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The propagation of initial mass uncertainty in cruise flight is studied. Two cruise conditions are analyzed: onewith

given cruise fuel load and the otherwith given cruise range. Two different distributions of initialmass are considered:

uniform and gamma type. The generalized polynomial chaos method is used to study the evolution of mean and

variance of the aircraft mass. To compute the mass distribution function as a function of time, two approximate

methodsare developed.Thesemethods are also applied to study thedistribution functions of the flight time (in the case

of given fuel load) and of the fuel consumption (in the case of given range). The dynamics of mass evolution in cruise

flight is defined by a nonlinear equation, which can be solved analytically; this exact solution is used to assess the

accuracy of the proposed methods. Comparison of the numerical results with the exact analytical solutions shows an

excellent agreement in all cases, hence verifying the methods developed in this work.

Nomenclature

A, B = constants of the problem
CD, CL = drag and lift coefficients
CD0

, CD2
= coefficients of the drag polar

c = specific fuel consumption
D = aerodynamic drag
E�:� = expectation
fx = probability density function of random variable x
G�k; 1� = gamma distribution with scale parameter equal to

one
g = gravity acceleration
hi = coefficients of the generalized polynomial chaos

expansion
k = shape parameter of the gamma distribution
L = lift
Ln = Legendre polynomials
M0 = minimum value ofm0 with nonzero probability for

the gamma distribution
m = aircraft mass
mF = fuel load
m0 = initial aircraft mass
�m0 = mean of the initial mass distribution
S = wing surface area
T = thrust
t = time
tf = flight time
V = aircraft speed
Var�:� = variance
x = horizontal distance
xf = range
Γ�a� = Euler gamma function
Γ�a; b� = incomplete Euler gamma function
Δ = standard uniform distribution
δm = width of the uniform distribution
σ�:� = typical deviation
ϕk−1n = generalized Laguerre polynomials

I. Introduction

T HE air traffic management (ATM) system is a very complex
system, which contains a large number of heterogeneous

components, such as airports, aircraft, navigation systems, flight
management systems (FMSs), traffic controllers, and weather (see
Kim et al. [1]). Correspondingly, its performance is affected by
numerous factors. Within the trajectory-based operations concept of
SESAR and NextGen, aircraft trajectories are key to study ATM
operations, which are subject to many uncertainties. Sources of
uncertainty for aircraft trajectories include wind and severe weather,
navigational errors, aircraft performance inaccuracies, or errors in the
FMS, among others. The analysis of the impact of uncertainties in
aircraft trajectories and its propagation through the flight segments is
of great interest, because it might help to understand how sensitive
the system is to the lack of precise data and measurement errors and,
therefore, aid in the design of a more robust ATM system, with
improved safety levels.
Among those sources,weather uncertainty has perhaps the greatest

impact onATMoperations, being responsible formuch of the delays.
Its analysis has been addressed by many authors using different
methods, for example, the following: Nilim et al. [2] consider a
trajectory-based air traffic management scenario to minimize delays
under weather uncertainty, in which the weather processes are
modeled as stationary Markov chains. Pepper et al. [3] present a
method, based on Bayesian decision networks, of accounting for
uncertain weather information in air traffic flowmanagement. Clarke
et al. [4] develop a methodology to study airspace capacity in the
presence of weather uncertainty and formulate a stochastic dynamic
programming algorithm for traffic flow management. Zheng and
Zhao [5] develop a statistical model ofwind uncertainties and apply it
to stochastic trajectory prediction in the case of straight, level aircraft
flight trajectories.
The framework for this work is the analysis of uncertainty

propagation in aircraft trajectories and, eventually, its effect on the
ATM system. In this paper, several tools are presented to analyze
uncertainty propagation in a nonlinear problem and they are applied
to study the effect of initial aircraft mass uncertainty and its
propagation through the cruise flight phase. The relevance of this
problem resides in two facts: first, the initial mass is an important
source of uncertainty in trajectory prediction, which determinesmass
evolution and, therefore, fuel consumption and flight cost; and,
second, cruise uncertainties have a large impact on the overall flight
because the cruise phase is the largest portion of the flight (at least for
long-haul routes). In the applications, two cruise conditions are
studied: one with given cruise fuel load and the other with given
cruise range.
Several methods have been proposed to study uncertainty

propagation in dynamic systems, beyond the classical Monte Carlo
methods (which can be very expensive computationally). Halder and
Bhattacharya [6] classify thosemethods in two categories: parametric
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(in which one evolves the statistical moments) and nonparametric (in
which the probability density function is evolved). They address the
problem of uncertainty propagation in planetary entry, descent, and
landing, using a nonparametric method that reduces to solving the
stochastic Liouville equation.
In this paper, the evolution in time of the mean and the variance of

the aircraft mass is studied using the generalized polynomial chaos
(GPC) method (a parametric method according to [6]). The GPC
representation was introduced byWiener [7] and is based on the fact
that any second-order process (i.e., a process with finite second-order
moments) can be represented as a Fourier-type series, with time-
dependent coefficients, and using orthogonal polynomials as GPC
basis functions in terms of random variables. A general introduction
toGPC can be found inXiu andKarniadakis [8] and in Schoutens [9],
and details in numerical computations are studied in Debusschere
et al. [10]. The method of polynomial chaos is used in the works of
Prabhakar et al. [11] and Dutta and Bhattacharya [12] to study,
respectively, uncertainty propagation and trajectory estimation, for
hypersonic flight dynamics with uncertain initial data, and by Fisher
andBhattacharya [13] in the problemof optimal trajectory generation
in the context of stochastic optimal control.
Also, the distribution function of the aircraft mass is analyzed

using two approximate methods developed in this paper (nonpara-
metric methods according to [6]). One method is based on the
resolution of the variational equation for the sensitivity function with
respect to the initial condition, and the other is based on the
computation of the probability measure of the random variable as a
function of time. These two methods are also applied, first, to the
analysis of the distribution function of the flight time, in the case of a
given fuel load and, second, to the analysis of the distribution
function of the fuel consumption, in the case of a given range. In this
way, the effect of the initial mass uncertainty in flight properties other
than mass is studied as well.
In this paper, the case of cruise at constant altitude and constant

speed is considered (cruise segments defined by these two flight
constraints are commonly flown by commercial aircraft, according to
air traffic control procedures). In this case, the evolution of aircraft
mass is defined by a nonlinear equation that can be solved
analytically. Results are presented for two different distributions of
initial mass (uniform and gamma type). The analytical solutions
represent benchmark solutions that are used to assess the accuracy of
the proposed methods. Comparison with the exact analytical results
is made, showing an excellent agreement in all cases.
This paper is organized as follows. First, the problem of mass

evolution in cruise flight is solved. Then, in Sec. III, the two initial
mass distributions considered are described. In Sec. IV, mean and
variance of themass distribution are analyzed using theGPCmethod.
In Sec. V, the two nonparametric methods developed to study the
evolution of distribution functions are presented and are applied to
the mass distribution function. These two methods are used, in
Sec. VI, to study the distribution functions of flight time and fuel
consumption. Some numerical results are presented in Sec. VII, and
some conclusions are drawn in Sec VIII. Finally, the exact analytical
solutions are presented in the Appendix.

II. Mass Evolution in Cruise Flight

The equations of motion for symmetric flight in a vertical plane
(constant heading), using a flat Earth model, for constant altitude and
constant speed are (see [14])

dx

dt
� V; dm

dt
� −cT T � D; L � mg (1)

where x is the horizontal distance, t is the time,V is the speed,T is the
thrust,D is the aerodynamic drag,L is the lift,m is the aircraft mass,g
is the acceleration of gravity, and c is the specific fuel consumption,
which can be taken as a function of altitude and speed, and it is
therefore constant under the given cruise condition.

