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Abstract—The state estimation problem for vehicles with highly
uncertain initial conditions and limited, varying sensors is crucial
for both aircraft and spacecraft navigation. This work introduces
a Locally Linearized Particle Filter based on a quaternion-adapted
Unscented Kalman Filter to estimate the state of a free-fall laser-
guided bomb with minimal sensors and uncertain initial condi-
tions. The available sensors include accelerometers, gyroscopes, a
barometric altimeter, and a semi-active laser (SAL) receiver that
activates only when the target is close and within line-of-sight.
Assuming no communication between the carrier aircraft and the
bomb (so that the aircraft cannot feed the bomb its launch position
and velocity), the algorithm exploits the problem’s symmetry to
rapidly reconstruct the relative position, velocity, and attitude of the
target, even with uncertain initial conditions and insufficient sensor
data. In addition, the filter initiates an identification algorithm to
estimate the ballistic coefficient, which predicts the miss distance.
The proposed algorithm shows promising results in Monte Carlo
simulations, quickly converging to an accurate trajectory estimate
and providing a high quality aerodynamic model and future
trajectory predictions.

Index Terms—Ballistic vehicles, particle filter, unscented
Kalman filter, symmetry-based observer, navigation problem, at-
titude estimation, system identification.

I. Introduction

Precision-guided munitions (PGMs) have revolution-
ized the modern warfare, allowing for precise targeting
while minimizing collateral damage. Indeed, guided mis-
siles and bombs can be considered everyday weapon
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systems, present in the inventory of all modern armies.
Nowadays, thanks to the miniaturization of electronics
and the rising of unmanned aviation, there is a no-
ticeable interest in the development of small-sized and
low-cost guided missiles and bombs, paving the way
for a cost-effective implementation of these weapons
systems in small and versatile tactical unmanned aircrafts.
In this regard, among all the wide variety of existing
sensors for target positioning (see [1]), Semi-Active Laser
(SAL) seekers (especially the strapdown mountings) have
emerged as an efficient technology, well suited for small
and low cost weapon systems [2]. SAL guidance utilizes
a laser designator, which can be positioned either airborne
or ground-based, to illuminate the target with a focused
laser beam. The missile’s seeker, located in its nose,
detects the direction of the reflected laser light, providing
information about the Line of Sight (LOS) angles between
the target and the seeker.

The design of guidance systems for SAL-based
weapons has been widely studied in the literature, and
there are classical guidance laws that have been suc-
cessfully employed in practice (a review can be found
in [3]). Furthermore, the performance of guidance systems
is enhanced by using gimbaled seekers (which directly
enable for the application of well-known Proportional
Navigation laws, and its variants) and accurate inertial
navigation systems (which can also be aided by GNSS
sensors, and by the carrier aircraft navigation system
through an umbilical link), providing precise measure-
ments of attitude angles, position and velocity, that can
be used by the guidance law.

However, measuring additional states for low-cost and
small-sized bombs or missiles can pose a challenge. For
example, the inertial sensors used in such weapons, which
often rely on less-accurate MEMS sensors, do not provide
sufficient precision to reconstruct the weapon’s status
throughout the entire flight, from takeoff, owing to the sig-
nificant bias that would accumulate. One possible solution
would be to use an umbilical link to acquire the first fix
from the launch vehicle. Nevertheless, it may not be cost-
effective due to the need for a complex aircraft-weapon
integration process. But even if the initial launch fix
were accessible, the weapon’s inertial system could face
challenges due to the considerable initial accelerations
from the rocket engine or bomb ejection rack. This can
result in saturation of low-cost accelerometers or gyros.

Due to the challenges of integrating a full inertial
navigation system onto small, SAL-guided weapons, there
is growing interest in developing guidance strategies that
rely solely on Line-of-Sight (LOS) measurements from
the seeker. For instance, the IACCG guidance law intro-
duced in [4] utilizes only LOS angles and rates (which
can be estimated using filters, as shown in [5]), while the
Bearing-Only IACG approach suggested in [6] requires
only LOS angles. Similarly, Reference [7] presents a
guidance method for impact angle control based solely on
bearing measurements, augmented with a Tobit Kalman
Filter to improve estimation of the look angle, LOS an-
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gles, and rates. While these methods demonstrate promis-
ing performance, the accuracy and robustness of SAL-
guided weapons could be further enhanced by incorpo-
rating full knowledge of the weapon’s state, including its
position relative to the target. This would enable opti-
mized flight trajectories, navigation beyond the seeker’s
visual field, and real-time prediction of miss distance.

In this context, this work aims to contribute to the
development of low-cost laser-guided weapons. Specif-
ically, it will focus on the development of a state es-
timation system for a free-fall bomb (but the presented
technique could also be extended to missiles). Such a
system is assumed to have on-board inertial sensors
(three accelerometers and three gyroscopes), together with
a barometric altimeter, but it is assumed that it has
neither GNSS, nor an umbilical link with the carrier
plane (which would enable data sharing with the airplane
navigation system, and hence could provide the bomb
with an accurate estimation of its state at the launch time).
Consequently, there is great uncertainty about the launch
position, attitude and velocity (it is only assumed that
the launch is performed within the launch acceptability
region, which allows to ensure the capture of the laser
beam during the ballistic fall, and whose estimation is
out of the scope of this paper, see [8] to illustrate this
problem). This prevents the use of conventional filtering
techniques to propagate the measurements obtained by the
inertial sensors, so that the bomb’s state would be rather
uncertain during the ballistic fall.

As for the laser seeker, a strapdown configuration
is assumed (which is simpler mechanically and reduces
costs), so that it provides the LOS angles of the target
(with respect to the bomb’s body frame). It is also
assumed that LOS rates can be obtained from the seeker
(which, as will be explained later, is required for fast con-
vergence). Although the problem of line-of-sight (LOS)
rate reconstruction is not a trivial one (and is prone to
uncertainties), it has been widely studied the literature and
there are several techniques which successfully address
this issue (see, for instance [9], which proposes a fifth-
degree cubature Kalman Filter estimation method based
on an augmented-dimensional state model to estimate the
LOS rates; [10], which presents a LOS reconstruction
filter based on an exact LOS dynamic model of strap-
down seeker; or [11], in which this problem is addressed
through the development of a line-of-sight rate extended
Kalman filter, which was able to accommodate signifi-
cant time delays due to the processing requirements of
computer vision algorithms of the seeker).

