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a b s t r a c t

This paper considers the problem of the deployment of a set of agents distributed on a disk-shaped
grid onto three-dimensional (3-D) profiles, by using a continuum approximation (valid in the limit for
a large number of agents) and then a control methodology for partial differential equations (PDEs). The
agents’ collective behavior is modeled by a pair of radially-varying diffusion–reaction PDEs in polar
coordinates, whose state determines the agents’ position. Having a radially-varying reaction coefficient
not only increases the challenge of kernel equations becoming singular in radius, but also brings
more potential deployment manifolds. To stabilize and increase the convergence of the deployment,
a boundary controller and a boundary observer are designed by combining an infinite-dimensional
backstepping approach with a Fourier series decomposition technique, thus driving all agents to the
desired profile. A key feature of the presented result is that the desired profile only needs to be known
by the leaders, with the followers only needing to follow a simple control strategy which requires
only the measurement of its current position and communication with its neighbors as defined by
the multi-agent system topology. The method provides closed-loop exponential stability with any
prescribed convergence rate in the L2 norm. Simulation tests are shown to prove the effectiveness
of the proposed algorithm.

© 2024 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Large-scale collective behavior, such as complex animal
roups, or even non-living systems involving physical–chemical
nteractions, is a pervasive phenomenon in nature (Vicsek &
afeiris, 2012). Inspired by natural collective behaviors, research
n multi-agent systems (MASs) has drawn significant attention
rom control scientists. Cooperative control of MASs was usually
reated using ordinary differential equations (ODEs) models in
ost of existing studies, in which each agent’s behavior is
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described by an ODE (Oh et al., 2015). Graph theory (Zheng et al.,
2019), matrix theory (Chen et al., 2015; Hua et al., 2016), or
potential functions (Gazi, 2005; Zavlanos et al., 2009) have been
widely applied, to these models, and have already produced an
impressive array of results.

More recent work have dramatically expanded the scale of
these multi-agent systems (Bandyopadhyay et al., 2017; Chung
et al., 2018; Rubenstein et al., 2014). With the explosion of the
system scale, the limitation of ODE-based modeling gradually is
revealed. As the number of agents increases, it is hard to add
control inputs to every node. Thus, a novel continuum-based per-
spective is taken more attention, and a number of recent works
focus on MASs with partial differential equation (PDE) models.
The Laplacian operator in the heat equation over the graph has
similar behavior to the Laplacian control for state consensus,
as the result of the discrete and continuous approaches being
essentially equivalent (Ferrari-Trecate et al., 2006). The approxi-
mation error between the PDEs and its corresponding discretized
system is studied in Hao and Barooah (2012), which demonstrates

that the Laplacian consensus dynamics can be formulated as a
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inear PDE. The underlying communication topology connecting
ifferent agents is imposed by the spatial domain and selected
iscretization scheme. The application of the finite difference
ethod transforms the spatial derivative of PDEs into the con-
ection between the agent and its neighbors (Frihauf & Krstic,
010). With the PDE approach, the contamination of the model
y various quantities, most notably the number of agents and
he agent indexing, which introduce a ‘‘microscopic distraction’’
nto the study of a large collective, is postponed until the discrete
mplementation stage, rather than allowing the contamination in
he design process.

Here, we review some related work using PDE models. Fu
t al. (2019) construct an appropriate Lyapunov function to ad-
resses containment control problem of multi-agent coordination
overned by the heat equation and the wave equation. Output
onsensus without and with input constraint is studied in Yang
t al. (2018) with boundary control, with dynamics modeled as
arabolic PDEs. Pilloni et al. (2015) propose a nonlinear sliding-
ode based consensus protocol to address the problem of driving

he state of a network of identical agents towards a common
teady-state profile, using a heat equation, with persistent dis-
urbances at boundary. In order to achieve a desired density
istribution in 1-D and 2-D, Krishnan and Martínez (2018) de-
ign the distributed control law for the spatial self-organization
warm using a Navier–Stokes model. In addition to consensus,
he view of PDE-based modeling for MASs have been employed
or deployment (Qi, Tang et al., 2019; Wei et al., 2019), time-
arying formations (Qi et al., 2017; Zhao et al., 2018), motion
lanning (Freudenthaler & Meurer, 2020; Meurer & Krstic, 2011),
nputs with time-delay (Qi, Wang et al., 2019; Selivanov & Frid-
an, 2022; Terushkin & Fridman, 2021), formation tracking (Tang
t al., 2017) and sensor networks (Wu & Wang, 2015). Moreover,
he backstepping method is a promising option to easily obtain
oundary control, which has worked well for numerous PDE-
ased problems (Auriol, 2020; Koga et al., 2020; Zhang & Qi, 2021;
hang et al., 2022).
This paper applies and extends our n-dimensional design

f Vazquez et al. (2023) for deployment of multi-agents onto 3-D
anifolds using two diffusion–reaction PDEs with spatially vary-

ng coefficients, following the ideas of Qi et al. (2015). Compared
ith the previous relevant results, the contributions of this paper
re threefold.
First of all, based on the ideas of Qi et al. (2015), we design

ontrol protocol to drive agents to desired profile governed by
he nonzero equilibrium of a PDE model. The PDE model is
quivalent to the corresponding ODE model up to a second-order
rror, and the partial derivatives in space of the PDE reflect the
elationship between neighbors’ ODE models. The follower’s con-
rol protocol corresponds directly to the PDE model, however a
ajority of profiles are unstable. Stabilization is ensured by lead-
rs, located at boundary of the topology, which are required as
oundary conditions for the PDE model. The leader’s control pro-
ocol is designed utilizing the backstepping method, which has
een found a wide application in boundary control designs, not
nly for Cartesian coordinate system, but also in polar or spher-
cal coordinates, such as rings, disks, or even n-balls. Combining
he backstepping method and spherical harmonics, Vazquez and
rstic (2016b) proposed an output-feedback controller to stabi-
ize the reaction–diffusion equation on the n-ball, which was the
asis of Qi et al. (2015), but only for constant coefficients; the
xtension to spatially-varying coefficients is challenging and has
nly recently been tackled (see Vazquez et al. (2023)), but allows
or a much wider array of deployment profiles. Other existing
elated results cannot address such profiles, since they are mostly
n one-dimensional spaces or assume symmetry conditions to

educe the difficulty (Deutscher & Kerschbaum, 2018; Li & Xie,

2

2010; Vazquez & Krstic, 2016a, 2019), even though some of the
ideas were already presented in Vazquez et al. (2019), where
the backstepping method is combined with a Fourier series ap-
proach to obtain an exponential stability result with prescribed
convergence rate.

