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a b s t r a c t

Complexity science is the multidisciplinary study of complex systems. Its marked network orientation
lends itself well to transport contexts. Key features of complexity science are introduced and defined,
with a specific focus on the application to air traffic management. An overview of complex network
theory is presented, with examples of its corresponding metrics and multiple scales. Complexity science
is starting to make important contributions to performance assessment and system design: selected,
applied air traffic management case studies are explored. The important contexts of uncertainty, resil-
ience and emergent behaviour are discussed, with future research priorities summarised.

© 2014 Elsevier Ltd. All rights reserved.
1. Introduction

This paper introduces key features of complexity science with a
focus on its application to air transportation in general, and air
traffic management (ATM) in particular. These applications relate to
many aspects of performance assessment and system design, not
least, ultimately, through effective service delivery to the passen-
ger. As we will explore, complexity science is the multidisciplinary
study of complex systems, of which air transport networks and
integrated airspace blocks are prime examples. We illustrate the
current and future capacity of complexity science techniques to
make valuable contributions to the management of air transport.

The foundations of complexity science can be traced back to
statistical physics, non-linear dynamics and information theory
(Anderson, 1972). Its focus is on the importance of the heteroge-
neity of system components and on the structure of their interac-
tion. Complex network theory plays a central role in complexity
k).
science (Newman, 2003; Boccaletti et al., 2006), since all complex
systems have many interconnected components. Such components
interact with and adapt to each other, such that the system exhibits
emergent behaviour e the hallmark of complex systems. These
features cannot be understood from information at the individual
agent level alone. Complex network theory and its associated
metrics and tools presents an apposite approach to developing the
study of air transport networks beyond what classical techniques
have to offer. Indeed, the marked network orientation of
complexity science lends itself well not only to ATM but also to
other transport contexts (Angeloudis and Fisk, 2006; Kaluza et al.,
2010; Sen et al., 2003).

Our objectives in this paper are firstly to introduce the reader to
complexity science and its main facets, before illustrating example
applications in the air traffic management context. Section 2 in-
troduces these concepts, focussing on complex network theory and
the metrics it employs. We then discuss the important topic of
uncertainty in the context of network scales, before developing
various ideas related to (network) resilience. The more theoretical
part of our paper concludes with classifications of emergent
behaviour, with supporting air transport examples.
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Although applied examples of complexity science in air trans-
port modelling are very limited, two such air traffic management
case studies are summarised in Section 3. Both draw on the analysis
of communities in complex networks. Our conclusions and an
outlook are presented in Section 4.

2. Complexity science

2.1. Complex networks in ATM

Since the origins of the theory and application of complex net-
works (Albert and Barabasi, 2002), this field has experienced
tremendous growth. Complex network theory (CNT) has been
successfully applied to different transportation contexts, including
road and (underground) rail. In recent years, there has been a
growing interest in the use of CNT in air traffic management: for a
recent review see Zanin and Lillo (2013).

A network is composed of a set of nodes (vertices) connected
pairwise by a set of links (edges). These can be directed and/or
weighted, i.e. associated with real or integer values. For example, in
an airport network, each node is an airport and a link directed from
a node to another can be weighted by the number of flights or
passengers in a given time window. By considering sectors or
navigation points as nodes, one can build other network repre-
sentations of the airspace with different spatial resolution. Indeed,
such is the power of CNT that one can assign almost any kind of
nodal representation, including those related to delays and the
associated infrastructural and passenger costs.

The interest in the study of networks stems from the observa-
tion that some generic topological properties are present in
different complex systems, suggesting that some general principles
govern the creation, growth, and evolution of such networks.
Moreover, CNT has introduced a large set of metrics that are able to
characterise the network and its organisation, thus identifying the
critical nodes. Let us examine three examples:

� Degree. The degree of a node is the number of edges connected
to it, while its strength is the sum of the weights of these edges.
The degree (or strength) distribution gives important informa-
tion about the heterogeneity of the nodes. Several empirical
analyses of airport networks (Barrat et al., 2004; Guimer�a et al.,
2005) have found that the probability that the degree k (or the
strength) is greater than x is described by an exponentially
truncated power law: P(k > x) ¼ N x�g e�ax, where g is the tail
exponent, typically between 1 and 2, a is a parameter control-
ling the rapidity of the exponential decay, and N is a normal-
isation constant. Networks with power-law distributed degrees
are termed ‘scale-free’ networks (Barabasi, 2009) and have
attracted considerable attention in recent years. As a randomly
distributed network increases in size, the ratio of high-degree
nodes to other nodes decreases, whereas in a scale-free
network this ratio remains constant as a function of network
size. (We comment on the importance in a transport manage-
ment context below.)

� Betweenness. The betweenness of a node is a centrality mea-
sure quantifying how important a node is regarding paths inside
the network. Node betweenness is defined as the proportion of
shortest paths, among all possible origins and destinations, that
pass through a node.