Finally, the SAL seeker’s effectiveness is assumed to
be limited to distances below a certain detection threshold,
which is typically less than standard bombing ranges. This
means that the bomb initially flies ”blind” during the first
portion of its ballistic trajectory, lacking target position
information. The bomb eventually detects the laser beam
at some point along its trajectory, gaining information
about the target’s relative location. It is at this point that
traditional guidance laws (like those previously described)

would typically engage, utilizing LOS measurements to
adjust the control fins. However, this work demonstrates
that, by briefly remaining uncontrolled after laser detec-
tion, the bomb can leverage the collected measurements to
rapidly reconstruct its complete state. This reconstructed
state enables the potential implementation of more sophis-
ticated guidance strategies (which are beyond the scope
of this paper).
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- Uncontrolled trajectory
- LLPF active
- Laser unavailable

- First laser detection
- LLPF starts to converge

- Uncontrolled trajectory
- LLPF active
- Laser available
- Ongoing convergence

- LLPF converged
- Full state available
- Miss distance predicted
- Bomb starts to maneuver

Controlled trajectory 

Fig. 1. Problem statement.

This work proposes a full state estimation system im-
plemented as a Locally Linearized Particle Filter (LLPF)
based on a quaternion-adapted Unscented Kalman Filter
(UKF). This system leverages geometric and aerodynamic
symmetries inherent to uncontrolled ballistic flight (de-
scribed in detail later) to achieve local invertibility. This,
in turn, enables very rapid filter convergence once the
laser receiver becomes active. As depicted in Fig. 1,
upon detecting the laser beam, the proposed guidance
system would briefly delay maneuvering to ensure filter
convergence. This delay stems from the LLPF formula-
tion, which requires, among other hypotheses, that the
bomb maintain zero angle of attack. Once convergence
is reached, state propagation can continue using conven-
tional methods, such as an Extended Kalman Filter. This
approach provides a reliable state estimate at the cost of
slightly reducing the time available for maneuvering. This
estimate can then be used by more sophisticated control
systems to achieve improved guidance accuracy.

Particle filters, also known as Sequential Monte Carlo
methods, have emerged as powerful tools for state estima-
tion in dynamic systems (see [12] for the basis). Among
many advantages, they are well-suited for systems with
non-linear dynamics and non-Gaussian noise, which can
be challenging for traditional filters like the Kalman filter.
They also excel in situations where the initial state is
highly uncertain, by representing the state estimate as a
set of particles dispersed over the state space, they can
capture and reduce this initial uncertainty as new measure-
ments are received. These features make this kind of filters
especially well posed for a wide variety of tracking and
estimation problems (see, for instance, [13], [14]), where
nonlinearities arise, and which are oftentimes under high
uncertainty levels. Improved versions of Particle Filters
for highly nonlinear problems, well suited for engineering
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applications, have been proposed. In particular, in [15],
an Unscented Particle Filter (UPF) was introduced. This
method approximates the computation of the optimal par-
ticle weights through implicit local linearization, namely,
utilizing the strengths of the unscented transform, together
with a Kalman Filter. The aerospace applications of
Particle Filters are as diverse as astronomy and remote
sensing [16], bearings-only tracking of vehicles [17],
ballistic missile tracking [18], navigation in GNSS-denied
environments [19], space object tracking [20], attitude de-
termination of space objects using light curves [21], space
debris detection in optical astronomical images [22],
or attitude estimation of tumbling space objects [23].
However, to the authors’ knowledge, there is no previous
work considering this particular problem, in which the
complete state reconstruction of a SAL guided weapon
(having neither GNSS sensors nor an accurate initial fix).

The main contributions of the present work are
twofold. First, a LLPF that exploits the symmetries of
the problem with a minimal and reasonable number of
sensors, under realistic conditions for the activation of
the laser receiver, is formulated. Secondly, this LLPF
is based on an UKF which is tailored to the specific
problem, in particular respecting the invariants arising due
to the use of quaternions, even though other such filters
already exist (see, for instance, [24]). Simulations show an
excellent performance of the algorithm under reasonable
sensor noises and initial uncertainties, with the estimation
rapidly converging to an accurate estimate of the real
trajectory when the laser receiver becomes active. Finally,
a system identification algorithm for the drag coefficient
and a trajectory predictor are also proposed, that would
be of high interest for guidance. This work is an updated
and extended version of the conference paper [25].

The structure of this paper is as follows. Section II es-
tablishes the basic notation and definitions used through-
out the paper, provides system and sensor models for the
problems under consideration, and gives a detailed state-
ment of the estimation objective. Next, in Section III, a
procedure to determine the state by exploiting constraints
and symmetries is developed. Section IV introduces the
Particle Filter, providing details of the particular algo-
rithm implemented to solve the problem, including the
quaternion-adapted UKF tailored to the specific system
models. In section V, a system identification strategy for
the vehicle’s aerodynamics is proposed as to implement
a state prediction algorithm. Simulation results are given
in Section VI, and the paper is closed in Section VII with
some concluding remarks.

II. Problem statement

This Section serves to both introduce the equations
needed for the trajectory and measurements characteriza-
tion and present the notation which is used throughout
this paper.

Regarding notation, vectors are denoted by bold vari-
ables. A vector a evaluated in a reference frame (A)

is written as aA, while its components are given by
aAj , j = 1, 2, 3.

In this study, we address the state estimation problem
for an aircraft-dropped free-fall ballistic vehicle (BV),
which could be the case of a laser-guided bomb. The
BV’s trajectory could also contain some guided segments,
but this guidance is not taken into consideration in this
work. The vehicle is modeled as fixed mass rigid body
subject to free fall motion in a real atmosphere. As
shown in Figure 2, OB is defined as the center of
mass of the BV, while OS is the illuminated target.
Three reference frames are considered for convenience.
Firstly, the Surface (S) reference frame is centered in OS

and moves along with the Earth’s surface. The zS axis
points towards the center of the Earth while xS and yS
are oriented arbitrarily following a right-hand structure.
Secondly, the Body (B) frame is centered in OB , and
rotates with the BV. Considering a cylindrical shaped
BV with a vertical plane of symmetry, xB is aligned
with the longitudinal axis, frontwards; zB lies in the
plane of symmetry, downwards; and yB points rightwards,
fulfilling a right-handed frame. Finally, a generic Inertial
(I) reference frame is considered, with arbitrary center
and orientation. The effect of the Earth’s rotation is
minimal, so that the relative angular velocity between
frames S and I can be approximated to zero. For this
particular problem, the expected flight time of the BV is
of less than one minute, thus the effective rotation of the
Earth with respect to an inertial frame during that time
interval is clearly imperceptible.

laser beam

Fig. 2. Reference frames.

