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Backstepping control of an underactuated
hyperbolic-parabolic coupled PDE system

Guangwei Chen, Rafael Vazquez, Senior Member, IEEE , Zhitao Liu, and Hongye Su

Abstract— This paper considers a class of hyperbolic-
parabolic Partial Differential Equation (PDE) system with-
some interior mixed-coupling terms, a rather unexplored
family of systems. Compared with previous literature, the
family of systems we explore contains several interior-
coupling terms, which makes controller design more chal-
lenging. Our goal is to design a boundary controller to
exponentially stabilize the coupled system. For that, we
propose a controller whose design is based on the back-
stepping method. Under this controller, we analyse the
stability of the closed loop in the H1 sense. A set of (highly
coupled) backstepping kernel equations are derived, and
their well-posedness is shown in the appropriate spaces
by an infinite induction energy series, which has not been
used before in this setting. Moreover, we show the invert-
ibility of transformations by displaying the inverse transfor-
mations, as required for closed-loop well-posedness and
stability. Finally, a numerical simulation is implemented,
and the result illustrates that the control law designed by
the backstepping transformation can stabilize the mixed
PDE system exponentially.

Index Terms— Backstepping control, hyperbolic-
parabolic system, mixed-coupling terms

I. INTRODUCTION

COUPLED Partial Differential Equation (PDE) system-
s have recently attracted considerable attention since

numerous physical, chemical, and biological processes can
be modelled by them; to give some examples, applications
range from extreme ultraviolet lithography [1] to thermal heat
exchanger tubes [2], biological chemotaxis [3], and others.

Most works only deal with control of coupled hyperbolic-
only [4] or parabolic-only [5] PDE systems—sometimes cou-
pled with ODEs as well. For hyperbolic PDEs, backstepping
has in recent years established itself as one of the main
design approaches for designing controllers or observers.For
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example, H. Yu et al solve the problem of adaptive output-
feedback stabilization for one-dimensional 2 × 2 hyperbolic
partial integro-differential equations (PIDEs) [6]. L. Hu et al
yield the stabilization of the heterodirectional linear coupled
hyperbolic PDEs by both fullstate and observer-based output
feedback [7]. J. Auriol et al design a delay-robust controller
[8] and a robust output feedback controller [9] for the two
heterodirectional linear coupled hyperbolic PDEs. L. Su et al
obtain the stabilization of the hyperbolic PDEs with recircula-
tion in the unactuated channel using a single boundary input
[10], and J. Auriol et al implement the two boundary inputs to
realize the stabilization of the system [11]. More challenging
examples such as n+1 coupled linear hyperbolic systems with
uncertain boundary parameters are also studied [12]. Beyond
the linear cases, quasilinear or nonlinear hyperbolic systems
can also be stabilized via the backstepping method. For
example, J. M. Coron et al achieve the finite-time stabilization
of homogeneous quasilinear hyperbolic systems [13]. A. Hayat
get the exponential stability of general 1-D homogeneous
quasilinear systems [14]. Besides the homogeneous cases, 1-D
inhomogeneous quasilinear hyperbolic systems [15] and 2×2
nonlinear hyperbolic systems [16] are also researched. For
parabolic PDEs, backstepping has been extended beyond the 1-
D case [17] to coupled systems; first, for linear parabolic PDEs
with constant coefficients [18], then spatially-varying coeffi-
cients [5], and finally space and time-dependent coefficients
[19]. In [20], output feedback stabilization is achieved for
coupled reaction-diffusion equations with constant parameters.
In addition, output regulation methods have also been used to
deal with coupled linear parabolic PIDEs [21], [22].

Besides backstepping, port-Hamiltonian approach [23], [24]
and Lyapunov-based method [25], [26] are sometimes suitable
for the parabolic or hyperbolic cases.

The mixed system under study is motivated by the physical
problem of EUV lithography [27]. EUV lithography includes a
liquid metal droplet stream convecting through plasma, which
can be modeled with a first-order hyperbolic PDE. The plasma,
which influences the transmision of droplet stream, diffuses in
space, and therefore can be modeled using a parabolic PDE.
Although the structure of the couplings for EUV lithography
can vary, all possible couplings amenable to the presented
methodology are included, to make the design suitable for
other applications.

However, to the best of our knowledge, rather few results are
available for mixed hyperbolic-parabolic PDE systems. While
obviously Lyapunov-based methods [28] or other general
methods such as flatness [29] would in principle be applicable,



2 IEEE TRANSACTION ON AUTOMATIC CONTROL, VOL. XX, NO. XX, XXXX 2021

these systems have for the most part been neglected, with a few
exceptions [30], [31]. They present quite a challenge, as the
physics of the different PDEs are rather dissimilar (transport
versus diffusion phenomena), and, particularly, when trying
to apply the backstepping method, it is difficult to obtain s-
traightforward designs as in the “pure” hyperbolic or parabolic
cases. Presently, only a few works have investigated the use of
backstepping in mixed PDE systems [32]–[35]. In [32] Krstic
firstly explored a linear parabolic PDE with a long input delay,
which can be expressed as a coupled hyperbolic-parabolic
PDE system, but the coupling only occurs at the boundary of
parabolic PDE. In [33] Chen et al. added a Volterra integral
source term driven by the parabolic PDE in the domain of the
hyperbolic system without considering a direct coupling term.
In [34] Ghousein et al. considered the bidirectional couplings
within the two distinct PDEs’ domains, but the two control
inputs are required. Considering input and output delays, in
[35] a Fredholm backstepping transformation is utilized to
stabilize a parabolic-hyperbolic PDE-PDE-PDE cascade.