� Clustering coefficient. The clustering coefficient of a node is the
fraction of pairs of its neighbours that are directly connected (i.e.
the number of triangles in the network). Empirical studies
(Guimer�a et al., 2005; Bagler, 2008) show that airport networks
have relatively high average clustering coefficients across nodes.
This, together with small average shortest path lengths,
indicates that airport networks have the ‘small-world’ property
(Watts and Strogatz, 1998). Indeed, many real world networks
demonstrate this property: that is, they exhibit a low average
shortest path, characteristic of random networks, while main-
taining the high clustering coefficient found in regular
networks.

There exists a strong correlation between the degree of a node,
and the quantity of flights and passengers managed through it
(Barrat et al., 2004; Guimer�a et al., 2005;Wu et al., 2006). The more
connections a node has, the more passengers are likely to use that
node to reach their destination, and thus the frequencies of such
connections strongly increase.

The analysis of the structure of flight networks in air transport,
especially when focused on individual airlines, is motivated by the
aim of defining the most efficient structures for flights for a given
airline e both in terms of yields (and thus profit) and of passengers'
mobility. For this reason, a large number of studies have focused on
the long-term dynamics of airport networks, with the aim of
investigating the transition from point-to-point to hub-and-spoke
structures observed first in Europe and the US, and more recently
in emerging economies. For example, in the European air network
between 1990 and 1998, it has been observed (Burghouwt and
Hakfoort, 2001) that medium-sized airports have attracted most
of the intra-European traffic, creating specialised internal hubs,
while intercontinental traffic has also been concentrated, but on
different hubs, usually large airports.

The structure of the air transport network strongly affects the
capability of a passenger to reach their destination from a given
origin in the shortest possible time and with fewest changes.
However, purely topological metrics can be poor indicators for
assessing passengers' needs. In fact, a short path (in terms of
number of flights) can be (relatively) useless for a passenger if the
constituent flights are very infrequent or if their scheduling renders
the connections unworkable. One can therefore adapt many com-
plex network metrics to describe both direct and indirect connec-
tivities for passengers (Cook et al., 2013a; Malighetti et al., 2008;
Zanin et al., 2009). We pursue this theme in Section 3.2.

CNT is also important in assessing the resilience of the air
transport network, i.e. its ability to adjust its functioning prior to,
during, and following internal and external disturbance. It has been
shown that the network topology is critical to model failure cas-
cades. Scale-free networks are extremely resilient to random fail-
ures. However, this comes at a high price, because they are also
extremely vulnerable to targeted attacks (Albert et al., 2000) and
other forms of localised failure. This suggests that a suitable char-
acterisation of air traffic topologies and the identification of the
most central nodes, according to CNT, can give valuable insights
into modelling the resilience of the network and identifying critical
elements of the system.

Finally, the topologies of air transport networks play an
important role, not only for the mobility of people, but also for the
dynamics of entities that depend on human mobility. An important
example is the spread of an epidemic, for which air passenger
transport constitutes one of the most important vectors for long-
range spreading. For example, Colizza et al. (2006) used real data
on passenger mobility to build a large-scale agent-based model to
predict epidemic spreading worldwide.

We have focused here mainly on the airport network. However,
navigation-point networks and sector networks are receiving
increasing research interest because of their importance in
modelling air traffic control (Cai et al., 2012; Gurtner et al., 2014). In
contrast with airport networks, these are geographically con-
strained and therefore (almost) planar. Centrality analyses, for
example, can be used to identify potential bottlenecks of the air



A. Cook et al. / Journal of Air Transport Management 42 (2015) 149e158 151
traffic. Moreover, as we will show in Section 3.1, the use of com-
munity detection in navigation-point and sector networks has been
recently suggested (Gurtner et al., 2014) as a means to improve the
design of airspaces by using a bottom-up, traffic-driven approach.

2.2. The context of uncertainty

The application of complex network theory in air transport must
also take account of a fundamental property of such operations:
uncertainty. Understanding how uncertainty affects the ATM sys-
tem is key to properly modelling and controlling it, and ultimately
improving its performance. There are different sources of uncer-
tainty that affect ATM, which can be classified into the types shown
below (see also Heidt and Gluchshenko, 2012).

� Data uncertainty. This type of uncertainty exists when there are
known data but with some level of uncertainty, and/or when
there are imperfect models.

� Data unavailability. In contrast to the previous source of un-
certainty, this affects predictions made without precise knowl-
edge of the system: knowledge which could be obtained by
sharing the necessary information, but whereby this is pre-
vented by managerial and/or technological barriers.

� Operational uncertainty. Decisions taken by humans (e.g.
managers, pilots and air traffic controllers) have a significant
influence on operations but are difficult to predict.

� Equipment uncertainty. This type of uncertainty refers to
problems with equipment, such as aircraft or vehicle break-
down, or other system failure modes.

� Weather uncertainty. Meteorological conditions comprise a
wide group of sources of uncertainty (Matthews et al., 2009). In
particular, adverse weather can introduce high levels of local-
ised or widespread uncertainty and poses problems with clear
links to resilience (which we discuss in Section 2.3).

