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Anoutput-feedback control law is designed for the longitudinal flight dynamics of an aircraft.Theproposedcontrol

law is designedusing the adaptive backsteppingmethodanddoes not require anyknowledge of aircraft aerodynamics

beyond well-known qualitative physical properties. The resulting feedback controller is able to follow given

references in both airspeed and flight-path angle by actuating elevator deflections and aircraft engine thrust. Engine

physical limits are incorporated into the design by using a Lyapunov function analysis that includes saturation,

obtaining a novel hybrid adaptation law that guarantees closed-loop system stability. Simulation results show good

performance of the feedback law and, in particular, demonstrate that the hybrid adaptation law improves the

behavior of the closed-loop system when saturations are present. A degraded scenario (a sudden cargo displacement

that renders the aircraft statically unstable) is also considered to show the adaptation capabilities of the control law.

The simulations are carried out using a realistic aircraft model that is also developed in the paper.

Nomenclature

CD, CL, Cm = drag, lift, and pitch moment coefficients
CD0

, k1, k2 = drag model coefficients
Cm�·� = pitch moment model coefficient
�c = mean chord, m
D = drag, N
FT = thrust, N
g = acceleration of gravity, m∕s2
Iy = y-axis inertia, kg · m2

L = lift, N
M = pitch moment, N · m
m = aircraft mass, kg
q = pitch angular velocity, rad∕s
S = wing surface, m2

V = airspeed, m∕s
W = Lyapunov function
xB, yB, zB = Cartesian coordinates in body axes, m
y = measurable output vector
z = error variable
α = angle of attack, deg
α0 = trim angle of attack, deg
βV , βγ = known parameters depending on physical

properties of the aircraft
δe = elevator deflection, deg
φ = vector of measurable parameters
γ = flight-path angle, deg
ρ = air density, kg∕m3

θ = pitch angle, deg
θ = vector of unknown parameters

I. Introduction

U NMANNED aerial vehicles (UAVs) are receiving considerable
attention from both industry and academia due to the many

advantages they possess over traditional aircraft. Obviously, themain
advantage is the lack of an onboard pilot. Not needing a pilot makes
the aircraft lighter, cheaper, and better suited for a wide range of
missions in hazardous scenarios in both military and civil missions
(such as surveillance or reconnaissance). Although some UAVs are
remotely flown by human pilots, oftentimes autonomous flight
capabilities are necessary. Thus, it is required to design onboard
automatic flight control systems for UAVs with good performance
and versatility. Even in the case of remotely controlled UAVs, having
an automatic flight controller is desirable, at least as a backup system.
However, the design of automatic flight controllers is far from

trivial. One of the main difficulties is the absence of precise mathe-
matical models valid for relevant flight conditions. Aerodynamic
forces and moments are highly nonlinear and difficult to model
accurately. The traditional approach to overcome this problem is the
use of linearized aircraft models around a selected flight condition.
Numerous classical linear control techniques can then be applied
(see, for instance, [1]). However, if the state of the aircraft is too
different from the flight condition used for design, the model might
fail to accurately capture the system behavior. In this situation, linear
control laws can be prone to misbehavior or even failure. The gain
scheduling technique (see [2]) tackles this problem by computing a
set of controllers, each of them computed for a given flight condition.
Then, the appropriate feedback is found by interpolating among the
controllers according to the aircraft state. This technique has been
widely applied in the aerospace industry (see [3] for a survey).
However, the computation of gain scheduling controllers requires the
estimation of aircraft stability derivatives for a sufficiently large
number of flight conditions, which can be a cumbersome task.
Nonlinear control techniques have the potential for avoiding these

problems. For instance, feedback linearization (see [4,5]) is a method
that allows the design of feedback laws valid for all the flight
envelope. However, an accurate model is still required. The back-
stepping technique (see [6]) lends itself naturally to the design of
flight controllers given the cascade structure of flight dynamics. In
the presence of parametric uncertainties, adaptive backstepping
allows one to design adaptive controllers without knowledge of
model parameters. For instance, Härkegård has presented an adaptive
backstepping design in [7], complemented with a control allocation
method to compute actuator values. Another example is in [8], which
introduces an adaptive backstepping controller for an F-16 model; in
that work, aerodynamics are modeled with neural networks whose
weights are estimated using adaptation laws. A similar approach for
quadrotor flight control is presented in [9].
Another promising design technique based on adaptive back-

stepping is the method of command filters (see [10]). These are user-
defined filters whose inputs are the control signals obtained from
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backstepping and whose outputs are both filtered control signals and
their derivatives. Command filters allow one to explicitly consider
actuator limitations (such as saturations ormaximum rates of change)
and provide virtual control derivatives as output signals (which is
useful because they are required for backstepping control laws).
However, the method does not guarantee exact convergence of
derivatives as standard adaptive backstepping (see [11] for details).
Exact results are available when parameters are known (see [12]) and
for certain classes of single input/single output systems without
constraints (as shown in [11]). Despite this theoretical shortcoming,
command filters have proven themselves quite successful in
experiments (see, for instance, [13–15]).
Outside of backstepping, other adaptive and modelless schemes

are also available. For instance, in [16], a parameter estimator is
constructed through the use of invariant manifolds. Another
technique is extremum seeking (see [17]), which introduces artificial
disturbances in the system input to find a control signal that steers a
given cost function to its minimum. Although extremum seeking has
been mostly applied to process and reaction systems (see the survey
[18]), a number of aerospace applications have been developed, such
as in [19] (which considers the problem of formation flying) or [20]
(which uses atmospheric turbulence as the input disturbance to
optimize aircraft endurance). However, these designs do not take into
account input saturation. Another adaptive approach is the method
known as “control hedging,”which allows one to take saturations into
account in the adaptation law. In [21], this method is used, together
with dynamic inversion and control allocation, to design a flight
controller for a fighter aircraft.
This work presents a novel nonlinear output-adaptive feedback

