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Nonlinear Control of the Viscous
Burgers Equation: Trajectory
Generation, Tracking, and
Observer Design
In a companion paper we have solved the basic problem of full-state stabilization of
unstable “shock-like” equilibrium profiles of the viscous Burgers equation with actuation
at the boundaries. In this paper we consider several advanced problems for this nonlin-
ear partial differential equation (PDE) system. We start with the problems of trajectory
generation and tracking. Our algorithm is applicable to a large class of functions of time
as reference trajectories of the boundary output, though we focus in more detail on the
special case of sinusoidal references. Since the Burgers equation is not globally control-
lable, the reference amplitudes cannot be arbitrarily large. We provide a sufficient con-
dition that characterizes the allowable amplitudes and frequencies, under which the state
trajectory is bounded and tracking is achieved. We then consider the problem of output
feedback stabilization. We design a nonlinear observer for the Burgers equation that
employs only boundary sensing. We employ its state estimates in an output feedback
control law, which we prove to be locally stabilizing. The output feedback law is illus-
trated with numerical simulations of the closed-loop system. �DOI: 10.1115/1.3023128�
Introduction
The viscous Burgers equation is considered a basic model of

onlinear convective-diffusive phenomena such as those that arise
n Navier–Stokes equations. We study several nonlinear control
roblems for the system

ut = uxx − uxu �1�

ith boundary conditions

ux�0,t� = �0�t�, ux�1,t� = �1�t� �2�

here �0�t� and �1�t� are the controls and u�x , t� is the state
ariable, for x� �0,1�. To save space, we drop the arguments �x , t�
henever the context allows.
In a companion paper �1� we studied the problem of stabiliza-

ion of a family of stationary solutions called “shock profiles” �2�
or “shocklike” profiles�, given by

U�x� = − 2� tanh���x − 1/2�� �3�

hich are parametrized by ��0, unstable in open loop, i.e., with
onstant boundary conditions

�0 = �1 = − 2�2�1 − tanh2��/2�� � 0 �4�

nd not stabilizable �even locally� by simple means, such as the
radiation boundary conditions” �see Refs. �3–9� for the uses of
onlinear radiation boundary conditions for global asymptotic
tabilization of neutrally stable equilibria of the Burgers equation
nd other PDEs�. Let us denote the perturbation variable around
he shock profile as ũ�x , t�=u�x , t�−U�x�, and �̃0�t�=�0�t�
U��0�, �̃1�t�=�1�t�−U��1�. The Burgers equation written in ũ is

ũt = ũxx − U�x�ũx − U��x�ũ − ũxũ �5�

ith boundary controls
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ũx�0,t� = �̃0�t�, ũx�1,t� = �̃1�t� �6�

In Ref. �1� we presented a full-state boundary feedback law for
stabilization of the shock-like unstable profiles of the Burgers
equation and provided an estimate of the region of attraction for
the closed-loop system. This estimate is finite, which is consistent
with the fact that the Burgers system is not globally controllable
�10�.

In this paper we first present results for trajectory generation
and tracking for the Burgers equation. Our design is based on a
nonlinear spatially-scaled Hopf–Cole style transformation �which
is also used in the full-state design �1�� that transforms the system
�with the help of one of the two boundary controls� into a linear
reaction-diffusion PDE with nonlinear boundary conditions. For
the resulting linear PDE, the general trajectory generation prob-
lem has been solved in Ref. �11�. However, in this paper we in-
troduce explicit solutions to this problem for a particular class of
reference functions of time. While we do not achieve a global
result due to the lack of global controllability mentioned above,
for the case of tracking a sinusoid in time we give a bound that
quantifies the trade-off between the maximum amplitudes and fre-
quencies for which tracking is achieved.