The analysis of uncertainty in ATM must take into account the
time horizon under consideration and the different scales of the
system, because, depending on these, the various uncertainty
sources affect the system in different ways. According to the time
horizon, one can find two types of problem: (1) estimation of the
present state, e.g. over a short-term time horizon, identifying pri-
mary actions for maintaining safety; and, (2) prediction of the
future state, i.e. with regard to actions over medium- and long-term
time horizons, identifying efficient planning for flights in the
context of weather forecasts and predicted traffic, etc. Three scales
of the system can also be clearly differentiated:

� Microscale e a single flight. At this smallest scale one must
analyse all the uncertainty sources that affect the flight, at its
different stages. These stages are: (a) strategic, covering the
timeframe frommonths before the flight up to two hours before
the off-block time, including the filing of flight plans but not the
flow-management slot allocation process; (b) pre-departure,
which includes flow-management slot allocation
(commencing two hours before the flight and continuing up to
the off-block time); (c) gate-to-gate, including the ground
phases (such as taxi-in and taxi-out) and the airborne phase
(where one must consider the dynamics of the aircraft and the
changing environment through which it moves: see for instance
Vazquez and Rivas, 2013); and, (d) post-arrival, which com-
mences once the aircraft is on-blocks. Uncertainty affects both
the spatial and temporal dimensions; while the spatial uncer-
tainty affects mainly safety issues (ranging from potential loss of
separation to collision risk) and efficiency, the temporal uncer-
tainty manifests itself primarily as delay (flight delay being an
important phenomenon that affects all scales, see Cook et al.
(2013b) and Section 3.2).

� Mesoscale e air traffic. This is an intermediate scale that allows
one to focus on a given area that contains many individual
aircraft that interact following a given set of rules. Examples
include terminal manoeuvring areas or sectors. The analysis of
flowmanagement problems can be also framedwithin this scale
(Clarke et al., 2009). Mesoscopic models exploit probabilistic
methods to account for details of the microscopic scale without
completely losing the macroscopic and strategic view of the
system. This scale still considers individual aircraft, but de-
scribes their activities and interactions based on aggregate re-
lationships. At this scale, safety has to be enforced whilst, at the
same time, capacity needs to be maximised and deviations from
user-preferred trajectories minimised. To accomplish this
effectively, it is necessary to develop algorithms that include
uncertainty models in their formulation (Tomlin et al., 1998).

� Macroscale e the air transport network. Air transport can be
considered at the level of regional, national, or supra-national
networks, or even at the level of the global ATM system. This
scale integrates the state of multiple ATM elements and allows
one to focus on the network properties, giving a high-level view
of the system. It is important to study how uncertainty in flights
and air traffic (the microscopic and mesoscopic scales) propa-
gates to affect the macroscale. At this scale, it is best to abstract
and integrate the various complex and heterogeneous ATM el-
ements in a way that allows one to assess uncertainty and other
properties of interest without needing to include fine detail.
Among other methods, CNT is a particularly useful framework
for analysing the macroscale (Boccaletti et al., 2006), although it
may also be used on mesoscale applications.

We discuss these scales in the context of emergent behaviour in
Section 2.4. According to the scales of the system, the time horizon
under analysis, and the types of uncertainty, different research
challenges can be identified in terms of using CNT to offer insights
into progressing performance assessment and management.

2.3. Defining and modelling resilience

Air transportation constitutes a complex socio-technical system
that is constantly influenced by internal and external disturbances
of various forms. These disturbances may interact with each other,
potentially creating a cascade of adverse events that may span over
the different scales outlined in the previous section. Such distur-
bances could affect a single aircraft or crew, or impact a whole
network.

Thanks to decades of evolutionary development of the air
transportation system, many disturbances may not cause signifi-
cant disruptions for passengers. However, in some cases the
disruption is significant (e.g. due to convective weather), and in
some exceptional events the disruption is of great impact. There are
two categories of rare exceptional events: (i) (catastrophic) acci-
dents involving one or two aircraft; and, (ii) events that push the
dynamics of the air transportation system far away from its point of
operation and therefore dramatically affect the performance of the
system. Examples of the former category are: fatal runway in-
cursions (e.g. Linate, 2001); fatal mid-air collisions (e.g. Überlingen,
2002); loss of control of an aircraft flying through a hazardous
weather system (e.g. Air France crash in Atlantic Ocean, 2009). The
latter category poses particular challenges for tactical management,
examples including: terrorist actions causing the closing down of
air travel in large areas (e.g. the events of ‘9/11’ in New York, in
2001); a disease causing passengers to change their travel behav-
iour (e.g. the SARS outbreak in Asia, in 2003); or, volcanic plumes
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impacting air travel over much of northern Europe (Eyjafjallaj€okull
ash cloud, AprileMay 2010).

