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Abstract—While for coupled hyperbolic partial differential equa-
tions (PDEs) of first order, there now exist numerous PDE back-
stepping designs, systems with zero speed, i.e., without convec-
tion but involving infinite-dimensional ordinary differential equa-
tions (ODEs), which arise in many applications, from environmental
engineering to lasers to manufacturing, have received virtually
no attention. In this article, we introduce single-input boundary
feedback designs for a linear 1-D hyperbolic system with two coun-
terconvecting PDEs and n equations (infinite-dimensional ODEs)
with zero characteristic speed. The inclusion of zero-speed states,
which we refer to as atachic, may result in the nonstabilizability
of the plant. We give a verifiable condition for the model to be
stabilizable and design a full-state backstepping controller, which
exponentially stabilizes the origin in the L2 sense. In particular, to
employ the backstepping method in the presence of atachic states,
we use an invertible Volterra transformation only for the PDEs
with nonzero speeds, leaving the zero-speed equations unaltered
in the target system input-to-state stable with respect to the de-
coupled and stable counterconvecting nonzero-speed equations.
Simulation results are presented to illustrate the effectiveness of
the proposed control design.

Index Terms—Boundary control, hyperbolic systems, PDE back-
stepping, stabilization.

I. INTRODUCTION

In recent decades, boundary stabilization of hyperbolic partial dif-
ferential equations (PDEs) has been extensively explored due to its
relevance in diverse applications, such as oil extraction [1], electrical
lines [3], water channels [8], traffic [11], and pipelines [13]. The
field has reached a rather advanced (“mature” is the adjective that
might come to the creativity-challenged mind) stage, propelled by the
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effectiveness of the PDE backstepping method for creating control laws
and observers. Stabilization for the “general heterodirectional case,”
consisting on (n+m)× (n+m) hyperbolic systems with n equa-
tions moving in one direction and m controlled ones in the opposite,
was solved in [15]. For output-feedback control with disturbances,
Deutscher and Gabriel [9] offered a solution. Adaptive observer designs
for (n+ 1)× (n+ 1) systems, useful even with unknown parameters,
are available in [2]. Control of hyperbolic systems with nonstrict-
feedback connections with ordinary differential equations (ODEs) has
also been investigated [6]. These advancements, however, are predi-
cated on nonzero characteristic speeds and do not apply otherwise.

Outside of the backstepping literature, only a few works consider
zero or vanishing characteristic speeds, as can be seen in [4], [16],
or [19]. A methodology employing static output feedback controllers is
detailed in [21], albeit under stringent structural stability prerequisites
for the system’s coefficients.

We refer to hyperbolic systems containing states with zero ve-
locity as atachic (meaning “with no velocity” in Greek; recall the
term isotachic in [15] and the special properties of PDEs of equal
characteristic speeds). The disregard in the control literature for such
systems does not imply that they are not of practical interest. On the
contrary, multiple applications do exist. A first example is a model
of heat transfer dynamics in solar thermal plants based on direct steam
generation technology [14], where the receiver temperature dynamics is
an atachic state. Adiabatic flows, such as the Saint-Venant equations or
the isentropic and full Euler equation for gas dynamics [4], which are of
practical interest in accounting for the trend to operate combined sewer
systems and other channel networks, also admit zero characteristic
speed.

Another application that fits into the atachic framework is the inten-
sity dynamics of the laser beam [18]. In several laser applications, the
maximization of the energy extracted from the laser pulse is critical
for the process’s efficiency. For example, in the polysilicon process for
manufacturing flat panel displays, one of the main problems is to obtain
enough instantaneous laser power to melt as large an area as desired.
Photolithography is another example where optical exposures must be
accomplished with fewer pulses of higher energy. A few more examples
include models with thermoacoustic instabilities—a zero transport
velocity in thermoacoustics is a direct consequence of the second law
of thermodynamics—double-pass laser amplifiers [18], neurofilament
transport in axons [5], and biomass production in photobioreactors [12].

Motivated by these applications, this article aims to extend the
infinite-dimensional backstepping methodology to what we denote,
extending the (n+m)× (n+m) notation, as (1 + n+ 1)× (1 +
n+ 1) 1-D hyperbolic systems, which contain one rightward convect-
ing unactuated state, n nonconvecting/zero-speed/atachic unactuated
states, and one leftward-convecting state with boundary actuation.
Previous results, such as [10] or [15], are inapplicable since they
would result in a controller with infinite gain. In addition, it is shown
that not all (1 + n+ 1)× (1 + n+ 1) systems are stabilizable. The
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homogeneous part of the zero-speed equation must be asymptotically
stable for the overall system to be stabilizable without other restrictions.

