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EXPLICIT OUTPUT-FEEDBACK BOUNDARY CONTROL
OF REACTION-DIFFUSION PDES ON ARBITRARY-DIMENSIONAL BALLS

Rafael Vazquez1 and Miroslav Krstic2

Abstract. This paper introduces an explicit output-feedback boundary feedback law that stabilizes
an unstable linear constant-coefficient reaction-diffusion equation on an n-ball (which in 2-D reduces to
a disk and in 3-D reduces to a sphere) using only measurements from the boundary. The backstepping
method is used to design both the control law and a boundary observer. To apply backstepping the
system is reduced to an infinite sequence of 1-D systems using spherical harmonics. Well-posedness and
stability are proved in the L2 and H1 spaces. The resulting control and output injection gain kernels are
the product of the backstepping kernel used in control of one-dimensional reaction-diffusion equations
and a function closely related to the Poisson kernel in the n-ball.
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1. Introduction

With a mix of youthful enthusiasm and trepidation, some 15 years ago we entered the area of boundary control
with a specific goal in mind – to extend the tools of nonlinear control from ODEs to PDEs and, in particular,
to apply such tools to the benchmark Navier−Stokes problem. Jean-Michel Coron’s deep and inspirational
results lay at every turn – from a generalization of “backstepping” to power integrators and control Lyapunov
functions in the ODE world, to control of the Navier−Stokes and coupled hyperbolic PDEs – to mention just
a tiny, well-known fraction. In a field like PDE control, where technical challenges are so high that they can
take the center stage and push ideas to the sidelines, it has been thrilling to witness on many occasions the
ease with which he explains some of his many ground breaking ideas, and how he solves the most challenging
open problems with those ideas, as only the ideas’ originator can. Conversely, he is often one of the few – and
sometimes the only one – with the foresight to comprehend the possibilities that arise in the ideas of others, as
we have repeatedly experienced. Indeed, Jean-Michel’s incredible creativity as a researcher is matched by his
generosity as a colleague and mentor. It is with profound admiration that we dedicate this paper to the joyous
occasion of Jean-Michel’s sixtieth birthday.

Keywords and phrases. Infinite-dimensional backstepping, boundary control, boundary observer, reaction-diffusion system,
spherical harmonics.
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In this paper we introduce an explicit full-state boundary feedback law to stabilize an unstable linear constant-
coefficient reaction-diffusion equation on an n-ball (which in 2-D reduces to a disk and in 3-D reduces to a
sphere).

We introduce the following tools in the paper. Based on the domain shape, we employ ultraspherical coordi-
nates (which in 2-D are polar coordinates and in 3-D spherical coordinates), and then transform the system into
an infinite sequence of independently-controlled 1-D systems by using spherical harmonics. For each harmonic
we design a feedback law using the backstepping method [10], which allows us to obtain exponential stability of
the origin in the H1 norm. The same procedure is used to produce an observer using boundary measurements.
The combination of both designs produces the final result.

This result extends [22, 23], which describe, respectively, the (full-state) control design for the particular
case of a 2-D disk and a general n-ball; that same design, augmented with an observer, is applied in [15] to
multi-agent deployment in 3-D space, with the agents distributed on a disk-shaped grid and commanded by
leader agents located at the boundary. Older, related results that use backstepping include the design an output
feedback law for a convection problem on an annular domain [21]. However, going from an annular domain to
a disk (which includes the origin) complicates the design, as (apparent) singularities appear on the equations
and have to be dealt with. This difficulty also shows up in the 3-D and higher-dimensional settings. Despite this
complication, we are able to explicitly find the backstepping kernels and subsequently reconstruct our control
law back in physical space, showing that the closed-loop system is well-posed and exponentially stable in the L2

norm. The resulting feedback control law is remarkable, in the sense that it is formulated as a multiple integral
whose kernel is a product of two factors. The first factor only has radial dependence and it is exactly the same
kernel that appears when applying backstepping to one-dimensional reaction-diffusion equations. The second
factor depends on both radius and angle and is closely related to the Poisson kernel in the n-ball, which is a
function used to solve Laplace’s problem in that same domain. This structure greatly simplifies the proof of L2

stability. The interest of having a result in n dimensions, beyond having a general formula useful for the more
conventional 2-D and 3-D settings, lies in emerging applications which can be modelled by high-dimensional
diffusion. For instance, the use of reaction-diffusion equations to model multi-agent systems [13] has found
much success, as it allows exploiting PDE control methods in applications such as agent motion planning; in
this context, higher-dimensional models might contribute to related problems such as control of social networks
and opinion dynamics.

The backstepping method has proved itself to be an ubiquitous method for PDE control, as a powerful and
elegant tool with many other applications including, among others, flow control [19, 24], nonlinear PDEs [20],
hyperbolic 1-D systems [5,7,11], adaptive control [16], wave equations [17], and delays [9]. Other design methods
are also applicable to the geometry considered in this paper (see for instance [18] or [3]). Also, there have been
specific results on disk- or spherical-shaped domains, such as [6] and [14], however these works assume perfect
symmetry of initial conditions which allows to consider only radial variations, thus simplifying the problem
considerably. Other related works include [12], which considers the extension of backstepping to n-dimensional
cubes and multi-linear backstepping transformations, which are related to the construction of the kernels in this
paper.

The structure of the problem is as follows. In Section 2 we introduce the problem and state our main result.
We explain the basis of our design method (spherical harmonics) in Section 3 and explicitly find the control
kernels in Section 4. The observer is dealt with in Section 5. Next, we prove the closed-loop stability in Section 6.
We conclude the paper with some remarks in Section 7.

2. Main result

Consider the following constant-coefficient reaction-diffusion system in an n-dimensional ball of radius R:

∂u

∂t
= ε

(
∂2u

∂x2
1

+
∂2u

∂x2
2

+ . . .+
∂2u

∂x2
n

)
+ λu = ε�n u+ λu, (2.1)
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where u = u(t, �x), with �x = [x1, x2, . . . , xn]T , is the state variable, evolving for t > 0 in the n-ball Bn(R)
defined as

Bn(R) = {�x ∈ R
n : ‖�x‖ ≤ R} , (2.2)

with boundary conditions on the boundary of Bn(R), which is the (n− 1)-sphere Sn−1(R) defined as

Sn−1(R) = {�x ∈ R
n : ‖�x‖ = R} . (2.3)

The boundary condition is assumed to be of Dirichlet type,

u(t, �x)
∣∣∣
�x∈Sn−1(R)

= U(t, �x), (2.4)

where U(t, �x) is the actuation. On the other hand the measurement y(t, �x) is defined as

y(t, �x) = ∂ru(t, �x)
∣∣∣
�x∈Sn−1(R)

, (2.5)

where ∂r denotes the derivative in the radial direction (normal to the (n− 1)-sphere), which would be defined
as ∂ru(t, �x) = �∇u · �x

‖�x‖ .
Define now the L2 norm and H1 norm of a scalar function in the n-Ball as

‖f‖L2 =

(∫
Bn(R)

f2(�x)d�x

)1/2

, ‖f‖H1 =

(
‖f‖2

L2 +
∫

Bn(R)

‖�∇f(�x)‖2d�x

)1/2

. (2.6)

We denote simply by L2 (resp. H1) the space of square-integrable functions (resp. of functions with square-
integral gradient) over the n-ball of radius R. Finally denote by H1

0 the space of H1 functions vanishing at the
boundary (in the usual sense of traces, see e.g. [8], p. 259).