Let XS be the position of the center of mass of the BV
referred to (S). Let V S = ẊS , and V B its components
in B. Let ωB be the angular velocity of the BV relative to
an inertial frame or, equivalently, to S. AB

G and AB
NG are

defined as the gravitational and non-gravitational inertial
accelerations in OB . For the attitude representation, the
attitude quaternion q of the B frame with respect to S is
used (see, for instance, [26]).

For the current problem, some additional simplifying
hypotheses can be made, without introducing appreciable
errors. On the other hand, if the Earth’s curvature is
neglected, by approximating the Earth’s surface by its
locally tangent plane, the gravitational acceleration is
always aligned with kS , this is, the third vector of the
S canonical basis. Finally, no wind is considered in this
implementation. While a system identification algorithm
similar to the one described in Section V could be used
to compute a wind model in real time, this is left out of
this work to avoid even more additional complexities and
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better focus in the challenges posed by the state estimation
problem. From the considered hypotheses, the equations
of motion of the BV are reduced to

ẊS =V S , (1)

V̇ B =−
(
ωB
)×

V B +AGk
B
S +AB

NG, (2)

q̇ =
1

2
q ⊗

(
0
ωB

)
. (3)

Note that kBS is the kS vector evaluated in the B reference
frame. AG is the standard mean gravitational acceleration
in the Earth’s surface. The ⊗ operator denotes the quater-
nion product. Rotations between reference frames can be
performed by using the quaternion rotation operator (see
[26]).

In order to compute the state of the BV, several on-
board sensors are available: a set of 3 accelerometers and
3 gyroscopes, a barometric altimeter and a laser receiver
(providing just bearing angles to the target). For ideal
sensors, not including measurement errors, which are
characterized later, the corresponding ideal measurement
models can be written as

AB
Acc =V̇ B +

(
ωB
)×

V B −AB
G, (4)

ωBGyr =ωB , (5)

hBaro =−XS
3 , (6)

γ1 =arctan 2(XB
3 , X

B
1 ), (7)

γ2 =arctan 2(XB
2 , X

B
1 ), (8)

where arctan 2(y, x) is a variation of the arctangent
function which avoids singularities (see [27]). Vector AB

G

is the gravitational acceleration expressed in the B basis.
If the trajectory starting point was known, without con-
sidering error accumulation and with an exact model for
gravity, the accelerometer and gyroscope measurements
suffice to solve the Navigation Problem. For that reason,
these two vectors define the propagation measurements,
Zp, so that

Zp =

(
AB
Acc

ωBGyr

)
. (9)

As for the laser measurements, the laser beam devia-
tion from the vehicle’s main axis is measured in terms
of two angles, which are referred to as γ1 and γ2,
corresponding to the deviation of the laser direction from
the xB axis projected in the xBzB and xByB planes,
respectively. The LOS angles measurements are not al-
ways available during the BV’s operation. In particular,
two conditions must be satisfied. Firstly, the laser path
must be reasonably aligned with the BV longitudinal axis,
so that the LOS measurements are inside the so called
Field of View (FOV) of the optical sensor used ([28]).
In this application, the FOV is of 15 degrees for each
angle. Secondly, the distance from the point source to
the sensor must not be larger than a detection threshold
which, in this case, is considered of 2500m. Thus, only
if −15◦ < γ1, γ2 < 15◦ and ∥XS∥ < 2500m, the LOS
angles can be considered.

For reasons that are detailed later, the time derivatives
of h and γi are of interest, despite that they are not
directly measured. Considering the kinematic evolution,
these values are given by

vh =ḣ = −V S3 , (10)

γ̇1 =
XB

1
d
dtX

B
3 −XB

3
d
dtX

B
1(

XB
1

)2
+
(
XB

3

)2 , (11)

γ̇2 =
XB

1
d
dtX

B
2 −XB

2
d
dtX

B
1(

XB
1

)2
+
(
XB

2

)2 . (12)

Note that, the time derivative of position in body axes
requires the addition of an inertial term, so they must be
computed using the following expression:

d

dt
XB = −

(
ωB
)×

XB + V B . (13)

As the angular velocity is continuously measured and
the position, velocity and attitude are state variables,
γ̇1 and γ̇2 are completely defined provided the state is
known. Note that, as (h, γ1, γ2) only depend on geometric
parameters, while

(
ḣ, γ̇1, γ̇2

)
also depend on both linear

and angular velocities, this second set of parameters can
not be obtained by algebraic combination of the first
one and vice versa, consequently guaranteeing that these
6 measurements are independent, or what is the same,
they provide information that is not cross correlated. This
result is proved to be of great interest later on.

III. State determination from constraints and
symmetries

This section describes the proposed measurement ex-
tension, based on symmetries and constraints, which is
a major contribution of this work and allows a fast
convergence of the estimator.

Let X be the 10-uple of magnitudes defining the BV’s
state to be estimated, defined as

X =

XS

V B

q

 . (14)

Note that, since X does not belong to a vector space (as it
contains the components of an attitude quaternion, which
belongs to the space of a 4-D hypersphere, see [26]), the
state of the BV has 9 degrees of freedom.

If no initial fix were available, a set of 9 independent
equations derived from measurable magnitudes would be
needed to fully characterize X . As described in Section
IV, the proposed navigation system must be initialized
to some state distribution, though with high uncertainty.
Generally, a recursive estimation algorithm does not need
local invertibility as a condition for convergence. How-
ever, local invertibility is of high interest, as it enhances
the particles’ weighting process and leads to a rapid
convergence after LOS measurements are available, as
will be shown in Section VI. This is highly desirable for
applications such as the one considered in this work, and
therefore, the goal of this section is to find 9 algebraic
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equations for the state variables (by exploiting as much
as possible the available measurements and symmetries),
enabling the local invertibility.

Despite the BV being equipped with accelerometers,
gyroscopes, a barometric altimeter, and a laser seeker,
only the last two sensors provide direct measurements of
the vehicle’s state, yielding three measurement equations
at a given time, as described in (6)–(8),

Za =

hBaroγ1
γ2

 = h1(X). (15)

These equations are insufficient to compute X invert-
ing h. For this purpose, a good estimation of the LOS
rates, together with the vertical speed, can be computed
as described, for instance, in [9], [10], [11] or [29], among
others, leading to

Ża =

ḣBaroγ̇1
γ̇2

 = h2(X,Zp), (16)

where h2 is as shown in equations (10)–(12). Note that,
besides computational or measurement errors, a higher
order derivative of Za would not be useful as there appear
terms from Żp which are not available and can not be
determined.