We apply a backstepping transformation only to the PDEs with
nonzero speeds, leaving the state of the zero-speed equation unaltered,
but making the target zero-speed equation input-to-state stable with
respect to the decoupled and stable counterconvecting nonzero-speed
target PDEs. Compared with other results in the literature for hy-
perbolic PDEs containing states with zero characteristic speeds, our
approach can be applied to a richer family of hyperbolic systems that
can be unstable in the nonzero speed part of the plant. In particular,
we provide numerical simulations to show the effectiveness of the
method for an open-loop unstable case. Part of these contributions was
previously published in preliminary form in the conference paper [7]
for a (1 + 1 + 1)× (1 + 1 + 1) system.

We do not consider general heterodirectional systems with zero
speeds, these are (n+m+ l)× (n+m+ l) systems, in order to
maintain clarity and provide comprehensive details, as the simplicity
of the (1 + n+ 1)× (1 + n+ 1) case aids in a thorough exposition.
While extending our methodology to encompass these larger systems is
straightforward, doing so would considerably complicate and lengthen
the proofs mainly due to kernel discontinuities that are unavoidable
in such designs, muddling the exposition without yielding significant
additional insights.

The rest of this article is organized as follows. In Section II, we
present the control problem and some properties of the equations that
motivate our assumptions on controlling the system. In Section III, we
design a stabilizing control law using the backstepping methodology.
The results are illustrated using numerical simulations in Section IV.
Finally, Section V concludes this article.

Notations

For a given u : R+ × [0, 1] → R, we use the notation u[t] to de-
note the profile at certain t ≥ 0, i.e., (u[t])(x) = u(t, x)∀x ∈ [0, 1].
L2(0, 1) denotes the set of equivalence classes of measurable functions
f : [0, 1] → R for which ‖f‖2 = (

∫ 1

0
|f(x)|2dx)1/2 < +∞. For an

interval I ⊂ R+, the space C0(I;L2(0, 1)) is the space of continu-
ous mappings I 	 t→ u[t] ∈ L2(0, 1). Finally, H1(0, 1) denotes the
Sobolev space of functions in L2(0, 1) with all its first-order weak
derivatives in L2(0, 1).

II. PROBLEM STATEMENT

For n ≥ 1, consider the following set of (1 + n+ 1) hyperbolic
system:

∂tu(t, x) = −λ1∂xu(t, x) + σ12p(t, x) + Θ1v(t, x) (1)

∂tv(t, x) = Ω1u(t, x) + Ω2p(t, x) + Ψv(t, x) (2)

∂tp(t, x) = λ2∂xp(t, x) + σ21u(t, x) + Θ2v(t, x) (3)

u(t, 0) = U(t) + qp(t, 0) (4)

p(t, 1) = ρu(t, 1) (5)

where t ∈ [0,∞) is the time, x ∈ [0, 1] is the space, the states are
given by u, p, and v = (v1, . . . , vn), and the control action is U .
The transport speeds satisfy λ1 > 0 > −λ2, and ρ and q are nonzero
reflection coefficients. The other coefficients of the system are

Θ1 = (θ11 . . . θ1n) , Θ2 = (θ21 . . . θ2n)

Ω1 = (ω11 . . . ωn1)
T , Ω2 = (ω12 . . . ωn2)

T

Ψ = {ψij}1≤i≤n,1≤j≤n.

Fig. 1. Characteristic lines of system. The characteristic lines C1 (with
slope λ1) and C2 (with slope −λ2) correspond to (1) and (3), respec-
tively, whereas C3 corresponds to (2) with n = 1. The reflection mecha-
nism is illustrated at the points x = 0 and x = 1 at the time instants τ2
and τ4, respectively.

Finally, the initial conditions of (1)–(4) are

u(0, x) = u0(x), v(0, x) = v0(x), p(0, x) = p0(x) (6)

with u0 ∈ L2(0, 1), v0 ∈ (L2(0, 1))n, and p0 ∈ L2(0, 1).
System (1)–(6) is hyperbolic with two characteristic speeds with op-

posite signs, associated with (1)–(3), respectively, andn identically zero
speeds for (2). The latter means that the characteristics corresponding
to (2) are vertical on the (x, t) plane, as can be seen in Fig. 1. Note that
the vertical characteristic C3 intersects the characteristics C1 and C2

at τ1 and τ3, respectively, making the solution change and ultimately
destabilizing the system.

As shown in [19], the stabilizability of (1)–(6) can be obtained
(without any constraints on the parameters) by imposing boundary
controllers and an in-domain controller for the equation with zero
characteristic speed. However, if internal controllers are not realizable,
then the stabilizability can be obtained only for very strict cases. For
that reason, we state the following assumption.

Assumption 2.1: It is assumed that Ψ is a Hurwitz matrix.
Note that this assumption means that (2) would be exponentially

stable in the absence of the coupling with (1)–(3). In the next section,
we will show, with a simplified version of system (1)–(6), that if
Assumption 2.1 is violated, then the system is nonstabilizable. Although
this example does not consider counterconvective PDEs, it is to be
expected that this result is valid for the general form (1)–(6).

