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Abstract. This paper deals with the problem of boundary stabilization of first-order n \times n
inhomogeneous quasi-linear hyperbolic systems. A backstepping method is developed. The main
result supplements the previous works on how to design multiboundary feedback controllers to achieve
exponential stability with arbitrary decay rate of the original nonlinear system in the spatialH2 sense.
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1. Introduction and main result. Consider the following 1-dimensional n\times n
quasi-linear hyperbolic system with source terms

\partial u

\partial t
+A(x, u)

\partial u

\partial x
= F (x, u), x \in [0, 1], t \in [0,+\infty ),(1.1)

where u = (u1, . . . , un)
T is an unknown vector function of (t, x), A(x, u) is an n \times n

matrix with C2 entries aij(x, u) (i, j = 1, . . . , n), F : [0, 1] \times \BbbR n \rightarrow \BbbR n is a vector
valued function with C2 components fi(x, u) (i = 1, . . . , n) with respect to u and

F (x, 0) \equiv 0.(1.2)

Denote

\partial F

\partial u
(x, 0) := (fij(x))n\times n,(1.3)

where we assume that fij \in C2([0, 1]).
By the definition of hyperbolicity, we assume that A(x, 0) is a diagonal matrix

with distinct and nonzero eigenvalues A(x, 0) = diag(\Lambda 1(x), . . . ,\Lambda n(x)), which are,
without loss of generality, ordered as follows:

\Lambda 1(x) < \Lambda 2(x) < \cdot \cdot \cdot < \Lambda m(x) < 0 < \Lambda m+1(x) < \cdot \cdot \cdot < \Lambda n(x) \forall x \in [0, 1].(1.4)
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964 HU, VAZQUEZ, DI MEGLIO, AND KRSTIC

Here and in what follows, diag(\Lambda 1(x), . . . ,\Lambda n(x)) denotes the diagonal matrix whose
ith element on the diagonal is \Lambda i(x).

The boundary conditions are given as

x = 0 : us = Gs(u1, . . . , um), s = m+ 1, . . . , n,(1.5)

x = 1 : ur = hr(t), r = 1, . . . ,m,(1.6)

where Gs are C2 functions, and we assume that they vanish at the origin, i.e.,

Gs(0, . . . , 0) \equiv 0, s = m+ 1, . . . , n,(1.7)

while H = (h1, . . . , hm)T is a vector boundary function of H2.
Let us first point out the well-posedness result for this hyperbolic system (1.1)

with (1.5)--(1.6) in the sense of the following lemma (the detailed proof can be found
in [6] for the conservation laws (i.e., F \equiv 0), in [2, Appendix B] for the corresponding
general inhomogeneous case, and in [13] for the isothermal Euler equations; actually
these references deal with the closed-loop system (i.e., H \equiv 0), but the proofs given
there can be adapted).

Lemma 1.1. For any given 0 < T < +\infty , there exist \delta 0 > 0 such that for every
\phi \in H2((0, 1);\BbbR n) and H \in H2((0, T );\BbbR m) satisfying

\| \phi \| H2((0,1);\BbbR n) + \| H\| H2((0,T );\BbbR m) \leq \delta 0,(1.8)

and the C1 compatibility conditions at the points (t, x) = (0, 0) and (0, 1), the mixed
initial boundary value problem (1.1), (1.5)--(1.6) and the initial conditions

t = 0 : u(0, x) := \phi (x) = (\phi 1(x), . . . , \phi n(x)),(1.9)

admits a unique solution u = u(t, x) in the space C0([0, T ];H2((0, 1);\BbbR n)).

Remark 1.1. In what follows, for simplicity, for the norm Hp((0, 1);\BbbR n) (p \in \BbbN +),
when no confusion is possible, we use Hp(0, 1) for short.

Remark 1.2. The C1 compatibility conditions at the point (t, x) = (0, 0) are given
by

\phi s(0) = Gs(\phi 1(0), . . . , \phi m(0)), s = m+ 1, . . . , n,

(1.10)

fs(0, \phi (0)) - 
n\sum 

j=1

asj(0, \phi (0))\phi 
\prime 
j(0)

=

m\sum 
r=1

\partial Gs

\partial ur
(\phi 1(0), . . . , \phi m(0)), \cdot 

\biggl( 
fr(0, \phi (0)) - 

n\sum 
j=1

arj(0, \phi (0))\phi 
\prime 
j(0)

\biggr) 
, s = m+ 1, . . . , n.

(1.11)

The C1 compatibility conditions at the point (t, x) = (0, 1) are similar.

Our concern, in this paper, is to design a feedback control law for H(t) in order
to ensure that the closed-loop system is locally exponentially stable in the H2 norm.
In other words, we are interested in the following stabilization problem for the system
(1.1) and (1.5)--(1.6):
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Problem (ES). For any given \lambda > 0, suppose that C1 compatibility conditions
are satisfied at the point (t, x) = (0, 0). Does there exist a linear feedback control
\scrB : H2((0, 1);\BbbR n) \rightarrow \BbbR m, verifying the C1 compatibility conditions at the point
(t, x) = (0, 1), such that for some \varepsilon > 0, the mixed initial boundary value problem
(1.1), (1.5)--(1.6) and the initial conditions

t = 0 : u(0, x) := \phi (x) = (\phi 1(x), . . . , \phi n(x))(1.12)

with H(t) = \scrB (u(t, \cdot )) admits a unique C0([0,\infty ); (H2(0, 1))n) solution u = u(t, x),
which satisfies

\| u(t, \cdot )\| H2(0,1) \leq Ce - \lambda t\| \phi \| H2(0,1) \forall t > 0(1.13)

for some C > 0, provided that \| \phi \| H2(0,1) \leq \varepsilon ?
The boundary stabilization problem for linear and nonlinear hyperbolic systems

has been widely studied in the last three decades or so. During this time, three
parallel mathematical approaches have emerged. The first one is the so-called char-
acteristic method, i.e., computing corresponding bounds by using explicit evolution
of the solution along the characteristic curves. With this method, Problem (ES) has
been previously investigated by Greenberg and Li (see [12]) for 2 \times 2 systems and
Li and Qin (see [18, 20]) for a generalization to n \times n homogeneous systems in the
framework of the C1 norm. Also, this method was developed by Li and Rao [19]
to study the exact boundary controllability for general inhomogeneous quasi-linear
hyperbolic systems.

The second method is the ``control Lyapunov functions method,"" which is a useful
tool to analyze the asymptotic behavior of dynamical systems. This method was first
used by Coron and coworkers to design dissipative boundary conditions for nonlinear
homogeneous hyperbolic systems in the context of both the C1 and H2 norms [5, 6, 7].
More recently, it has been shown in [8] that the exponential stability strongly depends
on the considered norm, i.e., a previously known sufficient condition for exponential
stability with respect to theH2 norm is not sufficient in the framework of the C1 norm.
Although the control Lyapunov functions method has been introduced to study ex-
ponential stability for hyperbolic systems of balance laws, finding a ``good"" Lyapunov
function is the main difficulty, especially when the ``natural"" control Lyapunov func-
tions do not lead to arbitrarily large exponential decay rates for the original system
(see [1], [4, pp. 314 and 361--371]). This phenomenon indeed happens when we deal
with Problem (ES) for the inhomogeneous hyperbolic systems (see [6, 7]).

The third one is the ``backstepping method"", which is now a popular mathematical
tool to stabilize the finite-dimensional and infinite-dimensional dynamic systems (see
[16, 17, 21, 22, 23]). In [9], a full-state feedback control law, with actuation on
only one end of the domain, which achieves H2 exponential stability of the closed-
loop 2 \times 2 linear and quasi-linear hyperbolic system is derived using a backstepping
method. Moreover, this method ensures that the linear hyperbolic system vanishes in
finite time. Unfortunately, the method presented in [9] cannot be directly extended
to n \times n cases, especially when several states convecting in the same direction are
controlled (see also [10]). In [14], a first step towards generalization to 3 \times 3 linear
hyperbolic systems is addressed in the case where two controlled states are considered.
With a similar Volterra transformation, designing an appropriate form of the target
system, Hu et al. [15] adopt a classical backstepping controller to handle Problem (ES)
for general n \times n linear hyperbolic systems. Well-posedness of the system of kernel
equations, which is the main technical challenge, is shown there by an improved
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966 HU, VAZQUEZ, DI MEGLIO, AND KRSTIC

successive approximation method. We also mention [11] for the stabilization of first-
order hyperbolic system by boundary feedback controls with varying delays.

In this paper, based on the results for the linear case [15], we will use the lin-
earized feedback control to stabilize the nonlinear system as it is mentioned in [9].
Although the target system is different from the one in [9] with a linear term involved
in the equations and the kernels are probably piecewise smooth, thanks to the special
structure of the nonlocal linear term and the potential discontinuities of the kernels
evolving just along their characteristic curves, we show that all the procedures to
handle nonlinearities in [9] can be also adapted in this paper with more technical
developments. Let us recall some definitions and statements in [9]. Define the norms

\| u(t, \cdot )\| H1(0,1) = \| u(t, \cdot )\| L2(0,1) + \| ux(t, \cdot )\| L2(0,1),

\| u(t, \cdot )\| H2(0,1) = \| u(t, \cdot )\| H1(0,1) + \| uxx(t, \cdot )\| L2(0,1)

in which \| u(t, \cdot )\| L2(0,1) =
\sqrt{} \sum n

i=1

\int 1

0
u2
i (t, x)dx and, hereafter, we use \| u(t, \cdot )\| L2 for

short.
Our main result is given by the following.

