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The Rijke Tube Experiment

I A vertical tube opened in both ends.

I A heat source is inserted in the lower half of
the tube.

I Under the right conditions, the tube begins to
hum loudly (thermoacoustic instability).

I A microphone at the top of the tube can be
used for measurement of acoustic pressure.

I A speaker at the bottom is used as actuator to
stabilize the system.

Click for video



The Rijke Tube Experiment

Microphone signal at the onset of instability showing growth, and then saturation of
the limit cycle. A zoomed-in picture shows the periodic, but nonsymetric, limit-cycle
behavior.
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Motivation

I Thermoacoustic instabilities are often
encountered in steam and gas turbines,
industrial burners, and jet and ramjet
engines.

I These instabilities are undesirable and notorious difficult to model and study.

I The absence of combustion process in the Rijke tube makes the modeling and
analysis more tractable.

I The Rijke tube experiment provides an accessible platform to explore and study
stabilization and state estimation of thermoacoustic oscillations.



Previous works

We have developed an output feedback control law to stabilize the system in

de Andrade, G. A., Vazquez, R., and Pagano, D. J. (2017). Boundary control of a Rijke tube using irrational transfer

functions with experimental validation. In Proceedings of the 20th IFAC world congress (pp. 4528–4533).
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Previous works

The closed-loop stability analysis was made using an irrational transfer function of the
system and frequency domain tools for infinite dimensional systems.

The result guarantees input-output stability, but nothing is said about exponential sta-
bility (although the experiments show exponential convergence).

A clear and formal way to design a stabilizing control law guaranteeing exponential
stability is by the backstepping method.
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Thermoacoustic dynamics

Starting from the conservation of mass, momentum, and energy, we arrive at

∂tρ+ ∂x(ρv) = 0, mass conservation

∂t(ρv) + ∂x
(
ρv2 + P

)
= 0, momentum balance

∂t

(
ρU + ρv2

2

)
+ ∂x

(
v

(
ρU + ρv2

2

)
+ Pv

)
= q, energy balance

with boundary conditions

P (t, 0) = P0 + u(t), open end with speaker

P (t, L) = P0 + f(v(t, L)) open end



Heat release dynamics

We assume that the heat input is concentrated at a single point x0:

q(x, t) = 1
A
δ(x− x0)Q(t).

King’s Law describes the dependence of heat transfer on gas velocity:

τhrQ̇(t) = −Q(t) +QK(t),

QK(t) = lw(Tw − T )(κ+ κv
√
|v(t, x0)|).



Linearization of thermoacoustic dynamics

Assume constant steady-state solution, (ρ, v, P ) = (ρ, v, P ), ∀t ∈ [0, +∞), ∀x ∈ [0, L].
Then, we can obtain the following linearized model:

∂tρ̃+ v∂xρ̃+ ρ∂xṽ = 0,

∂tṽ + v∂xṽ + 1
ρ
∂xP̃ = 0,

∂tP̃ + γP∂xṽ + v∂xP̃ = γ

A
δ(x− x0)Q̃,

Taking into account that v is very small if compared to the speed of sound, it is easy to
see that the contribution of v to the gas dynamics is negligible. Therefore, one can make
v = 0. In addition, the density ρ is decoupled from the velocity and pressure (which are
the states that matter for control), and the remaining coupled part of the dynamics is a
2× 2 hyperbolic system!

∂tṽ + 1
ρ
∂xP̃ = 0,

∂tP̃ + γP∂xṽ = γ

A
δ(x− x0)Q̃.
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Linearization of heat release dynamics and boundary Conditions

Linearizing King’s Law yields

Q̃K(t) = f(v)T
ρ
ρ̃+ f ′(v)(Tw − T )ṽ − f(v)T

P
P̃ .

Comparing the size of the gains of each state in the above equation it is possible to
conclude that the velocity fluctuations are the main driver of the heat dynamics, hence it
is reasonable to drop out the density and pressure influence of the above equation

Q̃K(t) ≈ f ′(v)(Tw − T )ṽ(t, x0).

Thus,

τhr
˙̃Q(t) = −Q̃(t) + Q̃K(t).

Linearization of the boundary conditions yields

P̃ (t, 0) = U(t),
P̃ (t, 0) = Zlṽ(t, L).
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Model in Terms of Characteristic Coordinates

Since the system is hyperbolic, there exists an invertible linear mapping

T : L∞(0, L)×L∞(0, L)→ L∞(0, L)×L∞(0, L)

such that the system can be diagonalized(
ṽ

P̃

)
= T

(
R1
R2

)
=
( 1

2
√
γPρ

− 1
2
√
γPρ

1
2

1
2

)(
R1
R2

)
.