A. Stabilizability of Systems With Zero Characteristic Speeds

The primary goal of this section is to investigate the stabilizability
of systems with zero characteristic speeds, with the final objective of
justifying Assumption 2.1. We will first establish that stabilizability is
not feasible under general conditions with a very simple example based
on explicit solutions (see Section II-A1), and then systematically prove,
for a more general case, the conditions under which stabilizability is not
feasible (see Section II-A2), both pointwise stabilization and L2 stabi-
lization, thus providing a clear and rigorous mathematical framework
to understanding the stabilization limitations of such systems.

1) Particular Case Showing Lack of Stabilizability: Con-
sider first a simplified version of the problem (1)–(3)

∂tu(t, x) = − ∂xu(t, x) (7)
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∂tv(t, x) = ψv(t, x) + u(t, x) (8)

u(t, 0) = U(t) (9)

with ψ > 0, and u(0, x) = 0 and v(0, x) = v0(x) for all x ∈ [0, 1].
One way to argue the lack of stabilizability of (7)–(9) is to convert

the equations into a form in which a part of the dynamics is autonomous
and unstable. To do that, first note that after t ≥ 1, the solution of (7) is
u(t, x) = U(t− x), and thus, the atachic equation (8) can be rewritten
to

∂tv(t, x) = ψv(t, x) + U(t− x). (10)

Now, set any 0 < x1 ≤ 1, and define v1(t) = v(t, 0) and v2(t) =
v(t, x1). Then,

v̇1(t) = ψv1(t) + U(t) (11)

v̇2(t) = ψv2(t) + U(t− x1). (12)

For t ≥ x1, definew(t) = v1(t− x1)− v2(t). Then, it follows that:

ẇ(t) = ψw(t). (13)

Note that (13) is autonomous and unstable, and thus, un-
less w(x1) = 0, we have |w(t)| → ∞ as t→ ∞. By defini-
tion, the only way to have w(x1) = 0 is if v2(x1) = v1(0).
Thus, using the explicit solution of (12), which is v2(t) =
v2(0)e

ψt +
∫ t
0
U(τ − x1)e

ψ(t−τ)dτ , into v2(x1) = v1(0), it follows
that v2(0)eψx1 +

∫ x1
0
U(τ − x1)e

ψ(x1−τ)dτ = v1(0). Recalling that
v1(0) = v(0, 0) = v0(0), and v2(0) = v(0, x1) = v0(x1), and calling
x1 = x, we get (after a slight change in the variable of integration)

v0(0) = eψxv0(x) +

∫ 0

−x
e−ψτU(τ)dτ (14)

must be verified by U(t) for t ∈ [−1, 0] so that the system can be
stabilized. If that is the case, one has w(t) = 0 for all 0 < x1 ≤ 1, and
therefore, it holds that for t ≥ x, v(t, x) = v(t− x, 0) = v1(t− x),
where v1 satisfies (11), and so designing a stabilizing control law for
v1 also stabilizes for v.

This quick argument shows that one cannot expect stabilizability of
(7)–(9) if ψ > 0 (it would also hold for ψ = 0).

2) Formal Lack of Stabilizability in a More General Case:
We now formalize and generalize the above arguments and prove the
lack of stabilizability of the following hyperbolic system:

∂tu(t, x) = − λ∂xu(t, x) (15)

∂tv(t, x) = ψv(t, x) + ωu(t, x) (16)

u(t, 0) = U(t) (17)

where λ > 0, ψ ≥ 0, and ω ∈ R.
The initial condition of (15)–(17) is

u(0, x) = u0(x), v(0, x) = v0(x) (18)

with u0 ∈ H1(0, 1) and v0 ∈ H1(0, 1).
The idea consists in proving the existence of a continuous functional

P (u, v), with the set S = {(u, v) ∈ H1(0, 1)×H1(0, 1) : P (u, v) =
0} is nonempty and dP

dt
(u, v) ≥ 0 for all (u, v) ∈ S and for all U(t) ∈

R.

Proposition 2.1: Let λ > 0, ψ ≥ 0, and ω ∈ R be given constants.
Let S ⊂ H1(0, 1)×H1(0, 1) be the linear subspace

S = {(u, v) ∈ H1(0, 1)×H1(0, 1) : P (u, v) = 0} (19)

where P : H1(0, 1)×H1(0, 1) → H1(0, 1) is the linear operator de-
fined by

(P (u, v))(x) = v(x)− e−λ−1ψxv(0)

+ λ−1ω

∫ x

0

e−λ−1ψ(x−s)u(s)ds (20)

for all (u, v) ∈ H1(0, 1)×H1(0, 1) and x ∈ [0, 1].
Then, the following property holds for all (u0, v0) ∈ H1(0, 1)×

H1(0, 1)\S.
(P) For every input U ∈ C1(R+) with U(0) = u0(0), the

corresponding unique solution (u, v) ∈ (C0(R+;H1(0, 1))∩
C1(R+;L2(0, 1)))2 of the initial-boundary value problem (15)–(18)
does not satisfy limt→∞(‖u[t]‖2) = limt→∞(‖v[t]‖2) = 0.