Theorem 1.1. Under the assumptions in section 1, suppose furthermore that the
C1 compatibility conditions are satisfied at the point (t, x) = (0, 0), then there exists
a continuous linear feedback control law \scrB : H2((0, 1);\BbbR n) \rightarrow \BbbR m, satisfying the C1

compatibility conditions at the point (t, x) = (0, 1), such that for every \nu > 0, there
exist \delta > 0 and c > 0, such that the mixed initial boundary value problem (1.1), (1.5),
(1.6), and (1.9) with H(t) = \scrB (u(t, \cdot )) admits a unique C0([0,\infty ), H2((0, 1);\BbbR n))
solution u = u(t, x), which verifies

\| u(t, \cdot )\| H2(0,1) \leq ce - \nu t\| \phi \| H2(0,1) \forall t > 0,(1.14)

provided that \| \phi \| H2(0,1) \leq \delta .

Remark 1.3. It should be noticed that since the usual static feedback control
laws, i.e., Hr = Gr(u1(t, 0), . . . , um(t, 1), um+1(t, 0), . . . , un(t, 0)) cannot stabilize the
general coupled hyperbolic systems (1.1) even in the linear case (see the counter-
example in [2, section 5.6]); here we will choose a full-state feedback which has the
form shown in (3.19) below.

Remark 1.4. For convenience, we always assume that the feedback controlsH(t) =
\scrB (u(t, \cdot )) satisfy the C1 compatibility conditions at the point (t, x) = (0, 1). However,
if this property fails, one can add some dynamic terms to the controllers (see also
Remark 3.1 and [9, section 4]).

The rest of this paper is organized as follows. In section 2, we review our former
result on the boundary backstepping controls for an n \times n linear hyperbolic system.
Besides, we design a Lyapunov function to stabilize the linear system in the L2 norm.
In section 3, we impose the corresponding linearized closed-loop control to the original
nonlinear system and give the feedback control design. In section 4, we prove exponen-
tial stability of zero equilibrium with arbitrary decay rate for the quasi-linear system
by using the control Lyapunov function method. We finally include two appendices
with some technical details.

2. Preliminaries---linear case. In this section, we review the results on stabi-
lization of an n\times n hyperbolic linear system by using the backstepping method (see
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[15]). Similar to the situation in [9], this procedure can be applied to locally stabilize
the original nonlinear system. Consider the following n\times n hyperbolic systems

wt(t, x) + \Lambda (x)wx(t, x) = \Sigma (x)w(t, x),(2.1)

where w = (w1, . . . , wn)
T is a vector function of (t, x), \Lambda : [0, 1] \rightarrow \scrM n,n(\BbbR ) is an

n\times n C2 diagonal matrix, i.e.,

\Lambda (x) =

\biggl( 
\Lambda  - (x) 0

0 \Lambda +(x)

\biggr) 
(2.2)

in which \Lambda  - (x) := diag(\lambda 1(x), . . . , \lambda m(x)) and \Lambda +(x) := diag(\lambda m+1(x), . . . , \lambda n(x))
are diagonal submatrices, without loss of generality, satisfying

\lambda 1(x) < \cdot \cdot \cdot < \lambda m(x) < 0 < \lambda m+1(x) < \cdot \cdot \cdot < \lambda n(x) \forall x \in [0, 1].(2.3)

On the other hand, \Sigma : [0, 1] \rightarrow \scrM n,n(\BbbR ) is an n \times n matrix with C2[0, 1] entries
\sigma ij(x) (1 \leq i \leq n, 1 \leq j \leq n). Moreover, for any i = 1, . . . , n, without loss of
generality (see section 3 below, [9] for n = 2, and [14] for n = 3), we assume that

\sigma ii(x) \equiv 0 \forall x \in [0, 1].(2.4)

The boundary conditions for the linear hyperbolic system (2.1) are given by

x = 0 : w+(t, 0) = Qw - (t, 0),(2.5)

and

x = 1 : w - (t, 1) = U(t),(2.6)

where w - \in \BbbR m, w+ \in \BbbR n - m are defined by requiring that w := (w - , w+)
T , U =

(U1, . . . , Um)T are boundary feedback controls, Q \in \scrM n - m,m is a constant matrix.
Our purpose in this section is to find a full-state feedback control law for U(t) to
ensure that the closed-loop system (2.1), (2.5)--(2.6) is globally asymptotically stable
in the L2 norm.

2.1. Target system. In section 2.2, it will be shown that we can transform the
system (2.1), (2.5)--(2.6) into the following cascade system

\gamma t(t, x) + \Lambda (x)\gamma x(t, x) = G(x)\gamma (t, 0)(2.7)

with the boundary conditions

x = 0 : \gamma +(t, 0) = Q\gamma  - (t, 0)(2.8)

and

x = 1 : \gamma  - (t, 1) = 0,(2.9)

where \gamma  - \in \BbbR m, \gamma + \in \BbbR n - m are defined by requiring that \gamma := (\gamma  - , \gamma +)
T , G is a

lower triangular matrix with the following structure

G(x) =

\biggl( 
\scrG 1(x) 0
\scrG 2(x) 0

\biggr) 
(2.10)
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968 HU, VAZQUEZ, DI MEGLIO, AND KRSTIC

in which \scrG 1 \in \scrM m,m(\BbbR ) is a lower triangular matrix, i.e.,

\scrG 1(x) =

\left(      
0 \cdot \cdot \cdot \cdot \cdot \cdot 0

g2,1(x)
. . .

. . .
...

...
. . .

. . .
...

gm,1(x) \cdot \cdot \cdot gm,m - 1(x) 0

\right)      (2.11)

and \scrG 2(x) \in \scrM n - m,m(\BbbR ). The coefficients of both \scrG 1 and \scrG 2 are to be determined in
section 2.2. Next, we prove that the cascade system (2.7)--(2.9) verifies the following
proposition.

Proposition 2.1. For any given matrix function G(\cdot ) \in C2[0, 1], the mixed ini-
tial boundary value problem (2.7)--(2.9) with initial condition

t = 0 : \gamma (0, x) = \gamma 0(x),(2.12)

where \gamma 0 \in L2((0, 1);\BbbR n) admits a C0([0,\infty );L2((0, 1);\BbbR n))) solution \gamma = \gamma (t, x),
which is globally exponentially stable in the L2 norm, i.e., for every \lambda > 0, there
exists c > 0 such that

\| \gamma (t, \cdot )\| L2 \leq ce - \lambda t\| \gamma 0\| L2 .(2.13)

In fact, this solution vanishes in finite time t \geq tF , where tF is given by

tF =

\int 1

0

1

\lambda m+1(s)
+

m\sum 
r=1

1

| \lambda r(s)| 
ds.(2.14)

Proof. Equations (2.7) can be rewritten as

(2.15)
\partial t\gamma  - (t, x) + \Lambda  - (x)\partial x\gamma  - (t, x) = \scrG 1(x)\gamma  - (t, 0),

\partial t\gamma +(t, x) + \Lambda +(x)\partial x\gamma +(t, x) = \scrG 2(x)\gamma  - (t, 0);

then consider the following Lyapunov functional with exponential weights,

(2.16)

V0(t) =

\int 1

0

e - \delta x\gamma +(t, x)
T (\Lambda +(x))

 - 1
\gamma +(t, x)dx

 - 
\int 1

0

e\delta x\gamma  - (t, x)
TB (\Lambda  - (x))

 - 1
\gamma  - (t, x)dx,

where \delta > 0 is a parameter that will be chosen sufficiently large,

B = diag(b1, . . . , bm)(2.17)

with br > 0 (r = 1, . . . ,m), whose coefficients are to be determined. Obviously,
\surd 
V0

is a norm equivalent to \| \gamma (t, \cdot )\| L2 . Differentiating V0 with respect to t and integrating
by parts yields

\.V0(t) = I + II + III + IV

with

I =
\bigl[ 
 - e - \delta x\gamma +(t, x)

T \gamma +(t, x) + e\delta x\gamma  - (t, x)
TB\gamma  - (t, x)

\bigr] 1
0
,

D
ow

nl
oa

de
d 

03
/1

9/
19

 to
 5

2.
18

.6
3.

16
9.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

BOUNDARY STABILIZATION FOR HYPERBOLIC BALANCE LAWS 969

II =  - 
\int 1

0

\delta e - \delta x\gamma +(t, x)
T \gamma +(t, x)dx - 

\int 1

0

\delta e\delta x\gamma  - (t, x)
TB\gamma  - (t, x)dx,

III = 2

\int 1

0

e - \delta x\gamma +(t, x)
T (\Lambda +(x))

 - 1 \scrG 2(x)\gamma  - (t, 0)dx,

IV =  - 2

\int 1

0

e\delta x\gamma  - (t, x)
TB (\Lambda  - (x))

 - 1 \scrG 1(x)\gamma  - (t, 0)dx.