The drag can be written as

D � 1

2
ρV2SCD

where ρ is the density, S is the wing surface area, and the drag
coefficientCD is modeled by a parabolic polarCD � CD0

� CD2
C2
L,

where CL is the lift coefficient given by

CL �
2L

ρV2S

and the coefficients CD0
and CD2

are constant under the given cruise
condition. Using these definitions and Eq. (1), an autonomous
equation for the mass evolution is obtained:

dm

dt
� −c

�
1

2
ρV2SCD0

�m2
2CD2

g2

ρV2S

�
(2)

Thus, one can write

dm

dt
� −�A� Bm2� (3)

where the constants A and B are defined as

A � c 1
2
ρV2SCD0

and

B � c
2CD2

g2

ρV2S

Note that A, B > 0. Equation (3) is a nonlinear equation describing
the evolution of mass during cruise flight, to be solvedwith the initial
condition

m�0� � m0 (4)

To emphasize the dependence of the mass m�t� on the initial
condition, the mass is written asm�t;m0�, even though it is often just
denoted as m for the sake of simplicity. The explicit solution of
Eqs. (3) and (4) is

m�t;m0� �
����
A

B

r
m0 −

�������������
�A∕B�

p
tan�

�������
AB
p

t��������������
�A∕B�

p
�m0 tan�

�������
AB
p

t�
(5)

A. Cruise with Given Fuel Load

For the case in which the cruise fuel load is given, denoting the
given mass of fuel as mF < m0, the solution obtained by Eq. (5) is
valid in the time interval t ∈ �0; tf�m0��, where tf�m0� (the flight
time) is obtained fromm�tf�m0�;m0� � m0 −mF. FromEq. (5), one
can directly compute this time as

tf�m0� �
1�������
AB
p arctan

� �������
AB
p

mF
A� Bm0�m0 −mF�

�
(6)

Note that tf is a monotonically decreasing function ofm0. Thus, for a
given amount of fuel, the larger m0, the smaller tf and, as a
consequence, the smaller the distance traveled by the aircraft. The
initial mass m0 is unbounded and has a lower limit equal to mF
(although these limits are not physically meaningful). Thus, for
m0 ∈ �mF;∞� one obtains from Eq. (6)

tf ∈
�
0;

1�������
AB
p arctan

� ����
B

A

r
mF

��
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Also, sincem�tf;m0� � m0 −mF, the final value of the aircraft mass
satisfies m�tf;m0� ∈ �0;∞�.
In the next sections, the evolution of mass and the behavior of the

flight time are studied for an uncertain value of the initial mass,
whereas the rest of the parameters (some of them embedded in the
constants A and B) have a fixed value.

B. Cruise with Given Range

For the case in which the cruise range is given, taking x as the
independent variable, one has

dm

dx
� −

1

V
�A� Bm2� (7)

and the same initial condition (4). The explicit solution of Eqs. (4) and
(7) is

m�x;m0� �
����
A

B

r
m0 −

�������������
�A∕B�

p
tan��1∕V�

�������
AB
p

x��������������
�A∕B�

p
�m0 tan��1∕V�

�������
AB
p

x�
(8)

If the given cruise range is xf, then the final value of the aircraft mass
m�xf;m0� is given by Eq. (8) particularized for x � xf, and the fuel
consumption during the cruise is

mF�m0� � m0 −m�xf;m0� �
�m2

0 � �A∕B�� tan��1∕V�
�������
AB
p

xf ��������������
�A∕B�

p
�m0 tan��1∕V�

�������
AB
p

xf�
(9)

Note thatmF is a monotonically increasing function ofm0: the larger
m0, the larger the fuel consumption. As before,m0 is unbounded and,
to have m�xf;m0� > 0, it has a lower limit equal to

����
A

B

r
tan

�
1

V

�������
AB
p

xf

�

Thus for

m0 ∈
� ����

A

B

r
tan

�
1

V

�������
AB
p

xf

�
;∞
�

one obtains from Eq. (9) that

mF ∈
� ����

A

B

r
tan

�
1

V

�������
AB
p

xf

�
;∞
�

Also, from Eq. (8), the final value of the aircraft mass satisfies

m�xf;m0� ∈
�
0;

����
A

B

r �
tan

�
1

V

�������
AB
p

xf

��−1�

In the next sections, the behavior of the fuel consumption is studied
for an uncertain value of the initial mass, whereas, as before, the rest
of the parameters have a fixed value. In this case, the flight time is
known, trivially given by

tf �
xf
V

III. Initial Mass Distribution

It is realistic to consider that the initial mass m0 is not a
deterministic variable which is known a priori, but rather a random
variable which is not known. Then, the solution given by Eq. (5) is
still valid but in a probabilistic sense [i.e., m�t;m0� is a random
process]. If the distribution ofm0 is known, it is possible to study the
time evolution of the distribution of the aircraftmassm�t;m0�, aswell
as its statistical properties (mean, variance, typical deviation).

In this work, to analyze mass evolution, two probabilistic models
for m0 are considered: uniform and gamma distributions, which are
described next. Note that a Gaussian distribution representing the
initial mass uncertainty would be nonphysical, because it would
allow (with small but nonzero probability) negative initial mass and,
therefore, it is not considered in this paper.

A. Uniform Distribution

First, it is considered thatm0 is distributed as a uniform continuous
variable whose probability density function is

fm0
�m0� �

1

2δm

in the interval � �m0 − δm; �m0 � δm�, and zero otherwise, where �m0 is
the mean and δm is the width of the uniform distribution, as shown in
Fig. 1.
Denoting byΔ the standardized uniform distribution taking values

in the interval �−1; 1�, one has thatm0 � �m0 � δmΔ. The mean ofm0

is

E�m0� �
Z

∞

0

m0fm0
�m0� dm0 � �m0

where E�·� is the mathematical expectation, and the variance ofm0 is

Var�m0� � E�m2
0� − �E�m0��2 �

δ2m
3

B. Gamma Distribution

The gamma distribution (see [15]) represents a continuous
nonnegative random variable and is denoted byG�k; θ�, where k > 0
is the shape parameter and θ > 0 is the scale parameter. It is known
thatE�G�k; θ�� � kθ andVar�G�k; θ�� � kθ2 and that the probability
density function of G�k; θ� is

f�x; k; θ� � xk−1 e
−x∕θ

θkΓ�k�

for x ≥ 0 (and zero otherwise), where Γ is the Euler gamma function.
Using the property that, for θ > 0, one has G�k; θ� � θG�k; 1�, the
value θ � 1 is considered in this paper without loss of generality.
To represent the initial mass distribution, let

m0 � �m0 �
δm������
3k
p �G�k; 1� − k�

where �m0 and δm are the same values chosen for the uniform
distribution. Hence, only the values m0 ≥ M0 have nonzero
probability, where M0 (the minimum possible value of mass for the
given values of �m0 and δm) is obtained making G�k; 1� � 0 and it is
given by

Fig. 1 Shape of the probability density functions of the initial mass.
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M0 � �m0 −
δm���
3
p

���
k
p

(10)

Thus, one has the following probability density function

fm0
�m0� � �m0 −M0�k−1

e−�m0−M0��
����
3k
p

∕δm�

�δm∕
������
3k
p
�kΓ�k�

; m0 ≥ M0 (11)

and zero otherwise. In this way, one has E�m0� � �m0 and

Var�m0� �
δ2m
3

(independently of k), as for the previously chosen uniform
distribution.
Note that for k→ ∞, one has

G�k; 1� − k���
k
p → N�0; 1�

which implies

m0 → N

�
�m0;

δ2m
3

�

(i.e., for large k the gamma distribution resembles a Gaussian
distribution). However, the maximum value of k is limited by the fact
thatM0 should be greater than zero. Therefore, the value of kmust be
chosen taking into account Eq. (10).
In Fig. 1, the shape of the probability density function of m0 is

plotted for different values of k and compared with the uniform
distribution.