The following theorem is proved in [23].

Theorem 2.1. Consider (2.1) and (2.4) with initial conditions u0(�x) and the following (explicit) full-state
feedback law for U :

U = − 1
Area(Sn−1)

√
λ

ε

∫
Bn(R)

I1

[√
λ

ε
(R2 − ‖�ξ‖2)

] √
R2 − ‖�ξ‖2

‖�x− �ξ‖n
u(t, �ξ)d�ξ, (2.7)

where the integral in (2.7) is extended over the whole n-ball of radius R and �x ∈ Sn−1(R). In (2.7), I1 is the
first-order modified Bessel function of the first kind, and

Area(Sn−1) =
2π

n
2

Γ
(

n
2

) (2.8)

is the “surface area” of the unit (n−1)-sphere, with Γ being the Euler Gamma function (see [1], p. 253). Assume
in addition that u0 ∈ L2. Then system (2.1), (2.4) has a unique L2 solution, and the equilibrium profile u ≡ 0
is exponentially stable in the L2 norm, i.e., there exists c1, c2 > 0 such that

‖u(t, ·)‖L2 ≤ c1e−c2t‖u0‖L2. (2.9)

In Theorem 2.1, feedback law (2.7) assumes that the full state is known. This paper extends this result to
the situation where only boundary measurements are used, by employing an observer. Denoting by û the state
of the observer (which approximates u), it is computed as the solution of the following PDE

∂û

∂t
= ε�n û+ λû−

√
λε

Area(Sn−1)
I1

[√
λ

ε
(R2 − ‖�x‖2)

]√
R2 − ‖�x‖2

∫
Sn−1(R)

y(t, �ξ) − ûr(t, �ξ)

‖�x− �ξ‖n
d�ξ, (2.10)
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with boundary conditions
û(t, �x)

∣∣∣
�x∈Sn−1(R)

= U(t, �x). (2.11)

Notice that (2.10)–(2.11) is a copy of (2.1)–(2.4) with additional output injection in (2.10). The following result
extends Theorem 2.1 by using the observer states in the feedback law (2.7).

Theorem 2.2. Consider (2.1)–(2.4) and (2.10)–(2.11) with initial conditions u0(�x) and û0(�x) respectively, and
the the following (explicit) full-state feedback law for U :

U = − 1
Area(Sn−1)

√
λ

ε

∫
Bn(R)

I1

[√
λ

ε
(R2 − ‖�ξ‖2)

] √
R2 − ‖�ξ‖2

‖�x− �ξ‖n
û(t, �ξ)d�ξ. (2.12)

Assume in addition that u0 ∈ H1
0 and û0 ≡ 0. Then the augmented system (u, û) has an unique H1 solution,

and the equilibrium profile u, û ≡ 0 is exponentially stable in the H1 norm, i.e., there exists c1, c2 > 0 such that

‖u(t, ·)‖H1 + ‖û(t, ·)‖H1 ≤ c1e−c2t‖u0‖H1 . (2.13)

Remark 2.3. Theorem 2.2 assumesH1
0 initial conditions for u (which would be the natural open-loop boundary

condition verifying the 0th order compatibility conditions, see e.g. [8], p. 365), and identically zero initial
conditions for û. It will be seen that this guarantees that the 0th order compatibility conditions are verified
for the augmented system. Other combinations of initial conditions are possible if the 0th order compatibility
conditions are verified. If necessary, control law (2.12) could be modified by adding extra decaying terms to
enforce the satisfaction of the compatibility conditions (see e.g. [5]).

In the next sections we sketch the proof of the result. The basic tool used to design the controller and
observer is the theory of spherical harmonics, which is briefly reviewed in Section 3. Then, in Section 4 we
explain the rationale behind the method used for reaching control law (2.7), and in Section 5 we construct the
observer (2.10)–(2.11). Finally Section 5 contains the proof of stability and well-posedness for the closed loop
augmented system.

3. Ultraspherical coordinates and Spherical harmonics

Equation (2.1) can be written in n-dimensional spherical coordinates, also known as ultraspherical coordinates
(see [2], p. 93), which consist of one radial coordinate and n−1 angular coordinates, namely (r, θ1, θ2, . . . , θn−1),
where r ∈ [0, R] is the radial coordinate, and the angular coordinates are θ1 ∈ [0, 2π] and θi ∈ [0, π] for
2 ≤ i ≤ n− 1. Using these coordinates, the rectangular coordinates are

x1 = r cos θ1 sin θ2 sin θ3 . . . sin θn−1, (3.1)
x2 = r sin θ1 sin θ2 sin θ3 . . . sin θn−1, (3.2)

...
xn−1 = r cos θn−2 sin θn−1, (3.3)
xn = r cos θn−1. (3.4)

For instance the usual spherical coordinates for the 3-ball (sphere) are x1 = r cos θ1 sin θ2, x2 = r sin θ1 sin θ2,
and x3 = r cos θ2.

Following [2] (p. 94), the definition of the Laplacian �n in ultraspherical coordinates is as follows:

�n =
1

rn−1

∂

∂r

(
rn−1 ∂

∂r

)
+

1
r2

�∗
n−1 (3.5)
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where �∗
n−1 is called the Laplace−Beltrami operator and represents the Laplacian over the (n− 1)-sphere. Its

definition is recursive, as follows:

�∗
1 =

∂2

∂θ21
, �∗

n =
1

sinn−1 θn

∂

∂θn

(
sinn−1 θn

∂

∂θn

)
+

�∗
n−1

sin2 θn

· (3.6)

As example, we show �∗
2:

�∗
2 =

1
sin θ2

∂

∂θ2

(
sin θ2

∂

∂θ2

)
+

1
sin2 θ2

∂2

∂θ21
· (3.7)

Denote, for simplicity, �θ = [θ1, . . . , θn−1]T . Thus, equation (2.1) can be written in ultraspherical coordinates as
follows

∂tu =
ε

rn−1
∂r

(
rn−1∂ru

)
+

ε

r2
�∗

n−1 u+ λu, (3.8)

with boundary conditions
u(t, R, �θ ) = U(t, �θ), (3.9)

and measurement
y(t, �θ ) = ur(t, R, �θ). (3.10)

In what follows U and y will be written without arguments for the sake of simplicity.

