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Abstract: An adaptive backstepping approach is used to control the longitudinal dynamics of
an Unmanned Air Vehicle (UAV). The nonlinear controller designed makes the system follow
references in the aerodynamic velocity and flight path angle, using the elevator deflections and
the thrust as actuators. Moreover, the (global) solution is valid for all the flight envelope, since
it is based on a general nonlinear model. The adaptation scheme proposed allowed us to design
an explicit controller with a minimal knowledge of the aircraft aerodynamics. Simulations are
included for a realistic UAV model that includes actuator saturation.
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1. INTRODUCTION

In recent years, the interest in unmanned air vehicles
(UAVs) has increased considerably. Not having a pilot
makes aircraft lighter, cheaper and more efficient for mis-
sions such as surveillance or reconnaissance. The absence
of a pilot implies that the automatic flight control system
has an important role in the UAV design process. Conse-
quently, many approaches have appeared in the literature.

Traditionally, flight controllers have been designed based
on a linearized aircraft model for a selected operating
point. Several control techniques are then applied, usually
with excellent results (McLean (1990)). However, when the
flight condition is changed, the model is no longer valid and
the controller performance can be reduced.

Gain scheduling methods have been successfully developed
to deal with different operating points (Nichols et al.
(1993)). However, these methods have the disadvantages
of having to compute different controllers for different
operating points, and needing to estimate the aircraft
stability derivatives on a wide range of flight conditions
(which can be a very difficult task).

Nonlinear control techniques have been considered to over-
come these difficulties. For instance, feedback linearization
(Ochi and Kanai (1991)) has been used to handle the non-
linear equations of motion, generating controllers suitable
for all the flight envelope, if a precise knowledge of the
aircraft model exists. However accurate aerodynamic and
propulsive models are often not available.
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Backstepping is another nonlinear control technique which
can handle the nonlinear equations of motion, if the system
has a cascade structure (Krstić et al. (1995)). If adaptation
laws are also included, the adaptive backstepping control
technique can deal with systems in which parametric
uncertainties are present. This would be very useful for
a flight control system, since aerodynamic and propulsive
models are not known accurately. Thus, model errors can
be explicitly taken into account in the controller design.

Several examples of backstepping applied to flight control
can be found in the literature. For instance, Härkeg̊ard
(2003) develops some aircraft flight controllers which use
this technique; the aerodynamic moments are used as
virtual control signals in the backstepping design, and a
control allocation scheme is used to find the aerodynamic
surface deflections.

In Farrell et al. (2005) an adaptive backstepping flight
controller for a high-performance UAV is developed, guar-
anteeing the Lyapunov stability and considering the pres-
ence of physical constraints in the control system such
as saturations, bandwidth limitations or rate limits. A
linear aerodynamic model is used, and adaptation laws are
implemented to estimate online the stability derivatives in
the model.

A similar approach is described in Sonneveldt et al. (2007).
In that work a constrained adaptive backstepping con-
troller is designed for the F-16/MATV simulation model,
using neural networks to model its aerodynamics, whose
parameters are estimated through adaptation laws.

The goal of this work is to design a control law able to
deal with the aircraft longitudinal dynamics, for all the
normal operating regimes of the aircraft, with a minimal
information of the aerodynamic model. The controller
must be able to make the system seek the references in



the aerodynamic velocity and flight path angle, using as
actuators the elevator deflections and the thrust level.

An adaptive backstepping strategy is proposed, which
exploits the structure of the system and general properties
from aerodynamics. The nonlinear longitudinal aircraft
model is used, and since only some specific properties
of the aerodynamic coefficients are known, an adaptation
law is designed for their online estimation. The resulting
control laws are explicit and simpler than those produced
by the previously cited works, and do not require much
computational power on board.

Simulations are included for a realistic UAV model that
includes actuator saturation and nonlinear aerodynamics.
The model is an accurate description of the Cefiro air-
craft (Bernal et al. (2009)), an UAV recently designed and
constructed in the University of Seville.

The paper is structured as follows: First, in Section 2
aircraft model used in this work is presented. The con-
troller design is detailed in Section 3, which begins with
the velocity controller (3.1) and follows with the flight
path angle controller (3.2). Simulation results are shown in
Section 4. Section 5 closes the paper with some concluding
remarks.