Noting the boundary conditions (2.8)--(2.9), we have that

I =  - e\delta \gamma +(t, 1)
T \gamma +(t, 1) - \gamma  - (t, 0)

T
\Bigl( 
B  - QTQ

\Bigr) 
\gamma  - (t, 0),(2.18)

and using Young's inequality we obtain

III \leq 
\int 1

0

e - \delta x\gamma +(t, x)
T \gamma +(t, x)dx+ \gamma  - (t, 0)

T

\int 1

0

e - \delta x\scrG T
2 (x) (\Lambda +(x))

 - 2 \scrG 2(x)dx\gamma  - (t, 0)

(2.19)

\leq 
\int 1

0

e - \delta x\gamma +(t, x)
T \gamma +(t, x)dx+ \gamma  - (t, 0)

T

\int 1

0

\scrG T
2 (x) (\Lambda +(x))

 - 2 \scrG 2(x)dx\gamma  - (t, 0),

IV =  - 2

\int 1

0

e\delta x
\sum 

m\geq i>j\geq 1

\gamma i(t, x)
bi

\Lambda i(x)
gij(x)\gamma j(t, 0)dx

(2.20)

\leq  - M

\int 1

0

e\delta x
\sum 

m\geq i>j\geq 1

bi
\Lambda i(x)

\gamma 2
i (t, x)dx - M

\int 1

0

e\delta x
\sum 

m\geq i>j\geq 1

bi
\Lambda i(x)

\gamma 2
j (t, 0)dx

\leq  - M

\int 1

0

e\delta x
\sum 

m\geq i>j\geq 1

bi
\Lambda i(x)

\gamma 2
i (t, x)dx+M\mu e\delta \gamma  - (t, 0)

T\scrC \gamma  - (t, 0)

\leq  - mM

\int 1

0

e\delta x
m\sum 
i=2

bi
\Lambda i(x)

\gamma 2
i (t, x)dx+M\mu e\delta \gamma  - (t, 0)

T\scrC \gamma  - (t, 0)

\leq  - mM

\int 1

0

e\delta x\gamma  - (t, x)
TB (\Lambda  - (x))

 - 1
\gamma  - (t, x)dx+M\mu e\delta \gamma  - (t, 0)

T\scrC \gamma  - (t, 0)

in which

M := \| G\| \infty , \scrC := diag(\scrC 1, . . . , \scrC m)(2.21)

with

\scrC r :=

\left\{   
m\sum 

j=r+1

bj , 1 \leq r \leq m - 1,

0, r = m,

(2.22)

and

\mu := max
i

\biggl\{ 
1

\| \lambda i\| C0

\biggr\} 
.(2.23)

Let

P = QTQ+

\int 1

0

\scrG T
2 (x) (\Lambda  - (x))

 - 2 \scrG 2(x)dx.(2.24)

There exists a diagonal matrix S = diag(s1, . . . , sm) with sr > 0 (r = 1, . . . ,m) being
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970 HU, VAZQUEZ, DI MEGLIO, AND KRSTIC

large enough, such that

P \prec S,(2.25)

where P \prec S denotes that S  - P is a positive-definite matrix. This yields

\.V0(t) \leq  - \gamma  - (t, 0)
T
\Bigl( 
B  - S  - M\mu e\delta \scrC 

\Bigr) 
\gamma  - (t, 0) - (\delta  - 1)

\int 1

0

e - \delta x\gamma +(t, x)
T \gamma +(t, x)dx

 - (\delta  - mM\mu )

\int 1

0

e\delta x\gamma  - (t, x)
TB\gamma  - (t, x)dx.

Thus, for any given \lambda > 0, picking

\delta > max \{ \lambda \mu +mM\mu , \lambda \mu + 1\} ,(2.26)

br >

\left\{   M\mu e\delta 
m\sum 

j=r+1

bj + sr, 1 \leq r \leq m - 1,

sm, r = m,

(2.27)

we have

\.V0 \leq  - \lambda V0,(2.28)

where \lambda can be chosen as large as desired. It is easy to see that parameter matrix B
does exist, since one can easily check (2.27) by induction. This shows the exponential
stability of the \gamma system.

To show finite-time convergence to the origin, one can find the explicit solution
of (2.7)--(2.9) as follows. Define

\phi i(x) =

\int x

0

1

| \lambda i(\xi )| 
d\xi , 1 \leq i \leq n.(2.29)

Notice that every \phi i(1 \leq i \leq n) is a monotonically increasing C2 function of x, and
thus invertible. With the same statement in [9] and noting (2.7)--(2.11), one can
express the explicit solution of \gamma 1 by

\gamma 1(t, x) =

\Biggl\{ 
\gamma 1(0, \phi 

 - 1
1 (\phi 1(x) + t)) if t < \phi 1(1) - \phi 1(x),

0 if t \geq \phi 1(1) - \phi 1(x).
(2.30)

Notice in particular that \gamma 1 is identically zero for t \geq \phi 1(1). From (2.7) and (2.11),
we obtain that \gamma 2(t, x) satisfies the following equation for t \geq \phi 1(1),

\partial t\gamma 2(t, x) + \lambda 2(x)\partial x\gamma 2(t, x) = 0(2.31)

with

\gamma 2(t, 1) = 0,(2.32)

which ensures the explicit expression of \gamma 2(t, x) to be

\gamma 2(t, x) =

\Biggl\{ 
\gamma 2(\phi 1(1), \phi 

 - 1
2 (\phi 2(x) + t)) if \phi 1(1) < t < \phi 1(1) + \phi 2(1) - \phi 2(x),

0 if t \geq \phi 1(1) + \phi 2(1) - \phi 2(x).
(2.33)

Therefore, by induction, one has that \gamma r(t, x) (2 \leq r \leq m) satisfies the following
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equations: for t >
\sum r - 1

k=1 \phi k(1),

\partial t\gamma r(t, x) + \lambda r(x)\partial x\gamma r(t, x) = 0(2.34)

with the boundary condition

\gamma r(t, 1) = 0.(2.35)

Thus, when t >
\sum r - 1

k=1 \phi k(1), we have

\gamma r(t, x) =

\left\{       
\gamma r(

r - 1\sum 
k=1

\phi k(1), \phi 
 - 1
r (\phi r(x) + t)) if

r - 1\sum 
k=1

\phi k(1) < t <
r\sum 

k=1

\phi k(1) - \phi r(x),

0 if t \geq 
r\sum 

k=1

\phi k(1) - \phi r(x).

(2.36)

This yields that \gamma  - (t, x) \equiv 0 (t >
\sum m

k=1 \phi k(1)). From the time t =
\sum m

k=1 \phi k(1) on,
we find \gamma + becomes the solution of the following system,

\partial t\gamma +(t, x) + \Lambda +(x)\partial x\gamma +(t, x) = 0(2.37)

with

x = 0 : \gamma +(t, 0) \equiv 0.(2.38)

Since (2.37)--(2.38) is a completely decoupled system, by the characteristic method,
after t = tF , where

tF = \phi m+1(1) +

m\sum 
r=1

\phi r(1) =

\int 1

0

1

\lambda m+1(s)
+

m\sum 
r=1

1

| \lambda r(s)| 
ds,(2.39)

one can see that \gamma +(t, x) \equiv 0(t \geq tF ), which concludes the proof of Proposition 2.1.

2.2. The backstepping transformation and Kernel equations. To map
the original system (2.1) into the target system (2.7), we use the following Volterra
transformation of the second kind, which is similar to the one in [9, 10]:

\gamma (t, x) = w(t, x) - 
\int x

0

K(x, \xi )w(t, \xi )d\xi (2.40)

in which K, defined on \scrT = \{ (x, \xi )| 0 \leq \xi \leq x \leq 1\} , is an n\times n matrix of kernels. We
point out here that this transformation yields that w(t, 0) \equiv \gamma (t, 0) (\forall t > 0), which is
crucial to design our feedback law.

Utilizing (2.1), (2.5) and straightforward computations, one can formally show
(see also Appendix A for the validity of the calculations) that

\gamma t + \Lambda (x)\gamma x

=  - 
\int x

0

\bigl( 
K\xi (x, \xi )\Lambda (\xi ) + \Lambda (x)Kx(x, \xi ) +K(x, \xi )\Sigma (\xi ) +K(x, \xi )\Lambda \xi (\xi )

\bigr) 
w(t, \xi )d\xi 

+
\bigl( 
\Sigma (x) +K(x, x)\Lambda (x) - \Lambda (x)K(x, x)

\bigr) 
w(t, x) - K(x, 0)\Lambda (0)

\biggl( 
I 0
Q 0

\biggr) 
w(t, 0).

