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a b s t r a c t

Boundary control of nonlinear parabolic PDEs is an open problem with applications that include fluids,
thermal, chemically-reacting, and plasma systems. In this paperwe present stabilizing control designs for
a broad class of nonlinear parabolic PDEs in 1-D. Our approach is a direct infinite dimensional extension
of the finite-dimensional feedback linearization/backstepping approaches and employs spatial Volterra
series nonlinear operators both in the transformation to a stable linear PDE and in the feedback law.
The control law design consists of solving a recursive sequence of linear hyperbolic PDEs for the gain
kernels of the spatial Volterra nonlinear control operator. These PDEs evolve on domains Tn of increasing
dimensions n+ 1 and with a domain shape in the form of a ‘‘hyper-pyramid’’, 0 ≤ ξn ≤ ξn−1 · · · ≤ ξ1 ≤
x ≤ 1.We illustrate our designmethodwith several examples. One of the examples is analytical, while in
the remaining two examples the controller is numerically approximated. For all the examples we include
simulations, showing blow up in open loop, and stabilization for large initial conditions in closed loop. In
a companion paper we give a theoretical study of the properties of the transformation, showing global
convergence of the transformation and of the control law nonlinear Volterra operators, and explicitly
constructing the inverse of the feedback linearizing Volterra transformation; this, in turn, allows us to
prove L2 and H1 local exponential stability (with an estimate of the region of attraction where possible)
and explicitly construct the exponentially decaying closed loop solutions.

© 2008 Elsevier Ltd. All rights reserved.
1. Introduction

Boundary control of linear parabolic PDEs is a well established
subject with extensive literature. On the other hand, boundary
control of nonlinear parabolic PDEs is still an open problem
as far as general classes of systems are concerned, with many
applications of interest including fluids, structures, thermal,
chemically-reacting, and plasma systems. Past efforts include the
book (Christofides, 2001), which solves problems of nonlinear
parabolic PDE control but for inside-the-domain actuation, rather
than with boundary control, and developments to solve the
problem of motion planning for boundary controlled nonlinear
parabolic PDEs (Meurer, 2005) (using flatness and formal power
series) and structural systems (Kugi, Thull, & Kuhnen, 2006) (with
a flatness/passivity approach).
When attempting to develop general methods for nonlin-

ear PDEs, it is advisable to take a clue from finite dimen-
sional nonlinear systems. Clearly, one should bet on methods
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that have emerged as successful there. This essentially elimi-
nates (direct) optimal control methods, because of the require-
ment to solveHamilton–Jacobi–Bellman PDEs, and leaves feedback
linearization/backstepping/Lyapunov approaches (Isidori, 1995;
Khalil, 2002; Krstic, Kanellakopoulos, & Kokotovic, 1995; Sepul-
chre, Jankovic, & Kokotovic, 1997) as candidates for exten-
sion to PDEs. The backstepping approach for linear PDEs has
reached the level of maturity where a systematic design proce-
dure (Smyshlyaev & Krstic, 2004) is available for a broad class
of parabolic integro-differential equations in 1-D. This systematic
procedure has foundmany applications (Krstic, Smyshlyaev, & Sir-
anosian, 2006; Vazquez & Krstic, 2006), including even extensions
to the Navier–Stokes equations (Vazquez & Krstic, 2007) and to
adaptive PDE control (Krstic, 2005; Smyshlyaev&Krstic, 2005), and
is the starting point for our nonlinear developments here.
Our early nonlinear efforts (Aamo & Krstic, 2004; Boskovic

& Krstic, 2001, 2002, 2003) were discretization-based and were
successful in addressing some applications but in general cannot
be expected to converge when the discretization step goes to zero,
as shown in Balogh and Krstic (2003).
Our approach is a direct infinite dimensional extension of

the finite-dimensional feedback linearization/backstepping ap-
proaches and employs spatial Volterra series nonlinear operators
both in the state transformation to a stable linear PDE and in the
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feedback law. The control law design consists of solving a recur-
sive sequence of linear hyperbolic PDEs for the gain kernels of the
spatial Volterra nonlinear control operator. These PDEs evolve on
domainsTn of increasingdimensionsn+1 andwith adomain shape
in the form of a ‘‘hyper-pyramid,’’ 0 ≤ ξn ≤ ξn−1 · · · ≤ ξ1 ≤ x ≤ 1.
We illustrate our designmethodwith several examples. One of the
examples is analytical, while in the remaining two examples the
controller is numerically approximated. For all the examples we
include simulations, showing blow up in open loop, and stabiliza-
tion for large initial conditions in closed loop.
In a companion paper (Vazquez & Krstic, 2008) we study the

properties of the transformation, showing global convergence of
the transformation and control law nonlinear Volterra operators,
and including an explicit construction of the inverse of the
feedback linearizing Volterra transformation for both the general
case and the analytical example; this, in turn, allows us to prove
local L2 and H1 exponential stability (with an estimate of the
region of attraction where possible) and explicitly construct the
exponentially decaying closed loop solutions.
This paper solves the open problem5.1 in theUnsolved Problems

volume (Balogh & Krstic, 2003).

2. Class of systems under study

We study the following class of parabolic systems,

ut(t, x) = uxx(t, x)+ λ(x)u(t, x)+ F [u](t, x)+ uH[u](t, x), (1)

for x ∈ (0, 1), with the following boundary conditions

ux(t, 0) = qu(t, 0), u(t, 1) = U(t), (2)

where U(t) is the control input and F [u] and H[u] are Volterra
series nonlinearities as explained below. In (2), q is a number that
can take any value. The particular cases q = 0 and q = ∞ can
be used to model, respectively, Neumann and Dirichlet boundary
conditions at x = 0. For simplicity we consider a Dirichlet
boundary condition at x = 1, but different boundary conditions
at the controlled end can be accommodated in our design. In the
sequel, we will omit time and space dependency of the state when
possible.
Define ξ0 = x and for any i ≤ n, ξ̂ ni = (ξi, . . . , ξn). Let

Tn(x, ξ) =
{
ξ̂ n1 : 0 ≤ ξn ≤ · · · ≤ ξ1 ≤ x

}
and Tn = Tn(1, ξ).

Define also
i∏
u =

i∏
j=1

u(t, ξj),
i,k∏
u =

i∏
j=1
j6=k

u(t, ξj), (3)

∫
Tn(x,ξ)

f (ξ̂ n0 )dξ̂
n
1 =

∫ x

0

∫ ξ1

0
· · ·

∫ ξn−1

0
f (ξ̂ n0 )dξn . . . dξ1. (4)

A Volterra series is defined as a functional (i.e., a function that
depends on another function), and has the form

F [u](t, x) =
∞∑
n=1

Fn[u](t, x), (5)

where the notation Fn[u](t, x) emphasizes the fact that each Fn[u]
is defined as a functional of u(t, x) and also depends on t and x. The
precise definition of each term is, using the notation of (3) and (4),

Fn[u](t, x) =
∫

Tn(x,ξ)
fn(ξ̂ n0 )

i∏
u dξ̂ n1 , (6)

where fn is called the n-th Volterra (triangular) kernel.
Volterra series (Volterra, 1959) are widely known and studied

in the control literature (Boyd, Chua, & Desoer, 1984; Isidori,
1995; Lamnabhi-Lagarrigue, 1996; Sastry, 1999). They are causal
functionals (Fliess, 1981) that represent the general solution for
nonlinear equations, generalizing the convolution solution for
linear systems. An excellent exposition on Volterra series can be
found in Rugh (1981).
In the sequel, wewill omit time and/or space dependency of the

state when possible.

3. Motivating examples

Wegive two examples of nonlinear plants that fall into the class
of systems of Section 2.