The term ‘resilience’ was initially used in the field of mechanics
as the “ability of a metal to absorb energy when elastically
deformed and then to release it upon unloading”, e.g. Hoffman
(1948). Holling (1973) extended this resilience concept to ecolog-
ical systems as the “persistence of systems and of their ability to
absorb change and disturbance and still maintain the same re-
lationships between populations or state variables”. Since then,
various other extensions of the resilience concept have been
introduced in other domains, such as social science, economic sci-
ence, organisation science and safety science.

Based on a review of the complementary resilience de-
velopments in the various domains, Francis and Bekera (2014)
identified the following three key capacities of resilience: (i)
absorptive capacity, (ii) recoverability, and (iii) adaptive capacity.
These key capacities have been integrated into a unifying resilience
framework for complex socio-technical systems (Francis and
Bekera, 2014). Since the air transportation domain covers so
many resilience sub-domains, this integrated resilience framework
is expected to be of great value for air transportation and the
management of its performance from both a strategic and tactical
perspective.

In the literature, correspondingmetrics have also been proposed
to quantify resilience. Gunderson et al. (2002) introduced two such
key metrics: (1) ecological resilience is the “amount of disturbance
that a system can absorb before it changes”; (2) engineering resil-
ience is the “time of return to a global equilibrium following a
disturbance”. In the study by Francis and Bekera (2014), the
quantitative metric (3) ‘resilience factor’ has been proposed in or-
der to take account of all three key resilience capacities.

A common view in the literature is that for the analysis of
resilience of complex critical infrastructures, there is a need for
systematic modelling approaches. Recently, Ouyang (2014) has
provided a rather complete overview of the various modelling
approaches available, such as those comprised of, or based, on:
empirical modelling; agent-based modelling; system dynamics;
economic theory; network topology; network flow; Petri nets;
control system theory; hierarchical holographic modelling; high
level architecture; and, Bayesian networks. These modelling ap-
proaches have been systematically assessed against various resil-
ience improvement objectives for critical infrastructure systems
(Ouyang, 2014). In addition, ComplexWorld (2012) has identified
some complementary stochastic modelling and analysis techniques
that are able to capture the various forms of uncertainty in ATM,
i.e.: stochastic hybrid systems (Blom and Lygeros, 2006; Cassandras
and Lygeros, 2007); viability analysis (Martin et al., 2011); and,
reachability analysis (Bujorianu, 2012).

Triggered by the resilience engineering paradigm of Hollnagel
et al. (2006), qualitative modelling of resilience in ATM started
some five years ago (Eurocontrol, 2009). A good illustration of the
associated qualitative results obtainable for ATM is provided by
Woltjer et al. (2013). In view of the complexity of the air trans-
portation system, there is also a need for the systematic application,
validation and integration of complementary modelling ap-
proaches. Although high-level architecture modelling is the most
generic approach, it faces many challenges in realising a mature
application in a complex safety-critical infrastructure (Ouyang,
2014). Overall, agent-based and network-flow based approaches
have the widest and proven applicability. With regard to uncer-
tainty, as discussed in the previous section, viability and reach-
ability analysis of stochastic hybrid systems are particularly adept
at allowing researchers to model and analyse the various forms of
uncertainty in air transportation e hence, this should be combined
with agent-based and network flow approaches. In addition, there
is the need to assure data access (European legislative change is
currently helping Europe to catch up with the more open culture in
the US) and the systematic collection and empirical modelling of
these data.

2.4. Emergent behaviour

Another key feature of complex systems is emergent behaviour
(Anderson, 1972). This cannot be fully determined by knowledge of
a system's components when considered as isolated elements, i.e.
without taking into account their interactions. A physical analogue
is the highly complex structures of water, not predictable a priori
from knowledge of the properties of hydrogen and oxygen atoms.
Emergent behaviour that is not well understood often leads to poor
performance. Only after such emergent behaviour is better under-
stood, may it be exploited by researchers and managers to deliver
better performance.

Air transportation is indeed challenged to accommodate much
higher future traffic demand, whilst maintaining performance
across a number of key performance areas (KPAs), including safety
and delay metrics. Awareness is growing (e.g. Holmes, 2004) that
this cannot be accomplished by focussing on the individual ele-
ments of the socio-technical air transportation system. Instead, it is
essential to study and understand the interaction between the
many individual elements, i.e. their joint emergent behaviours
(ComplexWorld, 2012; Eurocontrol, 2010; Shah et al., 2005).
Furthermore, with the introduction of advanced ATM concepts, as
yet unknown emergent riskmay appear (Eurocontrol, 2010).Whilst
new paradigms (such as self-separation) could give rise to new
vulnerabilities, they could also remove existing ones (Woods et al.,
2010). In the literature, a number of types of emergent behaviours
are discussed. In order to bring some order to these emergent
behaviour types, Bouarfa et al. (2013) identified that the classifi-
cation proposed by Fromm (2005) is useful for ATM:

� Type I emergence is totally predictable due to the controlled
and planned interaction of the individual components. In air
transportation this applies, for example, to the multitude of
technical systems either on-board an aircraft or on the ground,
including their reliability.

