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ABSTRACT
Recently, the problem of designing boundary controllers and observers for unstable linear constant-
coefficient reaction–diffusion equation on N-balls has been solved by means of the backstepping
method. However, the extension of these results to spatially varying coefficients is far from trivial.
This work deals with radially varying reaction coefficients under revolution symmetry conditions on
a sphere (the three-dimensional case). Under these conditions, the equations become singular in the
radius. When applying the backstepping method, a similar type of singularity appears in the back-
stepping control and observer kernel equations. However, with a simple scaling transformation, we
are able to reduce the singular equation to a regular equation, which turns out to be the same kernel
equations appearingwhenusing the one-dimensional backsteppingmethod. In addition, the scaling
transformation allows us to prove stability in the H1 space.

1. Introduction

In a series of previous results, the problem of design-
ing boundary controllers and observers for unstable lin-
ear constant-coefficient reaction–diffusion equation on
n-balls has been solved. In particular, Vazquez and Krstic
(2014b) and Vazquez and Krstic (2015) describe, respec-
tively, the (full-state) control design for the particular
case of a two-dimensional (2D) disk and a general n-ball;
that same design, augmented with an observer, is applied
(following the ideas of Meurer & Krstic, 2011) in Qi,
Vazquez, and Krstic (2015) to multi-agent deployment in
three-dimensional (3D) space, with the agents distributed
on a disk-shaped grid and commanded by leader agents
located at the boundary. The output-feedback generalisa-
tion to n-balls is presented in Vazquez andKrstic (2016a).
Older, related results that use backstepping include the
design an output feedback law for a convection prob-
lem on an annular domain (see Li & Xie, 2010; Vazquez
& Krstic, 2010), or observer and controller designs on
cuboid domains (see, respectively, Jadachowski, Meurer,
& Kugi, 2015; Meurer, 2013).

This work, together with a similar result on a disk pre-
sented in Vazquez and Krstic (2016b), can be seen as a
first step towards extending this family of previous results
to the non-constant coefficient case, by assuming a cer-
tain symmetry for the initial conditions, which simplifies
the problem. There have been specific results on disk- or
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spherical-shaped domains (see e.g. Bribiesca Argomedo,
Prieur Witrant, & Bremond, 2013; Moura, Chaturvedi, &
Krstic, 2012), which have assumed these same symmetry
conditions, which are of interest in engineering applica-
tions; for instance, the cited works consider diverse appli-
cations such as fusion reactors and batteries. The simme-
try condition is equivalent to only considering the 0-th
order harmonic (i.e. the mean) in the general design pre-
sented in Vazquez and Krstic (2015).

Based on the domain shape, we use spherical coor-
dinates, and based on the symmetry of the initial con-
ditions and imposing an equally symmetric controller
(and observer), the system can be written as a single
one-dimensional (1D) system with singular terms. We
design a feedback law and an observer for this system
using the backsteppingmethod (see Krstic & Smyshlyaev,
2008a, for the basis of the method and several appli-
cations). The backstepping method has proved itself to
be an ubiquitous method for control and estimation of
partial differential equations (PDEs), with many other
applications including, among others, flow control (see
for instance Vazquez & Krstic, 2008a; Vazquez, Trelat,
& Coron, 2008), parabolic systems (Baccoli, Pisano, &
Orlov, 2015), nonlinear PDEs (Vazquez & Krstic, 2008b),
hyperbolic 1D systems (see e.g. Coron, Vazquez, Krstic, &
Bastin, 2013; Di Meglio, Vazquez, & Krstic, 2013; Krstic
& Smyshlyaev, 2008b; Vazquez & Krstic, 2014a), adap-
tive control (Smyshlyaev & Krstic, 2010), wave equations
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2 R. VAZQUEZ ANDM. KRSTIC

(Smyshlyaev, Cerpa, & Krstic, 2010), tracking (Meurer
& Kugi, 2009), and delays (Krstic, 2009). The main idea
of backstepping is finding an invertible transformation
that maps the system into a stable target system which
needs to be chosen judiciously. To find the transforma-
tion, a hyperbolic partial differential equation (called the
kernel equation) needs to be solved. Typically, the well-
posedness of the kernel equation is studied by trans-
forming it into an integral equation and then applying
successive approximations to construct a solution. The
convergence of the successive approximation series guar-
antees that a solution always exists, it is unique, and it
is bounded. In both the observer and controller prob-
lems posed in this paper, one obtains a singular kernel
equation. However, there is a simple scaling transforma-
tion that allows us to reduce the kernel equation to the
usual PDE found in the application of backstepping to 1D
parabolic systems, which is known to be well-posed. The
same transformation can be shown to be regular enough,
so that H1 stability can be easily shown.