IV. Analysis of Mass Mean and Variance

To compute the mean and variance of themass, the GPCmethod is
used (see [7]), in which the process is represented as a Fourier-type
series,with time-dependent coefficients, and orthogonal polynomials
in terms of random variables are used as basis functions. The
orthogonal polynomials used in GPC are chosen from the Askey
scheme (a way of organizing certain orthogonal polynomials into a
hierarchy, see [16]). If one chooses a family of polynomials that
are orthogonal, the convergence of the series is exponential. The
orthogonality property implies that, when taking expectation with
respect to the random variable for two polynomials of the family ϕi
andϕj, thenE�ϕiϕj� � δijE�ϕ2

i �, where δij is theKronecker delta. For
the uniform distribution Δ, the adequate orthogonal polynomials
are the Legendre polynomials Ln�Δ�, whereas, for the gamma
distribution G�k; 1�, one must use the generalized Laguerre
polynomials ϕk−1n �G�.
To apply the GPC method, one must first write the initial mass

distribution m0 in terms of the orthogonal polynomials. For the
uniform distribution, one can write m0 � �m0L0�Δ� � δmL1�Δ�,
whereas, for the gamma distribution, it follows that

m0 � �m0ϕ
k−1
0 �G� −

δm������
3k
p ϕk−11 �G�

In the following, the uniform distribution case is considered (the
gamma distribution is handled analogously). It is assumed that
m�t;m0� can be written as

m�t;m0� �
XP
i�0

hi�t�Li�Δ� (12)

where the coefficients hi are to be found using the mass equation (3),
and P is the order of the approximation, which is to be taken
sufficiently large. Substituting Eq. (12) in Eq. (3), the following
equation is obtained

XP
i�0

_hi�t�Li�Δ� � −A − B
XP
i�0

XP
j�0

hi�t�hj�t�Li�Δ�Lj�Δ� (13)

Now, multiplying Eq. (13) by Ll�Δ� for l � 0; : : : ; P, taking
expectationwith respect toΔ, and using the orthogonality property of
the Ll polynomials, one obtains P� 1 equations

_hl�t�E�L2
l �Δ�� �−Aδ0l

−B
XP
i�0

XP
j�0

hi�t�hj�t�E�Li�Δ�Lj�Δ�Ll�Δ��; l� 0; : : : ;P (14)

and calling

Cijl �
E�LiLjLl�
E�L2

l �

(which is a number that can be exactly computed because the
involved expectations are just integrals of polynomials), it follows
that

_hl � −Aδ0l − B
XP
i�0

XP
j�0

hihjCijl; l � 0; : : : ; P (15)

which is a system of P� 1 nonlinear coupled ordinary differential
equations. The same result is reached for the gamma distribution
case, with the corresponding Cijl coefficients. The initial conditions
of Eq. (15) depend on the initial mass distribution. For the uniform
distribution case, they are

h0�0� � �m0; h1�0� � δm; hl�0� � 0; for l � 2; : : : ; P

(16)

whereas, for the gamma distribution, they are given by

h0�0� � �m0; h1�0� � −
δm������
3k
p ; hl�0� � 0; for l� 2; : : : ;P

(17)

The advantage of theGPCmethod is that a small ormoderate value of
P is enough to get good results, thus resulting in a method that is not
very intensive computationally.
Once the coefficients hi are found, it is possible to compute from

Eq. (12) approximate values for quantities of interest such as mean
and variance. For the uniform distribution, taking into account
Eq. (12) and L0�Δ� � 1, it follows that

E�m�t;m0�� �
XP
i�0

hi�t�E�Li�Δ�� �
XP
i�0

hi�t�E�Li�Δ�L0�Δ��

� h0�t�E�L2
0�Δ�� � h0�t� (18)

To compute the variance

Var�m�t;m0�� � E�m2�t;m0�� − E�m�t;m0��2

�
XP
i�0

XP
j�0

hi�t�hj�t�E�Li�Δ�Lj�Δ�� − h20 �
XP
i�1

h2i �t�E�L2
i �Δ��

(19)

For the gamma distribution, similar results hold:

E�m�t;m0�� � h0�t� (20)
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Var�m�t;m0�� �
XP
i�1

h2i �t�E��ϕk−1i �G��2� (21)

V. Analysis of the Evolution of the Mass
Distribution Function

In this section, because the GPC method cannot be used to obtain
distribution functions (see [11]), two original approximate methods
to obtain the distribution function of themass (which evolves in time)
are developed.
Recall first that, given a random variable x with distribution

function fx�x�, if one defines another random variable y using a
transformation g such that y � g�x�, then it is known that the
distribution function fy�y� of y is given by (see [15])

fy�y� �
fx�g−1�y��
jg 0�g−1�y��j (22)

with expression (22) valid only if the function g�x� is invertible in the
domain of x.
Denoting m � m�t;m0� � φt�m0� as the solution of the

differential equation (3) with initial condition (4), it follows from
standard uniqueness results in differential equations (see [17]) that
the function relating m and m0 (for a given time t) is always
monotonous. Indeed, if it were not monotonous, there would be
values of mass (for a given time t) that could be reached from two
different initial conditions, which would contradict uniqueness.
Because it ismonotonous, it is therefore invertible. Thus, it is possible
to write

fm�m; t� �
fm0
�φ−1

t �m��
jφ 0t �φ−1

t �m��j
(23)

where fm0
is the distribution of the initial mass and fm�m; t� is the

distribution of the mass at time t.

A. Approximate Method 1

The objective is to numerically approximate Eq. (23). For that, take
n consecutive points from the domain of m0, denoted as mi0,
i � 1; : : : ; n, so that m1

0 < m
2
0 < : : : < mn0 . Now, fix a time τ > 0;

solving the mass equation (3) for each i with mi0 as the initial
condition, one can compute the value of mass at time τ,
mi�τ� � φτ�mi0�. The numerator of Eq. (23) is computed for each i as
fm0
�mi0�. To compute the denominator of Eq. (23), the theory of

differential equations is used. Noting that

φ 0t �m0� �
∂m
∂m0

�t�

is the value of the derivative of the solutionmwith respect tom0 (also
known as the sensitivity functionwith respect to the initial condition),
a differential equation can be written for φ 0t �m0�:

d

dt
φ 0t �m0� �

d

dt

�
∂m
∂m0

�
� −2Bm

∂m
∂m0

� −2Bmφ 0t �m0� (24)

with initial condition [obtained from Eq. (4)]

φ 00�m0� � 1 (25)

This is the so-called variational equation, which is linear, and its
solution is given by

φ 0t �m0� � exp�−2B
Z
t

0

m�t;m0� dt� (26)

Numerically solving Eq. (26) to find φ 0t �mi0� at time t � τ, the
denominator of Eq. (23) is computed for each i.
Thus, for a fixed time τ, one finds the value of fm�m; τ� at the n

points mi � φτ�mi0�, i � 1; : : : ; n, as

fm�mi; τ� �
fm0
�mi0�

φ 0τ�mi0�
(27)

B. Approximate Method 2

Now, another method that avoids having to solve the differential
equation for the sensitivity function (24) is formulated. As in the
previous method, take n consecutive points from the domain of m0,
m1

0 < m
2
0 < : : : < mn0 , fix a time τ > 0, and solve the mass

equation (3) to compute the value of mass at time t � τ,
mi�τ� � φτ�mi0�. To find the value of fm�m; τ� at these points, the
intermediate value theorem for integrals is used:

Pr�mi ≤ m ≤ mi�1� �
Z
mi�1

mi
fm�μ; τ� dμ � �mi�1 −mi�fm�ξi; τ�

(28)

where Pr is the probability measure and ξi ∈ �mi;mi�1�, for
i � 1; : : : ; n − 1.
Given the uniqueness of the solution, intervals in the initial

condition are univocally mapped into intervals in the solution (as
illustrated in Fig. 2), thus the probability of the mass m being in the
interval �mi;mi�1� is the same as the probability of the initialmassm0

being in the interval �mi0; mi�10 �, that is, Pr�mi ≤ m ≤ mi�1�
� Pr�mi0 ≤ m0 ≤ mi�10 �. These probabilities can be computed
(numerically or analytically) from the distribution function of m0.
Thus, one has

fm�ξi; τ� �
Pr�mi0 ≤ m0 ≤ mi�10 �

mi�1 −mi
; i � 1; : : : ; n − 1 (29)

Taking

fm�m1; τ� � fm�ξ1; τ�

fm�mi; τ� �
fm�ξi−1; τ� � fm�ξi; τ�

2
; i � 2; : : : ; n − 1

fm�mn; τ� � fm�ξn−1; τ� (30)

an approximation of fm is obtained at n points.