� Type II emergence is characterised by top-down feedback from
the components (agents) imposing constraints on the local in-
teractions. Without conducting simulations, it is not predictable
(Bedau, 1997). Type II behaviour is observed, for example, when
cognitive processes of pilots and controllers are involved. For
example, in a sequence of airborne aircraft with limitations on
their possible speed adjustments, each flight crew adjusts its
behaviour and role in the group according to the context, e.g.
following an ATC instruction or a traffic collision avoidance
system warning.

� Type III emergence is characterised by multiple positive and
negative feedback loops appearing in complex systems with
many agents. Completely new roles can appear while old ones
disappear. The behaviour is not deterministic and can be chaotic
e hence it poses significantly more challenges for simulation.

� Type IVemergence is not predictable, even in principle, because
it describes the appearance of a completely new system in a
multi-level or multi-scale system. This is often referred to as
‘strong’ emergence, although there is no universally agreed
definition. Combinatorial factors render futile any attempt at
explaining emergent macroscopic phenomena in terms of
microscopic phenomena. A mesoscopic level often protects the
macroscopic level from themicroscopic one (i.e. themicroscopic
layer is irrelevant to behaviour at the macroscopic level). Life is a
strongly emergent property of genes, the genetic code and
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nucleic/amino acids; culture is a strongly emergent property of
language and writing systems. In the air transportation domain,
one can think of the safety culture, inter alia, as the product of
routine aspects of everyday practice and rules, and of manage-
ment and organisational structures (Ek et al., 2007; Gordon
et al., 2007). However, even agent-based modelling and simu-
lation do not reveal an understanding of the causal relationships
(Sharpanskykh and Stroeve, 2011).

Type III exceptional, safety-critical behaviour may be observed
where the propagation of hazards through the socio-technical air
transportation system creates a condition under which the appli-
cation of established procedures by crew or ATC unintentionally
causes the situation to deteriorate. This may, for example, occur
when situation awareness differences arise amongst different
agents in the system, and these differences cannot be recognised by
any of the agents (De Santis et al., 2013).

Type III emergent behaviour is also associated with other
particularly interesting properties with regard to the management
of air traffic: phase transitions and percolation. A phase transition
refers to many locally interacting elements causing a collective
phase change (returning to the example of water, a physical
analogue is the melting of ice, i.e. a transition from the solid to
liquid phase). Typically, there exists a critical point that marks the
passage from one phase to another (e.g. Helbing, 2001). Particularly
remarkable is that the well-known phase transition behaviour of
road traffic on a highway seems to be absent in air traffic.

Percolation refers to probabilistic, network-wide emergent
behaviour, between sites or sub-systems, across links in the
network. In air transportation, there are several networks where
percolation may happen. For example, the spatio-temporal propa-
gation of congestion over airspace sectors (Ben Amor and Bui, 2012;
Conway, 2005) or how passenger disruption propagates through
the entire air transportation system (Cook et al., 2013a). We take up
the conclusions to be drawn for air traffic management with regard
to emergent behaviour in Section 4.

3. ATM case studies

The two case studies summarised in this section are both ex-
amples of SESAR Exploratory Research programprojects. The aim of
this section is to illustrate the practical use of complexity science in
the context of ATM. Both of the case studies draw on community
analyses. An important characteristic of a complex network is its
organisation into communities (Fortunato, 2010). Communities are
generically defined as sets of nodes that aremore connected among
themselves than with the rest of the network. Communities are,
therefore, important to the understanding of airspace structure and
operation.

In the first case study, we present the results of a recent inves-
tigation performed within the ELSA project (Gurtner et al., 2014),
whereby network community detection algorithms were used to
monitor current use of the airspace and to improve it by informing
the design thereof. In the second case study, we show how the
POEM project (Cook et al., 2013a) has demonstrated the need for
dedicated passenger metrics in performance assessment and how
community functionality and vulnerability may be radically
changed under flight prioritisation rules.

3.1. From network behaviour to better airspace design

The application of complex network theory to air traffic is not
new (Zanin and Lillo, 2013), although such studies have mainly
focused on the topological characterisation of the airport network
(Bagler, 2008; Colizza et al., 2006; Guida and Funaro, 2007;
Guimer�a et al., 2005; Li and Cai, 2004; Lillo et al., 2011; Popovic
et al., 2012; Quartieri et al., 2008; Wang et al., 2011; Xu and
Harriss, 2008). In Gurtner et al. (2014), community detection al-
gorithms were applied to different types of air traffic network. We
will illustrate this case study by considering a network of airports,
which is probably the most studied type of air traffic network. This
network was constructed using the DDR (Demand Data Repository)
dataset maintained by EUROCONTROL.

Airspaces are complex systems already partitioned, mainly for
reasons related to air traffic control. In fact, at the lowest level,
airspaces are partitioned into several sectors. In European airspace,
each National Airspace (NA) comprises between one and five area
control centres (ACCs). The two-dimensional boundaries of an NA
are often very close to the country's national borders. At a more
aggregate level still, we have functional airspace blocks (FABs),
comprising several NAs. Reorganising NA blocks into FABs is one of
the cornerstones of the Single European Sky first legislative pack-
age, and was further enhanced in the SES second package. Never-
theless, only a few of the planned nine FABs are currently
operational.