2. AIRCRAFT MODEL

Let (Va, γ, θ, q) ∈ R4 be the state vector where Va is
the aerodynamic velocity, γ is the flight path angle, θ is
the pitch angle, q is the pitch angular velocity and, let
(FT , δe) ∈ R2 be the control input vector where FT is the
engine thrust and δe the elevator angle. The equations of
motion of the aircraft longitudinal dynamics from (Stevens
and Lewis (2003)) read

V̇a =
1
m

(−D + FT cosα−mg sin γ) , (1)

γ̇ =
1

mVa
(L+ FT sinα−mg cos γ) , (2)

θ̇= q, (3)

q̇ =
M(δe)
Iy

, (4)

where m and Iy are the mass and the inertia; Va is the
aerodynamic velocity; γ is the flight path angle; θ is the
pitch angle; q is the pitch angular velocity; FT is the engine
thrust and, finally, L, D and M(δe) are the aerodynamics
forces lift, drag and pitching moment, respectively. In
Fig. 1 a detailed definition of the forces, moments, and
velocities are shown. Note that α = θ − γ, where α is the
angle of attack.

Fig. 1. Definition of forces, moments and angles.

As usual in aerodynamic modeling, the aerodynamic forces
and moments are computed through their non-dimensional
coefficients, as follows:

L =
1
2
ρV 2

a SCL, D =
1
2
ρV 2

a SCD, M =
1
2
ρV 2

a Sc̄Cm, (5)

where ρ is the air density, S is the reference wing surface,
c̄ is the mean chord and CL, CD and Cm are the lift, drag
and pitching moment coefficients. Moreover, we consider
the following models for the drag and moment coefficients
(see for instance Etkin and Reid (1996); Pamadi (2004)
and Schmidt (1998)):

CD =CD0 + k1CL + k2C
2
L, (6)

Cm =Cm0 + Cmαα+ Cmqq + Cmδe δe, (7)

where CD0 , k1, k2, Cm0 , Cmα , Cmq and Cmδe are aircraft
aerodynamic coefficients, and δe is the elevator angle. In
this work, CD0 , k1, k2 , Cm0 , Cmα and Cmq are considered
to be unknown parameters, while Cmδe is known.

Regarding the lift coefficient model, the following assump-
tion is done, which it is satisfied by conventional airplanes
in the non-stalled regime 1 .
Assumption 1. The lift coefficient CL is only a function
of α. The reference axis xB is chosen so that CL(0) = 0,
i.e. xB is parallel to the aircraft zero-lift line. Then, the
property x · CL(x) ≥ 0 is satisfied for all x ∈ R.

3. CONTROLLER DESIGN

From a control viewpoint, (Va, γ, θ, q) ∈ R4 is the state
vector and (FT , δe) ∈ R2 is the control input vector.
Thus, the control objective is to make the system seek
known references in velocity and flight path angle using
the elevator and thrust as control signals.

In order to simplify the controller design, we first con-
sider velocity dynamics, given by Equation (1), and then
the pitch dynamics given by (2)–(4). Thus, two different
controllers are designed: the aerodynamic velocity is con-
trolled using only thrust (FT ) and the flight path angle
(pitch dynamics) is controlled with the elevator angle (δe).

3.1 Control of aerodynamic velocity

Substituting the moment model D from (5) into (1), the
velocity dynamics reads

V̇a =
1
m

(
−1

2
ρV 2

a SCD + FT cosα−mg sin γ
)
. (8)

The engine thrust FT is the control input, while the α and
γ are considered to be measurable. In addition, as is shown
in (6), the following drag model is considered:

CD = CD0 + k1α+ k2α
2, (9)

where CD0 , k1 and k2 are unknown parameters. Denote Vr
to the reference velocity and define the error zV := Va−Vr.
Thus, the evolution of the error from (8) becomes

1 See for instance Abot and Von Doenhoff (1959), where an extensive
compendium of lift curves with this property can be found.