Then we turn our attention to an output-feedback problem. In
Ref. �12� output feedback for a marginally stable 2D Burgers
equation with in-domain actuation was solved using nonlinear
model reduction techniques. Our design of a nonlinear observer
�with gains computed using the backstepping observer design
method �13�� uses injection of the output estimation error �from
the boundaries into the interior of the PDE domain�. We combine
the observer with the full-state feedback design in Ref. �1�. The
resulting output feedback is fully collocated and decentralized, as
in the case with “radiation boundary conditions.” However, while
our feedback at one of the boundaries is static �like the “radiation”
feedback�, at the other boundary it is dynamic �and nonlinear�. We
prove the exponential stability of the linearized closed-loop sys-
tem. The stabilization properties of the observer-based feedback

laws are illustrated in simulations.
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Full-State Stabilization of the Shock Profiles of the
urgers Equation
This section summarizes the result in Ref. �1�. In Ref. �1� we

esigned the following full-state feedback law for achieving sta-
ilization of the shocklike equilibria:

�̃0 = 2� tanh��/2�ũ�0� + ũ2�0�/2 �7�

�̃1 =
ũ�1�2

2
+ �k�1,1� − 2� tanh��/2��ũ�1�

+�
0

1

�kx�1,y� + � tanh��/2�k�1,y��

� G�y�e�y
1ũ���d�ũ�y�dy �8�

here

G�x� =
cosh���x − 1/2��

cosh��/2�
�9�

nd the kernel k�x ,y� in Eq. �8� is computed from

kxx = kyy + �2�1 − 2 tanh2���y − 1/2��

+ tanh2���x − 1/2���k + ck �10�

k�x,x� = −
�

2
�tanh���x − 1/2�� + tanh��/2�� −

cx

2
�11�

ky�x,0� = � tanh��/2�k�x,0� �12�

hich is a linear hyperbolic PDE in the domain T= ��x ,y� :0�y
x�1�. The kernel k can be computed from Eqs. �10�–�12� nu-
erically or symbolically using procedures outlined in Ref. �14�.
he constant c in Eqs. �10� and �11� is a design parameter that is
hosen positive if �=0 and can be set to 0 otherwise.

Trajectory Generation
Given systems �1� and �2�, with the two inputs �0�t� and �1�t�,

e consider a trajectory generation problem with u�0, t� as the
ystem’s single output. Then, the problem of trajectory generation
onsists of finding open-loop control input functions �0

r�t�, and

1
r�t� to make u�0, t� evolve exactly according to a given reference

ignal ur�0, t�.
We use the invertible transformation

v�x,t� = u�x,t�e−1/2�0
xu�y,t�dy �13�

u�x,t� =
v�x,t�

1 −
1

2�
0

x

v�y,t�dy

�14�

hich converts the Burgers system �1� into the form

vt�x,t� = vxx�x,t� + v�x,t�
1

2
	�0�t� −

1

2
v�0,t�2
 �15�

vx�0,t� = �0�t� −
1

2
v�0,t�2 �16�

vx�1,t� = 	1 −
1

2�
0

1

v�y,t�dy
�1�t�

−
1

2

v�1,t�2

1 −
1

2�
1

v�y,t�dy

�17�
0
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From Eq. �13� we obtain v�0, t�=u�0, t�, hence we get that
vr�0, t�=ur�0, t�. Thus the trajectory generation for the u-system
�1� can be approached as a trajectory generation problem for the
v-system �15�. Then we are looking for functions vr�x , t�, �0

r�t�,
and �1

r�t� that satisfy Eqs. �15�–�17� and vr�0, t�=ur�0, t�.
We choose the control at x=0 as

�0
r�t� =

1

2
ur�0,t�2 �18�

which, substituted into Eq. �15�, simplifies the nonlinear trajectory
generation problem to the trajectory generation problem for the
linear heat equation �with nonlinear boundary conditions�

vt
r�x,t� = vxx

r �x,t� �19�

vx
r�0,t� = 0 �20�

vx
r�1,t� = 	1 −

1

2�
0

1

vr�y,t�dy
�1
r�t�

−
1

2

vr�1,t�2

1 −
1

2�
0

1

vr�y,t�dy

�21�

A general infinite-series solution for vr�x , t� in Eqs. �19� and
�20� exists for a very broad class of functions of time ur�0, t� �the
Gevrey class�, which has been developed in the framework of
differential flatness �11�. Furthermore, an explicit solution can be
derived for any function ur�0, t� that can be written as an output of
a linear exosystem. For example, if

ur�0,t� = b + a sin �t �22�

i.e., we want to track a sinusoid with a bias, then the explicit
solution for the reference state is