Proposition 2.2: Let λ > 0, ψ ≥ 0, and ω ∈ R be given constants.
Then, the linear subspace S ⊂ H1(0, 1)×H1(0, 1) defined by (19)
is positively invariant. In other words, for every (u0, v0) ∈ S and
for every input U ∈ C1(R+), with U(0) = u0(0), the corresponding
unique solution (u, v) ∈ (C0(R+;H1(0, 1))∩ C1(R+;L2(0, 1)))2 of
the initial value problem (15)–(18) satisfies (u[t], v[t]) ∈ S for all
t ≥ 0.

Proposition 2.3: Let λ > 0, ψ ≥ 0, and ω ∈ R be given constants.
Let S ⊂ H1(0, 1)×H1(0, 1) be the linear subspace defined by (19).
Then, the following property holds for all (u0, v0) ∈ H1(0, 1)×
H1(0, 1)\S

(P’) For every input U ∈ C1(R+) with U(0) = u0(0), the
corresponding unique solution (u, v) ∈ (C0(R+;H1(0, 1))∩
C1(R+;L2(0, 1)))2 of the initial-boundary value problem (15)–(18)
does not satisfy limt→∞ v(t, x) = 0, for all x ∈ [0, 1].

The proofs of Propositions 2.1–2.3 are given in the Appendix.
Remark 2.1: Property (P’) is different from property (P) since (P’)

deals with pointwise convergence to zero whereas property (P) deals
with convergence to zero in L2. It is well known that convergence in L2

does not imply pointwise convergence and pointwise convergence does
not imply convergence in L2. Moreover, property (P’) deals with the
pointwise convergence of v only, whereas (P) deals with convergence
in L2 of (u, v).

Remark 2.2: Considering the transformation

w(t, x) = v(t, x)− e−λ−1ψxv(t, 0)

+ λ−1ω

∫ x

0

e−λ−1ψ(x−s)u(t, s)ds (21)

system (15)–(17) is equivalent to the system

∂tu(t, x) = −λ∂xu(t, x) (22)

∂tw(t, x) = ψw(t, x) (23)

ẏ(t) = ψy(t) + ωU(t) (24)

u(0) = U(t) (25)

w(t, 0) = 0 (26)

with state (u,w, y) ∈ H1(0, 1)×H1(0, 1)× R.
To see this, notice that (21) and the definition y(t) = v(t, 0) give us

(24). On the other hand, the inverse transformation is given by v(x) =
w(x) + e−λ−1ψxy − λ−1ω

∫ x
0
e−λ−1ψ(x−s)u(s)ds for x ∈ [0, 1] and
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transforms (24) to (15)–(17). The system may be defined on the invariant
subspace S defined by (19) and corresponds to the casew = 0 for (24).
Thus, system (15)–(17) with ω �= 0 on the invariant subspace S may
be stabilized by the feedback law

U(t) = − k

ω
v(0)

where k > ω is a design constant. When ω = 0, (15)–(18) can be sta-
bilized on the subspace S ′ = {(u, v) ∈ S : v(0) = 0} with U(t) = 0.

III. CONTROL DESIGN

Having justified Assumption 2.1, in this section, we design a back-
stepping controller so that the null solution of (1)–(6) becomes stable.
It will be assumed that the full-state measurements are available for the
control law.

Consider the following Volterra transformation:

α = u−
∫ 1

x

K1(x, ξ)u(t, ξ)dξ −
∫ 1

x

K2(x, ξ)p(t, ξ)dξ

−
∫ 1

x

G(x, ξ)v(t, ξ)dξ, (27)

β = p−
∫ 1

x

Q1(x, ξ)u(t, ξ)dξ −
∫ 1

x

Q2(x, ξ)p(t, ξ)dξ

−
∫ 1

x

R(x, ξ)v(t, ξ)dξ (28)

where the kernels Ki and Qi, for i ∈ {1, 2}, G = (G1 . . . Gn),
and R = (R1 . . . Rn) satisfy the following PDEs:

λ1∂xK1 + λ1∂ξK1 = − σ21K2 −GΩ1 (29)

λ1∂xK2 − λ2∂ξK2 = − σ12K1 −GΩ2 (30)

λ1∂xG = −K1Θ1 −K2Θ2 −GΨ (31)

λ2∂xQ1 − λ1∂ξQ1 = σ21Q2 +RΩ1 (32)

λ2∂xQ2 + λ2∂ξQ2 = σ12Q1 +RΩ2 (33)

λ2∂xR = Q1Θ1 +Q2Θ2 +RΨ (34)

with boundary conditions

K1(x, 1) =
λ2ρ

λ1

K2(x, 1), Q1(x, x) =
σ21

λ1 + λ2

(35)

K2(x, x) = − σ12

λ1 + λ2

, Q2(x, 0) =
λ1

λ2q
Q1(x, 0) (36)

G(x, x) = −Θ1

λ1

, R(x, x) =
Θ2

λ2

(37)

for k ∈ {1, . . . , n}.
These kernels evolve in the triangular domain

T = {(x, ξ) ∈ R2 : 0 ≤ x ≤ ξ ≤ 1}.

