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a b s t r a c t

We tackle the boundary control and estimation problems for a class of viscous Hamilton–Jacobi PDEs,
considering bilateral actuation and sensing, i.e., at the two boundaries of a 1-D spatial domain. We
first solve the nonlinear trajectory generation problem for this type of PDEs, providing the necessary
feedforward actions at both boundaries. We then design an observer-based output-feedback control law,
which consists of two main elements—a nonlinear observer that is constructed utilizing measurements
from both boundaries and state-feedback laws, which are employed at the two boundary ends. All of
our designs are explicit since they are constructed interlacing a feedback linearizing transformation with
backstepping. Due to the fact that the linearizing transformation is locally invertible, only a regional
stability result is established, combining this transformation with backstepping, suitably formulated
to handle the case of bilateral actuation and sensing. We illustrate the developed methodologies via
application to traffic flow control and we present consistent simulation results.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

Contrary to linear parabolic Partial Differential Equations
(PDEs), for which explicit boundary control and estimation designs
are now largely available, see, for instance, Krstic and Smyshlyaev
(2008) and Meurer (2013a), in the nonlinear case, the design
of explicit boundary control and estimation schemes is a more
challenging problem. In addition, specific engineering applica-
tions, such as, for example, vehicular traffic (Kachroo & Ozbay,
1999; Treiber & Kesting, 2013), plasma systems (Bribiesca Ar-
gomedo, Prieur,Witrant, & Bremond, 2013), fluids (Byrnes, Gilliam,
& Shubov, 1998), chemical reactors (Meurer, 2013a), heat exchang-
ers (Meurer, 2013a), and lithium-ion batteries (Tang, Camacho-
Solorio,Wang, & Krstic, 2017; Tang, S.-X. et al., 2015), to name only
a few, call for the development of systematic control and estima-
tion design methodologies that, besides being able to efficiently
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exploit the capabilities of the available actuators and sensors, they
can also be made fault tolerant.

Motivated by scalar, conservation law models for vehicular
traffic flow that include a viscous term, in order to account for
drivers’ look-ahead ability (Kachroo & Ozbay, 1999; Kontorinaki,
Spiliopoulou, Roncoli, & Papageorgiou, 2017; Treiber & Kesting,
2013), we consider the problems of boundary control and esti-
mation of a certain class of viscous Hamilton–Jacobi (HJ) PDEs,
which constitutes an alternative macroscopic description of traffic
flow dynamics (Claudel & Bayen, 2010; Newell, 1993). In par-
ticular, we consider the case in which actuation and sensing is
available at both boundaries (which we refer to as ‘‘bilateral" in
our control and estimation approaches), aiming at constructing
control and estimation schemes capable of utilizing efficiently
both the available actuators and the availablemeasurements. Since
bilateral controllers and observers employ, in principle, smaller
control and observer gains, compared to unilateral counterparts, it
is expected that bilateral controllersmay require less control effort,
whereas bilateral observers may be more robust to measurement
noise.

Arguably, the most relevant results to the ones presented here
are those dealing with the controller and observer designs for vis-
cous Burgers-type PDEs, whichmay be viewed as conservation law
counterparts of the class of viscous HJ PDEs with quadratic Hamil-
tonian considered here. The trajectory generation problem for
certain forms of viscous Burgers equations is considered in Krstic,
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Magnis, and Vazquez (2009), Meurer and Krstic (2011) and Servais,
d’Andrea-Novel, and Mounier (2014), whereas full-state bound-
ary feedback laws are designed in Iwamoto and Fujimoto, Krstic
(1999), Krstic, Magnis, and Vazquez (2008) and Liu and Krstic
(2000). Observers and output-feedback controllers are presented
in Balogh and Krstic (2000b), Balogh and Krstic (2000a), Byrnes
et al. (1998) and Krstic et al. (2009). Explicit boundary control and
observer designs for other nonlinear parabolic PDEs also exist, see,
e.g., Hasan, Aamo, and Foss (2013), Meurer (2013b), Vazquez and
Krstic (2008) and Vazquez, Trelat, and Coron (2008). Although it
is a different problem, for completeness, it should be mentioned
that the control design problem of inviscid versions of Burgers
or of specific HJ PDEs is considered in, e.g., Aubin, Bayen, and
Saint-Pierre (2008), Blandin, Litrico, Delle Monache, Piccoli, and
Bayen (2017), Claudel and Bayen (2010) and Krstic (1999). Bilateral
controllers and observers for certain classes of linear parabolic and
hyperbolic PDEs are recently developed in Auriol and Di Meglio
(2018) and Vazquez and Krstic (2016). Linear control laws con-
structed combining backstepping and flatness can be found in,
e.g., Cochran and Krstic (2009) and Meurer and Kugi (2009). We
should also mention here that, in comparison to Bekiaris-Liberis
and Bayen (2015), in the present paper we consider, (1) a more
general class of viscous HJ PDE systems, (2) the problems of tra-
jectory generation and tracking, and (3) the problems of bilateral
control and estimation.

Our contributions are summarized as follows. First, we solve
the nonlinear trajectory generation problem for the considered
viscous HJ PDE, providing explicit feedforward actions at both
boundaries. The key ingredient in our approach is the employment
of a feedback linearizing transformation (inspired by the Hopf–
Cole transformation (Cole, 1951; Hopf, 1950)) that we introduce,
which allows us to convert the original nonlinear problem to a
motion planning problem for a linear heat equation. We then
establish the well-posedness of the feedforward controllers for the
original nonlinear PDE system, for reference outputs that belong to
Gevrey class (of certain order) with sufficiently small magnitude.
One of the main contributions in our analysis is the determination
of a bound for the transformation.

Second, we design observer-based output-feedback laws in or-
der to achieve trajectory tracking, with an arbitrary decay rate, as
the system is not, in general, asymptotically stable around a given
reference trajectory. Twoare the basic ingredients of the developed
output-feedback control scheme, (i) a nonlinear observer, which
is constructed employing Dirichlet boundary measurements from
both ends of the spatial domain and (ii) state-feedback control
laws, which are employed, via Neumann actuation, at each of the
two boundaries. Our designs are based on the combination of a
linearizing transformation together with backstepping (Vazquez &
Krstic, 2016), suitably formulated to the case of a one-dimensional
spatial domain.We show that the bilateral, observer-based output-
feedback control laws achieve local asymptotic stabilization of the
reference trajectory in H1 norm. Our stability result is local in H1

norm due to the fact that the linearizing transformation is invert-
ible only locally and, in particular, the size of the supremum norm
of the transformed PDE state should be appropriately restricted.