With 3 additional measurements or constraints, so that
h(X,Zp) is locally invertible for X , the BV’s state would
be completely determined from the available information
on-board.

One interesting property of this estimation problem,
which can be applied to reduce the number of unknown
variables, is that there is a spatial symmetry. Indeed, on
one hand, Zp depends only on measurements on the B
frame. On the other hand, the only vector components
written in the S axes in (15)–(16) are XS

3 and V S3 . Thus,
it is useful to consider a rotation of the S reference
frame around the zS axis, so that the B components are
unchanged. This situation is represented in Figure 3.

las
er

 be
am

laser beam

Fig. 3. Rotation of the S reference frame around the zS axis.

After this transformation (15)–(16) stays invariant and
in consequence has a cylindrical symmetry. This means
that, with the on-board measurements only, XS

1 and XS
2

can not be computed, as any pair (XS
1 , X

S
2 ) that satisfies

(XS
1 )

2 + (XS
2 )

2 + (hBaro)
2 = ∥XB∥2 (17)

can be a solution to (15)–(16) for X . This could be
expected, as there is no way to distinguish the xS and
yS axes. The zS direction, however, is explicit in (15)–
(16) as a consequence of the altimeter’s measurements.1

Note that, for the current problem, it is of no interest to
compute XS

1 and XS
2 independently but the horizontal dis-

tance from the BV to the target, Xh =
√

(XS
1 )

2 + (XS
2 )

2,
and its relative orientation. Thus, without losing any
useful information for guidance, the cylindrical symmetry
can be broken by rotating S so that, at any given time,

XS
1 =Xh, (18)

XS
2 =0. (19)

This consideration reduces in 1 the number of degrees
of freedom of the system’s state without reducing the
information available for the guidance system.

In order to determine X , as there are no additional
measurements or symmetries, 2 constraints are needed.
One useful approach is to benefit from the BV’s aerody-
namic geometry. Without any control action, the aerody-
namic moments tend to align the longitudinal axis of the
vehicle with the velocity vector. After a transitory regime,
as the wind airspeed is zero, the velocity vector in the B
axes can be simplified to

V B =

U0
0

 . (20)

This condition reduces in two the number of unknown
variables. Let the additional measurement vector be ex-
panded as

Za =



hBaro
γ1
γ2

ḣBaro
γ̇1
γ̇2
0
0
0


=



−XS
3

arctan 2(XB
3 , X

B
1 )

arctan 2(XB
2 , X

B
1 )

−V S3
XB

1 V
′B
3 −XB

3 V
′B
1

(XB
1 )

2
+(XB

3 )
2

XB
1 V

′B
2 −XB

2 V
′B
1

(XB
1 )

2
+(XB

2 )
2

XS
2

V B2
V B3


= h(X,Zp).

(21)
It can be proved that the function h is locally invertible for
X inside a significant domain (see, e.g. [30]). Therefore,
it can be considered that its inverse exists in this region,
so that the available measurements allow to compute the
vehicle’s state if the starting point used to solve the
nonlinear problem is close enough to the real state.

These results are sufficient for the proposed PF to
rapidly achieve convergence, provided that the number
and distribution of particles is adequate to guarantee that
at least one particle is inside the region in which the above
conditions are satisfied.

1In practice, a set of magnetometers or magnetic compass is enough to
break this symmetry so that there is a measurable horizontal reference.
This is not the case for the considered problem.
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IV. Particle Filter formulation

The estimation problem structure is as follows. If the
state is known at a given time, its future value can be
obtained from the propagation equation,

Ẋ = f(X,Zp), (22)

where f(X,Zp) is given in equations (1)–(3). The real
propagation measurements Ẑp are corrupted with noise,
so that

Ẑp =

(
ÂB
Acc

ω̂BGyr

)
=

(
AB
Acc

ωBGyr

)
+

(
δAB

Acc

δωBGyr

)
. (23)

The corresponding errors are modeled as samples
from white noise Gaussian independent processes (see,
e.g. [31]), as given by

δZp =

(
δAB

Acc

δωBGyr

)
∼ N6(0,Σp). (24)

There are additional measurements, Za, which contain
information about the trajectory as shown in equation
(21), but corrupted by an additive noise sampled from
a white Gaussian multivariate distribution,

Ẑa =h(X,Zp) + δZa, (25)
δZa ∼N9(0,Σa), (26)

The Filtering Problem can be stated as follows. From
the available measurements, uncertain initial conditions
and their expected statistical characteristics, a filtering
algorithm must periodically compute the system’s state, so
that the accessible information is used efficiently. Indeed,
for this estimation problem, the initial state probability
distribution is widespread, as the initial point is uncertain.
Furthermore, the propagation and measurement functions
f, g are manifestly nonlinear within this domain, and
therefore a linearized Kalman Filter might not be adequate
to solve the navigation problem.

The Particle Filter (PF) makes use of the Monte Carlo
integration theory and Bayes’ Theorem in order to obtain
an optimized estimation for nonlinear systems without
neither a linear approximation or the Gaussian distribution
hypothesis (see e.g. [32]). Instead, it approximates a
probability distribution by a set of particles that are prop-
agated and filtered in parallel. The complete probability
distribution is obtained by means of a Bayesian approach.
This family of algorithms is extensively implemented
in applications where it is needed to deal with large
uncertainties and nonlinearities, such as tracking from
radar data. A Locally Linearized Particle Filter (LLPF)
is used as the navigation algorithm for the BV (see [13]).
The structure of the proposed filter is similar to an
Unscented Particle Filter (UKF), as proposed in [15], but
differs substantially in the extension of the methodology
for attitude quaternions, which are constrained to norm
one, both within the unscented transform and for the
weights’ computation. Additionally, the structure of the
problem is exploited in terms of a symmetry around the
vertical axis and additional constraints, leading to a rapid
convergence with a low number of samples.

