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A B S T R A C T

This work presents a closed-loop guidance algorithm for six-degrees of freedom spacecraft rendezvous with a
passive target flying in an eccentric orbit. The main assumption is that the chaser vehicle has an attitude control
system, based on reaction wheels, providing the necessary torque to change its orientation whereas the number
of thrusters is arbitrary. The goal is to design fuel optimal maneuvers while satisfying operational constraints and
rejecting disturbances. The proposed method is as follows; first, the coupled translational and angular dynamics
are transformed to equivalent algebraic relations using the relative translational states transition matrix and the
attitude flatness property. Then, a direct transcription method, based on B-splines parameterization and dis-
cretization of time continuous constraints, is developed to obtain a tractable static program. Finally, a Model
Predictive Controller, based on linearization around the previously computed solution, is considered to handle
disturbances. Numerical results are shown and discussed.

1. Introduction

Autonomous spacecraft rendezvous and docking is becoming a more
important topic in the space industry as access to space continues in-
creasing. From the first rendezvous attempts (Gemini missions) to the
Rosetta mission in 2014, the rendezvous maneuver has played a key
role in different kinds of space missions such as Apollo, ISS, Hubble, etc.
After decades of development, many approaches to achieve rendezvous
for different mission profiles have been used, see Ref. [1] for an his-
torical review or [2] for the basics. Nowadays, an increasing interest to
demonstrate autonomous rendezvous and flight formation operations
for lightweight and low-power spacecraft is arising with CPOD, PRISMA
and PROBA-3 missions as examples, see Refs. [3–5].

Typically, the rendezvous problem has been widely studied just
considering orbit control making the assumption that translational and
rotational motions are decoupled. This problem has been usually
tackled by means of direct transcription methods which transform the
optimal control problem into a discrete optimization problem as in
Refs. [6–10] among others. The main advantage of these methods,
against indirect ones, is that several kinds of constraints can be easily
added to the problem such as approach corridors through the docking
axis (V-bar or R-bar guidance), way-points, thrust direction inhibition,
obstacle avoidance or fault-tolerant trajectories.

However, orbit and attitude control subsystems are mutually

coupled, which is mainly due to the dependence of the thrusters or-
ientation on the relative attitude between target and pursuer (at least in
the short-term). Spacecraft attitude planning for direction reorientation
maneuvers, which are the ones needed to point the thrusters in an
adequate way, is a topic with a vast literature. Reference [11] proposed
two dimensional attitude profiles with time derivatives saturation up to
the jerk. Model Predictive Control (MPC) techniques based on linear-
ization around a set point have been used in the works of [12,13]. A
remarkable approach is the one followed by Refs. [14,15] which is
based on the attitude dynamics flatness property (see Ref. [16] for more
details about flatness theory) that allowed them to transform the atti-
tude dynamics into algebraic relations avoiding the need of numerical
integration.

Regarding previous works on six-degrees of freedom relative mo-
tion, adaptive tracking controllers based on feedback has been con-
sidered by Ref. [17] for rendezvous and by Refs. [18,19] for flight-
formation while strategies based on backstepping control have been
employed by Ref. [20] for flight-formation and by Refs. [21,22] for
rendezvous operations. Sliding mode control has also been explored by
Ref. [23]. References [24–27] proposed a two stages approach, first
they used an optimal control method for the translational motion, LQR
in Refs. [24–26] or convex optimization in Ref. [27], and then they
designed an attitude controller to obtain the orientations demanded by
the translational plan. Reference [28] proposed a covering map based
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on quaternions to address 6-DOF open-loop motion planning based on
basis functions and closed-loop kinematic feedback. The authors of the
present paper proposed in Ref. [29] a method based on the translational
state transition matrix and the attitude flatness property to solve a non-
linear programming (NLP) optimization problem . Amongst the pre-
vious works, dual quaternions, which contain information of both
translational and rotational states, were used in Refs. [17,19]. Con-
cerning the number of thrusters [17,19,20], assumed a pair of them
available on each direction, six in total, whereas [24] considered four
thrusters and [22,25–27,29] studied the case of single-thruster opera-
tions. The results of [28] are applied to both a classical six thrusters
configuration and a single thruster one. The previous works assumed
that torque is provided by an independent attitude control system (ACS)
system whereas [21] considered six thrusters in a cuboid layout con-
figuration providing both force and torque. Apart from rendezvous and
flight-formation operations, coupled motion has also been studied for
geostationary satellites station-keeping [30] and solar sails control
[31].

In this paper, we consider a spacecraft equipped with reaction
wheels and an arbitrary number of thrusters which seeks to rendezvous
with a target flying in an eccentric orbit. The employed formulation
allows to consider the coupled problem in an optimal way without any
assumptions on the number of available thrusters. This increases the
applicability of the algorithm to different types of missions. In a similar
way as [32], a hybrid system is considered where the propulsive action
is modelled as impulses but the attitude control is time continuous.

The proposed solution method transforms the time-continuous dy-
namics into algebraic relations by means of the translational state
transition matrix and the attitude flatness property. Then, this equiva-
lent optimal control problem is parameterized and discretized to obtain
a finite tractable static program. Once an open-loop solution is ob-
tained, a closed-loop MPC scheme, see Ref. [33], based on linearization
around the previously computed solution, is developed to reject dis-
turbances and cope with unmodelled dynamics.

The structure of this paper is as follows. Section 2 describes the
coupled translational and angular motion for spacecraft rendezvous.
Next, Section 3 presents the time-continuous rendezvous problem and
its conversion to an equivalent problem. Section 4 describes the em-
ployed methodology to solve this equivalent problem by means of
parameterization and discretization. Section 5 presents the linearized
close-loop MPC scheme. Section 6 shows results for cases of interest.
Finally, Section 7 closes this paper with some additional considerations.

2. Model of spacecraft rendezvous

In this section, a six-degrees of freedom model for spacecraft ren-
dezvous is presented. Firstly, the translational relative motion between
the two vehicles is derived; secondly, the chaser angular motion model
is described; and finally, both translational and angular motions are
coupled.

2.1. Translational motion

There is a considerable number of translational dynamic models for
spacecraft rendezvous; the one to be chosen depends on the objectives
and constraints on the mission. For instance, if the target vehicle is
orbiting in a closed Keplerian orbit, the linearized equations of the
relative position between an active chaser spacecraft and a passive
target vehicle can be expressed in a cartesian reference frame as in Ref.
[34], leading to the well known Tschauner-Hempel equations, or by
means of its relative orbital elements as in Ref. [35]. In this work, a
cartesian reference frame is used
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where x, y and z denote the position of the chaser in a local-vertical/
local-horizontal (LVLH) frame of reference fixed on the center of
gravity of the target vehicle (see Fig. 1), in which z refers to the radial
position (positive pointing towards the centre of the Earth), y to the
cross-track position (opposite to the orbit angular momentum) and x
closes the right-handed system (note that x is not necessarily aligned
with the target velocity due to eccentricity). The velocity of the chaser
in the LVLH frame is given by ẋ , ẏ and ż; the variables Fx p, , Fy p, and Fz p,
are the projections on the LVLH frame of the thrust force exerted by
each one of the nT thrusters; and m is the spacecraft mass which, for
close enough rendezvous operations, is considered constant. The vari-
ables rt and ν are the target radius and true anomaly along its orbit,
which are a function of time and its orbital elements (semi-major axis
and eccentricity). The gravitation parameter of the Earth is
μ = 398600.4 km3/s2.