3.1. Expansion in spherical Harmonics

To handle the angular dependency in (3.8), we expand both the u and U using a (complex-valued) Fourier-
Laplace series of Spherical Harmonics3 for the n-ball:

u(t, r, �θ) =
l=∞∑
l=0

m=N(l,n)∑
m=0

um
l (r, t)Y n

lm(�θ), (3.11)

U(t, �θ) =
l=∞∑
l=0

m=N(l,n)∑
m=0

Um
l (t)Y n

lm(�θ), (3.12)

where N(l, n) is the number of (linearly independent) n-dimensional spherical harmonics of degree l, given by
N(0, n) = 1 (representing the mean value over the n-ball) and, for l > 0,

N(l, n) =
2l+ n− 2

l

(
l+ n− 3
l − 1

)
, (3.13)

with Y n
lm being the mth n-dimensional spherical harmonic of degree l. The coefficients in (3.11)–(3.12) are

possibly complex-valued and defined as

um
l (r, t) =

∫ π

0

. . .

∫ π

0

∫ 2π

0

u(t, r, �θ)Ȳ n
lm(�θ) sinn−2 θn−1 sinn−3 θn−2 . . . sin θ2d�θ, (3.14)

Um
l (t) =

∫ π

0

. . .

∫ π

0

∫ 2π

0

U(t, �θ)Ȳ n
lm(�θ) sinn−2 θn−1 sinn−3 θn−2 . . . sin θ2d�θ, (3.15)

3Spherical harmonics were introduced by Laplace to solve the homonymous equation and have been widely used since, particularly
in geodesics, electromagnetism and computer graphics. A very complete treatment on the subject can be found in [2].
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where Ȳ n
lm represent the complex conjugate of Y n

lm, and the product of sines inside the integral represent the
(n − 1)-sphere “area” element. The spherical harmonics Y n

lm are defined in terms of the associated Legendre
functions, but their explicit expression is not really necessary in the design for a constant-coefficient system.

The following important property holds ([2], p. 97) (which means that the n-dimensional spherical harmonics
are eigenfunctions of the Laplacian over the (n− 1)-sphere):

�∗
n−1Y

n
lm = −l(l+ n− 2)Y n

lm. (3.16)

Using (3.16), developing all the terms of (3.8) in spherical harmonics and using the fact that the harmonics are
linearly independent of each other, we obtain that each coefficient um

l (t, r), for l ∈ N and 0 ≤ m ≤ N(l, n),
verifies the following independent 1-D reaction-diffusion equation:

∂tu
m
l =

ε

rn−1
∂r

(
rn−1∂ru

m
l

)− l(l + n− 2)
ε

r2
um

l + λum
l , (3.17)

evolving in r ∈ [0, R], t > 0, with boundary conditions

um
l (t, R) = Um

l (t), (3.18)

and measurement

ym
l (t) = ur(t, R)m

l (t). (3.19)

Thanks to the fact that the coefficients are constant and thus independent of the angular coordinates, the
equations are not coupled and thus we can independently design each Um

l and later assemble all of the them to
find an expression for U .

4. Full-state control law design

In this section we review how the full-state feedback law (2.7) has been constructed, since it is applied in
Theorem 2.2 with the observer states. Starting from the representation in ultra spherical coordinates (3.8),
and given that the angular coordinates are periodic and the system is linear we expand the system by using
spherical harmonics. We stabilize each harmonic independently by using the backstepping method. Finally, we
put together all the harmonics reconstructing the feedback law in physical space.

4.1. Backstepping transformation

Our approach to design Um
l (t) is to seek a mapping that transforms (3.17) into the following target system

∂tw
m
l =

ε

rn−1
∂r

(
rn−1∂rw

m
l

)− l(l + n− 2)
ε

r2
wm

l , (4.1)

a stable heat equation (a negative reaction coefficient could also be added if desired), with boundary conditions

wm
l (t, R) = 0. (4.2)

The transformation is defined as follows:

wm
l (t, r) = um

l (t, r) −
∫ r

0

Kn
lm(r, ρ)um

l (t, ρ)dρ, (4.3)

and then Um
l (t) is found by substituting the transformation (4.3) in (3.18) and using (4.2).
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To find the kernel equations we proceed, as usual in the backstepping method [10], by substituting both
the original and target systems in the transformation and integrating by parts when possible. We obtain the
following PDE that the kernel must verify:

1
rn−1

∂r

(
rn−1∂rK

n
lm

)− ∂ρ

(
ρn−1∂ρ

(
Kn

lm

ρn−1

))
− l(l+ n− 2)

(
1
r2

− 1
ρ2

)
Kn

lm =
λ

ε
Kn

lm. (4.4)

Also, the following boundary conditions have to be verified

0 = λ+ ε (∂rK
n
lm(r, ρ))

∣∣∣∣
ρ=r

+
ε

rn−1

d
dr
(
rn−1Kn

lm(r, r)
)

+ ε

(
∂ρ
Kn

lm(r, ρ)
ρn−1

) ∣∣∣∣
ρ=r

rn−1, (4.5)

0 = Kn
lm(r, 0), (4.6)

0 = lim
ρ→0

(
∂ρ

(
Kn

lm(r, ρ)
ρn−1

)
ρn−1

)
· (4.7)

Developing boundary condition (4.5), we obtain

0 = λ+ 2ε
d
dr

(Kn
lm(r, r)) , (4.8)

which integrates to

Kn
lm(r, r) = −λr

2ε
, (4.9)

where we have used (4.6) at r = 0 (i.e., Kn
lm(0, 0) = 0). Finally (4.7) can be written as

0 = ∂ρK
n
lm(r, 0) − (n− 1) lim

ρ→0

Kn
lm(r, ρ)
ρ

· (4.10)

However, from the second boundary condition one obtains Kn
lm(r, 0) = 0. Thus, if we assume that Kn

lm(r, s)
is differentiable in s, obviously implies limρ→0

Kn
lm(r,ρ)

ρ = ∂ρK
n
lm(r, 0). Thus boundary condition (4.10) is auto-

matically verified for n = 2 and implies, for n > 2,

(n− 2)∂ρK
n
lm(r, 0) = 0. (4.11)

4.2. Explicitly solving the kernel equations

To solve (4.4) with boundary conditions (4.9), (4.6) and (4.11), consider the change of variables Kn
lm(r, ρ) =