VI. Analysis of the Distribution Function of the Flight
Time and the Fuel Consumption

In this section, the distribution functions of the flight time tf (in the
case of a given fuel load) and of the fuel consumptionmF (in the case
of a given range) are analyzed using the approximate methods
developed in Sec. V.

A. Distribution Function of the Flight Time

The flight time tf is defined explicitly by Eq. (6), where it can be
seen that it is a function of the initial mass and hence a random
variable itself. Calling tf � φ�m0�, one has that

m�φ�m0�;m0� � m0 −mF (31)

The distribution function of tf is given, similarly to Eq. (23), by

ftf �tf� �
fm0
�φ−1�tf��

jφ 0�φ−1�tf��j
(32)

Fig. 2 Evolution of the initial mass intervals in time.
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if φ is invertible. To see that this is the case, take the derivative with
respect to m0 in Eq. (31),

∂m
∂t
�tf;m0�φ 0�m0� �

∂m
∂m0

�tf;m0� � 1 (33)

Note that

∂m
∂t
�tf;m0� � _m�tf�

thus using the mass equation (3), it is found that

∂m
∂t
�tf;m0� � −�A� Bm2�tf�� � −�A� B�m0 −mF�2� < 0

(34)

Thus, from Eqs. (33) and (34), one has

φ 0�m0� � −
1 − �∂m∕∂m0��tf;m0�
A� B�m0 −mF�2

(35)

On the other hand, ∂m∕∂m0 satisfies the differential equation (24),
hence, one has from Eq. (26) that �∂m∕∂m0��t� < 1for t > 0 and, in
particular, �∂m∕∂m0��tf;m0� < 1Thus, φ 0�m0� < 0 and it follows
that tf � φ�m0� is monotonically decreasing with m0 and hence
invertible. Therefore Eq. (32) is a valid equation to compute ftf �tf�.

1. Approximate Method 1

Take n consecutive points from the domain ofm0, denoted asm
i
0,

i � 1; : : : ; n, so that m1
0 < m

2
0 < : : : < mn0 . Each of these points

determines a value tif by solving the mass equation (3) with initial
condition mi0 and stopping when m � mi0 −mF. Then, combining
Eqs. (32) and (35),

ftf �tif� �
fm0
�φ−1�tif��

jφ 0�φ−1�tif��j
� fm0

�mi0�
A� B�mi0 −mF�2

1 − �∂m∕∂m0��tif;mi0�
(36)

where �∂m∕∂m0��tif;mi0� is obtained by computing Eq. (26) for
t � tif and m0 � mi0. Thus, the value of ftf at n points is obtained.

2. Approximate Method 2

Take n consecutive points from the domain ofm0, as before, each
of which determines a value tif. It has to be noted that, because it was
found before that φ 0�m0� < 0, increasing values of m0 produce
decreasing values of tf and thus ti�1f < tif. As it was done for the
distribution of the mass, the intermediate value theorem for integrals
can be applied to find

Pr�ti�1f ≤ tf ≤ tif� �
Z
ti
f

ti�1
f

ftf �μ� dμ � �tif − t
i�1
f �ftf �ξi� (37)

where ξi ∈ �ti�1f ; tif �, for i � 1; : : : ; n − 1.
Reasoning as in Sec. V.B, it can be seen that intervals in the initial

condition m0 are univocally mapped into intervals of tf. However,
noting that increasing values of m0 produce decreasing values of tf,
one has that the interval �mi0; mi�10 � is mapped into the interval
�ti�1f ; tif�. Thus, it is deduced that Pr�ti�1f ≤ tf ≤ tif� �
Pr�mi0 ≤ m0 ≤ mi�10 �, hence

ftf �ξi� �
Pr�mi0 ≤ m0 ≤ mi�10 �

tif − t
i�1
f

; i � 1; : : : ; n − 1 (38)

Taking

ftf �t1f� � ftf �ξ1�

ftf �tif� �
ftf �ξi−1� � ftf �ξi�

2
; i � 2; : : : ; n − 1

ftf �tnf� � ftf �ξn−1� (39)

an approximation of ftf is obtained at n points.

B. Distribution Function of the Fuel Consumption

The fuel consumption mF is defined explicitly by Eq. (9) as a
function of the initial mass; thus mF is a random variable itself.
Calling this functionmF � ψ�m0�, the distribution function ofmF is
given, similar to Eq. (23), by

fmF �mF� �
fm0
�ψ−1�mF��

jψ 0�ψ−1�mF��j
(40)

ifψ is invertible. To prove that this is the case, notice fromEq. (9) that

ψ 0�m0� �
∂mF
∂m0

�m0� � 1 −
∂m
∂m0

�xf;m0� (41)

Similar to Eq. (24), the variable ∂m∕∂m0 satisfies now a differential
equation with respect to distance

d

dx

�
∂m
∂m0

�
� −

2Bm

V

∂m
∂m0

(42)

with initial condition [from Eq. (4)]

∂m
∂m0

�0� � 1 (43)

whose solution is given by

∂m
∂m0

�x;m0� � exp

�
−
2B

V

Z
x

0

m�x;m0� dx
�

(44)

Thus, from Eq. (41), one has ψ 0�m0� > 0 for xf > 0 which implies
invertibility of ψ�m0�. Hence, Eq. (40) is a valid equation to compute
fmF �mF�.

1. Approximate Method 1

Take n consecutive points from the domain ofm0, denoted asm
i
0,

i � 1; : : : ; n, so that m1
0 < m

2
0 < : : : < mn0 . Each of these points

determines a value miF � mi0 −m�xf;mi0� by solving the mass
equation (7) with initial condition mi0 and stopping when x � xf.
Then, using Eq. (41),

fmF �miF� �
fm0
�ψ−1�miF��

jψ 0�ψ−1�miF��j
�

fm0
�mi0�

1 − �∂m∕∂m0��xf;mi0�
(45)

where ∂m
∂m0
�xf;mi0� is obtained by computing Eq. (44) for x � xf and

m0 � mi0. Thus, the value of fmF at n points is obtained.

2. Approximate Method 2

Take n consecutive points from the domain ofm0, as before, each
of which determines a value miF. Because it was found before that
ψ 0�m0� > 0, increasing values of m0 produce increasing values of
mF. As it was done for the distribution of the mass, the intermediate
value theorem for integrals can be applied to find

Pr�miF ≤ mF ≤ mi�1F � �
Z
mi�1F

miF

ftf �μ� dμ � �m
i�1
F −miF�fmF �ξi�

(46)

where ξi ∈ �miF;mi�1F �, for i � 1; : : : ; n − 1.
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Reasoning as in Sec. V.B, it can be seen that intervals in the initial
condition m0 are univocally mapped into intervals of mF. Thus, it is
deduced thatPr�miF ≤ mF ≤ mi�1F � � Pr�mi0 ≤ m0 ≤ mi�10 �, hence

fmF �ξi� �
Pr�mi0 ≤ m0 ≤ mi�10 �

mi�1F −miF
; i � 1; : : : ; n − 1 (47)

Taking

fmF �m1
F� � fmF �ξ1�

fmF �miF� �
fmF �ξi−1� � fmF �ξi�

2
; i � 2; : : : ; n − 1

fmF �mnF� � fmF �ξn−1� (48)

an approximation of fmF is obtained at n points.