The explicit solution of (31) and (34), together with the boundary
condition (37), is given by

G(x, ξ) = − 1

λ1

Θ1Φ1(x, ξ)

− 1

λ1

∫ x

ξ

K1(τ, ξ)Θ1Φ1(x, τ)dτ

− 1

λ1

∫ x

ξ

K2(τ, ξ)Θ2Φ1(x, τ)dτ (38)

R(x, ξ) =
1

λ2

Θ2Φ2(x, ξ)

+
1

λ2

∫ x

ξ

Q1(τ, ξ)Θ1Φ2(τ, x)dτ

+
1

λ2

∫ x

ξ

Q2(τ, ξ)Θ2Φ2(τ, x)dτ (39)

where Φk(x, ξ) = e
Ψ

(ξ−x)
λk , for k ∈ {1, 2}, is the state-transition ma-

trix.
Plugging (38) and (39) into (29)–(30) and (32)–(33), respectively,

one obtains the following system of integro–differential equations:

λ1∂xK1 + λ1∂ξK1 = −σ21K2 + λ−1
1 Θ1Φ1(x, ξ)Ω1

+

∫ x

ξ

(K1(τ, ξ)Θ1 +K2(τ, ξ)Θ2) λ−1
1 Φ1(x, τ)Ω1dτ (40)

λ1∂xK2 − λ2∂ξK2 = −σ12K1 + λ−1
1 Θ1Φ1(x, ξ)Ω2

+

∫ x

ξ

(K1(τ, ξ)Θ1 +K2(τ, ξ)Θ2dτ) λ−1
2 Φ1(x, τ)Ω2 (41)

λ2∂xQ1 − λ1∂ξQ1 = σ21Q2 + λ−1
2 Θ2Φ2(x, ξ)Ω1

+

∫ x

ξ

(Q1(τ, ξ)Θ1 +Q2(τ, ξ)Θ2) λ−1
2 Φ2(τ, x)Ω1dτ (42)

λ2∂xQ2 + λ2∂ξQ2 = σ12Q1 + λ−1
2 Θ2Φ2(x, ξ)Ω2

+

∫ x

ξ

(Q1(τ, ξ)Θ1 +Q2(τ, ξ)Θ2)Φ2(τ, x)λ
−1
2 Ω2dτ. (43)

These equations, together with boundary conditions (35) and (36),
are well posed as shown in the next lemma.

Lemma 3.1: The PDE system (40)–(43) with boundary conditions
(35) and (36) has a unique C1(T ) solution.

Proof: The well posedness follows the steps of the proof in [20,
Appendix], with some slight modifications to account for the integral
terms as in [17]. �

From the previous Lemma and the theory of Volterra integral equa-
tions, it follows that the inverse of transformation (27) and (28) always
exists and can be defined as:

u = α+

∫ 1

x

L1(x, ξ)α(t, ξ)dξ +

∫ 1

x

L2(x, ξ)β(t, ξ)dξ

+

∫ 1

x

S(x, ξ)v(t, ξ)dξ (44)

p = β +

∫ 1

x

M1(x, ξ)α(t, ξ)dξ +

∫ 1

x

M2(x, ξ)β(t, ξ)dξ

+

∫ 1

x

E(x, ξ)v(t, ξ)dξ (45)

where Li and Mi, with i ∈ {1, 2}, S = (S1 . . . Sn), and E =
(E1 . . . En) are the inverse kernels, which verify equations similar
to (29)–(37).

Using the above results, we state the following lemma.
Lemma 3.2: Let U be given by the following control law:

U(t) = −qp(t, 0) +
∫ 1

0

K1(0, ξ)u(t, ξ)dξ

+

∫ 1

0

K2(0, ξ)p(t, ξ)dξ +

∫ 1

0

G(0, ξ)v(t, ξ)dξ. (46)
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Then, the transformation (27) and (28) maps (1)–(4) into the follow-
ing target system:

∂tα(t, x) = −λ1∂xα(t, x) (47)

∂tβ(t, x) = λ2∂xβ(t, x) (48)

∂tv(t, x) = Ω1α(t, x) + Ω2β(t, x) + Ψv(t, x)

+

∫ 1

x

N1(x, ξ)α(t, ξ)dξ +

∫ 1

x

N2(x, ξ)β(t, ξ)dξ

+

∫ 1

x

N3(x, ξ)v(t, ξ)dξ (49)

β(t, 1) = ρα(t, 1) (50)

α(t, 0) = 0 (51)

with

Nj(x, ξ) = Ω1Lj(x, ξ) + Ω2Mj(x, ξ), for j ∈ {1, 2}

N3(x, ξ) = Ω1S(x, ξ) + Ω2E(x, ξ).