Then, the linearized system is rewritten to

∂tR1 + λ∂xR1 = c1δ(x− x0)Q̃(t),
∂tR2 − λ∂xR2 = c1δ(x− x0)Q̃(t),
R1(t, 0) = −R2(t, 0) + 2U(t),
R2(t, L) = αR1(t, L).

τhr
˙̃Q(t) = −Q̃(t) + c2(R1(t, x0)−R2(t, x0)).



Schematic view of the jumping point at the solution of the PDE
system

Integrating along the characteristic
lines, the next relations are satisfied:

R1(t, x+
0 ) = R1(t, x−0 ) + c1Q̃(t),

R2(t, x−0 ) = R2(t, x+
0 ) + c1Q̃(t).

PDE-ODE-PDE system!



Representation in characteristic coordinates

Now, we introduce the following state variables

R11(t, x) , R1(t, x), if x ∈ [0, x0]

R12(t, x) , R2(t, x), if x ∈ [0, x0]

R21(t, x) , R1(t, x), if x ∈ [x0, L]

R22(t, x) , R2(t, x), if x ∈ [x0, L]

and the rescaled spatial variable, so that everything evolves on the same domain:

z =
{

x
x0

if x ∈ [0, x0]
L−x
L−x0

if x ∈ [x0, L]



Representation in characteristic coordinates

Then, the system linearized system is equivalent to

∂tR11(t, z) + λ1∂zR11(t, z) = 0,
∂tR12(t, z)− λ1∂zR12(t, z) = 0,
∂tR21(t, z)− λ2∂zR21(t, z) = 0,
∂tR22(t, z) + λ2∂zR22(t, z) = 0,

where λi depends on the value of λ and the geometry (position of x0), with boundary
conditions

R11(t, 0) = −R12(t, 0) + 2U(t),
R12(t, 1) = R22(t, 1) + c1Q̃(t),
R21(t, 1) = R11(t, 1) + c1Q̃(t),
R22(t, 0) = αR21(t, 0),

τhr
˙̃Q(t) = −Q̃(t) + c2(R11(t, 1)−R22(t, 1)).



Representation in characteristic coordinates

I The boundary conditions represent two
effects: reflection of the acoustic waves; and
the feedback coupling between R21 and R22,
and between R11 and R12.

I Under the right conditions the system
becomes unstable due to this feedback
between the states.

I Our objective is to design an output feedback
control law that exponentially stabilize the
zero equilibrium of the system.
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Backstepping for PDEs: a brief introduction

Roughly speaking, backstepping is a constructive method that achiees Lyapunov stabiliza-
tion by transforming the system into a stable “target system”, which is often achieved
by collectively shifting all the eigenvalues in a favorable direction in the complex plane,
rather than by assigning individual eigenvalues.

Backstepping is not “one-size-fits-all”. Requires structure-specific effort by designer.

Reward: elegant controller/observer, clear closed-loop behavior.



Backstepping for PDEs: a brief introduction

Basic steps in the backstepping methodology:

1. Identify the undesirable terms in the PDE.

2. Choose a target system in which the undesirable terms are to be eliminated by state
transformation and feedback.

3. Find the state transformation.

4. Obtain the boundary feedback/observer gains from the transformation. The trans-
formation alone cannot eliminate the undesirable terms, but the transformation brings
them to the boundary, so control can cancel them.
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Backstepping-based controller design: original system

I The instabilities of the system raise from the
couplings at the boundary.

I The system is “underactuated” (not really, but
from the perspective of previous backstepping
designs).



Backstepping-based controller design: target system

We want to map the Rijke tube model into
the following target system

∂tS11(t, z) + λ1∂zS11(t, z) = 0,
∂tR12(t, z)− λ1∂zR12(t, z) = 0,
∂tR21(t, z)− λ2∂zR21(t, z) = 0,
∂tR22(t, z) + λ2∂zR22(t, z) = 0,

with the following boundary conditions

S11(t, 0) = 0,
R12(t, 1) = R22(t, 1) + c1Q̃(t),
R21(t, 1) = S11(t, 1),
R22(t, 0) = αR21(t, 0),

τhr
˙̃Q(t) = −(1 + c1c2)Q̃(t) + c2(S11(t, 1)−R22(t, 1)).