3.1. Coupled nonlinear plant

Consider the following nonlinear plant

ut = uxx + µv, (7)

0 = vxx + ω2v + uv + u, (8)

where µ and ω are plant parameters, with boundary conditions

u(0) = v(0) = 0, (9)
u(1) = U, v(1) = V , (10)

where U(t) and V (t) are actuation variables.
This kind of plant structure, consisting of an evolution equation

(Eq. (7), parabolic in this case) coupled with an static equation
(Eq. (8), elliptic in this case), arises in some relevant applications,
for example fluid mechanics (Vazquez & Krstic, 2007), structural
problems (Krstic et al., 2006), or singularly perturbed problems
in thermal fluid convection (Vazquez & Krstic, 2006) or chemical
reactors (Boskovic & Krstic, 2002).
To obtain a plant equation in the class of (1), we solve for v in

terms of u from (8). Define

v =

∞∑
n=1

vn, V =
∞∑
n=1

Vn, (11)

where v1 verifies

0 = v1xx + ω2v1 + u, (12)

and for n > 1, vn verifies

0 = vnxx + ω2vn + uvn−1, (13)

with boundary conditions, for each n,

vn(0) = 0, vn(1) = Vn. (14)

Since V in (10) is one of our two control inputs, we are free
to choose Vn in any meaningful way if the series for V in (11)
converges and the solution for (12)–(14) also makes the series for
v in (11) convergent.
In this case, it is possible to solve (12) and (13) explicitly.

Denoting v0 = 1, we get the following recursive solution for n ≥ 1

vn = −

∫ x

0

sin (ω(x− ξ))
ω

vn−1(ξ)u(ξ)dξ +
sin (ωx)
sinω

×

(
Vn +

∫ 1

0

sin (ω(1− ξ))
ω

vn−1u(ξ)dξ
)
. (15)

Set the control law V as follows.

Vn = −
∫ 1

0

sin (ω(1− ξ))
ω

vn−1u(ξ)dξ . (16)

The reason to choose this particular control law is to get a spatially
strict-feedback (Krstic et al., 1995) solution, i.e., a solution that is
causal in space, meaning that v(x) only depends on values of u(ξ)
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for 0 ≤ ξ ≤ x. This is a requirement of the backstepping method
and was used in Vazquez and Krstic (2007), Krstic et al. (2006)
and Vazquez and Krstic (2006) to control linear plants structurally
similar to (7) and (8).
With this control law the solution to the Eqs. (12) and (13) is

vn = −

∫ x

0

sin (ω(x− ξ))
ω

vn−1(ξ)u(ξ)dξ . (17)

We can solve the recursion in (17), getting

vn =
(−1)n

ωn

∫
Tn(x,ξ)

n∏
j=1

[
sin
(
ω(ξj−1 − ξj)

)
u(ξj)

]
dξ̂ n1 . (18)

Plugging (18) into (16), we obtain a general formula for Vn as
follows:

Vn =
(−1)n

ωn

∫
Tn

sin (ω(1− ξ1)) u(ξ1)

×

n−1∏
j=1

[
sin
(
ω(ξj − ξj+1)

)
u(ξj+1)

]
dξ̂ n1 . (19)

Assuming that u(t, x) ∈ L2(0, 1), both series in (11) converge in L2

since using that | sin(ω)/ω| ≤ 1, one can bound ‖vn‖2L2 as follows.

‖vn‖
2
L2 =

∫ 1

0
v2n(x)dx

≤

∣∣∣∣ sin(ω)ω

∣∣∣∣2n ∫ 1

0

(∫
Tn(x,ξ)

i∏
udξ̂ n1

)2
dx

≤

∣∣∣∣ sin(ω)ω

∣∣∣∣2n 1n!2
∫ 1

0

(∫ x

0
u2(ξ1)dξ1

)n
dx

≤
‖u‖2n

L2

n!2
. (20)

Hence, using the Cauchy–Schwartz inequality in `2,

‖v‖2L2 =

∫ 1

0

(
∞∑
n=1

vn(x)

)2
dx ≤

(
∞∑
n=1

n2‖vn‖2L2

)(
∞∑
n=1

1
n2

)

≤ 2
∞∑
n=1

‖u‖2n
L2

(n− 1)!2
, (21)

where we used
∑
∞

n=1
1
n2
= π2/6 ≤ 2. Thus, ‖v‖2L2 ≤ 2‖u‖

2
L2e
‖u‖2

L2 .

Similarly |V | ≤ 2‖u‖2
L2
exp

(
‖u‖2

L2

)
.

Plugging the solution for v into (7), we reach

ut = uxx +
∞∑
n=1

∫
Tn(x,ξ)

fn(ξ̂ n0 )
i∏
u dξ̂ n1 , (22)

where fn = µ (−1)n

ωn

∏n
j=1 sin

(
ω(ξj−1 − ξj)

)
, an autonomous system

in uwith boundary conditions

u(0) = 0, u(1) = U, (23)

and now the problem is reduced to designingU such that the above
system is guaranteed to be stable in L2.
Eq. (22) is a particular example of (1) with λ = H = 0, and

q = ∞.
3.2. Parabolic semilinear equation

Consider the plant

vt = vxx + f (v), (24)

where f (v) is a nonlinear function analytic at the origin, verifying
f (0) = 0, with boundary conditions

v(0) = 0, vx(1) = U, (25)

where U is the actuation variable.
To cast (24) into the formof (1)we differentiate (24) in x, getting

vxt = vxxx + f ′(v)vx. (26)

Call u = vx. Then, v =
∫ x
0 u(ξ)dξ and (26) yields

ut = uxx + uf ′
(∫ x

0
u(ξ)dξ

)
, (27)

with boundary conditions

ux(0) = 0, u(1) = U . (28)

The boundary condition at 0 was obtained evaluating (24) at x = 0
and using (25) and f (0) = 0. Expanding f ′ in its Taylor series at the
origin, and calling

λ = f ′(0), (29)

hn = f (n+1)(0), n ≥ 1, (30)

we can write (27) as

ut = uxx + λu+ u
∞∑
n=1

hn
n!

(∫ x

0
u(ξ)dξ

)n
, (31)

and since(∫ x

0
u(ξ)dξ

)n
= n!

∫
Tn(x,ξ)

i∏
u dξ̂ n1 , (32)

we get

ut = uxx + λu+ u
∞∑
n=1

∫
Tn(x,ξ)

hn
i∏
u dξ̂ n1 , (33)

with boundary conditions (28). Eq. (33) falls in the class of (1) with
F = 0, q = 0, andλ andH given by (29) and (30). Note that stability
ofu in the L2 norm implies stability of v in theH1 norm, asu(0) = 0.

Remark 1. For the open-loop plant (24), finite-time blow up
instabilities are likely to occur when f (u) is superlinear. This
was first studied in a classical paper (Fujita, 1966) for power-
like nonlinearities, and has been the subject of systematic study
in subsequent years (see the reviews Levine (1990) and Deng
and Levine (2000)). More recently the question of controllability
of these kind of equations has been considered. For superlinear
functions which grow faster than |u| log2(1 + |u|) lack of global
controllability is proved in Fernandez-Cara and Zuazua (2000).
Therefore, for many nonlinearities f (v) only local or restricted
results can be achieved; for example in Coron and Trelat (2004)
boundary control is used to move between sets of steady states for
plants with superlinear nonlinearities.
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4. Control strategy

The objective is to find a Volterra feedback law U(t), so the
controlled system (1) and (2) is stable. To achieve that, a new target
system PDE is introduced in the form

wt = wxx, (34)

with homogeneous boundary conditions

wx(0) = q̄w(0), w(1) = 0, (35)

where q̄ = max{0, q}. The plant (34) and (35) is an L2 and H1
exponentially stable system by standard results from linear PDE
theory.
The idea of the method is to transform (1) into (34). For this we

use a change of variables based on a Volterra series,

w = u− K [u] = u−
∞∑
n=1

Kn[u]. (36)

Evaluating (36) at x = 1 and using (2) and (35), we arrive at the
control law

U =
∞∑
n=1

Kn[u](1). (37)

Therefore, the control is computed from the the Volterra kernels
that define (36).