Gn
lm(r, ρ)ρ

(
ρ
r

)l+n−2. We end up with

λ

ε
Gn

lm = ∂rrG
n
lm + (3 − n− 2l)

∂rG
n
lm

r
− ∂ρρG

n
lm + (1 − n− 2l)

∂ρG
n
lm

ρ
, (4.12)

with only one boundary condition, since (4.6) and (4.11) are automatically verified:

Gn
lm(r, r) = − λ

2ε
· (4.13)

Now assume a solution Gn
lm(r, ρ) of the form

Gn
lm(r, ρ) = Φ

((
λ

ε
(r2 − ρ2)

)1/2
)
, (4.14)
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noticing that Φ is independent of n. Expressing the derivatives of Gn in terms of Φ and replacing them in (4.12)
we find

λ

ε
Φ′′ + 3

λ

ε

(
λ

ε
(r2 − ρ2)

)−1/2

Φ′ =
λ

ε
Φ (4.15)

with boundary condition Φ(0) = − λ
2ε . Denoting x =

(
λ
ε (r2 − ρ2)

)1/2
and the derivatives with respect to x with

a dot, we can write (4.15) as:

Φ̈(x) +
3
x
Φ̇(x) − Φ(x) = 0, (4.16)

and finally calling Ψ(x) = xΦ(x), we obtain(
Ψ̈

x
− 2

Ψ̇

x2
+ 2

Ψ

x3

)
+

3
x

(
Ψ̇

x
− Ψ

x2

)
− Ψ

x
= 0, (4.17)

which cross-multiplied by x3 gives

x2Ψ̈ + xΨ̇ − (1 + x2)Ψ = 0, (4.18)

which is Bessel’s modified differential equation of order 1 (see [1], p. 374, Sect. 9.6.1). The (bounded) solution is

Ψ(x) = C1I1(x), (4.19)

where I1 is the modified Bessel function of order 1, and going backwards we obtain

Φ(x) = C1
I1(x)
x

· (4.20)

noticing that limx→0
I1(x)

x = 1/2, we get C1 = −λ
ε (from the boundary condition at x = 0). Therefore, we

obtain, by undoing the change of variables to recover Gn,

Gn
lm(r, ρ) = −λ

ε

I1

[√
λ
ε (r2 − ρ2)

]
√

λ
ε (r2 − ρ2)

, (4.21)

and therefore

Kn
lm(r, ρ) = −ρ

(ρ
r

)l+n−2 λ

ε

I1

[√
λ
ε (r2 − ρ2)

]
√

λ
ε (r2 − ρ2)

· (4.22)

4.3. Finding the n-D backstepping kernel

The backstepping transformation (4.3), written in real space by adding all the spherical harmonics, is

w(t, r, �θ) =
l=∞∑
l=0

m=N(l,n)∑
m=0

wm
l (r, t)Y n

lm(�θ)

=
l=∞∑
l=0

m=N(l,n)∑
m=0

[
um

l (t, r) −
∫ r

0

Kn
lm(r, ρ)um

l (t, ρ)dρ
]
Y n

lm(�θ)

=
l=∞∑
l=0

m=N(l,n)∑
m=0

[
um

l (t, r) −
∫ r

0

Kn
lm(r, ρ)Ȳ n

lm(�φ)Y n
lm(�θ)um

l (t, ρ)Y n
lm(�φ)dρ

]

= u(t, r, �θ) −
∫ r

0

∫ π

0

. . .

∫ π

0

∫ 2π

0

K(r, ρ, �θ, �φ)u(t, ρ, �φ) sinn−2 φn−1 . . . sinφ2d�φdρ, (4.23)
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Where to go from the second line to the third we have used the fact that Y n
lm(�θ)Ȳ n

lm(�θ) = 1, and to go to the
third line that the spherical harmonics are an orthonormal basis.

where K is recovered from its harmonics Kn
lm as

K(r, ρ, �θ, �φ) =
l=∞∑
l=0

m=N(l,n)∑
m=0

Kn
lm(r, ρ)Y n

lm(�θ)Ȳ n
lm(�φ) (4.24)

Using (4.22) in (4.24), we compute K as

K = −ρλ
ε

I1

[√
λ
ε (r2 − ρ2)

]
√

λ
ε (r2 − ρ2)

∞∑
l=0

N(l,n)∑
m=0

(ρ
r

)l+n−2

Y n
lm(�θ)Ȳ n

lm(�φ). (4.25)

The inner sum of (4.25) can be computed by virtue of the Addition Theorem for Spherical Harmonics ([2],
p. 21):

N(l,n)∑
m=0

Y n
lm(�θ)Ȳ n

lm(�φ) =
N(l, n)

Area(Sn−1)
Pl,n(cosω), (4.26)

where Pl,n is the Legendre polynomial of degree l in n dimensions, Area(Sn−1) is the surface area of the
(n− 1)-sphere (given by (2.8)), and ω represents the geodesic distance between (�θ) and (�φ) on the (n − 1)-
sphere, given by:

ω = cos−1 {cosφn−1 cos θn−1 + sinφn−1 sin θn−1 × [cosφn−2 cos θn−2 + sinφn−2 sin θn−2

× [. . . [cosφ2 cos θ2 + sinφ2 sin θ2 cos(θ1 − φ1)] . . .]]} .
Therefore, the nested sum of (4.25) is reduced to a single sum as follows

∞∑
l=0

N(l,n)∑
m=0

(ρ
r

)l+n−2

Y n
lm(�θ)Ȳ n

lm(�φ) =
∞∑

l=0

(ρ
r

)l+n−2 N(l, n)
Area(Sn−1)

Pl,n(cosω). (4.27)

This last sum can also be computed by using the Poisson identity ([2], p. 54), which is given by:

∞∑
l=0

N(l, n)slPl,n(t) =
1 − s2

(1 + s2 − 2st)n/2
· (4.28)

Therefore

∞∑
l=0

(ρ
r

)l+n−2 N(l, n)
Area(Sn−1)

Pl,n(cosω) =
1

Area(Sn−1)

(ρ
r

)n−2 1 − (ρ
r

)2
((

ρ
r

)2 − 2
(

ρ
r

)
cosω + 1

)n/2

=
ρn−2

Area(Sn−1)
r2 − ρ2

(r2 + ρ2 − 2ρr cosω)n/2
, (4.29)

which is closely related to the Poisson kernel for the n-ball (see [8],p. 41, a function that tends to a Dirac delta
δ(θ−ψ) when r goes to ρ, and helps solve Laplace’s equation). Using the sum of the series in (4.25) the control
kernel is:

K(r, ρ, �θ, �φ) =
−ρn−1

Area(Sn−1)

√
λ

ε
I1

[√
λ

ε
(r2 − ρ2)

