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Disclaimer

e This presentation is exactly what a presentation should not be:
— Too long
— Full of equations
— Some proofs nobody cares about
— Jumping between topics
— Clearly copy-pasted from past presentations with different formats

— Potentially bad humor

H 113

e Please read Bob Bitmead’s “Things | hate in other people’s seminars” (http://oodgeroo.ucsd.edu/
~bob/Bob_zone_site/Literary_diversions_files/Things.pdf)

e However ... when talking among close peers about topics you have been doing for more than a decade,
perhaps some allowances are permitted...

e Solving kernel equations in your head is not really a pre-requisite ... but it helps!



The Age of Smyshlyaev & Krstic

San Diego, year 2002. Andrey Smyshlyaev starts his PhD.

BaCks'i’epPing Kernel Equation:

KxxKyy = ck

.1 k(X)O) s 0
g k(x,)() = —CX/Z 3

www.hetemeei,.com

Year 2004. Publication of A. Smyshlyaev and M. Krstic, “Closed form boundary state
feedbacks for a class of partial integro-differential equations,’ IEEE Transactions on
Automatic Control, vol. 49, pp. 2185-2202, 2004.



The Age of Smyshlyaev & Krstic

San Diego, year 2002. Andrey Smyshlyaev starts his PhD.

Back5+eppin3 Ketrel Equraion:

Kxx—Kyy = ck

‘1 k(X)O) =0
: k()(}x) = _CXIZ 3

www.hetemeei,.com

Year 2004. Publication of A. Smyshlyaev and M. Krstic, “Closed form boundary state
feedbacks for a class of partial integro-differential equations,’ IEEE Transactions on
Automatic Control, vol. 49, pp. 2185-2202, 2004.

This manuscript is a true template followed (sometimes too closely) by most backstepping
papers.

A golden age starts for backstepping, and many problems are solved!



The Age of Smyshlyaev & Krstic

The main idea is to use a first-design, then discretize approach and follow the next steps:

1. Identify the undesirable terms in the PDE.

2. Choose a target system in which the undesirable terms are to be eliminated by state transformation
and feedback, as in feedback linearization.

3. Find the state transformationéypicalI%as identity minus a Volterra operator (in x).
Volterra operator = integral ope rom O up to x (rather than from 0 to 1).
A Volterra transformation is “triangular” or “spatially causal.”

4. Obtain boundary feedback from the Volterra transformation. The transformation alone cannot eliminate
the undesirable terms, but the transformantion brings them to the boundary, so control can cancel them.

5. Study the invertibility of the transformation (identity minus Volterra is always invertible).
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The Age of Smyshlyaev & Krstic
Gain fcn of boundary controller = kernel of Volterra transformation.

Volterra kernel satisfies a linear PDE.



The Age of Smyshlyaev & Krstic
Gain fcn of boundary controller = kernel of Volterra transformation.

Volterra kernel satisfies a linear PDE.

Backstepping is not “one-size-fits-all.” Requires structure-specific effort by designer.

Reward: elegant controller, clea,r_zlosed-loop behavior.
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Coupled hyperbolic systems

Coupled parabolic systems

Extension to n-balls

Symmetric disk

Rijke Tube

My old friend Volterra

Some open problems

Outline



Backstepping control of coupled hyperbolic 1-D systems

(£, %) + X (t,0) = AT u(t
ve(t,x) =X v(t,x) = A_+u(t,x +

=
N——" N——"
_l_
> >
T
< <
VN VN
\.N \_.N
SR
N——" N——"

with the following boundary conditions

u(t,0) =0, v(t,1)=U(r)
where
T T
U= (ul un) : V= (V1 Vm)
€1 0 U1 0
>t = , Y=
with

—pp < < —pup <0 <€ << gy



Backstepping control of coupled hyperbolic 1-D systems

Backstepping transformation
ot,x) = u(t,x)
B(z,x) =v(r,x) — / L(x,8)u(8) + K(x,5)v(5)] dS

0
L and K defined on the triangular domain 7.

Target system

o (1,%) +Z o (t, %) =A++0°(laX)+A+_B(f,X)+/OXD+(X@OC(§)CZ§+/OXD_(X@B(@di
Be(2,x) =7 Px(r,x) = G(x)B(0)

with boundary conditions

o(t,0) =p(r,1) =0



Backstepping control of coupled hyperbolic 1-D systems

Structure of G is lower-diagonal with diagonal of zeros

0 0
G(x) _ g2,1.(x) .' :

8m,1 (x) - 8m,m—1 (x) 0
It can be shown to make stable

Be(,x) — X7 Pa(r,x) = G(x)B(0)

From there follows target system stability.



Backstepping control of coupled hyperbolic 1-D systems

Structure of G is lower-diagonal with diagonal of zeros

0 0
G(x) _ g2,1.<x) .' :

8m,1 (x) - 8m,m—1 (x) 0
It can be shown to make stable

Be(,x) — X7 Pa(r,x) = G(x)B(0)

From there follows target system stability.

G(x) is not chosen, but computed from the kernels.



Backstepping control of coupled hyperbolic 1-D systems

Kernel equations
0=X"Ly(x,§) = Lg(x,§)ZT — L(x,§)AT" —K(x,E)A™T
0 =27 Kx(x,§) +Kg( %, E)ET —K(x,E)A™ T —L(x,§)AT
with boundary conditions
0=L(x,x)ZT +X L(x,x)+A" "
0=X"K(x,x) —K(x,x)X~ + A~
0=G(x)—K(x,0)X~

Too many boundary conditions?



Backstepping control of coupled hyperbolic 1-D systems

Kernel equations

0=X"Ly(x,&) — Lg(x,§)Z" —~ L(x,E)AT" —K(x,E)A™T
0 =E"Ky(x,S) +Kg( %)L —K(x,E)A™ —L(x,E)AT

with boundary conditions

0=L(x,x)X" +X L(x,x)+A" T
0=X"K(x,x) —K(x,x)X~ + A~
0=G(x)—K(x,0)X~

Again, too many boundary conditions?

No, in fact more boundary conditions are needed — Nonuniqueness!