Backstepping-based controller design: transformation

To do that, we consider the following backstepping transformation

S11(t, z) = R11(t, z)− ϕ(z)Q̃(t)−
∫ 1

z

R11(t, ξ)K(z, ξ)dξ

−
∫ 1

0
R22(t, ξ)G(z, ξ)dξ −

∫ 1

0
R21(t, ξ)H(z, ξ)dξ.

I Domain of the K kernel:

T0 = {(z, ξ) ∈ R2|0 ≤ z ≤ ξ ≤ 1},

I Domain of G and H kernels:

T1 = {(z, ξ) ∈ R2|0 ≤ ξ ≤ 1, 0 ≤ z ≤ 1},

I ϕ is a finite dimensional kernel defined on the interval z ∈ [0, 1].



Backstepping-based controller design: kernel equations

Differentiating the transformation with respect to space and time, integrating by parts,
and plugging the target system equation, we obtain that the original system is mapped
into the target system if and only if the kernels satisfy the following equations:

∂ξK(z, ξ) + ∂zK(z, ξ) = 0,

∂ξG(z, ξ) + λ1

λ2
∂zG(z, ξ) = 0,

∂ξH(z, ξ)− λ1

λ2
∂zH(z, ξ) = 0,

λ1ϕ
′(z)− 1

τhr
ϕ(z) + λ2c1H(z, 1) = 0,

with

λ1K(z, 1)− c2

τ
ϕ(z)− λ2H(z, 1) = 0, G(1, ξ) = 0,

λ2G(z, 1) + c2

τ
ϕ(z) = 0, H(1, ξ) = 0,

αG(z, 0)−H(z, 0) = 0, ϕ(1) = −c1.



Backstepping-based controller design: kernel equations

The boundary value problem for the K kernel:

∂ξK(z, ξ) + ∂zK(z, ξ) = 0,

λ1K(z, 1)− c2

τhr
ϕ(z)− λ2H(z, 1) = 0.

Solution:

K(z, ξ) = c2

λ1τhr
ϕ(z − ξ + 1) + λ2

λ1
H(z − ξ + 1, 1).



Backstepping-based controller design: kernel equations

The boundary value problem for the G kernel:

∂ξG(z, ξ) + λ1

λ2
∂zG(z, ξ) = 0

λ2G(z, 1) + c2

τhr
ϕ(z) = 0,

G(1, ξ) = 0.

Solution:

G(z, ξ) =
{

0 ξ − 1 ≤ λ2
λ1

(z − 1),
− c2
λ2τhr

ϕ
(
z − λ1

λ2
(ξ − 1)

)
, otherwise.



Backstepping-based controller design: kernel equations

The boundary value problem for the H kernel:

∂ξH(z, ξ)− λ1

λ2
∂zH(z, ξ) = 0,

αG(z, 0)−H(z, 0) = 0,
H(1, ξ) = 0.

Solution:

H(z, ξ) =
{

0 ξ + 1 ≥ λ2
λ1

(1− z),
− αc2
λ2τhr

ϕ
(
z + λ1

λ2
(ξ + 1)

)
, otherwise.



Backstepping-based controller design: kernel equations

The boundary value problem for the ϕ kernel:

λ1ϕ
′(z)− 1

τhr
ϕ(z) + λ2c1H(z, 1) = 0,

ϕ(1) = −c1.

ϕ may be piecewise-differentiable depending on the values of H(z, 1).

Case I (λ1 ≥ λ2): In this case H(z, 1) = 0, ∀z ∈ [0, 1]. Then,

λ1ϕ̇(z)− 1
τhr

ϕ(z) = 0
ϕ(1) = −c1

}
⇒ ϕ(z) = −c1e

z−1
λ1τ



Backstepping-based controller design: kernel equations

Case II (λ1 < λ2): In this case, the ϕ kernel equations can be solved backwards.

Observing the behavior of H(z, 1) backwards, one can note that it is zero for all z ∈
[1− 2λ1

λ2
, 1]. Therefore, the solution ϕ for z ∈ [1− 2λ1

λ2
, 1] satisfies

λ1ϕ̇(z)− 1
τhr

ϕ(z) = 0
ϕ(1) = −c1

}
⇒ ϕ(z) = −c1e

z−1
λ1τ

Once the solution ϕ is known on [1−2λ1
λ2
, 1], we can repeat the same procedure, starting

with the solution on [1 − 2λ1
λ2
, 1], to find the solution ϕ for z ∈ [1 − 4λ1

λ2
, 1 − 2λ1

λ2
] by

computing the solution of the following boundary value problem:

λ1ϕ̇(z)− 1
τ
ϕ(z) + αc2

1c2

τ
e
λ2(z−1)+2λ1

λ2λ1τ = 0,

ϕ
(

1− 2λ1

λ2

)
= −c1e−

2
λ2τ .

