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Backstepping-based estimation of thermoacoustic
oscillations in a Rijke tube with experimental

validation
Gustavo A. de Andrade, Rafael Vazquez, and Daniel J. Pagano

Abstract—We investigate the state observer design problem
for thermoacoustic instabilities in a Rijke tube using an infinite
dimensional perspective. The observer, whose design is based on
the backstepping methodology with Volterra and full integral
terms, consists of a copy of the linearized plant model plus
output injection terms and relies only on a single boundary
acoustic pressure sensor. The exponential convergence, in the L2

sense, of the observed error dynamics is proved, and the analytic
expression of the observer gains are derived explicitly. The results
are tested in an experimental Rijke tube prototype in order to
illustrate the effectiveness of the method.

Index Terms—Distributed parameter systems, Cascade sys-
tems, Observer design, thermoacoustic instability, Rijke tube.

I. INTRODUCTION

In this paper, we are concerned with the state estimation
problem of thermoacoustic instabilities in a Rijke tube. This
system consists of a vertical tube open at both ends (see Figure
1) with an embedded heat source (tipically a resistive heater).
The air that traverses the heating zone expands, causing
a sudden local pressure increase. The pressure acoustically
propagates along the tube and returns, ultimately influencing
itself at the heating area. A speaker placed under the tube
is used as an actuator to suppress the oscillations, while a
microphone at the top of the tube is used as sensor to provide
the acoustic pressure measurements.

Thermoacoustic instability phenomena are often encoun-
tered in steam and gas turbines, industrial burners, and jet
and ramjet engines. In such applications, the thermoacoustic
instabilities are undesirable due to the vibrations resulting in
mechanical failures, high levels of acoustic noise, high burn
rates and component melting [1]. In this context, some studies
have been focused on the development of automatic control
strategies to stabilize these systems [2]. However, the control
of such systems is complex due to the combustion reaction
dynamics and its coupling with the acoustic pressure, which
leads to a highly nonlinear behavior [3]. The Rijke tube on
the other hand, is an academic experiment used for research
and study of this phenomenon without needing a combustion
process (see Figure 1) and still represents the thermoacoustic
instabilities of industrial applications in a qualitative manner
[4].
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Fig. 1. Rijke tube diagram. Only the heater is necessary to induce the ther-
moacoustic instability. The microphone and speaker are used to measurement
and actuation, respectivelly.

The thermoacoustic phenomenon in the Rijke tube can be
modeled by linear first-order hyperbolic partial differential
equations (PDEs) coupled with an ordinary differential equa-
tion (ODE) [3], [4]. Interestingly, this PDE system has a non-
strict-feedback connection with the ODE subsystem [5], which
makes the application of standard control methodologies not
possible (see [6] for more details). In this context, we have
developed an approach to stabilize such system in [7], by em-
ploying the backstepping control design. However, the control
law introduced in that work requires full-state measurements,
which is not a realistic scenario. Thus, the use of a state
observer together with the control law is the best option in
order to apply that control design in a real-life experiment.
This technical note is motivated by this challenge.

Many observer designs have been developed in literature
to deal with the estimation of thermoacoustic instabilities.
Approaches taking into account the distributed features of the
system can be seen in [8], [9], [10], [11] and the references
therein. However, these authors consider several simplifica-
tions in the mathematical modeling in order to obtain an
expression suitable for standard control methodologies. In
particular, it is only considered the downstream part of the tube
and the measurements are assumed in a collocated fashion,
which is not the general case. In this work, we take into
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account a more realistic model, including the heat release
dynamics and both, the downstream and upstream parts of
the tube, which results in a boundary PDE-ODE estimation
problem.

Observer design for PDE-ODE cascade systems has been
studied for many types of coupling, such as an ODE and dif-
fusion PDEs [12], [13], [14], ODE and hyperbolic PDEs [15],
[16], [17] and ODE and wave PDE [18]. The backstepping
methodology plays the central role in this development [19],
particularly for linear hyperbolic PDE-ODE systems [20],
[21], [22], where the convergence properties of the system
to the desired equilibrium point can be proved in exponential
or finite time.

The main idea in the backstepping design is to use an
invertible integral transformation (usually a Volterra transfor-
mation) to map the observer error dynamics into a target
system with the desirable stability properties. This requires that
the control engineer has reasonable knowledge about stability
properties of PDEs. The advantage of this method is the
obtaining of explicit state observer gains with simple structure.
In addition, it does not employ model reductions, except at the
implementation stage, where the system equations are solved
numerically. In this context, we avoid spurious dynamics
and erroneous predictions that can be induced by the model
reduction methods. Nevertheless, due to the limitations of
the standard Volterra transformation, most of the results in
literature consider only strict-feedback connection with the
ODE subsystem. Recently, some applications have appeared
for very specific classes of systems with non-strict-feedback
components [6], [23], [24], [25].