żV =− 1
2m

ρ (zV + Vr)
2
SϕV (α)T · θV + FT

cosα
m

−g sin γ − V̇r
=−β1

(
z2
V + V 2

r + 2zV Vr
)
ϕV (α)T · θV

+FT
cosα
m
− g sin γ − V̇r, (10)

where we have defined

ϕV (α) :=
[
1 α α2

]T
,θV := [CD0 k1 k2]T, β1 :=

ρS

2m
,

(11)
with θV ∈ R3 the unknown parameters vector, the vector
ϕV ∈ R3 defined through the drag model (9) as CD =
ϕV (α)T · θV > 0 and, the scalar parameter β1 > 0. Now
we are in position to state our first result.

Proposition 1. Consider the system (10). Let θ̂V be the
estimate of θV defined in (11), then the adaptative-state
feedback given by

FT =
m

cosα

(
g sin γ + V̇r + β1(z2

V + V 2
r )ϕ(α)T · θ̂V

−κV1zV

)
, (12)

˙̂
θV =−β1

(
z3
V + zV V

2
r

)
ΓV ϕV (α), (13)

guarantees global boundedness of zV and θ̂V and conver-
gence of zV to zero.

Proof. Define the Lyapunov function as

WV =
1
2
z2
V +

1
2
θ̃
T

V ΓV −1θ̃V , (14)

where θ̃V := θV − θ̂V is the estimation error vector
and ΓV = ΓV T > 0 is the adaptation gain matrix.
Thus, the derivative with respect to time of (14) along
the trajectories of (10) reads

ẆV = zV
(
−β1

(
z2
V + V 2

r + 2zV Vr
)
ϕV (α)T · θV

+FT
cosα
m
− g sin γ − V̇r

)
+ θ̃

T

V ΓV −1 ˙̃
θV

=−2β1VrϕV (α)T · θV z2
V − κV1z

2
V

−β1zV (z2
V + V 2

r )ϕV (α)T · θ̃V + θ̃
T

V ΓV −1 ˙̃
θV

=−2β1VrϕV (α)T · θV z2
V − κV1z

2
V

+θ̃
T

V

(
ΓV −1 ˙̃

θV − β1zV (z2
V + V 2

r )ϕV (α)
)
, (15)

where we replaced FT by (12). By construction the first
and second terms of (15) are negative and, the last term
is rendered zero through the adaptation law (13) and

noting that ˙̂
θV = − ˙̃

θV . Thus, since WV is positive definite
and radially unbounded and ẆV ≤ 0 then, by LaSalle-
Yoshizawa theorem we conclude global boundedness of zV
and θ̂V and convergence of zV to zero.

3.2 Control of the flight path angle

The pitch dynamics are governed by equations (2)–(4),
which plugging (5) become

γ̇ =
1

mVa

(
1
2
ρV 2

a SCL + FT sinα−mg cos γ
)
, (16)

θ̇= q, (17)

q̇ =
ρVaSc̄

2Iy

(
Cm0 + Cmαα+ Cmqq + Cmδe δe

)
, (18)

where the Va and FT are those obtained in the previous
step design of Subsection 3.1.

Assumption 2. The following usual assumptions are made:

- Since γ ≈ γref then it is assumed that cos γ =
cos γref , as proposed in reference Härkeg̊ard (2003).

- γ̇ref is assumed to be zero.
- The aircraft engines cannot produce negative thrust.

Thus, it is satisfied that FT ≥ 0.

Under Assumption 2 the equation (16) becomes

γ̇ = f(α) = f(θ − γ), (19)

where the scalar function f is defined as

f(α) :=
1

mVa

(
1
2
ρV 2

a SCL(α) + FT sinα−mg cos γref

)
.

Property 1. Let α0 be the trim angle of attack, that is
f(α0) = 0 when γ = γref , then, under the Assumption 1,
the function f(α) satisfies (α − α0)f(α) > 0 . This trim
angle is supposed to be known.

The control objective is to make the equilibrium (γ, θ, q) =
(γref , θref , 0) asymptotically stable, where γref is given
and θref is computed from θref = γref + α0. To design
the controller we shift the equilibrium to zero defining the
following set of error coordinates

z1 = γ − γref , z2 = θ − γref − α0 and z3 = q. (20)
The equations (16)–(18) in the new set of coordinates read

ż1 = η(z2 − z1), (21)

ż2 = z3, (22)

ż3 = β2 (Cm0 + Cmα(z2 − z1 + α0)

+Cmqz3 + Cmδe δe
)
, (23)

where we defined β2 := ρV 2
a Sc̄

2Iy
and η(x) := f(x + α0).