Backstepping control of coupled hyperbolic 1-D systems

Developing the equations:

m
uidxLij(x,8) —€j0eLij(x,8) = Y AT Lyp(x,8)+ Y A TKip(x,E)
k=1 =1
m n
:UiaxKij(x7&> +:u]a<2Kl](x7§> — Z x;]fKip(xv &) + Z x]:_] ij(X,&)
p=1 k=1
with boundary conditions:
AT
ViI<i<m,1<j<n, Ljj(xx)=— el
Mt E;
ki_j_
\v/lglajémal#]? Kij(xax):_
Hi — U
Vlgigjgm, K,-j(x,O):O
Vi< j<i<m, Kij(lva):lij

Vi<j<i<m,  gj(x)=p;K;(x,0)

Well-posedness depends on the characteristics!



uioxLij(x,8)

Characteristics for ;;

—8j8§Lij(x,<“;) = ZK—H_L

Lij(X,X) - _,u-ie-
l J




Characteristics for Kj;

€ i Boundary
conditions
1 l(iJII:;racteristic
0 (xfi(@,6), @) E=01 g
pi0xKii(x,6) + pi0eKii(x,6) = Z A Kip(x,6) + Z A Li(x,E)
p=1 k=1

Kii(X, O) =0



Characteristics for K;;,i < j

(ij(l“o» £o) ;

3
>

Oxfi(a1,6),fia,6)) € =01

1i0:Kij(x,8) + 1j0eKij(x,&) = ) A Kip(x,8) + Y A Lu(x,§)
p=1 k=1
R

Hi— Hj
Kij(X,O) = O

Kij(x,x) =




Characteristics for K;;,i > j

fl\

(x5 (20, €0), ¢ (0, &0)) (fi; (z1,&1), ¢ (21, €1))

r=1
0 1 m;
1i0:Kij(x,8) + 1joeKij(x,&) = ) A Kip(x,8) + Y A Lu(x,§)
p=1 k=1
A
Kij(x,x) = /
Mi — Uj



Backstepping control of coupled hyperbolic 1-D systems

The presented approach produces piecewise continuous and differentiable kernels.



Backstepping control of coupled hyperbolic 1-D systems
The presented approach produces piecewise continuous and differentiable kernels.

There are potential lines of discontinuity, which complicate kernel calculation, but do not
affect the stability result.



Backstepping control of coupled hyperbolic 1-D systems
The presented approach produces piecewise continuous and differentiable kernels.

There are potential lines of discontinuity, which complicate kernel calculation, but do not
affect the stability result.

Next we see how we can produce a strikingly similar result for reaction-diffusion equations.
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Coupled parabolic systems

Consider
ur(t,x) = Luxx(t,x) + A(x)u(t,x)

x€[0,1],>0,u e R”

I €1 0 ... 0] I 7\.11()6) 7»12()6)
y — O 8:2 O 7 A(x) _ 7‘“21: (x) 7“22 (x)
0 0 ... g | M1 (x) Agn(x)

7»1,@()6)
7“2n. (x)

Man(x) |

with €; > O ordered, i.e., €] > € > ... > g, > 0, and boundary conditions

u(l;r) = U(r)

with U € R".




Backstepping approach

Consider the Backstepping Transformation :

wi(t,x) = u(t,x) — /0 " K (x,E)ult, £)dE

with K (x,&) a n x n matrix of kernels, and w verifies the Target System :

wi(t,x) = Zwxx(t,x) — Cw(t,x) — G(x)wx(0,1),
with C and G(x):

| i 0 0 0 0
COl Coz 8 g21(x) 0 0 0
C={(. [ . .|, G= ; : E E
0 0 .. ¢ gn-11(X)  gu-1p(x) ... 0 0

_ n i gn1<x) gn2<x) gn<n71)<x) 0 |

where c1,c,...,c, > 0. Control law is then

U= [ KOLEulr.dg

The challenge is to prove that K(x,&) exists and has good properties — Kernel equa-
tions




Kernel equations

Ky — KeeZ = KA(E) +CK,
with b.c.
Glx) = —K(x0)Z,
K(x,x)X = XK(x,x),

C+A(x) = —XK(x,x)— Z%K(x,x) — K¢ (x,x)X.



Kernel equations

LKy — KeeZ = KA(E) + CK,

with b.c.
Glx) = —K(x0)Z,
K(x,x)L = XK(x,x),
C+A(x) = —XK(x,x)— Z%K(x,x) — K¢ (x,x)X.

First b.c. with structure of G becomes:
Kij(x,O):O, \V/jZi,
and

gij(x) = —K;;(x,0)g;,  Vj<i,



Kernel equations

LKy — KeeZ = KA(E) + CK,

with b.c.
Glx) = —K(x0)Z,
K(x,x)L = XK(x,x),
C+A(x) = —XK(x,x)— Z%K(x,x) — K¢ (x,x)X.

Second b.c. is:
Kl-j(x,x) :O, V]‘#i,

(no boundary condition for K;;(x,x) )



Kernel equations

LKy — KeeZ = KA(E) + CK,

with b.c.
Glx) = —K(x0)Z,
K(x,x)L = XK(x,x),
C+A(x) = —XK(x,x)— Z%K(x,x) — K¢ (x,x)X.

Third boundary condition:

d
0 = kij(x) —|—5ijc,'—|—Kl-j§(x,x)8j —|—8iKijx(x,x) —|—8ia (K,'j(x,x)) :



Duplicating the kernel equations

Key idea (“duplication”): define

L) = VEK(.E)+Ke (0 E)VE — Lijrx) = VEaKije(6,) + /&K e x.0)

Then we can rewrite the “duplicated” kernel equations as

VIK +K:VI = L
VEL,—L:VE = KA(§)+CK

Same structure as in the coupled hyperbolic result!

Third boundary condition becomes:

i = j: 0=MN;(x)+c;+ 2€;( Kjjr(x,x) —|—Kl-l-g(x,x)) — Lij(x,x) = — 2\/8_1 :

: : Aji(x
i 7 J: 0= Agj(x) + (& —€))Kij(x,x) — Lij(x,x) = —\/Eiﬁ\/)éj




Duplicating the kernel equations

The boundary conditions therefore are:

o lfi=
- Nii(x) +c
Li(x,x) = _2—\/8_l-
Kii(x,O) — 0
o Ifi<
Kij(x,x) = Kij(x,O):O
Aij(x)
Lij(x,x) = _m
e Finallyifi> j
Kl-j(x,x) = 0
Kij(1,6) = 1;(S)
Aij(x)
SN N

and the additional condition g;;(x) = —K;;(x,0)g;

Same structure as in the coupled hyperbolic result!