vr�x,t� = b + a Im�cosh��j�x�e j�t� �23�

Once vr�x , t� is found, the input reference �1
r�t� is computed from

Eq. �21� as

�1
r�t� =

1

2
vr�1,t�2 + 	1 −

1

2�
0

1

vr�y,t�dy
vx
r�1,t�

	1 −
1

2�
0

1

vr�y,t�dy
2 �24�

Formula �24� requires that both the derivative and the integral of
the state trajectory vr�x , t� be known. In the case of the biased
sinusoidal output reference �22� they are easily obtainable as

vx
r�x,t� = a Im��j� sinh��j�x�e j�t� �25�

and

�
0

x

vx
r�y,t�dy = a Im� sinh��j�x�e j�t

�j�

 + bx �26�

It can be shown that the following result holds for the particular
case of the output given by Eq. �22�.

THEOREM 1. The following functions:

ur�x,t� =
b + a Im�cosh��j�x�e j�t�

1 −
bx

2
−

a

2
Im� sinh��j�x�e j�t

�j�

 �27�

�0
r�t� =

1
�b + a sin �t�2 �28�
2
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�1
r�t� =

1

	1 −
b

2
−

a

2
Im� sinh��j��

�j�
e j�t

2

�� 1

2
�b + a Im�cosh��j��e j�t��2

+ 	1 −
b

2
−

a

2
Im� sinh��j��

�j�
e j�t



� a Im��j� sinh��j��e j�t�� �29�

atisfy the nonlinear PDE

ut
r�x,t� = uxx

r �x,t� − ux
r�x,t�ur�x,t� �30�

ux
r�0,t� = �0

r�t� �31�

ux
r�1,t� = �1

r�t� �32�

nd, in particular, ur�0, t�=b+a sin �t.
Remark 3.1. Functions �27�–�29� that solve the trajectory gen-

ration problem do not scale linearly with the amplitude a or the
ias b. Furthermore, for values of a or b that are sufficiently large,
he possibility exists of these functions taking infinite values for
ome �x , t� pairs.

Trajectory Tracking
While the open-loop system might be stable �in rare cases�

round the trajectory found in the trajectory generation problem,
sually this is not so. To solve the trajectory tracking problem, we
eed to find a feedback law that stabilizes the trajectory ur�x , t�
rom any initial condition u�x ,0� �rather than just generating the
esired motion from the special initial condition ur�x ,0��.
We introduce the state tracking error ṽ�x , t�=v�x , t�−vr�x , t�. Its

inearization of Eqs. �15�–�17� around the reference trajectory
r�x , t� is

ṽt�x,t� = ṽxx�x,t� −
1

2
ur�0,t�vr�x,t�ṽ�0,t� �33�

ṽx�0,t� = − ur�0,t�ṽ�0,t� �34�

ṽx�1,t� = −
vr�1,t�

1 −
1

2�
0

1

vr�y,t�dy

ṽ�1,t�

−

1

2�
0

1

ṽ�y,t�dy

	1 −
1

2�
0

1

vr�y,t�dy
2�−
1

2
vr�1,t�2

+ 	1 −
1

2�
0

1

vr�y,t�dy
vx
r�1,t�� �35�

his complicated linear time-varying PDE system in general will
ot be exponentially stable, thus we need to develop feedback
ontrol laws to stabilize the equilibrium ṽ�x��0.

The nonlinear PDE governing the tracking error ṽ�x , t� is

ṽt�x,t� = ṽxx�x,t� + v�x,t�
1	�0�t� −

1
u�0,t�2
 �36�
2 2
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ṽx�0,t� = �0�t� −
1

2
u�0,t�2 �37�

ṽx�1,t� = 	1 −
1

2�
0

1

v�y,t�dy

�	�1�t� −

1

2
u�1,t�2
 − vx

r�1,t� �38�

First we choose the control �0�t� as the feedback law

�0�t� =
1

2
u�0,t�2 �39�

which changes Eqs. �36� and �37� into ṽt�x , t�= ṽxx�x , t�, ṽx�0, t�
=0, while Eq. �38� is unchanged. Next, we choose