In this paper, a novel Luenberger-type state observer for
estimation of thermoacoustic instabilities in the Rijke tube is
proposed. The design is based on the backstepping method-
ology and relies only on one boundary acoustic pressure
measurement. To tackle the non-strict-feedback form of the
system, we formulate a well-posed backstepping transforma-
tion composed of Volterra and full integral terms that guarantee
the exponential convergence of the observer to the actual
values in the L2 sense. The expression of the kernels of this
transformation can be found explicitly, allowing us in turn
to derive explicit observer gains. In particular, we show that
the farther the heat element is from the pressure sensor, the
more complex is the observer gains expression. Part of the
results in this paper are contained in a preliminary form in [26]
with much less details. Besides, we present here experimental
results on a prototype of the Rijke tube.

The approach proposed in this paper can be particularly
meaningful for the oil industry, such as drilling systems, where
the distributed nature of the problem cannot be neglected and
the mathematical models have similar structure to the one
studied in this work [27]. Other applications include cascade
delay-ODE systems, such as the motion of a piston in a viscous
gas [28], solar thermal power plants [29], and photobioreactors
[30].

The paper is organized as follows. In Section II we de-
tail the system equations and formulate the state estimation
problem. In Section III we design the observer gains using
the backstepping method. Section IV presents results with

experimental data from a Rijke tube prototype. Conclusions
and future works are presented in Section V.

II. PROBLEM DEFINITION
The thermoacoustic phenomenon in Rijke tubes can be

modeled by the following linearized equations (see [4] for
a detailed derivation of the equations):

∂tv(t, x) +
1

ρ
∂xP (t, x) = 0, (1)

∂tP (t, x) + γP∂xv(t, x) =
γ

A
δ(x− x0)Q(t), (2)

τhrQ̇(t) +Q(t) = f ′(v)(Tw − T gas)v(t, x0), (3)

where t ∈ [0,+∞) is the time [s], x ∈ [0, L] is the space [m],
and δ is the Dirac delta distribution [1/m]. The distributed
state v stands for the velocity fluctuations [m/s], and P for
the pressure fluctuations [Pa]. The steady-state velocity [m/s],
density [Kg/m3] and pressure [Pa] are given by v, ρ and P ,
respectively. The tube cross-section area [m2] is given by A,
the heat capacity ratio is given by γ = CP

Cv
, where Cp and Cv

are the specific heat capacity [J/(kg K)] at constant pressure
and volume conditions respectively, x0 is the location of the
heat release source [m], Q is the heat power release [W],
τhr > 0 is the heat release time constant [s], f(v) = lw(κ +
κv
√
|v|) > 0 is the heat power transfer [W/K], lw is the wire

length [m], κ is the fluid thermal conductivity [W/(m K)], κv
is an empirical constant [W s1/2/(m1/2 K)], and γ̄ = γ−1 > 0.
Finally, Tw and T gas, with Tw −Tgas > 0, stand for the wire
and gas temperature [K], respectively.

System (1)-(3) is subjected to the boundary conditions

P (t, 0) = U(t), P (t, L) = ZLv(t, L), (4)

where ZL 6= 0 is the reflection loss [Pa s/m] and U is the
control variable [Pa].

Remark 1: Note that boundary conditions (4) imply that
there are no acoustic pressure nodes in the tube’s ends.
This is in accordance with the prototype used to test the
observer design proposed in this work. However, this cannot
be generalized to all acoustic systems and each case must be
analyzed carefully.

The initial condition of (1)-(4) is given by

v(0, x) = v0(x), P (0, x) = P0(x), Q(0) = Q0,

with Q0 ∈ R and v0, P0 ∈ L2([0, L]).
The objective of this paper is to design an observer that pro-

vides accurate online estimates of both the finite-dimensional
state Q and the distributed state variables P and v. The
observer must only make use of the system input U (although
closed-loop control is not investigated in this paper) and output

y(t) = P (t, L).