Remark 2. Some of the right hand side terms in (1) might be
helpful for stability, for instance, a negative reaction term, i.e.,
λ(x) ≤ 0 for all x, or the Volterra nonlinearity resulting from −v3
in (24). Those terms could be kept in the target system (34), with
only minor modifications in the kernel equations that follows.

We assume the series in (36) can be differentiated term by
term.1 Substituing (36) into (34) we get

∂

∂t

(
u−

∞∑
n=1

Kn[u]

)
=
∂2

∂x2

(
u−

∞∑
n=1

Kn[u]

)
. (38)

Using (1) for ut in (38) the following equation is obtained:

λ(x)u+
∞∑
n=1

Fn[u] + u
∞∑
n=1

Hn[u]

=

∞∑
n=1

(
∂

∂t
Kn[u] −

∂2

∂x2
Kn[u]

)
. (39)

From (39), we can obtain a set of of partial integro-differential
equations (PIDEs) for the kernels ki that define the control (37).
While the details of the derivation are presented in the Appendix,
the PIDE verified by the n-th order kernel is given by

∂xxkn =
n∑
i=1

(
∂ξiξikn + λ(ξi)kn

)
+

n−1∑
m=1

Cmn [kn−m, hm]

− fn + In[kn, f1] +
n∑
m=2

Bmn [kn−m+1, fm]. (40)

The functions Bmn , C
m
n and In in (40) have an involved definition

that requires additional notation and the introduction of some
intermediate functions. Hence for clarity we first finish stating and
discussing the kernel equations and then introduce the concepts

1 This assumption requires uniform convergence of the transformation Volterra
series which is shown in Vazquez and Krstic (2008, Theorem 2).
towards the precise definition of Bmn , C
m
n and In, which is given

respectively in (54), (55) and (56).
The solution to the PIDE (40) needs to satisfy the following

boundary conditions. For n = 1,

k1(x, x) = q̂−
1
2

∫ x

0
λ(s)ds, (41)

k1ξ1(x, 0) = qk1(x, 0), (42)

where q̂ = min{0, q}, while for n ≥ 2,

kn(x, x, ξ̂ n2 ) = −
1
2

∫ x

ξ2

hn−1(s, ξ̂ n2 )ds, (43)

knx(x, x, ξ̂ n2 ) = −
1
4

(
3hn−1(ξ2, ξ̂ n2 )+ hn−1(x, ξ̂

n
2 )
)

+
1
2

∫ x

ξ2

φn(s, ξ̂ n2 )ds , (44)

knξi−1(ξ̂0n)|ξi−1=ξi = knξi(ξ̂
n
0 )|ξi−1=ξi , i = 2, . . . , n, (45)

knξn(ξ̂
n−1
0 , 0) = qkn(ξ̂ n−10 , 0), (46)

which are of mixed kind. In (44), the function φn is defined as

φn =

[
n∑
i=2

∂ξiξikn +
n∑
i=1

λ(ξi)kn +
n−1∑
m=1

Cmn [kn−m, hm]

+

n∑
m=2

Bmn [kn−m+1, fm] + In[kn, f1] − fn

]
x=ξ1

. (47)

Eq. (40) is a hyperbolic PIDE, for each kn, evolving in the interior of
the domainTn+1, which is a ‘‘hyper-pyramid’’ of dimension n+1 (in
particular, a triangle for n = 1, and a pyramid for n = 2). Note that,
by (32), the volume of Tn+1 decreases rapidly as the dimension n
increases, as given by the following formula:

Vol (Tn+1) =
1

(n+ 1)!
. (48)

Remark 3. The domain Tn+1 has n + 2 ‘‘sides’’ (which belong to
n-dimensional hyperplanes) on its boundary. These are

R0 = {ξ̂
n
0 : 0 < ξn < · · · < ξ1 < x = 1}, (49)

R1 = {ξ̂
n
0 : 0 < ξn < · · · < ξ1 = x < 1}, (50)

Ri = {ξ̂
n
0 : 0 < ξn < · · · < ξi = ξi−1 < · · · < ξ1 < x < 1},

i = 2, . . . , n (51)

Rn+1 = {ξ̂
n
0 : 0 = ξn < · · · < ξ1 < x < 1}. (52)

The boundary conditions (43) and (44) are non-homogeneous and
given on R1. Note that the bracket in the definition of φn in (47),
which is needed for (44), is evaluated at x = ξ1 and thus can
be computed from (43), without needing to know the kernel kn a
priori (this is explicitly illustrated next with the formula for φ2 in
(68)). The boundary condition (45) is given onRi, for i = 2, . . . , n
and represents the value of the normal derivative of kn in the
boundaryRi, hence it is of Neumann type. The boundary condition
(46) is of Robin type and given onRn+1. The value of the function
kn onR0 is what needs to be found for the control law (37).

Remark 4. Eq. (40) with its boundary conditions can be reinter-
preted as a wave equation in spacetime. If one thinks of x as
time (time-like variable) and the other variables ξ1, ξ2, . . . , ξn as
space coordinates (space-like variables), then the domain can be
seen as a n-dimensional hyper-pyramid in Rn that grows (lin-
early in ‘‘time’’ x), with boundariesR1,R2, . . . ,Rn+1 that are also
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growing in time. In particular, it can be seen that the boundaries
R2, . . . ,Rn+1 are time-like (they grow slower than the character-
istic speed of wave propagation, lying inside the ‘‘causality’’ cone),
but the boundaryR1 is space-like, i.e., it grows faster than the char-
acteristic speed of wave propagation (and lies outside the causal-
ity cone). For a wave equation to be well-posed (Courant & Hilbert,
1995), it is necessary that it has exactly one boundary condition on
its time-like boundaries and two boundary conditions (initial data)
on its space-like boundaries. That is the reason why the bound-
ary R1 has two boundary conditions. The only exception is k1,
for which R1 is characteristic (i.e., the boundary condition is of
Goursat type) and thus only needs one boundary condition, which
is (41).

The term In[kn, f1] is the homogenous integral term of the PIDE,
while Bmn [kn−m+1, fm] and C

m
n [kn−m, hm] are forcing terms, where

only terms including previous kernels km withm < n appear. This
means the set of PIDE’s can be solved recursively up to any desired
order n, beginning with k1.
We now introduce some additional definitions needed for

writing the expressions for Bmn [kn−m+1, fm], C
m
n [kn−m, hm] and

I[kn, f1] in (40).

Definition 4.1. Given a set S = {a1, a2, . . . , ak} of k ordered
variables and given m such that 0 ≤ m ≤ k, we define Pm(S)
as the set of all possible ordered k-tuples that can be formed in
the following way. The first m elements of the k-tuple are any m
members of S ordered by their indices. The last k− m elements of
the k-tuple are all the remaining members of S, also ordered by
their indices.

Example 4.1. If S = {a1, a2, a3, a4}, then:

P0(S) = {(a1, a2, a3, a4)},
P1(S) = {(a1, a2, a3, a4), (a2, a1, a3, a4), (a3, a1, a2, a4),
(a4, a1, a2, a3)},

P2(S) = {(a1, a2, a3, a4), (a1, a3, a2, a4), (a1, a4, a2, a3),
(a2, a3, a1, a4), (a2, a4, a1, a3), (a3, a4, a1, a2)},

P3(S) = {(a1, a2, a3, a4), (a1, a2, a4, a3), (a1, a3, a4, a2),
(a2, a3, a4, a1)},

P4(S) = {(a1, a2, a3, a4)}.