The main contribution of this work is addressing systems
with boundary-dependent and in-domain direct coupling terms
within the hyperbolic system domain, which considerably
complicate the controller design. Backstepping transforma-
tions are utilized to achieve the control law, which illustrates
that the backstepping method has broad adaptability, even for
mixed PDEs. Firstly, we propose a controller whose design is
based on backstepping method. After that, the (highly coupled)
backstepping kernel equations are derived which have not
appeared before in the literature, and their well-posedness is
shown in the appropriate spaces by an infinite induction energy
series, a method also novel compared with other works, at
least in this setting; the method requires a novel modification
in the target system to enforce the agreement of boundary
conditions in the resulting kernel equations. Then, we analyze
the stability of target system in the H1 sense. Moreover, we
show the invertibility of transformations by finding the inverse
transformations using a successive approximation series and
show how they transform H1 functions into H1 functions and
back; this guarantees closed-loop stability and well-posedness.
The paper is organized as follows: Section II presents the
structure of the mixed PDE system. Section III gives the design
of the boundary controller. Section IV explores the well-
posedness of the highly-coupled kernel functions, and, next,
Section V analyzes the invertibility of the transformations, the
stability of target system, and the well-posedness of closed-
loop system. Finally, Section VI validates the effectiveness of
the proposed controllers by numerical simulation.

II. PROBLEM STATEMENT

Define, as usual, the L2 norm of a function f in the

(0, 1) interval as ‖f‖L2 =
√∫ 1

0
f2(x)dx. The space of

functions with finite L2 norm is called L2(0, 1). Similarly,
the H1 norm and H2 of a (weakly differentiable) function
are denoted as ‖f‖H1 =

√
‖f‖2L2 + ‖fx‖2L2and ‖f‖H2 =√

‖f‖2L2 + ‖fx‖2L2 + ‖fxx‖2L2 . Note that if a function belongs
to H2, then it also belongs to the H1 space and L2 space.

We consider a mixed hyperbolic-parabolic PDE systemwith
several interior couplings

vt (x, t) = εvxx(x, t) + λv (x, t) (1)
v (0, t) = u(0, t), v(1, t) = 0 (2)
ut (x, t) = ux (x, t) + µ (x) v (x, t) + g (x) v (0, t)

+

∫ x

0

f (x, y) v (y, t) dy (3)

u (1, t) = U (t) , (x, t) ∈ [0, 1]× [0,∞) (4)

where ε, λ > 0, g ∈ C(0, 1), µ ∈ C1(0, 1) and f ∈
C1[0, 1; C1(0, 1)]. Denote the initial conditions as v0(0) =
v(x, 0) and u0(x) = u(x, 0). To obtain some insight on (1)–
(4), note that u(x, t) has an explicit solution for t > 1− x:

u = U(t− 1 + x) +

∫ 1

x

∫ s

0

f(s, y)v(y, t+ x− s)dyds

+

∫ 1

x

[µ(s)v(s, t+ x− s) + g(s)v(0, t+ x− s)] ds

Thus, setting x = 0 in this expression of u and inserting it
into (1)–(4) one could obtain a single-variable system, which
could be described as a delay control system with rather
complex recirculation from the boundary.

Our objective is to design a feedback control law for
U(t) so that the system (1)–(4) is well-posed and its origin
exponentially stable. We next present our main result.

Theorem 1: Consider the system (1)–(4) subject to control
law

U (t) =

∫ 1

0

k(1, y)u(y, t)dy +

∫ 1

0

l(1, y)v(y, t)dy (5)

where k(x,y) and l(x,y) are bounded kernel functions obtained
from equations given in Section III, specifically(17)–(20), with
initial conditions v0, u0 ∈ H1(0, 1) that verify zero-order
compatibility conditions, i.e., v0(1) = 0, u0(0) = v0(0) and

u0(1) =

∫ 1

0

k(1, y)u0(y)dy +

∫ 1

0

l(1, y)v0(y)dy. (6)

Then, u(·, t), v(·, t) ∈ H1(0, 1) for all t > 0 and verify the
following energy estimate:

‖v(·, t)‖2H1 + ‖u(·, t)‖2H1 ≤ C1e−ct
(
‖v0‖2H1 + ‖u0‖2H1

)
,
(7)

withC1 > 1, c > 0, where c can be chosen as large as desired.
Proof: The proof of Theorem 1 is split between the next

three sections. In Section III the kernel equations required
for the control law (5) are derived by using the backstepping
method. Existence of kernel functions that solve the equations
is then shown in Section IV, thus establishing the validity of
(5). Finally, the closed-loop system behaviour is demonstrated
in Section V, and in particular (7).