Assuming that the forces are linear and the target orbit is known as a

Nomenclature

B Input matrix
B Chaser body frame
cy, cz Line of sight (LOS) region parameters
E Mathematical expectation
e Rotation axis
e Target eccentricity
H Angular momentum
I Chaser inertia matrix
I Inertial geocentric frame
Id Identity matrix
k Time interval index
L Local-vertical/local-horizontal frame
Ni Multivariate normal distribution of dimension i
Np Planning horizon
n Target orbit angular velocity
nL Line of sight (LOS) constraint grid size

nM Reaction wheels constraint grid size
nT Number of thrusters
p Thruster index
R Rotation matrix
r Current MPC step
rt Target position with respect to Earth
s Standard deviation
T Interval duration
t Time
u Velocity increment
w Thruster pointing vector
x, y, z Relative position
Θ Matrix full of zeros
θrot Rotation angle
μ Earth gravitational parameter
σ Modified Rodrigues parameter
Φ Relative translational transition matrix
ω Chaser angular velocity
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function of time, the state space model, tx( ) = x y z x y z[ , , , ˙ , ˙ , ˙ ]T , is
governed by the linear time varying system (LTV) given by Eqs. (1)–(3).
The independent variable of this LTV system can be changed from time
to true anomaly leading to the simplified Tschauner-Hempel equations,
see Ref. [34]. A formal solution of the Tschauner-Hempel model by
means of its state transition matrix, known as the Yamanaka-Ankersen
matrix, was proposed by Ref. [36]. Under all the previous assumptions,
this transition matrix is computed by means of its fundamental matrix
and inverse without need of numerical integration. In this work, fol-
lowing [10] (note that the axes are not the same as in this work), the
Yamanaka-Ankersen state transition matrix is expressed by means of
the eccentric anomaly E,

= −t tΦ Y Y( , ) .E t E t0 ( ) ( )
1

0 (4)

Note that a one-to-one relation exist between time and eccentric
anomaly through the Kepler equation

− = −n t t E e E( ) sin ,p (5)

where tp is the time at periapsis and is used as a reference point to
measure E. The time tp is chosen such that it is equal or less than the
starting manoeuvre time denoted by t0 (substracting, if necessary, any
number of orbital periods). Kepler's equation (5) is not analytically
invertible, but its inverse can be found numerically with any desired
degree of precision (see any Orbital Mechanics reference, such as [37]).

Using the aforementioned state transition matrix, Eq. (4), and
considering, as a simplification, an impulsive model, Eq. (7), the
translational states transition equation is given by
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where the input matrix is B = ×Θ Id[ , ]T
3 3 , and the propulsive

control signal tu( ) is modelled as impulses (i.e. instantaneous changes
of velocity) which describe with adequate accuracy a typical chemical
thruster
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being δ the Dirac delta function, ΔVp∈ ℝ3 the velocity increment given
by the thruster p and Np+1 ∈ ℕ the number of thruster firings during
the maneuver.

2.2. Angular motion

In this section, the attitude representation parameter is chosen and
some of their properties are presented. Then, the angular dynamics of a
spacecraft considering only internal torques, which are the ones

produced by reaction wheels, is derived. Finally, the attitude flatness
property of the resulting angular dynamics is introduced (this property
will be then exploited in Section 3).

2.2.1. Attitude representation and angular dynamics
In this work, the modified Rodrigues parameters (MRP) re-

presentation (see Refs. [38,39] for more details about MRP) is chosen
rather than the widely used attitude quaternion. The modified Ro-
drigues parameters have the advantage of being a minimal attitude
representation and are easier to linearize than attitude quaternions
(incremental addition does not work for quaternions). Moreover, the
unit-norm constraint of attitude quaternions is avoided in the problem
formulation. The counterpart is that MRP suffer singularities when re-
presenting 3D rotations. The MRP are denoted as σ = σ σ σ[ , , ]T

1 2 3 and
its relation with the rotation angle, θrot , and axis, e, is

=σ θetan( /4),rot (8)

where singularities arise when θrot=± π2 (2j-1)π with j ∈ . However,
they can be avoided by constraining ∈ −θ π π( 2 , 2 )rot . The rotation
matrix to change a vector from one reference frame to another is given
by

= +
− −
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where ∈× ×σ 3 3 is the cross product matrix, see Ref. [37]. The attitude
evolution of the chaser is defined by the kinematic and dynamic
equations. The translational equations are expressed on a local frame so
it is of interest to work with the attitude of the body frame with respect
to the LVLH frame as in Ref. [37]. The kinematics are given by

= −σ σ ω σ ωt t t t tC R˙ ( ) ( ( ))[ ( ) ( ( )) ( )],L I/ (10)

being ω = ω ω ω[ , , ]T
1 2 3 the angular velocity of the chaser body

frame with respect to the inertial frame and ωL I/ = −ν[0, ˙ , 0]T the an-
gular velocity of the LVLH frame with respect to the inertial frame
expressed on the local frame. The matrix C has the following expression
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Additionally, the following equation describes the angular mo-
mentum variation, expressed on the chaser body frame, when the only
considered torques are internal to the system (the ACS consists of re-
action wheels)

+ + × =ω ωt t tI H H˙ ( ) ˙ ( ) ( ) 0,rw tot (12)

where ∈ ×I 3 3 and ∈Htot
3 are, respectively, the moment inertia

matrix and the angular momentum of the spacecraft whereas ∈Hrw
3

is the angular momentum of the reaction wheels. Note that Eq.10–12
give the attitude evolution of the body frame, B, with respect to the
inertial frame, I. From the fact that no external torques are applied, the
spacecraft angular momentum is constant

= + ≡t tH H H( ) ( ) constant,tot b rw (13)

where tH ( )b = ω tI ( ) is the angular momentum of the platform. The
attitude control signal is the exerted torque by the reaction wheels
through its angular momentum variation, tḢ ( )rw .

2.2.2. Attitude flatness property
The angular motion given by Eq. (10) and Eq. (12) is non-linear,

hence accounting for them in the resolution of an optimal control
problem usually require numerical integration, see Ref. [40]. However,
the considered angular dynamics has the flatness property and it is
called a flat system, see Ref. [14].

Fig. 1. LVLH frame.
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Remark 1. a flat system has a flat output which can be used to
explicitly express all states and inputs in terms of the flat output and a
finite number of its derivatives, see Ref. [16].

Following [14], the attitude representation parameter σ t( ) is chosen
as the flat output. The differential equations of the angular motion, Eq.
(10) and Eq. (12), can be transformed into algebraic relations, as a
function of the flat output and its derivatives. Solving the angular ve-
locity in Eq. (10) and deriving the obtained expression with respect to
time

= +−ω σ σ σ ωt C R( ) ( ) ˙ ( ) ,L I
1

/ (14)

= + +−ω σ σ σ ω σ ωt C − Ċ σ C σ σ̇ R R˙ ( ) ( )( ¨ ( ) ( ) ) ˙ ( ) ( ) ˙ ,L I L I
−11
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Introducing Eq.14 and 15 into Eq. (12), the angular momentum
variation of the reaction wheels is explicitly obtained as

= − +
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Using the angular momentum conservation, Eq. (13), the reaction
wheels angular momentum can also be expressed as a function of the
flat output and its derivatives

= − − σ σ ωtH H I(C + R σ )( ) ( ) ˙ ( ) ,rw tot L/I
1 (17)

Note that time dependencies have been omitted at the right-hand side
of Eq.14–17 for clarity.