(2.41)

The original system (2.1) is mapped into the target system (2.7) if the kernel satisfies
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972 HU, VAZQUEZ, DI MEGLIO, AND KRSTIC

the following equations:

\Lambda (x)Kx(x, \xi ) +K\xi (x, \xi )\Lambda (\xi ) +K(x, \xi )\Sigma (\xi ) +K(x, \xi )\Lambda \xi (\xi ) = 0,(2.42)

\Sigma (x) +K(x, x)\Lambda (x) - \Lambda (x)K(x, x) = 0,(2.43)

G(x) =  - K(x, 0)\Lambda (0)

\biggl( 
I 0
Q 0

\biggr) 
.(2.44)

Developing (2.42)--(2.44) leads to the following set of kernel PDEs,

\lambda i(x)\partial xKij(x, \xi ) + \lambda j(\xi )\partial \xi Kij(x, \xi ) =  - 
n\sum 

k=1

\bigl( 
\sigma kj(\xi ) + \delta kj\lambda 

\prime 
j(\xi )

\bigr) 
Kik(x, \xi )(2.45)

along with the following set of boundary conditions

Kij(x, x) =
\sigma ij(x)

\lambda i(x) - \lambda j(x)

\Delta 
= kij(x) for 1 \leq i, j \leq n(i \not = j),(2.46)

Kij(x, 0) =  - 1

\lambda j(0)

n - m\sum 
k=1

\lambda m+k(0)Ki,m+k(x, 0)qk,j for 1 \leq i \leq j \leq m.(2.47)

To ensure well-posedness of the kernel equations, we add the following artificial bound-
ary conditions for Kij(m \geq i > j \geq 1, n \geq j > i \geq m+ 1) on x = 1:

Kij(1, \xi ) = k
(1)
ij (\xi ) for 1 \leq j < i \leq m \cup m+ 1 \leq i < j \leq n,(2.48)

and the boundary conditions for Kij(n \geq i \geq j \geq m+ 1) on \xi = 0:

Kij(x, 0) = k
(2)
ij (x) for m+ 1 \leq j \leq i \leq n,(2.49)

where k
(1)
ij and k

(2)
ij are chosen as functions of C\infty [0, 1] satisfying the C2 compatibility

conditions at the points (x, \xi ) = (1, 1) and (0, 0), respectively (see Remark 2.1).
The equations evolve in the triangular domain \scrT = \{ (x, \xi )| 0 \leq \xi \leq x \leq 1\} . By
Theorem A.1, one finds that there exists a unique piecewise C2(\scrT ) solution K(x, \xi )
to (2.45)--(2.49) with finitely many discontinuities, provided that \sigma ij(x) are C2[0, 1],
\lambda i(x) are C2[0, 1]. Moreover, all the possible discontinuous curves have the similar
form \xi = \Omega (x), in which \Omega (\cdot ) \in C2[0, 1] being a monotonically increasing function
with \Omega (0) = 0 and 0 < \Omega (x) < x(\forall x \in (0, 1]). The boundary of the Kernel K on
x = \xi and \xi = 0 are both C2[0, 1] functions, i.e., K(x, x), K(x, 0) \in C2[0, 1]. Thus, G,
given by (2.44), is also a C2[0, 1] matrix function under the well-posedness of K(x, 0).

Remark 2.1. The C2 compatibility conditions at the point (x, \xi ) = (1, 1) are given
by

(2.50)

k
(1)
ij (1) = kij(1) for 1 \leq j < i \leq m \cup m+ 1 \leq i < j \leq n,

(k(1))\prime ij(1) =

\lambda i(1)k
\prime 
ij(1) +

n\sum 
k=1

\bigl( 
\sigma kj(1) + \delta kj\lambda 

\prime 
j(1)

\bigr) 
Kik(1, 1)

\lambda i(1) - \lambda j(1)

(2.51)

for 1 \leq j < i \leq m \cup m+ 1 \leq i < j \leq n,
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(k(1))\prime \prime ij(1) =

\lambda i(1)\partial x

\biggl( 
\lambda i(x)k

\prime 
ij(x)+

\sum n
k=1

\bigl( 
\sigma kj(x)+\delta kj\lambda 

\prime 
j(x)
\bigr) 
Kik(x,x)

\lambda i(x) - \lambda j(x)

\biggr) \bigm| \bigm| \bigm| 
x=1

+ \lambda \prime 
j(1)(k

(1))\prime ij(1)

\lambda i(1) - \lambda j(1)

+

\sum n
k=1

\bigl( 
\sigma \prime 
kj(1) + \delta kj\lambda 

\prime \prime 
j (1)

\bigr) 
Kik(1, 1) +

\bigl( 
\sigma kj(1) + \delta kj\lambda 

\prime 
j(1)

\bigr) 
\partial \xi Kik(1, 1))

\lambda i(1) - \lambda j(1)
(2.52)

for 1 \leq j < i \leq m \cup m+ 1 \leq i < j \leq n,

The C2 compatibility conditions at the point (x, \xi ) = (0, 0) can be similarly given.
It should be mentioned here that in (2.51), the term Kik(1, 1) = kik(1) if i \not = k,
and Kii(1, 1) can be calculated by using the characteristic method with (2.45), (2.46)

and the value of Kii(0, 0) (i.e., k
(2)
ii (0)). Also, in (2.52), the term \partial xKik(1, 1) can be

calculated by (A.13) and (A.27) if k \not = i, otherwise, it can be expressed by using the
characteristic method with (A.7), (A.24), (A.13), (A.27), and the value of \partial xKii(0, 0)
(i.e., (k(2))\prime ii(0)); the term \partial \xi Kik(1, 1) can be immediately obtained by (2.45) once
\partial xKik(1, 1), Kik(1, 1) are determined.

2.3. The inverse transformation and stabilization for linear systems.
Transformation (2.40) is a classical Volterra equation of the second kind; one can
check from Theorem A.2 that there exists a unique piecewise C2(\scrT ) matrix function
L(x, \xi ) with finitely many discontinuities which are C2[0, 1] monotonically increasing
functions passing through the point (x, \xi ) = (0, 0), such that

w(t, x) = \gamma (t, x) +

\int x

0

L(x, \xi )\gamma (t, \xi )d\xi .(2.53)

From the transformation (2.40) evaluated at x = 1, noting that \gamma  - (t, 1) \equiv 0 (see
(2.9)), one obtains the following feedback control laws for the linearized system (2.1)
with the boundary conditions (2.5)

Ui(t) =

\int 1

0

n\sum 
j=1

Kij(1, \xi )wj(t, \xi )d\xi (i = 1, . . . ,m)(2.54)

in which Ui(i = 1, . . . ,m) are the elements of U in (2.6). This immediately leads to
our feedback stabilization result for the linear system as follows.

Theorem 2.1. The mixed initial boundary value problem (2.1) with the boundary
conditions (2.5), the feedback control law (2.54), and initial condition

t = 0 : w(0, x) = w0(x),(2.55)

in which w0 \in L2((0, 1);\BbbR n), admits an L2((0, 1);\BbbR n) solution w = w(t, x). Moreover,
for every \eta > 0, there exists c > 0 such that

\| w(t, \cdot )\| L2 \leq ce - \eta t\| w0\| L2 .(2.56)

In fact, w vanishes in finite time t \geq tF , where tF is given by (2.14).

Remark 2.2. If we focus on the linear problem, \Lambda and \Sigma can be assumed to be
C1([0, 1]) and C0([0, 1]) functions. The corresponding kernels K and L are then both
functions of L\infty (\scrT ) (see [15]).
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3. Backstepping boundary control design for the nonlinear system. As
mentioned in [9], we wish the linear controller (2.54) designed by the backstepping
method to work locally for the corresponding nonlinear system. Let us show that this
is indeed the case. Introduce

\varphi i(x) := exp

\biggl( 
 - 
\int x

0

fii(s)

\Lambda i(s)
ds

\biggr) 
, i = 1, . . . , n,(3.1)

where fii and \Lambda i (i = 1, c . . . , n) are defined in (1.3) and (1.4), respectively. One can
make the following coordinates transformation

(3.2) w(t, x) =

\left(   \varphi 1(x)
. . .

\varphi n(x)

\right)   u(t, x) = \Phi (x)u(t, x).