Extension to reaction-advection-diffusion systems with

spatially-varying coefficients

The method can be extended to

ur = dy (X(x)uty) + P(x)uy + A(x)u
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Reaction-diffusion equation on an n-dimensional ball

T

Let the state u = u(t,X), with X = [xq,xp,...,x,]" , verify

a—u = € 82u+82u+ _|_82_u
o ax% ax% o ox2

) +Au=¢€eNu+ Au,

for constant € > 0, A(r,8), and for > 0, in the n-ball B"(R) defined as
B"(R) ={XeR":||X|]| <R},
with b.c. on the boundary of B*(R), the (n— 1)-sphere S*~(R):
S I R)={XeR": |¥| =R}.
The b.c. is of Dirichlet type:

u(t,Xx) = U(t,X)

xcS"—1(R)

where U (¢,X) is the actuation variable.



Ultraspherical coordinates

The n-ball domain is well described in n-dimensional spherical coordinates, also known as
ultraspherical coordinates:

e one radial coordinate r, r € [0, R).

e n— 1 angular coordinates: 6 = 01,65,...,08,_1], with 6; € [0,2%) and 8; € [0, 7]
for2<i<m—1.

Definition:
X1 = rcos0;sinB,sin0O3...s1n0,,_1,
Xy = I”Sinel Sinezsin93...sinen_1,
x3 = rcosOrsinB3...s1n0,,_1,
X,—1 = 1rcosB,_»sinb,_1,

Xn = rcos0,_ 1.



Laplacian in ultraspherical coordinates

Writing the reaction diffusion equation in ultraspherical coordinates

€ _ 1
U = rn—lar(rn 1aru)+ﬁA:‘l_1u+7\u,

u(t,R,0) = U(180),

where AZ—l is called the Laplace-Beltrami operator and represents the Laplacian over the
(n—1)-sphere.

It is defined recursively as

7
= —5,
1 ) 0 AY
AF = sin” =10 —>+ n—l
" Sin”_l 0, 00, ( naen SiIl2 0,
Example:
1 o 0 1 02
NS = — sin@)—— | + .
2 sm62862( 2392) sinzezaﬁ%



Designing a boundary feedback law

Exploit periodicity in 0 by using Spherical Harmonics

Apply the backstepping method to each harmonic coefficient

Solve the backstepping kernel equations to find a feedback law for each harmonic

Re-assemble the feedback law in Spherical Harmonics back to physical space



Spherical Harmonics

Develop u and U in term of Spherical Harmonics coefficients ;" and U;":

[=com=N(l,n)—1 ~ . [=com=N(l,n)—1 ~
Z Z ul'(n)Y;(6), U@e)=13Y Y  UM0Y,(),
[=0 m=0

N(l,n): number of (linearly independent) n-dimensional spherical harmonics of degree [

2l+n—2< [+n—3

), [>0;, N(O,n)=1

YZZ@@)): m-th order n-dimensional spherical harmonic of degree [

Coefficients are defined as:

2T o .
WM(rt) = / / / 6)7" (8)sin" 20, sin" 30,_5...sin0>db,
27'C S
Urt) = / // Ylm (6)sin”20,_sin" 38, »...sin0,d0,

(d6 = d6,_1d0,,_»...d0»d0q, Yl’fn is the complex conjugate of ¥} )



Spherical Harmonics

The n-dimensional spherical harmonics are eigenfunctions for the Laplacian AZ—l:

Y, =—l(l+n=-2)Y .
Thus, each harmonic coefficient u}*(z,r) for I € Nand 0 <m < N(I,n), verifies

€

m __
atul -1

€
J, (rn—laru}") —I(l+n— 2)r—2u’l" + Auj”,
evolving in r € [0, R], ¢ > 0, with boundary conditions

”Iln(taR) — Ulm(t)a

The PDEs for the harmonics are not coupled: we can independently design each Ulm and
later assemble all of the them to find an expression for U.



Backstepping control of Spherical Harmonics coefficients

To design U;"(t) seek transformation of

€
rn—l
into the (stable) target system

' = (n larul>—l(l+n 2) —uy" + Ml

€ €
oW = J, (rn—larw'l"> —I(l+n—-2)=w/"

rn—l r2

with boundary conditions

wi'(t,R) = 0



Backstepping control of Spherical Harmonics coefficients

To design U;"(t) seek transformation of

S
atu’l" — 1
=

into the (stable) target system

d, (rn—laru’l"> —I(l+n— 2)%0[1" + Au)’

€ €
oW = J, (rn—larw'l"> —I(l+n—-2)=w/"

rn—l r2

with boundary conditions
wi'(t,R) = 0
The transformation is
r
Wi (e, = ' (0.r) = [ Kp ()i (. p)dp

with kernels Kfm to be found.



Backstepping control of Spherical Harmonics coefficients

To design U;"(t) seek transformation of

€
rn—l
into the (stable) target system

' = (n larul>—l(l+n 2) —uy" + !

€ _ €
oW = rn—1ar(”" 1arw7l)_1(1+n—2)r—2w}"

with boundary conditions
wi'(t,R) = 0
The transformation is
wi(t,r) =uj'(t,r) / L(rp)ul(t,p)dp

with kernels Kfm to be found.