Interestingly, the result presented in this paper for
the sphere contrasts with the more complicated 2D case
(disk-shaped domain), outlined in Vazquez and Krstic
(2016b), where the singularity cannot be eliminated and
a special method of proof is required (based on a combi-
natorial sequence of integers, the Catalan numbers).

The structure of the paper is as follows. In Section 2,
we introduce the problem and state our main result.
We explain our design method and find the control and
observer kernel equations in Section 3, showing its well-
posedness. Next, we show closed-loop stability and well-
posedness in Section 4.We conclude the paper with some
remarks in Section 5.

2. Reaction–diffusion system on a ball under
revolution symmetry conditions

Consider the following spatially varying coefficient
reaction–diffusion system

ut = ε � u + λ(�x)u = ε

(
∂2u
∂x21

+ ∂2u
∂x22

+ ∂2u
∂x23

)
+ λ(�x)u,

(1)

with ε > 0, with �x = (x1, x2, x3)T ∈ R
3, where u =

u(t, �x) is the state variable, evolving for t > 0 on a ball
domain of radius R, denoted as B(R) = {�x : ‖�x‖ < R}. In
addition, the coefficient λ is assumed to be differentiable
in B(R).

The boundary conditions of (1) are over the sphere of
radius R, denoted as S(R) = {�x : ‖�x‖ = R},

u(t, �x)
∣∣∣
S(R)

= U (t, �x), (2)

whereU (t, �x) is the actuation. The measurementY (t, �x)
is the normal (outer) derivative at the spherical boundary,
i.e.

Y (t, x1, x2, x3) = �∇u(t, x1, x2, x3) · �n|S(R), (3)

where �n is the normal vector at the spherical boundary,
�n = �x

‖�x‖ . Note that a weighted spatial average of the state
could also be considered (as shown in Tsubakino &Hara,
2015).

When U = 0 and λ has large positive values, (1)–(2)
becomes unstable. Our objective is to find an output-
feedback control law forU(t) using the measurement Y(t)
so that the origin of the system (1)–(2) becomes stable in
some appropriate norm.

Denote simply by L2 (resp. H1) the space of square-
integrable functions (resp. of functions with square-
integrable gradient defined in the weak sense, see e.g.
Brezis, 2011) over B(R). Finally, denote byH1

0 the space of
H1 functions vanishing at the boundary S(R) in the usual
sense of traces, see e.g. Evans (1998, p.259). Then for f �
L2 and f � H1, its respective norms are defined as

‖ f ‖2L2 =
∫ ∫ ∫

B(R)

f 2(�x)d�x, (4)

‖ f ‖2H1 = ‖ f ‖2L2 +
∫ ∫ ∫

B(R)

‖�∇ f (�x)‖2d�x, (5)

where the volume integrals are extended to the ball of
radius R.

The problem posed here is solved in Vazquez and
Krstic (2016a) for general dimension but for constant
coefficient λ, obtaining in particular the following result
for the sphere

Theorem 2.1 (Vazquez & Krstic, 2016a): Consider (1)–
(2) with constant λ > 0, with initial conditions u0(�x), and
the the following (explicit) feedback law for U:

U (t, �x) = − 1
4π

√
λ

ε

∫ ∫ ∫
B(R)

I1

[√
λ

ε
(R2 − ‖�ξ‖2)

]

×
√
R2 − ‖�ξ‖2
‖�x − �ξ‖3 û(t, �ξ )d�ξ, (6)

where û is the state of an observer (which approximates u),
computed as the solution of the following PDE

ût = ε � û + λû −
√

λε

4π
I1

[√
λ

ε
(R2 − ‖�x‖2)

]

×
√
R2 − ‖�x‖2

∫ ∫
S(R)

Y (t, �ξ ) − ûr(t, �ξ )

‖�x − �ξ‖3 d�ξ, (7)
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where the surface integral is extended to the sphere of radius
R, with boundary conditions

û(t, �x)
∣∣∣
�x∈S(R)

= U (t, �x). (8)

and initial conditions û0. Assume in addition that u0 ∈
H1

0 and û0 ≡ 0. Then the augmented system (u, û) has a
unique H1 solution, and the equilibrium profile u, û ≡ 0
is exponentially stable in the H1 norm, i.e. there exists c1,
c2 > 0 such that

‖u(t, ·)‖H1 + ‖û(t, ·)‖H1 ≤ c1e−c2t‖u0‖H1 . (9)

Extending this result to the case of spatially varying
coefficients is challenging. To be able to solve the problem
at least in a particular case, we state the main assumption
of the paper.