In addition, in order to significantly reduce communication
costs, we design an observer by the backstepping approach,
which is employed in the feedback law. The observer only needs
to have the information of leader group and the nearest neighbors
to estimate the positions of all agents. Combining the PDE models,
controller and observer and discretizing, an output feedback
control protocol is finally proposed for leaders and followers, in
which all the agents require only local information and desired
deployment is only known to the leaders. In addition, the expo-
nential stability in L2 norm for the MAS with a boundary sensor
is proven. It must be emphasized that the designs of Qi et al.
(2015) would not be of application, due to the radially-dependent
coefficients.

Finally, the key idea of the backstepping method is to find
an integral transformation to map the unstable original system
to a stable target system to ensure the stability of the closed-
loop system. To find this transformation, a kernel equation needs
to be solved, which is not so straightforward when processing
the radially-varying reaction–diffusion model (in the constant-
coefficient case, the kernels were explicit). A numerical scheme
by power series replacement is utilized, which greatly facilitates
the solution process of the kernel; this approach has been proved
convergent in Vazquez et al. (2023). Finally, simulation examples
show that the method is effective for deployment as well as
smooth evolution between different manifolds.

The paper is organized as follows. Section 2 describes the
leader-actuated deployment model of multi-agents in 3-D space.
Design method of boundary actuator and sensor are explained in
Sections 3 and 4, respectively, while the stability of the output
feedback system is analyzed. Section 5 connects the continu-
ous PDE model with the agents’ discrete control protocol again.
A numerical scheme is discussed in Section 6 that provides a
simpler method to calculate the kernels. Then results of deploy-
ment simulation are presented. Conclusions are summarized in
Section 7.

2. Multi-agent model in 3-D

2.1. From discrete model to continuum model

In this paper, we consider the 3-D deployment problem com-
prising M ×N agents indexed by (i, j) ∈ I, where I = {(i, j) : i =

, 2, . . . ,M; j = 1, 2, . . . ,N}, with M,N ∈ N+. The information
interaction between agents is given by the mesh-grid disk 2-D
communication topology shown in Fig. 1. (i, j) denotes an agent
located at the ith ray layer and the jth angle layer. An undirected
graph G = (V, E) consists of the set of nodes V = {1, 2, . . . ,M ×

N} representing agents and E is the set of edges of graph. If(
(i, j), (i′, j′)

)
∈ E , then (i, j) and (i′, j′) are neighbors. Let Nij =

{(i′, j′) :
(
(i, j), (i′, j′)

)
∈ E} denotes all neighbors of agent (i, j),

thus all communication interaction between any agent (i, j) and
ts neighbors Nij is described by the edges E .

Note that the neighbors here represent neighbors on the topo-
ogical structure, not on the physical space. The yellow node at
he outermost layer denotes a leader, i.e., i = M , j = 1, . . . ,N ,
which has one follower neighbor and N −1 leader neighbors; the
blue node denotes a follower. The innermost layer followers have
three neighbors and the rest have four. Let (x1ij(t), x

2
ij(t), x

3
ij(t))
denote the position of agent (i, j) at time t in 3-D. A simple
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Fig. 1. A schematic diagram of an interaction topology with 4 × 6 agents. The
ellow points represent the leaders (located at the outermost layer), and the
lue ones are the followers. The dashed line represents the communication
etwork, that is, any two agents connected by a dashed line are neighbors and
an communicate with each other. For example, the agent indexed by (2, 6) has
four neighbors, namely (2, 5) and (2, 1) in the second layer and (1, 6) and (3, 6)
in the radial direction. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)

consensus protocol for each follower can be generally expressed
by a set of ODEs, as follows

ẋkij(t) =

∑
(i′,j′)∈Nij

α
kij
i′j′ (x

k
ij(t) − xki′j′ (t)) + βkijxkij(t), (1)

where k = 1, 2, 3, and αkij
i′j′ β

kij denote weighting factors. The
above followers’ protocols only utilize the local information from
itself and its neighbors to achieve consensus. In order to deploy
all agents to the desired profile, the control signals to be designed
are applied to leaders i = M , j = 1, . . . ,N , as follows

xkMj(t) = uk
j (t), (2)

where uk
j (t) is the control input to be designed in the k direction

for the leader agent (M, j). The leaders know the desired profile
and drive all agents by exchanging information with the leader
group and its follower neighbors.

Following Ferrari-Trecate et al. (2006), a multi-agent system
composed of a large number ODEs can be represented by a
continuous PDE, which has the same dynamics as the consen-
sus control, as the spatial derivatives of the PDE model capture
the relationship between neighbors. Thus, when M and N are
large enough, the discrete ODEs-based model (1)–(2) is well-
approximated by a continuum model as follows. First, the com-
munication graph G is identified with a closed disk domain D =

{(r, θ ) : r ∈ [0, R], θ ∈ [0, 2π )} by defining, for (i, j), a grid
covering the disk. One easy example would be (ri, θj) =

( R
M i, 2π

N j
)

(see Section 5 for the grid actually used in the implementation,
which is slightly more complex). Let v(t, ri, θj) = x1ij(t) + ix2ij(t)
be complex-valued and z(t, ri, θi) = x3ij be real-valued. Similarly
for the leaders, v(t, R, θj) = u1

j (t) + iu2
j (t) and z(t, R, θj) =

u3
j (t). Now consider a large number of agents so that one can

consider that M → ∞,N → ∞ and then one can approximate
 o

3

(ri, θj) → (r, θ ). Thus, v and z become continuous variables in r
and θ . Therefore, (v(t, r, θ ), z(t, r, θ )) denotes the horizontal and
vertical coordinates of the agent indexed by (r, θ ) at time t in 3-
D space and in particular (v(t, R, θ ), z(t, R, θ )) the horizontal and
vertical coordinates of the leader indexed by θ . Adequately choos-
ing the consensus protocol of (1) (see Section 5 for details), the
collective dynamics is then modeled by two diffusion–reaction
equations, which evolve in polar coordinates (r, θ ), as follows

vt =
ε

r
(rvr (t, r, θ ))r +

εvθθ (t, r, θ )
r2

+ λ(r)v(t, r, θ ), (3)

t =
γ

r
(rzr (t, r, θ ))r +

γ zθθ (t, r, θ )
r2

+ µ(r)z(t, r, θ ), (4)

or (t, r, θ ) ∈ R+
× D. The radially-varying reaction coeffi-

ients are bounded, and the bounds are λ̄ = maxr∈[0,R] |λ(r)|,
¯ = maxr∈[0,R] |µ(r)|. Here, the subscripts vt (t, r, θ ) = ∂v/∂t ,
r (t, r, θ ) = ∂v/∂r and vθθ (t, r, θ ) = ∂2v/∂θ2 are the com-

pact form of partial derivatives of v in the respective variable.
The parameters ε and γ are the diffusion coefficients, which
capture diffusion velocity, thus influencing the speed at which
the agent converges to the desired profile. On the other hand
the parameters λ and µ are reaction coefficients, which help
generate more potential formations. The Laplacian operator in
polar coordinates, given by the first two terms on right-hand side
of (3) and (4), has the same effect as consensus control. Note
that the followers’ velocity-actuated feedback control laws are
obtained by the right-hand side of (3) and (4).