control design for aircraft longitudinal dynamics. The resulting
feedback law is suitable for conventional airplanes operating in
normal flight conditions and is able to follow commanded references
in both aerodynamic velocity and flight-path angle. The controller
uses elevator deflections and engine thrust level as actuators and
requires only a minimal knowledge of the aircraft aerodynamics
(qualitative properties). It is assumed that the airplane is equipped
with inertial sensors, GPS, and an air-data system to provide the
required measurements. Engine thrust saturation is explicitly
considered in the design, resulting in a hybrid adaptation law with
proven stabilization properties. The obtained feedback and adapta-
tion laws are rather explicit and simple, and therefore well suited to
implementation. Additionally, simulation results are provided to
show the performance of the control law for a nonlinear UAVmodel,
developed by using a combination ofDATCOM (see [22]) and vortex
lattice analysis (as described in [23]). The model also includes
actuator saturations and rate limits. Details of the nonlinear aero-
dynamic model are included in the Appendix. The simulations
include a degraded scenario (a sudden cargo displacement that
renders the aircraft statically unstable) to show the adaptation
capabilities of the control law.
The basis of this work can be found in the conference papers

[24,25]. The first conference paper contains the initial attempt to
solve the problem using a full-state feedback design. In that paper,
the trim angle of attack (which depends on the lift coefficient) and
the aerodynamic coefficient Cmδe

(which multiplies the elevator
deflection actuation) were assumed known. The assumption was
dropped in [25], leading to an output-feedback adaptive control law.
The present paper contains a redesign of the velocity controller and
adaptation law to handle engine thrust saturation,which posed amore
challenging control problem. This redesign has led to a simpler
formulation of the control law and a nontrivial hybrid adaptation law
able to handle engine saturation while still guaranteeing system
stability.
The paper is structured as follows. Section II begins by introducing

the aircraft model. Next, Sec. III details the controller design, which
is divided into two parts. First, the design of the velocity controller is
considered; then, the design of the flight-path angle controller is
explained. The performance of the joint controller is then shown by
simulation in Sec. IV. Section V concludes the paper with some
observations. A description of the simulation model is also included
in the Appendix at the end of the paper.

II. Aircraft Longitudinal Flight Model

Following [26], the longitudinal equations of motion of flight
mechanics are

_V � 1

m
�−D� FT cos α −mg sin γ� (1)

_γ � 1

mV
�L� FT sin α −mg cos γ� (2)

_θ � q (3)

_q � M�δe�
Iy

(4)

where V is the airspeed, γ is the flight-path angle, θ is the pitch angle,
q is the pitch angular velocity, FT is the engine thrust, δe is the
elevator angle, m and Iy are the mass and the inertia, and L, D, and
M�δe� represent aerodynamic lift, drag, and pitch moment,
respectively. Some of these variables are shown in Fig. 1.
In the longitudinal model, the angle of attack α is related to γ and θ

as follows

α � θ − γ (5)

As usual, tomodel lift, drag, and aerodynamicmoment, the following
nondimensional coefficients are defined:

L � 1

2
ρV2SCL; D � 1

2
ρV2SCD; M � 1

2
ρV2S �cCm�δe�

(6)

with S being the reference wing surface, ρ the air density, �c the mean
chord, and CL, CD, and Cm�δe� the lift, drag, and pitch moment
coefficients, respectively. Following classical references (such as
[27]), the drag and moment coefficients can be modeled as

CD � CD0
� k1CL � k2C2

L (7)

Cm�δe� � Cm0
� Cmα

α� Cmqq� Cmδe
δe (8)

where CD0
, k1, k2, Cm0

, Cmα
, Cmq , and Cmδe

are aerodynamic
coefficients. In this work, it is assumed thatCmδe

< 0. The sign of this
coefficient is determined by the aircraft configuration. Note that these
models are only used for control design purposes (Sec. III). For
simulations (Sec. IV), the more realistic model shown in the
Appendix is employed.
Only the following weak assumption is considered for the lift

coefficient, which can be considered a good approximation for
conventional airplanes operating in normal flight regimes (this paper
does not address high-performance airplanes performing aggressive
maneuvers).
Assumption 2.1:The aircraft lift coefficientCL is only a function of

α. In addition, choosing the reference axis xB in Fig. 1 so that
CL�0� � 0 (i.e., xB is parallel to the aircraft zero-lift line), the
property α · CL�α� ≥ 0 is satisfied for all meaningful values of α.

Fig. 1 Definition of forces, moments, and angles.
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III. Controller Design

The control objective is the design of a feedback law to follow
given references in velocity Vr and flight-path angle γr. For design
purposes, the longitudinal motion is split into the velocity dynamics
[given by Eq. (1)] and the flight-path angle dynamics (pitch
dynamics, given by Eqs. (2–4)]. Two separate controllers are
designed: The aerodynamic velocity is controlled using only engine
thrust FT and the flight-path angle is controlled by actuating the
elevator angle δe. It is assumed that the aircraft has a GPS and inertial
measurement unit (IMU) in conjunction with an air-data system,
from which the necessary measurements of attitude angles, pitch
angular velocity, airspeed, and angle of attack are obtained with
enough accuracy.