Assumption 2.1 (Revolution symmetry conditions):
Consider that the initial conditions u0(�x) only depend on
the distance to the origin (the radius, r = ‖�x‖). Similarly,
λ(x1, x2, x3) is assumed to depend only on the radius, i.e.

λ(x1, x2, x2) = λ(‖�x‖). (10)

In addition, we will design a feedback control law that is
uniform on the surface of the sphere, i.e. U(t, x1, x2, x3) =
U(t).

The revolution symmetry condition is frequently used
in engineering models. For instance, in Bribiesca et al.
(2013), it is used to model the evolution of the magnetic
flux profile in a tokamak. Another example is the work by
Moura et al. (2012), where it is used to model an electro-
chemical cell. Note that, under the framework established
in Vazquez and Krstic (2016a), this assumption is in fact
equivalent to only considering l = 0 in the spherical har-
monics expansion (i.e. only themean value over the ball).

To make Assumption 2.1 explicit, Equation (1) can be
written in spherical coordinates (r, θ1, θ2), where r � [0,
R] is the radial coordinate, and the angular coordinates
are θ1 � [0, π] and θ2 � [0, 2π], so that

x1 = r cos θ2 sin θ1, (11)
x2 = r sin θ2 sin θ1, (12)
x3 = r cos θ1. (13)

In these coordinates:

ut = ε
(
urr + 2

ur
r

)
+ ε

r2

×
(

∂2u
∂θ2

1
+ 1

tan θ1

∂u
∂θ1

+ 1
sin2 θ1

∂2u
∂θ2

2

)
+ λ(r)u, (14)

with boundary conditions

u(t,R, θ1, θ2) = U (t, θ1, θ2). (15)

Using Assumption 2.1, the state u only depends on time
and radius, thus the system dynamics is described by the
following 1D equation

ut = ε
(
urr + 2

ur
r

)
+ λ(r)u, (16)

for r � [0, R), with boundary conditions

u(t,R) = U (t ), ur(t, 0) = 0, (17)

where the second boundary condition takes into account
that symmetry imposes a zero-flux condition at the centre
of the sphere, and is necessary for the equation to be well-
posed.

The measurement Y becomes then a single value
(independent of where it is measured in the boundary)
and can be written as

Y (t ) = ∂u
∂r

(t,R). (18)

Notice that under Assumption 2.1, for f � L2 (resp. f
� H1) with revolution symmetry conditions (i.e. f = f(r),
so∇ f = fr�r ), the L2 norm (resp.H1 norm) can be rede-
fined (to avoid a 4π factor in many expressions) as the
following equivalent norm

‖ f ‖2L2 =
∫ R

0
f 2(r)r2dr, (19)

‖ f ‖2H1 = ‖ f ‖2L2 +
∫ R

0
f 2r (r)r2dr. (20)

Using the description in radial coordinates, the main
result of this paper extends Theorem 2.1 to spatially vay-
ing λ(r) in spherical domains under Assumption 2.1 as
follows.
Theorem 2.2: Consider (16)–(17), with initial conditions
u0(r), and the the following feedback law for U:

U (t ) =
∫ R

0
k(ρ)û(t, ρ)dρ, (21)

where û(t, r) is the state of an observer (which approxi-
mates u), computed as the solution of the following PDE

ût = ε

(
ûrr + 2

ûr
r

)
+ λ(r)u + p(r)

[
Y (t, r) − ûr(t,R)

]
,

(22)
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with boundary conditions

û(t,R) = U (t ), ûr(t, 0) = 0, (23)

and initial conditions û0. The controller and observer gains,
respectively, k(ρ) in (21) and p(r) in (22), are computed
from the unique solution K(r, ρ) to the kernel equation

Krr + 2
Kr

r
− Kρρ + 2

Kρ

ρ
− 2

K
ρ2 = λ(ρ) + c

ε
K (24)

for c > 0, with boundary conditions

K(r, 0) = 0, (25)
Kρ (r, 0) = 0, (26)

K(r, r) = −
∫ r

0

c + λ(ρ)

2ε
dρ, (27)

in the domain T = {(r, ρ) : 0 ≤ ρ ≤ r ≤ R}, and then
setting

k(ρ) = K(R, ρ), p(r) = ε
R2

r2
K(R, r). (28)

Assume in addition that u0 ∈ H1
0 and û0 ≡ 0. Then the

augmented system (u, û) has an unique H1 solution, and
the equilibrium profile u, û ≡ 0 is exponentially stable in
the H1 norm, i.e. there exists c1 > 0 such that

‖u(t, ·)‖H1 + ‖û(t, ·)‖H1 ≤ c1e−2ct‖u0‖H1 . (29)

It must be noted that the parameter c > 0 is chosen
by the designer and controls the rate of convergence of
Theorem 2.2. Its size will determine the value of the ker-
nel K, as seen from (24)–(27), and therefore the size of
controller and output injection gains.