Assumption 1. Assume that the system (3)–(4) satisfies the
following conditions: v, ε ∈ C, z, γ ∈ R, and radially-varying
reaction coefficients λ(r), µ(r) are even analytic functions on r ∈

[0, R].

A control protocol is proposed for the leaders implying the
following boundary conditions for (3)–(4)

v(t, R, θ ) = v̄(R, θ ) + V (t, θ ), (5)

z(t, R, θ ) = z̄(R, θ ) + Z(t, θ ), (6)

where v̄ ∈ C, z̄ ∈ R describe the desired profile that the agents
should follow. Note that this is the continuum version of (2),
decomposed in horizontal (5) and vertical (6) components. The
open-loop system is not stable if the minimum value of the real
parts of λ and µ are large enough, thus V (t, θ ), Z(t, θ ) need to
be designed to actuate the multi-agent system. (5) and (6) serve
as the boundary conditions for (3) and (4), thus how to deploy a
discrete multi-agent system becomes how to control a continuous
PDEs. In the sequel, we omit the arguments (t, r, θ ) to save space.

2.2. Desired deployment profiles

The desired deployment profile {v̄(r, θ ), z̄(r, θ )} satisfies the
following equilibrium equations:
ε

r
(r v̄r )r +

ε

r2
v̄θθ + λ(r)v̄ = 0, (7)

γ

r
(rz̄r )r +

γ

r2
z̄θθ + µ(r)z̄ = 0, (8)

with the boundary conditions

v̄(R, θ ) = f (θ ), (9)
z̄(R, θ ) = g(θ ), (10)

where f (θ ), g(θ ) ∈ C1([−π, π]), v̄(r, θ ) = x(r, θ ) + iy(r, θ ), and
{x, y, z} denotes the horizontal and vertical coordinates of agent
in 3-D space. By setting different parameter sets {ε, γ , λ, µ, f , g}

with λ(r) and µ(r) radially-varying, one can obtain a wide range
f interesting deployment profiles (not possible with constant λ
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c

Fig. 2. Agent deployment profiles with ε = γ = 1. The first line with λ(r) = 40 − 20 cos(πr), µ(r) = 50r2 . Boundary conditions are (a) f = eiθ , g = 1, (b)
f = e2iθ + (1/5)e−5iθ , g = 1, (c) f = eiθ + e−2iθ , g = 1, (d) f = eiθ + e−5iθ , g = 1. The parameters of deployment profiles for the second line are (e) λ(r) = 10e2ir ,
µ(r) = 10, f = 200(eiθ ), g = 100, (f) λ(r) = 200r , µ(r) = 10, f = 200e1iθ − (1/5)e5iθ , g = 100, (g) λ(r) = 145 cos(1/4πr), µ(r) = 12, f = 200eiθ − (1/5)e5iθ , g = 2,
(h) λ(r) = 240r , µ(r) = 15 cos(2πr − 1/2π ), f = 200eiθ − (1/3)e−3iθ , g = 100.
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and µ). Some examples are given in Fig. 2. Note that the four
profiles in the first line of Fig. 2 use the same value of λ(r) and
µ(r), only the leaders’ configuration is different. The profiles of
the second line employ different values of λ(r) and µ(r). Obvi-
ously, with the increase of λ(r) and µ(r), the deployment profiles
present more possibilities in the longitudinal direction.

Remark 1. Under Assumption 1, there exists a unique solution
v̄(r, θ ) ∈ C, z̄(r, θ ) ∈ R for (7)–(10).

3. Boundary control design

Since v and z are independent of each other, and z is a special
case of v, we only analyze the v-system in detail to save space. For
the z-system, it easily get the result from v. Before designing the
ontrol, we first define the error variable u(t, r, θ ) = v(t, r, θ ) −

v̄(r, θ ) between the actual position and the desired position. Then,
the dynamics of error system is given by

ut (r, θ, t) = ε
(rur )r

r
+ ε

uθθ
r2

+ λ(r)u, (11)

u(t, R, θ ) = U(t, θ ). (12)

Here, the variable U(t, θ ) is the control to be determined, which
ensure that the error converges to zero, so that the agents can
be driven to the desired position. Then, we combine the theory
of Fourier series with the backstepping method to design the
control.

3.1. Dimension reduction by Fourier series

Using a Fourier series to expand the system (11) and the
boundary control (12), we have

u(t, r, θ ) =

n=∞∑
n=−∞

un(t, r)einθ , (13)

U(t, θ ) =

n=∞∑
n=−∞

Un(t)einθ , (14)

where the coefficients (sometimes referred to as ‘‘modes’’) are
defined as

un(t, r) =
1
∫ π

u(t, r, ψ)e−inψ dψ, (15)

2π −π

4

Un(t) =
1
2π

∫ π

−π

U(t, ψ)e−inψ dψ, (16)

we obtain that each coefficient un for all n ∈ Z satisfies the
following 1-D reaction–diffusion equation (without angle depen-
dency):

unt (t, r) =
ε

r
(runr )r −

εn2

r2
un + λ(r)un, (17)

un(t, R) = Un(t). (18)

esult of the Fourier series, the different modes are independent
f each other and can be analyzed separately.