We can repeat the same procedure, starting with the solution on [1 − 4λ1
λ2
, 1 − 2λ1

λ2
], to

find the solution ϕ for z ∈ [1− 8λ1
λ2
, 1− 4λ1

λ2
], and so on.
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Backstepping-based controller design: kernel equations

Applying this iterative procedure n times, where n ∈ N is the largest integer such that
L−x0
x0

> 1
2n , yields a unique, globally defined, solution ϕ when λ1 < λ2.

The closer the heat element is to the uncontrolled boundary, the larger the number of
pieces of the solution ϕ.

From a practical point of view, the case λ1 > λ2 occurs when the heat release is located
in the lower half of the tube. Similarly, λ1 < λ2 if the heat release is located in the upper
half of the tube.



Backstepping-based controller design: invertibility of the
transformation

To ensure that the closed-loop system and the target system have the same stability
property, the backstepping transformation has to be invertible.

Rewrite the transformation as

R11(t, z) =
∫ 1

z

R11(t, ξ)K(z, ξ)dξ + ψ(t, z).

This equation can be seen as a Volterra integral equation of the second kind.

Since K(z, ξ) is bounded, the equation has a unique solution, allowing us to write an
inverse transformation, thus proving the invertibility of the transformation.



Backstepping-based controller design: kernel visuals (case I)
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Backstepping-based controller design: kernel visuals (case II)
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Backstepping-based controller design: simulation results (case I)



Backstepping-based controller design: simulation results (case II)



Remarks

The backstepping control law requires full-state measurement

U(t) = 1
2

(
R12(t, 0) + ϕ(0)Q̃(t) +

∫ 1

0
R11(t, ξ)K(0, ξ)dξ

+
∫ 1

0
R22(t, ξ)G(0, ξ)dξ +

∫ 1

0
R21(t, ξ)H(0, ξ)dξ

)
.

Therefore, the control law must be applied together with a state-observer in order to
produce experiments.
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Backstepping-based observer design

I Measure: R21(t, 0).
I We design the observe as a copy of the plant plus output injection terms:

∂tR̂11(t, z) + λ1∂zR̂11(t, z) = −p11(z)Ỹ (t),

∂tR̂12(t, z)− λ1∂zR̂12(t, z) = −p12(z)Ỹ (t),

∂tR̂21(t, z)− λ2∂zR̂21(t, z) = −p21(z)Ỹ (t),

∂tR̂22(t, z) + λ2∂zR̂22(t, z) = −p22(z)Ỹ (t),

τhr
˙̂
Q(t) = −Q̂(t) + c2(R̂11(t, 1)− R̂22(t, 1))− pQỸ (t),

with Ỹ (t) = R21(t, 0)− R̂21(t, 0).
I The boundary conditions are given by

R̂11(t, 0) = −R̂12(t, 0) + 2U(t),

R̂12(t, 1) = R̂22(t, 1) + c1Q̂(t),

R̂21(t, 1) = R̂11(t, 1) + c1Q̂(t),

R̂22(t, 0) = αR21(t, 0) + p0Ỹ (t),

I p11, p12, p21, p22, p0. and pQ are gains to be found.



Backstepping-based observer design: observed error dynamics

Define the error estimation R̃ij = Rij − R̂ij , i, j = 1, 2, whose dynamics is given by

∂tR̃11(t, z) + λ1∂zR̃11(t, z) = p11(z)Ỹ (t),
∂tR̃12(t, z)− λ1∂zR̃12(t, z) = p12(z)Ỹ (t),
∂tR̃21(t, z)− λ2∂zR̃21(t, z) = p21(z)Ỹ (t),
∂tR̃22(t, z) + λ2∂zR̃22(t, z) = p22(z)Ỹ (t),

τhr
˙̃Q(t) = −Q̃(t) + c2(R̃11(t, 1)− R̃22(t, 1)) + pQỸ (t),

and boundary conditions

R̃11(t, 0) = −R̃12(t, 0),
R̃12(t, 1) = R̃22(t, 1) + c1Q̃(t),
R̃21(t, 1) = R̃11(t, 1) + c1Q̃(t),
R̃22(t, 0) = αR̃21(t, 0)− p0Ỹ .



Backstepping-based observer design: target system

To design the observer output injection gains, we
map the error estimation dynamics to the following
appropriate target system:

∂tŘ11(t, z) + λ1∂zŘ11(t, z) = 0,

∂tŘ12(t, z)− λ1∂zŘ12(t, z) = 0,

∂tŘ21(t, z)− λ2∂zŘ21(t, z) = 0,

∂tŘ22(t, z) + λ2∂zŘ22(t, z) = 0,

τhr
˙̌
Q(t) = −(1 + c1c2)Q̌(t)− c2Ř22(t, 1),

with boundary conditions (setting p0 = α):

Ř11(t, 0) = −Ř12(t, 0),

Ř12(t, 1) = Ř22(t, 1) + c1Q̌(t),

Ř21(t, 1) = Ř11(t, 1) + c1Q̌(t),

Ř22(t, 0) = 0.