�1�t� = c1u�1,t� +
1

2
u�1,t�2 + e1/2�0

1u�y,t�dy�vx
r�1,t� + c1v

r�1,t��

�40�

where c1 is a positive gain. Using Eqs. �13� and �14�, it is found
that this control law transforms Eq. �38� into ṽx�1, t�=−c1ṽ�1, t�.
Hence the closed-loop ṽ-system is turned into a heat equation
with one Neumann and one stabilizing Robin boundary condition

ṽt�x,t� = ṽxx�x,t� �41�

ṽx�0,t� = 0 �42�

ṽx�1,t� = − c1ṽ�1,t� �43�
Using a Lyapunov estimate as in Ref. �1�, we find that the closed-
loop ṽ satisfies the following bound

�ṽ�t��L2 � �ṽ�0��L2e−c̃t �44�

for some c̃�0 �whose exact value is not important�.
The solution to the plant state u�x , t� is

u�x,t� =
vr�x,t� + ṽ�x,t�

1 −
1

2�
0

x

vr�y,t�dy −
1

2�
0

x

ṽ�y,t�dy

�45�

where ṽ�x , t� is the solution of �41�–�43� with initial condition

v0=u�x ,0�e−1/2�0
xu�y,0�dy −vr�x ,0�. Since limt→� ṽ�x , t��0, we

have that u�x , t� converges to

ur�x,t� =
vr�x,t�

1 −
1

2�
0

x

vr�y,t�dy

�46�

However, the tracking result fails to be global �i.e., to hold for
all initial conditions� because solution �45� is only valid if the
condition

�
0

x

vr�y,t�dy +�
0

x

ṽ�y,t�dy 	 2 �47�

is verified for all x and t. This condition holds when ur�0, t��0,
namely, when vr�x , t��0 �which is a basic result of stabilizing u
around the origin, which is global�, however, it does not necessar-
ily hold in the presence of a nonzero trajectory vr�x , t�.

The following theorem describes the behavior of the closed-
loop system with our tracking controller.

THEOREM 2. Consider system (1) and (2) with control laws (39)
and (40), where vr�x , t� is a solution of the motion planning prob-
lem in Sec. 3. Let the reference trajectory vr�x , t� be bounded for
all x� �0,1�, t
0, and let vx

r�1, t� be bounded for all t
0. If the

following conditions hold

MARCH 2009, Vol. 131 / 021012-3

 license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



w
�
f
z

t
p

w

a

�

�
t

i
a
L

o

(

I

w
=
t

0

Downlo
�vr�t��L2
2

�
1

4
, ∀ t � 0 �48�

�u0�L2
2

� h−1	1

4

 �49�

here h�r�=re�r, then the solution u�x , t� is bounded for all x
�0,1� and t
0, the control inputs �0�t� and �1�t� are bounded

or all t
0, and the function ũ�x , t�=u�x , t�−ur�x , t� converges to
ero exponentially in t, for all x� �0,1�.

Proof. We guarantee the boundedness of u�x , t� by observing
hat ṽ�x , t� is bounded �as a solution to a heat equation�, and by
roving that

�vr�t��L2 + ���t��L2 + �
�t��L2 �
3

2
�50�

here

�t = �xx �51�

�x�0,t� = 0 �52�

�x�1,t� = − c1��1,t� �53�

�0 = u0e−1/2�0
xu0�y�dy �54�

nd


t = 
xx �55�


x�0,t� = 0 �56�


x�1,t� = − c1
�1,t� �57�


0 = v0
r �58�

We first note that ���t��L2 � ��0�L2, ∀t
0, and �
�t��L2

�
0�L2, ∀t
0. We also have that h��u0�L2
2 ��1 /4 implies that

�0�L2 �1 /2. Next, we observe that �vr�t��L2
2

�
1
4 , ∀t
0, implies

hat �
0�L2 �1 /2.
As discussed in Ref. �1�, the solution of the error system ũ�x , t�

s defined in the space H2,1, which is the space of functions of x
nd t whose derivatives �from the zeroth� up to xxt have bounded
2 norms in space-time.
We now apply Theorem 2 to our example with a sinusoidal

utput �Eq. �22�� with b=0 �no bias�.
THEOREM 3. Consider the closed-loop Burgers systems (1) and