Notice that the property 1 makes the scalar function η(x)
to satisfy x · η(x) ≥ 0.
Remark 1. In Härkeg̊ard (2003), a backstepping control
law was designed for the cascade structure (21)–(23), using
in (4) the aerodynamic moment model M as the control
input and, here, we use δe through M(δe). Assuming that
f satisfies property 1 and knowledge of α0 a control alloca-
tion scheme was used to estimate the elevator deflections,
using an assumed aerodynamic moment model. In this
work, we use the same idea to generate a backstepping con-
troller with no need of exact knowledge of f , and extend
it using adaptive backstepping so that an aerodynamic
moment model is not needed. Thus, the main difference is
that M(δe) is given by (5) and (7) with the aerodynamic
coefficients of (7) unknown.

Now the control objective is to make the origin of system
(21)–(23) (globally) asymptotically stable. Thus, roughly



speaking, we design a controller using minimal information
about the aerodynamic model of the aircraft. To do so,
we stabilize each step of the cascade explicitly using
backstepping approach.

Step 1. First, equation (21) is stabilized using z2 as a
virtual control. Defining the Lyapunov function as

W1 =
1
2
z2

1 ,

the derivative reads Ẇ1 = z1η(z2 − z1) and then we select
the control z2 = u1(z1) = −κγ1z1. Thus,

Ẇ1|z2=u1(z1) = z1η(−(1 + κγ1)z1),

and hence Ẇ1|z2=u1(z1) is negative definite for κγ1 > −1.

Step 2. Defining now the error variable
z̃2 := z2 − u1(z1),

the equations (21)–(22) can be rewritten as

ż1 = η (ξ) , (24)
˙̃z2 = z3 + κγ1η (ξ) , (25)

where, only for compactness, we define ξ as
ξ := − (1 + κγ1) z1 + z̃2,

and then
ξ̇ = −η(ξ) + z3.

The Lyapunov function for (24)–(25) is

W2 = c1W1 +
1
2
z̃2

2 + F (ξ),

where F (ξ) is a positive definite function to be defined
further. Calculating Ẇ2 we get

Ẇ2 = c1z1η(ξ) + z̃2 (z3 + κγ1η(ξ)) + F ′(ξ) (−η(ξ) + z3)

= (c1z1 + κγ1 z̃2 − F ′(ξ)) η(ξ) + (z̃2 + F ′(ξ)) z3. (26)

By selecting the virtual control as z3 = u2(z̃2) = −κγ2 z̃2,
κγ2 > 0, and F ′(ξ) = c2η(ξ), c2 > 0, then (26) becomes

Ẇ2 = (c1z1 + (κγ1 − κγ2c2)z̃2) η(ξ)− c2η2(ξ)− κγ2 z̃2
2 ,

which can be made negative definite if c1 = (1 +
κγ1)(κγ2c2 − κγ1), with κγ2c2 > κγ1 . Finally, Ẇ2 reads

Ẇ2 = −(κγ2c2 − κγ1)ξη(ξ)− c2η2(ξ)− κγ2 z̃2
2 ,

where the first term is negative definite by the property 1,
and in turn F is positive definite by the properties of η(ξ).
Remark 2. This virtual control law (Härkeg̊ard (2003))
does not need the function f(α), since the function F (ξ)
(first introduced in Krstic and Kokotovic (1995)) has been
used to avoid cancellations of the terms associated to η(ξ),
which would introduce extra terms in the controller. Thus,
this design leads to a robust control law.

Step 3. In this last step, we extend the backstepping
design to generate the elevator deflections laws. As com-
mented above the novelty is an adaptive scheme used
to estimate online the aerodynamic moment coefficients.
Moreover, the control law is designed without cancellation
of terms coming from η(ξ) in the previous step design.