Third, we apply the developed methodologies to a model of
highway traffic flow.We illustrate, in simulation, the effectiveness
of the proposed control design technique, including a comparison
with the unilateral case.

We start presenting the class of viscous HJ PDEs under con-
sideration and discussing its relation to a traffic flow model in
Section 2. In Section 3 we present the nonlinear feedforward con-
trol designs. In Section 4 we present the nonlinear observer design
and state-feedback controllers as well as we prove local stability of
the closed-loop system under the observer-based output-feedback
laws. We present an example of traffic flow control in Section 5.
Concluding remarks and future research directions are provided in
Section 6.

Notation and Definitions. We use the common definition of class
K, K∞ and KL functions from Khalil (2002). We denote by L2(0, 1)
and H1(0, 1) the space of square-integrable scalar functions and
the space of functions with square-integrable (weak) derivative,
respectively, in the interval [0, 1]. For a function u ∈ L2(0, 1)

we denote by ∥u∥L2 the norm ∥u∥L2 =

√∫ 1
0 u(x)2dx. For u ∈

H1(0, 1) we denote by ∥u∥H1 the norm ∥u∥H1 =

√∫ 1
0 u(x)2dx +√∫ 1

0 ux(x)2dx. We denote by C j(A) the space of functions that
have continuous derivatives of order j on A. We denote an initial
condition as u0(x) = u(x, t0) with some t0 ≥ 0, for all x ∈ [0, 1].
With C

(
[t0, +∞);H2 (0, 1)

)
we denote the class of continuous

mappings on [t0, +∞) with values into H2 (0, 1). We denote by
C2,1
T ([0, 1] × (t0, T )) the space of functions that have continuous

spatial derivatives of order 2 and continuous time derivatives of
order 1 on [0, 1] × (t0, T ), and define C2,1

∞
([0, 1] × (t0, +∞)) =

C2,1 ([0, 1] × (t0, +∞)).

Definition 1 (Laroche, Martin, & Rouchon, 2000). The function f :

S → R, belongs to GF ,M,γ (S), the Gevrey class of order γ in S, if
f (t) ∈ C∞ (S) and there exist positive constants F , M such that
supt∈S

⏐⏐f (n)(t)⏐⏐ ≤ FMn (n!)γ , for all n = 0, 1, 2, . . ..

2. Problem formulation and motivation

We consider the following viscous HJ PDE system

ut (x, t) = ϵuxx(x, t) − aux(x, t) (b + ux(x, t)) (1)
ux(0, t) = U0(t) (2)
ux (1, t) = U1(t), (3)

whereu is the PDE state, x ∈ [0, 1] is the spatial variable, t ≥ t0 ≥ 0
is time, ϵ > 0 is a viscosity coefficient, a ̸= 0 and b ∈ R are
constant parameters, andU0,U1 are control variables. Our goal is to
design an observer-based output-feedback law utilizing boundary
measurements ym1 = u(0) and ym2 = u(1), such that the outputs
y1 = u (x0) and y2 = ux (x0), of the system, where x0 is some
fixed point within the interval [0, 1], track some desired reference
outputs.

The motivation for considering the class of systems described
by (1)–(3) comes from the fact that such PDE systemsmay serve as
macroscopic models of vehicular traffic flow. To see this, consider
a highway stretch with inlet at x = 0 and outlet at x = 1.
We model the traffic density dynamics within the stretch with a
conservation law PDE. In order to account for drivers’ look-ahead
ability, we incorporate in the expression for the traffic flow, in
addition to the term that corresponds to a conventional funda-
mental diagram relation between speed and density of vehicles,
an additional term that depends on the spatial derivative of the
traffic density, giving rise to the followingmodel, see, e.g., Kachroo
andOzbay (1999), Kontorinaki et al. (2017) and Treiber andKesting
(2013)

ρt (x, t) + (ρ(x, t)V (ρ(x, t)) − ϵρx(x, t))x = 0 (4)
ρ(0, t) = −U0(t) (5)
ρ (1, t) = −U1(t), (6)

where, for Greenshield’s fundamental diagram (Greenshields,
1935) we have V (ρ) = a (b − ρ), with a, b being free-flow
speed and maximum density, respectively, whereas ρ denotes the
traffic density. The density at the boundaries may be imposed
manipulating either the flow or the speed of vehicles, via the em-
ployment of ramp-metering (RM) and variable speed limits (VSL),
as well as exploiting the capabilities of connected and automated
vehicles see, e.g., Carlson, Papamichail, and Papageorgiou (2014)
and Roncoli, Papageorgiou, and Papamichail (2015).
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In order to bring model (4)–(6) into the form (1)–(3) we define
the following variable

u(x, t) =

∫ 1

x
ρ(y, t)dy +

∫ t

0
Q (ρ(1, s), ρx(1, s)) ds (7)

Q (ρ, ρx) = ρV (ρ) − ϵρx. (8)

It can be shown, by direct differentiation of (7) with respect to t
and x, and by employing (4), that the variable u satisfies (1)–(3).
In fact, the state u represents the so-called Moskowitz function,
which constitutes an alternative macroscopic description of the
dynamics of traffic flow in a highway. In particular, the value of the
Moskowitz function M = u(x, t) is interpreted as the ‘‘label" of a
given vehicle at position x at time t , along a road segment (Claudel
& Bayen, 2010; Newell, 1993).

In fact, traffic flow models of the form (4)–(6) or (via (7)) of
the form (1)–(3), belong to the class of the so-called first-order
macroscopic traffic flow models, which incorporate only one PDE
state for traffic density. However, systems of the form (1)–(3) (or
(4)–(6)) differ from conventional first-order traffic flow models
in that they incorporate a viscosity term. The reason for includ-
ing a viscosity term is to model certain phenomena observed in
real traffic empirically. In particular, this term may model the
fact that drivers adjust their speed by also taking into account
the downstream density. As a result, such models may capture
important phenomena such as, for example, the capacity drop
phenomenon (Kontorinaki et al., 2017), retaining, at the same
time, their simplicity as compared tomore complexmodels, which
incorporate additional PDE states (Kontorinaki et al., 2017).

A typical aim of a traffic control scheme is to regulate the
outlet flow to a certain set-point, say q∗, which may be the point
that achieves the maximum flow (capacity flow) (Carlson et al.,
2014). In terms of the u variable this corresponds to u(1, t) tracking
the reference trajectory q∗t . This motivates the trajectory genera-
tion and tracking problems for the class of systems described by
(1)–(3). Moreover, since the value ux(1, t) could be also assigned,
one may choose for reference value of −ux(1, t) the value of the
density that corresponds to the critical density (i.e., the density
at which capacity flow is achieved) of the nominal fundamental
diagram relation (i.e., when there is noρx term in (8)) between flow
and density at the outlet of the considered stretch, which in turn
would guarantee that the obtained desired profile for ux (or, for ρ)
is uniform with respect to space.

