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Boundary Observer for Output-Feedback Stabilization
of Thermal-Fluid Convection Loop

Rafael Vazquez, Member, IEEE, and Miroslav Krstic, Fellow, IEEE

Abstract—In this paper, we consider a 2-D model of thermal
fluid convection that exhibits the prototypical Rayleigh–Bernard
convective instability. The fluid is enclosed between two cylinders,
heated from above, and cooled from below, which makes its motion
unstable for a large enough Rayleigh number. We design an stabi-
lizing output feedback boundary control law for a realistic collo-
cated setup, with actuation and measurements located at the outer
boundary. Actuation is through rotation (direct velocity actuation)
and heat flux (heating or cooling) of the outer cylinder, while mea-
surements of friction and temperature are obtained at the same
boundary. Though only a linearized version of the plant is consid-
ered in the design, an extensive closed loop simulation study of the
nonlinear model shows that our design works for reasonably large
initial conditions. A highly accurate approximation to the control
kernels and observer output injection gains is found in closed form.

Index Terms—Backstepping, boundary control, distributed
parameter systems, flow control, partial differential equations
(PDEs), observers, singularly perturbed systems, stabilization.

I. INTRODUCTION

R ECENT years have been marked by dramatic advances
in active flow control; see for instance the survey [4] and

references therein. Many particular problems have been consid-
ered, like vortex shedding [1], [12], turbulent channel flow con-
trol [3], [8], [16], or separation control [2]. However, the area of
fluids subject to thermal gradients, despite its obvious practical
engineering interest, has been mostly neglected.

In this paper, we consider a 2-D model of thermal fluid con-
vection that exhibits the prototypical Rayleigh–Bernard convec-
tive instability [9]. The fluid is enclosed between two cylinders,
heated from above and cooled from below. Imposing a tem-
perature gradient induces density differences, which creates a
circular motion that is opposed by viscosity and thermal diffu-
sivity. For a large enough Rayleigh number, which is a function
of physical constants of the system, geometry and temperature
difference between the top and the bottom, the plant develops
an instability.

The model was first formulated by Burns et al. [6], who
solved the problem using a linear quadratic Gaussian (LQG)
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controller; the resulting Riccati equations were solved using
a finite element method. Other efforts include a nonlinear
backstepping design for a discretized version of the plant [5],
but the result did not hold in the limit when the discrete grid
approached the continuous, real domain. The design we present
here is based on our previous work [16], where we designed a
(full-state) control law to stabilize the linearized system based
on singular perturbation analysis and nondiscretized partial
differential equation (PDE) backstepping control. The control
law we obtained was explicit and the design was done for the
infinite dimensional continuous model.

We design an output feedback controller that uses the same
controller as in [16], but uses an observer to obtain temperature
estimates for the control law. The observer is designed using sin-
gular perturbations and the dual PDE backstepping observer de-
sign method [15]; this allows us to obtain readily implementable
explicit observer gains.

The main ingredients of our design are singular perturbation
theory and the backstepping method for infinite dimensional
linear systems. Singular perturbation theory is a mature area
[10] with a wealth of control applications, while backstepping
is still recent [14], [15] but has already found application in flow
control [1], [18], [19]. Combining both methods it is possible
to design an output feedback control law which stabilizes the
closed loop system; this is proved for a large enough Prandtl
number, which is the ratio between kinematic viscosity and
thermal diffusivity. In this problem, the inverse of the Prandtl
number plays the role of the singular perturbation parameter.

We start this paper stating the mathematical model of the con-
vection loop (see Section II) and transforming it into a suit-
able form for application of singular perturbation methods. In
Section III, we show that the temperature can be decomposed
into two new independent variables; we use this to express the
system as the combination of two separate subsystem. The first
of them is analyzed in Section IV, and stabilized with an output
feedback controller designed by a Lyapunov method. Section V
is concerned with the second subsystem and it is divided in sev-
eral subsections. First a full state controller is designed, as in
[16], using singular perturbation theory and a backstepping de-
sign. Then, using dual methods, an observer is designed and
combined with the controller to obtain output feedback laws.
Both the control and output injection kernels are found solving
a linear hyperbolic PDE, which can be done numerically or
symbolically. A highly accurate approximation to the kernels is
found in closed form. We finish the section with a stability result
based on both singular perturbation and backstepping theory.
In Section VI, we present the output feedback controller for
the entire system and state the main result of this paper. The
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Fig. 1. Convection loop geometry.

theoretical result is supported by a numerical study, presented
in Section VII, in which closed-loop simulations of the plant
and control effort are shown. In these simulations the Rayleigh
number is large enough for the plant to go open loop unstable,
but the controller is able to overcome the instability. We finish
with some concluding remarks in Section VIII. We also include
the Appendix proving some technical results used through this
paper.