Substituting at » = R we find U;"(¢) as



Kernel equation

The control kernels K;' (r,p) are found, for a given n > 2 and each [, m, from

with BC

d
7»4—28%([{[”,%(}",1’)) = 0

K;lm(rv()) = 0
(11— 2)0pK (7:P)lp—o = 0

1 » L (K 11 A



Kernel equation

The control kernels Kl”m(r, p) are found, for a given n > 2 and each [, m, from

1 1 1. (K] 11 A
rn_lar(r” Or l”m)—ap(p” ap<#>>—l(z+n—z) (ﬁ_ﬁ> = Kl

with BC

d
7»4—28%([{[”,%(}",1’)) = 0

K. (r,0) = 0
(0~ 2)0pKL (5Plpmg = 0

The first BC integrates (using K;' (0,0) = 0) to

K (rnr) = — | —dp=——



Explicit Kernel equation solution and feedback law

It is found that

/ (R p)u'(t,p)dp = / —p ) - uy (t,p)dp



Explicit feedback law

Using some spherical harmonics machinery one obtains an explicit feedback law

T T 21 oo -
x [ /O/ P(R.p.8,8)u(t,p,)p"sin" 20,_1 sif" > 0,_s...5in02d4 | d

0 JO

where P(R,p,é,&i) is the Poisson kernel for the n-ball.

Back in rectangular coordinates

2_ g2
009 = s Lo [V 18]

where the integral is extended to the complete n-ball B*(R) and X € S*~!(R).
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Extension to spatially-varying A

Consider now the same problem but with spatially-varying coefficient A

du L
5 = e Apu+ AX)u,
u(t,Xx) ces 1 (R) = U(t,X)

the question is: can backstepping still be applied?




Extension to spatially-varying A

Consider now the same problem but with spatially-varying coefficient A(X):

du L
5 = e Apu+ AX)u,
u(t,Xx) ces 1 (R) = U(t,X)

the question is: can backstepping still be applied?

Consider two cases:

e Sphere

e Disk (harder!)

Under a simplifying assumption, we solve the problem and get a taste of the challenges



Revolution symmetry condition
Revolution Symmetry Condition : if the initial conditions are symmetric (do not depend on
the angle or angles in 3-D), and U is chosen constant (do not depend on the position in
the boundary) nothing depends on the angle.
Typical engineering simplification. Equations becomes 1-D in radius, with singularities.
Disk: u; = = (ruy), + Mr)u

Sphere: u; = r% (rzur) + A(r)u
r

We apply the method as before but only one kernel (corresponding to the constant Fourier
mode or Spherical Harmonic) is needed.



Kernel equation is:

3-D case—revolution symmetry

Kr Kp K 7\.(7’)
K(F,O) — Kp(l’,O) :O,
A
K(r,r) = bt



3-D case—revolution symmetry

Kernel equation is:

K K, K A
Krr—|—2—r—Kpp—|—2—p—2— = ﬂK
r P p2 £
K(F,O) — Kp(l’,O) — O,
Ar
K - =
(nr) = o
Define K(r,p) = 2K (r,p). Then:
_ _ Ar) -
Krr — Kpp — %K
K(r,0) = 0,
_ Ar
K(r,r) = ~ e

which is the 1-D backstepping equation! Can be proved solvable by successive approxi-
mations (classical backstepping papers).



3-D case—revolution symmetry

For instance if A is constant we directly get:




2-D case—revolution symmetry

Interestingly, the 2-D case is harder than the 3-D case. Kernel equations are

K Ky K A

Kir+— —Kpp+——— = QK,
r p p £
K(r,0) = 0,



2-D case—revolution symmetry

Interestingly, the 2-D case is harder than the 3-D case. Kernel equations are

r KP K 7‘«([3)
Krr—|———Kpp—|—F—p == TK,
K(r,0) = 0,
"Ap)
K = — [ —=d
Define G = \/%K Then, for G we have:
G G Ap)
Crr=Gppt 3742 = ¢ ©
G(r,0) = 0,
B "Ap)
G(}", I") = — /O 2—8dp

and we can try to prove existence & uniqueness of a solution by using the classical suc-
cessive approximation method.



2-D case—revolution symmetry

Define new variables oo = r+p, B = r — p. The G equations become

4GO€B +

G G
(a+B)* (a—B)?
G(B,B)
G(0,0)

(),
€

0,

/2 \(p)



2-D case—revolution symmetry

Define new variables oo = r+p, B = r — p. The G equations become

G G 7‘(—“5%
OB B o e
G(B?B) = 0, )
o/2
G(a,0) = _/0 }ég)dp

This can be transformed into the (singular) integral equation

G(o,p) = — /B(sz% dp + / / G(n,0)dodn

+/B /0 (n2—c2)2G(“’G)de”




2-D case—revolution symmetry

Try the successive approximations scheme, by defining
“2Mp) ,
Go(a, = — /
0(0:B) 5o 26 P
and for k > 0,

o BA TIE
/[3 /0 1 Gk (M, Gdcdn+/ / 62) 5Gy—1(N,0)dodn

then, the solution to the integral equation would be

G = i Gk((xa B)
k=0

if the series converges.



2-D case—revolution symmetry

Call A = max o, )7’ 1

Then one clearly obtains |Gg (o, B)| < Ao —B).

However when trying to substitute in G even the first integral is not so easy to perform.



2-D case—revolution symmetry

Call A = max o, )7’ 1

Then one clearly obtains |Gg (o, B)| < Ao —B).

However when trying to substitute in G even the first integral is not so easy to perform.
We use an alternative approach based on the following Lemma:

Define, forn > 0,k > 0,

5\.”—'_106"[3” logk (g—tg)
Fo(o,p) = o — :

and F,;, =0ifn <0 ork <0. Then F,; is well-defined and nonnegative in the integration
domain for all n,k, F;(B,p) =0 for all n and k, F,;(a,0) =0 if n > 1 or k > 1 and

Fyo(a,0) = a,, and we have the following identity valid forn > 1 or k > 1.

o P o B no
Fnk:/B /o AF(,_1)k(N,0)dodn +4/B /o o272 (Fn(k—l)(nac)_Fn(k—2)(nac)) do



2-D case—revolution symmetry

We use the lemma to try to find estimates for the terms in the successive approximation
series:

|Go| < Fyo

next

o B o B no Foq
G| < WFoo (1, 6)dod / / Foo(M., 6)dodn = Fyo+ -0
| ll _/B /0 OO(n G) oan + 8 Jo (1’]2—02)2 OO(T] G) 6an 10+ 4

where we have used the formulas of the lemma. The next term is

G| < /BOC/OBX(Flo%——)den%—// 2_62 <F10+F7>d6dn

F11 +F01 + Fop
4 16
If we keep going we find

= o+

1 Fii+Fo  2Fy +2Fy + Fo3
G < F
Gsl = Fo+ 2 T 16 64



2-D case—revolution symmetry

The key to find these numbers is the following. Call:

L[F] = / / AF (1, 0)dodn

i = [P

For instance, to find a bound on G4 we fmd the foIIowmg.