VII. Results

Now, the methods presented in previous sections are applied to the
two initial mass distributions defined in Sec. III. The numerical
resolution of the different problems is performed using theMATLAB
environment. The numerical results are compared with the exact
results of the problem, so that their accuracy can be assessed; these
exact results are presented in the Appendix.

For the numerical application, the following values are used:
Cd0 � 0.015, Cd2 � 0.042, ρ � 0.5ρ0, ρ0 � 1.225 kg∕m3, V �
200 m∕s, c � 5 · 10−5 s∕m, S � 150 m2, g � 9.8 m∕s2, mF �
25; 000 kg in the case of a given fuel load, and xf � 2500 km in the
case of a given range. For the initial mass distributions, the nominal
values chosen for mean and width are �m0 � 81; 633 kg and
δm � 5000 kg, which yields a typical deviation

σ�m0� �
����������������
Var�m0�

p
� δm���

3
p � 2887 kg

and for the gamma distribution, the nominal value k � 8.5 is
considered. A parametric study as a function of δm and k is also
presented. For the nominal values, the two initial mass distributions
are shown in Fig. 3. For the uniform distribution, the values of m0

with nonzero probability are in the interval � �m0 − δm; �m0 � δm� �

7 7.5 8 8.5 9 9.5

x 10
4

0

0.5

1

1.5

x 10
−4

Gamma
distribution

Uniform
distribution

Fig. 3 Probability density functions of the initial mass ( �m0 �
81;633 kg, δm � 5000 kg, and k � 8.5).
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Fig. 4 GPC coefficients for the uniform distribution case.
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Fig. 5 Evolution of mass mean and typical deviation for the uniform
distribution case.
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�76; 633; 86; 633� in kilograms, and for the gamma distribution, they
are in �M0;∞� � �73; 217;∞� in kilograms.
For theGPCmethod, the number of terms used in the expansions is

P � 3, which turns out to be enough to obtain a good representation
ofm. In the computation of the distribution functions, the number of
discretization points considered is n � 1000, which has proven to be
good enough. All the integrations have been performed using the
MATLAB environment.
In Sec. VII.A, theGPCmethod is applied to obtain the evolution of

massmean and variance. The distribution function of themass and its
evolution in time are analyzed in Sec. VII.B. The distribution
function of the flight time in the case of a given fuel load is studied in
Sec. VII.C and that of the fuel consumption in the case of a given
range is studied in Sec. VII.D.

A. Mass Mean and Variance

1. Uniform Distribution of the Initial Mass

To find the mean and variance using GPC, the value P � 3 is
chosen in the GPC expansion of the mass [Eq. (12)], which, as
already mentioned, is enough to obtain a good representation of m.
The coefficients of the GPC expansion are shown in Fig. 4. Note the
fast decrease of their order of magnitude (six orders of magnitude
from h0 to h3).
The evolution of mean E�m�t;m0�� and typical deviation

σ�m�t;m0�� �
����������������������������
Var�m�t;m0��

p
is shown in Fig. 5. Selected values of

mean and typical deviation are given in Table 1. The difference
between the GPC solution and the analytical solution [Eqs. (A1) and
(A2)] of mean and variance is negligible; the absolute error is less
than 10−4 for themean and less than 2 · 10−3 for the typical deviation.
Thus a low-order GPC expansion, which is very fast to compute, is
enough to capture well the mean and variance evolution.
Although the fact that the mean mass decreases with time is to be

expected (because fuel mass in consumed), it is remarkable that the

standard deviation of the mass also decreases with time. Thus, the
dispersion of the distribution function and, therefore, the uncertainty
decreases with time. This result can be explained by noting that the
larger the aircraft mass, the larger its rate of decrease (which is given
at each instant byA� Bm2). Thus, if one computes the solutionm�t�
given by Eq. (5) for m0 � �m0 � δm, say, m��t� � m�t; �m0 � δm�
and m−�t� � m�t; �m0 − δm�, the distance Δm�t� � m��t� −m−�t�
decreases with time: For example, at t � 0, one has Δm � 2δm �
10; 000 kg and at t � 1.2 × 104 s, Δm � 8321 kg.

2. Gamma Distribution of the Initial Mass

As in the uniform distribution case, to find the mean and variance
using GPC, choosing P � 3 in the GPC expansion of the mass
[Eq. (12)] is good enough. The coefficients of the GPC expansion are
shown in Fig. 6. Note again the fast decrease of their order of
magnitude (seven orders of magnitude from h0 to h3).
The evolution of mean and typical deviation is shown in Fig. 7.

Selected values ofmean and typical deviation are given in Table 2. As
before, the difference between the GPC solution and the analytical
solution [Eqs. (A5) and (A6)] of mean and variance is negligible; the
absolute error is less than 4 · 10−5 for the mean and less than 2 · 10−3

for the typical deviation. Again, both the mean and the standard
deviation decrease with time.
Note that the plots and values are very similar to the ones obtained

with the uniform distribution. Thus, the results show that the
evolution of mean and standard deviation is very weakly affected by
the specific distribution function chosen for the initial mass (at least
for the two cases studied).

B. Distribution Function of the Mass

1. Uniform Distribution of the Initial Mass

The mass distribution is represented at several time instants in
Fig. 8. Both approximate methods developed in Sec. V to
approximate Eq. (23) show excellent agreement with the exact
analytical results [Eq. (A12)] and are indistinguishable from them.
The results in Fig. 8 show that, as time increases (and m decreases),
the width of the distribution function decreases, whereas the
probability density increases. Thus, uncertainty decreases with time
(as it was seen in Fig. 5). Note also that the uniform shape is
approximately maintained.

2. Gamma Distribution of the Initial Mass

In this case, the mass distribution is represented at several time
instants in Fig. 9.Again, both numericalmethods developed in Sec.V

Table 1 Values of mass mean and typical deviation at selected
times for the uniform distribution case

Time, s E�m�t;m0��, kg σ�m�t;m0��, kg
2 × 103 77,485 2787
4 × 103 73,477 2696
6 × 103 69,596 2613
8 × 103 65,831 2536
104 62,175 2467

1.2 × 104 58,616 2402
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Fig. 6 GPC coefficients for the gamma distribution case (k � 8.5).
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to approximate Eq. (23) show excellent agreement with the exact
analytical results [Eq. (A14)] and are indistinguishable from them.
As in Figs. 8 and 9 show that uncertainty decreases as time increases.
Also, the shape of the distribution function is approximately of
gamma type at all times.

C. Distribution Function of the Flight Time

1. Uniform Distribution of the Initial Mass

Thedistribution function of the flight time is represented inFig. 10.
Note that it looks approximately uniform, similar to the initial mass
distribution. As in the computation of the mass distribution function,
both approximate methods developed in Sec. V to approximate
Eq. (32) show excellent agreement with the exact analytical result
[Eq. (A19)]. The values of tf with nonzero probability are those in the
interval �T1; T2� � �12; 625; 13; 664� in seconds, for values of m0

with nonzero probability in � �m0 − δm; �m0 � δm� � �76; 633; 86; 633�
in kilograms, where, as shown in the Appendix,

T1 �
1�������
AB
p arctan

� �������
AB
p

mF
A� B� �m0 � δm�� �m0 � δm −mF�

�
(49)

T2 �
1�������
AB
p arctan

� �������
AB
p

mF
A� B� �m0 − δm�� �m0 − δm −mF�

�
(50)

The mean and the typical deviation of the flight time are obtained
using the distribution function, computed numerically from

E�tf� �
Z

∞

0

tfftf �tf� dtf (51)
�σ�tf ��2 �

Z
∞

0

t2fftf �tf� dtf − �E�tf ��2 (52)

The results are given in Table 3.
Now the effect of δm on the results is analyzed. Values of σ�tf � for

different values of δm (obtained using the exact solution) are given in
Fig. 11, in which it is seen that there is a proportionality between the
two parameters. The values of E�tf � are not significantly affected by
changing δm.