] √
r2 − ρ2

(r2 + ρ2 − 2ρr cosω)n/2
· (4.30)
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The kernel and the transformation can be written in rectangular coordinates, by defining �ξ from radius ρ and
ultraspherical coordinates �φ. Then, the transformation (4.23) is written as:

w(t, �x) = K[u] = u(t, �x) −
∫

Bn(‖�x‖)
K(�x, �ξ)u(t, �ξ)d�ξ, (4.31)

where the symbol K[u] will be used to refer to the transformation in a simple way. The integral in (4.31) is
extended over the n-ball of radius ‖�x‖, and noting that r2 = �x · �x, ρ2 = �ξ · �ξ, rρ cosω = �x · �ξ, and that ρn−1 is
part of the volume element in the integral, the kernel is

K(�x, �ξ) = −

√
λ
ε I1

[√
λ
ε (‖�x‖2 − ‖�ξ‖2)

]
Area(Sn−1)

√
‖�x‖2 − ‖�ξ‖2

‖�x− �ξ‖n
, (4.32)

and the control law (2.7) is found by inserting (4.32) into (4.31) and fixing �x ∈ Sn−1(R) (thus ‖�x‖ = R).

5. Observer design

Consider now the problem of designing and observer for (3.8)–(3.10). Working in spherical harmonics, we
start from (3.17)–(3.19) and construct our observer as a copy of the plant plus output injection terms:

∂ûlmt

∂t
=

ε

rn−1
∂r

(
rn−1∂rûlm

)− l(l + n− 2)
ε

r2
ûlm + λûlm + pn

lm(r)(ylm(t) − ∂rûlm(t, R)), (5.1)

with boundary conditions

ûlm(t, R) = Ulm(t). (5.2)

We need to design the output injection gain pn
lm(r). Define the observer error as ũ = u− û. The observer error

dynamics are given by

∂ũlmt

∂t
=

ε

rn−1
∂r

(
rn−1∂rũlm

)− l(l + n− 2)
ε

r2
ũlm + λũlm − pn

lm(r)∂r ũlm(t, R), (5.3)

with boundary conditions

ũlm(t, R) = 0. (5.4)

Next we use the backstepping method to find a value of pn
lm(r) that guarantees convergence of ũ to zero. This

ensures that the observer estimates tend to the true state values. Our approach to design p(r) is to seek a
mapping that transforms (5.3) into the following target system

∂w̃lmt

∂t
=

ε

rn−1
∂r

(
rn−1∂rw̃lm

)− l(l+ n− 2)
ε

r2
w̃lm, (5.5)

a stable heat equation (a negative reaction coefficient could also be added if desired), with boundary conditions

w̃lm(t, R) = 0. (5.6)

The transformation is defined as follows:

ũlm(t, r) = w̃lm(t, r) −
∫ R

r

Pn
lm(r, ρ)w̃lm(t, ρ)dρ (5.7)

and then pn
lm(r) will be found from transformation kernel as an additional condition.
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To find the kernel equations, as in Section 4 one has substitute the transformation into the original system and
substitute the target systems, integrating by parts when possible. It is straightforward to obtain the following
PDE that the kernel must verify:

1
rn−1

∂r

(
rn−1∂rP

n
lm

)− ∂ρ

(
ρn−1∂ρ

(
Pn

lm

ρn−1

))
− l(l+ n− 2)

(
1
r2

− 1
ρ2

)
Pn

lm = −λ
ε
Pn

lm (5.8)

In addition we find a value for the output injection gain kernel

pn
lm(r) = εPn

lm(r,R) (5.9)

Also, the following boundary condition has to be verified

0 = λ+ ε (∂rP
n
lm(r, ρ))

∣∣∣∣
ρ=r

+
ε

rn−1

d
dr
(
rn−1Pn

lm(r, r)
)

+ ε∂ρ

(
Pn

lm(r, ρ)
ρn−1

) ∣∣∣∣
ρ=r

rn−1, (5.10)

which can be written as

0 = λ+ ε∂rP
n
lm(r, r) + ε

d
dr

(Pn
lm(r, r)) + (n− 1)

εPn
lm(r, r)
r

+ ε∂ρP
n
lm(r, r) − (n− 1)

εPn
lm(r, r)
r

· (5.11)

Operating, we obtain

0 = λ+ 2ε
d
dr

(Pn
lm(r, r)) , (5.12)

which integrates to

Pn
lm(r, r) = −λrP

n
lm(ρ, ρ)
2ε

+ Cn
lm. (5.13)

To obtain the constant Cn
lm = Pn

lm(0, 0) and other boundary conditions, we note that, since the integral in the
observer transformation (5.7) includes the origin when r → 0, one needs to ensure that w̃ has meaningful values
when r → 0 so that its PDE makes sense. In particular, it can be seen that ũ and w̃ have to verify

lim
r→0

[
(n− 1)w̃lmr − l(l+ n− 2)

w̃lm

r

]
= 0, (5.14)

lim
r→0

[
(n− 1)ũlmr − l(l+ n− 2)

ũlm

r

]
= 0. (5.15)

This implies that wlm(t, 0) = 0 for l 
= 0 and that wlmr(t, 0) = 0 for l 
= 1. From the transformation, the first
condition implies Pn

lm(0, ρ) = 0 for l 
= 0. To find a second condition for the kernel, notice that

ũlmr = w̃lmr −
∫ R

r

Pn
lmr(r, ρ)w̃lm(t, ρ)dρ+ Pn

lm(r, r)w̃lm, (5.16)

thus it is sufficient that Pn
lmr(0, ρ) = 0 and Cn

lm = 0 for l 
= 1. From the first condition we also get Cn
lm = 0 for

l = 1, therefore Cn
lm = 0 for all values of l.

Thus the boundary conditions for the kernel equations become

Pn
lm(0, ρ) = 0, ∀l 
= 0 (5.17)

Pn
lmr(0, ρ) = 0, ∀l 
= 1 (5.18)

Pn
lm(r, r) = −λr

2ε
· (5.19)
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It turns out the observer kernel equation can be transformed into the control kernel equation, therefore obtaining
a similar explicit result. For this, define

P̌n
lm(r, ρ) =

ρn−1

rn−1
Pn

lm(ρ, r), (5.20)

and it can be verified that (5.8) is transformed into (4.4), along with boundary condition (5.19). Thus P̌n
lm(r, ρ) =

Kn
lm(r, ρ) and we find

Pn
lm(r, ρ) =

ρn−1

rn−1
Kn

lm(ρ, r) = −r
(
r

ρ

)l−1
λ

ε

I1

[√
λ
ε (ρ2 − r2)

]
√

λ
ε (ρ2 − r2)

, (5.21)

which can be seen to verify as well the boundary conditions (5.17) and (5.18). Summing all spherical harmonics
leads to a transformation kernel

P (r, ρ, �θ, �φ) =
−ρn−1

Area(Sn−1)

√
λ

ε
I1

[√
λ

ε
(ρ2 − r2)

] √
ρ2 − r2

(r2 + ρ2 − 2ρr cosω)n/2
, (5.22)

which would define the observer transformation in physical space as

ũ(t, �x) = P [w̃] = w̃(t, �x) −
∫

Bn(R)−Bn(‖�x‖)
P (�x, �ξ)w̃(t, �ξ)d�ξ, (5.23)

where the integral in (5.23) is extended to the n-ball from radius R to radius ‖�x‖. Finally, using pn
lm(r) =

εPn
lm(r,R) and summing the spherical harmonics yields the physical-space operator in the right-hand side

of (2.10).