F(n,0)dodn

11[[1730_] Fy
11| F21] F3
h|Fsol +— e

L(F]  Li[Fi+Fo 1+ Fy

4 16 16
L|Fi1+Fio] | 11[2Fp1 + 2Fpo + Fos) 2F11 +2F+ F13
16 64 64
L [2Fy1 + 2Fpo + Fo3) 5Fy1 + 5Fy + 3Fy; + Fou
64 256
Thus,
Gyl §F40+F31+F211+6F22+2FH+26122+F13+5F01+5FO§5+63F03 + Fog4



2-D case—revolution symmetry

Based on this structure, we propose the following recursive formula for n > 0:
—1 j=n— zC

‘Gn‘ < Fpo+ Z Z

where C;; verifies C;; = C(, D(j—1) +C; i(j+1); takingC11=1,Cip=0,and C;; =01if j > 1,
for all i. This set of numbers, known as the “Catalan’s Triangle”, verifies many interesting

l. .

properties.

In particular it can be shown
C; = 1.

i
Cj = X Ci-w
k=j—1

which allows us to write the recursive formula



2-D case—revolution symmetry

et us show in a table the first few numbers.

Cij |j=1]|j=2|j=3|j=4]j=5j=6|,=7|7=8],=9|, =10
i=1 1

=2 1 1

i =3 2 2 1

i=4 5 5 3 1

=235 14 14 9 4 1

i=06 42 42 28 14 5 1

=7 | 132 | 132 90 48 20 6 1

i=8 | 429 | 429 | 297 | 165 75 27 7 1

i=9 | 1430 | 1430 | 1001 | 572 | 275 | 110 35 8 1

i =10 | 4862 | 4862 | 3432 | 2002 | 1001 | 429 154 44 9 1

Catalan’s Triangle




2-D case—revolution symmetry

Now, since the solution verifies

0= ¥ (GaleB)

and we found

—1j=n— lCn

|Gn| < Fpo+ Z Z

i

We get
o n—1j=n— ZC

IGI<ZFno+Z L Z

n=1i=

i .

and we only need to prove convergence of this series.



2-D case—revolution symmetry

First term of the series:

0o B 5»”—'_106”[3” B \/i Ly [2 Ao
Y Fro= s (e = 5 B

For the next term, we use the fact that

o n—I1 co oo
Y Y Hin,i)=) Y H(I+1i,i)
n=1i=0 i=01=1
Therefore
o NN G SEEL
L X Z i u—ZZZ Fu—ZZ 2 i | Fii
n=1i=0 j=I i=0[=1 j= 1 i=0 j=1 \I=j

It turns out that the parenthesis can be calculated and gives an exact sum for each ;.



2-D case—revolution symmetry

To find the sum, consider first the generating function of the Catalan numbers Cjy:

2
fl(x):1+\/m

Remember that a generating function of a sequence of number is a function such that the
coefficients of its power series is exactly those of the sequence of numbers.

Thus,

fl(x) =Cq1 +C21x+C31x2+ = Z Cllxl—l
[=1

Therefore if we evaluate the function at x = 1/4 we find that

1 > 1
fl(Z) = Z;CMF
thus we find

4l 4

ye_ly G _ A 1
4l-1 4 2

[=1 [=1



2-D case—revolution symmetry

Following the previous argument, it is clear that

i@_li G fi(d)

I — 4 I—1
l:j4 4l:j4 4

where we define the generating function f; as

= i Cipx' !
=]

Now since Cj», = (1 but obviously Cj5 =0, it is clear that f, = f1 —Cy; = f1 — 1. Thus
f>(1/4) =1 and we find

i Cpp _ fz(%) l
= 4 4 4



2-D case—revolution symmetry

To find successive generating functions we use the properties of the Catalan’s Triangle
and make the following claim:

Jn(x) = fu—1(x) = xfr—2(x)

Based on this fact, we can now prove that

L=y

Thus we obtain

Soy” [;?‘

\/i Iy IZMI co j=00 7»’“0( Bl
o ()LB — (O —

A
)
|
=

Gl




2-D case—revolution symmetry

Summing the series

L [z\/m = 0w (2
2,/ =0 2! |

S

Gl < ——(a—B)

2
therefore
= I |2y/AoB| | [ [atp = I [24/Aop
e R

In physical variables r and p:

G < VAP



2-D case—revolution symmetry

Finally, going back to the original K, we find

[2\/1(;»2 _ p2)]
2/ —p?

Thus, we have shown that the successive approximation series converges, with the solu-

tion K verifying the above bound. Uniqueness can be proved easily from the successive
approximation series.

K(rp)| < pVA

Unfortunately, this approach does not seem to be extensible for other Fourier coefficients.
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Backstepping-based linear boundary observer for estimation of
thermoacoustic instabilities in a Rijke tube

@ Lecture description
@ The Rijke tube experiment
o Mathematical model
o Characteristic coordinates model description
@ Backstepping-based observer design
o Target system
o Backstepping transformation
o Well-posedness of the kernel equations and invertibility of the transformation

@ Experimental results

@ Suggested literature

- de Andrade, G. A., Vazquez, R., and Pagano, D. J. (2016). Boundary feedback control of unstable thermoacoustic oscillations
in the rijke tube. In Proceedings of the 2nd IFAC workshop on control of systems governed by partial differential equations
(pp. 48-53).

- de Andrade, G. A., Vazquez, R., and Pagano, D. J. (2017). Boundary control of a Rijke tube using irrational transfer functions
with experimental validation. In Proceedings of the 20th IFAC world congress (pp. 4528-4533)

- de Andrade, G. A., Vazquez, R., and Pagano, D. J. (2018). Backstepping stabilization of a linearized ODE-PDE Rijke tube
model. Automatica (pp. 98-109)

- de Andrade, G. A., Vazquez, R., and Pagano, D. J. (2018). Backstepping-based linear boundary observer for estimation of
thermoacoustic instabilities in a Rijke tube. Accepted in 2018 CDC.
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|
The Rijke Tube Experiment

IP(t. L)

G\\P(L Tmic) ©

Microphone measurement

@ A vertical tube opened in both ends.