A. Control of Aerodynamic Velocity

Substituting the drag model D from Eq. (6) into Eq. (1), one has

_V � 1

m

�
−
1

2
ρV2SCD � FT cos α −mg sin γ

�
(9)

with α and γ measurable and the engine thrust FT as a control input.
Including the dragmodel (7) and defining the error zV :� V − Vr, the
dynamics of zV is given by

_zV � −
1

2 m
ρ�zV � Vr�2SφV�α�T · θV � FT

cos α

m
− g sin γ − _Vr

� −βV�z2V � V2
r � 2zVVr�φV�α�T · θV

� FT
cos α

m
− g sin γ − _Vr (10)

where θV ∈ R3 is a vector of unknown parameters and φV ∈ R3 is a
measurable vector defined as

φV�α� :� � 1 α α2 �T; θV :� �CD0
k1 k2 �T (11)

so that drag model (7) becomes CD � φV�α�T · θV > 0. In system
(10), the parameter

βV :� ρS

2m
> 0

has also been defined.
Next, a basic controller design that steers zV to zero is presented.

This design does not take into account engine saturation, a limitation
that is addressed subsequently.

1. Velocity Controller Design Without Considering Thrust Saturation

The control law is summarized in the following proposition.
Proposition 3.1 (Velocity control law, thrust without saturation):

Consider the system (10) and let θ̂V be the estimate of θV defined in
Eq. (11). The adaptive-state feedback law given by

FT �
m

cos α
�g sin γ � _Vr � βVV

2
rφ�α�T · θ̂V − κV1

zV� (12)

_̂
θV � −βVzVV2

rΓVφV�α� (13)

where the controller gain and the adaptation gain matrix satisfy,
respectively, κV1

> 0 andΓV � ΓTV > 0, guarantees global bounded-
ness of zV and θ̂V and convergence of zV to zero.
Proof: Define the following Lyapunov function:

WV �
1

2
z2V �

1

2
~θTVΓ−1

V
~θV (14)

where ~θV :� θV − θ̂V is the estimation error vector. Thus, the
derivative with respect to time of Eq. (14) along the trajectories of
system (10) reads

_WV � zV
�
−βV�zV � Vr�2φV�α�T · θV �FT

cos α

m
− g sin γ − _Vr

�

� ~θTVΓ−1
V
_~θV

� −βV2z2VVrφV�α�T · θV − zVβVz2VφV�α�T · θV

− zV
�
βVV

2
rφV�α�T · θV −FT

cos α

m
� g sin γ� _Vr

�

− ~θTVΓ−1
V
_̂
θV (15)

where FT has been replaced by control law (12).
Using the positiveness of the aerodynamic velocity, the velocity

error zV � V − Vr must satisfy zV ≥ −Vr, which also can be written
as −zV ≤ Vr. Furthermore, taking into account the definition of
the drag coefficient (which is positive) CD � φV�α�T · θV ≥ 0, the
second term of _WV can be bounded as

−zVβVz2VφV�α�T · θV ≤ βVz
2
VVrφV�α�T · θV (16)

and then the time derivative of the Lyapunov function reads

_WV ≤ −βVz2VVrφV�α�T · θV

− zV
�
βVV

2
rφV�α�T · θV − FT

cos α

m
� g sin γ � _Vr

�

− ~θTVΓ−1
V
_̂
θV (17)

Introducing now the control law (12) and the adaptation law (13),
one has

_WV ≤ −βVz2VVrφV�α�T · θV − κV1
z2V ≤ 0 (18)

Thus, becauseWV is positive definite and radially unbounded and
_WV ≤ 0 then, by the LaSalle–Yoshizawa theorem, global bounded-
ness of zV and θ̂V is concluded, and convergence of zV to zero. □
The velocity controller of Proposition 3.1 improves the one

previously presented by the authors in [24]. This new feedback law is
able to achieve global stability using a simpler control law with a
lower computational burden. In addition, this simpler formulation
enables the possibility of dealingwith saturations in the control signal
(i.e., the thrust) with only minor modifications. This is addressed
next.

2. Velocity Controller Design Considering Thrust Saturation

The assumption that the engine can provide any amount of thrust
demanded by the velocity control law is here dropped. Calling �FT
the maximum thrust (and assuming the minimum thrust is zero), one
has then that FT ∈ �0; �FT �. To be able to reach the reference, the
following assumption is also considered.
Assumption 3.1: The reference flight condition (given by γr and

Vr) can be attained without violating the engine thrust limitation.
This assumption can be mathematically stated by considering the

equilibrium solution in system (10). One reaches

0 � −βVV2
rφV�α�T · θV � FT

cos α

m
− g sin γ − _Vr (19)

The equation should be satisfied for FT ∈ �0; �FT �, which implies

βVV
2
rφV�α�T · θV � g sin γ � _Vr ∈

�
0; �FT

cos α

m

�
(20)

Therefore, the following two inequalities hold:

βVV
2
rφV�α�T · θV � g sin γ � _Vr ≥ 0 (21)
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βVV
2
rφV�α�T · θV � g sin γ � _Vr ≤ �FT

cos α

m
(22)

Next, the closed-loop system behavior in case of saturation is
analyzed in the two possible scenarios: maximum and minimum
thrust limits. The same Lyapunov function (14) is used as a base to
implement modifications to the control and adaptation laws.
Case 1: FT � �FT .
If the control law is demanding a thrust higher than �FT , then

considering the control law (12), one obtains

m

cos α
�g sin γ � _Vr � βVV

2
rφ�α�T · θ̂V − κV1

zV� ≥ �FT (23)

which is equivalent to

βVV
2
rφ�α�T · θ̂V − �FT

cos α

m
� g sin γ � _Vr ≥ κV1

zV (24)