Defining the error as z̃3 := z3 − u2(z1, z2) yields

ż1 = η (ξ) , (27)
˙̃z2 = z̃3 − κγ2 z̃2 + κγ1η (ξ) , (28)
˙̃z3 = β2

(
Cm0 + Cmα(ξ + α0) + Cmqz3 + Cmδe δe

)
+κγ2 (z̃3 − κγ2 z̃2 + κγ1η(ξ)) , (29)

where δe is the elevator deflection, which is the real control
input of the aircraft, and Cm0 , Cmα , Cmq are the un-
known aerodynamic coefficients. The adaptive controller
proposed here is designed to stabilize equations (27)–(29)
with an adaptation law to estimate these parameters.

First notice that the equation (29) can be written as
˙̃z3 = β2ϕ

T
γ ·θγ +βδeδe+κγ2 (z̃3 − κγ2 z̃2 + κγ1η(ξ)) , (30)

where βδe := ρV 2
a Sc̄

2Iy
Cmδe , θγ := [Cm0 Cmα Cmq ]

T ∈ R3 is
the unknown parameters vector and ϕγ := [1 ξ + α0 z̃3 −
κγ2z̃2]T ∈ R3. Thus, the compound Lyapunov function for
this step is

W3 = c3W2 +
1
2
z̃2

3 +
1
2
θ̃
T

γ Γγ−1θ̃γ , (31)

where c3 > 0, Γγ = ΓγT > 0 is the adaptation gain
matrix, θ̂γ is the estimate of θγ and θ̃γ := θγ − θ̂γ is
the estimation error vector.

The Lyapunov function derivative becomes

Ẇ3 = c3
[
−(κγ2c2 − κγ1)ξη(ξ)− c2η2(ξ)− κγ2 z̃2

2

+z̃3 (z̃2 + c2η(ξ))] + z̃3

[
β2ϕ

T
γ · θγ + βδeδe

+κγ2 (z̃3 − κγ2 z̃2 + κγ1η(ξ))] + θ̃
T

γ Γγ−1 ˙̃θγ . (32)

In the former equation, there is a cross-term z̃3η(ξ) whose
sign is undefined. If it is cancelled, the function η(ξ) would
appear in the controller and the benefit of the controller
shown in the previous backstepping step would be lost.
Instead, grouping the terms η(ξ)2, z̃2

3 and z̃3η(ξ) and
completing squares as follows

−c3c2η(ξ)2 + (c3c2 + κγ2κγ1)z̃3η(ξ)

=− (
√
c3c2η(ξ)− λz̃3)2 + λ2z̃2

3 ,

where we have defined

λ :=
c3c2 + κγ1κγ2

2
√
c3c2

.

Completing squares also in the cross-terms z̃3z̃2, we have

−c3κγ2 z̃2
2 −

(
κ2
γ2 − c3

)
z̃3z̃2

=−

(
κ2
γ2 − c3

2√c3κγ2
z̃3 +

√
c2κγ2 z̃2

)2

+

(
κ2
γ2 − c3

)2
4c3κγ2

z̃2
3 .

Thus, (32) can be rewritten as

Ẇ3 =−c3(κγ2c2 − κγ1)ξη(ξ)− (
√
c3c2η(ξ)− λz̃3)2

−

(
κ2
γ2 − c3

2√c3κγ2
z̃3 +

√
c2κγ2 z̃2

)2

+ z̃3

[
β2ϕ

T
γ · θγ

+βδeδe +

(
λ2 +

(
κ2
γ2 − c3

)2
4c3κγ2

+ κγ2

)
z̃3

]
+θ̃

T

γ Γγ−1 ˙̃
θγ . (33)



This derivative is definite negative choosing the following
control and adaptation law

δe =
1
βδe

(
−κγ3 z̃3 − β2ϕ

T
γ · θ̂γ

)
, (34)

˙̂θγ =− ˙̃θγ = β2z̃3Γγϕγ , (35)

with κγ3 > λ2 + (κ2
γ2
−c3)2

4c3κγ2
+ κγ2 > 0.

We formally summarize the result obtained in this section
in the following proposition.
Proposition 2. Consider the system (16)–(18) under As-
sumptions 1 and 2. Then, the adaptative-state feedback
given by

δe =
1
βδe

(
− κγ3 (q + κγ2 (θ − γref − α0 + κγ1 (γ − γref )))

−β2ϕ
T
γ · θ̂γ

)
, (36)

˙̂
θγ = β2

(
q + κγ2 (θ − γref − α0 + κγ1 (γ − γref ))

·Γγϕγ
)
, (37)

with c2, c3, κγ1 , κγ2 , κγ3 positive and satisfying

κγ3 >

(
c3c2 + κγ1κγ2

2
√
c3c2

)2

+

(
κ2
γ2 − c3

)2
4c3κγ2

+ κγ2 ,

assures that the equilibrium manifold (γ, θ, q, θ̂γ) =
(γref , θref , 0, θ̂

∗
γ) is globally asymptotically stable, for

some constant θ̂
∗
γ .