Let X̂i
k be one estimation of the state, together with

a covariance matrix P ik, referred to as the particle i,
at the time tk. The algorithm propagates a set of Np
particles that characterize the state probability distribution
by using a certain state propagation filter (in this work,
as explained below, an UKF scheme is adopted, but other
propagation algorithms like an EKF could be explored,
see for instance, [33]). The PF assigns to each particle i
a positive weight wik, computed by means of a Bayesian
approach, that is used to measure the value of a single
state estimation within the set of particles. These weights
are normalized and used as the probability of each particle
in a resampling process, to improve the quality of the set
of particles for the next iteration. This whole process is
summarized as follows,

- Initial conditions for tk:

Np particles and weights, {X̂i
k, P

i
k, w

i
k}

1 Locally linearized KF for each particle:

UKF → {X̂i+
k+1, P

i+
k+1, P

i−
k+1, P

i
νν}

2 Compute the new particles and weights:

X̂i
k+1 ∼ N (X̂i+

k+1, P
i+
k+1)

w̃ik+1 =
fN (h(X̂i

k+1),P
i
νν)

(Ẑk)fN (X̂i−
k+1,P

i−
k+1)

(X̂i
k+1)

fN (X̂i+
k+1,P

i+
k+1)

(X̂i
k+1)

3 Weight normalization and resampling:

wik+1 =
w̃ik+1∑Np

j=1 w̃
j
k+1

{X̂i
k+1, P

i
k+1} = Resample(X̂i

k+1, P
i
k+1, w

i
k+1)

4 Estimated state:

p(X̂k+1|X̂k, Ẑk) ≈
Np∑
i=1

1

Np
δ(X̂k+1 − X̂i

k+1)

X̂k+1 =

Np∑
i=1

1

Np
X̂i
k+1,

where δ(·) is the Dirac delta distribution. In the
algorithm, fN (X̂i−

k+1,P
i−
k+1)

refers to the a priori state
Gaussian multivariate probability distribution estimated
locally for each particle i inside the propagation filter
(UKF, in this work), fN (X̂i+

k+1,P
i+
k+1)

is the corresponding
a posteriori Gaussian multivariate probability density and
fN (h(X̂i

k+1),P
i
νν)

is the Gaussian multivariate density func-
tion for the measurements. Thus, the weights are obtained
from the a priori and a posteriori probability distributions,
as described next.

As stated above, the selected locally linearized
Kalman filter for this application, due to its robustness
for nonlinear functions, is the Unscented Kalman Filter
(UKF), which has been reformulated to take into account
the quaternion attitude representation ([24]).

- Initial conditions for tk:

X̂(tk) = X̂+
k , P (tk) = P+

k
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1 Compute and propagate the Sigma Points:

Υk,i = X̂k ± cols(
√
NpChol(P

′
k))

Υ̇i = f(Υk,i, Ẑp) → Υk+1,i, Zi = h(Υk+1,i)

2 UKF application:

X̂−
k+1 =

1

2Np

2Np∑
i=1

Υk+1,i, Z̄ =
1

2Np

2Np∑
i=1

Zi

P−
k+1 =

1

2Np

2Np∑
i=1

2Np∑
j=1

(Υk+1,i − X̂−
k+1)(Υk+1,i − X̂−

k+1)
′

Pxz =
1

2Np

2Np∑
i=1

2Np∑
j=1

(Υk+1,i − X̂−
k+1)(Zi − Z̄)′

Pνν = R+
1

2Np

2Np∑
i=1

2Np∑
j=1

(Zi − Z̄)(Zi − Z̄)′

K = PxzP
−1
νν

X̂+
k+1 = X̂−

k+1 +K(Ẑa − Z̄), P+
k+1 = P−

k+1 −KPννK
′

where Chol(P ) denotes the Cholesky decomposition of
P . Therefore, the mean and covariance matrix character-
izing each probability distribution involved in computing
the weights are sampled from the sigma points.

In order to implement the quaternion attitude repre-
sentation in the state X̂k, several considerations must be
made for both the UKF and the PF algorithms. The main
idea that allows to extend the UKF and the PF to include
quaternions is to use as an auxiliary representation system
the attitude vector, which is minimal and does behave
like a vector. The state’s covariance matrix is computed
considering that the attitude is given by a rotation vector
θ (see, e.g. [26]). After the S matrix is obtained, two
separate sets of Sigma Points are stored. On one hand, po-
sition and velocity are included in the vector Sigma Point
VΥ. On the other hand, the 3 components associated to
attitude from each column of S, θχ, are transformed into
a quaternion rotation and used to compute the quaternion
Sigma Points,

qΥ = q̂ ⊗

(
cos

θχ
2

θχ

θχ
sin

θχ
2

)
. (27)

Thus, after the Sigma Points are computed, the pair of
sets {VΥ,i, qΥ,i}, i ∈ {1, . . . , 18} are obtained. These
Sigma Points can be used to determine the time evolution
and the estimated additional measurements using the
nonlinear functions f and h without any additional
modification.

Computing the covariance matrices involving qΥ is not
immediate, since the definition computing the difference
between vectors does not hold for quaternions. In fact, it
is necessary to obtain an alternative algorithm to compute
the mean of a set of quaternions. Let {qi}, i ∈ [1, n]
be a set of attitude quaternions. Let ⟨q⟩ be the mean
quaternion. The rotation quaternion ri from the mean to

any of the elements of the set verifies the general rotation
composition relation from the Hamilton product

qi = ri ⊗ ⟨q⟩. (28)

In consequence, the set of rotation vectors between qi and
⟨q⟩ are given by

ri = qi ⊗ ¯⟨q⟩. (29)

Each rotation ri is equivalent to a rotation vector θr,i, so
that

θr,i = 2
ri
∥ri∥

arccos ri,0. (30)

Thus, the angle between any reference frame represented
by qi and the mean orientation given by ⟨q⟩ is θr,i. If ⟨q⟩ is
the mean quaternion, the mean rotation vector ⟨θr⟩ must
be zero. If ⟨q⟩ is not the mean quaternion, ⟨θr⟩ is nonzero
and oriented towards the real mean direction. Using this
property, the mean quaternion of a set can be obtained by
using an iterative algorithm, as detailed in [24].