We suggest that community detection in air traffic networks is
important for two reasons. Firstly, it improves the characterisation
of networks, powerfully complementing other complexity metrics
(such as degree distribution, betweenness centrality, small world
effects, etc.). Secondly, we believe that community detection could
be helpful to guide, in an unsupervised way, the design of new
airspaces in order to achieve better management of the air traffic
based on actual conditions. In fact, network community detection
may provide information on the appropriateness of the airspace
design, based on the sole knowledge of the actual air traffic data.
Therefore, methods devised for identifying communities in net-
works could be used to help design the structure of airspace,
starting from the observed behaviour of the system.

An example of a partition is presented in Fig. 1, where we show
the different communities of the European airport network for 06
May 2010. Each circle is an airport, its radius proportional to its
strength. Each community is represented by a different colour. The
links between nodes have been omitted for legibility. This partition
is obtained by using an algorithm (Blondel et al., 2008) that max-
imises the modularity. Modularity is a network metric that mea-
sures the excess of the number of links within a community with
respect to a null hypothesis of the random presence of links.

As illustrated, the typical size of a community is supra-national,
roughly the same as an FAB. The communities are mainly
geographical with the majority of nodes close to each other in a
single community. Moreover, the borders of the communities seem
to be more or less consistent with national borders. Nevertheless,
some nodes are geographically far away from the majority of the
nodes in their communities. As mentioned above, this might be due
to the fact that such nodes are gathered together in the same
community on the basis of their common air traffic profile, rather
than their geographical proximity. A detailed comparison between
existing and unsupervised partition is beyond the scope of this
paper; interested readers should refer to Gurtner et al. (2014).

When considering the whole AIRAC (Aeronautical Information
Regulation and Control) period from 06 May to 02 June, 2010, the
average number of communities is 9.4 ± 1.2. The average value of
the minimum number of communities which include 90% of the
nodes in the network is 7.2 ± 0.4. The number of FABs and NAs
considered is 12 and 42, respectively.1 The average number of FABs



Fig. 1. European network of airports on 06 May 2010.
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and NAs that include 90% of the nodes in the network is 9.1 and 21,
respectively. Clearly, the number of detected communities is closer
to the number of FABs.

A further quantitative comparison between unsupervised and
existing partitions of the airspace can be obtained by computing
the mutual information (Danon et al., 2005). The mutual informa-
tion is a measure of the mutual dependence of two variables, based
on the computation of their commonalities. The results are sum-
marised in Table 1 (values of unity from modularity versus modu-
larity, etc., and the duplicating value of 0.42 ± 0.02 (top-right cell)
are not shown).

According to mutual information, the existing partition given by
FABs seems well represented by a partition of the airport network
obtained by using the modularity method. However, the match is
not perfect. There could be two reasons for this. Firstly, geograph-
ical borders of communities are different from the FABs' tiling.
Secondly, communities are actually non-geographical and some
nodes of a given community are in the middle of another one, as
shown in Fig. 1. Nevertheless, overall, these results support the
introduction of FABs. Their actual boundaries could sometimes be
different from those obtained by applying an unsupervised
modularity-based community detection algorithm to the airport
network, however, as detailed in Gurtner et al. (2014). Again, an
obvious explanation might be that the communities detected by
such algorithms are formed solely on the basis of their air traffic
profiles. FABs, as well as other existing airspace structures, have
been created on the basis of geographical or political constraints.
These two types of criteria might indeed generate very different
Table 1
Comparisons of the partitions using the mutual information.

Mutual information Modularity National airspace

Modularity e e

National Airspace 0.42 ± 0.02 e

FABs 0.53 ± 0.02 0.70 ± 0.01
outcomes because, for instance, it is not unlikely to have airports in
different nations more connected than airports in the same nation.
Looking further ahead to concepts such as free routes and dynamic
airspace structures, these types of community detection methods
may make particularly valuable contributions to both strategic and
tactical design, as they might provide design criteria informed by
empirically observed air traffic flows.

3.2. Evaluating new flight prioritisation strategies

The average delays of flights and passengers are not the same
and they are even observed to move in opposite directions under
certain types of flight prioritisation (Bratu and Barnhart, 2004;
Calder�on-Meza et al., 2008; Cook et al., 2013a; Manley and
Sherry, 2008; Sherry et al., 2008; Wang, 2007). The air transport
industry is lacking passenger-centric metrics; its reporting is flight-
centric.

There is growing political emphasis in Europe on service de-
livery to the passenger, and passenger mobility (European
Commission, 2011a, 2011b, 2013). However, how are we to mea-
sure the effectiveness of passenger-driven performance initiatives
in air transport if we do not have the corresponding set of
passenger-oriented metrics and understand the associated trade-
offs in the context of delay propagation? How can we better char-
acterise and differentiate the performance of the network from a
flight and passenger perspective, under new types of flight and
passenger prioritisation scenarios?