@ A heat source is inserted in the lower half of
the tube.

Distributed states:
@ A speaker under the tube is used as actuator, o’

while a microphone at the top provides the )

pressure measurement. . @ﬂD } Heating
@ Under the right conditions, the tube begins to o

hum loudly (thermoacoustic instability).
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The Rijke Tube Experiment

Microphone signal at the onset of instability showing growth,and then saturation of the
limit cycle. A zoomed-in picture shows the periodic, but nonsymetric, limit-cycle beha-

vior.

= N
o o

Pressure (Pa)
o

-10
-20
& 10
g
z O
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o
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|
The Rijke Tube Experiment

@ Thermoacoustic instabilities are often encountered in steam and gas turbines,
industrial burners, and jet and ramjet engines.

@ These instabilities are undesirable and notorious difficult to model and study.

@ The absence of combustion process in the Rijke tube makes the modeling and
analysis more tractable.

@ The Rijke tube experiment provides an accessible platform to explore and study
thermoacoustic instabilities.

Rafael Vazquez Backstepping observer design 21 de agosto de 2018 5/24



Nonlinear mathematical model

@ The thermoacoustic oscillations can be captured using an one-dimensional model
of compressible gas dynamics (Euler equations)

Op(t, ) +v(t, )0xp(t, x) + p(t, )0zv(t, ) =0, @Y

1
Ou(t, x) + duvu(t, x) + maxp(t, z) =0, (2)
1

O P(t, x) +yP(t, ©)0zv(t, ) + v(t, )0 P(t, x) = 725(56 — 20)Q(2), 3)
@ Heat release dynamics:

TQ(t) = —Q(t) 4 lw(Tw — Tyas) (K + Kur/|v(t, 0)]), @
@ Boundary conditions:

P(t,0) =P, +U(t), (5)
P(t, L) = P, + f(v(¢, L)), (6)

Rafael Vazquez Backstepping observer design 21 de agosto de 2018 6/24



Linearized mathematical model

@ Assume constant steady-state solution, (p, v P) = (p, v, P),Vt € [0, +00),
Vz € [0, L], and subsonic conditions for the gas flow, i.e., ¥ ~ 0. Then,

i(t, z) + %8115(16, 2) =0, %

0y P(t, z) + v PO, 9(t, x) = ~6(z — 20)Q(t), (8

=2

and the linearized expression of the heat release dynamics

7Q(t) = —Q(t) + /(@) (T — Tgas)i(t, w0), ©)

@ Boundary conditions:
P(t, 0) = U(), (10)
P(t, L) = Zpo(t, L), (11

Rafael Vazquez Backstepping observer design 21 de agosto de 2018 7/ 24



Representation in characteristic coordinates

@ Using the characteristic coordinates, the system (7)-(11) can be rewritten as

Ry + M0 R1 = c16(z — 20)Q(2), (12)
8tR2 — )\8sz = 016(1’ — .T())Q(t)7 (13)
Ru(1,0) = —Ra(1,0) + 20(1), (14
Ra(t,L) = aRu(t, L), (15)
7Q(t) = —Q(t) + ea(Ru(t, o) — Ra(t, o)), (16)

with A, o, ¢1, c2 > 0.

Rafael Vazquez Backstepping observer design 21 de agosto de 2018 8/24



Representation in characteristic coordinates

(1) —> \/ LN
\/
- }

I } s
z=0 To r=1L

Schematic view of the jumping point at the solution of the PDE system (12)-(16).

Rz(t, x)

o The following relations are satisfied:

Ri(t, af) = Ri(t, 25) + c1Q(t),
Ro(t, z5) = Ra(t, o) + ca1Q(t).
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Representation in characteristic coordinates

@ Now, we introduce the following state variables

Rii(t, éRl(t,il,‘, iwa[

(t, x) ) 0, zo]
Ria(t, ©) £ Ra(t, z), if z € [0, zo]
Ro1(t, ) £ Ri(t, x), ifz € [zo, L]
Ros(t, ©) £ Ra(t, z), ifz € [wo, L]

and the rescaled spatial variable, so that everything evolves on the same domain:

{ z ifx € [0, zo]
z =

L__;O if x € [xo, L]

Rafael Vazquez Backstepping observer design 21 de agosto de 2018 10/ 24



Representation in characteristic coordinates

@ Then, the system (12)-(16) is equivalent to

8tR11(t ) + )\18 Rll(t, z)
8tR12( Z) Alalez(t, z)
8tR21(t ) )\Qaszl(t, Z)

)

0t Rao (t,

) + A20: Rao (t, z

@ The boundary conditions of (17)-(20) are given by

= “Rus(t, 0) + 20 (t),
= Ros(t, 1) + c1Q(t),
=Ru(t, 1)+ c10(),
= aR2(t, 0),

=—Q(t) + c2(Rui(t, 1) —

Rafael Vazquez Backstepping observer design

Ros(t, 1)).

21 de agosto de 2018

a7
(18)
19
(20

(2D
(22)
(23)
(24
(25)
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Representation in characteristic coordinates

[ 70() = 00 + aRult. ) - Ruft. 1) |

@ The boundary conditions represent two t—d t—
effects: reflection of the acoustic waves; and Ruilt, 2) Ruslt, 2) z=1
the feedback coupling between R»; and Rso,
and between R;; and Ris.