.2. Open-loop stability properties in Fourier space

We note that large modes without control are exponential
table as expected, so only a limited number of modes need to
e stabilized. Next we analyze the stability properties for large
odes. Before stating the stability of open-loop system, first we
ive an inequality and we introduce a definition that will be used
ater. The Poincare’s inequality for un is∫ R

0
|un|

2r dr ≤ 4R2
∫ R

0
|unr |

2r dr. (19)

efinition 1. The L2 norm ∥ · ∥L2 in polar coordinates is

f ∥2
L2 =

∫ R

0
|f (r)|2r dr, (20)

here |f |2 = ff ∗, being f ∗ the complex conjugate of f .

emma 1. There exists N̄ ∈ N such that, for all |n| > N̄ , the
quilibrium un of system (17)–(18) is open loop exponentially stable,
.e., for Un = 0 in (18) there exists a positive constant D such that

un(t, ·)∥2
L2 ≤ e−Dt

∥un(0, ·)∥2
L2 , (21)

here D is independent of n.

roof. To prove the stability, a Lyapunov function is defined as

1(t) =
1
∥un(t, r)∥2 (22)
2 L2
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aking the derivative of the Lyapunov function and using the
nequality (19), we thus get that

˙1 =

∫ R

0

u∗
nunt + unu∗

nt

2
dr

≤ −
εR

4R2

∫ R

0
|un|

2r dr −

∫ R

0

(
n2εR

r2
− λ(r)

)
|un|

2r dr

≤ −

(
εR + 4n2εR

2R2 − 2λ̄
)
V1, (23)

where εR is the real part of ε. Then taking N̄ ∈ N, such that

N̄ ≥

√
R2(D + 2λ̄)

2εR
−

1
4
. (24)

bviously, we get for all |n| ≥ N̄ , that V̇1 ≤ −DV1. Thus the
lemma has been proven.

3.3. Stabilization of unstable modes

This part is mainly to design boundary control to stabilize
the unstable mode with |n| < N̄ . Since the different modes are
not coupled, it allows us to stabilize them separately and re-
assembling them. Based on the backstepping
(Krstic & Smyshlyaev, 2008) method, our idea is utilizing a in-
vertible Volterra integral transformation

wn(t, r) = un(t, r) −

∫ r

0
Kn(r, ρ)un(t, ρ) dρ, (25)

where the kernel Kn(r, ρ) is to be determined, which defined on
the domain Tk = {(r, ρ) ∈ R2

; 0 ≤ ρ ≤ r ≤ R}, to convert
the unstable system (17)–(18) into an exponentially stable target
system:

wnt (t, r) =
ε

r
(rwnr )r −

εn2

r2
wn − cwn, (26)

n(t, R) = 0, (27)

here constant c > 0 is an adjustable convergence rate. From
18) and (25), let r = R, we obtain the boundary control

n(t, r) =

∫ R

0
Kn(R, ρ)un(t, ρ) dρ. (28)

y substituting the transformation (25) into target system (26)–
27), using two times integrating by parts and taking into account
riginal system (17)–(18), one gets the following equation for
ernel Kn

(rKnr )r
r

−

(
ρ

(
Kn

ρ

)
ρ

)
ρ

=

(
n2

r2
−

n2

ρ2 +
λ(ρ) + c

ε

)
Kn, (29)

Kn(r, r) = −

∫ r

0

λ(ρ) + c
2ε

dρ, (30)

n(r, 0) = 0. (31)

heorem 1. Under the assumption that λ(r) is an even analytic
unction in [0, R], then for a give n ∈ Z, there is a unique solution
n(r, ρ) for (29)–(31).

Due to the radial singularity, the traditional technical route
f transforming the kernel PDE into an integral equation and
hen solving it by using the successive approximation method is
napplicable. Here, the kernel equation is solved directly by the
se of a power series, which can be proved to be well-defined
nd converge (see Theorem 2 in our work Vazquez et al., 2023
or the detailed proof). We employ the theory of power series to
ive the numerical solution of the kernel function in Section 6.
5

3.3.1. Transformation between un and wn system
When Kn(r, ρ) is bounded and integrable, the map (25) is

eversible and its inverse transformation is

n(t, r) = wn(t, r) +

∫ r

0
Ln(r, ρ)wn(t, ρ) dρ. (32)

imilar to Kn(r, ρ), Ln is satisfied the following PDE

(rLnr )r
r

−

(
ρ

(
Ln
ρ

)
ρ

)
ρ

=

(
n2

r2
−

n2

ρ2 −
λ(ρ) + c

ε

)
Ln, (33)

n(r, r) =

∫ r

0

λ(ρ) + c
2ε

dρ, (34)

Ln(r, 0) = 0. (35)

where Ln(r, ρ) is a bounded and integrable kernel. From Lemma 5,
here exist constants D1,D2 > 0 such that

∥wn(t, ·)∥2
L2 ≤ D1∥un(t, ·)∥2

L2 , (36)

un(t, ·)∥2
L2 ≤ D2∥wn(t, ·)∥2

L2 . (37)

.3.2. Closed-loop stability analysis of unstable mode

emma 2. For all n ∈ Z, and for c ≥ c1, where c1 = D/2−ε/(4R2),
he equilibrium wn ≡ 0 of system (26)–(27) is exponentially stable,
.e., there exists a positive constant D such that

wn(t, ·)∥2
L2 ≤ e−Dt

∥wn(0, ·)∥2
L2 , (38)

here D is independent of n.

roof. Consider the Lyapunov function:

2(t) =
1
2
∥wn(t, r)∥2

L2 , (39)

then, taking its time derivative and using (19), we obtain

V̇2 ≤ −

( εR
4R2 + c

)
∥wn(t, ·)∥2

L2 . (40)

Choosing c1 = D/2−ε/(4R2), we then obtain, independent of the
value of n, V̇2 ≤ −DV2, thus proving the result.

Combining Lemma 2 with the norm equivalence between un
and wn system presented by (36) and (37), it is easy to obtain

∥un(t, ·)∥2
L2 ≤ D2∥wn(t, ·)∥2

L2

≤D2e−Dt
∥wn(0, ·)∥2

L2 ≤ D1D2e−Dt
∥un(0, ·)∥2

L2 . (41)

Let C = D1D2, we get the following lemma to state the closed-
loop exponentially stability.

Lemma 3. For |n| ≤ N̄ , let c1 be chosen as in Lemma 2. The system
(17)–(18) with boundary control (28) is closed-loop exponentially
stable, i.e., there exist positive constants C and D such that

∥un(t, ·)∥2
L2 ≤ Ce−Dt

∥un(0, ·)∥2
L2 , (42)

here C and D is independent of n, which only depend on the system
arameter and the definitional domain.