6. Proof of closed-loop stability in the H1 norm

We first remark that studying the augmented (u, û) is equivalent to study the augmented (ũ, û) system.
To obtain the stability result of Theorem 2.2 we need three elements. We begin by obtaining the existence
of an inverse transformation (for both control and observer transformations) that allows us to recover the
original variable from the transformed variable. Then we relate the H1 norm with spherical harmonics and
show that both transformations are invertible maps from H1 into H1 (Prop. 6.1). We continue by stating a
well-posedness and stability result for the augmented (w̃, û) system in physical space (Prop. 6.2). Combining
the two propositions, it is straightforward to construct the proof of Theorem 2.2 by mapping the results for the
target augmented system to the original augmented system.

6.1. Invertibility of the transformations

We start with the control transformation. Mimicking (4.3), we start by posing an inverse transform in the
spherical harmonics space, as follows

um
l (t, r) = wm

l (t, r) +
∫ r

0

Ln
lm(r, ρ)wm

l (t, ρ)dρ, (6.1)

and proceeding in the same fashion of Section 4.1 we find the following kernel equations for Ln
lm:

1
rn−1

∂r

(
rn−1∂rL

n
lm

)− ∂ρ

(
ρn−1∂ρ

(
Ln

lm

ρn−1

))
− l(l + n− 2)

(
1
r2

− 1
ρ2

)
Ln

lm = −λ
ε
Ln

lm. (6.2)
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with boundary conditions

Ln
lm(r, 0) = (n− 2)∂ρL

n
lm(r, 0) = 0, (6.3)

Ln
lm(r, r) = −λr

2ε
· (6.4)

These equations are very similar to (4.4) but substituting λ by −λ and changing the sign of the kernel. Thus
we easily find the inverse transform by doing these substitutions in (4.22) as

Ln
lm(r, ρ) = −ρ

(ρ
r

)l+n−2 λ

ε

J1

[√
λ
ε (r2 − ρ2)

]
√

λ
ε (r2 − ρ2)

, (6.5)

where J1 is the first-order Bessel function of the first kind.
Then, as in (4.31), the transformation in physical space is

u(t, �x) = L[w] = w(t, �x) +
∫

Bn(‖�x‖)
L(�x, �ξ)w(t, �ξ)d�ξ, (6.6)

where the kernel L is

L(�x, �ξ) = −

√
λ
ε J1

[√
λ
ε (‖�x‖2 − ‖�ξ‖2)

]
Area(Sn−1)

√
‖�x‖2 − ‖�ξ‖2

‖�x− �ξ‖n
· (6.7)

It is obvious that a very similar result can be achieved for the observer transformation, which we will define

w̃(t, �x) = R[ũ] = ũ(t, �x) +
∫

Bn(R)−Bn(‖�x‖)
R(�x, �ξ)ũ(t, �ξ)d�ξ, (6.8)

with the kernel R being very similar in structure to L.

6.2. Computing norms using spherical harmonics

The L2 norm (2.6) written in ultraspherical coordinates is

‖f‖L2 =

(∫ R

0

∫ π

0

. . .

∫ π

0

∫ 2π

0

f2(r, �θ) sinn−2 θn−1 . . . sin θ2rn−1d�θdr,

)1/2

, (6.9)

and using the properties of spherical harmonics, if fm
l (r) are the harmonics of f , then

‖f‖L2 =

⎛
⎝l=∞∑

l=0

m=N(l,n)∑
m=0

∫ R

0

|fm
l (r)|2rn−1dr,

⎞
⎠

1/2

. (6.10)

Similarly, the H1 norm (2.6) written in ultraspherical coordinates is

‖f‖2
H1 = ‖f‖2

L2 +
∫ R

0

∫ π

0

. . .

∫ π

0

∫ 2π

0

‖�∇f(r, �θ)‖2 sinn−2 θn−1 . . . sin θ2rn−1d�θdr. (6.11)

Now, noting that
�∇f(r, �θ) = �ξ

∂f

∂r
+

1
r
�∇∗

n−1f (6.12)
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where (see [2], p. 90) �ξ is an unitary vector pointing in the radial direction at (r, �θ) and �∇∗
n−1 is the first-order

Beltrami operator on the n− 1 unitary sphere, we obtain

‖�∇f(r, �θ)‖2 =
(
∂f

∂r

)2

+
1
r2
�∇∗

n−1f · �∇∗
n−1f (6.13)

and therefore

‖f‖2
H1 = ‖f‖L2 + ‖∂f

∂r
‖2

L2 +
∫ R

0

1
r2

[∫ π

0

. . .

∫ π

0

∫ 2π

0

�∇∗
n−1f · �∇∗

n−1f sinn−2 θn−1 . . . sin θ2d�θ
]
rn−1dr, (6.14)

and considering the expansion of f in spherical harmonics, and the Green−Beltrami identity ([2], p. 95), we
obtain

‖f‖2
H1 =

l=∞∑
l=0

m=N(l,n)∑
m=0

∫ R

0

[(
1 +

l(l+ n− 2)
r2

)
|fm

l (r)|2 +
∣∣∣∣∂fm

l

∂r

∣∣∣∣
2
]
rn−1dr. (6.15)

6.3. The control and observer transformation as maps between functional spaces

We next show that both the direct and inverse control and observer transformation transform L2 (resp. H1)
functions back into L2 (resp. H1) functions.

Proposition 6.1. Assume that the function g(r, �x) is related to the function f(r, �x) by means of the transfor-
mation g = K[f ] and consequently f is related to g by f = L[g]. Then:

‖g‖L2 ≤ CKL‖f‖L2, ‖f‖L2 ≤ CLL‖g‖L2, ‖g‖H1 ≤ CKH‖f‖H1 , ‖f‖H1 ≤ CLH‖g‖H1 , (6.16)

where constants CKL, CLL, CKH , CLH depending only on R, λ, ε, and n.
Similarly, assume that the function g(r, �x) is related to the function f(r, �x) by means of the observer trans-

formation g = P [f ] and consequently f is related to g by f = R[g]. Then:

‖g‖L2 ≤ CPL‖f‖L2, ‖f‖L2 ≤ CRL‖g‖L2, ‖g‖H1 ≤ CPH‖f‖H1 , ‖f‖H1 ≤ CRH‖g‖H1 , (6.17)

where constants CPL, CRL, CPH , CRH depending only on R, λ, ε, and n.