One cannot use the Lyapunov derivative bound obtained in Eq. (18),
because the control law cannot be substituted in Eq. (17). Thus, _WV is
now obtained as

_WV ≤ −βVz2VVrφV�α�T · θV

− zV ×
�
βVV

2
rφV�α�T · θV − �FT

cos α

m
� g sin γ � _Vr

�

− ~θTVΓ−1
V
_̂
θV (25)

and, considering Eq. (22), the negativeness of the parentheses in the
first line of Eq. (25) can be deduced. To study the system stability, it is
necessary to consider two cases separately, depending on the sign of
the velocity error:
Case 1.1: zV ≥ 0.
In this case, the original adaptation law (13) can be used. Thus, one

gets

_WV ≤ −βVz2VVrφV�α�T · θV

− zV
�
βVV

2
rφV�α�T · θ̂V − �FT

cos α

m
� g sin γ � _Vr

�
(26)

and considering the bound Eq. (24) together with the positiveness of
zV , one finally reaches

_WV ≤ −βVz2VVrφV�α�T · θV − κV1
z2V (27)

Case 1.2: zV < 0.
In this case, the adaptation law is stopped (making

_̂
θ � 0). Thus,

the time derivative of the Lyapunov function becomes

_WV ≤ −βVz2VVrφV�α�T · θV

− zV
�
βVV

2
rφV�α�T · θV − �FT

cos α

m
� g sin γ � _Vr

�
≤ −βVz2VVrφV�α�T · θV (28)

where Eq. (22) has been used, making the parentheses in the first line
of Eq. (28) negative.
Thus, in case 1, _WV is negative semidefinite for any value of zV .
Case 2: FT � 0.
If the control law demands negative thrust values, a symmetrical

situation to case 1 happens. It holds that

g sin γ � _Vr � βVV
2
rφ�α�T · θ̂V − κV1

zV ≤ 0 (29)

βVV
2
rφV�α�T · θV � g sin γ � _Vr ≥ 0 (30)

where the first inequality is due to control law (12), and the second
one is implied byEq. (21).Moreover, it can be seen that the Lyapunov
function derivative is now bounded as

_WV ≤ −βVz2VVrφV�α�T

· θV − zV�βVV2
rφV�α�T · θV � g sin γ � _Vr� − ~θTVΓ−1

V
_̂
θV (31)

Asbefore, the analysis is split into two cases, depending on the sign of
the velocity error variable.
Case 2.1: zV ≤ 0.
In this case, the original adaptation law (13) is employed. Thus,

one has

_WV ≤ −βVz2VVrφV�α�T · θV

− zV�βVV2
rφV�α�T · θ̂V � g sin γ � _Vr�

(32)

Using the bound Eq. (29) and keeping in mind that −zV is positive,
the Lyapunov function derivative reads

_WV ≤ −βVz2VVrφV�α�T · θV − κV1
z2V (33)

which is negative semidefinite.
Case 2.2: zV > 0.
In this case, the adaptation law is stopped. The time derivative of

the Lyapunov function is now given by

_WV ≤ −βVz2VVrφV�α�T · θV − zV�βVV2
rφV�α�T · θV � g sin γ� _Vr�

≤ −βVz2VVrφV�α�T · θV (34)

where both Eq. (30) and−zV ≤ 0 have been used. Thus, in case 2, the
Lyapunov function derivative is also negative semidefinite.
As a result of this analysis, it has been shown that amodification of

the adaptation law is sufficient to make the Lyapunov function time-
derivative negative semidefinite in all possible scenarios. This leads
to a hybrid adaptation law that guarantees the stability of closed-loop
velocity dynamics even in the presence of thrust saturation (always
under the assumption of a reachable velocity reference). The result is
summarized in the following proposition, whose proof follows
immediately from the previous discussion.
Proposition 3.2 (Velocity control law, thrust with saturation):

Consider the system (10) and let θ̂V be the estimate of θV defined in
Eq. (11). Assume that, due to engine limits, the available control
signal lies in the interval FT ∈ �0; �FT �. Then, the hybrid adaptive-
state feedback law given by

FT �
m

cos α
�g sin γ � _Vr � βVV

2
rφ�α�T · θ̂V − κV1

zV� (35)

_̂
θV �

8<
:

0 if FT ≤ 0 and zV ≥ 0;
0 if FT ≥ �FT and zV ≤ 0;

−βVzVV2
rΓVφV�α� otherwise

(36)

where the controller gain and the adaptation gain matrix satisfy,
respectively, κV1

> 0 andΓV � ΓTV > 0, guarantees global bounded-
ness of zV and θ̂V and convergence of zV to zero.
The hybrid adaptation law has a simple physical interpretation that

deserves to be commented upon. Consider the following situation. If
a sudden steep increment in the reference velocity occurs, the error
variable zV � V − Vr might reach significant negative values. Then,
the last term of the control law (13) might rise too much and steer the
control signal into its maximum value (case 1.2). If the feedback
control does not consider saturations, then the aircraft would not be
accelerating as fast as supposed by the control logic. Then, the
original adaptation law would lead to an artificially high drag
estimation (which would be the only internal explanation for the lack
of acceleration). If this drag overestimation is not mitigated, the
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control law would contain an overcompensated drag coefficient,
which will be present when the aircraft velocity finally reaches its
reference value. Thus, the feedback law ends up using an aggressive,
high-thrust response, a behavior that persists even when zV finally
changes sign. This can lead to an adverse situation inwhich saturation
could still continue because the penultimate term of control law (12)
might become dominant.
The proposed strategy overcomes this situation by stopping the

adaptation lawwhen an upper engine limit is reached and zV < 0, and
turning it on again when the aerodynamic velocity reaches its
reference (that is, zV > 0). In Sec. IV, a simulation study shows a
noticeable improvement of the system response using this hybrid
adaptive control law.