III. CONTROLLER DESIGN

In the past, backstepping has been proven to be effective
for mixed PDEs [32]–[34], thus we adapt it for our case.
The controller design begins by choosingthe backstepping
transformations as

η(x, t) = v(x, t)−
∫ 1

x

p(x, y)v(y, t)dy (8)
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ω(x, t) = u(x, t)−
∫ x

0

k(x, y)u(y, t)dy

−
∫ 1

0

l(x, y)v(y, t)dy (9)

which maps the original system (1)–(4) to target system (10)–
(13):

ηt(x, t) = εηxx(x, t)− cη(x, t) (10)
η(1, t) = 0, η(0, t) = ω(0, t) + ∆(t) (11)
ωt(x, t) = ωx(x, t) (12)
ω(1, t) = 0 (13)

with the definition of ∆(t) given at the end of this section in
a proposition.

From the original and target systems (1)–(4), (10)–(13), and
the transformations (8)–(9), and after a tedious but straightfor-
ward procedure, we derive the following kernel equations.

First of all, p(x, y), evolving in the domain T ′ = {(x, y) :
0 ≤ x ≤ y ≤ 1} has the following expression

pxx(x, y)− pyy(x, y) =
λ+ c

ε
p(x, y) (14)

p(x, 1) = 0, p(x, x) =
λ+c

2ε
(x− 1)(15)

A solution to this kernel equation is already known [38],
indeed p(x, y) has an analytic solution as follows

p(x, y) = −c(1− y)
I1(
√
c((1− y)2 − (1− x)2))√
c((1− y)2 − (1− x)2)

(16)

where I1 stands for the first-order modified Bessel function.

The kernel function k(x, y) evolves in T = {(x, y) : 0 ≤
y ≤ x ≤ 1} as follows

kx (x, y) = −ky (x, y) (17)

k(x, 0) = εly(x, 0)− g(x) +

∫ x

0

k(x, y)g (y) dy (18)

For l(x, y), with 0 ≤ x, y ≤ 1, one has

lx(x, y) = εlyy(x, y) + λl(x, y)

+h(x− y) [k(x, y)µ (y)− f(x, y)]

+h(x− y)

∫ x

y

k(x, s)f(s, y)ds

−δ(y − x)µ(y) (19)
l(x, 0) = 0, l (x, 1) = 0, l(0, y) = φ(y) (20)

where h(x) is the step function satisfying h(x) = 1, x > 0
and h(x) = 0, x ≤ 0 and δ(x) is Dirac’s delta function, and
φ is an H1(0, 1) function verifying φ(0) = φ(1) = 0 that can
be chosen arbitrarily; our choice is given in Lemma 1 to help
stabilization.

Proposition 1: Define ∆(t) in (11) as

∆(t) =

∫ 1

0

D(y)η(y, t)dy

+

∫ 1

0

[∫ 1

0

Q(s, y)D(s)ds

]
η(y, t)dy

−
∫ 1

0

[∫ 1

y

Q(s, y)D(s)ds

]
η(y, t)dy (21)

with
D(y) = φ(y)− p(0, y) (22)

and Q(s, y) the inverse kernel function of transformation (8),
namely,

v(x, t) = η(x, t) +

∫ 1

x

Q(x, y)η(y, t)dy (23)

Then, the last boundary condition of (20) is verified.
Proof: In the derivation of the kernel equations, when verifying
the boundary condition at x = 0 one reaches

∆(t) =

∫ 1

0

(φ(y)− p(0, y))v(y, t)dy

Using now (22) and the inverse transformation (23), which
exists from already known results [38], the result of the
proposition is reached, by changing the order of integration.

It can be seen how introducing ∆(t) in (11) helps to
solve a potential disagreement in boundary conditions of
kernel equations(19)–(20). If we do not introduce ∆, the
boundary conditions of kernel function l(x, y) are l(x, 0) = 0
and l(0, y) = p(0, y) and since p(0, 0) 6= 0, they become
incompatible. Now, setting φ(0) = 0 enforces compatibility in
the boundary conditions. The chosen value of φ(y) is given
in Section V-B.

Regarding the well-posedness of the kernel equations for k
and l, the following result holds.

Proposition 2: There exists a weak solution k(x, y),
l(x, y), to the kernel equations (17)–(20) such that
‖k(x, ·)‖2L2(0,x) + ‖l(x, ·)‖2H1(0,1) ≤ C3, for some positive
constant C3. Thus in particular, k ∈ L2(T ) and l ∈
L2(0, 1;H1(0, 1)).
Proof: See Section IV.