Proof. We show the result for the direct control transformation K. The inverse transformation shares essentially
the same structure and therefore the same proof applies.

First, note that, for 0 ≤ ρ ≤ r ≤ R, and since I1[x]
x is a continuous and differentiable function for x ≥ 0, we

have

λ

ε

I1

[√
λ
ε (r2 − ρ2)

]
√

λ
ε (r2 − ρ2)

≤ CI ,
∂

∂r

⎛
⎜⎜⎝λε

I1

[√
λ
ε (r2 − ρ2)

]
√

λ
ε (r2 − ρ2)

⎞
⎟⎟⎠ ≤ CJ (6.18)

where CI and CJ are functions of R, λ and ε.
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We work in spherical harmonics, for which the transformation is defined as (4.3). Then, assuming f ∈ L2, we
have, for r ≤ R,

|gm
l |2 =

∣∣∣∣fm
l (r) −

∫ r

0

Kn
lm(r, ρ)fm

l (ρ)dρ
∣∣∣∣
2

≤ 2|fm
l |2 + 2

∣∣∣∣
∫ r

0

Kn
lm(r, ρ)fm

l (ρ)dρ
∣∣∣∣
2

≤ 2|fm
l |2 + 2C2

I

(∫ r

0

ρ
(ρ
r

)l+n−2

|fm
l (ρ)|dρ

)2

≤ 2|fm
l |2 + 2C2

I

(∫ r

0

ρ
(ρ
r

)l+n−2

dρ
)(∫ r

0

ρ
(ρ
r

)l+n−2

|fm
l (ρ)|2dρ

)

= 2|fm
l |2 +

2C2
I r

2

l+ n

(∫ r

0

ρ
(ρ
r

)l+n−2

|fm
l (ρ)|2dρ

)

≤ 2|fm
l |2 +

2C2
I r

4−n

n

(∫ R

0

ρn−1|fm
l (ρ)|2dρ

)
, (6.19)

where we have used the Cauchy−Schwarz inequality, given that fm
l is square-integrable. Therefore, apply-

ing (6.10),

‖g‖2
L2 ≤

(
2 +

R4C2
I

2n

)
‖f‖2

L2 = CKL‖f‖2
L2. (6.20)

This shows the L2 part of the proposition. To prove the H1 part, note that

∂gm
l

∂r
=
∂fm

l

∂r
−Kn

lm(r, r)fm
l (r) −

∫ r

0

∂Kn
lm(r, ρ)
∂r

fm
l (ρ)dρ (6.21)

Thus ∣∣∣∣∂gm
l

∂r

∣∣∣∣
2

≤
∣∣∣∣∂fm

l

∂r
−Kn

lm(r, r)fm
l (r) −

∫ r

0

∂Kn
lm(r, ρ)
∂r

fm
l (ρ)dρ

∣∣∣∣
2

≤ 3
∣∣∣∣∂fm

l

∂r

∣∣∣∣
2

+ 3 |Kn
lm(r, r)fm

l (r)|2 + 3
∣∣∣∣
∫ r

0

∂Kn
lm(r, ρ)
∂r

fm
l (ρ)dρ

∣∣∣∣
2

≤ 3
∣∣∣∣∂fm

l

∂r

∣∣∣∣
2

+ 3R2C2
I |fm

l |2 + 6C2
J

∣∣∣∣
∫ r

0

ρ
(ρ
r

)l+n−2

fm
l (ρ)dρ

∣∣∣∣
2

+6C2
I (l + n− 2)2

∣∣∣∣
∫ r

0

(ρ
r

)l+n−1

fm
l (ρ)dρ

∣∣∣∣
2

, (6.22)

and since ∫ r

0

(ρ
r

)l+n−1

fm
l (ρ)dρ = − 1

l+ n

∫ r

0

ρ
(ρ
r

)l+n−1 ∂fm
l

∂r
(ρ)dρ+

r

l + n
fm

l (r) (6.23)

we obtain ∣∣∣∣∂gm
l

∂r

∣∣∣∣
2

≤ 3
∣∣∣∣∂fm

l

∂r

∣∣∣∣
2

+ 15R2C2
I |fm

l |2 + 6r4−nC
2
J

n

(∫ R

0

ρn−1|fm
l (ρ)|2dρ

)

+12
r4−nC2

J

n+ 1

(∫ R

0

ρn−1

∣∣∣∣∂fm
l

∂r
(ρ)
∣∣∣∣
2

dρ

)
, (6.24)
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and we obtain from (6.15)

‖g‖2
H1 ≤

l=∞∑
l=0

m=N(l,n)∑
m=0

∫ R

0

[(
1 +

l(l + n− 2)
r2

)[
2|fm

l |2 +
2C2

I r
4−n

n

(∫ R

0

ρn−1|fm
l (ρ)|2dρ

)]

+3
∣∣∣∣∂fm

l

∂r

∣∣∣∣
2

+ 15R2C2
I |fm

l |2 +
6C2

Jr
4−n

n

(∫ R

0

ρn−1|fm
l (ρ)|2dρ

)

+12
r4−nC2

J

n+ 1

(∫ R

0

ρn−1

∣∣∣∣∂fm
l

∂r
(ρ)
∣∣∣∣
2

dρ

)]
rn−1dr

≤
(

3 + 3
C2

JR
4

n+ 1
+
C2

IR
4

2n

)
‖f‖2

H1 +
(

15R2C2
I + 3

R4C2
J

2n

)
‖f‖2

L2

= CKH‖f‖2
H1 , (6.25)

concluding the proof. �

6.4. Stability of the target system

Consider first the (w̃, û) system with control law (2.12), where ŵ is defined by transformation (5.23) and w̃
is defined by w̃(t, �x) = K[ũ].