Proof: Differentiating (27) and (28) with respect to time and space,
integrating by parts, substituting the resultant expressions into (1) and
(2), and applying (44) and (45), we obtain (47)–(49).

Evaluating (27) at x = 0, substituting it into (4) and using (46), we
obtain (50). Finally, evaluating (28) for x = 1, substituting it into (5)
and using (45), we obtain (50). �

A. Stability of the Target System

The stability properties of the target system (47)–(51) are proved in
the following lemma.

Lemma 3.3: The zero equilibrium of system (47)–(51) is exponen-
tially stable in the L2 sense.

Proof: Consider the following Lyapunov functional:

V (t) =

∫ 1

0

(
A

λ1

e−μxα2(t, x) +
B

λ2

eμxβ2(t, x)

)
dx

+
1

2

∫ 1

0

vT (t, x)P (x)v(t, x)dx (52)

where P (x) = e−ϑxIn×n, in which In×n stands for the n× n identity
matrix, and A, B, μ, and ϑ are constants to be defined. Differentiating
V with respect to time yields

V̇ (t) = 2

∫ 1

0

(
−Ae−μxα(t, x)∂xα(t, x)

+Beμxβ(t, x)∂xβ(t, x)

)
dx

+

∫ 1

0

vT (t, x)P (x)

(
Ω1α(t, x)

+ Ω2β(t, x) + Ψv(t, x)

)
dx

+

∫ 1

0

vT (t, x)P (x)

(∫ 1

x

(
N1(x, s)α(t, s)

+N2(x, s)β(t, s) +N3(x, s)v(t, s)

)
ds

)
dx. (53)

Integrating by parts the first two terms in the right-hand side of (53)
and plugging the boundary conditions (50) and (51) yields∫ 1

0

(−Ae−μxα(t, x)∂xα(t, x) +Beμxβ(t, x)∂xβ(t, x)) dx

= −μ
∫ 1

0

(
Ae−μxα2(t, x) +Beμxβ2(t, x)

)
dx

+ (Bρ2eμ −Ae−μ)α2(t, 1)−Bβ2(t, 0). (54)

To make further progress, we will now compute an upper bound for
the rest of the terms in the right-hand side of (53).

By using Young’s inequality and considering the fact that e−ϑx ≤
1 ≤ eμe−μx and e−δx ≤ 1 ≤ eμx, we have that∫ 1

0

vT (t, x)P (x)

(
Ω1α(t, x) + Ω2β(t, x)

)
dx

≤ 2eμ

ρ(Ψ)
ΩT1 Ω1

∫ 1

0

e−μxα2(t, x)dx (55)

+
2

ρ(Ψ)
ΩT2 Ω2

∫ 1

0

eμxβ2(t, x)dx

+
ρ(Ψ)

4

∫ 1

0

vT (t, x)P (x)v(t, x)dx (56)

where ρ(Ψ) is the spectral radius of Ψ.
Now, define N i = ‖Ni(x, y)‖∞, for i ∈ {1, 2, 3}. Then, using the

Cauchy–Schwarz and Young’s inequalities, we get∫ 1

0

∫ 1

x

vT (t, x)P (x) (N1(x, s)α(t, s) +N2(x, s)β(t, s)) dsdx

≤ 2nN
2

1e
μ

ρ(Ψ)

∫ 1

0

e−μxα2(t, x)dx+
2nN

2

2

ρ(Ψ)

∫ 1

0

eμxβ2(t, x)dx

+
ρ(Ψ)

4

∫ 1

0

vT (t, x)P (x)v(t, x)dx. (57)

Finally ∫ x

1

|N3(x, s)v(t, s)|ds

≤ N3e
ϑ/2 e

ϑx/2

√
ϑ

√∫ 1

0

vT (t, s)P (s)v(t, s)ds

where at the last step, Cauchy–Schwarz and Young’s inequalities were
again applied.

Therefore, we reach

V̇ ≤ −
(
Aσ − 2(ΩT1 Ω1 +N

2

1)e
σ

ρ(Ψ)

)∫ 1

0

e−μxα2(t, x)dx

−
(
Bσ − 2(ΩT2 Ω2 +N

2

2)

ρ(Ψ)

)∫ 1

0

eμxβ2(t, x)dx

−
(
ρ(Ψ)

2
− N3√

ϑ

)∫ 1

0

vT (t, x)P (x)v(t, x)dx

+ (Aq2 −B)β2(t, 0).

Choosing

A = eσ, B = Aq2 + 1, ϑ =
16N

2

3

ρ(Ψ)2
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Fig. 2. Distributed states evolution as a function of time and space.

Fig. 3. State feedback control law as a function of time.