2.3. Coupling between translational and angular motion

Now, the translational and angular motion coupling between the
previous models is presented. The velocity increment given by each
thruster p on the LVLH frame, denoted by L, is

= ≥σt t u t u tV R wΔ ( ) ( ( )) ( ), ( ) 0,p k
T

k p p k p k (18)

where ∈wp
3 is a unit-norm vector representing the p thruster or-

ientation on the pursuer body frame and ∈u t( )p k is the impulse
amplitude of the thruster p at time tk. Introducing Eq. (18) into Eq. (7)
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The coupling between translational and angular motion arises when
the translational control input given by Eq. (19) is introduced into the
translational states transition equation given by Eq. (6) leading to
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Note that the propulsive action projected on the LVLH frame, tu( ),
depends on the vehicle attitude in a non-linear way by means of the
rotation matrix between the pursuer body frame and the LVLH frame,
see Eq. (9). The angular motion is not affected by the translational
motion (gravity-gradient effects are neglected), hence Eq. (10) and Eq.
(12) still hold for the coupled model.

3. Rendezvous planning problem

In this section, the objective function and constraints are presented.
In a generic form, the rendezvous optimal control problem states as
follows
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where tr( ) = x t y t z t[ ( ), ( ), ( )]T , tv( ) = x t y t z t[ ˙ ( ), ˙ ( ), ˙ ( )]T and
tr ( )t = −r t[0,0, ( )]t

T . Note that time dependencies have been omitted at
the right hand side of the translational dynamics equation for clarity.
The control inputs are the thrusters impulses amplitudes at the firing
times (which are known beforehand) and the reaction wheels angular
momentum variation. Next the objective function and constraints ap-
pearing in (21) are detailed in Section (3.1) and Section (3.2) respec-
tively.

3.1. Objective function

The chosen objective function seeks to minimize fuel consumption,
which is equivalent to minimize the L1-norm of the applied impulses
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J
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p
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Note that the absolute value symbol is not needed since u t( )p k is always
positive because of Eq. (18). Moreover, reaction wheels use electrical
power and therefore their associated cost do not appear in Eq. (22).

3.2. Constraints of the problem

Three sets of constraints are considered in this paper. Firstly, path
constraints on the relative translational states (g1); secondly, the control
variables (impulses amplitudes and reaction wheels angular mo-
mentum) are bounded (g2 and g3); and finally, initial and terminal
states values are prescribed (g4 and g5).

3.2.1. Path constraints
For sensing purposes (see Ref. [7]), it is required that the chaser

vehicle remains inside a line of sight (LOS) area from the docking port,
thus guaranteeing that the chaser spacecraft is at all time visible from
the docking port. The LOS region can be defined by the equations

≥ −x c y y( )y 0 , ≥ − +x c y y( )y 0 , ≥ −x c z z( )z 0 , ≥ − +x c z z( )z 0 and
≥x 0; these equations limit the relative translational state space by five

planes as shown in Fig. 2.
One can define the LOS constraint algebraically, at any instant t, as
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3.2.2. Control bounds
Regarding the thrusters performance, it is assumed that the impulse

amplitude provided by each thruster is bounded above (and below by
zero)

≤ ≤ = …u t u p n0 ( ) , 1 .p k p max T, (24)
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Note that up can take any value in the allowed interval (it is assumed
that thrusters opening times can be adjusted to produce the exact im-
pulse amount).

On the other hand, each one of the reaction wheels saturates when it
stores a certain amount of angular momentum which is equivalent to
consider that reaction wheels velocities are limited. Moreover limits on
the angular acceleration exist for each wheel

− ≤ ≤ =H H t H i( ) , 1, 2, 3,i max i rw i max, , , (25)

− ≤ ≤ =H H t H i˙ ˙ ( ) ˙ , 1, 2, 3.i max i rw i max, , , (26)

3.2.3. Boundary constraints
The chaser is assumed to depart from a given point and velocity

with a given orientation and angular velocity

= = =σ σ ω ωt t tx x( ) , ( ) , ( ) ,0 0 0 0 0 0 (27)

and it has to meet prescribed states at the end of the maneuver

= = =σ σ ω ωt t tx x( ) , ( ) , ( ) ,f f f f f f (28)

where the last three components of xf are null and ωf = σ ω tR( ) ( )f L I f/
to have no relative angular velocity between the body and LVLH frame.

3.3. Equivalent rendezvous planning problem

The aim of the optimal control problem (21) is to guarantee ren-
dezvous with the target along a prescribed approach region (LOS) while
respecting control bounds and minimizing fuel consumption. Using the
coupled transition equation for the translational states, see Eq. (20),
and the algebraic relations derived from the attitude flatness property,
developed through Eq.14–17, we formulate an equivalent planning
problem, where differential equations are replaced by algebraic ones
(as a function of the flat output and its derivatives), without losing any
information,
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Besides the fact that the equivalent planning problem (29) is in-
tegration free, it is still infinite dimensional. In the next section, it is
shown how to make this problem tractable by means of parameteriza-
tion and discretization.

4. Optimal control computation

In this section, the resolution method to the equivalent optimal
control problem (29) is presented. The proposed methodology is based
on a B-spline parameterization of the flat output (MRP) and the dis-
cretization of the infinite dimensional constraints. The result is a
tractable NLP problem which needs an initial guess to be solved.

4.1. Non-linear programming description

First of all, it is considered that the +N 1p impulses application
times are equally spaced through the maneuver time, ∈t t t[ , ]f0 , with
timespan T = = −T t t N( )/f p0 , hence tk = t0+kT for = …k N0 p. These
firing times will be denoted as nodes.

4.1.1. B-splines parameterization of the flat output
The attitude flatness property allows any kind of MRP time evolu-

tion parameterization. In this work, following [14], B-splines, see Ref.
[41] for more details about them, are chosen to parameterize the flat
output since they define flexible trajectories with a high degree of
differentiability using a low number of parameters

∑=
=

σ t
n

B ta( ) ( ),
c

j
j j q

1
,

(30)

where the B t( )j q, are qth order B-splines built on the knots sequence,
∈tknots

nknots, and the ∈aj
3 coefficients are called control points.

Remark 2. The B-splines intrinsically assure continuity up to Cq. Given
the order q and the number of coefficients nc, the number of knots must
satisfy nknots = nc+q+1.

The attitude profile has to be continuous up to its second derivative,
hence, ≥q 22. On the other hand, it is chosen to have at least one
control point to represent the attitude at each node plus four additional
control points to impose σ̇ and σ̈ at the beginning and end of the
maneuver. The previous consideration leads to nc = Np+5, therefore
nknots = Np+q+6. The knots are selected as the nodes tk , augmented at
left and right by repeating t0 and tf

= … … …−[ ]t t t t t tt , , , , , , , , .knots N f f
T

0 0 1 1p (31)

4.1.2. Discretization of time continuous constraints
The time continuous constraints are the path constraint related to

the LOS region, see Eq. (23), and the bounds on the reaction wheels
angular momentum and its variation, Eq.25 and 26. Each one of these
constraints is discretized with a time grid within each interval, k. The
LOS constraint is gridded with nL equally spaced subintervals of

Fig. 2. LOS region.
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duration TL = T n/ L at which the constraint is imposed

≤ = + − + = … = …t t t k T lT k N l nA x b( ) , ( 1) , 1 , 1 ,L k l L k l L p L, , 0

(32)

whereas the reaction wheels constraints are gridded with nM equally
spaced subintervals of duration TM = T n/ M

− ≤ ≤ =
− ≤ ≤ =

= + − + = …

H H t H i
H H t H i

t t k T mT m n

a

a
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k m M M

, , ,

, , ,

, 0 (33)

4.1.3. Discrete optimization problem
To ease the notation, following [9], a compact formulation of the

discrete problem is developed. Defining the following stack vectors
∈x n N

S
6 L p, ∈ +u p

N
S

1p and ∈a n
S

3 c as
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= …[ ]u u uu , , , ,p p p p N
T

S ,0 ,1 , p (35)
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and the stack matrices ∈ ×F n N6 6L p and ∈ × +Gp
n N N6 ( 1)L p p
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(38)

where σk = σ t a( , )k S represents the attitude at each node. The relation
between the stack vectors and matrices defined in Eq.(34-38) is given
by

∑= +
=

n
x Fx G a u( ) .