In the next sections, we prove Theorem 2.2. First,
Section 3 applies the backstepping method, finding a
feedback law and an observer gain whose kernel is the
solution of the singular hyperbolic PDE (24)–(27), which
is shown well-posed. Next, Section 4 deals with well-
posedness and stability of the closed-loop system.

3. Boundary controller and boundary observer
design

In this section, we use the backsteppingmethod to design
the control law (21), which is detailed in Section 3.1 and
the observer (22), which is given in Section 3.2. The well-
posedness of the kernel equations is analysed for both
controller and observer in Section 3.3. Both designs are
deduced separately, later in Section 4 it is shown that
combining the observer and the controller stabilises the
closed-loop system.

3.1 Design of boundary feedback control law

Assume for the moment that the full state u(t, r) is
known. To design a feedback control law, the backstep-
ping method is used, whose main idea is to use a trans-
formation of the form

w(t, r) = u(t, r) −
∫ r

0
K(r, ρ)u(t, ρ)dρ, (30)

which maps (16) into

wt = ε
(
wrr + 2

wr

r

)
− cw, (31)

an stable reaction–diffusion equation for c > 0, with
boundary conditions

w(t,R) = 0, wr(t, 0) = 0. (32)

To find the conditions thatK(r, ρ)must verify (the control
kernel equations), both the original system (16) and the
target system (31) are substituted into the transformation
(30). After a rather tedious but straightforward calcula-
tion (see e.g. Krstic & Smyshlyaev, 2008a), in this case one
obtains

Krr + 2
Kr

r
− Kρρ + 2

Kρ

ρ
− 2

K
ρ2 = λ(ρ) + c

ε
K (33)

with boundary conditions

K(r, 0) = 0, (34)
Kρ (r, 0) = 0, (35)

K(r, r) = −
∫ r

0

c + λ(ρ)

2ε
dρ, (36)

in the domain T = {(r, ρ) : 0 ≤ ρ ≤ r ≤ R}. Assuming
(33)–(36) has a solution, then substituting the boundary
conditions (17) and (32) one finds the control law as

U (t ) =
∫ R

0
K(R, ρ)u(t, ρ)dρ, (37)

as stated in (28).

3.2 Design of boundary observer

If the full state u(t, r) is unknown, then an observer is
needed. Based on the structure of the system, the follow-
ing observer is proposed

ût = ε

(
ûrr + 2

ûr
r

)
+ λ(r)û + p(r)

[
Y (t ) − ûr(t,R)

]
,

(38)
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with boundary conditions

û(t,R) = U (t ), ûr(t, 0) = 0, (39)

where p(r) is the observer gain, to be determined. Defin-
ing the observer error as ũ = u − û, we obtain that û
verifies

ũt = ε

(
ũrr + 2

ũr
r

)
+ λ(r)ũ − p(r)ũr(t,R), (40)

with boundary conditions

ũ(t,R) = 0, ũr(t, 0) = 0. (41)

To design the observer gain kernel, so that (40)–(41)
becomes stable, the backstepping method is used again.
Now we use a transformation

ũ(t, r) = w̃(t, r) −
∫ R

r
P(r, ρ)w̃(t, ρ)dρ, (42)

which maps (40) into

w̃t = ε

(
w̃rr + 2

w̃r

r

)
− cw̃, (43)

a stable reaction–diffusion equation for c > 0, with
boundary conditions

w̃(t,R) = 0, w̃r(t, 0) = 0. (44)

The procedure to obtain the conditions that P(r, ρ) must
verify (the observer kernel equations) is very similar to the
method used for the control law design. Both the orig-
inal error system (40) and the target error system (43)
are substituted into the transformation (42). After a sim-
ilarly tedious calculation (see again Krstic & Smyshlyaev,
2008a), now one obtains

Prr + 2
Pr
r

− Pρρ + 2
Pρ

ρ
− 2

P
ρ2 = −λ(ρ) + c

ε
P (45)

with boundary conditions

Pr(0, ρ) = 0, (46)