2. Gamma Distribution of the Initial Mass

The distribution function in this case is represented in Fig. 10.Note
that this distribution function is somewhat different from a gamma
distribution, because the values of tf with nonzero probability are

0 2000 4000 6000 8000 10,000 12,000
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7

8

9
x 10

4

time (s)

0 2000 4000 6000 8000 10,000 12,000
2200

2400

2600

2800

3000

time (s)

Fig. 7 Evolution of mass mean and typical deviation for the gamma
distribution case (k � 8.5).

Table 2 Values of mass mean and typical deviation at
selected times for the gamma distribution case (k � 8.5)

Time, s E�m�t;m0��, kg σ�m�t;m0��, kg
2 × 103 77,485 2786
4 × 103 73,477 2695
6 × 103 69,596 2610
8 × 103 65,831 2533
104 62,175 2462

1.2 × 104 58,616 2397

5.5 6 6.5 7 7.5 8 8.5 9

x 10
4

0

0.4

0.8

1.2

x 10
−4

Fig. 8 Mass distribution at several time instants for the uniform

distribution case.
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Fig. 9 Mass distribution at several time instants for the gamma
distribution case (k � 8.5).
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Fig. 10 Distribution functions of the flight time: a) uniform distribution

case and b) gamma distribution case (k � 8.5).
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those in the finite interval �0; T� � �0; 14019� in seconds, for values
of m0 with nonzero probability in �M0;∞� � �73; 217;∞� in
kilograms, where, as shown in the Appendix,

T � 1�������
AB
p arctan

� �������
AB
p

mF
A� BM0�M0 −mF�

�
(53)

Moreover, because tf decreases when m0 increases, the bell of the
distribution is sort of inverted (with respect to the bell of the initial
mass distribution).
As in the computation of the mass distribution function, both

numerical methods developed in Sec. V to approximate Eq. (32)
show excellent agreement with the exact analytical result
[Eq. (A21)].
Again, the mean and the typical deviation are computed

numerically from Eqs. (51) and (52) using the distribution function.
The results are given in Table 4.
Note that these results of mean and standard deviation are very

close to the ones obtained before for the uniform distribution
(especially for the exact distribution functions), showing again that
the initial mass distribution chosen affects the results very weakly.
Now the effect of k on the results is analyzed. Values of σ�tf� for

different values of k and δm (obtained using the exact solution) are
given in Fig. 12, in which it is seen that there is no significant effect
from changing k and, as in the uniform distribution case, there is a
proportionality between thevalues of σ�tf � and δm. Thevalues ofE�tf �
are not significantly affected by changing k or δm.

D. Distribution Function of the Fuel Consumption

1. Uniform Distribution of the Initial Mass

The distribution function of the fuel consumption is represented in
Fig. 13.Note that it looks approximately uniform, similar to the initial
mass distribution, although smaller values of mF show a slightly
higher probability. As before, both approximate methods developed
in Sec. V to approximate Eq. (40) show excellent agreement with the
exact analytical results [Eq. (A25)].
The values ofmF with nonzero probability are those in the interval
�M1;M2� � �23; 043; 24; 775� in kilograms, for values of m0 with
nonzero probability in � �m0 − δm; �m0 � δm� � �76; 633; 86; 633� in
kilograms, where, as shown in the Appendix,

M1 �
�� �m0 − δm�2 � A

B� tan�1V
�������
AB
p

xf����
A
B

q
� � �m0 − δm� tan�1V

�������
AB
p

xf�
(54)

M2 �
�� �m0 � δm�2 � A

B� tan�1V
�������
AB
p

xf����
A
B

q
� � �m0 � δm� tan�1V

�������
AB
p

xf�
(55)

As for the flight time, the mean and the typical deviation of the fuel
consumption are obtained using the distribution function, computed
numerically from

E�mF� �
Z

∞

0

mFfmF �mF� dmF (56)

�σ�mF��2 �
Z

∞

0

m2
FfmF �mF� dmF − �E�mF��2 (57)

The results are given in Table 5.
Now the effect of δm on the results is analyzed. Values of σ�mF� for

different values of δm (obtained using the exact solution) are given in
Fig. 14, in which one can see that there is a proportionality between
both parameters. Thevalues ofE�mF� are not significantly affected by
changing δm.

2. Gamma Distribution of the Initial Mass

The distribution function in this case is represented in Fig. 13 for
k � 8.5. Note that its shape is approximately of gamma type, as the

Table 3 Computed values of E�tf � and σ�tf � for
the uniform distribution case

Exact Method 1 Method 2

E�tf �, s 13,144 13,144 13,146
σ�tf �, s 299.8 296.9 290.1

2000 3000 4000 5000 6000 7000 8000
100

200

300

400

500

Fig. 11 Typical deviation of the flight time vs δm in the uniform
distribution case.

Table 4 Computed values of E�tf � and σ�tf � for
the gamma distribution case (k � 8.5)

Exact Method 1 Method 2

E�tf �, s 13,144 13,144 13,143
σ�tf �, s 299.3 301.6 303.9

0 10 20 30 40 50 60
0

100

200

300

400

500

Fig. 12 Typical deviation of the flight time vs k, for different values of
δm, in the gamma distribution case.
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x 10
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0

0.2

0.4
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0.8

x 10
−3

b

a

Fig. 13 Distribution functions of the fuel consumption: a) uniform
distribution case and b) gamma distribution case (k � 8.5).
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initial mass distribution. The values of mF with nonzero probability
are those in the interval �M;∞� � �22; 499;∞� in kilograms, for
values ofm0 with nonzero probability in �M0;∞� � �73; 217;∞� in
kilograms, where, as shown in the Appendix,

M �
�M2

0 � A
B� tan�1V

�������
AB
p

xf����
A
B

q
�M0 tan�1V

�������
AB
p

xf�
(58)

As before, the approximate methods developed in Sec. V to
approximate Eq. (40) show excellent agreement with the exact
analytical result [Eq. (A27)].
Again, the mean and the typical deviation are computed

numerically from Eqs. (56) and (57) using the distribution function.
The results are given in Table 6. Note that these results of mean and
standard deviation are very close to the ones obtained before for the
uniform distribution, showing again that the initial mass distribution
chosen affects very weakly the results.
Now the effect of k on the results is analyzed. Values of σ�mF� for

different values of k and δm (obtained using the exact solution) are
given in Fig. 15, in which one can see that the influence of k in σ�mF�
is negligible. Also, as in the uniform distribution case, there is a
proportionality between the values of σ�mF� and δm. The values of
E�mF� are not significantly affected by changing k or δm.

VIII. Conclusions

The problem of propagation of initial mass uncertainty in cruise
flight has been studied, using a nonlinear model that has known
analytical solution. To study the evolution of mean and variance of
the aircraft mass, the generalized polynomial chaos (GPC) method
has been used, in which an expansion with just four terms has proven
to be accurate enough. The study of the evolution of the mass
distribution function has also been considered and two approximate
methods have been developed. These two methods are applicable to
problems in which there is just one random variable and for the
analysis of distribution functions of functions of the random variable
which are invertible. Using these methods, the distribution functions
of the flight time in the case of a given fuel load, and of the fuel
consumption in the case of a given range, have been also studied. The
results obtained with these methods have been compared with the
exact analytical results, showing an excellent agreement in all cases;
thus, the accuracy of the methods has been assessed and, therefore,
they are proposed as accurate and computationally efficient
candidates to study uncertainty propagation.
The results presented in this work show that both mass mean and

standard deviation decrease with time, with the distribution function
getting narrower and more concentrated around the mean; thus, an
important conclusion of this analysis is that uncertainty (represented
by the dispersion of the distribution function) decreaseswith time.On
the other hand, the shape of the distribution function of the mass is
fundamentally unchanged from its initial shape. The results also
show that the values of both mean and standard deviation are very
weakly affected by the specific distribution function chosen for the
initial mass (at least in the uniform and gamma cases).
The distribution functions of other flight properties different from

mass (flight time and fuel consumption) have been analyzed as well,
and their main statistical properties have been computed. Again, it
has been shown that the results are affected veryweakly by the choice
of the initial mass distribution. The influence of the parameters of the
initial mass distributions (δm and k) has been studied: Themean is not
significantly affected by changing δm or k, and the typical deviation
varies almost linearly with δm and is not affected by k. In these cases,
the mean and variance have been obtained directly using the known
distribution functions (and not the GPC method, as in the case of the
mass distribution).
The approximate methods developed in this paper can be applied

to other flight phases defined by more complicated flight conditions,
and they can be extended to consider other sources of uncertainty, not
only in the initial conditions but, for example, persistently affecting
the system, such as wind. The analysis of these problems is left for
future work.