2) with the controls

�0�t� =
1

2
u�0,t�2 �59�

�1�t� = − c1u�1,t� +
1

2
u�1,t�2

+ e1/2�0
1u�y,t�dya Im���j� sinh��j�x�

+ c1 cosh��j�x��e j�t� �60�

f �u0�L2
2

�h−1�1 /4� and

a � amax��� =
1

8
� 2�

cosh �2� − cos �2�
�61�

here amax��� is a positive, decreasing function with amax�0�
1 /8, then the state and the control inputs remain bounded and
he state u�x , t� converges to

21012-4 / Vol. 131, MARCH 2009
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ur�x,t� =
a Im�cosh��j�x�e j�t�

1 −
1

2
a Im� 1

�j�
sinh��j�x�e j�t
 �62�

which means, in particular, that u�0, t� converges to ur�0, t�
=a sin �t.

Proof. All we need to prove is that

a�Im� 1
�j�

sinh��j�x�e j�t
� � 1/2 �63�

To do this, we use the fact that the absolute value of an imaginary
part of a complex number is no greater than the modulus of the
complex number, and that the modulus of a product of two com-
plex numbers is no greater than twice the product of the moduli of
the two complex numbers. Hence,

�Im� 1
�j�

sinh��j�x�e j�t
� � � 1
�j�

sinh��j�x�e j�t�
� 2� 1

��
sinh��j�x�e j�t�

� 4� 1
��

sinh��j�x��
= 4�cosh��2�x� − cos��2�x�

2�

�64�

Taking a derivative, it can be seen that the function in the numera-
tor increases in x. Hence, we get �Im��1 /�j�� sinh��j�x�e j�t��
�4��cosh��2��−cos��2��� /2�, which proves Eq. �63�.

5 Simulation Example of Trajectory Generation and
Tracking

We illustrate the solution to the trajectory tracking problem for
the output reference ur�0, t�=b+a sin �t from Theorem 1. The
explicit state trajectory is

ur�x,t� = �b +
a

2
�e���/2�x sin	�t +��

2
x


+ e−���/2�x sin	�t −��

2
x
�


� �1 −
b

2
x −

a

4��
�e���/2�x sin	�t −

�

4
+��

2
x


+ e−���/2�x sin	�t −
�

4
−��

2
x
�
−1

�65�

The presence of the b term in the denominator of Eq. �65� will
increase the possibility of a blow-up of the trajectory when b
�0, however b	0 will help to keep the denominator away from
0.

Figure 1 shows the plot of the solution to the nonlinear trajec-
tory generation problem. Figure 2 shows the trajectory tracking
starting from a zero initial condition for the PDE state, u�x ,0�
�0, which is different from the “ideal” reference initial condition
obtained by setting t=0 in Eq. �65�. The speed of response can be
further improved by increasing the control gain c1 or by modify-
ing the feedback law �40� to impart an arbitrarily fast decay, using

the backstepping design tools in Ref. �14�.
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Nonlinear Observer

The control in Sec. 2 requires us to know the state ũ�x , t� for all
� �0,1�. We now design output feedback laws for �̃0�t� and

1�t� using the boundary measurement of ũ�0, t� and ũ�1, t� only,
hich is a two-input two-output �TITO� problem. We will design

ully collocated �decentralized� feedback laws, i.e., using only the
easurement of ũ�0, t� for the control �̃0�t�, and only the mea-

urement of ũ�1, t� for �̃1�t�.
Notice that the control law �7� is already an output feedback

aw requiring only the knowledge of ũ�0�. We saw in Ref. �1� that
pplying Eq. �7� and the mapping

v�x,t� = G�x�ũ�x,t�e−1/2�0
xũ�y,t�dy �66�

hich has the inverse

ũ�x� =
v�x�/G�x�

1 −
1

2�
0

x
v�y�
G�y�

dy

�67�

ransforms the plant into the linear system

vt = vxx + �2� 2

cosh2���x − 1/2��
− 1�v �68�

vx�0� = � tanh��/2�v�0� �69�

0
0.5

1

0

1

2
�10

0

10

20

xt

ig. 1 Solution to the nonlinear trajectory generation problem
or a sinusoidal reference with b=0, a=1.2, �=8