P(r, r) = −
∫ r

0

c + λ(ρ)

2ε
dρ, (47)

in the domain T ′ = {(r, ρ) : 0 ≤ r ≤ ρ ≤ R}, and the
additional condition p(r)= εP(r, R). It can be shown that,
if one defines P̌(r, ρ) = ρ2

r2 P(ρ, r), it can be verified that
P̌ satisfies exactly (33)–(36). Thus, assuming (33)–(36)
is solvable, one obtains P(r, ρ) = ρ2

r2 K(ρ, r). Thus, one

finds the observer kernel gain as

p(r) = ε
R2

r2
K(R, r), (48)

as stated in (28). In next section, we verify that (42) does
not result into singularities.

3.3 Well-posedness of the kernel equations

Both controller and observer kernels can be computed
from (33)–(36). To solve these equations, consider a scal-
ing transformation, namely

K(r, ρ) = ρ

r
Ǩ(r, ρ), (49)

in the domain T . Since ρ � r, (49) is in principle well-
defined. Computing the derivatives that appear in (33),
we obtain

Kr(r, ρ) = ρ

r
Ǩr(r, ρ) − ρ

r2
Ǩ(r, ρ), (50)

Krr(r, ρ) = ρ

r
Ǩrr(r, ρ) − 2

ρ

r2
Ǩr(r, ρ) + 2

ρ

r3
Ǩ(r, ρ),

(51)

Kρ (r, ρ) = ρ

r
Ǩρ (r, ρ) + 1

r
Ǩ(r, ρ), (52)

Kρρ (r, ρ) = ρ

r
Ǩρρ (r, ρ) + 2

1
r
Ǩρ (r, ρ), (53)

and replacing in the left-hand side of (33), we obtain

Krr + 2
Kr

r
− Kρρ + 2

Kρ

ρ
− 2

K
ρ2

= ρ

r

(
Ǩrr − 2

1
r
Ǩr + 2

1
r2
Ǩ + 2

1
r
Ǩr − 2

1
r2
Ǩ − Ǩρρ

− 2
1
ρ
Ǩρ + 2

1
ρ
Ǩρ + 2

1
ρ2 Ǩ − 2

1
ρ2 Ǩ

)

= ρ

r
(Ǩrr − Ǩρρ ), (54)

thus finally we arrive at a equation for Ǩ as follows:

Ǩrr − Ǩρρ = λ(ρ) + c
ε

Ǩ (55)

with boundary conditions obtained by replacing the scal-
ing transformation in (34)–(36), namely

Ǩ(r, 0) = 0, (56)

Ǩ(r, r) = −
∫ r

0

c + λ(ρ)

2ε
dρ. (57)

The kernel equations for Ǩ are identical to those appear-
ing in Krstic and Smyshlyaev (2008a) for 1D reaction–
diffusion systems, where it is proved (transforming the
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kernel equations into an integral equation and using the
successive approximations method) that Ǩ is a continu-
ous and differentiable function in the domain T . Since
ρ � r, from (49) we obtain that K is continuous in T . In
addition, using boundary condition (56), we also obtain
K differentiable in T .

Similarly, since we have shown that the observer ker-
nel verifies P(r, ρ) = ρ2

r2 K(ρ, r), we obtain P(r, ρ) =
ρ

r Ǩ(ρ, r). In T ′, one has r � ρ, thus the analysis is a
bit different. From boundary condition (56), we obtain
that Ǩ(r, ρ) = ρψ(r, ρ) where ψ is continuous and dif-
ferentiable. Thus, P(r, ρ) = ρψ(ρ, r), and one has
that both P and Pr and continuous and differentiable
in T ′. Finally, that boundary condition (48) is satisfied
can also be verified. One has that Pr(0, ρ) = ρψρ(ρ,
0). From the differential Equation (55), when ρ → 0,
one obtains Ǩρρ (r, 0) = 0, by using boundary condi-
tions (57) and (56) differentiated twice. Since Ǩ(r, ρ) =
ρψ(r, ρ), one gets Ǩρρ (r, ρ) = 2ψρ(r, ρ) + ρψρρ(r, ρ),
thus one obtains ψρ(r, 0) = 0. Thus, it can be concluded
Pr(0, ρ) = 0.