B. Control of the Flight-Path Angle

This section shows the design of an adaptive output-feedback
controller for the flight-path angle. This controller assumes no
specific models for lift and no knowledge of pitch moment model
coefficients. The controller formulation is based on a previous result
by the authors presented in [25]. This is, in turn, an improvement of a
previous full-state design given in [24].
First, some assumptions about the reference are stated.
Assumption 3.2: As proposed in [7], it is assumed that

cos γ ≈ cos γr. Also, _γr is assumed to be zero.
Using the assumption, Eq. (2) reads

_γ � f�α� � f�θ − γ� (37)

where the scalar function f is defined as

f�α� :� 1

mV

�
1

2
ρV2SCL�α� � FT sin α −mg cos γr

�

Note the implicit dependence of f�α� on γr. Define α0 as the trim
angle of attack, which is the value ofα that (for a given γr)makesf�α�
zero, [i.e., f�α0� � 0]. In what follows, α0 is assumed to be constant.
Because the function f�α� is unknown, α0 is not computable. This
also implies that the pitch reference θr :� α0 � γr is also unknown.
The only known fact about f and α0 is that, using Assumption 2.1,
f�α� satisfies �α − α0�f�α� > 0.
Define a vector of error coordinates z ∈ R3 as

z �
"
z1
z2
z3

#
:�

" γ − γr
θ − γr − α0

q

#
(38)

Note that, because α0 is unknown, it follows that z2 is not a
measurable quantity by itself. To clarify which states and
combination of states are measurable, define a measurable output
vector y ∈ R3 as

y :�
" γ − γr

α
q

#
≡

"
z1

z2 − z1 � α0
z3

#
(39)

Rewriting the pitch dynamics (2–4) in the new set of coordinates, and
considering Eq. (37), the error dynamics reads

_z1 � η�z2 − z1� (40)

_z2 � z3 (41)

_z3 � βγ �Cm0
� Cmα

�z2 − z1 � α0� � Cmqz3 � Cmδe
δe� (42)

where

βγ :�
ρV2S �c

2Iy

and

η�x� :� f�x� α0� (43)

Notice that the properties of f imply that x · η�x� ≥ 0. This is the only
known fact about η.
The objective of the design is to find an output-feedback law that

makes the origin of the error system (40–42) globally asymptotically
stable. The only input is δe, and the measurements are y. There is no
knowledge of the values of η, Cm0

, Cmα
, Cmq , or Cmδe

, apart from the
facts that x · η�x� ≥ 0 and that Cmδe

is negative.
The full-state problem was previously considered in [7] for the

cascade structure (40–42), but using the aerodynamicmomentmodel
M as actuation. Then, a control allocation scheme was used to
estimate the corresponding elevator deflections δe. In this work,
M�δe� is explicitly written and obtained as a function of the physical
control input δe, as given by Eq. (8).
Because Eqs. (40–42) is a cascade system in strict feedback form, a

step-by-step backstepping design can be used.
Step 1: First, Eq. (40) is stabilized using z2 as a “virtual” control.

Defining a Lyapunov function as

Wγ1 �
1

2
z21

its derivative reads _Wγ1 � z1η�z2 − z1�. Select the virtual
control z2 � u1�z1� � −κγ1z1, where z1 � y1 is measurable.
Thus,

_Wγ1jz2�u1�z1� � z1η�−�1� κγ1 �z1�

and hence _Wγ1jz2�u1�z1� is negative definite for κγ1 > −1.
Step 2: Define now a modified error variable as a deviation of the

virtual control:

~z2 :� z2 − u1�z1�

Then, Eqs. (40) and (41) become

_z1 � η� ~z2 − �1� κγ1�z1� (44)

_~z2 � z3 � κγ1η� ~z2 − �1� κγ1�z1� (45)

Define a Lyapunov function for Eqs. (44) and (45) as

Wγ2 � c1Wγ1 �
Z

~z2−�1�κγ1 �z1

0

η�s� ds

which is positive definite by the properties of η. Then, _Wγ2 is
found as

_Wγ2 � c1z1η� �−η� z3�η − η2 � �c1z1 � z3�η (46)

where the argument of η � η� ~z2 − �1� κγ1�z1� has been
omitted for clarity. Selecting the virtual control as
z3 � u2�z1� � −c1z1, Eq. (46) becomes _Wγ2 � −η2 and thus
negative semidefinite. By LaSalle’s theorem, z1 and ~z2 tend to
the largest invariant set in the set f�z1; ~z2� ∈ R2: η � 0g. This
implies, using the property of η and Eq. (43), that
~z2 − �1� κγ1�z1 � 0. Then, the residual dynamics is

_z1 � 0 (47)

_~z2 � −c1z1 (48)

and therefore z1 is constant. The derivative of the states on the
set is _~z2 − �1� κγ1� _z1 � 0, which implies _~z2 � 0. This,
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together with Eq. (48), entails that the largest invariant set is
z1 � ~z2 � 0. Given thatW2 is radially unbounded, the origin is
globally stable and it also follows that γ → γr, θ → θr even
though θr is unknown (also α → α0 with α0 unknown).
Note that the virtual control law does not need the function f�α�.
To avoid the need of canceling η terms in the control law, the
Lyapunov functionW2 has included an integral (first introduced
in [28]).
In a preliminary design [24], an additional term ~z22 was added to
Wγ2. This yielded a negative term in ~z22 in _Wγ2, allowing one to
conclude exponential convergence. However, this required
exact knowledge ofα0 (because ~z2 contains it in its definition). It
is remarkable that, to obtain an output-feedback law (not
needing the value of ~z2), all that was necessary was omitting the
~z22 term. However, this improvement comes at the cost of
sacrificing exponential stability, which implies some loss of
robustness with respect to unmodeled dynamics.