.4. The result in physical space

Next, let us return the results of control and stability anal-
sis from Fourier space to physical space. According to (14),
eassembling all Un, we have

U(t, θ ) =

n=∞∑
Un(t, θ )einθ
n=−∞
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N̄∑
n=−N̄

∫ r

0
Kn(r, ρ)un(t, ρ) dρeinθ

∫ r

0

∫ π

−π

N̄∑
n=−N̄

Kn(r, ρ)
2π

ein(θ−ψ)u(t, ρ, ψ) dψ dρ. (43)

From Lemmas 1 and 3, it is clear that only a finite number of
modes are unstable, which means only a finite number of Kn,
|n| ≤ N̄ , are needed, so one can set Un = 0 for |n| > N̄ , which
is applied in the second line of (43). Thus, the integration and
(finite) summation can be directly interchanged. Define

K (r, ρ, θ, ψ) =

n=N̄∑
n=−N̄

Kn(r, ρ)
(2π )

ein(θ−ψ). (44)

hus, we arrive the boundary control

(t, θ ) = K{u}(t, θ ), (45)

here the operator K{·} is control acting on u(t, r, θ ) in a simple
orm as

{u}(t, θ ) =

∫ R

0

∫ π

−π

K (R, ρ, θ, ψ)u(t, r, ψ) dψ dρ. (46)

Combining (5), (6) and (45), the control law for leaders is given
by

v(t, R, θ ) = v̄(R, θ ) + K{v}(t, θ ) − K{v̄}(t, θ ), (47)

z(t, R, θ ) = z̄(R, θ ) + Kz{z}(t, θ ) − Kz{z̄}(t, θ ), (48)

to achieve the deployment profile (v̄, z̄).

Theorem 2. The system (3) with boundary control law (47) and
initial condition v0(r, θ ) ∈ L2 is exponentially stable in the L2 norm
at the equilibrium v(t, r, θ ) ≡ v̄(r, θ ), i.e., then there exist constants
C and D > 0 such that

∥v(t, ·) − v̄(·)∥2
L2 ≤ 2πCe−Dt

∥v0 − v̄∥2
L2 . (49)

Proof. According to Parseval’s Theorem, the L2 norm of the state
in physical space can be obtained by aggregating L2 norm in all
modes. Therefore, applying Lemmas 1 and 3, we get

∥u(t, ·)∥2
L2 = 2π

n=∞∑
n=−∞

∫ R

0
|un(t, r)|2r dr

≤ 2πCe−Dt
∑
|n|≤N̄

∥un(0, ·)∥2
L2 + 2πe−Dt

∑
|n|>N̄

∥un(0, ·)∥2
L2

≤ 2πCe−Dt
∥u(0, ·)∥2

L2 , (50)

where note that C > 1. Due to u = v − v̄, we get (49). Thus, the
theorem is proved.

Similar results hold for the real-valued system z(t, r, θ ).

4. Observer design

In last section, feedback control (47)–(48) needs the leaders to
be aware of the location information of all the agents at all times,
which results in overburden communication network traffic load.
To address this challenge, we pose the following observer for
(11)–(12) to estimate the position of all agents by measuring the
state of the leader and its neighbors:

ût (t, r, θ ) =
ε(rûr )r

r
+
εûθθ
r2

+ λ(r)û + T (t, R, r, θ ), (51)

ˆ(t, R, θ ) = U(t, θ ) + q (u (t, R, θ ) − û (t, R, θ )), (52)
0 r r w

6

which has the same structure as the system in addition to the
output feedback item. Here, the output injection operator T is
iven by

T (t, R, r, θ )∫ π

−π

q1(R, r, θ − ψ)
2π

(ur (t, R, ψ) − ûr (t, R, ψ)) dψ, (53)

where q1 and q0 are the observer gains need to be found to guar-
antee exponential convergence of the error dynamics between û
and u. û is the estimated state, and U is the applied control. By
ntroducing the error variable ũ = u − û, we obtain the error
ystem as following

˜ t (t, r, θ ) =
ε(rũr )r

r
+
εũθθ
r2

+ λ(r)ũ

−

∫ π

−π

q1(R, r, θ − ψ)
2π

ũr (t, R, ψ) dψ, (54)

ũ(t, R, θ ) = −q0ũr (t, R, θ ). (55)

ext, we utilize a similar method as Section 3 to design the kernel
unction. First, using a Fourier series to expand the system (54)
nd the boundary condition (55),

˜(t, r, θ ) =

n=∞∑
n=−∞

ũn(t, r)einθ , (56)

(t, R, r, θ ) =

n=∞∑
n=−∞

Tn(R, r)einθ , (57)

here the coefficients are defined as

˜n(t, r) =
1
2π

∫ π

−π

ũ(t, r, ψ)e−inψ dψ, (58)

n(t, R, r) = q1n(R, r)ũnr (t, R). (59)

hus, we gets ũn system that does not depend on θ , as follows

˜nt (t, r) =
ε

r
(rũnr )r −

εn2

r2
ũn + λ(r)ũn − Tn(R, r), (60)

˜n(t, R) = −q0ũnr (t, R). (61)

.1. Open-loop stability properties in Fourier space

Similar to control, the large modes themselves are exponential
table and converge at the expected decay rate. First, we analyze
he stability of the observer without output feedback item Tn, as
ollow

ˆnt (t, r) =
ε

r
(rûnr )r −

εn2

r2
ûn + λ(r)ûn, (62)

ˆn(t, R) = 0, (63)

˜nt (t, r) =
ε

r
(rũnr )r −

εn2

r2
ũn + λ(r)ũn, (64)

˜n(t, R) = 0. (65)

emma 4. There exists N̄ ∈ N such that, for all |n| > N,
he equilibrium ûn ≡ ũn ≡ 0 of system (62)–(65) is open loop
xponentially stable, i.e., for ûn(t, R) = 0 and ũn(t, R) = 0, there
xists a positive constant D, such that

ûn(t, ·)∥2
L2+ ∥ũn(t, ·)∥2

L2

≤ e−Dt(
∥ûn(0, ·)∥2

L2 + ∥ũn(0, ·)∥2
L2
)
, (66)
here D is independent of n.
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.2. Observation for unstable modes

Now the backstepping method is utilized to find the observer
ain for the modes |n| < N̄ . Using the transformation

˜n(t, r) = w̃n(t, r) −

∫ R

r
Qn(r, ρ)w̃n(t, ρ) dρ, (67)

here Qn is kernel function to be determined, which defined on
he domain Tq = {(r, ρ) ∈ R2

; 0 ≤ r ≤ ρ ≤ R}, convert the
rror system (60)–(61) to a exponentially stable target system as
ollows:

˜ nt (t, r) =
ε

r
(rw̃nr )r −

εn2

r2
w̃n − cw̃n, (68)

˜ n(t, R) = 0. (69)

y substituting the transformation (67) into error system (60)–
61), using two times integrating by parts and taking into account
arget system (68)–(69), then observer kernel Qn satisfies the
ollowing PDE

(rQnr )r
r

−

(
ρ

(
Qn

ρ

)
ρ

)
ρ

=

(
n2

r2
−

n2

ρ2 −
λ(ρ) + c

ε

)
Qn, (70)

ith boundary condition

n(r, r) = Qn(R, R) +

∫ R

r

λ(ρ) + c
2ε

dρ. (71)

imultaneously, the boundary conditions determine the observer
ains as

1n(r, R) = εQn(r, R), q0 = 0. (72)

he stability of the observer can be established similarly as the
ontroller, so we omit it to save space.