T

p
p pS S S0

1 (39)

Now, the infinite dimensional problem (29) boils down to NLP,
expressed with the compact formulation, by means of the above para-
meterization and continuous constraints discretization
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(40)

where ∈ ×ALS
n N n N5 6L p L p and ∈bLS

n N5 L p stack the LOS matrix (diag-
onally) and vector, see Eq. (23), respectively. The parameters

∈ +u p max
N

S ,
1p are stack vectors whose components are all equal to

up max, . The matrix = × − ×A Θ Id[ , ]rend n N6 6( 1) 6 6L p is employed to impose
the rendezvous condition. It has been considered that reaction wheels

kinetic momentum variation at initial and final time shall be zero which
constrains σ̈ . A NLP solver is required to obtain a solution of the static
program (40).

4.2. Initial guess computation (hotstart)

Any NLP solver needs an initial guess to compute the optimal so-
lution of problem (40). In this case, the process is composed of two
steps; first, a traditional six-thrusters spacecraft model with three-de-
grees of freedom is employed to formulate and solve a linear pro-
gramming (LP) problem; and then, this obtained LP solution is con-
verted to NLP decision variables, u pS and aS.

Table 1
Thrusters configuration for scenario 1.

p wp up max, [m/s] p wp up max, [m/s]

1 [1, 0, 0]T 1 6 [0, 0, −1]T 1
2 [-1, 0, 0]T 1 7 [ 2 , 2 , 0]T/2 1
3 [0, 1, 0]T 1 8 [ 2 , - 2 , 0]T/2 1
4 [0, −1, 0]T 1 9 [- 2 , 2 , 0]T/2 1
5 [0, 0, 1]T 1 10 [- 2 , - 2 , 0]T/2 1

Table 2
Scenario 1 boundary conditions.

Boundary conditions (intrinsic Euler angles sequence 3→1→3)

t0 0 s tf 900 s
r0 [400, −250, −200]T m rf [2, 0, 0]T m
v0 [1, 1, −1]T m/s vf [0, 0, 0]T m/s

θ0 [0°, 0°, 0°]T θf [90°, 90°, 90°]T

ωB L/ ,0 [0, 0, 0]T s−1 ωB L f/ , [0, 0, 0]T s−1

Table 3
Thrusters configuration for scenario 2.

p wp up max, [m/s] p wp up max, [m/s]

1 [0, 0, −1]T 0.5 2 [-1, 0, 0]T 0.5

Table 4
Scenario 2 boundary conditions.

Boundary conditions (intrinsic Euler angles sequence 3→1→3)

t0 0 s tf 900 s
r0 [350, 200, 200]T m rf [2, 0, 0]T m
v0 [1, 1, −1]T m/s vf [0, 0, 0]T m/s

θ0 [0° ,0°, 0°]T θf [90°, 90°, 90°]T

ωB L/ ,0 [0, 0, 0]T s−1 ωB L f/ , [0, 0, 0]T s−1

Fig. 3. Chaser 3D path of scenario 1 for the first random realization.
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4.2.1. Six-thrusters problem formulation
Considering a pair of thrusters available for each LVLH axis, the

control can be expressed at each node as uk = V V V[Δ , Δ , Δ ]x k y k z k
T

, , , ,
hence, the translational states transition equation is linear

∑= + ≤ <
=

+t t t
k

t t t t tx Φ x Φ Bu( ) ( , ) ( , ) , ,
i

i i k k0 0
0

1
(41)

and the LP problem is posed as
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p
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(42)

where the bounds on the impulse amplitude for each direction have
been conservatively chosen to not overpass the upper bound of the
thruster with more available impulse amplitude when all thrusters sa-
turate (thus the use of 3 ). The purpose of the last linear constraints,
expressed by means of the matrices Au0 and AuNp, is to make the initial
and final orientations compatible with the initial, σ0, and desired final
attitude, σf , respectively. It should be noted that the L1-norm term in the
objective function is non-linear because uk can take both positive or
negative values. However, this issue is avoided by adding optimization
slack variables only allowed to take positive values.

4.2.2. Six-thrusters solution transformation to a NLP solution
Once the LP problem (42) is solved, the impulses amplitudes on

each thruster are chosen as u k1, = u‖ ‖k 2 and ≠up k1, = 0. The thruster
labelled with p = 1 is the one with higher up max, .

The B-spline control points, aS, are obtained matching the Np+1
demanded orientations at the nodes by the LP solution. The MRP at the
nodes can be obtained with the aid of the rotation angle and axis. First,
denote by ki

*, where the subscript i refers to the number of required
thruster firings ( >u‖ ‖k 2i

* 0), the nodes at which a non-null impulse
amplitude is demanded or an attitude has to be reached (instant tNp)
and then compute the unitary vector zki

* representing the velocity in-
crement orientation, expressed on the inertial frame since attitude is
defined between the chaser body frame and the inertial frame, at these
nodes

= = >u u u k kz u u[ , , ] /‖ ‖ , , if 0.k x k y k z k
T

k i k, , , 2
*

2i
* (43)

Using zki
*, it is possible to obtain the rotation MRP, σrot , between

consecutive orientations. For the nodes without thruster firings
( uk 2=0), the attitude at this node k is chosen as the value of the
interpolated MRP, between the nodes −ki 1

* and ki
*, evaluated at the in-

stant tk. The rotation MRP between −tk 1 and tk is

= =
−
−

∈−

−
−− −

σ s θ s
k k
k k

t t t te tan( /4), , , [ , ],rot k k k k
i

i i
k k k k

1
*

*
1

* 1k k i i i i/ 1 * *
1

* *

(44)

where the rotation angle and axis of Eq. (44) are obtained using the
previously computed orientations, see Eq. (43)

= ⋅
−( )θ z zacos ,k k ki i i

* *
1

* (45)

=
×

×
−

−

e
z z

z z
.k

k k
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i

i i

i i

*
*

1
*

*
1

* (46)

This way, smooth attitude transitions are obtained when some

Fig. 4. Chaser trajectory on the target orbital plane of scenario 1 for all random
realizations.

Fig. 5. Chaser attitude of scenario 1 for the first random realization.

Table 5
Scenario 1 terminal results.

Results (intrinsic Euler angles sequence 3→1→3)
JLP = 4.08 m/s, JNLP = 3.15 m/s

JE[ ]MPC = 3.24 m/s, s J[ ]MPC = 0.09 m/s
δ trE[‖ ( )‖ ]f 2 1.30 m s δ tr[‖ ( )‖ ]f 2 0.61 m

δ tvE[‖ ( )‖ ]f 2 2.80 cm/s s δ tv[‖ ( )‖ ]f 2 1.07 cm/s

E[ θ t‖ ( )‖f ] [90.03°, 93.97°, 92.88°] s[ θ t‖ ( )‖f ] [1.04°, 1.45°, 0.65°]

ω tE[‖ ( )‖ ]f 2 0.31 °/s ωs t[ ( ) ]f 2 0.02 °/s
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nodes do not have burnings. Since ∈ −θ π π[ , ]mi , no singularities arise
when computing σrot. Once the rotation MRP is obtained, it is possible
to compute the MRP at each node tk. The MRP at the nodes are de-
termined applying the attitude composition rule given by

=
− + − + ×

+ − ⋅
− − −

− −

− − −

− −

σ
σ σ σ σ σ σ

σ σ σ σ

(1 ) (1 ‖ ‖ ) 2

1 (‖ ‖ ‖ ‖ ) 2
.k

rot k k rot k rot

rot k rot k

2
2

1 1 2
2

1

2 1 2
2

1

k k k k k k

k k k k

/ 1 / 1 / 1

/ 1 / 1

(47)

The last step is to compute the control points for this nodes se-
quence. Imposing null σ̇ and σ̈ at t0 and tf a linear system of n3 c
equations with n3 c unknowns (remember that nc = Np+5) can be easily
solved to obtain the initial guess B-splines control points aS as it is
proposed in Ref. [41].