IV. WELL-POSEDNESS OF GAIN KERNEL EQUATIONS

In thissection, we need to prove the well-posedness of
(17)–(20) Our idea is to consider the following sequence of
functions. For m = 0, define l0 and k0 as the solution of the
following PDEs:

l0,x(x, y) = εl0,yy(x, y) + λl0(x, y)− h(x− y)f(x, y)

−δ(y − x)µ(y) (24)
l0(x, 0) = 0, l0 (x, 1) = 0, l0 (0, y) = φ(0, y) (25)

k0,x (x, y) = −k0,y (x, y) , k0(x, 0) = −g(x) (26)

whereas for m = 1, 2, · · · ,∞, the following functions are
defined in terms of lm−1 and km−1:

lm,x(x, y) = εlm,yy(x, y) + λlm(x, y)

+h(x− y) [µ(y)km−1(x, y)]

+h(x− y)

∫ x

y

km−1(x, s)f(s, y)ds (27)

lm(x, 0) = 0, lm (x, 1) = 0, lm (0, y) = 0 (28)
km,x (x, y) = −km,y (x, y) (29)
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km(x, 0) = εlm−1,y(x, 0) +

∫ x

0

km−1(x, y)g (y) dy (30)

If (24)–(30) have a solution, then, consider the expression.

l(x, y) =

∞∑
m=0

lm(x, y), k(x, y) =

∞∑
m=0

km(x, y) (31)

If the two series in (31) converge (in the appropriate functional
spaces), thenby construction it is possible to check they are
a solution to (17)–(20),if the dominated convergence theorem
can be applied, by using the weak form of the kernel equations
(details are skipped for lack of space).

The first step isto find a solution for l0(x, y), k0(x, y).
Analyzing (24)–(26), k0(x, y) has an explicit solution, namely,

k0(x, y) = −g(x− y) (32)

which means k0(x, y) belongs to L2(T ). For l0(x, y), a solu-
tion is found based on the method of separation of variables
by using a Fourier sine series

l0(x, y) =

∞∑
n=0

An(x) sin(nπy) (33)

After some tedious computation, we indeed obtain

l0(x, y) =− 2

∞∑
n=0

exp[(λ− εn2π2)x]

×

[∫ x

0

∫ τ
0
f (τ, s) sin (nπs) ds+ µ(τ) sin(nπτ)

exp[(λ− εn2π2)τ ]
dτ

−
∫ 1

0

φ(τ) sin (nπτ) dτ

]
sin(nπy) (34)

The following bound holds for l0 with x > 0:

|l0(x, y)| ≤ C +

∞∑
n=n1+2

[
2f̄ + 2µ̄

εn2π2 − λ
+

2φ̄

exp([εn2π2 − λ]x)

]
(35)

where εn2
1π

2 < λ < ε(n1 + 1)2π2,

C =

n1+1∑
n=0

exp[(λ− εn2π2)x]

[
(2f̄ + 2µ̄)

λ− εn2π2
+ 2φ̄

]
(36)

and f̄ = max |f(x, y)|x∈[0,1],y∈[0,x], µ̄ = max |µ(x)|x∈[0,1],
φ̄ = max |φ(x)|x∈[0,1]. Given the bounds of λ, and since n2−
(n1 + 1)2 > (n− (n1 + 1))2 for n > n1 + 1, one has that (35)
is convergent since

∞∑
n=n1+2

[
2f̄ + 2µ̄

εn2π2 − λ
+

2φ̄

exp([εn2π2 − λ]x)

]

<
2f̄ + 2µ̄

επ2

∞∑
k=1

1

k2
+ 2φ̄

∞∑
k=1

1

exp(εk2π2x)
(37)

for x > 0, which converges, as exp(cn2) > cn2 for c > 0, and

thus
∞∑
1

1
exp(cn2) <

1
c

∞∑
1

1
n2 <

π2

6c . Therefore, the expression l0

in (34) makes sense and belongs to L2 space. From (27), we
know k1(x, y) depends on l0,y(x, 0). Differentiate both sides
of (34) with respect to y, l0,y has the formal expression

l0y(x, y) =− 2

∞∑
n=0

n exp[(λ− εn2π2)x]

×

[∫ x

0

∫ τ
0
f (τ, s) sin (nπs) ds+ µ(τ) sin(nπτ)

exp[(λ− εn2π2)τ ]
dτ

−
∫ 1

0

φ(τ) sin (nπτ) dτ

]
cosnπy (38)

A very similar bound to (35) can be obtained, and using the
fact that φ(y) is H1, one obtains that l0y is also bounded
and thus an L2 function. Moreover it can be checked as
well that l0,y(·, 0) is L2(0, 1) and well-defined. Thus, l0 ∈
L2(0, 1;H1(0, 1)). Considering now km(x, y),m = 1, 2, · · · ,
from (29)–(30) their solutions have the following explicit
expression,

km(x, y) = εlm−1,y(x− y, 0) +

∫ x−y

0

km−1(x− y, s)g (s) ds

(39)
In particular, for m = 1, since both l0,y(·, 0), k0 belong to L2,
we know k1 is well-defined and at least L2(T ). Addressing
now l1(x, y), the structure of the equation in (27)–(28) has
become much simpler; it is a reaction-diffusion equation with a
forcing term. Using Improved Regularity (Lawrence C. Evans,
p382) [36], we immediately obtain a solution l1 exists and
belongs to L2(0, 1;H2(0, 1)). Obviously, l1,y(·, 0) is then also
well-defined and belongs to L2(0, 1). Next, we can iteratively
infer that there exist solutions km ∈ L2(T ), lm(x, y) ∈
L2(0, 1;H2(0, 1)),m = 2, 3, · · · , all well-defined.Now, we
need to check that the series (31) are convergent in that
same space of functions; for that, we consider the following
sequence of functionals