The PDEs verified by (w̃, ŵ) are

∂tw̃ = ε�n w̃, (6.26)
∂tŵ = ε�n ŵ −F [w̃r(t, �x)] (6.27)

with boundary conditions

w̃(t, �x)
∣∣∣
�x∈Sn−1(R)

= 0, (6.28)

ŵ(t, �x)
∣∣∣
�x∈Sn−1(R)

= 0, (6.29)

where F [w̃r(t, �x)] is

F [w̃r(t, �x)] = K
[ √

λε

Area(Sn−1)
I1

[√
λ

ε
(R2 − ‖�x‖2)

]√
R2 − ‖�x‖2

∫
Sn−1(R)

w̃r(t, �ξ)

‖�x− �ξ‖n
d�ξ

]
, (6.30)

and with ŵ0 = K[û0] = 0, w̃0 = L[ũ0] ∈ H1
0 . Notice that the PDE system is actually a cascade system; w̃ verifies

an autonomous PDE and its solution (or more specifically, a certain trace of the solution on the boundary) drives
the PDE ŵ. The following result holds

Proposition 6.2. Consider the system (6.26)–(6.29) with initial conditions w̃0 ∈ H1
0 , w̃0 = 0. Then, w̃, ŵ ∈

C [[0,∞), H1
0

]∩L2
[
(0,∞), H2

]
and also ∂tw̃, ∂tŵ ∈ L2

[
(0,∞), L2

]
. Moreover, the following bounds are verified

‖w̃(t, ·)‖H1 ≤ D1e−α1t‖w̃0‖H1 , (6.31)
‖w̃(t, ·)‖H1 + ‖ŵ(t, ·)‖H1 ≤ D2e−α2t‖w̃0‖H1 , (6.32)

where D1, D2, α1, α2 are positive constants.

The well-posedness part of the result is standard for the w̃ system (see for instance [4], p. 328). For the ŵ
system, notice that, given the regularity of ŵ, the trace of ŵr on the sphere is an L2 function. Since F [w̃r(t, �x)]
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basically amounts to the composition of the observer and controller transformation, which map L2 into L2, we
obtain the same regularity result (see for instance [4], p. 357).

The stability estimate is obtained using a Lyapunov argument. Define V1(t) = 1
2‖w̃(t, ·)‖2

L2 and V2(t) =
1
2‖�∇nw̃(t, �x)‖2

L2 . Then, first

V̇1 = ε

∫
Bn(R)

w(t, �x) �n w̃(t, �x)d�x. (6.33)

Applying one of Green’s formulas (see [8], p. 628), and since the normal on the boundary of the Bn(R) is just �x
R

V̇1 = −ε
∫

Bn(R)

‖�∇nw̃(t, �x)‖2d�x+
∫

Sn−1(R)

w̃(t, �x)
�∇nw̃(t, �x) · �x

R
d�x, (6.34)

where �∇n is the gradient operator in n-dimensional space. The second integral of (6.34) is found to be zero by
applying (6.28). To bound the first integral, we use a Poincaré-type inequality (see for instance [4], p. 290),∫

Bn(R)

w2(t, �x)d�x ≤ Cp

∫
Bn(R)

‖�∇nw(t, �x)‖2d�x, (6.35)

which also implies V1 ≤ CpV2. thus we reach V̇1 = −2εV2 ≤ −2CpεV1. On the other hand,

V̇2 = ε

∫
Bn(R)

�∇nw̃ · �∇nw̃td�x. (6.36)

Applying again one of Green’s formulas, we obtain

V̇2 = −ε
∫

Bn(R)

(�nw̃(t, �x))2d�x+
∫

Sn−1(R)

w̃t(t, �x)
�∇nw̃(t, �x) · �x

R
d�x = −ε‖ �n w̃‖2

L2 , (6.37)

and therefore we obtain that
V̇1 + V̇2 ≤ −ε(1 + Cp)(V1 + V2),

and applying Gronwall’s inequality we obtain the stability result (6.31). Note that applying (6.37) and evaluating
that w̃t(t, �x) is zero at Sn−1(R) in principle requires more regularity than w̃t ∈ L2

[
(0,∞), L2

]
. However, the

result can be concluded by using the same argument as in the proof of Theorem 10.2 in ([4], p. 328), which
uses the smoothing property of the heat equation ([4], Thm. 10.1). This property guarantees higher regularity
of solutions for t > 0.

To obtain (6.32), define now V3(t) = 1
2‖ŵ(t, ·)‖2

L2 and V4(t) = 1
2‖�∇nŵ(t, �x)‖2

L2 . We obtain the same results
as before with additional terms due to the forcing function in (6.27), namely

V̇3 = −2εV4 +
∫

Bn(R)

ŵF [w̃r(t, �x)]d�x, (6.38)

V̇4 = −ε
∫

Bn(R)

(�nŵ(t, �x))2 +
∫

Bn(R)

�nŵF [w̃r(t, �x)]d�x (6.39)

which can be bounded as

V̇3 ≤ − ε(1 + Cp)
2

(V3 + V4) +
1

2εCp

∫
Bn(R)

(F [w̃r(t, �x)])
2 d�x, (6.40)

V̇4 ≤ 1
4ε

∫
Bn(R)

(F [w̃r(t, �x)])
2 d�x. (6.41)
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On the other hand, ∫
Bn(R)

(F [w̃r(t, �x)])
2 d�x ≤ KS

∫
Sn−1(R)

w̃2
r(t, �x)d�x, (6.42)

and by virtue of the trace theorem ([8], p. 258)∫
Sn−1(R)

w̃2
r(t, �x)d�x ≤ KT ‖w̃r‖2

H1 (6.43)

and since w̃ vanishes at the boundary ‖w̃r‖2
H1 ≤ KV ‖ �n w̃‖2

L2. Thus, we reach

V̇3 + V̇4 ≤ − ε(1 + Cp)
2

(V3 + V4) +KF ‖ �n w̃‖2
L2 , (6.44)

for KF positive. Then, defining V5 = V 1+V 2+ ε
KF

(V3 +V4), we obtain V̇5 ≤ −KWV5, and applying Gronwall’s
Inequality and taking into account ŵ0 = 0 we obtain the final result (6.32).

7. Conclusion

We have shown an explicit design to stabilize a constant-coefficient reaction-diffusion equation on an n-ball,
by using a boundary feedback control law found using backstepping. The resulting control law uses full state
feedback, and has a remarkable structure. It is formulated as a multiple integral whose kernel is a product of
two factors, the first of which is identical to the backstepping kernel used in control of one-dimensional reaction-
diffusion equations. The second factor is closely related to the Poisson kernel in the n-ball (a function used to
solve Laplace’s problem).

Following very similar ideas it is possible to design an observer and an output-feedback law, which have not
been included due to space limitations. Also, while L2 stability result has been achieved, future work includes
analysing well-posedness and stability in higher Sobolev spaces to improve the regularity of the closed-loop
solutions.

Finally, recent applications of PDE control theory in the field of multi-agent systems suggest that a possible
application of this n-dimensional result might lie in control of complex, large dimensional systems, such as social
networks and opinion dynamics.

Acknowledgements. Rafael Vazquez gratefully acknowledges financial support of the Spanish Ministerio de Economia y
Competitividad under grant MTM2015-65608-P.
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