Proof. First note that the closed-loop system is time-
invariant. The proposed Lyapunov function (31) is posi-
tive definite and radially unbounded which, together with
the adaptative-state feedback (36)–(37), or equivalently
(34)-(35), makes Ẇ3 ≤ 0 and then, by LaSalle-Yoshizawa
theorem, we conclude global boundedness of (γ, θ, q, θ̂γ).
LaSalle’s invariance principle assures that all trajecto-
ries converge to the largest invariant set contained in
{(γ, θ, q, θ̂γ) ∈ R4 : Ẇ3 = 0}. Since Ẇ3 = 0 implies
˙̃z3 = 0 then analyzing backwards the residual dynamics,
it is straightforward to see that the equilibrium manifold
(γ, θ, q, θ̂γ) = (γref , θref , 0, θ̂

∗
γ) is globally asymptotically

stable, or equivalently (z̃3, z̃2, z1, θ̂γ) = (0, 0, 0, θ̂
∗
γ).

4. SIMULATION RESULTS

In this section, simulation results of the controllers de-
veloped are shown. The simulation model is composed of
Equations (1)–(4), and the aerodynamic model of Cefiro
UAV, developed in the University of Seville (Bernal et al.
(2009)). For a more realistic simulation, saturations in the
control signals are also considered. Thus, the following
limits are introduced in the thrust and elevator angle:

FT ∈ [4.9 N, 117.6 N] , δe ∈ [−30o, 30o] . (38)

The tuning parameters for the velocity controller are
κV1 = 10; ΓV = 0.001I3,

where I3 is the identity matrix of dimension 3. For the
flight path angle controller, the parameters are
κγ1 = 0.2; κγ2 = 0.5; κγ3 = 1.5; Γγ = 0.001I3.

The initial estimate of the unknown parameters is

θ̂V = [ 0.05 0.05 0.05 ]T , θ̂γ = [−0.1 −1 −10 ]T

The reference maneuver selected is as follows. The velocity
profile consist on three segments with constant velocity,
separated by uniform acceleration and uniform decelera-
tion segments. The flight path angle profile consist on two
leveled flight segments, with a climb of 10o between them.

Fig. 2 shows the time evolution of the aerodynamic ve-
locity. After an initial period with some oscillations in
which saturations in thrust occurs, the velocity controller
achieves an excellent agreement with the reference. Fig. 4
shows the control signals. In the figure, the dashed line
represent the computed control signal, whereas the solid
line represents the commanded control signal (with satura-
tions). Regarding the flight path angle controller, in Fig. 3
it can be seen that the reference seeking is achieved, but
a slower response is obtained since small gains have been
selected to avoid excessive oscillations. Fig. 5 shows other
state variables such as the pitch and attack angles, and
the pitch angular velocity, which have reasonable values
throughout the maneuver. Finally, Figure 6 shows the
time evolution of the estimated parameters towards certain
equilibrium values.
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Fig. 2. Time evolution of the aerodynamic velocity (solid),
compared with its reference (dashed).

5. CONCLUSION

We presented the design a simple adaptive controller
for the longitudinal flight dynamics of an UAV that is
able to make the aircraft follow references in velocity
and flight path angle. The design is explicit, simple and
easy to implement, since it does not require knowledge
of the aerodynamics model and does not need much
computational power. In simulations, it is shown that the
controller can make the system follow the references, even
in the presence of actuator saturations.

The simulations were performed using a realistic UAV
model, the Cefiro aircraft developed by the University of
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Fig. 3. Time evolution of the flight path angle (solid)
compared with its reference (dashed).
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Fig. 4. Control signals: computed (dashed) and com-
manded (solid).

Seville. As a next step the control laws will be implemented
on board the aircraft to perform experiments and further
validate the results.
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