As a first step in our development, we reformulate the plant
(1)-(4) in the form of transport PDEs. Using the Riemann
coordinates

P (t, x) =
1

2
(R1(t, x) +R2(t, x)), (5)

v(t, x) =
1

2
√
γPρ

(R1(t, x)−R2(t, x)), (6)
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system (1)-(4) can be rewritten as a 2 × 2 transport PDEs
convecting in opposite directions with a point source term:

∂tR1(t, x) + c∂xR1(t, x) =
γ̄

A
δ(x− x0)Q(t), (7)

∂tR2(t, x)− c∂xR2(t, x) =
γ̄

A
δ(x− x0)Q(t), (8)

τhrQ̇(t) = −Q(t) + q(R1(t, x−0 )−R2(t, x+0 )), (9)

where c =
√
γ Pρ is the speed of sound and q =

f ′(v)(Tw−T gas)
2
√
γPρ

. In addition, the boundary conditions (4) are

rewritten to

R1(t, 0) = −R2(t, 0) + 2U(t), R2(t, L) = kR1(t, L),

with k = ZL−ρc
ZL+ρc

.
From (7)-(8), we get that the following relations are satis-

fied:

R1(t, x+0 ) = R1(t, x−0 ) + c1Q(t), (10)

R2(t, x−0 ) = R2(t, x+0 ) + c1Q(t), (11)

with c1 = γ
A c .

The jump relations (10)-(11) allows us to remove the point
source term induced by the Dirac delta distribution by adding
additional states and boundary conditions. To see that, define

z =

{ x
x0
, if x ∈ [0, x0],

L−x
L−x0

, if x ∈ [x0, L],
(12)

and consider

α1(t, x) , R1(t, x), if x ∈ [0, x0],

α2(t, x) , R2(t, x), if x ∈ [x0, L],

β1(t, x) , R2(t, x), if x ∈ [0, x0],

β2(t, x) , R1(t, x), if x ∈ [x0, L].

Then, the solution over each of the intervals [0, x0] and
[x0, L] of (1)-(4), in characteristic coordinates, is equivalent
to the following 4× 4 PDE system, evolving in z ∈ [0, 1]:

∂tα1(t, z) + λ1∂zα1(t, z) = 0, (13)
∂tα2(t, z) + λ2∂zα2(t, z) = 0, (14)
∂tβ1(t, z)− λ1∂zβ1(t, z) = 0, (15)
∂tβ2(t, z)− λ2∂zβ2(t, z) = 0, (16)

τhrQ̇(t) +Q(t) = q(α1(t, 1)− α2(t, 1)), (17)

with boundary conditions

α1(t, 0) =− β1(t, 0), β1(t, 1) =α2(t, 1) + c1Q(t), (18)
α2(t, 0) =kβ2(t, 0), β2(t, 1) =α1(t, 1) + c1Q(t), (19)

with , λ1 = c
x0

, λ2 = c
L−x0

. Note that λ1, λ2, c1, q > 0.
Remark 2: If x0 ≤ 1

2L, i.e., if the heat release is located in
the lower half of the tube, then λ1 < λ2, otherwise λ1 ≥ λ2.

Besides, using (5) and (12) we get that

y(t) =
ZL

ZL + ρc
β2(t, 0). (20)

In this new framework, the thermoacoustic phenomenon is
represented as the cascade of four transport PDEs and one
ODE being driven by (13)-(14). In the next section we derive
an observer based on these equations.

III. OBSERVER DESIGN AND ERROR DYNAMICS
ANALYSIS

A. Observer design

Let α̂i and β̂i, for i ∈ {1, 2}, and Q̂ be the estimated states.
We design the observer as a copy of the plant (13)-(19) plus
output injection terms, i.e.,

∂tα̂1(t, z) + λ1∂zα̂1(t, z) = −p1(z)Ỹ (t), (21)
∂tα̂2(t, z) + λ2∂zα̂2(t, z) = 0, (22)

∂tβ̂1(t, z)− λ1∂zβ̂1(t, z) = −p2(z)Ỹ (t), (23)

∂tβ̂2(t, z)− λ2∂zβ̂2(t, z) = −p3(z)Ỹ (t), (24)

τhr
˙̂
Q(t) + Q̂(t) = q(α̂1(t, 1)− β̂2(t, 1))− pQỸ (t), (25)

where Ỹ (t) = β2(t, 0)− β̂2(t, 0), and p1, p2, p3, and pQ are
gains to be found. The boundary conditions of (21)-(25) are
given by

α̂1(t, 0) =− β̂1(t, 0), β̂1(t, 1) =α̂2(t, 1) + c1Q̂(t), (26)

α̂2(t, 0) =kβ2(t, 0), β̂2(t, 1) =α̂1(t, 1) + c1Q̂(t). (27)

Note that the real value of β2(t, 0) is directly applied
into the boundary condition of α̂2(t, 0) in (27) since this
information is always available through the output defined in
(20).