3. Trajectory generation

In this section, we design the feedforward boundary control
laws that generate the desired reference trajectory.

Theorem 1. Let yr1(t) and yr2(t) be in GF ,M,γ ([0, +∞)) class with
1 ≤ γ < 2. There exists a positive constant µ1 such that if F ≤ µ1
then the functions

ur(x, t) = −
ϵ

a
ln

(
e

ab
2ϵ xvr(x, t) + 1

)
(9)

U r
0(t) = −

ϵ

a
vr
x(0, t) +

ab
2ϵ v

r(0, t)
1 + vr(0, t)

(10)

U r
1(t) = −

ϵe
ab
2ϵ

a
vr
x(1, t) +

ab
2ϵ v

r(1, t)

1 + e
ab
2ϵ vr(1, t)

, (11)

where

vr(x, t) =

∞∑
k=0

1
ϵk

(x − x0)2k

(2k)!

k∑
m=0

(
k
m

)(
a2b2

4ϵ

)k−m

× yr1,v
(m)(t) +

∞∑
k=0

1
ϵk

(x − x0)2k+1

(2k + 1)!

×

k∑
m=0

(
k
m

)(
a2b2

4ϵ

)k−m

yr2,v
(m)(t) (12)

yr1,v(t) = e−
ab
2ϵ x0

(
e−

a
ϵ y

r
1(t) − 1

)
(13)

yr2,v(t) = e−
ab
2ϵ x0

(
−

a
ϵ
e−

a
ϵ y

r
1(t)yr2(t)

−
ab
2ϵ

(
e−

a
ϵ y

r
1(t) − 1

))
, (14)

satisfy the boundary value problem (1)–(3) and, in particular, ur (x0, t)
= yr1(t) and ur

x (x0, t) = yr2(t).

Proof. The change of variables

v(x, t) = e−
ab
2ϵ x

(
e−

a
ϵ u(x,t) − 1

)
, (15)

and the following choice for U0, U1

U0(t) = −
ϵ

a
e

a
ϵ u(0,t)V0(t) +

b
2

(
e

a
ϵ u(0,t) − 1

)
(16)

U1(t) = −
ϵ

a
e

a
ϵ u(1,t)+

ab
2ϵ V1(t) +

b
2

(
e

a
ϵ u(1,t) − 1

)
, (17)

where V0, V1 are new control variables, transform (1)–(3) to

vt (x, t) = ϵvxx(x, t) −
a2b2

4ϵ
v(x, t) (18)

vx(0, t) = V0(t) (19)
vx(1, t) = V1(t). (20)

To generate the desired trajectory ur, providing the feedforward
laws U r

0, U
r
1, which achieve ur (x0) = yr1, u

r
x (x0) = yr2, we first

generate vr satisfying (18) with vr (x0) = yr1,v and vr
x (x0) = yr2,v ,

where yr1,v , y
r
2,v are defined in (13), (14), respectively. Combining

(19), (20)with (16), (17),we then getU r
0,U

r
1.Moreover, vr should be

restricted appropriately such that (9)–(11) are well-posed, which
holds true whenever

sup
x∈[0,1]

⏐⏐vr(x, t)
⏐⏐ < c̄e−

⏐⏐⏐ ab2ϵ ⏐⏐⏐
, for all t ≥ t0, (21)

for some constant c̄ ∈ (0, 1), in addition to vr
x(x, t) being bounded

for all x ∈ [0, 1] and t ≥ t0.
Since (18)–(20) is a linear diffusion–reaction PDE the reference

trajectory vr iswritten as in (12), see, e.g., Fliess,Mounier, Rouchon,
and Rudolph, Laroche et al. (2000), Martin, Rosier, and Rouchon
(2014), Martin, Rosier, and Rouchon (2016), Meurer and Krstic
(2011) and Meurer and Kugi (2009). Employing the results in,
e.g., Meurer and Krstic (2011, Remark 4), we conclude that series
(12) is convergent (with infinite convergence radius) provided that
yr1,v , y

r
2,v belong to GF∗

1 ,M∗
1 ,γ ([0, +∞)) for 1 ≤ γ < 2 and some

F∗

1 , M
∗

1 .
We derive next Gevrey estimates for yr1,v , y

r
2,v as, in order to

guarantee that (21) holds, one has to guarantee, in addition to yr1,v ,
yr2,v belonging to GF∗

1 ,M∗
1 ,γ ([0, +∞)) for 1 ≤ γ < 2, that F∗

1 may
bemade small when F is small. Toward that end, from Lemmas A.1
and A.2 in Appendix A we obtain

sup
t≥0

⏐⏐⏐yr1,v (n)(t)⏐⏐⏐ ≤ F̄1M̄n
1 (n!)γ , for all n = 0, 1, . . . (22)

sup
t≥0

⏐⏐⏐yr2,v (n)(t)⏐⏐⏐ ≤ F̄2M̄n
2 (n!)γ , for all n = 0, 1, . . ., (23)

where

F̄1 = F
|a|
ϵ

eF
|a|
ϵ e−

ab
2ϵ x0 (24)

M̄1 = MeF
|a|
ϵ (25)
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F̄2 = F
|a|
ϵ

eF
|a|
ϵ e−

ab
2ϵ x0

(
e−F |a|

ϵ +
|ab|
2ϵ

+ F
|a|
ϵ

)
(26)

M̄2 =

(
1 + F

|a|
ϵ

eF
|a|
ϵ

)
M̄1, (27)

and hence, one can choose F∗

1 = F |a|
ϵ
eF

|a|
ϵ e−

ab
2ϵ x0 ×max

{
1, e−F |a|

ϵ

+
|ab|
2ϵ + F |a|

ϵ

}
and M∗

1 = M̄2. Thus, series (12) is convergent.
Combining (12), (22), (23) we get⏐⏐vr(x, t)

⏐⏐ ≤ F̄1
∞∑
k=0

1
ϵk (k!)γ−2

(
a2b2

4ϵ
+ M̄1

)k

+ F̄2
∞∑
k=0

1
ϵk (k!)γ−2

(
a2b2

4ϵ
+ M̄2

)k

, (28)

as (k!)2 ≤ (2k)!. For all x ∈ [0, 1] the general term, say ζk, in the
first series satisfies