5. MPC scheme

Once the NLP problem (40) is solved, an open-loop solution for the

Fig. 6. Computed impulses of scenario 1 for the first random realization.

Fig. 7. Reaction wheels angular momentum and its variation of scenario 1 for the first random realization.
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rendezvous maneuver is available. However, disturbances, unmodelled
dynamics, etc., will perturb the planned path while the spacecraft is
maneuvering, hence a MPC scheme, based on linearization around this
previously computed solution, is developed in this section. The trajec-
tory is recomputed on-line, in a sliding horizon framework, by solving a
quadratic programming problem after each sampling interval which
eases the computational burden (compared to the NLP) and does not
need an initial guess. The terminal constraints are relaxed, considering
them as terminal costs instead of constraints, to prevent feasibility is-
sues and augment stability.

5.1. Linearized model

Allowing small increments of the decision variables, uΔ p k, and aΔ j,
the translational transition Eq. (20) states as follows
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where = …r N1 p is the current MPC step and the matrix ∈ ×RΔ p a,
3 3

j
has the following expression
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Following with the compact formulation developed through Eq.(34-
39), one can define the following stack vectors ∈ +ruΔ ( )p
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where one should note that many of the matrices RΔ p a, = ×Θ3 3 because
by definition the interval between two consecutive B-spline knots has at
most q+1 non-null coefficients, see Ref. [41]. Using the stack vectors
and matrices, the following linearized translational states transition
equation is obtained in compact form

∑= + + +
=

r
n

x Fx G a u u H u a a( ) [ ( )( Δ ) ( , )Δ ],r

T

p
p p p p pS S S S S S S

1 (52)

where the dependence with r has been omitted at the right-hand side of
Eq. (52) for clarity.

Fig. 8. Chaser trajectory on the target orbital plane of scenario 2 for all random
realizations.

Fig. 9. Chaser attitude of scenario 2 for the first random realization.

Table 6
Scenario 2 terminal results.

Results (intrinsic Euler angles sequence 3→1→3)
JLP = 3.49 m/s, JNLP = 3.40 m/s

JE[ ]MPC = 3.43 m/s, s J[ ]MPC = 0.029 m/s
δ trE[ ( ) ]f 2 0.82 m s δ tr[‖ ( )‖ ]f 2 0.36 m

δ tvE[‖ ( )‖ ]f 2 1.34 cm/s s δ tv[‖ ( )‖]f 0.64 cm/s

E[ θ t‖ ( )‖f ] [97.39°, 93.73°, 89.10°] s[ θ t‖ ( )‖f ] [4.57°, 2.86°, 2.51°]

ω tE[ ( ) ]f 2 0.31 °/s ωs t‖[ ( )‖ ]f 2 0.13 °/s
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5.2. Linearized planning problem

The linearized planning problem seeks the same objectives as the
NLP problem (40) but now the terminal constraints are included in the
cost function as in Ref. [9] to encode a prescribed arrival time. This
improves feasibility when considering disturbances, see Ref. [42], and
can improve asymptotic stability properties without needing terminal
constraints, see Ref. [43]. At each MPC step, r, the linearized optimi-
zation problem to solve is

Fig. 10. Computed impulses of scenario 2 for the first random realization.

Fig. 11. Reaction wheels angular momentum and its variation of scenario 2 for the first random realization.
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where the variables σ̂r , σ̇̂r and σ̂̈r are the measured attitude and its de-
rivatives at the end of each sampling interval. These values are neces-
sary because the desired attitude path could suffer some deviations
caused by reaction wheels saturation since the employed local reduc-
tion technique only guarantees time continuous constraint satisfaction
at some discrete times. The increment on the reaction wheels kinetic
momentum and its variation are
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The matrices associated with the terminal translational states costs
terms are

= ⎡
⎣⎢

⎤
⎦⎥
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× ×

× ×

× ×

× ×
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Θ Θ

Q
Θ Θ
Θ Id

, ,x v
3 3 3 3

3 3 3 3

3 3 3 3

3 3 3 3 (56)

and γx , γv, γσ and γω are positive scalars that weight the relative cost
of each one of the terminal conditions with respect to fuel consumption.
Since both the translational states propagation, see Eq. (52), and the flat
output and its derivatives relation with the B-spline control points is
linear, see Eq. (30), the proposed objective function is quadratic, hence
the optimization problem (53) is a QP problem.

5.3. MPC scheme

Summarizing the development of previous sections, the MPC
scheme expressed as pseudocode is as follows.

Algorithm 1
MPC scheme.

The steps 2–4 are computed off-line while the vehicle is performing
station-keeping around the departure point waiting the command to
start the maneuver so no hard real-time requirements appear when
computing this solution. However, the steps 8–14 within the while loop
are performed on-line during the maneuver which require a fast com-
putation. That is the main reason why a QP problem based on linear-
ization around a previously computed solution has been developed
instead of solving the NLP problem at each step. In Ref. [44] a field
programmable gate arrays (FPGAs) implementation of a MPC scheme
based on QP for elliptical orbits is shown to have the same computa-
tional performance as state-of-the-art solvers.

6. Simulation results

Since the employed formulation does not make any assumptions on
the chaser number of thrusters, two different scenarios will be con-
sidered. The first one will correspond to a heavy rendezvous satellite
equipped with 10 thrusters while the other one corresponds to a low-
power spacecraft equipped with 2 thrusters. The simulations of this
section have been obtained using MATLAB routines with Gurobi opti-
mization package, see Ref. [45], as LP and QP solver whereas the IPOPT
optimization package, see Ref. [46], is used as NLP solver.

6.1. Rendezvous model

It is important to remark that although a linear model, see Eqs.
(1)–(3), is used to compute the control sequence, the plant is considered
to be dominated by the following non-linear relative motion dynamics,
see Ref. [37],

= + + −
+ + −

x νz νz ν x μ x
x y z r
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t
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6.2. Disturbances model

In a similar way as [9] (note that there the disturbance is considered
in an additive way), a disturbance on each of the thrusters performance
is added to test the capabilities of the MPC scheme developed in Section
5. This disturbance is modelled in the chaser body axes as

= + = … = …δθt t u t δu t p n k Nu Ω w( ) ( ( )) ( )(1 ( )), 1 , 1 ,p
B

k k p p k p k T p

(60)

where up is the commanded output computed by the control laws,
δθ δθN~ (E[ ],3 Σ )δ is a vector of random small angles and
δu N δu s δu~ (E[ ], [ ])p p p is a random scalar. These disturbances model
several physical aspects. First, the attitude control of the chaser will not
be perfect, so one can expect some alignment errors, modelled by δθΩ( )
in a simplified way. On the other hand, with δup one can model thrust
level disturbances.

6.3. Simulation scenarios

To test the capabilities of the proposed algorithm, two scenarios for
different pursuer architectures are considered. For the first scenario, a
heavy spacecraft equipped with 10 thrusters is considered while for the
second scenario a lightweight satellite with a limited propulsion plant,
with only 2 thrusters is simulated.

6.3.1. Controller parameters
Regarding controller parameters, for both cases, the B-splines order

is chosen to be quintic which is equivalent to take q=5 in Eq. (30). The
discrete grids sizes, to evaluate the time continuous constraints, are
chosen as =n 2L and =n 12M , while the objective function weights are
taken as =γ 10x , =γ 5v , =γ 2σ and =γ 1ω . The LOS parameters for
both cases are cy = cz = 1/ πtan( /4) and y0 = z0 = 2.5 m.