.3. The result in physical space

Return the results of the observer and stability analysis from
ourier space to physical space. Taking advantage of Fourier series
n transformation (67) and the coefficient, reassembling all Qn

and substituting T into (51), we get the observer

ût =
ε

r
(rûr )r +

ε

r2
ûθθ + λ(r)û + T (t, R, r, θ ), (73)

ˆ(t, R, θ ) = U(t, θ ), (74)

here

T (t, R, r, θ ) (75)

=

∫ π

−π

N̄∑
n=−N̄

Qn(r, R)
2π

ein(θ−ψ)(ur (t, R, ψ) − ûr (t, R, ψ)) dψ.

efine an observer operator Q{·} acting on vr (t, R, θ ) as follows

Q{vr} =

∫ π

−π

N̄∑
n=−N̄

Qn(r, R)
2π

ein(θ−ψ)vr(t, R, ψ) dψ. (76)

ombining (5), (6) (45) and (73), the observer-based feedback
ontrol is given by

ˆt =
ε

r
(r v̂r )r +

ε

r2
v̂θθ + λ(r)v̂ + Q{vr} − Q{v̂r}, (77)

ˆ(t, R, θ ) = v̄(R, θ ) + K{v̂}(t, θ ) − K{v̄}(t, θ ). (78)

ccording to Parseval’s Theorem, the L2 norm of the state in
hysical space can be obtained by aggregating L2 norm in all
odes. According to the separation principle, we get the final

esult.
 m

7

heorem 3. The system (3), (5) with boundary control law (47),
he observer (77)–(78) and initial condition v0(r, θ ), v̂0(r, θ ) ∈ L2
re exponentially stable in the L2 norm, i.e., there exist constants C0
nd D > 0 such that

∥v − v̄∥2
L2 + ∥v̂ − v̄∥2

L2

2πC0e−Dt (∥v0 − v̄∥2
L2 + ∥v̂0 − v̄∥2

L2 ).

Similar results hold for the real-valued system z(t, r, θ ).

. Discretized control protocol

The PDE model (3)–(4) with control (47)–(48) and observer
77)–(78) is discretized in the space to obtain a discrete protocol
or a finite number of agent, namely the coefficients in (1) and the
ontrol in (2). In the discretization process, the continuous states
(t, r, θ ) are rewritten as discrete positional states v(t, ri, θj) that
enotes the position of agent (i, j) at time t . To avoid the singular
n the disk center, the grid defined in Lai (2001) is employed, as
ollows:

i =

(
i −

1
2

)
hr , θj = (j − 1)hθ , (79)

here hr = R/(M −
1
2 ), hθ = 2π/N , and i = 1, . . . ,M , j =

, . . . ,N .
Before showing the control protocol, the following proposition

is given to discuss the error between the discrete model and
reaction–diffusion PDE-based dynamics.

Theorem 4. Consider a MAS with M ×N agents on mesh-grid disk
opology. Defined the spatial steps hr = R/(M −

1
2 ), hθ = 2π/N,

and location ri =
(
i − 1

2

)
hr , θj = (j− 1)hθ . The discrete ODE model

(1) and the continuum diffusion–reaction PDE (3)–(4) are equivalent
in the sense that the discrete solution approaches the continuous
solution, with approximating error O(h2

r + h2
θ ).

roof. Expanding each of the function values of v in a Taylor
eries about the point (ri, θj), we have (LeVeque, 2007)

(ri±1, θj) = v(ri, θj) ± ∂rv(ri, θj)hr + ∂rrv(ri, θj)
h2
r

2!

±∂rrrv(ri, θj)
h3
r

3!
+ O(h4

r ), (80)

here ∂r denotes the partial derivative with respect to r . One
obtains similar expanded forms for v(ri, θj±1). Using (80) allows
us to obtain that
v(ri+1, θj) − 2v(ri, θj) + v(ri−1, θj)

h2
r

=
1
h2
r

(
2v(ri, θj) + 2∂rrv(ri, θj)

h2
r

2!

−2v(ri, θj) + O(h4
r )
)

∂rrv(ri, θj) + O(h2
r ), (81)

imilarly, we give that
v(ri+1, θj) − v(ri−1, θj)

2hr
= ∂rv(ri, θj) + O(h2

r ), (82)

v(ri, θj+1) − 2v(ri, θj) + v(ri, θj−1)
h2
θ

∂θθv(ri, θj) + O(h2
θ ). (83)

he calculations above establish the link between the discrete
odel and the continuous PDE, and confirm that the approxi-
ation is second-order accurate. The approximating error due
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Fig. 3. Polynomial approximations of kernel for different modes.

to the discretization is O(h2
r + h2

θ ) which depends on the spatial
inite difference method. As the number of agents increases, the
pproximating error decreases, thus the PDE-based method is
uitable for large systems.

In the sequel, v(ri, θj) is abbreviated as vi,j for save space.

.1. Followers’ control protocol

Using three-point central difference method to approximate
he spatial derivatives in (3), we obtain the followers’ control
rotocols:
For i = 2, 3, . . . ,M − 1, j = 1, 2, 3, . . . ,N ,

v̇i,j(t) = ε

(
vi+1,j − vi,j

)
−
(
vi,j − vi−1,j

)
h2
r

+
ε

ri

vi+1,j − vi−1,j

2hr
+
ε

r2i

vi,j+1 − 2vi,j + vi,j−1

h2
θ

+ λivi,j. (84)

or i = 1, j = 1, 2, . . . ,N , thanks to the half-grid, v0,j are
eliminated, so

v̇1,j(t) = ε
v2,j − 2v1,j

h2
r

+
ε

r1

v2,j

2hr

+
ε

r21

v1,j+1 − 2v1,j + v1,j−1

h2
θ

+ λ1v1,j. (85)

Here we should note that θ is periodic of 2π , therefore vi,−1 =

vi,N and vi,N+1 = vi,0. Similar protocols can be given for z-axis.