B. Target system

Define the estimation error as α̃i = αi − α̂i, β̃i = βi − β̂i,
for i ∈ {1, 2}, and Q̃ = Q − Q̂. Then, using (13)-(19) and
(21)-(27), we obtain the following error dynamics:

∂tα̃1(t, z) + λ1∂zα̃1(t, z) = p1(z)Ỹ (t), (28)
∂tα̃2(t, z) + λ2∂zα̃2(t, z) = 0, (29)

∂tβ̃1(t, z)− λ1∂zβ̃1(t, z) = p2(z)Ỹ (t), (30)

∂tβ̃2(t, z)− λ2∂zβ̃2(t, z) = p3(z)Ỹ (t), (31)

τhr
˙̃Q(t) + Q̃(t) = q(α̃1(t, 1)− β̃2(t, 1)) + pQỸ (t), (32)

with boundary conditions

α̃1(t, 0) =− β̃1(t, 0), β̃1(t, 1) =α̃2(t, 1) + c1Q̃(t), (33)

α̃2(t, 0) =0, β̃2(t, 1) =α̃1(t, 1) + c1Q̃(t). (34)

The coupling between the boundaries (33)-(34) and the
ODE (32) can potentially leads to an unstable behavior (see
more details in [7]). Therefore, we design the observer output
injection gains p1, p2, p3, and pQ, such that (28)-(34) is
mapped to the following target system:

∂tα̌1(t, z) + λ1∂zα̌1(t, z) = 0, (35)
∂tα̌2(t, z) + λ2∂zα̌2(t, z) = 0, (36)

∂tβ̌1(t, z)− λ1∂zβ̌1(t, z) = 0, (37)

∂tβ̌2(t, z)− λ2∂zβ̌2(t, z) = 0, (38)

τhr
˙̌Q(t) + (1 + c1q)Q̌(t) = −qα̌2(t, 1), (39)

with boundary conditions

α̌1(t, 0) =− β̌1(t, 0), β̌1(t, 1) =α̌2(t, 1) + c1Q̌(t), (40)

α̌2(t, 0) =0, β̌2(t, 1) =α̌1(t, 1) + c1Q̌(t), (41)
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System (35)-(41) is a copy of the original error dynamics,
from which the ODE (32) has been changed in order to achieve
exponential stability, according to the following definition:

Definition 1: The hyperbolic system (35)-(41) is exponen-
tially stable, if there exist ν > 0, and C > 0 such that, for
every initial condition (α̌0

1, α̌
0
2, β̌

0
1 , β̌

0
2) ∈ (L2([0, 1]))4, the

solution of the problem (35)-(41) satisfies

‖(α̌0
1, α̌

0
2, β̌

0
1 , β̌

0
2)‖(L2([0, 1]))4 + |Q| ≤

Ce−νt(‖(α̌0
1, α̌

0
2, β̌

0
1 , β̌

0
2)‖(L2([0, 1]))4 + |Q0|),

for all t ∈ [0, ∞).
Lemma 1: Consider system (35)-(39) with boundary con-

ditions (40)-(41) and initial condition α̌0
1, α̌

0
2, β̌

0
1 , β̌

0
2 ∈

L2([0, 1],R) and Q̌0 ∈ R. In addition, consider that
τhr, λ1, λ2, q, c1 > 0. Then, its zero equilibrium is exponen-
tially stable in the L2 sense.

Proof: Consider the following candidate Lyapunov func-
tional:

V (t) =
τhr
2
σ0Q

2(t) +
1

2

∫ 1

0

[
σ1e−zα2

1(t, z)

+ σ2e−zα2
2(t, z) + σ3ezβ2

1(t, z) + ezβ2
2(t, z)

]
dz (42)

where σi, i ∈ {0, . . . , 3}, are positive constants to be deter-
mined.

Define αi(0) , αi(t, 0), βi(0) , βi(t, 0), αi(1) ,
αi(t, 1), βi(1) , βi(t, 1), for i ∈ {1, 2}. Then, differen-
tiating (42) with respect to time, integrating by parts and
substituting the boundary conditions (40)-(41) yields

V̇ (t) = Q2(t)

[
1

2
e1c21(σ3λ1 + λ2)− σ0(1 + c1q)

]
+

1

2
λ1(σ1 − σ3)β2

1(0) +
1

2
(λ2e1 − λ1σ1e−1)α2

1(1)

+
1

2
(λ1σ3e1 − λ2σ2e−1)α2

2(1)− 1

2
λ2β

2
2(0)

+
(
λ1σ3e1c1 − α0q

)
α2(1)Q(t) + c1λ2e1α1(1)Q(t)

− 1

2

∫ 1

0

[
σ1e−zα2

1(t, z) + σ2e−zα2
2(t, z) + ezβ1(t, z)

+ ezβ2
2(t, z)

]
dz.