Then the original control system (1.1) with respect to u is transformed into the fol-
lowing system expressed in the new coordinates:

wt(t, x) +A(x,w)wx(t, x) = \widetilde F (x,w)(3.3)

in which

A(x,w) = \Phi (x)A(x,\Phi  - 1(x)w)\Phi  - 1(x),(3.4)

\widetilde F (x,w) = \Phi (x)F (x,\Phi  - 1(x)w) - A(x,w)

\left(    
f11(x)
\Lambda 1(x)

. . .
fnn(x)
\Lambda n(x)

\right)    w.(3.5)

Obviously, one can check that

\widetilde F (x, 0) = 0,(3.6)

A(x, 0) = \Phi (x)A(x, 0)\Phi  - 1(x) = A(x, 0).(3.7)

Moreover, defining

\Sigma (x) =
\partial \widetilde F (x,w)

\partial w

\bigm| \bigm| \bigm| \bigm| 
w=0

,(3.8)

we have that

\Sigma ij(x) =

\Biggl\{ 
\varphi i(x)
\varphi j(x)

fij(x), i \not = j,

0, i = j.
(3.9)

Therefore, we may rewrite (3.3) as a linear system with the same structure as (2.1)
plus nonlinear terms:

wt(t, x) + \Lambda (x)wx(t, x) = \Sigma (x)w(t, x) + \Lambda NL(x,w)wx(t, x) + fNL(x,w),(3.10)

where

\Lambda (x) = A(x, 0)(3.11)
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and

\Lambda NL(x,w) = \Lambda (x) - A(x,w), fNL(x,w) = \widetilde F (x,w) - \Sigma (x)w(t, x).(3.12)

For the boundary conditions of the system (3.10), defining

Q =

\biggl( 
\partial Gs

\partial ur

\biggr) 
(n - m)\times m

\bigm| \bigm| \bigm| \bigm| 
u=0

and GNL(w - (t, 0)) = G(w - (t, 0)) - Qw - (t, 0),(3.13)

one obtains that

x = 0 : w+(t, 0) = Qw - (t, 0) +GNL(w - (t, 0))(3.14)

and

x = 1 : w - (t, 1) = U(t),(3.15)

where

U(t) =

\left(   \varphi 1(1)
. . .

\varphi m(1)

\right)   H(t) = \Phi (1)H(t).(3.16)

It is easily verified that

\Lambda NL(x, 0) = 0, fNL(x, 0) =
\partial fNL

\partial w
(x, 0) = 0,(3.17)

and

GNL(0) =
\partial GNL

\partial w
(0) = 0.(3.18)

Thus, the feedback control law in (1.6) can be chosen as

hr(t) = \varphi  - 1
r (1)Ur(t) = \varphi  - 1

r (1)

\int 1

0

n\sum 
j=1

Krj(1, \xi )\varphi j(\xi )uj(t, \xi )d\xi , r = 1, . . . ,m,

(3.19)

where the kernels are computed from (2.45)--(2.49) with the coefficients \Sigma (x) and
\Lambda (x) obtained from (3.9) and (3.11). One easily verifies that under the assumptions
of section 1, both \Sigma and \Lambda are functions of C2.

Remark 3.1. The C1 compatibility conditions at the point (t, x) = (0, 1) for sys-
tem (1.1) with boundary conditions (3.15) are

\phi r(1) =

n\sum 
j=1

\int 1

0

\~krj(\xi )\phi j(\xi )d\xi , r = 1, . . . ,m,(3.20)

fr(1, \phi (1)) - 
n\sum 

j=1

arj(1, \phi (1))\phi 
\prime 
j(1)

=

n\sum 
k=1

\int 1

0

\~krk(\xi )

\left(  fk(1, \phi (1)) - 
n\sum 

j=1

akj(1, \phi (1))\phi 
\prime 
j(1)

\right)  , r = 1, . . . ,m,(3.21)
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where \~krk(\xi ) are the elements of the matrix \widetilde K(\xi ) with\widetilde K(\xi ) = \Phi  - 1(1)K(1, \xi )\Phi (\xi ).(3.22)

Notice that (3.20)--(3.21) depend on the feedback control design, however, there
are no physical reasons that the initial data should satisfy them. In order to guarantee
the initial conditions independent of these artificial conditions, following [9], we modify
the boundary controls on x = 1 as

x = 1 : ur = hr(t) + ar(t) + br(t), r = 1, . . . ,m,(3.23)

where ar and br are the state of the following dynamic systems

\.ar(t) =  - drar(t), \.br(t) =  - \~drbr(t), r = 1, . . . ,m,(3.24)

with dr > 0, \~dr > 0, and dr \not = \~dr, r = 1, . . . ,m. By the modified control designs
(3.23), the compatibility conditions on x = 1 are rewritten by

\phi r(1) =

n\sum 
j=1

\int 1

0

\~krj(\xi )\phi j(\xi )d\xi + ar(0) + br(0), r = 1, . . . ,m,

(3.25)

fr(1, \phi (1)) - 
n\sum 

j=1

arj(1, \phi (1))\phi 
\prime 
j(1)

=

n\sum 
k=1

\int 1

0

\~krk(\xi )

\left(  fk(1, \phi (1)) - 
n\sum 

j=1

akj(1, \phi (1))\phi 
\prime 
j(1)

\right)   - drar(0) - \~drbr(0),

(3.26)

r = 1, . . . ,m.

For any 1 \leq r \leq m, call

\scrP r(\phi ) = \phi r(1) - 
n\sum 

j=1

\int 1

0

\~krj(\xi )\phi j(\xi )d\xi ,(3.27)

\scrM r(\phi ) = fr(1, \phi (1)) - 
n\sum 

j=1

arj(1, \phi (1))\phi 
\prime 
j(1)(3.28)

 - 
n\sum 

k=1

\int 1

0

\~krk(\xi )

\left(  fk(1, \phi (1)) - 
n\sum 

j=1

akj(1, \phi (1))\phi 
\prime 
j(1)

\right)  .

Picking

ar(0) =  - \scrM r(\phi ) + \~dr\scrP r(\phi )

dr  - \~dr
, br(0) =

dr\scrP r(\phi ) +\scrM r(\phi )

dr  - \~dr
,(3.29)

the compatibility conditions are automatically verified. Similar stabilization results
to Theorem 1.1 are still valid for the closed--loop system (1.1), (1.5), and (3.23) (see
[9, Theorem 4.1]). In fact, this dynamic extension is designed to avoid restriction
for artificial boundary conditions due to the compatibility conditions at the points
(t, x) = (0, 1), and it has been introduced in [3] to deal with the stabilization of the
Euler equations of incompressible fluids (see also [24]).

D
ow

nl
oa

de
d 

03
/1

9/
19

 to
 5

2.
18

.6
3.

16
9.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

BOUNDARY STABILIZATION FOR HYPERBOLIC BALANCE LAWS 977

4. Proof of Theorem 1.1. In this section, we will show the exponential stabil-
ity for the system (1.1), (1.5), and (1.6) with arbitrary decay rate under the boundary
feedback controls (3.19) by the control Lyapunov function method. Because of the
coordinate transformation (3.2), it suffices to prove the same property for the sys-
tem (3.3), (3.14)--(3.16). The related proof can be divided into the following steps.
Roughly speaking, using the backstepping transformation (2.40), we first map the
initial nonlinear system (3.3), (3.14)--(3.16) into another nonlinear target system but
with cascade zero-order terms, which has the same stability property as the initial
system. The rapid exponential stability of the target system, thanks to its special
structure, can be realized by constructing the strict Lyapunov function as mentioned
in [7, 6, 9].

4.1. Definitions. For \gamma (x) := (\gamma 1(x), . . . , \gamma n(x)) \in \BbbR n, we first define some
notations:

| \gamma (x)| =
n\sum 

i=1

| \gamma i(x)| , \| \gamma \| \infty := ess sup
x\in [0,1]

| \gamma (x)| ,(4.1)

\| \gamma \| Lp :=

\biggl( \int 1

0

| \gamma (\xi )| pd\xi 
\biggr) 1

p

, 1 \leq p < +\infty .

For an n\times n matrix, denote

| M | := max\{ | M\gamma | : \gamma \in \BbbR n, | \gamma | = 1\} .(4.2)

For a piecewise kernel matrix K(x, \xi ), which is a continuous function on each domain
Di(i = 1, . . . ,\scrS < +\infty ), respectively, with

\scrT =

\scrS \bigcup 
i=1

Di,(4.3)

meas(Di \cap Dj) = 0, (i \not = j),(4.4)

where meas(\cdot ) denotes the measure of the corresponding measurable set. Let

\| K\| \infty := max
i

sup
(x,\xi )\in Di

| K(x, \xi )| .(4.5)

As before, we recall the following symbols of [9] for simplicity:

\scrK [\gamma ](t, x) = \gamma (t, x) - 
\int x

0

K(x, \xi )\gamma (t, \xi )d\xi ,(4.6)

\scrL [\gamma ](t, x) = \gamma (t, x) +

\int x

0

L(x, \xi )\gamma (t, \xi )d\xi ,(4.7)

\scrK 1[\gamma ](t, x) =  - K(x, x)\gamma (t, x) +

\int x

0

K\xi (x, \xi )\gamma (t, \xi )d\xi + E1(x)\gamma (t,\Omega (x)),(4.8)

\scrK 2[\gamma ](t, x) =  - K(x, x)\gamma (t, x) - 
\int x

0

Kx(x, \xi )\gamma (t, \xi )d\xi + E2(x)\gamma (t,\Omega (x)),(4.9)

\scrL 1[\gamma ](t, x) = L(x, x)\gamma (t, x) +

\int x

0

Lx(x, \xi )\gamma (t, \xi )d\xi + E3(x)\gamma (t,\Omega (x))(4.10)

in which Ei(x)\gamma (t,\Omega (x)) (i = 1, 2, 3) involves all the possible jumps when we use
integrations by parts for the term

