p1 _wh � _d
� �þ 3 _p1 €wh � €d

� �þ p1 w
...

h
�d

...
� �

þ f
...

c
n2 þ 3€f c _n2 þ 3 _f c€n2 þ f c n

...

2

� �
U þ 3 €f cn2 þ 2 _f c _n2 þ f c

€n2
� �

_U þ 3 _f cn2 þ f c
_n2

� �
€U þ f cn2 U

...

;

L
ð4Þ
¼ d

...

�w
...

h
� f

...

c
Cþ 3€f c _Cþ 3 _f c €C þ f c C

...
� �

U � 3 €f cCþ 2 _f c _Cþ f c
€C

� �
_U � 3 _f cCþ f c

_C
� �

€U � f cCU
...

:

ðA:24Þ

All the elements that appear in Eq. (A.24) are computed
with the following formulation. The third time derivative
of ẑ is:

ẑ
...

¼ C
...

f D þ 3€C _f D þ 3 _C€f D þ C f
...

D
; C

...

¼ 2 Y
...

q2 þ 3€Y _q2 þ 3 _Y €q2 þ Y q
...

2

�X
...

q1 � 3€X _q1 � 3 _X€q1 � X q
...

1

� �
;

D
...

¼ r
...
qs þ 3€r _qs þ 3_r€qs þ r q

...

s
; q

...

s
¼ 2 3 _q1€q1 þ q1 q

...

1

þ3 _q2€q2 þ q2 q
...

2

� �
:

ðA:25Þ
The third order time derivatives of X and Y are computed
in:

X
... ¼ r

...
cL þ 2€r _cL þ _r€cL � €wsL � 2 _w _sL �w€sL;

Y
... ¼ r

...
sL þ 2€r _sL þ _r€sL þ €wcL þ 2 _w _cL þw€cL;

€w ¼ €hf r þ 2 _h _f r þ h€f r;

r
... ¼ l €f crpl þ 2 _f c _rpl þ f c€rpl

� �
;

€rpl ¼ €p2sL þ 2 _p2 _sL þ p2€sL � €p1cL � 2 _p1 _cL � p1€cL:

ðA:26Þ
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The third order time derivative of U and Uz can be com-
puted with:

U
...

¼ �A U
...

z
f r3 þ 3 €Uz

_f r3 þ 3 _Uz
€f r3 þ Uz f

...

r3

 !
;

U
...

z
¼ �6 3 _̂z€̂zþ ẑ ẑ

...� �
;

d3ðr3Þ
dt3

¼ r
...

c
¼ 3 2_r3 þ 6r _r€r þ r2 r

...ð Þ:

ðA:27Þ

The third order derivatives of C and b are:

C
...

¼ f
...

a
þ€a 1� r

a

� �� 3€a _r
a� 3 _a €r

a� a r
...

a ; a
... ¼ f

...

1þb
;

b
...

¼ � 1
2

p
...

s
f b þ 2€ps _f b þ _ps€f b

� �
; f
...

b

; p
...

s
¼ 2 3 _p1€p1 þ p1 p

...

1
þ3 _p2€p2 þ p2 p

...

2

� �
:
ðA:28Þ

The third order time derivative of I is computed from the
next expressions:

I
... ¼ 3A ẑ

...

dþ 3€̂z _dþ 3 _̂z€dþ ẑ d
...� �

f h þ 3 €̂zdþ 2 _̂z _dþ ẑ€d
� �

_f h þ 3 _̂zdþ ẑ _d
� �

€f h þ ẑd f
...

h

	 

;

h
...

¼ h
...

rc þ 3€h_rc þ 3 _h€rc þ h r
...

c
;

h
...

¼ €gc � 2€grU � 6 _gr
_U � 6gr

€U � r2 U
...� �

f h þ 2 _gc � 2 _grU � 4gr
_U � r2 €U� �

_f h þ gc � 2grU � r2 _U� �
€f h ;

c
... ¼ l2

m

� �1=3
b
...

;

d
...

¼ � q
...

s
:

ðA:29Þ

The third time derivative of d is:

d
...

¼ h
...

� c
...

� �
f r2 þ 3 €h� €c

� �
_f r2 þ 3 _h� _c

� �
€f r2 þ h� cð Þ f

...

r2
; d3 ðr2 Þ

dt3
¼ r

...

s
¼ 2€gr : ðA:30Þ

The third order time derivatives of wh; n1; n2; sL and cL are
given by:

w
...

h
¼ I

...

ẑþ 3€I _̂zþ 3_I€̂zþ I ẑ
...

;

n
...