V1 (x) =

∫ 1

0

(
l21 (x, y) + l21,y (x, y)

)
dy

+θ

∫ x

0

k2
1 (x, y) dy (40)

Vm (x) = Vm−1+

∫ 1

0

l2m (x, y) dy +

∫ 1

0

l2m,y (x, y) ds

+θ

∫ x

0

k2
m (x, y) dy (41)

where m = 2, 3, · · · and θ > 0.Notice these functionals, at
x = 1, are equivalent to the norm of the partial sums of
(31) in the appropriate space. For V1(x), differentiating it with
respective to x, one has

V̇1 (x) = 2ε

∫ 1

0

l1l1,yy(x, y)dy + 2λ

∫ 1

0

l21(x, y)dy

−2

∫ x

0

µ(y)l1(x, y)k0(x, y)dy

−2

∫ x

0

l1(x, y)

[∫ x

y

k0(x, s)f(s, y)ds

]
dy

+2

∫ 1

0

l1,y(x, y)l1,yx(x, y)dy

+2θ

∫ x

0

k1(x, y)k1x(x, y) + θk2
1(x, x) (42)

Notice
∫ 1

0
l1l1,yy(x, y)dy = −

∫ 1

0
l21,y(x, y). In addition,∫ 1

0

l1,y(x, y)l1,yx(x, y)dy
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= −ε
∫ 1

0

l21,yy(x, y)dy + λ

∫ 1

0

l21,y(x, y)dy

+

∫ x

0

µ(y)l1,yy(x, y)k0(x, y)dy

+

∫ x

0

l1,yy(x, y)

[∫ x

y

k0(x, s)f(s, y)ds

]
dy (43)

also, from (29), 2
∫ x

0
k1(x, y)k1x(x, y)dy = −k2

1(x, x) +
k2

1(x, 0). Applying Young’s Inequality, one gets
2
∫ x

0
l1,yy(x, y)µ(y)k0(x, y)dy ≤ β‖l1,yy(x, ·)‖2L2 +

µ̄2

β ‖k(x, ·)‖2L2(0,x), 2
∫ x

0
l1(x, y)

∫ x
y
k0(x, s)f(s, y)dsdy ≤

‖l1(x, ·)‖2L2 + f̄2‖k(x, ·)‖2L2(0,x), k2
1 (x, 0) ≤

2ε2l20,y(x, 0) + 2ḡ2‖k(x, ·)‖2L2(0,x), and finally ,
−2
∫ x

0
l1,yy(x, y)

∫ x
y
k0(x, s)f(s, y)dsdy ≤ β‖l1,yy(x, ·)‖2L2+

f̄2

β ‖k(x, ·)‖2L2(0,x). Using the inequalities in (42) yields:

V̇1 (x) ≤ 2(λ+ 1)

∫ 1

0

l21(x, y)dy

+2(λ− ε)
∫ 1

0

l21,y(x, y)dy

−2(ε− β)

∫ 1

0

l21,yy(x, y)dy + 2θε2 l̄20,y

+

(
f̄2

β
+
µ̄2

β
+ µ̄2 + f̄2 + 2θḡ2

)
ḡ2 (44)

where l̄0,y = max |l0,y(x, 0)|x∈[0,1], ḡ = max |g(x)|x∈[0,1].
We choose β ≤ ε, thus getting V̇1 (x) ≤ aV1 + d,
where a = max[2(λ + 1), 2(λ − ε)], d = 2θε2 l̄20,y +(
f̄2

β + µ̄2

β + µ̄2 + f̄2 + 2θḡ2
)
ḡ2. For V2(x)

V̇2 ≤ V̇1 (x) + 2(λ+ 1)

∫ 1

0

l22(x, y)dy + 2θε2l21,y(x, 0)

−2(ε− β)

∫ 1

0

l22,yy(x, y)dy

+

(
f̄2

β
+
µ̄2

β
+ µ̄2 + f̄2 + 2θḡ2

)∫ x

0

k2
1(x, y)dy

+2(λ− ε)
∫ 1

0

l22,y(x, y)dy (45)

For F ∈ L2
(
[0, 1] ;H1 [0, 1]

)
the following inequality holds:

F 2 (x, 0) ≤ 2

∫ 1

0

F 2 (x, y) dy + 2

∫ 1

0

F 2
y (x, y)dy (46)

Applying (46) to l21,y(x, 0) in (44) yields

V̇2 (x)

≤ (2λ+ 2)

∫ 1

0

l21(x, y)dy + 2(λ− ε+ 2θε2)

∫ 1

0

l21,ydy

−2(ε− β − 2θε2)

∫ 1

0

l21,yy(x, y)dy

+(
f̄2 + µ̄2

β
+ f̄2 + µ̄2 + 2θḡ2)

∫ x

0

k2
1(x, y)dy

+2(λ− ε)
∫ 1

0

l22,y(x, y)dy + (2λ+ 2)