\int x

0
K(x, \xi )\gamma \xi (t, \xi )d\xi and take the partial derivative

with respect to x on \scrK [\gamma ] and \scrL [\gamma ], respectively (see, in particular, (A.17)).
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Define F1[\gamma ], F2[\gamma ], and Gbou[\gamma ] as

F1[\gamma ] := \Lambda NL(x,\scrL [\gamma ]), F2[\gamma ] := fNL(x,\scrL [\gamma ]),(4.11)

Gbou[\gamma ](t) := K(x, 0)\Lambda (0)

\biggl( 
0 0

GNL(\gamma  - (t, 0)) 0

\biggr) 
(4.12)

in which GNL is given by (3.13).Obviously, by (3.18), there exist positive constants
\delta 1, C1, C2, and C3 such that if \| \gamma \| \infty < \delta 1 then for every v - \in \BbbR m,\bigm| \bigm| GNL(\gamma  - (t, 0))

\bigm| \bigm| \leq C1| \gamma  - (t, 0)| 2,(4.13) \bigm| \bigm| \bigm| \bigm| \partial GNL(\gamma  - (t, 0))

\partial \gamma  - 

\bigm| \bigm| \bigm| \bigm| \leq C2| \gamma  - (t, 0)| ,(4.14) \bigm| \bigm| \bigm| \bigm| \partial 2GNL(\gamma  - (t, 0))

\partial \gamma 2
 - 

v - 

\bigm| \bigm| \bigm| \bigm| \leq C3| v - | .(4.15)

Here and hereafter, for i = 1, 2, . . . , Ci, denote positive constants, which are indepen-
dent of \gamma , \zeta , and \theta (the latter two variables will be defined in the next subsections).

To prove our result, we notice that if we apply the (inverse) backstepping trans-
formation (2.40) to the nonlinear system (3.10), we obtain the following transformed
system

(4.16)

\gamma t(t, x) + \Lambda (x)\gamma x(t, x) - G(x)\gamma (t, 0)

= \scrK [\Lambda NL(x,w)wx] +\scrK [fNL(x,w)]+Gbou[\gamma ]

= \scrK [\Lambda NL(x,w)\gamma x] +\scrK [\Lambda NL(x,w)\scrL 1[\gamma ]] +\scrK [fNL(x,w)]+Gbou[\gamma ]

= F3[\gamma , \gamma x] + F4[\gamma ]+Gbou[\gamma ],

where

F3 = \scrK [F1[\gamma ]\gamma x],

F4 = \scrK [F1[\gamma ]\scrL 1[\gamma ] + F2[\gamma ]].

The boundary conditions are

x = 0 : \gamma +(t, 0) = Q\gamma  - (t, 0) +GNL(\gamma  - (t, 0))(4.17)

and

x = 1 : \gamma  - (t, 1) = 0.(4.18)

Notice that here we may lose the regularity on the point (0, 0) for the kernels
K and L, which leads both of them to be discontinuous (see [15]). However, by
the assumptions on the coefficients and applying Theorems A.1 and A.2, the direct
and inverse transformations (2.40) and (2.53) have C2 piecewise kernels functions
with finitely many discontinuities, which have the form \xi = \Omega (x) being functions in
C2[0, 1] with \Omega (0) = 0 and 0 < \Omega (x) < x (\forall x \in (0, 1]). Fortunately, differentiating
twice with respect to x in these transformations, by similar arguments to [9] and [24,
Proposition 3.1] as well the additive property of the integral and

\| \gamma (t,\Omega )\| L2 \leq C4\| \gamma \| L2 ,(4.19)

it can be shown that the H2 norm of \gamma is equivalent to the H2 norm of w. Thus, if
we show H2 local stability of the origin for (4.16)--(4.18), the same holds for w, i.e.,
u.

In order to get the desired H2 estimation for \gamma , we next estimate the growth of
\| \gamma \| L2 , \| \gamma t\| L2 , and \| \gamma tt\| L2 , respectively.
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4.2. Analyzing the growth of \| \bfitgamma \| \bfitL \bftwo . Let

F3[\gamma , \gamma x] =
\bigl( 
F - 
3 [\gamma , \gamma x], F

+
3 [\gamma , \gamma x]

\bigr) T
,(4.20)

F4[\gamma ] =
\bigl( 
F - 
4 [\gamma ], F+

4 [\gamma ]
\bigr) T

, Gbou[\gamma ] =
\bigl( 
G - 

bou[\gamma ], G
+
bou[\gamma ]

\bigr) T
,(4.21)

where F - 
3 , F - 

4 and G - 
bou \in \BbbR m, F+

3 and F+
4 and G+

bou \in \BbbR n - m.
For \delta > 0, define

(4.22)

V1(t) =

\int 1

0

e - \delta x\gamma +(t, x)
T (\Lambda +(x))

 - 1
\gamma +(t, x)dx

 - 
\int 1

0

e\delta x\gamma  - (t, x)
TB (\Lambda  - (x))

 - 1
\gamma  - (t, x)dx

in which the matrix B is given by (2.17), but the coefficients will be reinitialized.
Differentiating V1 with respect to time and integrating by parts yields

\.V1(t) = V + V I + V II + V III + IX +X

with

V =
\bigl[ 
 - e - \delta x\gamma +(t, x)

T \gamma +(t, x) + e\delta x\gamma  - (t, x)
TB\gamma  - (t, x)

\bigr] 1
0
,

V I =  - 
\int 1

0

\delta e - \delta x\gamma +(t, x)
T \gamma +(t, x)dx - 

\int 1

0

\delta e\delta x\gamma  - (t, x)
TB\gamma  - (t, x)dx,

V II = 2

\int 1

0

e - \delta x\gamma +(t, x)
T (\Lambda +(x))

 - 1 \scrG 2(x)\gamma  - (t, 0)dx,

V III =  - 2

\int 1

0

e\delta x\gamma  - (t, x)
TB (\Lambda  - (x))

 - 1 \scrG 1(x)\gamma  - (t, 0)dx,

IX = 2

\int 1

0

e - \delta x\gamma +(t, x)
T (\Lambda +(x))

 - 1 \bigl( 
F+
3 [\gamma , \gamma x] + F+

4 [\gamma ]+G+
bou[\gamma ]

\bigr) 
dx,

X =  - 2

\int 1

0

e\delta x\gamma  - (t, x)
TB (\Lambda  - (x))

 - 1 \bigl( 
F - 
3 [\gamma , \gamma x] + F - 

4 [\gamma ]+G - 
bou[\gamma ]

\bigr) 
dx.

By the same arguments as in [9] and noting Lemma B.2, we have

(4.23)

\int 1

0

e - \delta x\gamma +(t, x)
T (\Lambda +(x))

 - 1 \bigl( 
F+
3 [\gamma , \gamma x] + F+

4 [\gamma ]
\bigr) 
dx

+

\int 1

0

e\delta x\gamma  - (t, x)
TB (\Lambda  - (x))

 - 1 \bigl( 
F - 
3 [\gamma , \gamma x] + F - 

4 [\gamma ]
\bigr) 
dx

\leq C4

\int 1

0

| \gamma | (| F3[\gamma , \gamma x]| + | F4[\gamma ]| )dx

\leq C5

\bigl( 
\| \gamma x\| \infty V1 + V

3
2
1

\bigr) 
which, combining with (4.13), yields that

IX +X \leq C6(\| \gamma x\| \infty V1 + V
3
2
1 + \| \gamma \| \infty | \gamma  - (t, 0)| 2).(4.24)
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Moreover, by (4.13) and (4.17), for \| \gamma \| \infty < \delta 1, one has

(4.25)

V =  - e - \delta \gamma +(t, 1)
T \gamma +(t, 1) + e\delta \gamma  - (t, 1)

TB\gamma  - (t, 1)

+ \gamma +(t, 0)
T \gamma +(t, 0) - \gamma  - (t, 0)

TB\gamma  - (t, 0)

\leq  - \gamma  - (t, 0)
T
\Bigl( 
B  - QTQ - (C2

1\| \gamma \| 2\infty + 2C1\| \gamma \| \infty | Q| )Im
\Bigr) 
\gamma  - (t, 0).

By (2.19) and (2.20), for \| \gamma \| \infty < \delta 1, one immediately obtains

(4.26)

\.V1(t) \leq  - \gamma  - (t, 0)
T
\Bigl( 
B  - S  - M\mu e\delta \scrC  - C6\| \gamma \| \infty Im

\Bigr) 
\gamma  - (t, 0)

 - (\delta  - 1)

\int 1

0

e - \delta x\gamma +(t, x)
T \gamma +(t, x)dx

 - (\delta  - mM\mu )

\int 1

0

e\delta x\gamma  - (t, x)
TB\gamma  - (t, x)dx+ C6

\bigl( 
V

3
2
1 + \| \gamma x\| \infty V1

\bigr) 
,

where M, \scrC , \mu are given by (2.21) and (2.23), while S is stated in (2.25).
Thus, for any given \lambda > 0, picking

\delta > max \{ \lambda \mu +mM\mu , \lambda \mu + 1\} ,(4.27)

br :=

\left\{   M\mu e\delta 
m\sum 

j=r+1

bj + \~sr, 1 \leq r \leq m - 1,

\~sm, r = m,

(4.28)

then if \| \gamma \| \infty is suitably small, there exists C7 > 0 such that

C7Im \prec B  - \widetilde S  - M\mu e
\~\delta \scrC  - C6\| \gamma \| \infty Im.(4.29)

This yields the following proposition.