⏐⏐⏐ ζk+1
ζk

⏐⏐⏐ =
1
ϵ

(
a2b2
4ϵ + M̄1

)
(k + 1)γ−2, and thus,

since γ < 2, we conclude that limk→∞

⏐⏐⏐ ζk+1
ζk

⏐⏐⏐ = 0 < 1, which in
turn implies that the infinite sum converges to a positive number,
say l1. Similarly, the second sum converges to a positive number,
say l2. Therefore, from (28) we arrive at⏐⏐vr(x, t)

⏐⏐ ≤ max
{
F̄1, F̄2

}
(l1 + l2) ,

for all x ∈ [0, 1] and t ≥ t0, (29)

and hence, choosing µ1 such that max
{
F̄1, F̄2

}
(l1 + l2) < c̄e−

⏐⏐⏐ ab2ϵ ⏐⏐⏐,
for some c̄ ∈ (0, 1),which, according to (24), (26) is always possible
(note that l1, l2 are continuous functions of F since the two series
in (28) converge uniformly and from (25), (27) it follows that M̄1,
M̄2 are continuous with respect to F ), condition (21) is satisfied.
It follows from (9) that ur is uniformly bounded with respect to t
and x. Uniform boundedness, with respect to t and x, of vr

x, v
r
xx, and

vr
t , which, from (9), (21), imply the uniform boundedness of ur

x, u
r
xx,

and ur
t , follows differentiating (12) and employing almost identical

arguments (see also, e.g., Laroche et al., 2000). □

Remark 1. The developed approach allows the system outputs to
be located either at an intermediate point (see also, e.g., Meurer &
Krstic, 2011) or at the boundary as well as it allows the consider-
ation of constant or time-varying reference outputs. The proposed
methodology also allows the construction of explicit (and even
closed-form, e.g., for sinusoidal reference outputs) feedforward
control designs for a class of nonlinear PDEs, which are new and
have not appeared in literature. In fact, (y1, y2) = (u (x0) , ux (x0))
is a ‘‘flat" output for system (1)–(3), and thus, generation of a
reference trajectory for Gevrey-class reference outputs, whichmay
be expressed algebraically as a function of the reference outputs
and their derivatives, is possible. Moreover, although part of the
design procedure is devoted to trajectory generation for a linear
PDE, the main difficulty in showing that (9)–(14) solve (1)–(3),
satisfying ur (x0) = yr1, u

r
x (x0) = yr2, is to show that the reference

trajectory derived is such that transformation (15) is invertible.
Toward that end, we first prove that the transformed reference
outputs belong to Gevrey class of same order as the original ones
and we then show that their magnitude (namely, F in Definition 1)
can be made small when the magnitudes of the original functions
are small. The key results used in these proofs are Lemmas A.1 and
A.2 in Appendix A, which are novel and of interest on their own.

4. Trajectory tracking

Having available the reference trajectory for (1)–(3), which is
not in general asymptotically stable, we design boundary output-
feedback laws and prove that they asymptotically stabilize the

reference trajectory for any initial condition. The control laws are
based on the combination of an observer, which utilizes mea-
surements from both boundaries, with state-feedback designs that
employ the observer state.

4.1. Observer design

We introduce the following observer

ˆ̃vt (x, t) = ϵ ˆ̃vxx(x, t) −
a2b2

4ϵ
ˆ̃v(x, t)

+ p2(x)
(
ȳ0(t) − ˆ̃v(0, t)

)
+ p1(x)

(
ȳ1(t) − ˆ̃v(1, t)

)
(30)

ˆ̃vx(0, t) = Ṽ0(t) + p00
(
ȳ0(t) − ˆ̃v(0, t)

)
(31)

ˆ̃vx(1, t) = Ṽ1(t) + p11
(
ȳ1(t) − ˆ̃v(1, t)

)
, (32)

where we define

ȳ0(t) =

(
e−

a
ϵ ũ(0,t) − 1

)
e−

a
ϵ u

r(0,t) (33)

ȳ1(t) =

(
e−

a
ϵ ũ(1,t) − 1

)
e−

ab
2ϵ −

a
ϵ u

r(1,t) (34)

ũ(x, t) = u(x, t) − ur(x, t) (35)
Ũi(t) = Ui(t) − U r

i (t), i ∈ {0, 1} , (36)

and Ṽ0, Ṽ1 are related to Ũ0, Ũ1 (yet to be chosen) via

Ũ0(t) = −
ϵ

a
e

a
ϵ u(0,t)Ṽ0(t)

+

(
b
2

+ U r
0(t)

)(
e

a
ϵ ũ(0,t) − 1

)
(37)

Ũ1(t) = −
ϵ

a
e

ab
2ϵ +

a
ϵ u(1,t)Ṽ1(t)

+

(
b
2

+ U r
1(t)

)(
e

a
ϵ ũ(1,t) − 1

)
. (38)

The gains p2(x), p1(x), p00, and p11 are designed as (Vazquez&Krstic,
2016)

p2(x) = −ϵPξ (x, 0) , p1(x) = −ϵPξ (x, 1) (39)

p00 = −P (0, 0) , p11 = −P (1, 1) , (40)

where P is given explicitly, for (x, ξ ) in E = E1 ∪ E2, where
E1 =

{
(x, ξ) :

1
2 ≤ ξ ≤ 1, −ξ + 1 ≤ x ≤ ξ

}
and E2 = {(x, ξ) : 0 ≤

ξ ≤
1
2 , ξ ≤ x ≤ 1 − ξ

}
, by

P (x, ξ) = −
1
2

√
c2
ϵ

I1

(√
c2
ϵ

((
ξ −

1
2

)2
−

(
x −

1
2

)2))
√(

ξ −
1
2

)2
−

(
x −

1
2

)2
× (ξ + x − 1) , (41)

where I1 denotes the modified Bessel function of the first kind of
first order and c2 > 0 is arbitrary.

For making clear the structure of the observer (30)–(32), it
should be noted that the change of variables

ṽ(x, t) = e−
ab
2ϵ x−

a
ϵ u

r(x,t) ˜̄v(x, t) (42)
˜̄v(x, t) = e−

a
ϵ ũ(x,t) − 1, (43)

transform ũ to ṽ that satisfies (18)–(20) with inputs Ṽ0, Ṽ1. Thus,
observer (30)–(32) may be viewed as copy of ṽ system plus output
injection, where the output-injection terms are linear in ṽ. This
reduces the implementation complexity of the proposed observer.
Moreover, the time-varying part in (42), which is, to the best of
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our knowledge, new, is crucial because it allows one to transform
the nonlinear, time-varying ũ system into a linear, time-invariant
system. This is possible because the overall transformation (42)
may be expressed as the difference of two nonlinear functions of u
and ur, respectively, which both satisfy a linear PDE (18).