� ��� � ��� �

��

�

�

t

ig. 2 Trajectory tracking: dashed line: output reference
r
„0, t…=1.2 sin„8t…; and solid line: output response u„0, t… with
ontrol gain c1=5
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vx�1� = � tanh��/2�v�1� + 	1 −
1

2�
0

1
v�y�
G�y�

dy

�	�̃1 −

1

2
ũ�1�2
 �70�

Hence the problem reduces to the design of an observer-based
feedback controller for Eqs. �68�–�70� using the measurement of
u�1, t�.

We start with an observation that the boundary condition �70�
contains a state of nonlinearity given by the integral term in v�y�.
Our observer is designed as a copy of the �nonlinear� plant with
the injection of the output error

v̂t = v̂xx + �2� 2

cosh2���x − 1/2��
− 1�v̂

+ �	1 −
1

2�
0

1
v̂�y�
G�y�

dy
ũ�1� − v̂�1����x� �71�

v̂x�0� = � tanh��/2�v̂�0� �72�

v̂x�1� = �� tanh��/2� + �1��	1 −
1

2�
0

1
v̂�y�
G�y�

dy

�ũ�1� − v̂�1�� + 	1 −

1

2�
0

1
v̂�y�
G�y�

dy

� 	�̃1 −

1

2
ũ�1�2 + � tanh��/2�ũ�1�
 �73�

where v̂�x , t� denotes the estimate of the state v�x , t�. Notice that,
using Eq. �67�,

	1 −
1

2�
0

1
v�y�
G�y�

dy
ũ�1� = v�1�/G�1� = v�1� �74�

since G�1�=1. Hence the term

	1 −
1

2�
0

1
v̂�y�
G�y�

dy
ũ�1� �75�

appearing in Eqs. �71�–�73�, is an estimate of v�1� and is used for
output injection. The gains ��x� and �1 are determined to ensure
the convergence of v̂ to v.

7 Design of Output Injection Gains Using
Backstepping

To design ��x� and �1 we use the backstepping method for
observer design �13�. First, we denote the observer error as
e�x , t�=v�x , t�− v̂�x , t�. Subtracting Eqs. �71�–�73� from Eqs.
�68�–�70� we get

et = exx + �2� 2

cosh2���x − 1/2��
− 1�e

− ��x�

�v̂�1� + e�1��
1

2�
0

1
e�y�
G�y�

dy

1 −
1

2�
0

1
v̂�y�
G�y�

dy −
1

2�
0

1
e�y�
G�y�

dy

− ��x�e�1� �76�
ex�0� = � tanh��/2�e�0� �77�
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ex�1� = − �� tanh��/2� + �1�e�1� −
1

2�
0

1
e�y�
G�y�

dy

� �	�0

1

�kx�1,y� + � tanh��/2�k�1,y��

�v̂�y�dy
	1 −
1

2�
0

1
v̂�y�
G�y�

dy
−1

+
��1 + k�1,1���v̂�1� + e�1��

1 −
1

2�
0

1
v̂�y�
G�y�

dy −
1

2�
0

1
e�y�
G�y�

dy� �78�

e now linearize Eqs. �76�–�78� around the origin, obtaining

et = exx + �2� 2

cosh2���x − 1/2��
− 1�e − ��x�e�1� �79�

ex�0� = � tanh��/2�e�0� �80�

ex�1� = − �� tanh��/2� + �1�e�1� �81�

e need to design the gains ��x� and �1 so that the system
79�–�81� is exponentially stable. The plant �Eqs. �79�–�81�� is a
inear 1D reaction-diffusion PDE with Robin boundary condi-
ions, so the backstepping observer design method in Ref. �13� can
e applied. We map the state e�x , t� into a new variable ��x , t�
sing the transformation

e�x� = ��x� −�
x

1

p�x,y���y�dy �82�

ith � verifying the observer error target system

�t = �xx − ��2 tanh2���x − 1/2���� − c� �83�

�x�0� = � tanh��/2���0� �84�

�x�1� = − � tanh��/2���1� �85�

he system �83�–�85� was shown in Ref. �1� to be exponentially
table in the L2 norm.