Remark 5. If S has k elements, the number of elements of Pm(S) is(
k
m

)
=

k!
m!(k−m)! .

We finally get to defining Bmn , C
m
n and In. Given a function

g(ξ̂ n+m0 ), and 1 ≤ j ≤ n, let Dn,mj [g(ξ̂
n+m
0 )] denote

Dn,mj [g(ξ̂
n+m
0 )] =

∑
γ̂
n−j+m
1 ∈Pn−j(ξ̂

n+m
j+1 )

g(ξ̂ j0, γ̂
n−j+m
1 ). (53)

Then, the term Bmn [kn−m+1, fm] is defined as

Bmn =
n−m+1∑
j=1

∫ ξj−1

ξj

Dn−m+1,mj

×

[
kn−m+1(ξ̂

j−1
0 , s, ξ̂ n−mj )fm(s, ξ̂ nn−m+1)

]
ds, (54)

and the term Cmn [kn−m, hm] is defined as

Cmn [kn−m, hm] =
n−m∑
j=1

Dn−m,mj

[
kn−m(ξ̂ n−m0 )hm(ξj, ξ̂ nn−m+1)

]
. (55)

The definition of In[kn, f1] is, using (54),

In[kn, f1] = B1n[kn, f1]. (56)
Remark 6. The number of terms of Bmn [kn−m+1, fm] is, using
Remark 5,

n−m+1∑
j=1

(
n− j+ 1

n− j−m+ 1

)
. (57)

The number of terms of In[kn, f1] is

n∑
j=1

(
n− j+ 1
n− j

)
=

n∑
j=1

(n− j+ 1) = n(n+ 1)/2. (58)

Hence in the PIDE for kn, the total number of integrals in In and Bmn
is
n∑
m=1

n−m+1∑
j=1

(
n− j+ 1

n− j−m+ 1

)

=

n∑
j=1

n−j+1∑
m=1

(
n− j+ 1

n− j−m+ 1

)

=

n∑
j=1

n−j∑
m=0

(
n− j+ 1
m

)

=

n∑
j=1

(2n−j+1 − 1)

= 2n+1
n∑
j=1

2−j − n

= 2n+1(2(1− 2−n−1)− 1)− n

= 2n+1 − n− 2. (59)

Similarly, the number of terms in Cmn is 2
n
− n− 1.

We next show, as an illustration of the general case, the PIDE
equations that the first two kernels, k1, k2, satisfy.
The PIDE equation for k1 is

∂xxk1 = ∂ξ1ξ1k1 + λ(ξ1)k1 − f1(x, ξ1)+
∫ x

ξ1

k1(x, s)f1(s, ξ1)ds, (60)

with boundary conditions

k1(x, x) = q̂−
1
2

∫ x

0
λ(s)ds, (61)

k1ξ1(x, 0) = qk1(x, 0). (62)

This equation evolves on the triangle T2 = {(x, ξ1) : 0 ≤ ξ1 ≤ x ≤
1}, which is drawn in Fig. 1(top).

Remark 7. Eq. (60) is an autonomous equation in k1. It is a
particular case of the kernel equation for backstepping control
of linear parabolic PDEs. Its well-posedness is already estab-
lished (Smyshlyaev & Krstic, 2004), where symbolic and numerical
methods of solution are proposed.

The PIDE equation verified by k2 is

∂xxk2 = ∂ξ1ξ1k2 + ∂ξ2ξ2k2 + (λ(ξ1)+ λ(ξ2)) k2
− f2 + k1(x, ξ1)h1(ξ1, ξ2)

+

∫ x

ξ1

k1(x, s)f2(s, ξ1, ξ2)ds+
∫ ξ1

ξ2

k2(x, ξ1, s)f1(s, ξ2)ds

+

∫ x

ξ1

k2(x, s, ξ1)f1(s, ξ2)ds+
∫ x

ξ1

k2(x, s, ξ2)f1(s, ξ1)ds,

(63)
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Fig. 1. Top: The domain T2 . Boundary conditions are given at ξ1 = 0 and x = ξ1
(lower and diagonal lines, respectively). The feedback law requires to compute the
kernel k1 at the boundary x = 1 (the vertical bold line). Bottom: The domain T3
shown in perspective. Robin boundary conditions are given at ξ2 = 0 (the ground
surface), while at x = ξ1 (normal to the ground and hidden behind the figure due to
the perspective) we have both Dirichlet and Neumann boundary conditions (initial-
like conditions). ANeumannboundary condition is given at ξ1 = ξ2 (the surface that
lies in front of a viewer looking in the ξ1 direction). The feedback law requires one
to compute the kernel k2 at the boundary x = 1 (the shaded surface).

with boundary conditions

k2(x, x, ξ2) = −
1
2

∫ x

ξ2

h1(s, ξ2)ds, (64)

k2x(x, x, ξ2) = −
1
4
(3h1(ξ2, ξ2)+ h1(x, ξ2))

+
1
2

∫ x

ξ2

φ2(s, ξ2)ds , (65)

k2ξ2(x, ξ1, 0) = qk2(x, ξ1, 0), (66)

k2ξ1(x, ξ1, ξ2)|ξ2=ξ1 = k2ξ2(x, ξ1, ξ2)|ξ2=ξ1 , (67)

where

φ2 = −

∫ x

ξ2

h1ξ2ξ2(s, ξ2)
2

ds− h1ξ2(ξ2, ξ2)−
h1ξ1(ξ2, ξ2)

2

−
λ(x)+ λ(ξ2)

2

∫ x

ξ2

h1(s, ξ2)ds− f2(x, x, ξ2)

−

∫ x

ξ2

∫ x

s

h1(σ , s)f1(s, ξ2)
2

dσds− h1(x, ξ2)
∫ x

0

λ(s)
2
ds. (68)

This equation evolves on the pyramid T3 = {(x, ξ1, ξ2) : 0 ≤
ξ2 ≤ ξ1 ≤ x ≤ 1}, which is shown in Fig. 1(bottom). Once k1
is solved from (60), it can be plugged into (63) which becomes an
autonomous equation for k2.
Note the increasing complexity of the kernel PIDEs but also the

common recursive structure that underlies all the equations.
5. An example of a stabilizable super-linear system

In Section 6 we discuss a numerical approach that would
be used for solving for the controller gain kernels in a general
case. However, in this section we consider a particularly ‘‘simple’’
example which is tractable analytically because it is formulated
in an ‘‘inverse’’ manner—we choose a simple Volterra nonlinear
controller and then derive a plant for which this controller is
stabilizing. To be precise, for λ = 0, H = 0, and q = ∞ (Dirichlet
boundary conditions for the plant), instead of solving for the k-
kernels with the f -kernels as given, we solve for the f -kernels with
the k-kernels as given. This is not possible in general, however, in
the case where f1 = 0, i.e., the ‘‘purely nonlinear’’ case where the
plant doesn’t have a linear term in its Volterra series, it is possible
to find the f -kernels when the k-kernels are given, i.e., it is possible
to find the plant that is stabilized by a pre-assigned controller.
This is easy to see by examining the Eqs. (60)–(67). First, when
f1 = 0, then k1 = 0. Second, for any k2 that satisfies the boundary
conditions (64)–(67), the kernel f2 is obtained by direct evaluation
of the derivatives of k2 from (63). And so on for f3, f4, . . . .
So, starting with a controller as simple as possible–yet

nonlinear–in this section we illustrate how it is possible to solve
(40)–(46) to find the (nonlinear) plant which is stabilized by the
preassigned controller
The simplest possible (nonlinear) controller we can think of

comes from a single second order control kernel, k2 = σ1σ2(x −
σ1)(x − σ2), whose particular form is chosen to satisfy (64)–(67).
All other control kernels are set to zero, i.e., k1 = k3 = · · · = kn =
· · · = 0. Then the control input, U(t) = K [u](t, 1), is:

U = K [u](1)

=

∫ 1

0

∫ ξ1

0
ξ1ξ2(x− ξ1)(x− ξ2)u(ξ1)u(ξ2)dξ2dξ1, (69)

which can bewritten shorter thanks to the symmetry of the kernel:

U =
1
2

(∫ 1

0
ξ(x− ξ)u(ξ)dξ

)2
. (70)

The plant kernels derived from (40) are f1 = 0,

f2 = 2ξ2ξ1 + 2ξ2x− 2ξ 22 + 2ξ1x− 2ξ
2
1 , (71)

fn = Bn−1n [k2, fn−1], n ≥ 3 (72)

where we can write (72) using definition (54) as

fn =
∫ x

ξ1

∑
γ̂ n1 ∈P1(ξ̂

n
1 )

k2(x, s, γ1)fn−1(s, γ2, . . . , γn)ds

+

∫ ξ1

ξ2

k2(x, ξ1, s)fn−1(s, ξ2, . . . , ξn)ds. (73)

Using this definition and employing a symbolic calculation
program, it is possible to get all the kernels up to a desired order.
Higher order kernels get smaller and smaller, and their influence
becomes negligible. This is stated in the following lemma, that
guarantees convergence of the Volterra series of the plant defined
by (71) and (72).

Proposition 5.1. The kernels f2, . . . , fn, . . . defined by (71) and (72)
verify the following bound.

|fn(x, ξ1, . . . , ξn)| ≤ 3x5n−8. (74)

Hence, the Volterra series defined by
∑
∞

i=2 Fi[u](t, x) converges for
u ∈ L2(0, 1).
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Proof. For every n one has that ξn ≤ ξn−1 ≤ · · · ≤ ξ1 ≤ x. Note
that

|k2| = |ξ1ξ2(x− ξ1)(x− ξ2)| ≤
x4

16
. (75)

For n = 2,

|f2| =
∣∣2ξ2ξ1 + 2ξ2x− 2ξ 22 + 2ξ1x− 2ξ 21 ∣∣

= |2ξ2ξ1 + 2ξ2(x− ξ2)+ 2ξ1(x− ξ1)|

≤ x2(2+ 1/2+ 1/2) = 3x2. (76)

Assume now the claim of the theorem is true for n− 1. Then, for n,

|fn| =

∣∣∣∣∣∣
∫ ξ1

ξ2

k2(x, ξ1, s)fn−1(s, ξ2, . . . , ξn)ds

+

∫ x

ξ1

∑
γ̂ n1 ∈P1(ξ̂

n
1 )

k2(x, s, γ1)fn−1(s, γ2, . . . , γn)ds

∣∣∣∣∣∣
≤
x4

16

∫ ξ1

ξ2

3s5n−13ds+
∫ x

ξ1

∑
γ̂ n1 ∈P1(ξ̂

n
1 )

3s5n−13ds


=
x4

16

(
3
n+ 1
5n− 12

x5n−12
)

= 3x5n−8
n+ 1

16(5n− 12)
≤ 3x5n−8, (77)

since for n ≥ 3, n+1
16(5n−12) ≤ 1. This gives us (74).

Since x ∈ (0, 1), we have that |fn| ≤ 3. Hence if u ∈ L2(0, 1),∫ 1

0

(
∞∑
n=2

Fn[u]

)2
dx

=

∫ 1

0

(
∞∑
n=2

∫ x

0

∫ ξ1

0
· · ·

∫ ξn−1

0
fn(x, ξ1, . . . , ξn)

×

(
n∏
j=1

u(ξj)

)
dξn . . . dξ1

)2
dx

≤ 9
∫ 1

0

(
∞∑
n=2

(∫ x
0 u(ξ)dξ

)n
n!

)2
≤ 18‖u‖2L2exp

(
‖u‖2L2 − 1

)
, (78)

where we have followed similar steps as in (20). This completes
the proof. �

For the purpose of illustrating the effect of the functional
operators K and F , we plot the effect of both of themon an example
function, u(t, x) = 100 sin(2πx), in Fig. 2. The order of magnitude
of K is much less than the order of magnitude of F , so we plot 20K
for the sake of clarity.

6. Numerical simulations

Before we consider some challenging numerical demonstra-
tions of solving the gain kernel PIDEs, we present numerical simu-
lations of the nonlinear plant introduced in Section 5. Startingwith
a large enough initial condition (of the order of 200), the uncon-
trolled system diverges to infinity in finite time, as seen in Fig. 3.
With the controller (69), this behavior is suppressed and the sys-
tem is stabilized, as shown in Fig. 3.
Fig. 2. Effect of K and F on u(x) = 100 sin(2πx).

Next we discuss numerical techniques for computing the
Volterra kernels kn. The first-order kernel k1 is computed with
a finite differences scheme from Smyshlyaev and Krstic (2004).
Using a similar finite difference scheme,we are able to compute the
second-order kernel k2 for the examples of Sections 3.1 and 3.2.We
then use the k1 and k2 kernels to approximate2 control law (37) to
do closed-loop simulations of the systems. For computing k2, we
have to use the extra boundary condition (65) and use a smaller
discretization step for x than for the ξ variables, which is essential
for numerical stability (Lines, Slawinski, & Bording, 1999).

6.1. Coupled nonlinear plant

Consider the example plant given in Section 3.1. Its Volterra
nonlinearity is explicitly written in Eq. (22). We set the numerical
values for the parameters of the plant asµ = 50,ω = 2.5. A simple
linear stability analysis shows that the equilibrium at the origin is
unstable for these values.
To find a control law to stabilize the system,we apply the design

methodoutlined in Section 4, andnumerically solve for the kernels.
In Fig. 4 we show the numerical value of the first two kernels, k1
and k2, at x = 1,which is the value appearing in the control formula
(37).We find that using just the linear kernel k1 in the feedback law
(37),3 stabilizes the system for a wide range of initial conditions.
However, for initial conditions of large enough size (with a peak
of the order of 1000), the linear controller fails to stabilize the
system, as shown in Fig. 5. In Fig. 6 we show how the same initial
condition is stabilized when the second-order kernel is used in
(37), i.e., truncating the control law to second order is enough for
stabilization for that size of initial conditions.

6.2. Quadratic nonlinearity

Consider the plant

ut = uxx + u2, (79)
with boundary conditions
u(0) = 0, ux(1) = U . (80)
This plant is in the class of the example of Section 3.2, with
f (u) = u2. Then, in (33), λ = 0, h1 = 2, and for n > 1,
hn = 0. In this case, k1 = 0 as the plant does not have linear
terms. In Fig. 7 we show the numerical value of the second order

2 Since the Volterra series for the control law is convergent (Vazquez & Krstic,
2008, Theorem 2), truncation yields a good approximation if ‘‘sufficiently many’’
terms are used. In the examples, Volterra series are rapidly convergent and two
terms suffice.
3 This is equivalent to applying the result of Smyshlyaev and Krstic (2004) to the

linearized system.
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Fig. 3. Uncontrolled (left) and controlled system (right) for the example of Section 5. The solution of the uncontrolled system blows up in finite time. The trajectory of the
control input (right) is u(t, 1). The size of the control effort (−400) is reasonable given the size of the initial condition (with a peak about 200).
Fig. 4. Control kernels k1(1, ξ1) (left) and k2(1, ξ1, ξ2) (right) for the example of Section 3.1, with µ = 50, ω = 2.5. Note that the kernel k2(1, ξ1, ξ2) is only defined for
ξ2 ≤ ξ1 .
Fig. 5. Closed-loop simulation for u(t, x) using only the first (linear) order kernel
k1 , in the example of Section 3.1.

control kernel k2. We tested numerically the control law (37)
using only k2. We found that, for initial conditions of size large
enough (with a peak value approximately more than 4), the open-
loop system blows up (in finite time), as shown in Fig. 8(left). In
Fig. 8(right), we show how the second-order controller is able to
prevent the blow-up and stabilize the system for the same initial
conditions. However, the same controller fails to stabilize u for
larger initial conditions (with peaks over 8). This restricted local
result is not only due to truncation of (37), but to the fact that
(79) is not globally stabilizable (see Remark 1). Thus increasing the
order of the controller may enlarge the basin of attraction of the
equilibrium at the origin for the closed-loop system, but only up to
a certain limit.