4. Closed-loop well-posedness and stability

We now prove Theorem 2.2. We first remark that the
stability of the augmented (u, û) system is equivalent to
the stability of the augmented (ũ, û) system. To obtain
the stability result of Theorem 2.2, we need three ele-
ments. We begin by obtaining the existence of an inverse
transformation (for both control and observer transfor-
mations) that allows us to recover the original variables
from the transformed variables. We follow by showing
that both transformations (or any transformation with
a similar structure) are invertible maps from H1 into
H1 (Proposition 4.1). We continue by stating a well-
posedness and stability result for the augmented (w̃, û)
system in physical space (Proposition 4.2). Combining
the two propositions, it is straightforward to construct the
proof of Theorem 2.2 bymapping the results for the target
augmented system to the original augmented systemwith
the observer and kernel transformations (see for instance
Vazquez & Krstic, 2016a).

In what follows, C (with subscript) will denote generic
positive constants.

4.1 Invertibility of the transformations

We start with the control transformation. We pose an
inverse transform as follows

u(t, r) = w(t, r) +
∫ r

0
L(r, ρ)w(t, ρ)dρ, (58)

and proceeding in the same fashion of Section 3.1, we find
the following kernel equations for L:

Lrr + Lr
r

− Lρρ + Lρ

ρ
− L

ρ2 = −λ + c
ε

L. (59)

with boundary conditions

L(r, 0) = 0, (60)
Lρ (r, 0) = 0, (61)

L(r, r) = −
∫ r

0

λ(ρ) + c
2ε

dρ, (62)

in the domain T . These equations are identical to (33)–
(36) but substituting λ by−λ and changing the sign of the
kernel. Thus, the same logic of Section 3.3 applies, and it
can be easily shown that L(r, ρ) = ρ

r Ľ(r, ρ) where Ľ is
a continuous and differentiable function in the domain
T , and as before it can be concluded that both L and
Lr are continuous in T . Note than alternative method of
proof would be substituting (58) into (30) and equating
the resulting operator to the identity in L2 (or H1). With
this procedure one obtains an integral equation for L that
can be solved using successive approximations.

It is obvious that a very similar result can be achieved
for the observer inverse transformation, which is defined
as

w̃(t, r) = ũ(t, r) +
∫ R

r
R(r, ρ)ũ(t, ρ)dρ, (63)

with the kernel R being very similar in structure to L. As
in Section 3.3, it can be concluded that R is continuous
and differentiable in T ′.

4.2 The control and observer transformation as
maps between functional spaces

Wenext show that both the direct and inverse control and
observer transformation transform L2 (resp. H1) func-
tions back into L2 (resp. H1) functions. We use the func-
tional structure of the transformations that was found in
Section 3.3.
Proposition 4.1: Assume that the function g(r) is related
to the function f(r) by means of the transformation g =
f − ∫ r

0
ρ

r F(r, ρ) f (ρ)dρ where F is continuous and differ-
entiable in the domain T . Then:

‖g‖L2 ≤ C1‖ f ‖L2, ‖g‖H1 ≤ C2‖ f ‖H1, (64)

where the constants C1, C2 are positive and do not depend
on f.

Similarly, assume that the function g(r) is related
to the function f(r) by means of the transformation
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g = f − ∫ R
r ρF(r, ρ) f (ρ)dρ where F is continuous and

differentiable in the domain T ′. Then:

‖g‖L2 ≤ C3‖ f ‖L2, ‖g‖H1 ≤ C4‖ f ‖H1, (65)

where the constants C3, C4 are positive and do not depend
on f.

Proof: We show only the first part of the result, since the
second is easily obtained from the functional structure of
the transformation by applying the same methods.

First, note that, for 0 � ρ � r � R we have

|F(r, ρ)| ≤ CI, |Fr(r, ρ)| + |Fρ (r, ρ)| ≤ CJ (66)

for CI, CJ > 0.
We obtain

|g|2 =
∣∣∣∣ f −

∫ r

0

ρ

r
F(r, ρ) f (ρ)dρ

∣∣∣∣
2

≤ 2| f |2 + 2
(∫ r

0

ρ

r
|F(r, ρ) f (ρ)|dρ

)2

≤ 2| f |2 + 2
r2

(∫ r

0
ρ|F(r, ρ) f (ρ)|dρ

)2

≤ 2| f |2 + 2
r
C2
I

∫ R

0
| f (ρ)|2ρ2dρ (67)

where we have used the Cauchy–Schwarz inequality,
given that f is square-integrable. Therefore,

‖g‖2L2 =
∫ R

0
|g(r)|2r2dr ≤ 2

(
1 + R2

2
C2
I

)
‖ f ‖2L2 = C1‖ f ‖2L2 .