4.2. Feedback control design

The boundary feedback laws are designed as

U0(t) = −
ϵ

a
e

a
ϵ ũ(0,t)

((
k(0, 0) +

ab
2ϵ

)(
e−

a
ϵ ũ(0,t) − 1

)
− e

a
ϵ u

r(0,t)
∫ 1

0
kx (0, ξ) ˆ̃v (ξ, t) dξ

)
+U r

0(t)e
a
ϵ ũ(0,t) (44)

U1(t) = −
ϵ

a
e

a
ϵ ũ(1,t)

((
k (1, 1) +

ab
2ϵ

)(
e−

a
ϵ ũ(1,t) − 1

)
+ e

ab
2ϵ +

a
ϵ u

r(1,t)
∫ 1

0
kx (1, ξ) ˆ̃v (ξ, t) dξ

)
+U r

1(t)e
a
ϵ ũ(1,t), (45)

where k is given explicitly, for (x, ξ ) in D = D1 ∪ D2, where D1 ={
(x, ξ) :

1
2 ≤ x ≤ 1, −x + 1 ≤ ξ ≤ x

}
and D2 = {(x, ξ) : 0 ≤ x ≤

1
2 , x ≤ ξ ≤ 1 − x

}
, by

k(x, ξ ) = −
1
2

√
c1
ϵ

I1

(√
c1
ϵ

((
x −

1
2

)2
−

(
ξ −

1
2

)2))
√(

x −
1
2

)2
−

(
ξ −

1
2

)2
× (x + ξ − 1) , (46)

with I1 denoting the modified Bessel function of the first kind of
first order and c1 > 0 being arbitrary. The inspiration of (44),
(45) comes from the fact that the ṽ variable satisfies the linear
diffusion–reaction PDE (18)–(20) (with inputs Ṽ0, Ṽ1), and thus, Ṽ0,
Ṽ1 may be chosen as (Vazquez & Krstic, 2016)

Ṽ0(t) = k (0, 0) ṽ (0, t) −

∫ 1

0
kx (0, ξ) ˆ̃v (ξ, t) dξ (47)

Ṽ1(t) = k (1, 1) ṽ (1, t) +

∫ 1

0
kx (1, ξ) ˆ̃v (ξ, t) dξ . (48)

4.3. Stability analysis

In order to show asymptotic stability of the closed-loop system,
under the observer-based output-feedback laws, in the original
variable ũ, we have to ensure that the linearizing transformation
˜̄v, defined in (43), is invertible. Its inverse is

ũ(x, t) = −
ϵ

a
ln

(
˜̄v(x, t) + 1

)
, (49)

which is well-defined when the initial conditions and solutions of
the system satisfy for some c ∈ (0, 1]

sup
x∈[0,1]

| ˜̄v(x, t)| < c, for all t ≥ t0. (50)

Due to the feasibility condition (50), only a local stability result can
be obtained, which is stated next.

Theorem 2. Consider a closed-loop system consisting of system
(1)–(3), the control laws (44), (45), and the observer (30)–(32) with
(47), (48). Under the conditions of Theorem1 for the reference outputs,
there exist a positive constantµ∗ and a classKL function β∗ such that

for all initial conditions
(
u0, ˆ̃v0

)
∈ H2 (0, 1) × H2 (0, 1) which are

compatible with boundary conditions and which satisfy

∥ũ (t0) ∥H1 + ∥ˆ̃v (t0) ∥H1 < µ∗, (51)

the following holds

Ω(t) ≤ β∗ (Ω (t0) , t − t0) , for all t ≥ t0, (52)

where

Ω(t) = ∥ũ (t) ∥H1 + ∥ˆ̃v (t) ∥H1 . (53)

Moreover, the closed-loop system has a unique solution u, ˆ̃v ∈

C
(
[t0, +∞);H2(0, 1)

)
with u, ˆ̃v ∈ C2,1 ([0, 1] × (t0, +∞)).

The proof of Theorem 2 is based on the following three lemmas.
The proof of the third lemma can be found in Appendix B, whereas
the proofs of the first two lemmasmay be established using similar
arguments to the corresponding proofs in Bekiaris-Liberis and
Bayen (2015) (which considers, however, only the case a = b = 1),
and thus, they are omitted due to space limitation.

In certain instances, some of the conditions of Theorem 1 on the
reference outputsmay be relaxed (see, e.g., Section 5). For example,
for a reference trajectory that incorporates a linear function of
time with positive slope, although the corresponding reference
output may not be uniformly bounded, stabilization may still be
achieved provided that the convergence rate of the linear ṽ system
is sufficiently large (e.g., choosing large c1, c2), as it may be seen
from (42).

Lemma 1. There exists a class K∞ function α1 such that if ũ ∈

H1(0, 1) then ˜̄v ∈ H1(0, 1) and the following holds

∥˜̄v(t)∥H1 ≤ α1
(
∥ũ(t)∥H1

)
. (54)

Lemma 2. For all solutions of the system that satisfy (50) for some
0 < c < 1, if ˜̄v ∈ H1(0, 1) then ũ ∈ H1(0, 1) and the following holds

∥ũ(t)∥H1 ≤
ϵ

|a| (1 − c)
∥˜̄v(t)∥H1 . (55)

Lemma 3. Under the conditions of Theorem 1 for the reference
outputs, if ˜̄v ∈ H1(0, 1) then ṽ ∈ H1(0, 1) and there exists a positive
constant ξ1 such that the following holds

∥ṽ(t)∥H1 ≤ ξ1∥˜̄v(t)∥H1 . (56)

In reverse, if ṽ ∈ H1(0, 1) then ˜̄v ∈ H1(0, 1) and there exists a positive
constant ξ2 such that the following holds

∥˜̄v(t)∥H1 ≤ ξ2∥ṽ(t)∥H1 . (57)

Proof of Theorem 2. The proof is divided into three parts.