Proposition 4.1. For any given \lambda > 0, there exists \delta 2 > 0, C8 > 0, and C9 > 0,
such that

\.V1 \leq  - \lambda V1 + C8

\bigl( 
V

3
2
1 + \| \gamma x\| \infty V1

\bigr) 
 - C9| \gamma  - (t, 0)| 2,(4.30)

provided \| \gamma \| \infty \leq \delta 2.

4.3. Analyzing the growth of \| \bfitgamma \bfitt \| \bfitL \bftwo . Let \zeta = \gamma t. Taking the partial deriva-
tive with respect to t in (4.16) yields

\zeta t(t, x) + (\Lambda (x) - F1[\gamma ])\zeta x(t, x) - G(x)\zeta (t, 0) = F5[\gamma , \gamma x, \zeta ] + F6[\gamma , \zeta ]+G\prime 
bou[\gamma ](t),

(4.31)

where

F5 = \scrK 1[F1[\gamma ]\zeta ] +

\int x

0

K(x, \xi )F12[\gamma , \gamma x]\zeta (\xi )d\xi (4.32)

+K(x, 0)\Lambda NL(0, \gamma (0))\zeta (0) +\scrK [F11[\gamma , \zeta ]\gamma x],

F6 = \scrK [F11[\gamma , \zeta ]\scrL 1[\gamma ]] +\scrK [F1[\gamma ]\scrL 1[\zeta ]] +\scrK [F21[\gamma , \zeta ]],(4.33)

G\prime 
bou[\gamma ](t) = K(x, 0)\Lambda (0)

\Biggl( 
0 0

\partial GNL(\gamma  - (t,0))
\partial \gamma  - 

\zeta  - (t, 0)) 0

\Biggr) 
(4.34)
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with

(4.35)

F11 =
\partial \Lambda NL

\partial w
(x,\scrL [\gamma ])\scrL [\zeta ],

F12 =
\partial \Lambda NL

\partial w
(x,\scrL [\gamma ])(\gamma x + \scrL 1[\gamma ]) +

\partial \Lambda NL

\partial x
(x,\scrL [\gamma ]),

F21 =
\partial fNL

\partial w
(x,\scrL [\gamma ])\scrL [\zeta ].

Remark 4.1. In fact, here F11, F12, and F21 denote
\partial \Lambda NL(x,\scrL [\gamma ])

\partial t , \partial \Lambda NL(x,\scrL [\gamma ])
\partial x , and

\partial fNL(x,\scrL [\gamma ])
\partial t , respectively.

The boundary conditions are given by

x = 0 : \zeta +(t, 0) = Q\zeta  - (t, 0) +
\partial GNL

\partial \gamma  - 

\Bigl( 
\gamma  - (t, 0)

\Bigr) 
\zeta  - (t, 0)(4.36)

and

x = 1 : \zeta  - (t, 1) = 0(4.37)

in which \zeta  - \in \BbbR m, \zeta + \in \BbbR n - m are defined by requiring that \zeta := (\zeta  - , \zeta +)
T .

Similarly to [9], we need the following lemma in order to find a strict Lyapunov
function for \zeta (t, x).

Lemma 4.2. There exists \delta 3 > 0 such that, for any \| \gamma \| \infty \leq \delta 3, there exists a
symmetric positive-definite matrix R[\gamma ] satisfying the identity

R[\gamma ](\Lambda (x) - F1[\gamma ]) - (\Lambda (x) - F1[\gamma ])
TR[\gamma ] = 0.(4.38)

Moreover, we have that

| R[\gamma ](x)| \leq c1 + c2\| \gamma \| \infty ,(4.39) \bigm| \bigm| \bigm| \bigl( \Theta [\gamma ]\Lambda (x)
\bigr) 
x

\bigm| \bigm| \bigm| \leq c2(\| \gamma \| \infty + \| \gamma x\| \infty ),(4.40)

| (R[\gamma ])t| \leq c3(| \zeta | + \| \zeta \| L1),(4.41)

where c1, c2, and c3 are positive constants, and

\Theta [\gamma ] = R[\gamma ] - D(x), D(x) =

\biggl( 
 - e\delta xB(\Lambda  - (x))

 - 1 0
0 e - \delta x(\Lambda +(x))

 - 1

\biggr) 
.(4.42)

Proof. Denote \scrD n(x) as the set of n\times n diagonal matrices with C1 elements. Let
\Lambda (x) := diag(\Lambda 1(x), . . . ,\Lambda n(x)) \in \scrD n(x) be such that \Lambda i(x) \not = \Lambda j(x) (i \not = j \forall x \in [0, 1])
holds. Notice that D \in \scrD n(x). Based on the proof in [6, Lemma 4.1], one can easily
see that there exist a positive real number \eta and a map

\scrN : \{ M \in \scrM n,n(\BbbR ;x); \| M(x) - \Lambda (x)\| C1 < \eta \} \rightarrow \scrS n

of class C\infty such that

\scrN (\Lambda (x)) = D(x)(4.43)

and

\scrN (M)M  - MT\scrN (M) = 0 \forall M \in \scrM n,n(\BbbR ;x), \| M(x) - \Lambda (x)\| C1 < \eta .(4.44)
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It then suffices to define R[\gamma ] by

R[\gamma ] = \scrN (\Lambda (x) - F1[\gamma ]).(4.45)

Moreover, by the regularity of \scrN and Lemmas B.2--B.3, one can show that

| R[\gamma ]| \leq | D(x)| + | R[\gamma ] - D(x)| (4.46)

\leq c4 + c5| F1[\gamma ]| 
\leq c4 + c6\| \gamma \| \infty ,\bigm| \bigm| \bigm| \bigl( (R[\gamma ] - D(x))\Lambda (x)

\bigr) 
x

\bigm| \bigm| \bigm| \leq | (R[\gamma ] - D(x))x\Lambda (x)| + | (R[\gamma ] - D(x))\Lambda x(x)| (4.47)

\leq c7| F12| + c8| F1| 
\leq c9(\| \gamma \| \infty + \| \gamma x\| \infty ),

and

| R[\gamma ]t| \leq c10

\bigm| \bigm| \bigm| \partial F1[\gamma ]

\partial t

\bigm| \bigm| \bigm| (4.48)

\leq c10| F11[\gamma , \zeta ]| (4.49)

\leq c11(| \zeta | + \| \zeta \| L1).(4.50)

Here ci (i = 4, 5, . . . , 10) are positive constants. This concludes the proof of
Lemma 4.1.

Define

V2(t) =

\int 1

0

\zeta T (t, x)R[\gamma ]\zeta (t, x)dx.(4.51)

Using (4.38) and noting R[\gamma ] is symmetric, by straightforward computations, one can
show that

\.V2(t) = XI +XII +XIII +XIV +XV

with

XI =

\int 1

0

\zeta T (t, x)(R[\gamma ](\Lambda (x) - F1[\gamma ]))x\zeta (t, x)dx,

XII =  - [\zeta T (t, x)R[\gamma ](\Lambda (x) - F1[\gamma ])\zeta (t, x)]
x=1
x=0,

XIII =

\int 1

0

\zeta (t, x)(R[\gamma ])t\zeta (t, x)dx,

XIV = 2

\int 1

0

\zeta T (t, x)R[\gamma ]F5[\gamma , \gamma x, \zeta , \zeta x]dx+ 2

\int 1

0

\zeta T (t, x)R[\gamma ]F6[\gamma , \zeta ]dx,

XV = 2

\int 1

0

\zeta T (t, x)R[\gamma ]G(x)\zeta (t, 0)dx+2

\int 1

0

\zeta T (t, x)R[\gamma ]G\prime 
bou[\gamma ](t)dx.

For XII and XV , by the boundary conditions (4.36)--(4.37) and similar computations

D
ow

nl
oa

de
d 

03
/1

9/
19

 to
 5

2.
18

.6
3.