Firstly, an initial guess for the mean quaternion is
needed. In the navigation algorithm, the mean of the set of
quaternion Sigma Points can be initially approximated by
the attitude quaternion q from the prior iteration. Let this
starting point be ⟨q⟩0. The set of rotation quaternions ri is
computed from (29). The equivalent rotation vectors θr,i
are obtained from (30) so that the mean rotation vector
is computed from the usual vector definition

⟨θr⟩ =
1

n

n∑
i=1

θr,i. (31)

If the norm of ⟨θr⟩ is smaller than a predefined tolerance
set to consider that the algorithm has converged, ⟨q⟩0
is accepted as the mean quaternion. Otherwise, the next
mean quaternion estimation ⟨q⟩1 is computed rotating ⟨q⟩0
as indicated by ⟨θr⟩,

qr =

(
cos ⟨θr⟩

2

sin ⟨θr⟩
2

⟨θr⟩
⟨θr⟩

)
, (32)

⟨q⟩1 =qr ⊗ ⟨q⟩0. (33)

This process is repeated until the mean quaternion is
obtained. This technique is very interesting for the current
application since the final set of rotation vectors θr,i is
equivalent to the difference xi−⟨x⟩ when computing the
covariance matrix of a set of vectors xi. Hence, inside
the UKF, the term Υk+1,i − X̂−

k+1 is substituted by

Υk+1,i − X̂−
k+1 ≡

XS
Υ,k+1,i − X̂S,−

k+1

V B
Υ,k+1,i − V̂ B,−

k+1

θr,i

 (34)

where XS
Υ,k+1,i and V B

Υ,k+1,i are the position and ve-
locity Sigma Points. After the state change is computed
in the Kalman Filter, the three components describing
the change in attitude, which are a rotation vector, are
converted to a rotation quaternion and applied to the
uncorrected attitude quaternion to compute the filtered
attitude. With these generalizations, the UKF is extended
to include quaternions, so that the basic algorithm stays
unchanged.
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The LLPF was generalized to include quaternions
following a similar reasoning. In this case, the normal
multivariate probability distributions, which allow com-
puting the particles’ weights, have to be extended to
use quaternions as an attitude representation system. This
situation appears when evaluating for each particle

fN (X̂i−
k+1,P

i−
k+1)

(X̂i
k+1)

=
exp

(
− 1

2 (X̂
i
k+1 − X̂i−

k+1)
′(P i−k+1)

−1(X̂i
k+1 − X̂i−

k+1)
)

√
(2π)9|P i−k+1|

,

(35)

fN (X̂i+
k+1,P

i+
k+1)

(X̂i
k+1)

=
exp

(
− 1

2 (X̂
i
k+1 − X̂i+

k+1)
′(P i+k+1)

−1(X̂i
k+1 − X̂i+

k+1)
)

√
(2π)9|P i+k+1|

,

(36)

where (X̂i
k+1−X̂

i−
k+1) and (X̂i

k+1−X̂
i+
k+1) are not defined

for the quaternion part. As written in (28)–(29), the
rotation quaternion between two attitude quaternions is
easily obtained by using the Hamilton product. The cor-
responding attitude vector is given by (30). The LLPF can
be extended by considering the following equivalences

X̂i
k+1 − X̂i−

k+1 ≡

X̂S,i
k+1 − X̂S,i−

k+1

V̂ B,i
k+1 − V̂ B,i−

k+1

θ−
k+1

 , (37)

X̂i
k+1 − X̂i+

k+1 ≡

X̂S,i
k+1 − X̂S,i+

k+1

V̂ B,i
k+1 − V̂ B,i+

k+1

θ+
k+1

 , (38)

where

r−k+1 =q̂ik+1 ⊗ ¯̂q
i−
k+1, (39)

θ−
k+1 =2

r−k+1

∥ri∥
arccos r−k+1,0, (40)

r+k+1 =q̂ik+1 ⊗ ¯̂q
i+
k+1, (41)

θ+
k+1 =2

r+k+1

∥ri∥
arccos r+k+1,0. (42)

As for fN (h(X̂i
k+1),P

i
νν)

, a conventional multivariate
Gaussian distribution for vector variables can be used.
The described variants allow to completely generalize the
LLPF and its corresponding UKF algorithms to use of
quaternions as the attitude representation system.

A correction is needed for the imposed symmetry
condition, as stated in (18)–(19), which can otherwise be
problematic. If XS

2 ≪ XS
1 , setting XS

2 to zero does not
change significantly the horizontal distance from the BV
to the target, neither the BV’s orientation with respect
to the S reference system. If, on the contrary, XS

2 is
representative against XS

1 , the considered equation can
lead to an undesirable reduction of the distance to the
target and an unexpected rotation of the B axes relative
to the S axes, thus reducing the algorithm’s overall
performance. To guarantee that this equation behaves as
rotation, the following corrections can be applied. Let XS

0

be the position before applying the filter, and XS
f its value

after the filtering process. The horizontal angle between
these vectors can be computed from the definition of the
dot product

cosψ =

XS
0,1

XS
0,2

0

 ·

XS
f,1

XS
f,2

0


√(

XS
0,1

)2
+
(
XS

0,2

)2√(
XS
f,1

)2
+
(
XS
f,2

)2 ,
(43)

where only the horizontal components were considered.
Thus, the corrected distance after filtering is given by

X ′S
f,1 =

XS
f,1

cosψ
. (44)

As for the needed attitude correction for q, it can be
obtained by introducing a rotation given by

q′ =


cos ψ2
0
0

sin ψ
2

 . (45)

Under this algorithm, the particles distribution can be
propagated freely from the available information without
constraints, and corrected when laser measurements are
available. This allows to maintain all the initially available
information by propagating the unconstrained particles.
When LOS measurements are available, the considered
equations are included in the filtering algorithm.

V. Application for ballistic coefficient estimation

Assuming an statically-stable, unpowered and axisym-
metric (with respect to its longitudinal axis, XB) ballistic
vehicle, equation (2) can be simplified by neglecting lift
and cross forces against drag (notice that the vehicle is
also assumed to be flying at zero angle of attack, so that
V B2 , V B3 ≈ 0, and the total aerodynamic force will be
aligned with the airspeed vector). Hence, the aerodynamic
acceleration can be written as follows

AB
NG = − D

mb

V B

|V B |
= −pq

β

V B

|V B |
(46)

where mb is the vehicle’s mass, pq is the dynamic
pressure, and β is the ballistic coefficient, defined as

β =
mb

SCD
, (47)

being CD the drag coefficient, and S the reference surface.
Notice that, under the aforementioned assumptions,

the ballistic coefficient is the single vehicle-dependent
parameter appearing in the equations of motion (1)–(3).
This is to say, if the initial state were known, the impact
point could be predicted if a proper ballistic coefficient
model were available. Thus, since the ballistic coefficient
would be extremely useful for the design of predictive
guidance systems for such vehicles (for instance, those
based on MPC, like [34]), the structure of the proposed
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LLPF is exploited to also provide an online estimation of
β.