Backstepping-based observer design: transformation
We consider the following backstepping transformation (dual to control transforma-
tion!):

R̃11(t, z) = Ř11(t, z)−
∫ 1

0
P11(z, ξ)Ř21(t, ξ)dξ,

R̃12(t, z) = Ř12(t, z)−
∫ 1

0
P12(z, ξ)Ř21(t, ξ)dξ,

R̃21(t, z) = Ř21(t, z)−
∫ z

0
P21(z, ξ)Ř21(t, ξ)dξ,

Q̃(t) = Q̌(t)−
∫ 1

0
PQ(ξ)Ř21(t, ξ)dξ,

I Domain of the P21 kernel:

T0 = {(z, ξ) ∈ R2|0 ≤ z ≤ ξ ≤ 1},

I Domain of P11 and P12 kernels:

T1 = {(z, ξ) ∈ R2|0 ≤ ξ ≤ 1, 0 ≤ z ≤ 1},

I PQ is a finite dimensional kernel defined on the interval ξ ∈ [0, 1].



Backstepping-based observer design: kernel equations

Differentiating the transformation with respect to space and time, plugging the target
system equation and integrating by parts, we obtain that the error system dynamics is
mapped into the target system if and only if the kernels satisfy the following equations:

λ2∂ξP11(z, ξ)− λ1∂zP11(z, ξ) = 0,
λ2∂ξP12(z, ξ) + λ1∂zP12(z, ξ) = 0,
∂ξP21(z, ξ) + ∂zP21(z, ξ) = 0,
τhrλ2P

′
Q(ξ) = PQ(ξ)− c2P11(1, ξ),

and

P21(1, ξ) = P11(1, ξ) + c1PQ(ξ), P11(z, 1) = 0,

PQ(1) = − c2

τhrλ2
, P12(z, 1) = 0,

P11(0, ξ) = −P12(0, ξ), P12(1, ξ) = c1PQ(ξ).

The existence and uniqueness of the solution of the kernel equations can be proved in a
similar way to the backstepping control design.
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Backstepping-based observer design: observer gains

The closer the heat element is to the unmeasured boundary, the larger the number of
pieces of the solution ϕ and thus, the higher the complexity of the observer.

Besides, the observer gains are given by

p11(z) = λ2P11(z, 0),
p12(z) = λ2P12(z, 0),
p21(z) = λ2P21(z, 0),

pQ = τhrλ2PQ(0).



Backstepping-based observer design: kernel visuals (case I)
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Backstepping-based observer design: kernel visuals (case II)
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Experimental results (x = L)

0 0.1 0.2 0.3 0.4 0.5
Time (ms)

-10

-8

-6

-4

-2

0

2

4

6

8

10

A
co

us
tic

 p
re

ss
ur

e 
flu

ct
ua

tio
ns

 (
P

a)
Acoustic pressure, estimated Acoustic pressure, measured



Experimental results (x = L/2)
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Final remarks

I The Rijke tube experiment can be described by a 4× 4 model of hyperbolic PDEs
coupled with an ODE (PDE-ODE-PDE model). The couplings are the source of
instability.

I A full-state feedback law and a boundary observer for the Rijke tube have been
designed using a non-standard backstepping-based design, which works by
removing the couplings.

I Explicit exact gains were found, allowing us to find explicit closed loop solutions.
The complexity of the gains depend on the position of the heat release element
relative to actuation and measurement.

I Experiments for the observer reveal that it works well close to where
measurements are taken. Not so well in the middle of the domain, only capturing
the oscillations but not fine details.



Next steps

An output feedback control law can be designed using the reconstruction of the estimated
states profile through the exponential convergent observer with the acoustic pressure
measurement.

Since our design is based on the linear system, the separation principle holds; i.e., the
combination of a separately designed state feedback controller and observer results in a
stabilizing output-feedback controller.

To be seen: will this work for the real system?

Extension to more complex PDE-ODE-PDE systems: "Delay robust control design of
under-actuated PDE-ODE-PDE systems", by Ulf Jakob F. Aarsnes, Rafael Vazquez, Flo-
rent Di Meglio, Miroslav Krstic, submitted to 2019 ACC
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Thanks for your attention
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