Let σ3 > σ1 and σ2 = σ3λ1e
1

λ2e−1 + σ4

λ2e−1 for some positive
constant σ4. It follows that

V̇ (t) ≤ Q2(t)

[
1

2
c21λ1σ3e1 − σ0(1 + c1q)

]
+

1

2
α2
1(1)

[
λ2e1 +

(−λ1c1e−1 + λ2e1)2

λ2e1c21
− λ1σ1e−1

]
+

1

2
α2
2(1)

(
λ2c

2
1e1

λ1c1σ3e1 − qσ0
− σ4

)
− 1

2

∫ 1

0

[
σ1e−zα2

1(t, z)

+ σ2e−zα2
2(t, z) + ezβ1(t, z) + ezβ2

2(t, z)

]
dz. (43)

Thus, choosing

σ0 >
1

2

λ1c
2
1σ3e1

c1(1 + q)
,

σ1 >
λ2e1

λ1e−1
+

(λ2e1 − λ1c1e−1)2

λ1λ2c21e1
,

σ4 >
λ2c

2
1e1

λ1c1σ3e1 − qσ0
,

we have the announced result.

C. Backstepping transformation

To map system (28)-(34) into (35)-(41), we consider the
following backstepping transformation:

α̃1(t, z) = α̌1(t, z)−
∫ 1

0

P1(z, ξ)β̌2(t, ξ)dξ, (44)

β̃1(t, z) = β̌1(t, z)−
∫ 1

0

P2(z, ξ)β̌2(t, ξ)dξ, (45)

β̃2(t, z) = β̌2(t, z)−
∫ z

0

P3(z, ξ)β̌2(t, ξ)dξ, (46)

Q̃(t) = Q̌(t)−
∫ 1

0

PQ(ξ)β̌2(t, ξ)dξ, (47)

where Pi, i ∈ {1, 2, 3}, and Pq are the kernels to be
determined such that (44)-(47) maps system (28)-(34) into
(35)-(41).

Differentiating (44)-(47) with respect to space and time,
plugging the target system equations (35)-(41) and integrating
by parts, we obtain that (28)-(34) is mapped into (35)-(41) if
and only if (see [20] for more details) the kernels satisfy the
following equations:

λ2∂ξP1(z, ξ)− λ1∂zP1(z, ξ) = 0, (48)
λ2∂ξP2(z, ξ) + λ1∂zP2(z, ξ) = 0, (49)
∂ξP3(z, ξ) + ∂zP3(z, ξ) = 0, (50)
τhrλ2P

′
Q(ξ)− PQ(ξ) = −qP1(1, ξ), (51)

with boundary conditions

P1(z, 1) = 0, P2(z, 1) = 0, PQ(1) = − q

τhrλ2
.

(52)

Evaluating (44) for z = 0 and (45)-(46) for z = 1, and using
the boundary conditions (33)-(34), we have the following three
additional conditions:

P1(0, ξ) =− P2(0, ξ), P2(1, ξ) = c1PQ(ξ), (53)
P3(1, ξ) =P1(1, ξ) + c1PQ(ξ). (54)

The observer gains are given by

p1(z) =λ2P1(z, 0), p2(z) =λ2P2(z, 0), (55)
p3(z) =λ2P3(z, 0), pQ =τhrλ2PQ(0). (56)

Lemma 2: Let τhr, λ1, λ2, q, c1 > 0. Then, system (48)-(54)
has a unique solution in L∞([0, 1]).

The proof of this lemma is established in the next section. In
particular we find an explicit solution for the kernel equations
which is piecewise differentiable.
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D. Well-posedness and explicit solution of the kernel equa-
tions

In this section, we investigate the existence and uniqueness
of the solution of the kernel equations (48)-(54). Since these
equations have a simple structure, we study a closed solution
to them by using the method of characteristics (see [31]
for more details). Although this approach to solving first-
order hyperbolic PDEs is classical, the particular geometry
of the problem and the coupling between kernels could lead
to unbounded solutions on finite intervals.
Solution for P1 kernel. For all (z, ξ) ∈ [0, 1]×[0, 1] consider
the following characteristic lines:

χ1(s; z) = −λ1s+ z, ζ1(s; ξ) = λ2s+ ξ. (57)

Integrating (48) along (57), using the fact that P1 is constant
along these lines, and plugging the boundary conditions (52)
and (53), we obtain the following solution:

P1(z, ξ) =

{
0, λ1

λ2
(1− ξ) ≥ z,

−P2

(
0, ξ + λ2

λ1
z
)
, otherwise.