6.3.2. Satellite with 10 thrusters
In this scenario, a conventional cargo satellite with 10 thrusters has

to rendezvous with a target flying in an eccentric low Earth orbit with
e = 0.1, =h 600 kmp and =ν t π( ) /40 . Table 1 shows the character-
istics of the considered propulsive layout.

On the other hand, the chaser inertia matrix is chosen to be similar
to the Russian Progress cargo spacecraft, see Ref. [2],

= ⎡

⎣
⎢

⎤

⎦
⎥⋅ ⋅I

31 0 0
0 31 0
0 0 5

10 kg m ,3 2

(61)

whereas the bounds of the reaction wheels angular momentum and its
variation are taken as Hi max, = 500 N⋅m⋅s and Ḣi max, = 20 N⋅m, re-
spectively. At the beginning, the angular momentum of the system is
considered to be null Htot = 0. The maneuver boundary conditions are
given by Table 2. The considered disturbance parameters for this si-
mulation are δ‾ = 0.0175, Σδ ij, = 0.0175δij, δu‾p = 0.02 and σδup = 0.05.

6.3.3. Satellite with 2 thrusters
In this scenario, a lightweight satellite with only 2 available thrus-

ters has to rendezvous with a target flying in an eccentric low Earth
orbit with e = 0.5, hp = 400 km and =ν t π( )0 . The thrusters are
mounted in an orthogonal configuration as shown by Table 3.

For this case, the chaser inertia matrix is chosen to be the one
corresponding to the CNES small satellite MYRIADE, see Ref. [14].

= ⎡

⎣
⎢

− −
− −

− −

⎤

⎦
⎥ ⋅I

40 3 0.5
3 28 1

0.5 1 45
kg m ,2

(62)

whereas the bounds of the reaction wheels angular momentum and its
variation are taken as Hi max, = 1 N⋅m⋅s and Ḣi max, = 0.05 N⋅m. At the
beginning the angular momentum of the system is considered to be null,
H = 0tot . In this case, the maneuver boundary conditions are shown in

Table 4 The considered disturbance parameters for this simulation are
δ‾ = 0, Σδ ij, = 0.0175δij, δu‾p = 0 and σδup = 0.01.

6.4. Simulation results

For each scenario, 100 realizations for the chosen disturbance
parameters are simulated. Then, the obtained results are shown and
discussed.

6.4.1. Scenario with 10 thrusters
First, analyse the scenario with 10 thrusters. For all the realizations,

the linear QP program is feasible and the chaser reaches the proximity
of the target without trespassing the LOS region, see Fig. 4. A typical 3D
path of a random realization is shown in Fig. 3 while the attitude profile
is shown in Fig. 5. For the shown realization the desired orientation is
met at the end while the angular velocity is driven to a quasi-null value
due to the considered uncertainties. More details on the terminal ac-
curacy for this scenario are given in Table 5 where δ measures the
mismatch between the obtained and the desired terminal value. Re-
garding the planned impulses, for the plotted realization, see Fig. 6, the
thrusters {1,2,6,9} have relevant firings while thrusters {3,4,5,7,8,10}
are not operated significantly along the maneuver. Regarding the cost,
the NLP program reduces fuel consumption in a 21.054% compared to
the converted solution from the LP problem, see Table 5. Finally, in
Fig. 7 it is shown that the reaction wheels have saturations (both on
angular velocity and acceleration) at the initial and final instants of the
maneuver, but then desaturate immediately and keep providing torque.

6.4.2. Scenario with 2 thrusters
Analysing the second scenario with 2 thrusters, similar conclusions

with the first scenario still holds, see Fig. 8. Note that the spacecraft in
this case is underactuated in translational control. Moreover, the de-
sired final orientation is not favourable at all to brake the spacecraft
since the thruster 1 nozzle will end pointing to the +x axis and the
thruster 2 nozzle to the -z axis, see Fig. 9. The terminal accuracy is
shown in Table 6 (it shows higher accuracy than the 10 thrusters sce-
nario due to the lighter perturbations). For the plotted realization of
Fig. 10, it is shown that the final braking impulse has to be advanced
one interval due to the non favourable last orientation. In this case,
there is not an improvement in fuel consumption when compared to the
obtained LP solution but the reaction wheels saturation peak has been
lowered from 5.5608 N⋅m⋅s (LP solution converted to NLP solution) to 1
N⋅m⋅s, see Fig. 11 and Table 6.

7. Concluding remarks

This paper has presented a predictive guidance and control algo-
rithm for six-degrees of freedom spacecraft rendezvous based on the
translational state transition matrix, the attitude flatness property,
discretization and a MPC scheme based on linearization. One of the
main contributions of the proposed algorithm is its ability to consider
several chaser spacecraft configurations which not only reduces fuel
consumption but also allows to consider propulsive and ACS constraints
in an integrated framework.

The numerical experiments shown in Section 6 have validated the
method for two different spacecraft configurations. Additionally, the
simulations have demonstrated convergence of the proposed MPC to
the desired final state even in the presence of disturbances. However, a
formal proof of stability has not been addressed and is left as future
work.

Possible future research lines include the following. First, it will be
of great interest to consider on/off thrusters as it is done in Ref. [10].
This will cause continuous coupling between translational and rota-
tional motion since the vehicle will be spinning when the thrusters are
fired. Second, to improve the robustness of the underactuated case,
robust MPC techniques in the spirit of [9] could be considered. Finally,
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another possible line is to consider more advanced techniques, that
does not rely on discretization, to handle the time continuous con-
straints of the problem.

Acknowledgements

The authors gratefully acknowledge Universidad de Sevilla for
funding part of this work under its V-PPI US and financial support of the
Spanish Ministerio de Ciencia, Innovación y Universidades under grant
PGC2018-100680-B-C21.

References

[1] D.C. Woffinden, D.K. Geller, Navigating the road to autonomous orbital rendezvous,
J. Spacecr. Rocket. 44 (4) (2007) 898–909, https://doi.org/10.2514/1.30734.

[2] W. Fehse, Automated Rendezvous and Docking of Spacecraft, 1 edn., Cambridge
University Press, Cambridge, UK, 2003, pp. 171–215, https://doi.org/10.1017/
CBO9780511543388.

[3] C.W.T. Roscoe, J.J. Westphal, E. Mosleh, Overview and GNC design of the cubesat
proximity operations demonstration (CPOD) mission, Acta Astronaut. 153 (2018)
410–421, https://doi.org/10.1016/j.actaastro.2018.03.033.

[4] S. Persson, P. Bodin, E. Gill, J. Harr, J. Jörgensen, Prisma - an autonomous for-
mation flying mission, ESA Small Satellite Systems and Services Symposium,
Sardinia, Italy, 2006.

[5] L.T. Castellani, J.S. Llorente, J.M.F. Ibarz, M. Ruiz, A. Mestreau-Garreau, A. Cropp,
A. Santovincenzo, PROBA-3 mission, Int. J. Space Sci. Eng. 1 (4) (2013) 349–366,
https://doi.org/10.1504/IJSPACESE.2013.059268.

[6] P. Lu, X. Liu, Autonomous trajectory planning for rendezvous proximity operations
by conic optimization, J. Guid. Control Dyn. 36 (2) (2013) 375–389, https://doi.
org/10.2514/1.58436.

[7] L. Breger, J.P. How, Safe trajectories for autonomous rendezvous of spacecraft, J.
Guid. Control Dyn. 31 (5) (2008) 1–8, https://doi.org/10.2514/1.29590.