To do so, define the drag per unit of mass

d =
D

mb
=

1

2mb
ρ
(
V B1
)2
SCD, (48)

which depends on altitude (through the air density, ρ)
and on the BV’s state through CD. Nonetheless, after the
LOS measurements are available, density does not change
sensibly and thus can be considered a constant. As both
V B2 and V B3 are considered zero by the the steady-state
attitude condition, a general model for the drag coefficient
is assumed to be

CD ∝
(
V B1
)n
. (49)

Equations (48) and (49) allow to write

d = α
(
V B1
)n+2

, α > 0. (50)

If α and n were known, the drag coefficient could be
computed from V B1 and the propagation problem would
be solved. As α is necessarily positive, taking the loga-
rithm of both sides and substituting d = ABAcc, one has:

log |ABAcc| = logα+ (n+ 2) log |V B1 |, (51)

It is useful to define the measured vectors and matrices
for each iteration

yk = log |ÂBAcc,k| (52)

Xk =
(
1 log |V̂ B1,k|

)
. (53)

Similarly, let the estimated coefficients be given by

α̂k =

(
logα
n+ 2

)
. (54)

This estimation problem can be solved iteratively by
means of a Recursive Least Squares (RLS) method. In
particular, let the cost function be given by

Jk =

k∑
i=1

[
λk−i ∥yk −Xkα̂∥2 + λk ∥α̂−α0∥P−1

0

]
,

(55)
where λ is the forgetting factor and P0 is the covariance
matrix of the initial estimation α0. The optimal solution
for the LS problem is recursively computed as

Pk+1 =
1

λ
Pk −

1

λ
PkX

′
k (λI +XkPkX

′
k)

−1
XkPk (56)

α̂k+1 = α̂k + Pk+1X
′
k (yk −Xkα̂k) . (57)

This algorithm can be executed in real time after the
BV’s state is estimated from the LOS measurements. The
initialization point α0 can be obtained by applying a
Batch Least Squares (BLS) method to a set of past states
generated through a trajectory reconstruction algorithm.
It is particularly simple to integrate equations (1)–(3)
backwards in time from the present state and using the
stored measurements for ωBGyr and AB

Acc. For a set of nLS
measurements, let X0 and y0 be the stacked matrices

y0 =


yk

yk−1

...
yk−nLS

 ∈ RnLS , X0 =


Xk

Xk−1

...
Xk−nLS

 ∈ RnLS×2.

(58)

The initial estimation α0 is computed as

α0 = (X ′
0X0)

−1
X ′

0y0. (59)

This initialization process allows to compute good pre-
dictions from the moment the state is correctly estimated.
Note that, although no significant changes are expected
for α̂ during the RLS, the initial point is not critical,
as the forgetting factor can be adjusted to only consider
the last set of measurements. In particular, a usual value
of λ is of around 0.98. For a sampling frequency of
40Hz, this means that measurements taken 2 seconds in
the past are weighted only a 20% against newly obtained
measurements. A higher λ makes the system more robust
against noise and perturbations. The situation is similar
with P0, which can be arbitrarily set to the 2-dimensional
identity matrix.

VI. Results

To analyze the performance of the proposed algorithm,
a simulation model based on a small free-fall bomb has
been employed. The aerodynamic model of the bomb has
been obtained using semi-empirical methods (as detailed
in reference [35]). Given that this work exclusively fo-
cuses on the free-fall flight phase (without control), the
primary aerodynamic parameter governing the trajectory
is the ballistic coefficient, which is illustrated in Fig. 4.

0.2 0.4 0.6 0.8 1

Mach
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4500

5500
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 m

/(
S

 C
D

) 
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g
/m

2
]

Fig. 4. Ballistic coefficient

Regarding the filter design, a set of Np = 200
particles is considered, with an update frequency of 40Hz.
The complete Particle Filter algorithm is programmed
using C++ to evaluate its computational performance.
The available CPU to perform the simulations in this
work is an Intel(R) Core(TM) i7-3537U. No GPU accel-
eration was used. With this limited processing capacity,
the simulations including the 40 Hz navigation system
update rate are executed with a ratio of around 1 second
of computation for each 1 simulation second, this is,
the algorithm operates in real time. Additionally, a very
interesting property of the proposed navigation system is
its high degree of parallelizability. Indeed, as described in
[36], a Parallel Quaternion Particle Filter (PQPF) could
be implemented to effectively reduce the computational
time between iterations.
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To evaluate the performance of the proposed estima-
tion filter, an in-depth case study and a set of Monte Carlo
simulations were carried out. For the single fall analysis,
the initial bomb’s state is given by

XS
0,1 =

−3670
0

−2000

 m,V B
0,1 =

200
0
0

 m/s,

q0,1 =


1
0
0
0

 ,ωB0,1 =

0
0
0

 rad/s.

(60)

For the Monte Carlo analysis, a grid of initial con-
ditions leading to an eventual LOS sensor availability
was generated by back propagating from a grid of final
states with varying feasible velocities and pitch angles.
In particular, a grid of 32 × 32 values was considered,
leading to 1024 simulations. The considered procedure to
generate valid initial conditions gives place to the initial
states distribution included in Figure 5. Note that a wide
distribution of initial states is considered.

Fig. 5. Distribution of initial conditions in the Monte Carlo
simulations

The variances of the additive Gaussian white noise for
measurements in all simulations are set to σ2

h = 100m2,
σ2
a = 2 · 10−2 m2/s4, σ2

ω = 5 · 10−6 rad2/s2 and σ2
γ =

5 · 10−5 rad2. The initial particles distribution is sampled
from a Gaussian multivariate state probability density,

X̂i
0 ∼ N (µX,0,ΣX,0), i ∈ [1, Np]. (61)

The initial bias µX,0 of the state estimation is of 80m for
each position coordinate, 15m/s for each velocity com-
ponent and 0.3 rad for each Euler angle. The covariance
matrix is set to

ΣX,0 =Diag
(
8000 8000 8000 200 200 200 0.05 0.05 0.05

)T
.

These initial conditions reflect the uncertainty in the
starting point of the trajectory.

For the single scenario case study, the computed tra-
jectory of each particle and the final estimated trajectory
are included in Figures 6 and 7 for a particular instance
of the initial conditions. Note that the LOS measurements

are not available during most of the simulation time. The
algorithm propagates and filters the particles distribution
considering only the information accessible on-board.

Fig. 6. Path of each particle in the navigation algorithm

Fig. 7. Path estimation of the complete trajectory in the navigation
algorithm. The convergence point of the Particle Filter is circled.