1
¼ X

...

a þ 2 p
...

2

;

n
...

2
¼ Y

...

a þ 2 p
...

1

;

s
...

L
¼ Y

...

f r þ 3€Y _f r þ 3 _Y €f r þ Y f
...

r
;

c
...

L
¼ X

...

f r þ 3€X _f r þ 3 _X€f r þ X f
...

r
:

ðA:31Þ
A.5. Derivatives of the f s and gs time derivatives with respect

to the element x

When f
ðkÞ

s
is derived with respect to x, then all the deriva-

tives up to s
ðkÞ

with respect to x (with standard notation s
ðkÞ
x
)

are needed (or up to s
ðkþ1Þ

in the case of g
ðkÞ

s
). The notation for

the cross derivative used here meets @ f s

ðkÞ
=@x ¼ f s

ðkÞ;x
, chose

on purpose for the compact expressions developed in this
appendix section.
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Thus, the function that computes f
ðkÞ;x

s
needs not only the

vector s; _s; � � � ; sðkÞ
	 


, but also sx; _sx; � � � ; sðkÞ
x

	 

as input. Here

are the expressions of the function that implements these
derivatives:

@f s
@x ¼ f

x

s
¼ � sx

s2 ;

@ _f s
@x ¼ f

ð1Þ;x

s
¼ � _sx

s2 þ 2 _ssx
s3 ;

@€f s
@x ¼ f

ð2Þ;x

s
¼ � €sx

s2 þ 2 €ssxþ2_s_sx
s3 � 6 _s2 sx

s4 ;

@ f
...

s

@x ¼ f
ð3Þ;x

s
¼ � s

...

x

s2 þ 2 s
...
sxþ3 €sx _sþ€s_sxð Þ

s3 � 18 €s_ssxþ_s2 _sx
s4 þ 24 _s3 sx

s5 ;

@ f
ð4Þ

s

@x ¼ f
ð4Þ;x

s
¼ � s

ð4Þ
x

s2 þ 2
s
ð4Þ

sxþ6€s€sxþ4 s
...

x
_sþ s
ð3Þ

_sx

� �
s3 � 6

4 s
ð3Þ

_ssxþ6 2_s_sx€sþ_s2€sxð Þþ3€s2 sx
s4

þ12 12_s2€ssx�8_s3 _sx
s5 þ 120 _s4sx

s6 :

ðA:32Þ

And similarly for g
ðkÞ;x

s
the derivatives are:

@gs
@x ¼ g

x

s
¼ sx _sþ s_sx;

@ _gs
@x ¼ g

ð1Þ;x

s
¼ 2_s_sx þ sx€sþ s€sx;

@€gs
@x ¼ g

ð2Þ;x

s
¼ 3_sx€sþ 3_s€sx þ sx s

...þs s...
x
;

@ g
...

s

@x ¼ g
ð3Þ;x

s
¼ 6€s€sx þ 4_sx s

ð3Þ þ4_s s
ð3Þ
x
þsx s

ð4Þ þs s
ð4Þ
x
;

@ g
ð4Þ
s

@x ¼ g
ð4Þ;x

s
¼ 10€sx s

ð3Þ þ10€s s
ð3Þ
x
þ5_sx s

ð4Þ þ5_s s
ð4Þ
x
þsx s

ð5Þ þs s
ð5Þ
x
:

ðA:33Þ
A.6. Derivatives of inclination and right ascension of the

ascending node

Consider the specific angular momentum as the cross
product of position and velocity both given in an inertial
frame (I), h ¼ r� v. The inclination i can be computed as
a function of r and v from:

h ¼ h|hð Þ1=2; hz ¼ k|h; i ¼ arccos
hz
h

� �
: ðA:34Þ

The right ascension of the ascending node X is computed
from:

n� ¼ k� h; n� ¼ n�|n�ð Þ1=2;
n ¼ n�

n�
; X ¼ arccos i|nð Þ: ðA:35Þ

For the derivation of i and X with respect to position and
velocity let us first define the cross product of a 3� n
matrix M by a 3� 1 vector d as the cross product of each
column in M by d. This means that the i-eth column of
D ¼M� d meets Di ¼Mi � d. In other words, the cross
product of matrix and vector acts column-wise for the next
21
derivation. The differentiation with respect to the state for
the inclination observable results in the following:

@h
@r
¼ @r

@r
� vþ r� @v

@r
¼ I � v;

@h
@v
¼ @r

@v
� vþ r� @v

@v
¼ �I � r;

@h
@y
¼ @h

@r
; @h
@v

� �
;