5.2. Leaders’ control protocol

Next, the leaders’ control protocol will be given. We use the
Simpson’s 1/3 rule to approximate the integral in (47), and
define a operator K̄{.}, acting on the agents’ position vector
[v11(t), v21 . . . , vM1, . . . , vij, . . . , vMN ]

T , which is the correspond-
ng discrete form of (46), thus obtain

¯ {v}(θ ) =

M∑ N∑
ai,lK

j
i,lvi,l(t), (86)
i=1 l=1

8

where K j
i,l = K (R, ri, θj, ψl). The numerical solution method of K j

i,l
ill be given later. Given Simpson’s rule, M and N should be cho-
en as odd number, as even. The coefficients ai,l are determined
y Simpson integral rules.
Thus, the leaders’ control protocols are

M,j = v̄M,j + K̄{v} − K̄{v̄}, (87)

Through the above discrete control protocol, it is easy to notice
that the followers only need the states of their neighbors on the
communication topology, and the information that leaders need
includes the real-time status and desired deployment of all the
agents. Discretizing the state observer in a similar manner yields
a discretized observer form as follows,

˙̂vi,j =ε

(
v̂i+1,j − v̂i,j

)
−
(
v̂i,j − v̂i−1,j

)
h2
r

+ λiv̂i,j

+
ε

ri

v̂i+1,j − v̂i−1,j

2hr
+
ε

r2i

v̂i,j+1 − 2v̂i,j + v̂i,j−1

h2
θ

+

N∑
l=0

N̄∑
n=−N̄

bl
Qn,i

2π
ein((j−1)−(l−1))hθ ·

(
vM,l − vM−1,l

hr
−
v̂M,l − v̂M−1,l

hr

)
, (88)

here Qn,i = Qn(ri, R) and bl is the coefficient of Simpson’s
rule. The spatial derivatives of all leaders are transmitted to the
observer to estimate the position of all agents. Integrate it into the
boundary control mentioned above, the real-time positions of the
leaders’ protocol (87) are replaced by their estimated states, then
we obtain the leaders’ protocol with the output feedback control,
as follows

vM,j = v̄M,j + K̄{v̂} − K̄{v̄}, (89)

Here, the observer provides estimated values v̂i,j by measuring
vr (t, R, θ ) to replace the real-states of followers vi,j. In particular,
the measurement is discretized as

vr (R, θ ) =
vM,j − vM−1,j

hr
, (90)

hich avoids the issue that the spatial derivative is difficult to be
ccurately measured.

emark 2. Appropriately increasing the complexity of the com-
unication topology, when the leader can obtain the second-
losest information, the spatial derivative of the leader with re-
pect to r is given by

r (R, θ ) =
3vM,j − 4vM−1,j + vM−2,j

2hr
, (91)

This approximation is second order accurate. Compared to the
resources required to obtain all agent positions, the observer
needs fewer communication resources.

Hereto, a multi-agent 3-D deployment model that only re-
quires local information interaction is given.

5.3. Numerical approximation of the kernels

The main idea of this section is to approximate kernel func-
tions by using the power series to find numerical solution of the
kernels. The solution techniques for the spatial-varying kernel
equations are available (Camacho-Solorio et al., 2020). For the
kernel functions of control (29)–(31), let us make the change
Kn(r, ρ) = Gn(r, ρ)ρ

(
ρ

r

)|n| to facilitate the subsequent calcula-
tions, gets

Gnrr +
1 − 2|n|

Gnr − Gnρρ −
1 + 2|n|

Gnρ
r ρ
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Fig. 4. Agents deployment snapshots. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
Fig. 5. The tracking errors of the agents on the x, y, and z-axis, respectively, when the observer is not implemented.
=
λ(ρ) + c

ε
Gn, (92)

n(r, r) = −
1
r

∫ r

0

λ(ρ) + c
2ε

dρ. (93)

he numerical approximation of the kernels are obtained by the
th power series as following

m
n (r, ρ) =

m∑
i=0

m−i∑
j=0

bijr iρ j, (94)

here bij ∈ R are to be calculated from (92)–(93). Similarly,
he term λ(ρ) + c can be approximated as (c is compressed for
notational brevity)

λ(ρ) + c =

L∑
λlρ

l, (95)

l=0

9

where λl ∈ R are L-order power series coefficients of λ(ρ) + c.
As thus, the problem of solving kernels becomes how to find the
coefficients bij. The total number of bij is Nb = (m + 2)(m + 1)/2.

As the derivative term and the fractional term on the left-hand
side of (92), a m-order power series approximation is substituted
into it, that is

∂2Gm
n

∂r2
+

(1 − 2|n|)
r

∂Gm
n

∂r
−
∂2Gm

n

∂ρ2 −
(1 + 2|n|)

ρ

∂Gm
n

∂ρ

= (1 − 2|n|)
m−1∑
j=0

b1jr−1ρ j
− (1 + 2|n|)

m−1∑
i=0

bi1r iρ−1

+

m−2∑
i=0

m−i−2∑
j=0

(
(i + 2)(i + 2 − 2|n|)bi+2,j

)
r iρ j

−

m−2∑ m−i−2∑ (
(j + 2)(j + 2 + 2|n|)bi,j+2

)
r iρ j. (96)
i=0 j=0
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Fig. 6. Polynomial approximations of observer kernel for different modes.

The right-hand side is:

λ(ρ) + c
ε

Gn =

(
L∑

l=0

λl

ε
ρ l

)⎛⎝ m∑
i=0

m−i∑
j=0

bijr iρ j

⎞⎠
=

L∑
l=0

m∑
i=0

m−i+l∑
j=l

λlbi,j−l

ε
r iρ j, (97)

Note that in order to correspond to the left-hand side, the first
m − 2 order items are taken, then

λ(ρ) + c
ε

Gn =

m−2∑
l=0

m−2∑
i=0

m−i−2∑
j=l

λlbi,j−l

ε
r iρ j, (98)

Thus, all power r iρ j satisfy the following equations:
1) for 0 ≤ i ≤ m − 2, 0 ≤ j ≤ m − 2 − i,

(i + 2)(i + 2 − 2|n|)bi+2,j − (j + 2)(j + 2 + 2|n|)bi,j+2

−

m−2∑
l=0

λlbi,j−l

ε
= 0,

2) for 0 ≤ i ≤ m − 1, bi1 = 0,
(3) for 0 ≤ j ≤ m − 1, 7b1j = 0.