Part 1: Backstepping transformation of the estimation error
We start defining the state estimation error ẽ = ṽ − ˆ̃v. Us-

ing the fact that the ṽ variable satisfies (18)–(20) and relations
(30)–(32), we get with the definition of ṽ in (42) that the state esti-
mation error ẽ satisfies the PDE ẽt (x, t) = ϵẽxx(x, t) −

a2b2
4ϵ ẽ(x, t) −

p2(x)ẽ(0, t) − p1(x)ẽ(1, t) with boundary conditions ẽx(0, t) =

−p00ẽ(0, t) and ẽx(1, t) = −p11ẽ(1, t). Since it turns out to be
convenient to shift from the variable x to the variable z = x −

1
2 ,

we write the error system as

ēt (z, t) = ϵēzz(z, t) −
a2b2

4ϵ
ē(z, t)

− p̄2(z)ē
(

−
1
2
, t

)
− p̄1(z)ē

(
1
2
, t

)
(58)

ēz

(
−

1
2
, t

)
= −p00ē

(
−

1
2
, t

)
(59)
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ēz

(
1
2
, t

)
= −p11ē

(
1
2
, t

)
, (60)

where ē(z, t) = ẽ
(
z +

1
2 , t

)
, p̄i(z) = pi

(
z +

1
2

)
, i = 1, 2.

In order to derive a suitable bilateral backstepping transforma-
tion for the estimation error we may proceed as in Vazquez and
Krstic (2016). Note, however, that the results in Vazquez and Krstic
(2016) are obtained only for Dirichlet actuation and Neumann
sensing. Moreover, although the case of a one-dimensional spatial
domain may be viewed as a special case of a one-dimensional
ball, it may be useful and intriguing for a potential reader, who
wishes to focus only on one-dimensional domains, to explicitly
derive the backstepping transformation and its inverse for the
case of an interval, utilizing tools from 1-D backstepping only. The
backstepping transformation is written as

ē(z, t) = w̄(z, t) −

∫ 1
2

z
p (z, y) w̄ (y, t) dy

+

∫
−z

−
1
2

p (z, y) w̄ (y, t) dy, 0 ≤ z ≤
1
2

(61)

ē(z, t) = w̄(z, t) +

∫ z

−
1
2

p (z, y) w̄ (y, t) dy

−

∫ 1
2

−z
p (z, y) w̄ (y, t) dy, −

1
2

≤ z ≤ 0, (62)

where p (z, y) = P
(
z +

1
2 , y +

1
2

)
and the kernel P is defined in

(41). The inverse of (61), (62) may be expressed as

w̄(z, t) = ē(z, t) +

∫ 1
2

z
p̄ (z, y) ē (y, t) dy

−

∫
−z

−
1
2

p̄ (z, y) ē (y, t) dy, 0 ≤ z ≤
1
2

(63)

w̄(z, t) = ē(z, t) −

∫ z

−
1
2

p̄ (z, y) ē (y, t) dy

+

∫ 1
2

−z
p̄ (z, y) ē (y, t) dy, −

1
2

≤ z ≤ 0, (64)

where the kernel p̄(z, y) has a similar structure to p.
Invertibility of (61), (62) could be shown as follows. Replacing

z by −z in (62) and performing the change of variables y → −y
in the second integral of (61) and in the first integral of (62),
transformation (61), (62) may be viewed as a 2 × 2 backstepping
transformation (i.e., as a 2 × 2 Volterra transformation, thus in-
vertible) of the state (w̄1, w̄2), where w̄1(z) = w̄(z) and w̄2(z) =

w̄(−z), z ∈ [0, 1
2 ], into (ē1, ē2), where ē1(z) = ē(z) and ē2(z) =

ē(−z), z ∈ [0, 1
2 ], with boundary conditions at z = 0 for the

(w̄1, w̄2) system as w̄1(0) = w̄2(0) and w̄2z (0) = −w̄1z (0) (which
lead to the corresponding boundary conditions for (ē1, ē2), namely,
ē1(0) = ē2(0) and ē2z (0) = −ē1z (0)).

Standard backstepping-style computations and (41) give

w̄t (z, t) = ϵw̄zz(z, t) −

(
a2b2

4ϵ
+ c2

)
w̄(z, t) (65)

w̄z

(
−

1
2
, t

)
= w̄z

(
1
2
, t

)
= 0, (66)

as well as

∥w̄(t)∥H1 ≤ m3∥ē(t)∥H1 (67)
∥ē(t)∥H1 ≤ m4∥w̄(t)∥H1 , (68)

for some positive constantsm3 and m4.

Part 2: Backstepping transformation of the observer state

We consider the backstepping transformation (Vazquez &
Krstic, 2016)

ŵ1(z, t) = ˆ̃v1(z, t) −

∫ z

−z
K (z, y) ˆ̃v1 (y, t) dy, (69)

where ˆ̃v1(z, t) = ˆ̃v
(
z +

1
2 , t

)
andK (z, y) = k

(
z +

1
2 , y +

1
2

)
, with

k being defined in (46). Its inverse is defined as

ˆ̃v1(z, t) = ŵ1(z, t) +

∫ z

−z
L (z, y) ŵ1 (y, t) dy, (70)

where L(z, y) = l
(
z +

1
2 , y +

1
2

)
and l has a similar structure to k.

It can be shown that ŵ1 satisfies

ŵ1t (z, t) = ϵŵ1zz (z, t) −

(
a2b2

4ϵ
+ c1

)
ŵ1(z, t)

+

(
p̄2(z) −

∫ z

−z
K (z, y) p̄2 (y) dy

)
× w̄

(
−

1
2
, t

)
+

(
p̄1(z)

−

∫ z

−z
K (z, y) p̄1 (y) dy

)
w̄

(
1
2
, t

)
(71)

ŵ1z

(
−

1
2
, t

)
= (k(0, 0) + p00) w̄

(
−

1
2
, t

)
(72)

ŵ1z

(
1
2
, t

)
= (k(1, 1) + p11) w̄

(
1
2
, t

)
, (73)

where we also used the facts that ē
( 1
2 , t

)
= w̄

( 1
2 , t

)
and ē

(
−

1
2 , t

)
= w̄

(
−

1
2 , t

)
, which follow from (61) and (62), respectively. From

transformations (69), (70) it also follows that there exist positive
constantsm5 andm6 such that

∥ŵ1(t)∥H1 ≤ m5∥ˆ̃v1(t)∥H1 (74)

∥ˆ̃v1(t)∥H1 ≤ m6∥ŵ1(t)∥H1 . (75)

Part 3: Stability estimates and well-posedness
The

(
w̄, ŵ1

)
system is a cascade in which, the homogeneous

part of both subsystems is an exponentially stable (also in the
H1 norm) heat equation and the non-autonomous part, i.e., the
ŵ1 subsystem, is driven by the autonomous w̄ subsystem. There-
fore, employing similar arguments to the proof of Theorem 5.1
in Smyshlyaev and Krstic (2010) (see also, e.g., Deutscher, 2015,
2016; Smyshlyaev & Krstic, 2005; Vazquez & Krstic, 2010, 2016)
one can conclude that the