Appendix: Exact Results

A1. Mean and Typical Deviation of the Mass

In this Appendix, the different analytic expressions used for
comparison purposes throughout the paper are presented, and their
derivation is briefly explained. To simplify the notation, the following

parameters are defined: c1�t� � tan
� �������
AB
p

t
�
≥ 0,

c2 �
����
A

B

r
> 0

and

Table 5 Computed values of E�mF� and σ�mF� for the
uniform distribution case

Exact Method 1 Method 2

E�mF�, kg 23,892 23,892 23,892
σ�mF�, kg 499.96 499.81 500.04

2000 3000 4000 5000 6000 7000 8000
0

200

400

600

800

Fig. 14 Typical deviation of fuel consumption vs δm in the uniform
distribution case.

Table 6 Computed values ofE�mF� and σ�mF� for the gamma
distribution case (k � 8.5)

Exact Method 1 Method 2

E�mF�, kg 23,891 23,891 23,894
σ�mF�, kg 506.46 506.37 506.46

0 10 20 30 40 50 60
0

200

400

600

800

1000

Fig. 15 Typical deviation of the fuel consumption vs k, for different
values of δm, in the gamma distribution case.
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c3 � tan

�
1

V

�������
AB
p

xf

�
> 0

.

A. Uniform Distribution of the Initial Mass

The analytical value of themean is computed directly fromEq. (5),
obtaining

E�m�t;m0�� �
1

2δm

Z
�m0�δm

�m0−δm
m�t;m0� dm0

� c2
2δm

Z
�m0�δm

�m0−δm

m0 − c1c2
c2 � c1m0

dm0

� c2
c1�t�

�
1 −

c2
c1�t�

c21�t� � 1

2δm
log

�
c2 � � �m0 � δm�c1�t�
c2 � � �m0 − δm�c1�t�

��
(A1)

Similarly, the computation of the variance of m�t� gives

Var�m�t;m0�� � E�m2�t;m0�� − �E�m�t;m0���2

� 1

2δm

Z
�m0�δm

�m0−δm
m2�t;m0� dm0 − �E�m�t;m0���2

� c22
2δm

Z
�m0�δm

�m0−δm

�m0 − c1c2�2
�c2 � c1m0�2

dm0 − �E�m�t;m0���2

� c42
c41�t�

�c21�t� � 1�2
2δm

�
2δm

� �m0 � c2
c1�t��

2 − δ2m

−
1

2δm

�
log

�
c2 � � �m0 � δm�c1�t�
c2 � � �m0 − δm�c1�t�

��
2
�

(A2)

Expressions (A1) and (A2) are both indeterminate for t � 0 (which
implies c1 � 0). For numerical purposes, it is convenient to develop
both expressions as a second-order Taylor series for small t (i.e.,
small values of c1) as follows:

E�m�t;m0�� ≈ �m0 −
c1
c2

�
�m2
0 � c22 �

δ2m
3

�
� c

2
1

c22
�m0�c22 � δ2m � �m2

0�

(A3)

Var�m�t;m0�� ≈
δ2m
3

−
4c1
3c2
� �m0δ

2
m�

� 2c21
45c22

δ2m�15c22 � 11δ2m � 75 �m2
0� (A4)

B. Gamma Distribution of the Initial Mass

For the gamma distribution, the exact value of the mean obtained
from Eq. (5) is

E�m�t;m0�� � c2
Z

∞

M0

m0 − c1c2
c2 � c1m0

�m0 −M0�k−1
e−�m0−M0�

���
3k
p

δm

� δm����
3k
p �kΓ�k�

dm0

� c2
c1�t�

−
c22�c21�t� � 1�
c21�t�

δm����
3k
p

e
���
3k
p

δm
�M0�

c2
c1�t�
�

×
�
M0 � c2

c1�t�
δm����
3k
p

�k−1
Γ
�
1 − k;

M0 � c2
c1�t�

δm����
3k
p

�
(A5)

whereM0 is defined by Eq. (10) and Γ�s; x� is the upper incomplete
Euler gamma function defined as

Γ�s; x� �
Z

∞

x
ts−1e−t dt

(see [18]).

The variance of m�t� is as follows:

Var�m�t;m0�� � E�m2�t;m0�� − �E�m�t;m0���2

� c22
Z

∞

M0

�m0 − c1c2�2
�c2 � c1m0�2

�m0 −M0�k−1
e−�m0−M0�

���
3k
p

δm

� δm����
3k
p �kΓ�k�

dm0

− �E�m�t;m0���2 �
��

1 − k −
M0 � c2

c1�t�
δm����
3k
p

�
e
���
3k
p

δm
�M0�

c2
c1�t�
�

×
�
M0 � c2

c1�t�
δm����
3k
p

�k
Γ
�
1 − k;

M0 � c2
c1�t�

δm����
3k
p

�
�
M0 � c2

c1�t�
δm����
3k
p

− e
���
3k
p

δm
�M0�

c2
c1 �t�
�
�
M0 � c2

c1�t�
δm����
3k
p

�2k�
Γ
�
1 − k;

M0 � c2
c1�t�

δm����
3k
p

��2�

×
c42
c21�t�

�
c21�t� � 1

c1�t�M0 � c2

�
2

(A6)

Expressions (A5) and (A6) are both indeterminate for t � 0 (which
implies c1 � 0). For numerical purposes, it is convenient to
approximate both expressions up to order 3 in 1∕c1 using the
asymptotic series

Γ�s; x� � xs−1e−x
�
1� �s − 1� 1

x
� �s − 1��s − 2� 1

x2
� : : :

�

valid for x → ∞ (see [18]). It follows that

E�m�t;m0�� ≈
c2M0 − c22c1
c1M0 � c2

� k c
2
2�c21 � 1�
c1M0 � c2

�� δm����
3k
p

c1M0 � c2

�
− �k� 1�c1

� δm����
3k
p

c1M0 � c2

�2

� �k� 1��k� 2�c21
� δm����

3k
p

c1M0 � c2

�3

− �k� 1��k� 2��k� 3�c31
� δm����

3k
p

c1M0 � c2

�4

� �k� 1��k� 2��k� 3��k� 4�c41
� δm����

3k
p

c1M0 � c2

�5�
(A7)

Var�m�t;m0��

≈
δ2m
3

�c21 � 1�2c42
�c1M0 � c2�4

�
1 − 4�k� 1�

� c1
δm����
3k
p

c1M0 � c2

�

� 2�k� 1��5k� 9�
� c1

δm����
3k
p

c1M0 � c2

�2

− 4�1� k��2� k��12� 5k�
� c1

δm����
3k
p

c1M0 � c2

�3

� �1� k��2� k��300� 7k�29� 5k��
� c1

δm����
3k
p

c1M0 � c2

�4�

(A8)

A2. Distribution Function of the Mass

To compute the distribution function of the mass, note that
∂m∕∂m0 can be exactly computed from Eq. (5) as

∂m
∂m0

�t;m0� �
A

B

1� tan2�
�������
AB
p

t�

�
���
A
B

q
�m0 tan�

�������
AB
p

t��
2
� c22

1� c21�t�
�c2 �m0c1�t��2

(A9)

Also from Eq. (5), m0 can be written in terms of m�t� as follows:
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m0 � c2
m�t� � c2c1�t�
c2 − c1�t�m�t�

(A10)

Thus ∂m∕∂m0 in terms of m is written as

∂m
∂m0

�t;m� � �c2 − c1�t�m�
2

c22�1� c21�t��
(A11)

A. Uniform Distribution of the Initial Mass

Since

fm0
� 1

2δm

using Eqs. (23) and (A11), the exact distribution function of the mass
as a function of time is

fm�m; t� �
c22�1� c21�t��

2δm�c2 − c1�t�m�2
(A12)

if

m ∈
�
c2� �m0 − δm� − c22c1�t�
c2 � c1�t�� �m0 − δm�

;
c2� �m0 � δm� − c22c1�t�
c2 � c1�t�� �m0 � δm�

�

and zero otherwise. The limit points in the interval have been found
from Eq. (5) evaluated at the limit points in the initial mass
distribution ( �m0 − δm and �m0 � δm).