More generally, Figure 8 includes the results of the
Monte Carlo simulations. In particular, the distribution of
deviations ∆r of the impact point estimation at the impact
time is displayed. A standard deviation of 3.9662 m is ob-
tained. Note that this metric is a measure of convergence,
rather than being indicative of the precision one might
anticipate within a prospective guidance system utilizing
this algorithm (commonly measured with the so-called
Circular Error Probable or CEP). Moreover, the error is
evaluated at the impact point, for which the available set
of measurements is the largest. Anyhow, this result shows
good convergence behavior of the proposed algorithm for
highly uncertain initial conditions.

The proposed navigation algorithm correctly con-
verges to the desired state. Moreover, the time between
the initial LOS measurements and the convergence of the
estimation to the real state is in most of the simulations
very short. In order to characterize this behavior, let x̂ik
be the estimated position of the i-th particle at iteration
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Fig. 8. Position estimation error in the impact point for 1024 Monte
Carlo simulations

k. Let Σk be the covariance matrix of this distribution.
The chosen convergence convergence metric is given by

σk =
√

Tr (Σ), (62)

where Tr is the trace operator, computing the sum of the
diagonal terms of a matrix. The proposed metric gives a
characteristic magnitude of the size of the particle distri-
bution in the position space. Furthermore, this parameter
can be computed on-line and compared to a threshold to
evaluate convergence. For this work, a convergence limit
of 15 m is considered. Therefore, the convergence time is
defined as the difference between the time instant at which
σ is smaller than the threshold and the one at which the
LOS measurement is first available.

Fig. 9. Convergence times for 1024 Monte Carlo simulations, with
standard deviation threshold for particles of 15 m.

As included in Figure 9, the convergence times distri-
bution is concentrated below 3 s, with most simulations
presenting a much lower value. In particular, an average
convergence time of 1.1526 s is obtained. Consequently,
a fast convergence is achieved, enabling the implemen-
tation of more advanced guidance algorithms benefiting
from the state estimation. This is a consequence of the
resampling process. Each time a particle obtains a very

good approximation of the BV’s state, all the other
particles are resampled to that state, as its weight is
nearly 1. In this situation, the hypervolume filled by the
particles distribution within the state space is significantly
reduced. After the resampling step, each particle randomly
propagates to a different state, slightly increasing the size
of the particles distribution and therefore avoiding degen-
eracy. This excellent behavior is obtained in a variety of
initial conditions, uncertainty and measurement noise. The
parameters within the quaternion UKF and the number of
particles can be tuned to improve performance for a given
computational capacity.

As for the system identification and prediction algo-
rithms, they highly benefit from the rapid convergence of
the state estimates. Figure 10 shows the estimation error
of the future ballistic coefficient through (46) from the
inferred parameters α and n at t = 17.0 s, the estimated
velocity and altitude. As described in Section V, a for-
getting factor of 0.98 is used, together with an initialized
P0 equal to the identity matrix. Furthermore, Figure 11
displays the predicted trajectory at t = 17.0 s, together
with the actual state evolution. For the impact point, the
estimation deviates 18.61 m from the real position. The
RLS output coefficients present minor fluctuations, mainly
at t = 16.0 s, as it could be expected from the arbitrary
initialization of P0. The predicted ballistic coefficient
exhibits a good accuracy, with a small deviation from
the true value, although a growing bias is observed.
Finally, the prediction of the future state fits well the
future trajectory. From the estimations provided by the
navigation system, the system identification algorithm
converges to a model that fits adequately the aerodynamic
behavior of the vehicle.
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Fig. 10. Relative estimation error of the ballistic coefficient at
t = 17.0 s.

VII. Conclusions

This work introduced a Locally Linearized Particle
Filter, based on a quaternion-adapted Unscented Kalman
Filter, to estimate the state of a vehicle with a mini-
mal number of sensors and significantly uncertain ini-
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Fig. 11. Future trajectory prediction at t = 17.0 s. Vector x, y and z

components are plotted in red, green and blue, respectively. Solid lines
denote real values, and dashed lines the estimated ones.

tial conditions, exploiting the geometrical symmetries of
the problem. The particular case of a ballistic vehicle
which is traveling towards a target illuminated by laser
was considered. The considered sensors were a triad of
accelerometers and gyroscopes, a barometric altimeter,
and a laser receiver that only activates when the target
is close enough. A symmetry around the vertical axis
was identified; based on it, the algorithm was capable
of rapidly solving the navigation problem, even with
strongly uncertain initial fix and the laser receiver initially
not active. The proposed navigation algorithm showed
promising results in simulation, rapidly converging to an
accurate estimate of the real trajectory when the laser
receiver became activated and is capable also of trajectory
prediction based on the estimation of the drag coefficient.

The number of particles was set to a few hundred;
while this is a small quantity of particles for a PF, the
LLPF behaved excellently in Monte Carlo simulations.
Thus, if more uncertainties or measuring noise were to
be considered, the LLPF could be enhanced by simply
increasing the number of particles, and enlarging the ini-
tial distribution. This consideration, however, also would
increase the required computational cost. Also note that
the particles set was sampled from a rather arbitrary
probability distribution. In practice, if the envelope of
initial states is known a priori, the set of particles can
be initialized to coincide with these conditions. In this
regard, if the attitude uncertainty is reduced, the algorithm
can estimate the system’s state with more accuracy. This
property is very useful for the proposed application, since
the developed estimation algorithm can be easily modified
to include any available information about the operation
by means of changing the initial probability distribution.
Note that the starting set of particles can be adapted to any
operational conditions without any specific knowledge on
filtering theory nor the algorithms functioning.

This work also implemented a system identification
algorithm and a trajectory prediction system, based on

navigation system outputs, and verified their performance
in simulation. The proposed methods allow obtaining an
estimation of the future trajectory as to be considered
by a prospective guidance system, adequately fitting the
actual aerodynamic behavior of the ballistic vehicle. This
framework could be extended to model and identify wind
(see also the procedure of [34]), although more stringent
requirements on the quality and frequency of the available
measurements could be expected, as well as the overall
acceptable uncertainty of the navigation system and the
precision of the predictions.

These results could be extended to other vehicle state
estimation problems, both for aircraft and spacecraft,
specially if symmetries can be identified and exploited;
two relevant examples include GNSS-denied aircraft nav-
igation or spacecraft rendezvous with non-cooperative
tumbling targets such as space debris. In addition, the state
estimated by the navigation algorithm would be readily
available to be used for guidance and control purposes,
which would be a natural next step, both for the proposed
application or others.
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