(
w̄, ŵ1

)
system is exponentially stable

in the H1 norm, and hence, so is system
(
ē, ˆ̃v1

)
(based on es-

timates (67), (68), (74), and (75)). Thus, ∥ˆ̃v(t)∥H1 + ∥ẽ(t)∥H1 ≤

ν̄

(
∥ˆ̃v(t0)∥H1 + ∥ẽ(t0)∥H1

)
e−µ̄(t−t0), for all t ≥ t0, for some positive

constants ν̄ and µ̄. Therefore, with relation ẽ = ṽ − ˆ̃v and
employing Lemma 3 we arrive at

∥ˆ̃v(t)∥H1 + ∥˜̄v(t)∥H1 ≤ ν̄1

(
∥ˆ̃v(t0)∥H1 + ∥˜̄v(t0)∥H1

)
× e−µ̄(t−t0), for all t ≥ t0, (76)

for some positive constant ν̄1. From Lemma 1 (relation (54)) we
conclude that

∥ˆ̃v(t)∥H1 + ∥˜̄v(t)∥H1 ≤ ρ

(
∥ˆ̃v(t0)∥H1 + ∥ũ(t0)∥H1

)
× e−µ̄(t−t0), for all t ≥ t0, (77)

where the class K∞ function ρ is given by ρ(s) = ν̄1s + ν̄1α1(s).
Since supx∈[0,1] |θ (x, t)| ≤ 2∥θ (t)∥H1 , for any θ ∈ H1(0, 1), choos-
ing any positive constant µ∗ such that µ∗

≤ ρ−1
( c
2

)
, for some
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Fig. 1. Solid line: Output u(1, t) of system (1)–(3) with a = b = 1, ϵ = 0.25, under
the feedback laws (44), (45) with (30)–(32), (47), (48) for c1 = c2 = 1 and initial
conditions u(x, 0) =

1−x
2 + 0.1sin (πx), ˆ̃v(x, 0) = −0.1sin (πx). Dashed line: The

reference output ur(1, t) =
1
4 t .

0 < c < 1, we get that (50) holds. Thus, using Lemma 2 (relation
(55)) we get (52).

Due to the regularity properties of all control and observer
kernels as well as of the reference trajectory, using the fact that ṽ is
related to ũ via (42), (43), (49) it follows that well-posedness of the
closed-loop systemmay be studied using the

(
w̄, ŵ1

)
system (65),

(66), (71)–(73), with initial condition
(
w̄0, ŵ10

)
∈ H2

(
−

1
2 ,

1
2

)
×

H2
(
−

1
2 ,

1
2

)
, which satisfies the compatibility conditions. Well-

posedness of
(
w̄, ŵ1

)
, with regularity as in Theorem 2, may be

established with, e.g., Brezis (2011) and Evans (2010), follow-
ing the arguments employed in, e.g., Vazquez and Krstic (2016),
(see also Krstic et al., 2008; Smyshlyaev & Krstic, 2005) and ex-
ploiting the cascade form of

(
w̄, ŵ1

)
together with the regularity

of w̄. □

5. Application to traffic flow control

We consider the model presented in Section 2. Setting a = b =

1, we obtain yr1(t) =
1
4 t and yr2(t) = −

1
2 , since the maximum value

of ρ (1 − ρ) is achieved at ρ =
1
2 and is equal to 1

4 (see Section 2).
Employing (9)–(11), the reference trajectory and reference inputs
are given in closed form as

ur(x, t) =
1
4
t +

1 − x
2

(78)

U r
0(t) = U r

1(t) = −
1
2
. (79)

The control laws are given in (44), (45) with c1 = c2 = 1.
We choose ϵ = 0.25, whereas the initial condition for the plant

is defined as u(x, 0) = ur(x, 0) + 0.1sin (πx) =
1−x
2 + 0.1sin (πx)

and for the observer as ˆ̃v(x, 0) = −0.1sin (πx). Fig. 1 shows the
output u(1, t). It is evident that trajectory tracking is achieved.
Fig. 2 shows the highway density ρ. One observes that ρ converges
to the desired reference profile, namely, to the uniform profile
ρe(x) =

1
2 , ∀ x ∈ [0, 1]. Note that the output ux(1, t) equals

−ρ(1, t) and, according to Fig. 2, converges to ur
x(1, t) = −

1
2 . Fig. 3

compares the bilateral control efforts with the control efforts in
the unilateral case (see, e.g., Bekiaris-Liberis & Bayen, 2015; Krstic
& Smyshlyaev, 2008). It is evident that the unilateral design results
in larger control effort, which may lead to practically unrealistic
ordered values for flows or speeds.

Fig. 2. The density evolution of the highway stretch.

Fig. 3. Solid lines: Bilateral control efforts (44), (45). Dotted lines: Control efforts
in the unilateral case.

6. Discussion and future work

In principle, a bilateral control design, besides requiring, in
general, less total energy, it can be also made fault tolerant. To
see this note that a bilateral control design can be made robust to
the failure of one of the actuators, that is, one could switch to a
unilateral control law as long as a fault is detected. Furthermore,
it is expected that bilateral observers would be more robust with
respect to, e.g., measurement noise, since, as in the case of bilateral
control designs, in general, smaller output-injection gains are re-
quired compared to unilateral observers. More sophisticated fault-
tolerant and robust control/observer designs could be pursued as
future research.

As another potential topic of future research one may consider
problems that involve interconnections of viscous HJ PDEs with
Ordinary Differential Equations (ODEs), as it is the case, for exam-
ple, in Hasan and Tang (2017), which considers an interconnected
system consisting of a viscous Burgers PDE and a linear ODE. The
bilateral backstepping design used in thiswork can potentially deal
with more complex PDE–ODE couplings than the standard unilat-
eral design, thus we expect to be able to consider new families of
previously unexplored systems. Another possible next stepmay be
problems that incorporate viscous HJ PDE systems with actuator
(or sensor) dynamics governed by certain types of ODEs or PDEs,
as it is the case with, e.g., Liu and Krstic (2000), which are dealing
with viscous Burgers PDEs with ODE input dynamics.
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Appendix A

Lemma A.1. Let f (t) be in GF ,M,γ ([0, +∞)) with γ ∈ [1, 2). Then
the function g(t) = ef (t) − 1 belongs to GF1,M1,γ ([0, +∞)) with
F1 = FeF and M1 = MeF .