Following the method in Ref. �13�, we find the kernel p�x ,y�
ppearing in Eq. �82� from

pxx − pyy = − �2�1 − 2 tanh2���x − 1/2��

+ tanh2���y − 1/2���p − cp �86�

p�x,x� = −
1

2
�� tanh���x − 1/2��

+ � tanh��/2� + cx� �87�

px�0,y� = � tanh��/2�p�0,y� �88�

nce p�x ,y� is computed, it is used to compute the output injec-
ion gains as follows:

��x� = − �py�x,1� + � tanh��/2�p�x,1�� �89�

�1 = − p�1,1� �90�
Comparing Eqs. �86�–�88� with Eqs. �10�–�12�, we deduce that

�x ,y�=k�y ,x�. Hence it is not necessary to solve Eqs. �86�–�88�
nd we can use the solution for k in Eqs. �89� and �90�, obtaining
��x� = − �kx�1,x� + � tanh��/2�k�1,x�� �91�
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�1 = − k�1,1� = � tanh��/2� +
c

2
�92�

Note that ��x� in Eq. �91� is the same function as the control gain
in Eq. �8�, by just changing the sign. Thus, the output injection
gains can be computed from the control kernel.

8 Output Feedback Law

Using control law �7� and the estimate v̂ �which is transformed
into an estimate of ũ using Eq. �67�� in control law �8�, we obtain
our nonlinear output feedback control laws, which are defined as
follows

�̃0�t� = 2� tanh��/2�ũ�0,t� +
ũ2�0,t�

2
�93�

�̃1�t� =
1

2
ũ�1,t�2 + �− 2� tanh��/2� + k�1,1��ũ�1,t�

+ 	�
0

1

�kx�1,y� + � tanh��/2�k�1,y��

�v̂�y,t�dy
	1 −
1

2�
0

1
v̂�y,t�
G�y�

dy
−1

�94�

Thus we have obtained a diagonal TITO compensator

�ũ�0,t�
ũ�1,t�

� � ��̃0�t�
�̃1�t�

� �95�

with one static channel and one dynamic channel.
If we linearize the compensator, we obtain the following.
For Channel 0,

�̃0 = 2� tanh��/2�ũ�0� �96�
For Channel 1,

�̃1 = − �2� tanh��/2� + �1�ũ�1�

−�
0

1

��y�v̂�y�dy �97�

v̂t = v̂xx + �2� 2

cosh2���x − 1/2��
− 1�v̂

− ��x�v̂�1� + ��x�ũ�1� �98�

v̂x�0� = � tanh��/2�v̂�0� �99�

v̂x�1� = − �� tanh��/2� + �1�v̂�1�

−�
0

1

��y�v̂�y�dy �100�

The dynamic channel �Channel 1� is of relative degree zero �note
the throughput term in Eq. �97�� and one can think of it as an
infinite dimensional transfer function whose Bode plot is shown in
Fig. 3 for �=15.

9 Stability of the Linearized Output-Feedback System

THEOREM 4. Consider the linearized �ũ , v̂� system given by ũt

= ũxx+2� tanh���x−1 /2��ũx+2�2�cosh���x−1 /2���ũ and Eqs. (6)
and (96)–(100). The equilibrium ũ� v̂�0 is exponentially stable
in the L2 norm, i.e., there exists C1 ,c1�0 such that �ũ�t��L2

+ �v̂�t��L2 �C1e−c1t��ũ�0��L2 + �v̂�0��L2�, for all t
0.
Proof. We just outline the proof. It is lengthy but it follows the

standard constructions for linear reaction-diffusion systems stabi-

lized by output feedback using the backstepping method �see
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efs. �13,15,16� for details�. It starts by considering the linearized
e , v̂� system given by Eqs. �79�–�81� and v̂t= v̂xx