7. Conclusions

We have presented a new approach for stabilization of a class
of parabolic 1-D nonlinear partial differential equations based on
feedback linearization methods for finite-dimensional systems.
For nonlinear ODEs, feedback linearization recursively absorbs
all the plant nonlinearities into a feedback transformation. The
resulting transformation often involves nonlinearities of much
higher growth than the plant nonlinearities. For example, systems
with n states and only quadratic nonlinearities lead to feedback
linearizing controllers of polynomial power up to n+1. Intuitively,
one would worry that an infinite-step feedback linearization
procedure may result in polynomial powers that go to infinity. We
handle this problem introducing a framework, based on Volterra
series, which allows one to design feedback linearizing boundary
controllers with a well defined limit. The convergence of our state
transformation (36) and feedback (37) is proved in a companion
paper (Vazquez & Krstic, 2008) by deriving norm estimates of the
solutions kn of the kernel equations (40)–(47).
The class of stabilizable systems is given by (1) and (2), which

are 1-D parabolic equations with Volterra nonlinearities. We
provide examples of unstable nonlinear plants commonly found in
applications that can bewritten in the form (1) and (2) or converted
into this form by an invertible transformation. For such systems,
we show closed-loop stabilization in simulations for large initial
conditions, where the controller is approximated by truncating
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Fig. 6. Closed-loop simulation for u(t, x) (left) and v(t, x) (right) in the example of Section 3.1. The control law is approximated to second order using control kernels k1
and k2 .
Fig. 7. Second-order control kernel k2(1, ξ1, ξ2) for the example of Section 3.2with
f (u) = u2 (quadratic nonlinearity). Note that the kernel k2(1, ξ1, ξ2) is only defined
for ξ2 ≤ ξ1 .

the series to only the first and second order Volterra kernels. The
kernels are numerically pre-computed from the k1 and k2 equation,
(60)–(62) and (63)–(68) respectively.
In the companion paper (Vazquez & Krstic, 2008) we also

study closed-loop system properties, deriving local L2 and H1
exponential stability using the inverse of the transformation. Since
the inverse of operators of the form ‘‘identity minus Volterra
series’’ is, in general, only locally defined, and since the class of
systems considered includes systems that are not globally null
controllable (Remark 1), the form of stability achieved is not global
but local,with an estimate of the region of attraction in caseswhere
the inverse backstepping transformation can be quantified.
The development of feedback linearization/backstepping de-
signs for nonlinear PDEs still has a long way to go. Coordinate-free
tests of linearizability are needed, as well as methods for finding
the ‘‘flat output’’ when the input is not at a boundary but of ‘‘point-
actuator’’ type. We point out that in Section 3.2 we found a flat
output vx(0, t) and a pre-transformation of the type u = vx that
casts the system into the form with Volterra series nonlinearities.
Systematic procedures for achieving this for broader classes of PDE
systems would be welcome.

Appendix

Here we show the derivation of the general kernel PIDE
equation for any order n.
We first state a technical result.

Lemma A.1. The following two identities hold.∫
Tn(x,ξ)

fn(ξ̂ n0 )dξ̂
n
1 =

∫
Tn−1(x,ξ)

∫ ξm−1

ξm

fn(ξ̂m−10 , s, ξ̂ n−1m )dsdξ̂ n−11 ,

(A.1)∫
Tn(x,ξ)

fn(ξ̂ n0 )
∫

Tm(ξj,σ )

gm(ξj, σ̂m1 )dσ̂
m
1 dξ̂

n
1

=

∫
Tn+m(x,ξ)

Dn,mj [fn(ξ̂
n
0 )gm(ξj, ξ̂

n+m
n+1 )]dξ̂

n+m
1 , (A.2)

where Dn,mj is defined as in (53).
Fig. 8. Uncontrolled (left) and controlled system (right) for the example of Section 3.2 with f (u) = u2 (quadratic nonlinearity). The control law is truncated to second order.
The solution of the uncontrolled system blows up in finite time, while the controlled system converges to the origin.
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Proof. Identity (A.1) is derived directly from Fubini’s theorem. For
(A.2), write∫

Tn(x,ξ)
fn(ξ̂ n0 )

(∫
Tm(ξj,σ )

gm(ξj, σ̂m1 )dσ̂
m
1

)
dξ̂ n1

=

∫
Ωmj (ξ̂

n+m
1 )

fn(ξ̂ n0 )gm(ξj, ξ̂
n+m
n+1 )dξ̂

n+m
1 , (A.3)

where

Ωmj (ξ̂
n+m
1 ) = {x ≥ ξ1 ≥ · · · ≥ ξn ≥ 0; ξj

≥ ξn+1 ≥ · · · ≥ ξn+m ≥ 0}. (A.4)

For anym and 1 ≤ j ≤ n, it holds that

Ωmj (ξ̂
n+m
1 ) =

⋃
γ̂
n−j+m
1 ∈Pn−j(ξ̂

n+m
j+1 )

{ξ1 ≥ ξ2 ≥ · · · ≥ ξj

≥ γ1 ≥ · · · ≥ γn+m−j ≥ 0}. (A.5)

To prove (A.5), we first note that if j = n orm = 0,Ωmj (ξ̂
n+m
1 ) =

Tn(x, ξ), while if j < n andm ≥ 1, since

{ξj ≥ ξj+1 ≥ 0} = {ξj ≥ ξj+1 ≥ ξn+1}
n−1⋃
l=2

{ξn+l ≥ ξj+1 ≥ ξn+l+1}

∪{ξn+m ≥ ξj+1 ≥ 0}, (A.6)

we get

Ωmj (ξ̂
n+m
1 ) = Ωmj+1(ξ̂

n+m
1 ) ∪Ω0j+1(ξ̂

j
1, ξ̂

n+m
n+1 , ξ̂

n
j+1)

m−1⋃
l=2

Ωm−lj+1 (ξ̂
j
1, ξ̂

n+l−1
n+1 , ξ̂ nj+1, ξ̂

n+m
n+l ). (A.7)

Similarly, for j = n or m = 0, the symbol Pn−j(ξ̂ n+mj+1 ) = {ξ̂
n+m
j+1 },

and if j < n andm ≥ 1, verifies that

Pn−j(ξ̂
n+m
j+1 ) = {ξj+1, Pn−j−1(ξ̂

n+m
j+2 )}

∪

(
m−1⋃
l=2

{ξ̂ n+l−1n+1 , ξj+1, Pn−j−1(ξ̂ nj+2, ξ̂
n+m
n+l )}

)
∪{ξ̂ n+mn+1 ξ̂

n
j+1}. (A.8)

Note (A.8) and (A.7)is essentially the same identity (the former
expressed as a combinatorial identity and the later given as a
geometric identity). This fact allows one to prove (A.5) by double
induction on j andm.
With (A.5) established, we have that∫