(68)

This shows the L2 part of the proposition. To prove the
H1 part, note that

dg
dr

= d f
dr

− F(r, r) f (r) −
∫ r

0

ρ

r
∂F
∂r

f (ρ)dρ

+
∫ r

0

ρ

r2
F(r, ρ) f (ρ)dρ (69)

Integrating by parts in the last expression

dg
dr

= d f
dr

− 1
2
F(r, r) f (r) −

∫ r

0

ρ

r
∂F
∂r

f (ρ)dρ

−
∫ r

0

ρ2

2r2
Fρ (r, ρ) f (ρ)dρ

−
∫ r

0

ρ2

2r2
F(r, ρ)

d f
dρ

(ρ)dρ (70)

Thus∣∣∣∣dgdr
∣∣∣∣
2

≤ 5
∣∣∣∣d fdr

∣∣∣∣
2

+ 5
4
C2
I
∣∣ f ∣∣2 + 5

r
C2
J

∫ R

0
| f (ρ)|2ρ2dρ

+ 5
12r

C2
J

∫ R

0
| f (ρ)|2ρ2dρ

+ 5
12r

C2
I

∫ R

0

∣∣∣∣d fdρ
(ρ)

∣∣∣∣
2

ρ2dρ, (71)

and therefore,

∫ R

0

∣∣∣∣dgdr (r)
∣∣∣∣
2

r2dr ≤ 5
(
1 + R2

24
C2
I

) ∫ R

0

∣∣∣∣dgdr (r)
∣∣∣∣
2

r2dr

+ 5
(
1
4
C2
I + R2C2

J

2
+ R2

24
C2
J

)∫ R

0
| f (r)|2r2dr, (72)

which gives the H1 part of the proposition. �

4.3 Stability of the target system

Consider first the (w̃, ŵ) system with control law (21),
where w̃ is defined by transformation (63) and ŵ is
defined by applying the control transformation (30) to ũ.

The PDEs verified by (w̃, ŵ) are

w̃t = ε

r2
(
r2w̃r

)
r − cw̃, (73)

ŵt = ε

r2
(
r2ŵr

)
r − cŵ − H(r)w̃r(t,R) (74)

with boundary conditions

w̃(t,R) = 0, w̃r(t, 0) = 0, (75)
ŵ(t,R) = 0, ŵr(t, 0) = 0, (76)

where

H(r) = p(r) −
∫ r

0
K(r, ρ)p(ρ)dρ (77)

andwith ŵ0 = 0, w̃0 obtained from applying the observer
transformation to ũ0 (thus w̃0 ∈ H1

0 ). Notice that the
PDE system is actually a cascade system; w̃ verifies an
autonomous PDE and its solution (or more specifically, a
certain trace of the solution on the boundary) drives the
PDE ŵ. The following result holds.

Proposition 4.2: Consider the system (73)–(76) with
initial conditions w̃0 ∈ H1

0 , w̃0 = 0 . Then, w̃, ŵ ∈
C

[
[0, ∞),H1

0
] ∩ L2

[
(0, ∞),H2] and also ∂tw̃, ∂tŵ ∈

L2
[
(0, ∞), L2

]
. Moreover, the following bounds are

verified

‖w̃(t, ·)‖H1 ≤ D1e−2ct‖w̃0‖H1, (78)
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‖w̃(t, ·)‖H1 + ‖ŵ(t, ·)‖H1 ≤ D2e−2ct‖w̃0‖H1, (79)

where D1 and D2 are positive constants.

The well-posedness part of the result can be deduced
by applying standard results on the sphere, for the w̃ sys-
tem (see for instance Brezis, 2011, p. 328), and then apply-
ing Assumption 2.1. For the ŵ system, notice that, given
the regularity of ŵ, the trace of ŵr is anL2 function andwe
obtain the same regularity result (see for instance Brezis,
2011, p. 357).

The stability estimate is obtained using a Lyapunov
argument. Define V1(t ) = 1

2‖w̃(t, ·)‖2L2 and V2(t ) =
1
2‖w̃r(t, ·)‖2L2 . Then, first

V̇1 =
∫ R

0
w̃(t, r)w̃t (t, r)r2dr = ε

∫ R

0
w̃(t, r)

(
r2w̃r

)
r dr

− c
∫ R

0
w̃2(t, r)r2dr, (80)

and integrating by parts,

V̇1 = −ε

∫ R

0
w̃2

r (t, r)r
2dr − c

∫ R

0
w̃2(t, r)r2dr, (81)