�2�2 /cosh2���x−1 /2��−1�v̂+��x�e�1�, with Eqs. �99� and
100�. The key element in the proof is to use the �invertible�
ontroller and observer backstepping transformations, ŵ�x , t�
v̂�x , t�−�0

xk�x ,y�v̂�y , t�dy and Eq. �82�, to study the �ŵ ,�� sys-
em instead of the �v̂ ,e� system. The � system �83�–�85� is an
xponentially stable autonomous system, whereas the ŵ system
not given here; its autonomous part is identical to Eqs. �83�–�85��
s exponentially stable and driven by �. Using the Lyapunov func-
ion �ŵ�2+M���2, for sufficiently large M, we obtain exponential
tability for the �ŵ ,�� system. Using the direct and inverse back-
tepping transformations we get exponential stability estimates for
v̂ ,e�. Using the fact that v= v̂+e, we get estimates for �v̂ ,v�.
inally applying the origin-preserving transformation ũ�x , t�
v�x , t� /G�x�, we get the estimates for �v̂ , ũ� stated in Theorem 4.

0 Simulations With Output Feedback
All simulations in this section have been produced using a
ixed Cranck–Nicholson/Runge–Kutta three scheme in time and
second order finite difference method in space. The open-loop

ystem �1�, �2�, and �4� is unstable, as shown in Ref. �1�. A nu-
erical study of the linearized system around the shock profile

hows the presence of one positive �though possibly small� eigen-
alue for any ��0. In Fig. 4 one can see an apparent finite time
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ig. 3 The Bode plot of the compensator „Eqs. „97…–„100…… for
=15
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ig. 4 Simulation of the open-loop system „with constant in-
uts, Eq. „4…… for �=3, and u0„x…=U„0…+2+ „U„1…−U„0…−4…x ap-

ears to exhibit a finite-time blow-up
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blow-up of the open-loop system for �=3. For the same initial
conditions, we show in Fig. 5 the numerical evolution of the sys-
tem with the linear observer-based backstepping controller in Sec.
6. This result is achieved for c=0; with c�0 the “hump” in the
transient can be eliminated �which might be preferable mathemati-
cally, though not as interesting visually�.

11 Conclusions
We have solved the problems of motion planning, trajectory

generation, observer design, and output feedback stabilization for
the fully nonlinear viscous Burgers equation. The problem of full-
state stabilization was solved in a companion paper �1�. Our re-
sults are based on a nonlinear feedback linearizing transformation,
which allows us to use trajectory generation for the heat equation
�11�, the linear backstepping control design method �14�, and ob-
server design method �13�. Due to the explicit nature of the trans-
formation and the design methods we use, we were able to derive
formulas for the reference trajectories, feedback laws, and ob-
server gains. Since our nonlinear transformation is not globally
invertible, our results are not global, which is consistent with the
lack of global controllability shown in Ref. �10�.

Our result does not apply to the inviscid Burgers equation,
which is a completely different problem, with well posedness con-
siderations that may, as time and state evolve, allow one, two, or
no boundary conditions/controls.

In our stabilization efforts, such as in Secs. 6–9, we focus on
the equilibrium �3�. Actually many other monotonically increasing
profiles, which are the solutions of the equilibrium problem uxx
−uxu=0, are allowed. We consider only the symmetric problem
for notational simplicity, conceptual clarity, and due to the fact
that this is actually the most difficult equilibrium shape from the
stabilization point of view �the “shock,” which is the cause of
instability, is the furthest away from both boundary actuators�.

Dirichlet actuation is crucial for applications in flow control.
Unfortunately, the present result does not extend from Neumann
to Dirichlet actuation. The actuation at x=1 can be changed to
Dirichlet, but not the actuation at x=0, which has to be of Neu-
mann type. Every single one of our previous designs for backstep-
ping boundary control could be interchangeably implemented
through either Dirichlet or Neumann, but not this one.

Interesting problems for future research include a design using
only one control input, �̃1, extensions to more general parabolic
PDEs with convective nonlinearities, to convective nonlinearities
of a more general form, to Burgers equations in higher dimen-
sions, and to other PDEs with convective nonlinearities such as

0
0.5

1 0
0.02

0.04�15

�10

�5

0

5

10

15

t
x

u(x,t)

Fig. 5 Convergence of the closed-loop system under the lin-
ear output-feedback controller „Eqs. „96…–„100…… for �=5
Kuramoto–Sivashinsky and Navier–Stokes.
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