∫ 1

0

l22(x, y)dy

−2(ε− β)

∫ 1

0

l22,yy(x, y)dy (47)

Then, we set 0 < θ ≤ ε−β
2ε2 , thus getting V̇2 (x) ≤ āV2 + d

where ā = max[2λ+2, 2(λ−ε+2θε2), f̄
2+µ̄2

β +f̄2+µ̄2+2θḡ2].
Notice that since ā > a, for V2(x) one also has V̇2(x) ≤ āV2+
d.Iterating for all values of m one reaches V̇m(x) ≤ āV1 +
d. Integrating, Vm(x) ≤ d

ā (exp(āx) − 1) ≤ d
ā (exp(ā) − 1),

independent of m.
Thus it is clear that limm→∞ Vm = V∞ (x) ≤ d

ā (exp(ā)−
1) is bounded for all x ∈ [0, 1], and by dominated convergence
the series in (31) define valid functions k ∈ L2(T ), l ∈
L2(0, 1;H1(0, 1)), and the bound of Proposition 2 is obtained,
thus finishing the proof.

V. STABILITY AND WELL-POSEDNESS OF CLOSED LOOP

To prove results of Theorem 1, we need to carry out three
steps. We start by showing the existence of the inverse trans-
formations, for both transformation (8) and transformation
(9), which allows us to recover the original variables from
the transformed variables. Then, we display the stability of
the target system, as presented in Lemma 1. We follow by
illustrating that both the two transformations keep the original
system and target systems in the same space, as shown in
Section. V-C. In terms of Lemma 1, Theorem 1 is directly
constructed.

A. Invertibility of Backstepping Transformations
Corresponding to (8) and (9), we use the following inverse

transformations,

v(x, t) = η(x, t) +

∫ 1

x

Q(x, y)η(y, t)dy (48)

u(x, t) = ω(x, t) +

∫ x

0

R(x, y)ω(y, t)dy

+

∫ 1

0

S(x, y)η(y, t)dy (49)

which can both map target system (10) into original system
(1). The existence of these inverse transformations is given in
the following result

Proposition 3: Consider transformations (8)–(9) with the
kernel function p given by (16) and the kernel functions k
and l verifying the properties given in Proposition 2. Then,
the transformations are invertible, with inverse given by (48)–
(49) with kernel function Q given by

Q(x, y) = −c(1− y)
J1(
√
c((1− y)2 − (1− x)2))√
c((1− y)2 − (1− x)2)

(50)

where J1 stands for the first-order Bessel function, and k-
ernel functions R and S verifying R ∈ L2(T ) and S ∈
L2(0, 1;H1(0, 1)).

Proof: The existence of (48) is already well-known [38]
given (16), taking the form of the (bounded) Bessel function
(50). Regarding the invertibility of (49), inserting (48) into (9)
and omitting time dependence for simplicity:

ω = u−
∫ x

0

k(x, y)u(y)dy −
∫ 1

0

l(x, y)η(y)dy
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−
∫ 1

0

l(x, y)

∫ 1

y

Q(y, s)η(s)dsdy

= u−
∫ x

0

k(x, y)u(y)dy

−
∫ 1

0

(
l(x, y) +

∫ y

0

l(x, s)Q(s, y)ds

)
η(y)dy (51)

Substituting now (49) in (51):

0 =

∫ x

0

R(x, y)ω(y)dy +

∫ 1

0

S(x, y)η(y)dy

−
∫ x

0

(
k(x, y) +

∫ x

y

k(x, s)R(s, y)ds

)
ω(y)dy

−
∫ 1

0

(∫ x

0

k(x, s)S(s, y)ds

)
η(y)dy

−
∫ 1

0

(
l(x, y) +

∫ y

0

l(x, s)Q(s, y)ds

)
η(y)dy (52)

For (52) to be true, we obtain two integral equation for the
kernel functions S and R:

R = k +

∫ x

y

k(x, s)R(s, y)ds, (53)

S = l +

∫ y

0

l(x, s)Q(s, y)ds+

∫ x

0

k(x, s)S(s, y)(54)

These kernel integral equations are solved by successive
approximations, and one finally reaches∫ x

0

R2(x, y)dy ≤

(
i=∞∑
i=0

√
x
i

√
i!

√
C3

i+1

)2

<∞ (55)

where C3 is the constant of Proposition 2, and the inequality
is deduced from Stirling’s formula for large values of the
factorial. Thus, R ∈ L2(T ). A very similar proof demonstrates
that both S and Sy in (54) exist and belong to L2, which is
skipped for lack of space.

B. Stability of Target System

The stability estimate of target system (10) is based on the
following result.

Lemma 1: Consider the plant (10)–(13) with η0, ω0 ∈
H1(0, 1), c > 0, and φ defined as

φ(y) =


p(0, τ)

τ
y, 0 ≤ y ≤ τ

p(0, y), y > τ
(56)

Then there exists positive τ < 1 and ρ such that

Φ(t) ≤ e−ctΦ(0) (57)

where Φ(t) = W1(t) +W2(t) + ξ (W3(t) +W4(t)) with

W1(t) =
1

2

∫ 1

0

η2(x, t)dx,W2(t) =
1

2

∫ 1

0

η2
x(x, t)dx (58)

W3(t) =
1

2

∫ 1

0

ebxω2(x, t)dx, (59)

W4(t) =
1

2

∫ 1

0

ebxω2
x(x, t)dx (60)

for ξ > 32
ε max{1, (ε+ c)2} and b ≥ c.