@ Under the right conditions the system
becomes unstable due to this feedback
between the states. Ru(t, 2) y(t) | Rt 2)

G. de Andrade, R. Vazquez, D. Pagano Backstepping observer design August 23, 2018 13/27



Backstepping-based observer design

@ We design the observe as a copy of the plant (17)-(24) plus output injection terms:

ORi1(t, 2) + MR (t, 2) = —pui (2)Y (1),
E),gRlz(t7 z) — )\18ZR12(157 z) = —p12 (z)f’(t),
OtRa1(t, 2) — X202 Roi(t, 2) = —pa1(2)Y (2),
8¢ Ros (t, 2) + A20: Rgz(t, z) = —ng(z)f/(t),
Q' (1) = =Q(t) + c2(Rua(t, 1) = Raa(t, 1)) = poY (1),

with Y/(t) = Rzl(t, O) — Rm(t, O).
@ The boundary conditions of (26)-(30) are given by

Rii(t,0) = —ng(t 0) 4 2U(t),

Rlz(t 1) = Roa(t, 1) + 1Q(1),
Roi(t,1) = R (t, 1) + c1Q(t),

Ras(t,0) = aRa(t, 0),

@ pi1, P12, P21, P22, and pg are gains to be found.

Rafael Vazquez Backstepping observer design 21 de agosto de 2018
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Target system

Define the error estimation R;; = R;; —

Rij, i, j = 1, 2, whose dynamics is given by

QR (t, 2) + M. Rua(t, 2) = pii(2)Y (1), (35)

O Ria(t, 2) — M. Riz(t, 2) = p1a(2)Y (), (36)

B Ror(t, z) — Xed.Rar (¢, 2) = por(2)Y (8), (37

OrRao(t, 2) + X2d: Raa(t, 2) = p22(2)Y (1), (38)

e Q' (1) = —=Q(t) + c2(Ru(t, 1) — Raa(t, 1)) +pY (1) (39)

and boundary conditions

Ri1(t,0) Ri2(t, 0), 40)

Ria(t,1) = Raa(t, 1) + c1Q(t), (41)

Roi(t,1) = Rui(t, 1) +c1Q(1), (42)

Raz(t,0) = aRai(t, 0) — poY’ (43)

21 de agosto de 2018 14/ 24



Target system

@ To design the observer output injection gains, we map (35)-(43) to the following

appropriate target system:

atlv'zll
DRz

with boundary conditions

Rafael Vazquez Backstepping observer design

( (
( (
O Ror(t, 2) — Mo Ron (¢, 2
( (
( )

(44)
(45)
(46)
(47)
(48)

(49
(50)
6D
(52)
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Target system

@ The mechanism of the proof of stability of the

7, 0(t) = ~(1+ i) Q1)

- CQRgz(t, l) |

target system is based on this scheme.
@ Ry is identically zero for all t > A7 .

@ By the cascade structure of the target system,
it follows that Q) — 0 as ¢t — oo.

e Finally, by computing the explicit solution of Rut, 2)
Ri1, Ri2 and Ra1, we get that the target
system is exponentially stable.

=N

Rm(t, Z)

Ros(t, 2)

G. de Andrade, R. Vazquez, D. Pagano Backstepping observer design

Rlz(t, 2)

August 23, 2018
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Backstepping transformation

@ To map system (35)-(43) into (44)-(52), we consider the following backstepping

transformation:
Rui(t, 2) = Ru(t, 2) — /01 Pui(z,€) Raa(t, €)d¢, (53)
Ruis(t, 2) = Rua(t, 2) — /01 Pus(2, &) Ran (8, €)dE, (54)
Ror(t, ) = Rn(t.2) = [ PR (e 00t (55)

Ot = Q) — / Po(€) B (t, €)d, 56)

@ Note that P»; is the kernel of a Volterra-type integral transformation, whereas P;;
and Py, are the kernels of a Fredholm-type integral transformation. Py, is a finite
dimensional kernel.

Rafael Vazquez Backstepping observer design 21 de agosto de 2018 16/ 24
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Backstepping transformation

o Differentiating (53)-(56) with respect to space and time, plugging the target
system equation and integrating by parts, we obtain that (35)-(39) is mapped into
(44)-(48) if and only if the kernels satisfy the following equations:

A20¢ Pi1(2,€) — M0:P11(2,€) = 0, (57)
A20g Pr2(2,€) + M10:Pr12(2,§) = 0, (58)
O Po1(2,8) + 0:Pa1(2,€) = 0, (59)
Thr A2 PG5 (€) = Po(€) — 2P (1,8), (60)
and
P11(27 1) = 07 (61)
P12(Z, 1) = O, (62)
— 2
Po(1) =~ =, (63)
P11(0,8) = —P12(0,§), (64)
P12(1,8) = c1 Pp(8), (65)
Po1(1,€) = Pia(1,8) + a1 Pg(€). (66)
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Backstepping transformation

@ The observer gains are given by

p11(2) = A2P11(z,0), (67)
p12(2) = A2 P12(2,0), (68)
p21(2) = A2 P21(2,0), (69)
PQ = ThrA2P(0). (70)

o = = = = wao

Rafael Vazquez Backstepping observer design



Well-posedness of the kernel equations and invertibility of the
transformation

@ The existence and uniqueness of the solution of the kernel equations were shown in

- de Andrade, G. A., Vazquez, R., and Pagano, D. J. (2018). Backstepping stabilization of a linearized
ODE-PDE Rijke tube model. Automatica (pp. 98-109)

@ Since these equations have a simple structure, a closed solution can be obtained by
using the method of characteristics.

@ In particular, the solution is piecewise-differentiable, where the number of pieces of
the solution depends on the position of the heat release element.

@ Finally, the transformation (53)-(56) is invertible, ensuring that the target system
and the observer error system have equivalent stability properties.
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Numerical solution of the kernel equations

@ Numerical solution of the kernel equations for the case \1 < s, i.e., zo > %L (the
heater element is near from the measured boundary).

Pa(z, €)

» x10®

Pio(z, €)
Fo()

0 0.2 0.4 0.6 0.8 1

de, R. Vazquez, D.

Backstepping observer design

August 23, 2018 22/27



Experimental results

Real view of the Rijke tube experiment.

Backstepping observer design



Experimental results

Acoustic pressure, measured
Acoustic pressure, estimated

0 1 2 3 4 5 6 7 8
Time (s)
Time response of the measured and estimated acoustic pressure at the onset of
instability.
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Experimental results

|

T
Acoustic pressure, estimated

I

T
Acoustic pressure, measured

N I

B(t, L)

-6 | .
0 0.05 0.1 0.15 0.2
Time (s)

Detailed view of the measured and estimated acoustic pressure.
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Final remarks

@ The design, requires measurements from one boundary condition and the observer
gains can be computed analytically

@ The resulting kernels are piecewise differentiable, with the number of pieces
depending on the heat release position

@ As future works, we will combine the observer design proposed in this paper with
the backstepping controller that we have developed to produce real-life closed-loop
experiments.