@hz
@y
¼ e|3

@h
@y
;

@h
@y
¼ h|

h
@h
@y
;

@i
@y
¼ � 1ffiffiffiffiffiffiffiffiffiffiffiffi

1�cos2 i
p @hz

@y
� cos i @h

@y

h i
1
h :

For the right ascension of the ascending node on the other
hand:

@n�
@y
¼ e3 � @h

@y
¼ � @h

@y
� e3;

@n�
@y
¼ n�|

n�
@n�
@y

;

@n
@y
¼ @n�

@y
� n @n�

@y

h i
1
n� ;

@X
@y
¼ � 1ffiffiffiffiffiffiffiffiffiffiffiffiffi

1þcos2 X
p e|1

@n
@y
:

A.7. Generalized equinoctial orbital elements auxiliary

functions

Algorithms 1 and 2 are basic conversion functions
needed to work with the generalized equinoctial orbital
elements.

Algorithm 1. v ¼ m p1 p2 q1 q2L½ �| ¼ RV2GEQOEfunðr cECI ;
vc ECI ; l; J2;R	Þ
1: r ¼ krk, v ¼ kvk
2: h ¼ r� v; h ¼ khk; _r ¼ r�v

r
3: ẑ ¼ rð3Þ=r
4: A ¼ lJ2R2

	
2 ;U ¼ � A

r3 ð1� 3ẑ2Þ;Ueff ¼ h2

2r2 þ U
5: er ¼ r=r; eh ¼ h=h; ef ¼ eh � er
6: ex ¼ 1; 0; 0½ �|; ey ¼ 0; 1; 0½ �|; ez ¼ 0; 0; 1½ �|
7: Total energy:e ¼ eK þ U ¼ v2

2 � l
r þ U

8: Generalized mean motion:m ¼ 1
l �2eð Þ3=2

9: q1 ¼ eh _ex
1þeh _ez ; q2 ¼

�eh _ex
1þeh _ez

10: eX ¼ 1
1þq2

1
þq2

2

1� q21 þ q22; 2q1q2;�2q1
� �|

11: eY ¼ 1
1þq2

1
þq2

2

2q1q2; 1þ q21 � q22; 2q2
� �|

12: Generalized angular momentum:c ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2r2Ueff

p
13: Generalized velocity vector:t ¼ _rer þ c

r ef
14: Generalized eccentricity vector:g ¼ 1

l t r� tð Þ � er
15: p1 ¼ g � eY ; p2 ¼ g � eX
16: X ¼ r � eX ; Y ¼ r � eY
17: b ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� p12 � p22

q
; a ¼ 1

1þb
18: Generalized semi-major axis:a ¼ � l

2e ¼ l
m2

� �1=3
19: cosK ¼ p2 þ 1

ab 1� ap22
� �

X � ap1p2Y
� �

20: sinK ¼ p1 þ 1
ab 1� ap21
� �

Y � ap1p2X
� �

21: L ¼ atan2ðsinK; cosKÞ þ 1
ab Xp1 � Yp2ð Þ
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Algorithm 2. XcECI ¼ r|; v|½ �| ¼ GEQOE2RVfunðm; p1;
p2; q1; q2;L; l; J2;R	Þ
1: Numerically solve Kepler’s

equation:K  L ¼ Kþ p1 cosK� p2 sinK
2: eX ¼ 1

1þq2
1
þq2

2

1� q21 þ q22; 2q1q2;�2q1
� �|

3: eY ¼ 1
1þq2

1
þq2

2

2q1q2; 1þ q21 � q22; 2q2
� �|

4: b ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� p12 � p22

q
; a ¼ 1

1þb
5: a ¼ l

m2

� �1=3
6: X ¼ a ap1p2 sinKþ ð1� ap21Þ cosK� p2

� �
7: Y ¼ a ap1p2 cosKþ ð1� ap22Þ sinK� p1

� �
8: r ¼ X eX þ Y eY
9: r ¼ a 1� p1 sinK� p2 cosKð Þ
10: ẑ ¼ rð3Þ=r
11: A ¼ lJ2R2

	
2 ;U ¼ � A

r3 ð1� 3ẑ2Þ
12: _r ¼

ffiffiffiffi
la
p
r p2 sinK� p1 cosKð Þ

13: cos L ¼ X
r ; sin L ¼ Y

r

14: c ¼ l2

m

� �1=3 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� q21 � q22

q
; h ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 � 2r2U
p

15: _X ¼ _r cos L� h
r sin L

16: _Y ¼ _r sin Lþ h
r cos L

17: v ¼ _X eX þ _Y eY
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