(58)

Solution for P2 kernel. In this case, we define the following
characteristic lines

χ2(s; z) = −λ1s+ z, ζ2(s; ξ) = −λ2s+ ξ, (59)

for all (z, ξ) ∈ [0, 1]×[0, 1]. Then, integrating (49) along (59),
noting that P2 is constant along these lines, and plugging the
boundary conditions (52) and (53), we obtain

P2(z, ξ) =

{
0, λ1

λ2
(ξ − 1) ≥ z − 1,

c1PQ

(
ξ − λ2

λ1
(z − 1)

)
, otherwise.

(60)

Solution for P3 kernel. For (z, ξ) ∈ {0 ≤ ξ ≤ z ≤ 1}, we
define the following characteristic lines corresponding to (50):

χ3(s; z) = −s+ z, ζ3(s; ξ) = −s+ ξ. (61)

Integrating (50) along (61), using the fact that P3 is constant
along these lines, and plugging boundary condition (54), we
have that

P3(z, ξ) = P1(1, 1− z + ξ) + c1PQ(1− z + ξ). (62)

Solution for PQ kernel. As can be seen in (51), the PQ
kernel equation depends explicitly of P1, which may have a
discontinuity at λ1ξ+λ2z = λ1, when λ1 ≥ λ2 (see Remark 2
for a physical interpretation of this inequality). When such case
occurs, the kernel equation structure allows us to construct the
solution in a stepwise fashion, as we show in the next lemma.

Lemma 3: Consider ODE (51) with boundary condition (52),
such that P1 and P2 are defined by (58) and (60), respectively.
Then:

(I) If λ1 ≤ λ2, the solution of (51) with boundary condition
(52) is given by

PQ(ξ) = − q

τhrλ2
e

1
τhrλ2

(ξ−1)
. (63)

(II) If λ1 > λ2, the solution of (51) with boundary condition
(52) is given

PQ(ξ) =


PQ, 0(ξ), if ξ ∈ Ω0

...
PQ,n(ξ), if ξ ∈ Ωn

(64)

with

Ωk =

{
ξ ∈ [0, 1] : 1− 2k+1λ2

λ1
≤ ξ ≤ 1− 2kλ2

λ1

}
,

(65)

where k = 1, . . . , n and n is the largest inte-
ger such that λ2

λ1
< 1

2n . In addition, PQ, 0(ξ) =

− q
τhrλ2

e
1

τhrλ2
(ξ−1) and

PQ, k(ξ) =

[
e

2k

τhrλ1 PQ, k−1

(
1− 2kλ2

λ1

)
+

qc1
τhrλ2

×

∫ 1− 2kλ2
λ1

ξ

e
− θ−1
τhrλ2 PQ, k−1

(
θ + 2

λ2
λ1

) e
1

τhrλ2
(ξ−1)

(66)

for k = 1, . . . , n.
Proof: We will show this result for each case separately:

Case I (λ1 ≤ λ2): In this case, P2

(
0, ξ + λ2

λ1
z
)

= 0 for all
(z, ξ) ∈ [0, 1] × [0, 1] and therefore P1(z, ξ) = 0 for all
(z, ξ) ∈ [0, 1] × [0, 1]. Then, it follows that the PQ kernel
equation (51) is simplified to

τhrλ2P
′
Q(ξ) = PQ(ξ). (67)

Therefore, integrating the above equation and plugging (54)
yields the following solution:

PQ(ξ) = − q

τhrλ2
e

1
τhrλ2

(ξ−1)
. (68)

Case II (λ1 > λ2): We will show this result by induction.
First, note that P1(1, ξ) = 0 for all ξ ∈ [1 − 2λ2

λ1
, 1] and

therefore, the solution of PQ for ξ ∈ [1− 2λ2

λ1
, 1] satisfies the

nonautonomous ODE (67) with boundary condition (54). As
shown above, this equation has a unique solution, given by
(68), and for all ξ ∈ Ω0 with λ1 > λ2 the result holds for
k = 0.

Consider that k = m, with m ∈ N, and that (64)-(66) hold.
Accordingly, we assume that

PQ(ξ) =

[
e

2m

τhrλ1 PQ,m−1

(
1− 2mλ2

λ1

)
+

qc1
τhrλ2

×

∫ 1− 2mλ2
λ1

ξ

e
− θ−1
τhrλ2 PQ,m−1

(
θ + 2

λ2
λ1

)
dθ

]
e

1
τhrλ2

(ξ−1)

(69)

is the solution of the following boundary value problem: τhrλ2P
′
Q(ξ) = PQ(ξ)− qPQ,m−1