Tn(x,ξ)
fn(ξ̂ n0 )

(∫
Tm(ξj,σ )

gm(ξj, σ̂m1 )dσ̂
m
1

)
dξ̂ n1

=

∑
γ̂
n−j+1
1 ∈Pn−j(ξ̂

n+m
j+1 )

∫
Tn+m(x,ξ)

fn(ξ̂
j
0, γ̂

n−j
1 )gm(ξj, γ̂

n−j+m
n−j+1 )dξ̂

n+m
1

=

∫
Tn+m(x,ξ)

Dn,mj [fn(ξ̂
n
0 )gm(ξj, ξ̂

n+m
n+1 )]dξ̂

n+m
1 , (A.9)

where we have used (53). Then, (A.2) follows. �

We next derive the general kernel equation for n ≥ 2 (the case
n = 1 is covered in Smyshlyaev and Krstic (2004)). The idea is to,
starting from Eq. (39),

0 = λ(x)u+
∞∑
n=1

(
u(x)

∫
Tn(x,ξ)

hn(ξ̂ n0 )
n∏
udξ̂ n1

+

∫
Tn(x,ξ)

fn(ξ̂ n0 )
n∏
udξ̂ n1

+

(
∂2

∂x2
−
∂

∂t

)∫
Tn(x,ξ)

kn(ξ̂ n0 )
n∏
udξ̂ n1

)
, (A.10)

evaluate the derivatives in (A.10) and apply integration by parts
to reach a formula that contains the least possible number of
derivatives in u.
We begin computing the second spatial derivative in (A.10),

which is

∂2

∂x2

∫
Tn(x,ξ)

kn(ξ̂ n0 )
n∏
udξ̂ n1

=

∫
Tn(x,ξ)

∂xxkn(ξ̂ n0 )
n∏
udξ̂ n1 + ux(x)

×

∫
Tn−1(x,ξ)

kn(x, ξ̂ n−10 )

n−1∏
udξ̂ n−11

+ u(x)
∫

Tn−1(x,ξ)

(
2knx(x, ξ̂ n−10 )

+ knξ1(x, ξ̂
n−1
0 )

) n−1∏
udξ̂ n−11

+ u(x)2
∫

Tn−2(x,ξ)
kn(x, x, ξ̂ n−20 )

n−2∏
udξ̂ n−21 . (A.11)

Next we compute the time derivative in (A.10), which yields

∂

∂t

∫
Tn(x,ξ)

kn(ξ̂ n0 )
n∏
udξ̂ n1

=

n∑
j=1

∫
Tn(x,ξ)

kn(ξ̂ n0 )uxx(ξj)
n,j∏
udξ̂ n1

+

n∑
j=1

∫
Tn(x,ξ)

λ(ξj)kn(ξ̂ n0 )
n∏
udξ̂ n1

+

n∑
j=1

∫
Tn(x,ξ)

kn(ξ̂ n0 )H[u](ξj)
n∏
udξ̂ n1

+

n∑
j=1

∫
Tn(x,ξ)

kn(ξ̂ n0 )F [u](ξj)
n,j∏
udξ̂ n1 . (A.12)

We need to simplify (A.12). We show how it can be done for
each line in the equation. Using (A.1) for the second line in (A.12),
n∑
j=1

∫
Tn(x,ξ)

kn(ξ̂ n0 )uxx(ξj)
n,j∏
udξ̂ n1

=

n−1∑
j=1

∫
Tn−1(x,ξ)

∫ ξj−1

ξj

kn(ξ̂
j−1
0 , s, ξ̂ n−1j )uxx(s)

n−1∏
udsdξ̂ n−11

+

∫
Tn−1(x,ξ)

∫ ξn−1

0
kn(ξ̂ n−10 , s)uxx(s)

n−1∏
udsdξ̂ n−11 , (A.13)

and integrating by parts,
n∑
j=1

∫
Tn(x,ξ)

kn(ξ̂ n0 )uxx(ξj)
n,j∏
udξ̂ n1
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=

n∑
j=1

∫
Tn(x,ξ)

∂ξjξjkn(ξ̂
n
0 )

n∏
udξ̂ n1

+

n∑
j=1

∫
Tn−1(x,ξ)

kn(ξ̂
j−1
0 , ξj−1, ξ̂

n−1
j )ux(ξj−1)

×

n−1∏
udξ̂ n−11 −

n−1∑
j=1

∫
Tn−1(x,ξ)

kn(ξ̂
j−1
0 , ξj, ξ̂

n−1
j )

× ux(ξj)
n−1∏
udξ̂ n−11 −

n∑
j=1

∫
Tn−1(x,ξ)

n−1∏
u

× knξj(ξ̂
j−1
0 , ξj−1, ξ̂

n−1
j )u(ξj−1)dξ̂ n−11

+

n−1∑
j=1

∫
Tn−1(x,ξ)

knξj(ξ̂
j−1
0 , ξj, ξ̂

n−1
j )u(ξj)

×

n−1∏
udξ̂ n−11 − ux(0)

∫
Tn−1(x,ξ)

kn(ξ̂ n−10 , 0)

×

n−1∏
udξ̂ n−11 + u(0)

∫
Tn−1(x,ξ)

knξn(ξ̂
n−1
0 , 0)

n−1∏
udξ̂ n−11 .(A.14)

Since (ξ̂ j−10 , ξj, ξ̂
n−1
j ) = (ξ̂ j, ξ̂ n−1j ) and (ξ̂ j−10 , ξj−1, ξ̂

n−1
j ) =

(ξ̂
j−1
0 , ξ̂ n−1j−1 ), the fourth to sixth lines in (A.14) summed over j
simplify as

n∑
j=1

∫
Tn−1(x,ξ)

kn(ξ̂
j−1
0 , ξj−1, ξ̂

n−1
j )ux(ξj−1)

n−1∏
udξ̂ n−11

−

n−1∑
j=1

∫
Tn−1(x,ξ)

kn(ξ̂
j−1
0 , ξj, ξ̂

n−1
j )ux(ξj)

n−1∏
udξ̂ n−11

= ux(x)
∫

Tn−1(x,ξ)
kn(x, x, ξ̂ n−11 )

n−1∏
udξ̂ n−11 . (A.15)

Hence (A.14) can be simplified as

n∑
j=1

∫
Tn(x,ξ)

kn(ξ̂ n0 )uxx(ξj)
n,j∏
udξ̂ n1

= u(0)
∫

Tn−1(x,ξ)

(
knξn(ξ̂

n−1
0 , 0)− qkn(ξ̂ n−10 , 0)

)
×

n−1∏
udξ̂ n−11 +

n∑
j=1

∫
Tn(x,ξ)

∂ξjξjkn(ξ̂
n
0 )

n∏
udξ̂ n1

+ ux(x)
∫

Tn−1(x,ξ)
kn(x, x, ξ̂ n−11 )

n−1∏
udξ̂ n−11

− u(x)
∫

Tn−1(x,ξ)
knξ1(x, x, ξ̂

n−1
1 )

n−1∏
udξ̂ n−11

+

n−1∑
j=1

∫
Tn−1(x,ξ)

(
knξj(ξ̂

j−1
0 , ξj, ξ̂

n−1
j )

− knξj+1(ξ̂
j−1
0 , ξj, ξ̂

n−1
j )

)
u(ξj)

n−1∏
udξ̂ n−11 . (A.16)

In the second line of (A.16) we have used the Robin boundary
condition for u at x = 0.
The fourth line in (A.12) can be written as
n∑
j=1

∫
Tn(x,ξ)

kn(ξ̂ n0 )H[u](ξj)
n∏
udξ̂ n1
=

n∑
j=1

∞∑
m=1

∫
Tn(x,ξ)

kn(ξ̂ n0 )