[8] A. Richards, T. Schouwenaars, J.P. How, E. Feron, Spacecraft trajectory planning
with avoidance constraints using mixed-integer linear programming, J. Guid.
Control Dyn. 25 (4) (2002) 755–764, https://doi.org/10.2514/2.4943.

[9] F. Gavilan, R. Vazquez, E.F. Camacho, Chance-constrained model predictive control
for spacecraft rendezvous with disturbance estimation, Contr. Eng. Pract. 60 (2012)
111–122, https://doi.org/10.1016/j.conengprac.2011.09.006.

[10] R. Vazquez, F. Gavilan, E.F. Camacho, Pulse-width predictive control for LTV sys-
tems with application to spacecraft rendezvous, Contr. Eng. Pract. 20 (2017)
199–210, https://doi.org/10.1016/j.conengprac.2016.06.017.

[11] F.A. Leve, B.J. Hamilton, M.A. Peck, Spacecraft Momentum Control Systems, Space
Technology Library, Springer, 2015, https://doi.org/10.1007/978-3-319-22563-0.

[12] Øyvind Hegrenæs, J.T. Gravdahl, P. Tøndel, Spacecraft attitude control using ex-
plicit model predictive control, Automatica 41 (12) (2005) 2107–2114, https://doi.
org/10.1016/j.automatica.2005.06.015.

[13] A. Guiggiani, I. Kolmanovsky, P. Patrinos, A. Bemporad, Fixed-point constrained
model predictive control of spacecraft attitude, American Control Conference,
Chicago, Ilinois, United States of America, 2015, https://doi.org/10.1109/ACC.
2015.7171078.

[14] C. Louembet, F. Cazaurang, A. Zolghadri, C. Charbonnel, C. Pittet, Path planning for
satellite slew manoeuvres: a combined flatness and collocation-based approach, IET
Control Theory & Appl. 3 (4) (2009) 481–491, https://doi.org/10.1049/iet-cta.
2008.0054.

[15] A. Caubet, J. Biggs, A motion planning method for spacecraft attitude maneuvers
using single polynomials, AAS/AIAA Astrodynamics Specialist Conference, 2015.

[16] M. Fliess, J. Levine, P. Martin, P. Rouchon, Flatness and defect of non linear sys-
tems: introductory theory and examples, Int. J. Control 61 (6) (1995) 13–27,
https://doi.org/10.1080/00207179508921959.

[17] N. Filipe, P. Tsiotras, Adaptive position and attitude-tracking controller for satellite
proximity operations using dual quaternions, J. Guid. Control Dyn. 38 (4) (2015)
566–577, https://doi.org/10.2514/1.G000054.

[18] H. Wong, H. Pan, V. Kapila, Output feedback control for spacecraft formation flying
with coupled translation and attitude dynamics, Proceedings of American Control
Conference, IEEE, Portland, Oregon, United States of America, 2005, pp.
2419–2426, , https://doi.org/10.1109/ACC.2005.1470329.

[19] J. Wang, Z. Sun, 6-DOF robust adaptive terminal sliding mode control for spacecraft
formation flying, Acta Astronaut. 73 (2012) 76–87, https://doi.org/10.1016/j.
actaastro.2011.12.005.

[20] R. Kristiansen, P.J. Nicklasson, J.T. Gravdahl, Spacecraft coordination control in
6DOF: integrator backstepping vs passivity-based control, Automatica 44 (11)
(2008) 2896–2901, https://doi.org/10.1016/j.automatica.2008.04.019.

[21] F. Zhang, G. Duan, M. Hou, Integrated relative position and attitude control of

spacecraft in proximity operation missions with control saturation, Int. J. Innov.
Comput. Inform. Control 8 (2012) 3537–3551, https://doi.org/10.1007/s11633-
012-0654-0 5(B).

[22] H. Yan, S. Yan, Y. Xie, Integrated translational and rotational control for rendezvous
and docking on ellipse orbits, Intelligent Control and Automation (WCICA), 12th
World Congress, Guilin, China, 2016, https://doi.org/10.1109/WCICA.2016.
7578283.

[23] F. Terui, Position and attitude control of a spacecraft by sliding mode control,
Proceedings of the American Control Conference, Philadelphia, Pennsylvnia, United
States of America, 1998, https://doi.org/10.1109/ACC.1998.694662.

[24] B.J. Naasz, M.M. Berry, H. Kim, C.D. Hall, Integrated orbit and attitude control for a
nanosatellite with power constraints, Proceedings AAS/AIAA Space Flight
Mechanics Conference, Ponce, Puerto Rico, 2003.

[25] M.S. Siva, R. Padiyan, D. Ghose, M.S. Bhat, M.P. Ramachandran, Coordinated 6-dof
control of dual spacecraft formation, 5th International Conference on Spacecraft
Formation Flying Missions and Technologies, Munich, Germany, 2013.

[26] G. Moon, B. Lee, M. Tahk, D.H. Shim, Quaternion based attitude control and sub-
optimal rendezvous guidance on satellite proximity operation, European Control
Conference (ECC), Aalborg, Denmark, 2016, https://doi.org/10.1109/ECC.2016.
7810620.

[27] Y. Wu, X. Cao, Y. Xing, P. Zheng, S. Zhang, Relative motion decoupled control for
spacecraft formation translational and rotational dynamics, Proceedings of the
International Conference on Computer Modeling and Simulation, Macau, China,
2009, pp. 63–68, , https://doi.org/10.1109/ICCMS.2009.12.

[28] J.D. Biggs, H. Henninger, Motion planning on a class of 6-D Lie groups via a cov-
ering map, IEEE Trans. Autom. Control (2018) 1–12, https://doi.org/10.1109/TAC.
2018.2885241.

[29] J.C. Sanchez, F. Gavilan, R. Vazquez, C. Louembet, A flatness-based trajectory
planning algorithm for rendezvous of single-thruster spacecraft, Networked and
Autonomous Air and Space Systems, Santa Fe, New Mexico, USA, 2018, https://doi.
org/10.1016/j.ifacol.2018.07.098.

[30] A. Weiss, M. Baldwin, R.S. Erwin, I. Kolmanovsky, Model predictive control for
spacecraft rendezvous and docking strategies for handling constraints and case
studies, IEEE Trans. Control Syst. Technol. 23 (4) (2015) 1638–1647, https://doi.
org/10.1109/TCST.2014.2379639.

[31] S. Gong, H. Baoyin, J. Li, Coupled attitude-orbit dynamics and control for displaced
solar orbits, Acta Astronaut. 65 (5–6) (2009) 730–737, https://doi.org/10.1016/j.
actaastro.2009.03.006.

[32] L.S. Urbina, Guidance and Robust Control Methods for the Approach Phase between
Two Orbital Vehicles with Coupling between Translational and Rotational Motions,
PhD Thesis LAAS-CNRS, Université de Toulouse, 2017, pp. 57–64.

[33] E.F. Camacho, C.B. Alba, 2 edn., Model Predictive Control chap. 9 Springer-Verlag,
London, 2004, pp. 249–287, https://doi.org/10.1007/978-0-85729-398-5.

[34] J. Tschauner, P. Hempel, Rendezvous zu einemin elliptischer Bahn umlaufenden
Ziel, Acta Astronaut. 11 (2) (1965) 104–109.

[35] S. D'Amico, O. Montenbruck, Proximity operations of formation-flying spacecraft
using an eccentricity/inclination vector separation, J. Guid. Control Dyn. 29 (3)
(2006) 554–563, https://doi.org/10.2514/1.15114.

[36] K. Yamanaka, F. Ankersen, New state transition matrix for relative motion on an
arbitrary elliptical orbit, J. Guid. Control Dyn. 25 (1) (2002) 60–66, https://doi.
org/10.2514/2.4875.