Proof. From the power series expansion of the exponential func-
tion and the triangular inequality we obtain that

⏐⏐g (n)(t)
⏐⏐ ≤

∞∑
k=1

⏐⏐⏐ dnf (t)kdtn

⏐⏐⏐
k!

. (A.1)

We claim that for any kth power of f the following holds for all
n = 0, 1, . . .

sup
t≥0

⏐⏐⏐⏐dnf (t)kdtn

⏐⏐⏐⏐ ≤ (n + 1)k−1F kMn (n!)γ , (A.2)

which we prove by induction. For k = 1 our claim is true by
assumption. Assume next that (A.2) holds for k > 1. We show that
it holds for k+ 1. Employing Leibniz formula for the nth derivative
of the product of two functions we get⏐⏐⏐⏐dnf (t)k+1

dtn

⏐⏐⏐⏐ =

⏐⏐⏐⏐⏐
n∑

i=0

(
n
i

)
f (i)(t)

dn−i
(
f (t)k

)
dtn−i

⏐⏐⏐⏐⏐ , (A.3)

and hence, using (A.2) we obtain⏐⏐⏐⏐dnf (t)k+1

dtn

⏐⏐⏐⏐ ≤

n∑
i=0

(
n
i

) ⏐⏐f (i)(t)⏐⏐ (n − i + 1)k−1F k

×Mn−i ((n − i)!)γ , (A.4)

which, under the assumption that f ∈ GF ,M,γ ([0, +∞)), in turn
implies that⏐⏐⏐⏐dnf (t)k+1

dtn

⏐⏐⏐⏐ ≤ F k+1Mn(n + 1)k−1

×

n∑
i=0

(
n
i

)
(i!)γ ((n − i)!)γ . (A.5)

Thus, from the definition of the binomial coefficient we get⏐⏐⏐⏐dnf (t)k+1

dtn

⏐⏐⏐⏐ ≤ (n + 1)k−1F k+1Mn (n!)γ

×

n∑
i=0

(
n
i

)1−γ

, (A.6)

which gives
⏐⏐⏐ dnf (t)k+1

dtn

⏐⏐⏐ ≤ (n + 1)kF k+1(M)n (n!)γ , where we used

the fact that
∑n

i=0

(n
i

)1−γ
≤

∑n
i=0 1 = n+ 1, for γ ∈ [1, 2). Hence,

(A.2) is proved, which gives with (A.1)⏐⏐g (n)(t)
⏐⏐ ≤ Mn (n!)γ

1
n + 1

∞∑
k=1

F k (n + 1)k

k!
, (A.7)

and hence,
⏐⏐g (n)(t)

⏐⏐ ≤ Mn (n!)γ 1
n+1

(
eF (n+1)

− 1
)
. Since er−1 ≤ rer ,

∀ r ≥ 0, we get the following estimate

sup
t≥0

⏐⏐g (n)(t)
⏐⏐ ≤ FeF

(
eFM

)n
(n!)γ , (A.8)

for all n = 0, 1, 2, . . . , which concludes the proof. □

Lemma A.2. Let f̄ (t) and ḡ(t) be in GF ,M,γ ([0, +∞)) with γ ∈

[1, 2). Then the function h(t) = ef̄ (t)ḡ(t) belongs toGF2,M2,γ ([0, +∞))
with F2 = F

(
1 + FeF

)
and M2 =

(
1 + FeF

)
MeF .

Proof. We start by writing the function h as h(t) =

(
ef̄ (t) − 1

)
ḡ(t)

+ ḡ(t). Using Leibniz formula for the nth derivative of the product

of two functions we get
⏐⏐h(n)(t)

⏐⏐ =

⏐⏐⏐⏐∑n
i=0

(n
i

)
ḡ (i)(t)

dn−i
(
ef̄ (t)−1

)
dtn−i

+ḡ (n)(t)
⏐⏐⏐⏐, and hence, from Lemma A.1 we obtain

⏐⏐h(n)(t)
⏐⏐ ≤ FF1M∗n

n∑
i=0

(
n
i

)
(i!)γ ((n − i)!)γ

+ FM∗n (n!)γ , (A.9)

where M∗
= max {M,M1}. With similar arguments to the proof

of Lemma A.1 and employing Bernoulli’s inequality we get the
following estimate for all n = 0, 1, 2, . . .

sup
t≥0

⏐⏐h(n)(t)
⏐⏐ ≤ F (1 + F1)M∗n (1 + F1)n (n!)γ . (A.10)

The proof is completed withM1 and F1 from Lemma A.1. □

Appendix B

From (42) and (9) it follows that

ṽ(x, t) = ˜̄v(x, t)e−
ab
2ϵ x

(
e

ab
2ϵ xvr(x, t) + 1

)
. (B.1)

Under the conditions of Theorem 1, which also guarantee that vr is
uniformly boundedwith respect to t and x (see (21)), we obtain for
all x ∈ [0, 1] and t ≥ t0 that ṽ(x, t)2 ≤ ν1 ˜̄v(x, t)2, for some positive
constant ν1, and hence,

∥ṽ(t)∥2
L2 ≤ ν1∥˜̄v(t)∥2

L2 . (B.2)

Moreover, differentiating (B.1) with respect to xwe get that

ṽx(x, t) = ˜̄vx(x, t)
(
vr(x, t) + e−

ab
2ϵ x

)
+ ˜̄v(x, t)

(
vr
x(x, t) −

ab
2ϵ

e−
ab
2ϵ x

)
. (B.3)

Mimicking the arguments of boundedness for vr in the proof of
Theorem 1, it is shown that vr

x is uniformly bounded with respect
to t and x. Hence, it follows from (B.3) that ∥ṽx(t)∥2

L2
≤ ν2∥˜̄v(t)∥2

H1 ,

for some positive constant ν2, and thus, with (B.2) we arrive at (56)
with ξ1 =

√
ν1 +

√
ν2. Under the conditions of Theorem 1, using

relations (21), (B.1)we obtain from (B.1) for all x ∈ [0, 1] and t ≥ t0

∥˜̄v(t)∥2
L2 ≤ e

⏐⏐⏐ abϵ ⏐⏐⏐
(1 − c̄)−2

∥ṽ(t)∥2
L2 . (B.4)

With (21), solving (B.3) for ˜̄vx and using (B.4), there exists a positive
constant ν3 such that ∥˜̄vx(t)∥2

L2
≤ ν3∥ṽ(t)∥2

H1 , and hence, with (B.4)

we get (57) with ξ2 =
√

ν3 +
e

⏐⏐⏐ ab2ϵ ⏐⏐⏐
1−c̄ .
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