Proof: Computing Ẇ1(t) and integrating by parts

Ẇ1 = −
∫ 1

0

εη2
x(x, t)dx− c

∫ 1

0

η2(x, t)dx

−εω(0, t)ηx(0, t)− ε∆ηx(0, t)

= −2εW2 − 2cW1 − εω(0, t)ηx(0, t)− ε∆ηx(0, t)(61)

Similarly, differentiating W2(t) with respect to t

Ẇ2 =

∫ 1

0

ηx(x, t)ηxt(x, t)dx

= −ε
∫ 1

0

η2
xx(x, t)dx− c

∫ 1

0

η2
x(x, t)dx

−ηx(0, t)ωt(0, t)− ηx(0, t)∆t

−cηx(0, t)ω(0, t)− cηx(0, t)∆

= −ε
∫ 1

0

η2
xx(x, t)dx− 2cW2 − ηx(0, t)ωt(0, t)

−ηx(0, t)∆t − cηx(0, t)ω(0, t)− cηx(0, t)∆(62)

Using ωt(0, t) = ωx(0, t) and Young’s inequality,

Ẇ1 + Ẇ2 = −ε
∫ 1

0

η2
xx(x, t)dx− 2(ε+ c)W2 − 2cW1

−ηx(0, t) [χω(0, t) + χ∆ + ∆t + ωx(0, t)]

≤ −ε
∫ 1

0

η2
xx(x, t)dx− 2(ε+ c)W2 +

γη2
x(0, t)

2

+
8
[
χ2ω2(0, t) + χ2∆2 + ∆2

t + ω2
x(0, t)

]
γ

−2cW1 (63)

where χ = ε+c. For ∆2,∆2
t , the following result holds, given

the chosen φ(y) in the statement of Lemma 1.
Lemma 2: For η(·, t) ∈ H2(0, 1), there exists positive

scalars K1 and K2, not depending on τ , such that

∆2 ≤ K1τW1(t) (64)

∆2
t ≤ K2τ

(
c2W1(t) +

ε2

2

∫ 1

0

η2
xx(x, t)dx

)
(65)

Proof: Applying Young’s inequality two times to ∆2 and
then repeated used of the Cauchy-Schwarz inequality achieves

∆2 ≤ 4

∫ τ

0

τD2(y)η2(y, t)dy

+4

∫ 1

0

[∫ τ

0

τQ2(s, y)D2(s)ds

]
η2(y, t)dy

+4

∫ τ

0

τ

[∫ τ

y

(τ − y)Q2(s, y)D2(s)ds

]
η2(y, t)dy

≤ (8D̄2 + 16D̄2Q̄2)τW1(t) (66)

with D̄ = maxy∈[0,1 |D(y)|, Q̄ = maxT |Q(x, y)|. Similarly,

∆2
t ≤ (16D̄2 + 32D̄2Q̄2)τ(c2W1(t) +

ε2

2

∫ 1

0

η2
yy(y, t)dy)

where (10) was used. The proof is finished by choosing K1 ≥
8D̄2 + 16D̄2Q̄2, K2 ≥ 16D̄2 + 32D̄2Q̄2.
Applying (46) to η2

x(0, t) in (63) we have

Ẇ1(t) + Ẇ2(t)
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≤ −(ε− 4K2τε
2

γ
− γ)

∫ 1

0

η2
xx(x, t)dx

−
(

2c− 8

γ
(K1χ

2 +K2c
2)τ

)
W1(t)

−2(ε+ c− γ)W2(t) +
8

γ
χ2ω2(0, t) +

8

γ
ω2
x(0, t)

Choose τ so 4K2τε
2

γ < ε
2 ,

8
γ (K1χ

2 +K2c
2)τ < c, and γ = ε

2 ,

Ẇ1 + Ẇ2 ≤ −2(
ε

2
+ c)W2 − cW1

+
16

ε

(
χ2ω2(0, t) + ω2

x(0, t)
)

(67)

It is easy to see that Ẇ3(t) and Ẇ3(t) are

Ẇ3(t) = − b
2

∫ 1

0

ebxω2(x, t)dx− ω2(0, t)

2
(68)

Ẇ4(t) = −1

2

∫ 1

0

bebxω2
x(x, t)dx− ω2

x(0, t)

2
(69)

Thus Ẇ3(t) + Ẇ4(t) = −b(W3(t) + W4(t)) − 1
2 [ω2(0, t) +

ω2
x(0, t)]. Finally,

Φ̇ ≤ −2(
ε

2
+ c)W2(t)− cW1(t)

−(
ξ

2
− 16

ε
χ2)ω2(0, t)− (

ξ

2
− 16

ε
)ω2
x(0, t)

−ξb(W3(t) +W4(t)) (70)

For any ξ > 32
ε max{1, χ2}, b ≥ c, one has

Φ̇ ≤ −c{W1(t) +W2(t) + ξ(W3(t) +W4(t))}. (71)

Hence, we have Φ(t) ≤ e−ctΦ(0), thus finishing the proof.
Since Φ is equivalent to the norm ‖η(·, t)‖2H1 + ‖ω(·, t)‖2H1 ,

‖η(·, t)‖2H1 + ‖ω(·, t)‖2H1 ≤ C2e−ct
(
‖η0‖2H1 + ‖ω0‖2H1

)
,

(72)
which is indeed closer to (7).