μ = max

{
2(ΩT1 Ω1 +N

2

1)

ρ(Ψ)
,
2(ΩT2 Ω2 +N

2

2)

ρ(Ψ)

}
+ 1

we get

V̇ ≤ −
∫ 1

0

e−μxα2(t, x)dx−
∫ 1

0

eμxβ2(t, x)dx

− ρ(Ψ)

4

∫ 1

0

vT (t, x)P (x)v(t, x)(t, x)dx

≤ −KV

for K = min{ 2λ1
A
, 2λ2
B
, ρ(Ψ)

2
} > 0, thus proving exponential stability

of the equilibrium α ≡ β ≡ v ≡ 0. �

IV. NUMERICAL SIMULATIONS

In this section, we present numerical simulations of system (1)–(5)
with the proposed control law (46) considering n = 2. The param-
eters were chosen as q = −0.7, ρ = 0.5, σ12 = 2.5, σ21 = −3.5,
θ11 = 0.25, θ12 = 0.1, θ21 = 0.25, θ22 = −0.1, ω11 = 0.3, ω12 =
0.8, ω21 = −0.65, ω22 = 0.3, ψ11 = −1.5, ψ12 = 2, ψ21 = −1,
ψ22 = −2, λ1 = 1.25, and λ2 = 0.9, which corresponds to an open-
loop unstable system. The finite differences method was employed in
MATLAB to compute the states of the system and solve the kernel
PDEs.

Figs. 2 and 3 show the closed-loop states and the control signal,
respectively. As can be seen in Figs. 2 and 3, the system states decay
to zero after an initial transient.

V. CONCLUSION

In this work, we introduced the state feedback stabilization of a
class of hyperbolic systems containing an atachic subsystem (zero
characteristic velocities), denoted as (1 + n+ 1)× (1 + n+ 1) sys-
tems. We showed that stabilizability requires that the atachic subsys-
tem be asymptotically stable. Under this condition, we applied the
backstepping methodology to guarantee the closed-loop exponential
stability in theL2 sense. Interestingly, we employ the invertible Volterra
transformation only for the PDEs with nonzero characteristic speeds,
leaving the atachic subsystem unaltered in the target system but making
it input-to-state stable (ISS) with respect to the counterconvecting
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nonzero-speed states. As future work, a Luenberger-type state observer
with boundary measurements of states with nonzero characteristic
speeds can be designed to obtain the associated output feedback
controller. Future discussions should include networks of systems of
hyperbolic balance laws coupled with ODEs.

APPENDIX

A. Proof of Proposition 2.1

Let arbitrary (u0, v0) ∈ H1(0, 1)×H1(0, 1)\S be given. For all
x ∈ [0, 1], define the functions

ϕ(x) � ψ

∫ x

0

v0(s)ds+ ω

∫ x

0

u0(s)ds+ λv0(x) (58)

h(x) � ϕ(x)−K (59)

where

K �
∫ 1

0

ϕ(x)dx. (60)

Definitions (19) and (58)–(60) give the implication

h(x) ≡ 0 ⇒ (u0, v0) ∈ S. (61)

Therefore, since (u0, v0) /∈ S it follows from (61) that h ∈ H1(0, 1)
is a nonidentically zero function, i.e., h �= 0. Moreover, definitions
(59) and (60) imply that

∫ 1

0
h(x)dx = 0. Since the Cauchy–Schwarz

inequality in L2(0, 1) holds as an equality if and only if the functions
are linearly dependent in L2(0, 1), we obtain from (19) and (58)–(60)
that

‖ϕ‖2 = |K| ⇔ (u0, v0) ∈ S. (62)

Consequently, it follows from (62) that:∫ 1

0

h(x)

(
ψ

∫ x

0

v0ds+ ω

∫ x

0

u0(s)ds

+ λv0(x)

)
dx = ‖ϕ‖22 −K2 > 0. (63)

We show next that for every inputU ∈ C1(R+) withU(0) = u0(0),
the unique solution (u, v) ∈ (C0(R+;H1(0, 1))∩C1(R+;L2(0, 1)))2

of the initial-boundary value problem (15)–(18) does not sat-
isfy limt→∞(‖u[t]‖2) = limt→∞(‖v[t]‖2) = 0. By contradiction,
suppose that there exists an input U ∈ C1(R+) with U(0) =
u0(0) for which the unique solution (u, v) ∈ (C0(R+;H1(0, 1))∩
C1(R+;L2(0, 1)))2 of the initial-boundary value problem (15)–(18)
satisfies limt→∞(‖u[t]‖2) = limt→∞(‖v[t]‖2) = 0. Define the func-
tional

R(t) �
∫ 1

0

h(x)

(
ψ

∫ x

0

v(t, s)ds

+ ω

∫ x

0

u(t, s)ds+ λv(t, x)

)
dx (64)

for t ≥ 0. Since (u, v) ∈ (C1(R+;L2(0, 1)))2, it follows that R ∈
C1(R+). Using (9), (64), and

∫ 1

0
h(x)dx = 0, we get substituting

(15)–(17) and integrating by parts, for all t ≥ 0

Ṙ(t) =

∫ 1

0

h(x)

(
ψ2

∫ x

0

v(t, s)ds+ ψω

×
∫ x

0

u(t, s)ds+ λψv(t, x) + λωu(t, 0)

)
dx

= ψR(t) + λωU(t)

∫ 1

0

h(x)dx = ψR(t).