B. Gamma Distribution of the Initial Mass

In this case, the distribution function fm0
given by Eq. (11) has to

be written in terms of m�t� using Eq. (A10) as follows:

fm0
�m; t� �

�
c2m� c22c1�t�
c2 − c1�t�m

−M0

�
k−1 e

−
���
3k
p

δm
�
c2m�c22c1�t�
c2−c1�t�m

−M0�

� δm����
3k
p �kΓ�k�

(A13)

Then, using Eqs. (23), (A11), and (A13), the exact distribution
function of the mass as a function of time is

fm�m; t� �
�
c2m� c22c1�t�
c2 − c1�t�m

−M0

�
k−1

×
e
−
���
3k
p

δm
�
c2m�c22c1 �t�
c2−c1�t�m

−M0�

� δm����
3k
p �kΓ�k�

c22�1� c21�t��
�c2 − c1�t�m�2

(A14)

if

m ≥ c2
M0 − c2c1�t�
c2 �M0c1�t�

and zero otherwise. The lower limit is found evaluating Eq. (5) at
m0 � M0.

A3. Distribution Function of the Flight Time

To compute Eq. (32), using Eq. (6), the values of φ and its inverse
can be explicitly obtained as

tf � φ�m0� �
1�������
AB
p arctan

� �������
AB
p

mF
A� Bm0�m0 −mF�

�
(A15)

m0 � φ−1�tf� �
mF
2
�

������������������������������������������������
m2
F

4
−
A

B
�

���
A
B

q
mF

tan�
�������
AB
p

tf�

vuuut � mF
2
�Φ�tf�

(A16)

where

Φ�tf� �

������������������������������������������������
m2
F

4
−
A

B
�

���
A
B

q
mF

tan�
�������
AB
p

tf�

vuuut

is defined to simplify the expressions. Also φ 0�m0� is given by

φ 0�m0� �
−BmF�2m0 −mF�

�A� Bm0�m0 −mF��2 � ABm2
F

(A17)

Hence,

jφ 0�φ−1�tf��j �
2 sin2�

�������
AB
p

tf�
AmF

Φ�tf� (A18)

These results are now used to derive an explicit expression for ftf , for
the two initial mass distributions under consideration.

A. Uniform Distribution of the Initial Mass

From Eq. (32), using

fm0
� 1

2δm

and Eq. (A18), the resulting expression for the exact distribution
function of the flight time is

ftf �tf� �
AmF

4δm sin2�
�������
AB
p

tf�Φ�tf�
(A19)

if tf ∈ �T1; T2�, and zero otherwise, where the endpoints of this
interval are found evaluating Eq. (A15) at the endpoints of the
uniform distribution of m0 (namely, �m0 − δm and �m0 � δm) and are
given by

T1 �
1�������
AB
p arctan

� �������
AB
p

mF
A� B� �m0 � δm�� �m0 � δm −mF�

�

and

T2 �
1�������
AB
p arctan

� �������
AB
p

mF
A� B� �m0 − δm�� �m0 − δm −mF�

�

B. Gamma Distribution of the Initial Mass

To find ftf now, the distribution function fm0
for the gamma case

[Eq. (11)] has to be written in terms of tf using Eq. (A16) as follows:

fm0
�tf� �

�
mF
2
�Φ�tf� −M0

�
k−1 e−

���
3k
p

δm
�mF

2
�Φ�tf�−M0�

� δm����
3k
p �kΓ�k�

(A20)

Then, from Eq. (32), using Eqs. (A24) and (A20), the resulting
expression for the exact distribution function of the flight time is

ftf �tf� �
�
mF
2
�Φ�tf� −M0

�
k−1 AmF

2 sin2�
�������
AB
p

tf�
e−

���
3k
p

δm
�mF2 �Φ�tf�−M0�

� δm����
3k
p �kΓ�k�Φ�tf�

(A21)
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for

tf ∈
�
0;

1�������
AB
p arctan

� �������
AB
p

mF
A� BM0�M0 −mF�

��

and zero otherwise. The upper limit value is found evaluating
Eq. (A15) at m0 � M0.

A4. Distribution Function of the Fuel Consumption

To compute Eq. (40), the inverse of ψ�m0� is necessary. For that,
one has to solve for m0 in Eq. (9), finding

m0 � ψ−1�mF� �
mF
2
�

�����������������������������������
m2
F

4
� mFc2

c3
− c22

s
� mF

2
�Ψ�mF�

(A22)

where

Ψ�mF� �

�����������������������������������
m2
F

4
� mFc2

c3
− c22

s

has been defined.
Also, taking the derivativewith respect tom0 in Eq. (9), thevalue of

ψ 0�m0� is found as

ψ 0�m0� � c3
2c2m0 � �m2

0 − c22�c3
�c2 �m0c3�2

(A23)

For Eq. (40), it is necessary to explicitly compute jψ 0�ψ−1�mF��j
using Eqs. (A22) and (A23), finding

jψ 0�ψ−1�mF��j � c3
�mF
2
�Ψ�mF��2c3 � 2�mF

2
�Ψ�mF��c2 − c3c22

�c2 � c3�mF2 �Ψ�mF���2

(A24)

This result is nowused to derive an explicit expression for fmF , for the
two initial mass distributions under consideration.

A. Uniform Distribution of the Initial Mass

From Eq. (40), using

fm0
� 1

2δm

and Eq. (A24), the resulting expression for the exact distribution
function of the flight time is

fmF �mF� �
1

2δmc3

�c2 � c3�mF2 �Ψ�mF���2
�mF
2
�Ψ�mF��2c3 � 2�mF

2
�Ψ�mF��c2 − c3c22

(A25)

if

mF ∈
�
�� �m0 − δm�2 � c22�c3
c2 � � �m0 − δm�c3

;
�� �m0 � δm�2 � c22�c3
c2 � � �m0 � δm�c3

�

and zero otherwise. The endpoints of this interval are found by
evaluating Eq. (9) at the endpoints of the uniform distribution of m0

( �m0 − δm and �m0 � δm).

B. Gamma Distribution of the Initial Mass

To find fmF now, the distribution function fm0
for the gamma case

[Eq. (11)] has to bewritten in terms ofmF using Eq (A22) as follows:

fm0
�mF� �

�
mF
2
�Ψ�mF� −M0

�
k−1 e−�

mF
2
�Ψ�mF�−M0�

���
3k
p

δm

� δm����
3k
p �kΓ�k�

(A26)

Then, from Eq. (40), using Eqs. (A24) and (A26), the resulting
expression for the exact distribution function of the fuel consump-
tion is

fmF �mF�

�e
−�mF

2
�Ψ�mF�−M0�

���
3k
p

δm

� δm����
3k
p �kΓ�k�c3

�mF
2
�Ψ�mF�−M0�k−1�c2�c3�mF2 �Ψ�mF���2

�mF
2
�Ψ�mF��2c3�2�mF

2
�Ψ�mF��c2−c3c22

(A27)

for

mF ≥
�M2

0 � c22�c3
c2 �M0c3

and zero otherwise. The lower limit is found evaluating Eq. (9) at
m0 � M0.
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