II. PROBLEM STATEMENT

The geometry of the problem is shown in Fig. 1, and consists
of fluid confined between two concentric cylinders of radius
and . The cylinders stand in a vertical plane, so that gravity
acts as in Fig. 1. Under the assumption that the gap between the
cylinders is small compared to the radius of the cylinders, i.e.,

, and using the Boussinesq approximation,
the following non-dimensional model is derived (see [16] for
details)

(1)

(2)

where is the azimuthal velocity (the radial velocity is
neglected under the assumptions), is the perturbation
temperature about the equilibrium profile, and and are,
respectively, the Rayleigh and Prandtl numbers. The boundary
conditions are

(3)

(4)

(5)

(6)

where and are, respectively, the non-dimensional velocity
and temperature control. Note that for a given time is an
scalar, while is a function of the angle, as illustrated by Fig. 2.
We also assume that measurements of (proportional to
skin friction) and are available only for .

Following the lines of the stability study of these equations
in [5], the value of in (1) is set so the system is stable for
Rayleigh numbers less than unity and unstable otherwise.

Fig. 2. Velocity and thermal actuation on the outer boundary of the convection
loop. Measurements are obtained from the same boundary.

Defining , , ,
dropping time dependence, and neglecting the nonlinear term,
the linearized plant equations are the following:

(7)

(8)

with the same boundary conditions (3)–(6).
We will design an output feedback control law to stabilize the

linearized plant around the origin, therefore stabilizing—at least
locally—the full nonlinear plant.

III. SYSTEM DECOMPOSITION

Defining new variables

(9)

(10)

and letting and , we can write
the plant in variables as

(11)

(12)

(13)

with boundary conditions

(14)

(15)

(16)
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Remark 1: The variable is the first cosine coefficient of the
Fourier series of the periodic variable whereas contains the
remaining periodic components. The variable verifies

(17)

and therefore is orthogonal (in the sense) to .
Hence, both and are independent and needed to recover .

Our design task is to find output feedback control laws ,
, and such that the equilibrium profile

is exponentially stable. For the statement of stability, we define
the norms

(18)

(19)

for functions that depend both on angle and radius , and

(20)

(21)

for functions only depending on the radius.
Remark 2: Lemma 1 (see the Appendix) shows that the

and norms of can be written as a combination of the same
norms of and . Hence, exponential stability in the norm
(respectively, norm) of the origin for both and is equiv-
alent to exponential stability of the origin in the norm (re-
spectively, norm) of .

Thus, we study stability in the system of (11)–(13).
This system can be decomposed in two subsystem, the sub-
system with control law , and the subsystem with con-
trol laws . Both subsystem are not coupled so we analyze
and control them independently.

IV. STABILIZATION OF SUBSYSTEM

For we set the following output feedback law:

(22)

where . Then, we get the following stability
property (see the Appendix for the proof).

Proposition 1: Consider (13) with boundary conditions (16)
and control law (22). Then, the equilibrium is exponen-
tially stable in the norm, i.e., there exists s.t.

(23)

V. STABILIZATION OF SUBSYSTEM

In dealing with the subsystem we follow a similar
strategy to [16], but also adding an observer for state estimation.

First, we eliminate the convective term for (11) and for
(12). Define , . Then and verify

(24)

(25)

and boundary conditions

(26)

(27)

where , , .
We drop checks in the sequel for simplicity.

A. Control Design

First we design full state feedback laws and . We assume
that the parameter is small enough so we can use singular
perturbation theory [10], [16].

1) Quasi-Steady-State: The first step is to compute the quasi-
steady-state (QSS) by setting in (24). Then, the QSS is
the solution of the linear ODE

(28)

with boundary conditions . The solution
is

(29)
where

(30)

(31)

The velocity control appears inside (29). We use it to put the
QSS in strict integral feedback (strict-feedback) form [11], i.e.,

should not depend on any value of with .
Hence, we eliminate the non-strict-feedback integral (the
second term) of (29). The strict-feedback structure is necessary
so we can use the backstepping method for strict-feedback
parabolic PDE’s [14]. For that, set

(32)

then the QSS is

(33)

2) Reduced Model: The reduced model is obtained by plug-
ging the QSS into (25). We get

(34)

(35)



792 IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL. 18, NO. 4, JULY 2010

a strict-feedback parabolic PIDE with reaction and integral
terms. We apply backstepping [14] to map (34)–(35) into the
target system

(36)

(37)

where the reaction term has been kept since it helps stability.
The backstepping transformation is defined as follows:

(38)

where the kernel is found to verify the following hyper-
bolic partial integro-differential equation in the domain

:

(39)

(40)

This equation was shown to be well-posed in [16], where the
following explicit approximate solution for was found:

(41)
Using the kernel , the control law is found to be

(42)

Backstepping theory guarantees that stabilizes the reduced
model, and it was shown in [16] that for sufficiently small , the
control laws and keep stabilizing the system.