C. Well-posedness of Closed loop
Under the conditions of the Theorem 1, the zero-order com-

patibility conditions for system (10)–(13) are verified. If η0, ω0

belong to H1, from standard results, e.g., Improved Regularity
(Lawrence C. Evans, p. 382) [36],η(·, t) exists and belongs
to H2(0, 1) and similarly there exists ω(·, t) ∈ H1(0, 1).
Thus, all that remains is to show that transformations (8)–
(9) and their inverses (48)–(49) transform H1 functions into
H1 functions and back, thus establishing a norm equivalence
between the norm in (72) and the norm in (7) and finishing
the proof. For (8) and (48) the result is obvious, having an
analytic kernel function; for (9) and (49) the following result
is required.

Lemma 3: Consider transformations (9) and its inverse
(49), for kernel functions verifying the conditions of Propo-
sitions 2 and 3, and u, v ∈ H1(0, 1) verifying (1)–(4). Then it
holds

‖ω‖2L2 ≤ K1

(
‖u‖2L2 + ‖v‖2L2

)
, (73)

‖u‖2L2 ≤ K2

(
‖η‖2L2 + ‖ω‖2L2

)
, (74)

‖ω‖2H1 ≤ K3

(
‖u‖2H1 + ‖v‖2H1

)
, (75)

‖u‖2H1 ≤ K4

(
‖η‖2H1 + ‖ω‖2H1

)
. (76)

Proof: From (9), and omitting time-dependence,

‖ω‖2L2 = 3‖u‖2L2 + 3

∫ 1

0

(∫ x

0

k(x, y)u(y, t)dy

)2

dx

+3

∫ 1

0

(∫ 1

0

l(x, y)v(y, t)dy

)2

dx (77)

and (73) follows applying the Cauchy-Schwarz inequality. E-
quation (74) is similarly proven. To prove (75), differentiating
(9), integrating by parts and using the kernel equations:

ωx = ux − v(x)µ(x)−
∫ x

0

k(x, y)uy(y)dy

+ε

∫ 1

0

ly(x, y)vy(y, t)dy −
∫ 1

0

λl(x, y)v(y)dy

+

∫ x

0

[k(x, y)µ (y)− f(x, y)] v(y)dy

+

∫ x

0

[∫ x

y

k(x, s)f(s, y)ds

]
v(y)dy (78)

and again repeated application of Cauchy-Schwarz leads to
the result. Finally, (76) can be found by inverting (78) as in
Proposition 3.

VI. SIMULATION RESULTS

The effectiveness of the control law U(t) is shown through
a simple example. We consider plant (1)–(4) with coefficients
ε = 1.5, λ = 2, µ = ex, g(x) = 5x, f(x, y) = 1.5e(1−y).
The initial states are set as v(x, 0) = 1 − x, u(x, 0) = 1 −
3.3x that verify zero-order compatibility conditions, and the
adjustment parameter c is chosen as 5. τ is set to 0.01. We
solve states of coupled system and the kernel functions k(x, y),
l(x, y) with the finite central difference method in Matlab,
where the grid size is chosen as dt = 0.0002, dy = 0.001.
The gains l(1, y), k(1, y) are calculated, as shown in Fig. 1.
When we do not apply a control input (i.e. U(t) = 0) the
states diverge quickly over time (not shown due to lack of
space). When we apply the controller (5) to the mixed PDE
system, the evolution of ‖v(·, t)‖H1 +‖u(·, t)‖H1 is shown in
Fig. 2, together with the control law; it decays exponentiallly
to zero, which is consistent with the result in Theorem 1.

0 0.5 1
-4

-3

-2

-1

0

0 0.5 1
-80

-60

-40

-20

0

Fig. 1. The gain kernel functions k(1, y), l(1, y)
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2 4 6
0

5

10

15

0 5
-2.5

-2

-1.5

-1

-0.5

0

Fig. 2. Evolution of ‖v(·, t)‖H1 + ‖u(·, t)‖H1 and U(t)

VII. CONCLUSIONS

This paper presents a boundary feedback control law for a
mixed hyperbolic-parabolic PDE system with several interior
couplings, extending previous results; in particular, the well-
posedness of kernel equations is proven using an infinite
induction energy series. Closed-loop well-posedness is ana-
lyzed, in the appropriate functional spaces. Finally, numerical
simulation is implemented to validate the effectiveness of the
proposed controller. Future work includes considering a fully-
coupled mixed system with two controls.
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