(
ξ + 2λ2

λ1

)
PQ

(
1− 2mλ2

λ1

)
= PQ,m−1

(
1− 2mλ2

λ1

)
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over the interval Ωm.
Now, for k = m+ 1, we have τhrλ2P

′
Q(ξ) = PQ(ξ)− qPQ,m

(
ξ + 2λ2

λ1

)
PQ

(
1− 2m+1 λ2

λ1

)
= PQ,m

(
1− 2m+1 λ2

λ1

)
Integrating this expression from ξ to 1− 2m+1 λ2

λ1
, after some

computations, we obtain

PQ(ξ) =

[
e

2m+1

τhrλ1 PQ,m

(
1− 2m+1λ2

λ1

)
+

qc1
τhrλ2

×

∫ 1− 2m+1λ2
λ1

ξ

e
− θ−1
τhrλ2 PQ,m

(
θ + 2

λ2
λ1

) e
1

τhrλ2
(ξ−1)

, (70)

and hence (66) is also valid for k = m + 1. Hence, by
mathematical induction the result holds. This concludes the
proof.

Remark 3: Note that the number of pieces of (66) is finite
and depends on the values of λ1 and λ2 (see Remark 2).

E. Inverse transformation

To ensure that the target system (35)-(41) and the observer
error system (28)-(34) have equivalent stability properties,
transformation (44)-(47) has to be invertible. Since P3 is
piecewise-differentiable and bounded, and (46) is a scalar
Volterra integral equation of the second type, then there exists
a unique inverse kernel L3 such that [32]

β̌2(t, z) = β̃2(t, z) +

∫ z

0

L3(z, ξ)β̃2(t, ξ)dξ. (71)

Plugging (71) into (44)-(45) and (47) yields

α̌1(t, z) = α̃1(t, z) +

∫ 1

0

L1(z, ξ)α̃1(t, ξ)dξ, (72)

β̌1(t, z) = β̃1(t, z) +

∫ 1

0

L2(z, ξ)β̃1(t, ξ)dξ, (73)

Q̃(t) = Q̌+

∫ 1

0

LQ(ξ)Q̌(ξ)dξ, (74)

where

L1(z, ξ) = P1(z, ξ) +

∫ 1

ξ

P1(z, ξ)L3(ξ, s)ds, (75)

L2(z, ξ) = P2(z, ξ) +

∫ 1

ξ

P2(z, ξ)L3(ξ, s)ds, (76)

LQ(ξ) = PQ(ξ) +

∫ 1

ξ

PQ(1)L3(ξ, s)ds. (77)

Note that (75)-(77) are well-posed Volterra integral equa-
tions of the second type, since L3 is well-posed. Therefore,
one finds that there is a unique solution to (72)-(74) and thus
the invertibility of the transformation is proved.

F. Main result
Now, our main result can be presented. Considering the

well-posedness of the kernel function in the transformation
(44)-(47) together with the invertibility of the transformation,
the following main theorem holds.

Theorem 1: Consider system (28)-(34) with boundary
conditions (33)-(34), initial condition α̃0

1, α̃
0
2, β̃

0
1 , β̃

0
2 ∈

L2([0, 1],R) and Q̌0 ∈ R, and with output injection gains
p1, p2, p3 and pQ defined by (55)-(56), respectively, where
P1, P2, P3 and PQ are given by (58)-(66), respectively. Then,
its zero equilibrium is exponentially stable in the L2 sense.

Using the results of Section III, this theorem can be proved
with standard arguments (see more details in [22]).

IV. EXPERIMENTAL VALIDATION
In this section we show the results of the proposed

backstepping-based observer with experimental data of a Rijke
tube prototype. The observer (21)-(27) was numerically inte-
grated using the HPDE solver for Matlab [33], where a two-
step variant of the Lax-Friedrichs method is used. In order
to ensure the numerical stability, the time and space steps
were chosen such that the Courant-Friedrichs-Lewy condition
is satisfied. Several simulation tests were performed in order to
find the number of points of the temporal and spatial grid. For
the parameters used in this work (see Table I), more than 100
points in the spatial grid and a sampling time of 0.0001 s did
not show a significant change in the exponential convergence
of the observer. The gains (55)-(56) were computed explicitly
from expressions (58), (60), (62), and (63)-(64). Note that
(21)-(27) represents the system in characteristic coordinates
and therefore, the algebraic relations (5)-(6) and (12) must
be applied to reconstruct the state variables in the original
coordinates.