To bound the first integral, we use a Poincaré-type
inequality (derived from Brezis, 2011, p. 290, Corollary
9.19, with p= 2 and using (19) and the fact that∇ f = fr�r
under the revolution symmetry condition),

∫ R

0
w̃2(t, r)r2dr ≤ Cp

∫ R

0
w̃2

r (t, r)r
2dr, (82)

which also implies V1 � CpV2. thus we reach V̇1 =
−2εV2 − 2cV1 ≤ −2(Cpε + c)V1. On the other hand,

V̇2 =
∫ R

0
w̃rw̃rt r2dr. (83)

Integrating by parts

V̇2 = −
∫ R

0

(
r2w̃r

)
r w̃tdr = −

∫ R

0

ε

r2
((
r2w̃r

)
r

)2 dr
+ c

∫ R

0

(
r2w̃r

)
r w̃dr (84)

and therefore, we obtain that

V̇2 = −ε

∫ R

0
(2w̃r + rw̃rr)

2 dr − c
∫ R

0
w̃2

r r
2 (85)

thus,

V̇1 + V̇2 ≤ −2c(V1 +V2) − ε

∥∥∥∥w̃rr + 2
w̃r

r

∥∥∥∥
2

L2
,

and applying Gronwall’s Inequality we obtain the stabil-
ity result (78). Note that in the previous computations,
in principle more regularity than w̃t ∈ L2

[
(0, ∞), L2

]
is required. However, the result can be concluded by
using the same argument as in the proof of Theorem 10.2
in (Brezis, 2011, p. 328), which uses the smoothing prop-
erty of the heat equation (Brezis, 2011, Theorem 10.1).
This property guarantees higher regularity of solutions
for t > 0.

To obtain (79), define now V3(t ) = 1
2‖ŵ(t, ·)‖2L2 and

V4(t ) = 1
2‖ŵr(t, ·)‖2L2 . We obtain the same results as

before with additional terms due to the forcing function
in (74), namely

V̇3 = −2εV4 − 2cV3 − w̃r(t,R)

∫ R

0
H(r)ŵ(t, r)r2dr,

(86)

V̇4 = −ε

∫ R

0

(
2ŵr + rŵrr

)2 dr − c
∫ R

0
ŵ2

r r
2

+ w̃r(t,R)

∫ R

0

(
r2ŵr

)
r H(r)dr. (87)

The functions H(r) and Hr are bounded, so that H(r) �
CH andHr(r)�DH. By virtue of the trace theorem (Evans,
1998, p. 258)

w̃2
r (t,R) ≤ KT‖w̃r‖2H1 (88)

and since w̃ vanishes at the boundary ‖w̃r‖2H1 ≤
KV

∥∥∥w̃rr + 2 w̃r
r

∥∥∥2

L2
. Thus, we reach

V̇3 ≤ −2cV3 + β1‖w̃rr + 2
w̃r

r
‖2L2, (89)

V̇4 ≤ −2cV4 + β2

∥∥∥∥w̃rr + 2
w̃r

r

∥∥∥∥
2

L2
, (90)

for some β1, β2 > 0. We obtain then

V̇3 + V̇4 ≤ −2c(V3 +V4) + β3

∥∥∥∥w̃rr + 2
w̃r

r

∥∥∥∥
2

L2
, (91)

for β3 positive. Then, defining V5 = V1 +V2 + ε
β3

(V3 +
V4), we obtain V̇5 ≤ −2cV5, and applying Gronwall’s
Inequality and taking into account ŵ0 = 0,we obtain the
final result (79).
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5. Conclusion

This paper is a first step towards extending bound-
ary stabilisation results for constant-coefficient reaction–
diffusion equations in spheres to radially varying coef-
ficients. An assumption of revolution symmetry condi-
tions has been made to simplify the equations, which
become singular in the radius, complicating the design.
The traditional backstepping method can be applied and
the well-posedness of the kernel equation can be shown
with a simple scaling transformation. The contrast with
the 2D case, which is much more complicated (as shown
in Vazquez & Krstic, 2016b), is striking.

There are several open problems that still need to be
addressed. First, dropping the revolution symmetry con-
ditions would make the problem truly 3D, but unfortu-
nately the scaling transformation proposed in this work
does not directly extend to spherical harmonics of order
higher than the mean. In addition, it does not seem to
be possible to define similar transformations to prove
well-posedness of the kernel equations for higher order
harmonics. Thus, a different strategy would need to be
devised . In addition, if the coefficients also vary with the
angle, then spherical harmonics cannot be used and the
kernel equation becomes an ultra-hyperbolic equation in
four dimensions, which seems quite difficult to address.
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