Step 3: Defining the new error coordinate ~z3 :� z3 − u2�z1�, the
system becomes

_z1 � η (49)

_~z2 � ~z3 − c1z1 � κγ1η (50)

_~z3 � βγCmδe
�φTγ · θγ � δe� − βγκγ3 ~z3 � c1η (51)

In Eq. (51), the model (8) has been used, by defining θγ ∈ R4 (a
vector of unknown parameters) and φγ�y� ∈ R4 (a vector of
measurable quantities) as

θγ :�
�
Cm0

Cmδe

Cmα

Cmδe

Cmq
Cmδe

1

Cmδe

�
T

;

φγ�y� :�

2
666664

1

α

z3

κγ3 ~z3

3
777775 �

2
666664

1

y2

y3

κγ3�y3 � c1y1�

3
777775 (52)

Recall that δe is the elevator deflection, which is the real control
input of the aircraft.

Define the Lyapunov function for this step as

Wγ3 � Wγ2 �
c3
2
~z23 �
jCmδe

j
2

~θTγ Γ−1
γ
~θγ (53)

where c3 > 0, Γγ � ΓTγ > 0 is the adaptation gain matrix, θ̂γ is the
estimate of θγ , and ~θγ :� θγ − θ̂γ is the estimation error vector.
Then the Lyapunov function derivative is

_Wγ3 � −η2 � ~z3η� c3 ~z3βγCmδe
�φTγ · θγ � δe� � c3 ~z3c1η

− c3βγκγ3 ~z
2
3 � jCmδe

j ~θTγ Γ−1
γ
_~θγ (54)

Defining the control and the adaptation laws as

δe :� −φTγ · θ̂γ (55)

_̂
θγ � −_~θγ :� −c3βγ ~z3Γγφγ (56)

and selecting c3 � 1∕c1, Eq. (54) yields

_Wγ3 � −η2 � 2~z3η −
βγκγ3
c1

~z23 ≤ −
�
1 −

2

λ

�
η2 −

�
βγκγ3
c1

− 2λ

�
~z23

where Young’s inequality has been used with the parameter λ still
free. Pick λ � 4 and κγ3 > 8c1∕βγ , then one gets

_Wγ3 ≤ −
1

2
η2 −

1

2
~z23

which is a negative semidefinite function. Invoking LaSalle’s
theorem as in step 2, it is straightforward to see that the largest
invariant set inside the set f�z1; ~z2; ~z3� ∈ R3: η � 0; ~z3 � 0g is the
origin z1 � ~z2 � ~z3 � 0. Also, z1 � ~z2 � 0 implies z2 � 0 by the
same arguments as before, and additionally z1 � 0 and ~z3 � 0 imply
directly z3 � 0. The result obtained in this section is formally
summarized in the following proposition (in the original
coordinates). Its proof is immediate from the three steps followed
for the backstepping design.
Proposition 3.3: Consider the flight-path-angle dynamics (2–4)

under Assumptions 2.1 and 3.2, with the only measurable outputs
given by Eq. (39) and being θ̂γ the estimate of θγ defined in Eq. (52).
Then, the adaptive output-feedback given by

δe � −φγ�y�T · θ̂γ (57)

_̂
θγ � −

βγ
c1
�q� c1�γ − γr��Γγφγ�y� (58)

with c1 > 0 and κγ3 > 8c1∕βγ , Γγ � ΓTγ > 0 and

φγ�y� �

2
664

1

α
q

κγ3�q� c1�γ − γr��

3
775 (59)

guarantees global stability of �γ; θ; q� and θ̂γ , and convergence of
�γ; θ; q� to �γr; θr; 0�.

IV. Simulation Results

For simulation purposes, a nonlinear model of an aircraft, Cefiro
UAV, has been used. Cefiro is a light aircraft designed and built at the
University of Seville (Spain). The model contains nonlinear
aerodynamics and actuator limitations in both value and rate of
change (see the Appendix for more details). Note that, even though
the velocity and flight-path angle controllers are designed separately,
simulations show both controllers operating simultaneously.
The following tuning parameters have been chosen for the velocity

feedback and adaptation law (35) and (36):

κV1
� 1.5; ΓV � 0.001Id3 (60)

The following tuning parameters have been chosen for the flight-path
angle feedback and adaptation law (57) and (58):

κγ3 � 4; c1 � 1.1; Γγ � 0.4

2
664
1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 0.1

3
775 (61)

The following values have been selected as initial estimates of the
unknown parameters:

θ̂V � � 0.05 0.05 0.05 �T; θ̂γ � � 0.08 0.1 4 −3 �T

These values have been chosen with a similar order of magnitude as
those typically found in conventional aircraft (obtained fromclassical
references such as [29]). However, it is important to recall that they
are not directly related to the actual values of the true parameters of
the aircraft, which are assumed unknown.
Figure 2 shows both velocity and flight-path angle responses,

given a reference composed of several segments with constant

656 GAVILAN, VAZQUEZ, AND ACOSTA

D
ow

nl
oa

de
d 

by
 U

N
IV

E
R

SI
D

A
D

 D
E

 S
E

V
IL

L
A

 o
n 

D
ec

em
be

r 
28

, 2
01

5 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I:

 1
0.