All the experiments were performed on a simple 1.3 meter
long glass tube (see Figure 2) with an electrical heating
element made of nichrome wire coil. This prototype was
inspired by [34]. The power is delivered to the coil using a DC
power supply with fixed power output of 360 W. The location
of the electrical heating element was chosen to be a quarter
of the tube length. The boundary acoustic pressure in the top
of the tube is measured with a clip-on microphone with built-
in preamplifier. In addition, another clip-on microphone was
installed at the middle of the tube in order to compare the
behavior of the observer (21)-(27) with the actual values in
that point of the domain. It is important to emphasize that this
measurement is not used as an injection term in our design.

The measurements are sent to a control computer through
a data acquisition (DAQ) device. In this context, the analog
signals are conditioned and processed by the DAQ in order
to be converted into digital signals and then, injected in the
observer algorithm coded in Matlab. The interested reader
is referred to [35] for more information on digital signal
processing.

The microphone was calibrated using a sound level meter
(SLM) and comparing the level of sound on the SLM with
the signal values obtained from the microphone. The steady-
state wire temperature was computed using an infrared ther-
mometer. The other parameter values, such the steady-state
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Fig. 2. Photograph of the Rijke tube prototype with highlights of its main
components: the power supply, the linear amplifier, the heater element, the
speaker (not used in this work) and the boundary pressure measurement.

TABLE I
VALUES OF THE PARAMETERS OF THE SYSTEM.

Symbol Description Value
ρ Steady-state density 1.2 kg/m3

P Steady-state pressure 105 Pa
v Steady-state velocity 0.5 m/s
γ Adiabatic ratio 1.4
γ - 0.4
R Ideal gas constant 290 J/(kg K)
L Tube length 1.35 m
lw Wire length 1.4 m
x0 Heater position 1

4
L m

d Tube diameter 0.0762 m
dw Wire diameter 0.003 m
Tw Wire temperature 933 K
ZL Acoustic impedance 10.6095 Pa s/m
τhr Heat release time constant 0.001 s

velocity, heat release time constant and acoustic impedance
were estimated using some relations between other parameters
and variables. As shown in [34], v̄ can be approximated by

v̄ =

√
g
Tw−T gas
T gas

dw, where g is the gravitational acceleration

and dw is the diameter of the wire, and the heat release time
constant is estimated as τhr = 0.2dw/v̄ due to [36]. Finally,
the acoustic impedance was computed via two microphones
positioned near the boundary in the actual experiment (see [37]
for more details about this procedure). The obtained parameter
estimations are shown in Table I.

Measured and estimated acoustic pressure fluctuations at
x = L are shown in Figure 3, where the initial error in the
acoustic pressure estimation is due to intentionally chosen,
incorrect initialization of the states. As can be seen, the
observer converges to the real acoustic pressure.

A comparison between the estimated and measured acoustic
pressure fluctuations at x = 1

2L can be seen in Figure 4. As we
can observe in that figure, the standing wave of both the model
and the experiment are in good agreement, after the initial
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Fig. 3. Measured and estimated acoustic pressure at x = L.
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Fig. 4. Measured and estimated acoustic pressure at x = 1
2
L.

errors coming from incorrect initialization of the model. The
small discrepancy between the harmonics of the model and
the experiment is explained by the modeling simplifications
and parameter estimation. In particular, the linearized model
(1)-(4) was obtained assuming constant steady-state along
the space (see [4]). In addition, the heat release dynamics
is related only with the velocity fluctuations, whereas a full
model would be related with the acoustic pressure. However,
If these effects were taken into account in the linearized
model, the computations of the observer would be much more
involved. The strength of our observer design lies mainly in its
simplicity and usability for control and optimization purposes,
since the system (1)-(4) is capable of reproducing the main
characteristics of the thermoacoustic phenomenon.

V. CONCLUSION
We have solved the boundary observer design problem for

thermoacoustic instabilities in the Rijke tube. The design,
which is based on the backstepping method, relies on only
one boundary acoustic pressure measurement and the observer
gains can be computed explicitly. The resulting kernels of
the backstepping transformation are piecewise differentiable,
with the number of pieces depending on the characteristic
velocities of the system. To the best of our knowledge, this is
the first result designing a Rijke Tube observer from an infinite
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dimensional perspective, which had to adapt the standard
backstepping methodology due to the system being non-strict-
feedback. Results with experimental data of a Rijke tube
prototype were presented to show the effectiveness of the
design.

Directions for further research include the extension of the
method for a more general class of PDE-ODEs with non-strict-
feedback connection and measurements at an arbitrary point
of the domain. Combining the approach proposed in this paper
with [22], [38] could be considered as the initial step for this
case. Other direction of future work includes the design of
an adaptive observer for this system, which can be usefull
when parameters are unknown. Finally, we will combine the
observer design proposed in this paper with the backstepping
controller developed in [7] in order to produce real-life closed-
loop experiments.
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