We set out to answer these questions by building the first
explicit passenger connectivity simulation of the European air
transport network, with full airline delay cost estimations. The two
principal datasets used to prepare the input data for the model
were IATA's PaxIS passenger itineraries and EUROCONTROL's
PRISME traffic data. A baseline traffic day in September 2010 was
selected as a busy day in a busy month e without evidence of
exceptional delays, strikes or adverse weather. The busiest 199
European Civil Aviation Conference (ECAC) airports in 2010 were
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modelled, having identified that these airports accounted for 97% of
passengers and 93% of movements in that year. Routes between the
main airports of the (2010) EU 27 states and airports outside the EU
27 were used as a proxy for determining the major flows between
the ECAC area and the rest of the world. This process led to the
selection of 50 non-ECAC airports for inclusion of their passenger
data.

The key results observed through (new and established) clas-
sical metrics were as follows. Firstly, both types of flight prioriti-
sation rule operating during arrival management (i.e. (a)
minimising the number of inbound delayed passengers; (b) mini-
mising the number of onward delayed flights) were ineffective in
improving overall performance. Secondly, a policy-driven scenario
was considered, representing a special case not driven by current
airline rules or ATM objectives but designed to benefit the pas-
senger. This scenario, with rules rebooking disrupted passengers at
airports based on minimising their delay at their final destination,
produced very weak effects when current airline interlining hier-
archies were preserved. When these restrictions were relaxed,
marked improvements in passenger arrival delay were observed,
although at the expense of an increase in total delay costs per flight
(due to passenger rebooking costs). Thirdly, a prioritisation process
assigning departure times based on cost minimisation markedly
improved a number of passenger delay metrics and airline costs,
the latter determined by reductions in passenger hard costs to the
airline (falling on average by V40 per flight). The importance of
using passenger-centric metrics in fully assessing system perfor-
mance was repeatedly observed, since such changes were not
expressed through any of the currently-used flight metrics at the
common thresholds set (Cook et al., 2013a). This has important
implications for SESAR's central concept of the User-Driven Pri-
oritisation Process (SESAR, 2012).

In order to establish causal relationships within the data, it was
necessary to turn to rather more powerful techniques than those
simply describing associations. Granger causality (Granger, 1969) is
held to be one of the only tests able to detect the presence of such
causal relationships between time series. It is an extremely
powerful tool for assessing information exchange between
Fig. 2. Flight delay causality network for baseline simulation.
different elements of a system, and understanding whether the
dynamics of one of them is led by the other(s). A network recon-
struction was computed for the flight and passenger layers for the
baseline (no prioritisation scenario) and cost-minimisation sce-
nario simulations, i.e. four reconstructions in total. Granger cau-
sality was calculated over time series representing delays.

The two baseline networks are shown in Figs. 2 and 3 (with
International Civil Aviation Organization airport codes). The colour
of each node represents its eigenvector centrality, from green (in
the web version) (low centrality) to red (in the web version) (most
central nodes). The size represents the out-degree, i.e. the number
of airports that a given airport Granger ‘forces’ in terms of delay.
The eigenvector centrality is a metric defined such that this cen-
trality of a node is proportional to the centralities of those to which
it is connected (Boccaletti et al., 2006).

Comparing eigenvector centrality rankings through Spearman
rank correlation coefficients showed that all four network layers
were remarkably different from each other (rs: 0.01e0.07). These
rankings demonstrated that different airports have different roles
with regard to the type of delay propagated (i.e. flight or passenger
delay) and, furthermore, that these were further changed by the
cost-minimisation prioritisation rules. Indeed, a trade-off was
introduced under these rules: the propagation of delay was con-
tained within smaller airport communities, but these communities
were more susceptible to such propagation. The absence of major
hubs in the top five ranking lists for in-degree, out-degree and
eigenvector centralities was notable. Indeed, the largest airports
present in these rankings were Athens, Barcelona and Istanbul
Atatürk.

This modelling has also identified (Cook et al., 2013a) that
smaller airports were significantly implicated in the propagation of
delay through the network at a level that has hitherto not been
commonly recognised. This is probably due to reduced delay re-
covery potential at such airports and whether a given airport has
sufficient connectivity and capacity to reaccommodate disrupted
passengers.
4. Conclusions and outlook

In this paper we sought to identify the key features of complex
systems and to illustrate the current and future capacity of
complexity science techniques to make valuable contributions to
the management of air transport. Its applicability to performance
assessment is readily apparent, not least due to the flexibility with
Fig. 3. Passenger delay causality network for baseline simulation.
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which we may define the constituent nodes in a network
representation.