(∫
Ti(ξj,σ )

hm(ξj, σ̂m1 )
m∏
udσ̂m1

)

×

n∏
udξ̂ n1

=

n∑
j=1

∞∑
m=1

∫
Tn+m−1(x,ξ)

Dn,mj [kn(ξ̂
n
0 )hm(ξj, ξ̂

m+n
n+1 )]

×

n+m∏
udξ̂ n+m1 , (A.17)

where we have applied (A.2). Then, since the time derivative
computed in (A.12) is summed from n = 1 to infinity in (A.10),
we consider the infinite sum for the result in (A.17), which yields
∞∑
n=1

n∑
j=1

∞∑
m=1

∫
Tn+m(x,ξ)

Dn,mj [kn(ξ̂
n
0 )hm(ξj, ξ̂

m+n
n+1 )]

n+m∏
udξ̂ n+m1

=

∞∑
n=1

n−1∑
m=1

n−m+1∑
j=1

∫
Tn(x,ξ)

Dn−m,mj [kn−m(ξ̂ n−m0 )hm(ξj, ξ̂ nn−m+1)]

×

n∏
udξ̂ n1

=

∞∑
n=1

∫
Tn(x,ξ)

n−1∑
m=1

Cmn [kn−m, hm]
n∏
udξ̂ n1 , (A.18)

where we have used the definition of Cmn given in (55). Similarly,
the fifth line in (A.12) can be written as
n∑
j=1

∫
Tn(x,ξ)

kn(ξ̂ n0 )F [u](ξj)
n,j∏
udξ̂ n1

=

n∑
j=1

∞∑
m=1

∫
Tn+m(x,ξ)

Dn,mj [kn(ξ̂
n
0 )fm(ξj, ξ̂

m+n
n+1 )]

n+m,j∏
udξ̂ n+m1

=

n∑
j=1

∞∑
m=1

∫
Tn+m−1(x,ξ)

∫ ξj−1

ξj

Dn,mj [kn(ξ̂
n
j−1, s, ξ̂

n−1
j )

× fm(s, ξ̂m+n−1n )]ds
n+m−1∏

udξ̂ n+m−11 , (A.19)

where we have applied (A.1) and (A.2). Then, again computing the
infinite sum as in (A.18),
∞∑
n=1

n∑
j=1

∞∑
m=1

∫
Tn+m−1(x,ξ)

∫ ξj−1

ξj

Dn,mj [fm(s, ξ̂
m+n−1
n )

× kn(ξ̂ nj−1, s, ξ̂
n−1
j )]ds

n+m−1∏
udξ̂ n+m−11

=

∞∑
n=1

∫
Tn(x,ξ)

(
I[kn, f1] +

n∑
m=2

Bmn [kn−m+1, fm]

)
n∏
udξ̂ n1 , (A.20)

where the definitions (56) and (54)of respectively I and Bmn have
been used.
Collecting all the terms (A.11), (A.16), (A.18) and (A.20) into

(A.10), we get

0 =
∞∑
n=1

∫
Tn(x,ξ)

[
∂xxkn −

n∑
j=1

∂ξjξjkn −
n∑
j=1

λ(ξj)kn

+ fn −
n∑
m=2

Bin[kn−m+1, fm] −
n−1∑
m=1

Cmn [kn−m, hm]

− I[kn, f1]

]
n∏
udξ̂ n1 + u(0)×

∞∑
n=1

∫
Tn−1(x,ξ)

n−1∏
u
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×

(
knξn(ξ̂

n−1
0 , 0)− qkn(ξ̂ n−10 , 0)

)
dξ̂ n−11

+

∞∑
n=1

n−1∑
j=1

∫
Tn−1(x,ξ)

(
knξj(ξ̂

j−1
0 , ξj, ξ̂

n−1
j )

− knξj+1(ξ̂
j−1
0 , ξj, ξ̂

n−1
j )

)
u(ξj)

n−1∏
udξ̂ n−11

+ u2(x)
∞∑
n=2

∫
Tn−2(x,ξ)

kn(x, x, x, ξ̂ n−21 )

n−2∏
udξ̂ n−21

+ u(x)

[
λ(x)+

∞∑
n=1

∫
Tn−1(x,ξ)

(
hn−1

+ 2
d
dx
kn(x, x, ξ̂ n−11 )

) n−1∏
udξ̂ n−11

]
, (A.21)

where we define the total derivative d
dxkn(x, x,

ξ̂ n−11 ) = knx(x, x, ξ̂ n−11 ) + knξ1(x, x, ξ̂
n−1
1 ). Since (A.21) has to be

verified for arbitrary u, we get that the terms inside the integrals
must be zero. Hence, we get from the first three lines that

∂xxkn =
n∑
i=1

∂ξiξikn +
n∑
j=1

λ(ξj)kn +
n−1∑
m=1

Cmn [kn−m, hm]

+

n∑
m=2

Bmn [kn−m+1, fm] − fn + In[kn, f1], (A.22)

and from the rest of (A.21), we obtain

knξi−1(ξ̂
n
0 )|ξi−1=ξi = knξi(ξ̂

n
0 )|ξi−1=ξi , i = 2, . . . , n, (A.23)

knξn(ξ̂
n−1
0 , 0) = qkn(ξ̂ n−10 , 0), (A.24)

d
dx
kn(x, x, ξ̂ n2 ) = −

1
2
hn−1(x, ξ̂ n2 ), (A.25)

kn(x, x, x, ξ̂ n3 ) = 0. (A.26)

Eqs. (A.22)–(A.26) are the general kernel equations, but we still
need to derive boundary conditions (43) and (44)
Integrating (A.25) and using (A.26) to determine the constant of

integration, we get (43):

kn(x, x, ξ̂ n2 ) = −
1
2

∫ x

ξ2

hn−1(s, ξ̂ n2 )ds. (A.27)

Boundary condition (44) is built into (A.22). Defining φn as in
(47), when ξ1 = x (A.22) reduces to

∂xxkn|x=ξ1 = ∂ξ1ξ1kn(x, x, ξ̂
n
2 )+ φn(x, ξ̂

n
2 ). (A.28)

Taking derivative with respect to x in (A.25),(
∂xxkn + ∂ξ1ξ1kn + 2∂xξ1kn

)
x=ξ1
= −

1
2
∂xhn−1(x, ξ̂ n2 ), (A.29)

which substituted in (A.28) gives

2
(
∂xxkn + ∂xξ1kn

)
x=ξ1
= −

1
2
∂xhn−1(x, ξ̂ n2 )+ φn(x, ξ̂

n
2 ), (A.30)

hence

d
dx
knx(x, x, ξ̂ n2 ) = −

1
4
∂xhn−1(x, ξ̂ n2 )+

1
2
φn(x, ξ̂ n2 ). (A.31)

From (A.23) at i = 2, ξ1 = x, we get that

knξ1(x, x, x, ξ̂
n
3 ) = knξ2(x, x, x, ξ̂

n
3 ) (A.32)
and since (A.26) implies(
knx + knξ1 + knξ2

)
(x, x, x, ξ̂ n3 ) = 0, (A.33)

we get, from (A.25), that

knx(x, x, x, ξ̂ n3 ) = −hn−1(x, ξ̂
n
2 ). (A.34)

Integrating (A.31) and using (A.34) to find the constant of
integration, we get

knx(x, x, ξ̂ n2 ) = −
1
4
hn−1(x, ξ̂ n2 )−

3
4
hn−1(ξ2, ξ̂ n2 )

+
1
2

∫ x

ξ2

φn(s, ξ̂ n2 )ds, (A.35)

which was the remaining boundary condition (44).
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