25
14

/1
.G

00
00

28
 



velocity and path angle. The reference is slightly smoothed (as shown
in the figure) to avoid discontinuities that would demand
instantaneous changes in the control signals. Despite lack of
knowledge of the aerodynamic model, both states reach their
reference values with low overshoot and no steady-state error. The
coupling between velocity and path angle dynamics does not seem to
have any effect on the separately designed controllers. In Fig. 3, the
angle of attack, the pitch angle, and the pitch angular velocity are
plotted. The figure shows the control law steering the angle of attack
and the pitch angle to constant (but unknown) trim values for each
flight condition, at the same time that the pitch angular velocity is
regulated to zero to ensure a steady straight flight.
Figure 2 also shows a noticeable improvement in the aerodynamic

velocity response when taking into account thrust saturation (solid
line), as compared with the simpler controller which ignores engine
limitations (dash-dot line). As seen in the figure, a steep change in the
reference velocity tends to steer the engine toward its limits.
Saturation induces drag estimation mismatches in the adaptation law
of the nonhybrid controller, which in the end produce an oscillatory
behavior. On the contrary, the hybrid adaptation law is able to avoid
altogether these problems by stopping the adaptation law when
necessary. It is also remarkable that, although elevator saturations or
limits in the rates of change of both actuators have not been taken into
account in the design, their inclusion in simulations does not seem to
visibly deteriorate the performance of the feedback law.

Figure 4 depicts the computed and applied (considering the
limitations in magnitude and rate of change shown in the Appendix)
elevator and thrust inputs. Elevator actuation is rather smooth when
moderate changes in flight-path angle are demanded, but sudden
saturations may occur at steep reference changes (for instance at
t � 40 s), in spite ofwhich stability is not compromised. The situation
with respect to the thrust is radically different due to the slower
bandwidth of the engine response. When an abrupt change in the
reference velocity is demanded, the system rapidly enters in saturation
during a noticeable amount of time.This justifies the inclusion of thrust
saturation in the adaptation law, which mitigates considerably the
oscillations of the velocity, while at the same time results in a less
aggressive thrust response. Note, however, that the (computed) hybrid
feedback law does not always match the applied actuation, due to rate
limitations. However, this does not result in undesirable behavior.
Figures 5 and 6 show the time evolution of the parameters

estimated by the adaptation laws. The parameters converge to certain
constant values when the references are hold constant (which are,
however, distinct from the real values). During the simulation, large

0 20 40 60 80 100
15

20

25

30

0 20 40 60 80 100
−5

0

5

10

15

Fig. 2 Time evolution of V (solid: hybrid adaptation law including
saturations; dotted: adaptation law not including saturations) and γ.
Dashed lines are references.
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Fig. 3 Time evolution of angle of attack, pitch angle, and pitch angular
velocity.
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Fig. 4 Time evolution of the control signals, showing controllers with
and without saturations (solid: applied; dashed: commanded).
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Fig. 5 Time evolution of the parameters estimated by the velocity
controller (dashed: nonhybrid law, solid: hybrid law).

GAVILAN, VAZQUEZ, AND ACOSTA 657

D
ow

nl
oa

de
d 

by
 U

N
IV

E
R

SI
D

A
D

 D
E

 S
E

V
IL

L
A

 o
n 

D
ec

em
be

r 
28

, 2
01

5 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I:

 1
0.

25
14

/1
.G

00
00

28
 



changes in the value of the estimated parameters were not observed.
Figure 5 also shows the effect of including engine saturation in the
adaptation laws (note the different y axis for the hybrid and nonhybrid
adaptation law). When it is not included, one obtains noticeable
variations in the estimated parameters which lead to drag estimation
mismatches, producing oscillations in velocity as shown in Fig. 2.
To show the adaptive capability of the developed controllers, a

degraded scenario is considered in which a sudden change of the
airplane model occurs during the flight, modifying noticeably its
handling qualities. The situation under consideration is a cargo
displacement during a climb flight segment, in such a way that the
center of gravity moves aft of the neutral point. This leads to a
statically unstable airplane with a static margin SM � −7%
(implying that the derivative Cmα

becomes positive). The new
aerodynamic coefficients for this scenario are given in the Appendix.
Figure 7 depicts the time evolution of the controlled variables V

and γ. At instant t � 30 s, when the airplane is commanded to climb
at angle γ � 13 deg, the center of gravity moves aft. This situation
leads to a severe pitch-up tendency, which is immediately corrected
by the control law, steering again the flight-path angle to its
commanded value and regulating it properly during the remaining
flight segments, evenwith this statically unstable behavior. As shown
in Fig. 8 (where controls are plotted) the controller reacts to the cargo
shift, commanding rather large elevator oscillations, while the
parameters in θγ are being adapted to the new flight condition. Once
the airplane has been stabilized, the controller is able to make it
follow the references in velocity and flight-path angle.
To gainmore insight, in Fig. 9, one can find a zoomof the fourmost

representative variables during the cargo shift (i.e., flight-path angle,
elevator, angle of attack, and the unknown parameter Cmα

∕Cmδe
). It

can be seen that the flight-path angle controller would react to such an

instantaneous change in the airplanemodel with an abrupt and highly
oscillatory response. However, the presence of saturations in
magnitude and rate of change does not allow such a behavior, and
only some rather small oscillations appear in the δe signal. The
controller is still able to stabilize the pitch-up tendency, even with the
presence of these limitations. Additionally, the angle of attack is
rapidly corrected, which avoids entering in stall. The change of sign
in the estimated parameter Cmα

∕Cmδe
is also remarkable. The initial

value corresponds to a statically stable airplane (so that bothCmα
and

Cmδe
are negative) and afterward represents an unstable airplanewith

Cmα
positive and Cmδe

negative.