Complex network theory has a range of metrics and methods
well adapted to developing the study of air transport networks.
Some results can be obtained only through complexity science
methods, in particular, those that are related to emergent behav-
iours. Other results may be recovered through conventional ana-
lyses, but at a much greater cost. An example of the latter is airport
vulnerability. Classically, estimation thereof would require either
great simplification (based on counting flights, for example) or a
simulation, whereas CNToffers several straightforwardmetrics that
may be readily calculated without simulation, such as betweenness
and eigenvector centrality. Indeed, within the POEM project (dis-
cussed in Section 3.2), it was also apparent (Cook et al., 2013a,
2013b) that applying CNT techniques and exploring community
properties such as vulnerability, afforded performance insights
rather more readily than using classical techniques alone. We
believe that a complementary approach using both complexity and
classical approaches offers managers and designers, both on the
supply and demand side, the most powerful insights into
performance.

The importance of CNT in assessing network resilience, e.g.
through characterisation of air traffic topologies and the identifi-
cation of vulnerabilities, will become even more useful as further
performance demands (e.g. from high-level target-setting) and
traffic demands are placed on the system. Based on the resilience
developments for complex socio-technical systems in other do-
mains, wemay identify four key directions for addressing resilience
in air transportation. The first is the elaboration of the unifying
resilience framework of Francis and Bekera (2014) for the air
transportation domain e one of the challenges here is to incorpo-
rate the various stakeholders into a unifying framework, with clear
links to the SESAR objectives of collaborative decision making
(CDM). The second is the further investigation and incorporation of
dedicated resilience metrics in air transportation, as discussed in
Gluschenko and Foerster (2013) and Francis and Bekera (2014). The
third direction is the improvement of access to, inter alia, appro-
priate resilience data, coupled with the systematic collection and
empirical modelling of these data. The fourth direction is the
modelling and analysis of future air transportation design from a
resilience perspective, using the most suitable approaches identi-
fied in Section 2.3 and illustrated in the case studies of Section 3.
The practical alignments with ATM paradigms are apparent, from
FAB implementation and high-level network design down to
modelling the tactical practicalities of flight prioritisation rules,
each of which are key issues in future ATM design.

Looking ahead, it seems that emergent behaviour research in
ATM, and many other fields, would be most productively focused
on Type III emergence. This implies the following main research
lines. Firstly, increasing our understanding of phase transitions in
air traffic management. Why do these not arise in conventional air
traffic situations, and which types of change in air transportation in
the future could lead to, or further avoid, phase transitions from
impacting air traffic? (One possible explanation for the lack of some
types of phase transition is that in the current air transportation
system traffic demand within each sector is regulated through flow
control such that certain critical points are often not reached, but
there is still only a relatively poor understanding of how phase
transitions from nominal behaviour to propagated network delays
occur.) Secondly, a better understanding of various percolation
phenomena in air transportation is required, again including the
context of future operational paradigms, and of exceptional emer-
gent behaviours and the corresponding implications for safety.
Thirdly, we need to develop better macroscale models that capture
the characteristics of emergent behaviours, e.g. in terms of the
associated power laws. Such models would allow the communi-
cation of learning from Type III emergent behaviour with other
experts in air transportation, not least (tactical) network managers
and (strategic) system designers.

Considering future tools and methodologies, automatically
detecting patterns that may compromise the safe operation of the
ATM system has to overcome several challenges. One of these is the
nature of ATM data, i.e. the fact that they emerge from the inter-
action of a plethora of elements. Due to this, once again, classical
techniques like multiple linear regression are not suitable. The high
number of elements composing the system also results in the
generation of large datasets that cannot easily be aggregated and
suitably codified. This process requires automated mechanisms
that can filter and organise high volumes of heterogeneous,
incomplete or unreliable information in an intelligent manner. Not
all such challenges have yet beenmet, with many benefits to the air
transport community yet to be realised, although early research has
yielded highly promising results constructing predictive models
able to successfully forecast unsafe events. Such tools may have a
particular role to play in future, more automated environments.

Any attempt to build a truly holistic performance assessment
framework must also take account of uncertainty, another inherent
property of real-world complex systems. We are here obliged to
consider the multiple temporal and spatial scales associated with
such systems, in addition to the various types of uncertainty and
the degree to which some of them may be mitigated. Much
research has focused on the macroscale, thus rather following the
level at which performance targets are set, but there remain
particular opportunities to improve our understanding and
modelling at the mesoscale. We have also demonstrated the need
to differentiate between the passenger and flight layers of such
analyses and to ensure that the metrics used are appropriately
sensitive to the changes we are trying to measure. Whilst much of
this work has focused on operational network models, with cor-
responding attention on airport functionality, these methods are
equally adept at assessing the performance impacts of new policies
and working at the airline (sub-)network level.

A key remaining challenge is the appropriate treatment of the
multi-dimensional nature of performance in air transportation and
the trade-offs between its KPAs. Such complex interdependencies
and non-linearities are often overlooked. In on-going work, using
CNT with interacting elements and feedback loops, we are inves-
tigating such trade-offs for various stakeholder investment mech-
anisms (such as new technologies to increase capacities) in the
context of uncertainty. We foresee that complexity science is set to
make significant contributions to the management challenges of
improving our understanding and optimising the design of future
ATM, from both the strategic and tactical perspectives.
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