B. Observer Design

Since control laws (32) and (42) require knowledge of the
full state of the system, we design an observer to estimate the
state from the measurements and . We postulate
our observer as a copy of the plant with output injection of mea-
surement error, as follows:

(43)

(44)

(45)

(46)

(47)

where hats denote estimated variables, and , , and are
output injection gains, to be found. Defining the observer error
variables as , , the observer error equations
are

(48)

(49)

(50)

(51)

As in Section V-A, we apply singular perturbation theory to de-
sign output injection gains , , and .

1) Quasi-Steady-State: Setting in (48), the QSS is the
solution of

(52)

with . The solution is

(53)

where

(54)

Using the measurement to write the solution, the QSS is

(55)

where

(56)

Note that we have written the QSS in terms of an “upper-trian-
gular” rather than a strict-feedback (“lower-triangular”) integral
of the state . This means that only depends on values of

with . This is necessary for applying the backstep-
ping observer design method for collocated systems [15], which
makes use of an upper-triangular transformation.

2) Reduced Model: Plugging (55) into (48) we get the re-
duced model for the observer error, which is

(57)

Set . Then

(58)
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is a parabolic PDE in with an upper-triangular integral term,
and boundary conditions

(59)

Following the backstepping observer design method [15], we
apply an upper-triangular transformation

(60)

where verifies

(61)

(62)

The kernel is found to verify the following equation in
the domain :

(63)

(64)

From the kernel the output injection gains in (58) and (59) are
found to be and .

Defining , , and , the kernel
verifies

(65)

(66)

Since , (65)–(66) are the same as (39)–(40),
verified by . Hence, it follows that (65)–(66) is well-posed and

, so that . Equation (41)
gives then an explicit expression for the output injection gain

.

C. Output Feedback Controller

Combining the results of Sections V-A and V-B, we get the
following output feedback controller:

(67)

(68)

where the estimate is obtained from

(69)

(70)

(71)

(72)

The backstepping method [14], [15] guarantees that the output
feedback control laws stabilize the reduced model (34), thus
stabilizing the system when .

D. Singular Perturbation Analysis for Small

Assume that is small but nonzero. Since and
, we show stability of the system by proving stability

in the coordinates. We begin stating the following
proposition regarding (see the Appendix for the proof).

Proposition 2: Consider (48)–(49) with boundary conditions
(50)–(51). Then, there exists such that if , the
equilibrium is exponentially stable in the norm,
i.e., there exists s.t.

(73)
Now we study the subsystem, which verifies (43)–(44).

Since and feed into (44), it is not possible to
obtain stability for alone; rather, the whole
subsystem has to be considered. We get the following result.

Proposition 3: Consider (43)–(44) and (48)–(49), with
boundary conditions (45)–(47) and (50)–(51), and control laws
(67)–(68). Then, there exists such that if , the
equilibrium is exponentially stable in the

norm, i.e., there exists s.t.

(74)

We skip the proof of Proposition 3, since it follows exactly the
same lines as the proof of Proposition 2 (see the Appendix); the

system can be proven exponentially stable in the norm
when . Since the system is driven by
and , using the estimates in the proof of Proposition 2 the
whole system is shown to be exponentially stable.

VI. MAIN RESULT

Using the definition of in terms of and , and writing
the observer equations in terms of the original measurements

and , we get the output feedback control laws
for the entire system

(75)

(76)
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where

(77)

(78)

(79)

(80)

(81)

From Propositions 1 and 3, Lemma 1 and Remark 2, we get the
following result.

Theorem 1: Consider system (7)–(8) with boundary condi-
tions (3)–(6) and output feedback control laws (75)–(81). Then,
there exists such that for , the equilibrium

is exponentially stable in the norm,
i.e., there exists s.t.

(82)

VII. SIMULATION STUDY

We use for simulation the same prototypical case that was
shown open-loop unstable in [16]. Numerical computations are
carried out using a spectral method (using Fourier series) com-
bined with the Crank–Nicholson method. The parameters of the
system had the following numerical values: 1.1975 ft,

1.2959 ft, , , . For
these values, it is shown in [16] that the kernel approximation
given by (41) is very good.