@ The closed-loop experiments must be done in a real time framework because of the
fast dynamics of the system and large amount of computations required to obtain
the control law.
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Class of PDEs

Plant:

Uy = Upy+MX)u+Flu]+uHlul,
ux(t,0) = qu(t,0), u(t,1)=U(t).

Flu], H|u] are Volterra series, which are functionals (i.e., functions that depends on an-
other function) defined as

* x &1 En—1 n
Fln) = 3 Bl = 0[5 [T e 8 (Hu<aj,r>> 51 .. 5,
fn is called the n-th (Volterra) kernel of F.

Using the Volterra Series definition in the plant:

> x g En— n
Uur =— I/txx‘|‘}\,(X)l/l‘|‘ EIA /0 1A lfl/l(x7§17"°7§fl) <]1M(§],I)> d%ld%n
n— Jj=

Fu(t,x) i/ox/o%l.../(f”‘lhn(x,gl,...,gn) <]1u(§j,t)> dE ... dE,
n—= J



Target System:

Wy = Wxx,
Wx(t70) QW(I,O), W(t, 1)

Exponentially stable plant!

0.

Change of Variables:

w(x,t) = u(x,t)— Klu](x,t),

which expanded is

w(x,t) = u(x,t) — ilfox/fl.../Ogn_lkn(x,%l,...,gn) (ﬂu(%,t)) dgq ...dE,.
n— j=

Control: From the transformation at x = 1, since u(¢,1) = U(¢) and w(¢,1) =0,

U(t):i/@l /(fl.../f”lknu,gl,...,gn) <]ﬁ]u(§j,t)> dE; ... dE,,

l.e., the control kernels are

Kn = kﬂ(lagla“'agn)-



Kernel equations: First-order kernel k

Oxxk) = 3§1§1k1+M§1)k1—fl(x,&)+/;k1(x,S)f1(S,§1)dS
1

ki(x,x) = /7\
kig, (x,0) = gki(x,0).
A

3

>
1 X

Domain: 71 = {(x,§;) : 0 <& <x < 1}. Control kernel k1(1,&;) (along bold line).

Autonomous equation in k;. Same kernel equation for backstepping control of linear
parabolic PDEs [Smyshlyaev & Krstic, 2004].



Kernel equations: Second-order kernel k>

— + (ME1) +A(82)) k2 — f2(x, &1, E2)
+/xk1(x,s)f2(s,z,1,§2)ds+/El k2(x7§175)f1(5732)ds
S| £

+/xk2 (x,8,81)f1(s §z)ds+/;k2(x,s,§2)f1 (s,&1)ds
+k1(x,81)11(81,82),
kp(x,x,82) = ——/ hi(s,Ep)ds,

kox(x,x,Ep) = —Z(3h1(§2,§2)+h1(x £2)) 2/ 02(s,82),
koe,(x.€1,0) = gko(x,E1,0),

e ka(x.51.E2) = dgka(x,51,5)|

where

P2 (x, &) = /; (h1§2§2(5£2)+[7\(X)+7\(§2)]h1(5£2)) ds—2h e, (82,82) — I, (82,82)
120506, 5) + /E [ &)1 (5. 5)deds + h (v8) [ Ms)ds

E2=€1 E,=E



Domain 15 = {(x,§1,&) : 0 <& <& <x < 1}. Control kernel k»(1,&1,&p) (shaded).

In general, in the equation for k,;:

e The exact number of right-hand side terms is 3 - 2" — (n+ 3).

e But the kernel domain volume is 1

(n+1)!
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Some open problems

Underactuated coupled hyperbolic and parabolic systems.

Robustness properties of backstepping controllers.

Non-strict-feedback terms (terms that are not “spatially-causal”).

Reaction-diffusion equation in the n-ball with non-constant diffusion.



Design on the disk with A(7,6)
U = E(rur)r—k%u@@—k?\,(r,e)u,
r r

It is not possible to use spherical harmonics (they are no longer eigenfunctions that de-
couple the problem).

Pose a physical-space transformation:

r T
wo= u—/o /_RK(np,e,w)u(p,w)dwdp,

to transform the u equation into the target system

e e
Wi = (rwr), + —V60:



Design on the disk with A(7,6)

The kernel verifies the ultrahyperbolic equation

K; Kp K Kgg  Kyy Ap,Vy)
K+ -—L—K S — K
rr+ I’ pp T 0 p2 2 + p2 .
with BC
K(r,p,0,y) = K(r.p,m,y)
K(r,p,0,0) = K(r,p,0,n)
K(r,0,8,y) = 0,
T r
[ ko wutrwiay = — [0 gou (o),
—T 0 2¢€
this last boundary condition can be verified if
| B "Ap,6)
lim K(rp.0.y) = —8(6—v) [ ZEdp.



Design on the disk with A(7,6)

The kernel verifies the ultrahyperbolic equation
Ko K Koo  Kyy _Ap.W)

Krr—l‘&—Kpp—F K
r p p2 2 p? €
with BC
K(r,p,0,y) = K(r.p,m,y)
K(r,p,0,0) = K(r,p,0,n)
K(r,0,8,y) = 0,
g r 0
[ ko wutrwiay = — [0 gou (o),
—T 0 2¢€
this last boundary condition can be verified if
| B "Ap,6)
lim K(rp.0.y) = —8(6—v) [ ZEdp.

We don’t know how to solve it, only know there is a solution for constant A!

i [\/%("2—92)] 2?2

K T,P,e,\ll) =P
( 2me \/%(rz _p2) r2 4 p2 —2rpcos (0 — )



KITC US has more Spanish speakers than Spain
(l rc(o'c!;!sl; New York Post - Jun 29, 2015

> The United States now has more Spanish speakers than Spain ... there are now an
[ BT B estimated 52.6 million people in the US who can speak the ...

Gracias!

= = US now has more Spanish speakers than Spain — only Mexico has more
wiul Highly Cited - The Guardian - Jun 29,2015
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