From the above expression, it follows that:

R2(t) = e2ψtR2(0) (65)

for all t ≥ 0. Notice that definitions (63) and (64) imply thatR(0) �= 0
and since ψ ≥ 0, we get from (65) that

R2(t) ≥ R2(0) > 0 (66)

for all t ≥ 0. Using definition (64) and the Cauchy–Schwarz and Holder
inequalities, we obtain the estimate

R2(t) ≤ 2(ψ + λ)2‖h‖2∞‖v[t]‖22 +2|ω|‖h‖2∞‖u[t]‖22 (67)

for all t ≥ 0. However, inequalities (66) and (67) contradict the fact
that limt→∞(‖u[t]‖2) = limt→∞(‖v[t]‖2) = 0.

Therefore, for every input U ∈ C1(R+) with U(0) = u0(0),
the corresponding unique solution (u, v) ∈ (C0(R+;H1(0, 1))∩
C1(R+;L2(0, 1)))2 of the initial-boundary value problem (15)–(18)
does not satisfy limt→∞(‖u‖2) = limt→∞(‖v‖2) = 0. The proof is
complete. �

B. Proof of Proposition 2.2

Consider the transformation (21) for all t ≥ 0 and x ∈ [0, 1]. Note
that (15)–(17) imply the following equation:

∂tw = ψw. (68)

Definitions (19) and (21) give the following equivalence for all t ≥ 0:

(u[t], v[t]) ∈ S ⇔ w[t] = 0 (69)

while (68) gives the implication w[0] = 0 → w[t] = 0 for all t ≥ 0.
The proof is complete. �

C. Proof of Proposition 2.3

Let arbitrary (u0, v0) ∈ H1(0, 1)×H1(0, 1)\S be given. We
show next that for every input U ∈ C1(R+) with U(0) = u0(0),
the unique solution (u, v) ∈ (C0(R+;H1(0, 1))∩C1(R+;L2(0, 1)))2

of the initial-boundary value problem (15)–(18) does not satisfy
limt→∞ v(t, x) = 0 for all x ∈ [0, 1].

For the solution of (15)–(18), the following formulas are valid for
t ≥ 0 and x ∈ [0, 1]:

u(t, x) =

{
u0(x− λt), 0 ≤ t ≤ λ−1x
U(t− λ−1x), t > λ−1x

(70)

v(t, x) = eψtv0(x) + ω

∫ x

0

eψ(t−s)u(s, x)ds. (71)

It follows from (15)–(17) that the following equation holds for all
x ∈ [0, 1] and t > λ−1x:

d

dt

(
v(t− λ−1x, 0)− v(t, x)

)
= ψ

(
v(t− λ−1x, 0)− v(t, x)

)
. (72)

Using (72) and continuity of v, we get for allx ∈ [0, 1] and t ≥ λ−1x

v(t− λ−1x, 0)− v(t, x)

= eψ(t−λ−1x)
(
v0(0)− v(λ−1x, x)

)
. (73)

Since ψ ≥ 0, we get from (73) for all x ∈ [0, 1] and t ≥ λ−1x∣∣v(t− λ−1x, 0)− v(t, x)
∣∣

≥ eψ(t−λ−1x)
∣∣v0(0)− v(λ−1x, x)

∣∣ . (74)
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Inequality (74) combined with the fact that limt→∞ v(t, x) = 0 for
all x ∈ [0, 1] implies that v(λ−1x, x) = v0(0) for all x ∈ [0, 1]. This
equation combined with (71) gives for all x ∈ [0, 1]

v0(0) = eψλ−1xv0(x)

+ ω

∫ λ−1x

0

eψ(λ−1x−s)u(s, x)ds. (75)

Using (70) and (75), we get for all x ∈ [0, 1]

v0(0) = v0(x) + ω

∫ λ−1x

0

e−ψsu0(x− λs)ds. (76)

However, (76) in conjunction with definitions (19) and (20) im-
plies that (u0, v0) ∈ S; a contradiction. Therefore, for every input
U ∈ C1(R+) with U(0) = u0(0), the corresponding unique solu-
tion (u, v) ∈ (C0(R+;H1(0, 1))∩ C1(R+;L2(0, 1)))2 of the initial-
boundary value problem (15)–(18) does not satisfy limt→∞ v(t, x) = 0,
for all x ∈ [0, 1]. The proof is complete. �
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