In Fig. 3, we show the shape of the kernels appearing in our
control law. Note that the temperature control kernel
gives more weight in the control law to information near the
inner boundary—as the boundary controller is on the opposite
side, it has to react more aggressively to compensate fluctua-
tions of temperature in the interior part of the domain. This
is also true for the velocity control kernel and ve-
locity output injection gain (which is not explicitly shown
as ). The temperature output injection gain

is larger in the middle of the loop, where the states are
somewhat more difficult to estimate (near the boundaries some
information is known a priori).

In Fig. 4, closed-loop simulations of the plant show how the
states converge exponentially towards the equilibrium profile
fairly quickly. We also plot the observer error, that converges
to zero. In Fig. 5, we show the magnitude of the control law .

VIII. CONCLUSION

A combination of singular perturbation theory and backstep-
ping for parabolic PDEs has been successfully employed to

Fig. 3. Control kernel � �� � �� (solid line), observer output injection kernel
� �� � �� (dashed line), and velocity control kernel ��� � �� (dashed-dotted
line).

Fig. 4. Closed-loop simulation. a) Temperature perturbation ���� �� �� at radius
� � �� �� �	�. b) Velocity 
��� ��. c) Observer error ����� ��. d) Observer
error �
��� ��.

Fig. 5. Magnitude of temperature control law �.

stabilize a thermal fluid confined in a convection loop which is
open-loop unstable. Our design, based on the singular pertur-
bation assumption of a large enough Prandtl number—which
is true for many fluids—makes the plant closed-loop stable.
Our controller uses rotation and heat flux actuation at the outer
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boundary, and needs measurements of temperature and skin
friction only at the same boundary. Control and observer gains
are found using a backstepping design procedure, which is
both conceptually and computationally simple, requiring only
to solve a hyperbolic linear equation for obtaining the control
law; an accurate closed-form approximation is provided. A
simulation study for the fully nonlinear plant is also provided.

The case that the Prandtl number is small, rather than large, is
also of physical interest. In that case, temperature becomes the
fast variable while velocity is now the slow variable. Our design
strategy is still valid just interchanging the role of velocity and
temperature in the control design.

Other possible extensions include considering more complex
geometries, for instance infinite 3-D channel flow between two
parallel plates, where the upper plate is cooled and the lower
plate is heated. For large enough heat flux at the boundaries, a
Rayleigh–Bernard type of convective instability develops. This
flow is used as a benchmark for turbulence study, as it is known
to become unstable and transition to a turbulent regime for large
Reynolds numbers; thus, adding a convective instability makes
the problem even more challenging. Since it is possible to sta-
bilize the velocity field—without temperature gradients—using
backstepping [7], we expect that the system with convection can
be stabilized using a similar approach to this paper. Actuation
of velocity and heat flux at the boundaries will be necessary, as
well as measurements of temperature and skin friction at one of
the walls.

Our current approach requires linearizing the plant as a first
step. This is a requirement of the linear backstepping design
method, and it is a natural extension to consider instead the
very challenging problem of stabilizing the fully nonlinear
plant. Nonlinear backstepping theory for infinite dimensional
system [17] is a new theory under development that provides a
design method to stabilize a class of nonlinear PDEs with non-
linearities given in the form of a Volterra series. This method
might be applicable as this problem falls in the class after
applying singular perturbations, due to the bilinear structure
of the nonlinearity (it is well known [13] that the solution of a
bilinear equation is in the form of a Volterra series).

APPENDIX

In the Appendix we prove some technical results that were
used in this paper.

Lemma 1: For and defined as in Section III, we have
that

(83)

(84)

and the norm is equivalent to the norm

(85)

Proof: Using (17), we get

(86)

so (83) follows. Similarly, we have that

(87)

and we also have that

(88)

so (84) follows. The norm equivalence follows from (84) and
Poincare’s inequality for .

Proof of Proposition 1: Define

(89)

then

(90)
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for some , where we have used (22), Poincare’s inequality
(see the appendix of [16]) and the fact that . As

is equivalent to the norm of , exponential stability
follows.

Proof of Proposition 2: Define , where

(91)

and define by the backstepping transformation (60). From
definitions and the fact that the kernel of the transforma-

tion is , exponential stability in coordinates implies ex-
ponential stability for . The observer error plant in
coordinates is

(92)

(93)

(94)

(95)

In (92), we need to express in terms of and . First, we
write

(96)

where

(97)

(98)

Then, using (93)

(99)

Define the Lyapunov functions

(100)

(101)

which are equivalent, using Poincare’s inequality, to the
norms of and , respectively. Then

(102)

where and are positive, and where we have used that
, and Poincare’s and Young’s inequality to

bound all the terms from . Similarly

(103)

Setting , and using Poincare’s inequality, it
follows that for some positive (and possibly large) , there
exists such that for , one has that

(104)

from where exponential stability is obtained.
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