V. Conclusions

A novel output-adaptive feedback control law for the longitudinal
flight dynamics of a UAV is proposed. The controller is able to make
the aircraft follow references in velocity and flight-path angle, with
minimal knowledge of aircraft aerodynamics. The design explicitly
takes into account engine thrust limits. The use of Lyapunov function
analysis allows one to find a stabilizing hybrid adaptive feedback law
that guarantees system stability even in the presence of engine
saturation. This hybrid law is compared in simulation with a previous
design, which did not take into account saturations. As expected, the
hybrid law performs better (when the engine is taken to its limits). A
degraded scenario (a sudden cargo displacement that renders the
aircraft statically unstable) is also considered to test the limits of the
control law, which copes with the model change by using its
adaptation capabilities.
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Fig. 6 Time evolution of the parameters estimated by the flight-path angle control law.
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Fig. 7 Time evolution of V and γ. The cargo shift occurs at instant
t � 30 s. Dashed lines are references.
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Fig. 8 Time evolution of the control signals, showing controllers with
andwithout saturations (solid: applied; dashed: commanded). The cargo
shift occurs at instant t � 30 s.
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The obtained control laws are simple in structure yet potent and
versatile, because they have been developed on the basis of a generic
aerodynamic model, which is representative of a wide variety of
conventional airplanes in normal flight conditions, not even needing
the computation of trim values. The explicit nature of the feedback
and adaptation laws is well suited for onboard implementation. It
must be noted that the controller requires measurements obtained
from a GPS and IMU in conjunction with an air-data system.
It is also remarkable, looking at the seminal results on which this

work is based, how a careful, yet uncomplicated, refinement of the
initially selected Lyapunov functions has allowed the authors to
overcome seemingly difficult challenges such as unmeasurable
variables or actuator saturation.
Current research is underway to deal with elevator saturations or

limits in the rates of change of both actuators. Also, whereas the pro-
posed control law shows promising results in simulations, experimental
validation would be necessary to confirm its performance.

Appendix: Simulation Model

The simulation test bed is a nonlinear model of the longitudinal
dynamics of the Cefiro UAV. Cefiro is a small aircraft developed and

built at the University of Seville. Some of its main characteristics are
summarized in Table A1.
The airplane is equipped with an IMU together with a GPS unit to

obtain measurements of position, attitude angles, and linear and
angular velocities. Additionally, it has an air-data boom mounted in
the nose to provide accurate measurements of airspeed, static
pressure, angles of attack, and sideslip.
The aircraft longitudinal model is based on the Eqs. (1–4) and

requires the computation of aerodynamic forces and moments
defined in Eq. (6). The coefficients are obtained usingDATCOM (see
[22]) complemented with a vortex lattice analysis (see [23]) for the
specific geometry of the Cefiro UAV. Following DATCOM notation,
lift, drag, and pitch moment coefficients are

CD � CDα
�α� � CDδe

�α; δe� (A1)

CL � CLα
�α� � CL_α

�α� _α �c

2us
� CLq

q �c

2us
� CLδe

�δe� (A2)

Cm � Cmα
�α� � Cm_α

�α� _α �c

2us
� Cmq

q �c

2us
� Cmδe

�δe� (A3)

where the functions appearing in Eqs. (A1–A3) are depicted in
Figs. A1–A3, respectively. The pitch velocity effects in models (A2)
and (A3) are given by the constant coefficients CLq � 4.9240 and
Cmq � −9.0190, respectively.
Section IVincluded a case in which the center of gravity moved aft

of the neutral point, leading to a statically unstable airplane. Tomodel
such scenario, the aerodynamic moment coefficients have been
recomputed with the new position of the center of gravity, leading to

Table A1 Characteristics of the Cefiro aircraft

Operational weight m � 23 kg
Reference cruise speed us � 19 m∕s
Wing surface S � 0.99 m2

Mean chord �c � 0.33 m
Inertia moment Iy � 4.51 kg · m2

Engine 2.5 kW electric engine
Propeller 22 × 10 fixed-pitch propeller
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Fig. 9 Zoom of the time evolution of the flight-path angle, elevator, angle of attack, and parameter Cmα
∕Cmδe

when the cargo shift occurs.
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Fig. A1 Lift coefficient model of the Cefiro UAV.
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the dashed lines shown in Fig. A3 (notice the change in the slope of
Cmα

). Additionally, the pitch angular velocity contribution to the lift
and the aerodynamic moment are now given by the constants CLq �
2.8000 and Cmq � −7.8550, respectively. The influence on the rest
of the parameters has been considered negligible.
The following limitations in magnitude and rate of change of

actuators (engine thrust and elevator angle) have also been
considered in the simulation model

FT ∈ �0; 100� N; j _FT j ≤ 40 N∕s; jδej ≤ 30 deg;

j_δej ≤ 60 deg ∕s (A4)
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