In the same manner, (93) is rewritten as

Gm
n (r, r) +

1
r

∫ r

R1

λ(ρ) + c
2ε

dρ

=

m∑
i=0

m−i∑
j=0

bijr i+j
+

L∑
l=0

λl

2ε(l + 1)
r l, (99)

which brings⎧⎨⎩bij = −
λl

2ε(l + 1)
, i + j = l,

bij = 0, i + j ̸= l.
(100)

hus, we obtain a system of equations for bij, which is easy to
olve.
10
Table 1
Desired shape of leaders and coefficients of Fig. 4.
Desired shape of leaders Coefficients

f (θ ) g

(i) 0 0
(ii) eiθ 0

(iii) eiθ + e−2iθ 1

(iv) eiθ + (1/3)e−3iθ 1
(v) eiθ + (1/8)e−4iθ 1

(vi) eiθ + e−5iθ 1

6. Simulation

We consider a case with 81 × 87 agents on 3-D space, in
hich the leader agents are controlled by (87), and the followers
re governed by (84) with the decay rate c = 4. The system
arameters are set as R = 1, ε = 1, εz = 1, λ = 40 − 20 cos(πr),
µ = 50r2. Before deploying the formation, we need to calculate a
finite number of numerical solutions of Kn, which shown in Fig. 3.
As K−n = Kn, here only show Kn, n = 0, 1, . . . , 8.

Our first simulation experiment focused on the transition be-
tween six different desired deployment profiles, and a series of
snapshots in Fig. 4 display this dynamical deployment process.
The parameter of desired profiles are summarized in Table 1. Ini-
tially, all the agents are at the origin (0, 0, 0), shown as Fig. 4(a).
Fig. 4(d), (g), (j), (m), (p) are desired profiles, and the rest of
figures are transients. The solid green line indicates the leaders.
The insets (on the upper-left corner) show the actual formation
of the leaders, that is the control (v(R, θ ), z(R, θ )) in (47)–(48),
and the desired boundary formation is illustrated by the insets on
upper right corner. A video of the simulation can be downloaded
from Zhang et al. (2019).

The time evolution of L2 norm of the tracking error ∥(v− v̄)∥2
L2

for the selected layers r = 0.006, r = 0.3, r = 0.7, the leader
layer r = 1 and all agents along the x-axis, y-axis, z-axis re-
spectively are shown in Fig. 5. As you can see, the tracking errors
suddenly increase when a new desired deployment is given, and
then rapidly converge to zero.

The second simulation experiment demonstrates the effective-
ness of the output feedback control, using the same parameters
as the previous one. Fig. 6 depicts the approximate numerical so-
lution of the observer kernels Qn. The observer’s initial condition
is set as the agents’ actual position plus a Gaussian distributed
error with zero mean and δ = 0.1. Fig. 7(a) shows the L2 norm of
tracking error, while, the observer is plotted in 7(b). Obviously,
after implementing the observer, the error is larger than the
previous experiment directly using the actual state. However, as
the observer’s error converges, the tracking errors also converge
quickly.

7. Conclusion

In this paper, we have addressed the problem of deploy-
ment in 3-D space by two diffusion–reaction equations with
a non-constant coefficient, from the viewpoint of PDEs as the
continuous approximation of a lot of discrete interacting agents.
Employing backstepping boundary control, we design a boundary
controller for leaders to actuate all agents to desired profile
governed by the nonzero equilibrium of the PDEs model. In
the same manner, an observer is provided, allowing an output
feedback control protocol requiring as sole measurement the
leaders’ neighbor positions. The merit of our framework is that
the agents transform smoothly between different deployments by
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≤

w

∥

S
2

R

A

B

C

C

C

D

F

F

F

F

G

H

odifying the bias terms in the leader’s control protocol, instead
f commanding directly the reference trajectory.
Future research includes the extension of this paradigm to the

-D wave equation model; the methodology of this paper would
e applied to obtain an acceleration-level control law. Another
ossible extension is to consider the impacts of disturbances or
elays to make the model more realistic. Moreover, we will inves-
igate the issue of practical implement of multi-robots that is not
onsidered in this study. We consider implementing two layers
ontrol framework at the agent level to fix the agent’s position
y controlling velocity or (more realistically) acceleration.

ppendix

emma 5. Suppose that the functions gn(r) and fn(r) are given to
each other by the following integral transformations

gn(r) = fn(r) −

∫ r

0
Gn(r, ρ)ρ

(ρ
r

)|n|
fn(t, ρ) dρ, (A.1)

fn(r) = gn(r) +

∫ r

0
G∗

n(r, ρ)ρ
(ρ
r

)|n|
gn(ρ) dρ, (A.2)

here Gn, G∗
n ∈ C2(T ), T = {(r, ρ) : 0 ≤ ρ ≤ r ≤ R} and Gn,G∗

n are
bounded by Ḡ, Ḡ∗. Then gn and fn are equivalent in L1 norms, i.e.,

∥gn∥2
L2 ≤ C1∥fn∥2

L2 , ∥fn∥2
L2 ≤ C2∥gn∥2

L2 , (A.3)

the constants C1, C2 only depend on G, G∗ and R.
Similarly, suppose that the functions gn(t, r) and fn(t, r) are given

to each other by the following observer transformations

gn(r) = fn(r) −

∫ R

r
Pn(r, ρ)ρ

(ρ
r

)−|n|
fn(ρ) dρ, (A.4)

fn(r) = gn(r) +

∫ R

r
P∗

n (r, ρ)ρ
(ρ
r

)−|n|
gn(ρ) dρ, (A.5)

here Pn, P∗
n ∈ C2(T ′), T ′

= {(r, ρ) : 0 ≤ r ≤ ρ ≤ R} and Pn, P∗
n

re bounded by P̄, P̄∗. Then,

gn∥2
L2 ≤ C3∥fn∥2

L2 , ∥fn∥2
L2 ≤ C4∥gn∥2

L2 , (A.6)

he constants C3, C4 only depend on P, P∗ and R.

roof. Integrating (A.1) and using Cauchy–Schwarz inequality,
e have

∥gn∥2
L2 =

∫ R ⏐⏐⏐⏐fn −

∫ r

Gn(r, ρ)ρ
(ρ )|n|

fn(t, ρ) dρ
⏐⏐⏐⏐2 r dr
0 0 r
11
≤ 2∥fn∥2
L2 + 2

∫ R

0

⏐⏐⏐⏐∫ r

0
Gn(r, ρ)ρ

(ρ
r

)|n|
fn(t, ρ) dρ

⏐⏐⏐⏐2 r dr
2∥fn∥2

L2 + 2R2Ḡ2
∫ R

0
ρdρ

∫ R

0
f 2n (t, ρ)ρ dρ, (A.7)

here note that 0 ≤ ρ ≤ r ≤ R, thus

gn∥2
L2 ≤ (2 + R4Ḡ2)∥fn∥2

L2 = C1∥fn∥2
L2 . (A.8)

imilarly, from (A.2), (A.4) and (A.5), respectively, we obtain C2 =

+ R4Ḡ∗2, C3 = 2 + R4P̄2 and C4 = 2 + R4P̄∗2.
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