[37] B. Wie, Space vehicle dynamics and control, AIAA Education Series, 2 edn., AIAA,
Reston, VA, 2008, , https://doi.org/10.2514/4.860119.

[38] S. Marandi, V. Modi, A preferred coordinate system and the associated orientation
representation in attitude dynamics, Acta Astronaut. 15 (11) (1987) 833–843,
https://doi.org/10.1016/0094-5765(87)90038-5.

[39] H. Schaub, J.L. Junkins, Stereographic orientation parameters for attitude dy-
namics: a generalization of the Rodrigues parameters, J. Astronaut. Sci. 44 (1)
(1996) 1–19.

[40] P.N. Desai, B.A. Conway, Six-Degree-of-Freedom trajectory optimization using a
two-timescale collocation architecture, J. Guid. Control Dyn. 31 (5) (2008)
1308–1315, https://doi.org/10.2514/1.34020.

[41] R. Kress, Numerical analysis, Graduate Texts in Mathematics chap. 8 Springer,
1998, pp. 169–179, https://doi.org/10.1007/978-1-4612-0599-9.

[42] H. Chen, F. Allgöwer, A quasi-infinite horizon nonlinear predictive control scheme
with guaranteed stability, Automatica 34 (10) (1998) 1205–1217, https://doi.org/
10.1016/S0005-1098(98)00073-9.

[43] D. Limon, T. Alamo, F. Salas, E.F. Camacho, On the stability of constrained MPC
without terminal constraint, IEEE Trans. Autom. Control 51 (5) (2006) 832–836,
https://doi.org/10.1109/TAC.2006.875014.

[44] E.N. Hartley, J.M. Maciejowski, Field programmable gate array based predictive
control systen for spacecraft rendezvous in elliptical orbits, Optim. Control Appl.
Methods 36 (5) (2015) 585–607, https://doi.org/10.1002/oca.2117.

[45] Gurobi Optimizer Reference Manual, Gurobi Optimization, Inc., 2014, http://www.
gurobi.com.

[46] Introduction to IPOPT: A Tutorial for Downloading, Installing and Using IPOPT,
COIN-OR, (2016) https://projects.coin-or.org/Ipopt.

J.C. Sanchez, et al. Acta Astronautica 167 (2020) 391–403

403

https://doi.org/10.2514/1.30734
https://doi.org/10.1017/CBO9780511543388
https://doi.org/10.1017/CBO9780511543388
https://doi.org/10.1016/j.actaastro.2018.03.033
http://refhub.elsevier.com/S0094-5765(19)31421-3/sref4
http://refhub.elsevier.com/S0094-5765(19)31421-3/sref4
http://refhub.elsevier.com/S0094-5765(19)31421-3/sref4
https://doi.org/10.1504/IJSPACESE.2013.059268
https://doi.org/10.2514/1.58436
https://doi.org/10.2514/1.58436
https://doi.org/10.2514/1.29590
https://doi.org/10.2514/2.4943
https://doi.org/10.1016/j.conengprac.2011.09.006
https://doi.org/10.1016/j.conengprac.2016.06.017
https://doi.org/10.1007/978-3-319-22563-0
https://doi.org/10.1016/j.automatica.2005.06.015
https://doi.org/10.1016/j.automatica.2005.06.015
https://doi.org/10.1109/ACC.2015.7171078
https://doi.org/10.1109/ACC.2015.7171078
https://doi.org/10.1049/iet-cta.2008.0054
https://doi.org/10.1049/iet-cta.2008.0054
http://refhub.elsevier.com/S0094-5765(19)31421-3/sref15
http://refhub.elsevier.com/S0094-5765(19)31421-3/sref15
https://doi.org/10.1080/00207179508921959
https://doi.org/10.2514/1.G000054
https://doi.org/10.1109/ACC.2005.1470329
https://doi.org/10.1016/j.actaastro.2011.12.005
https://doi.org/10.1016/j.actaastro.2011.12.005
https://doi.org/10.1016/j.automatica.2008.04.019
https://doi.org/10.1007/s11633-012-0654-0
https://doi.org/10.1007/s11633-012-0654-0
https://doi.org/10.1109/WCICA.2016.7578283
https://doi.org/10.1109/WCICA.2016.7578283
https://doi.org/10.1109/ACC.1998.694662
http://refhub.elsevier.com/S0094-5765(19)31421-3/sref24
http://refhub.elsevier.com/S0094-5765(19)31421-3/sref24
http://refhub.elsevier.com/S0094-5765(19)31421-3/sref24
http://refhub.elsevier.com/S0094-5765(19)31421-3/sref25
http://refhub.elsevier.com/S0094-5765(19)31421-3/sref25
http://refhub.elsevier.com/S0094-5765(19)31421-3/sref25
https://doi.org/10.1109/ECC.2016.7810620
https://doi.org/10.1109/ECC.2016.7810620
https://doi.org/10.1109/ICCMS.2009.12
https://doi.org/10.1109/TAC.2018.2885241
https://doi.org/10.1109/TAC.2018.2885241
https://doi.org/10.1016/j.ifacol.2018.07.098
https://doi.org/10.1016/j.ifacol.2018.07.098
https://doi.org/10.1109/TCST.2014.2379639
https://doi.org/10.1109/TCST.2014.2379639
https://doi.org/10.1016/j.actaastro.2009.03.006
https://doi.org/10.1016/j.actaastro.2009.03.006
http://refhub.elsevier.com/S0094-5765(19)31421-3/sref32
http://refhub.elsevier.com/S0094-5765(19)31421-3/sref32
http://refhub.elsevier.com/S0094-5765(19)31421-3/sref32
https://doi.org/10.1007/978-0-85729-398-5
http://refhub.elsevier.com/S0094-5765(19)31421-3/sref34
http://refhub.elsevier.com/S0094-5765(19)31421-3/sref34
https://doi.org/10.2514/1.15114
https://doi.org/10.2514/2.4875
https://doi.org/10.2514/2.4875
https://doi.org/10.2514/4.860119
https://doi.org/10.1016/0094-5765(87)90038-5
http://refhub.elsevier.com/S0094-5765(19)31421-3/sref39
http://refhub.elsevier.com/S0094-5765(19)31421-3/sref39
http://refhub.elsevier.com/S0094-5765(19)31421-3/sref39
https://doi.org/10.2514/1.34020
https://doi.org/10.1007/978-1-4612-0599-9
https://doi.org/10.1016/S0005-1098(98)00073-9
https://doi.org/10.1016/S0005-1098(98)00073-9
https://doi.org/10.1109/TAC.2006.875014
https://doi.org/10.1002/oca.2117
http://www.gurobi.com
http://www.gurobi.com
https://projects.coin-or.org/Ipopt

	A flatness-based predictive controller for six-degrees of freedom spacecraft rendezvous
	Introduction
	Model of spacecraft rendezvous
	Translational motion
	Angular motion
	Attitude representation and angular dynamics
	Attitude flatness property

	Coupling between translational and angular motion

	Rendezvous planning problem
	Objective function
	Constraints of the problem
	Path constraints
	Control bounds
	Boundary constraints

	Equivalent rendezvous planning problem

	Optimal control computation
	Non-linear programming description
	B-splines parameterization of the flat output
	Discretization of time continuous constraints
	Discrete optimization problem

	Initial guess computation (hotstart)
	Six-thrusters problem formulation
	Six-thrusters solution transformation to a NLP solution


	MPC scheme
	Linearized model
	Linearized planning problem
	MPC scheme

	Simulation results
	Rendezvous model
	Disturbances model
	Simulation scenarios
	Controller parameters
	Satellite with 10 thrusters
	Satellite with 2 thrusters

	Simulation results
	Scenario with 10 thrusters
	Scenario with 2 thrusters


	Concluding remarks
	Acknowledgements
	References