16
9.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

BOUNDARY STABILIZATION FOR HYPERBOLIC BALANCE LAWS 983

as in (2.19) and (2.20), under the assumption that \| \gamma \| \infty is suitably small, we have

XII +XV =  - [\zeta T (t, x)R[\gamma ](\Lambda (x) - F1[\gamma ])\zeta (t, x)]
x=1
x=0

+ 2

\int 1

0

\zeta T (t, x)R[\gamma ]G(x)\zeta (t, 0)dx+2

\int 1

0

\zeta T (t, x)R[\gamma ]G\prime 
bou[\gamma ](t)dx

=  - [\zeta T (t, x)(D(x)\Lambda (x) + \Theta [\gamma ]\Lambda (x) - D(x)F1[\gamma ] - \Theta [\gamma ]F1[\gamma ])\zeta (t, x)]
x=1
x=0

+ 2

\int 1

0

\zeta T (t, x)D(x)G(x)\zeta (t, 0)dx+ 2

\int 1

0

\zeta T (t, x)\Theta [\gamma ]G(x)\zeta (t, 0)dx

+ 2

\int 1

0

\zeta T (t, x)R[\gamma ]G\prime 
bou[\gamma ](t)dx

\leq  - \zeta  - (t, 0)
T
\Bigl( 
B  - S  - M\mu e\delta \scrC  - C10\| \gamma \| \infty Im

\Bigr) 
\zeta  - (t, 0)

+

\int 1

0

e - \delta x\zeta +(t, x)
T \zeta +(t, x)dx+mM\mu 

\int 1

0

e\delta x\zeta  - (t, x)
TB\zeta  - (t, x)dx

+ C11\| \gamma \| \infty V2

(4.52)

with S in (2.25).
On the other hand, by using Lemmas 4.2 and B.3 (see also [9]), there exists \delta 3,

for \| \gamma \| \infty < \delta 3, such that one has

XI \leq  - \delta 

\int 1

0

e - \delta x\zeta +(t, x)
T \zeta +(t, x)dx - \delta 

\int 1

0

e\delta x\zeta  - (t, x)
TB\zeta  - (t, x)dx

+ C12\| \zeta \| 2L2(\| \gamma \| \infty + \| \gamma x\| \infty ),(4.53)

XIII \leq C13\| \zeta \| 2L2\| \zeta \| \infty ,(4.54)

XIV \leq C14

\Bigl( 
\| \zeta \| 2L2(\| \gamma \| \infty + \| \gamma x\| \infty ) + \| \zeta \| L2 | \zeta (t, 0)| | \gamma (t, 0)| 

\Bigr) 
\leq C15

\bigl( 
\| \zeta \| 2L2(\| \gamma \| \infty + \| \gamma x\| \infty ) + \| \zeta \| L2(| \zeta (t, 0)| 2 + | \gamma (t, 0)| 2)

\bigr) 
\leq C16

\bigl( 
\| \zeta \| 2L2(\| \gamma \| \infty + \| \gamma x\| \infty ) + \| \zeta \| L2(| \zeta  - (t, 0)| 2 + | \gamma  - (t, 0)| 2)

\bigr) 
.(4.55)

Combining all the calculations (4.52)--(4.55) and noting \| \zeta \| L2 \leq C17

\surd 
V2, we obtain

the following.

Proposition 4.3. For any given \lambda > 0, choosing B given by (4.28), there exists
\delta 4 > 0, such that if \| \gamma \| \infty + \| \zeta \| L2 < \delta 4, one has

\.V2(t) \leq  - \lambda V2 + C18

\Bigl( \bigl( 
\| \gamma \| \infty + \| \zeta \| \infty 

\bigr) 
V2 + \| \zeta \| L2 | \gamma  - (t, 0)| 2

\Bigr) 
 - C19| \zeta  - (t, 0)| 2.(4.56)

4.4. Analyzing the growth of \| \bfitgamma \bfitt \bfitt \| \bfitL \bftwo . We next deal with \| \gamma tt\| L2 . Define
\theta = \gamma tt. Taking a partial derivative with respect to t for (4.31), one obtains an
equation of \theta :

\theta t + [\Lambda (x) - F1[\gamma ]]\theta x = G(x)\theta (t, 0) + F7[\gamma , \gamma x, \zeta , \zeta x, \theta ] + F8[\gamma , \zeta , \theta ]+G\prime \prime 
bou[\gamma ](t),

(4.57)
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984 HU, VAZQUEZ, DI MEGLIO, AND KRSTIC

where

F7 = \scrK 1[F11[\gamma , \zeta ]\zeta ] +

\int x

0

K(x, \xi )F12[\gamma , \gamma x]\theta (\xi )d\xi +\scrK 1[F1[\gamma ]\theta ]

+

\int x

0

K(x, \xi )F14[\gamma , \gamma x, \zeta , \zeta x]\zeta (\xi )d\xi +K(x, 0)
\partial \Lambda NL

\partial \gamma 
(0, \gamma (0))\zeta (0)\zeta (0)

+ K(x, 0)\Lambda NL(0, \gamma (0))\theta (0) +\scrK [F11[\gamma , \zeta ]\zeta x] +\scrK [F13[\gamma , \zeta , \theta ]\gamma x]+F11[\gamma ]\zeta x,

(4.58)

F8 = 2\scrK [F11[\gamma , \zeta ]\scrL 1[\zeta ]] +\scrK [F1[\gamma ]\scrL 1[\theta ]] +\scrK [F13[\gamma , \zeta , \theta ]\scrL 1[\gamma ]] +\scrK [F22[\gamma , \zeta , \theta ]],

(4.59)

G\prime 
bou[\gamma ](t) = K(x, 0)\Lambda (0)

\Biggl( 
0 0

\partial 2GNL(\gamma  - (t,0))
\partial \gamma 2

 - 
\zeta  - (t, 0)\zeta  - (t, 0)) 0

\Biggr) 

+ K(x, 0)\Lambda (0)

\Biggl( 
0 0

\partial GNL(\gamma  - (t,0))
\partial \gamma  - 

\zeta  - (t, 0)\theta  - (t, 0)) 0

\Biggr) 
(4.60)

with

F13 =
\partial \Lambda 2

NL

\partial w2
(x,\scrL [\gamma ])\scrL [\zeta ]\scrL [\zeta ] + \partial \Lambda NL

\partial w
(x,\scrL [\gamma ])\scrL [\theta ],(4.61)

F14 =
\partial \Lambda 2

NL

\partial w2
(x,\scrL [\gamma ])\scrL [\zeta ](\gamma x + \scrL 1[\gamma ]) +

\partial \Lambda NL

\partial w
(x,\scrL [\gamma ])(\zeta x + \scrL 1[\zeta ])

+
\partial 2\Lambda NL

\partial x\partial w
(x,\scrL [\gamma ])\scrL [\zeta ],

(4.62)

F22 =
\partial 2fNL

\partial w2
(x,\scrL [\gamma ])\scrL [\zeta ]\scrL [\zeta ] + \partial fNL

\partial w
(x,\scrL [\gamma ])\scrL [\theta ].(4.63)

The boundary conditions of \theta are given by

x = 0 : \theta +(t, 0) = Q\theta  - (t, 0) +
\partial GNL

\partial \gamma  - 

\Bigl( 
\gamma  - (t, 0)

\Bigr) 
\theta  - (t, 0)

+
\partial 2GNL

\partial \gamma 2
 - 

\Bigl( 
\gamma  - (t, 0)

\Bigr) 
\zeta  - (t, 0)\zeta  - (t, 0)(4.64)

and

x = 1 : \theta  - (t, 1) = 0,(4.65)

where \theta  - \in \BbbR m, \theta + \in \BbbR n - m are defined by requiring that \theta := (\theta  - , \theta +)
T .

In order to control \| \theta \| L2 , we introduce

V3(t) =

\int 1

0

\theta T (t, x)R[\gamma ]\theta (t, x)dx,(4.66)

then it is easy to see that

\.V3(t) = XV I +XV II +XV III +XIX +XX(4.67)

with

XV I =

\int 1

0

\theta T (t, x)(R[\gamma ](\Lambda (x) - F1[\gamma ]))x\theta (t, x)dx,
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XV II =  - [\theta T (t, x)R[\gamma ](x)(\Lambda (x) - F1[\gamma ](x))\theta (t, x)]
x=1
x=0,

XV III =

\int 1

0

\theta T (t, x)(R[\gamma ])t\theta (t, x)dx,

XIX = 2

\int 1

0

\theta T (t, x)R[\gamma ]F7[\gamma , \gamma x, \zeta , \zeta x, \theta ]dx+ 2

\int 1

0

\theta T (t, x)R[\gamma ]F8[\gamma , \zeta , \theta ]dx,

XX = 2

\int 1

0

\theta T (t, x)R[\gamma ]G(x)\theta (t, 0)dx+2

\int 1

0

\theta T (t, x)R[\gamma ]G\prime \prime 
bou[\gamma ](t)dx.

Let us first look at the second and the last terms of (4.67) (i.e., XVII and XX), by
some straight computations; noting that \| \gamma \| \infty + \| \zeta \| \infty is suitably small, one gets
(4.68)
XV II +XX

\leq  - \theta  - (t, 0)
T
\Bigl( 
B  - S  - M\mu e\delta \scrC  - C20(\| \zeta \| \infty + \| \theta \| L2\| \gamma \| \infty + \| \gamma \| \infty )Im

\Bigr) 
\theta  - (t, 0)

+C21\| \theta \| L2 | \zeta  - (t, 0)| 2 + C22| \zeta  - (t, 0)| 4 + C23| \theta  - (t, 0)| | \zeta  - (t, 0)| 2

+

\int 1

0

e - \delta x\theta +(t, x)
T \theta +(t, x)dx+mM\mu 

\int 1

0

e\delta x\theta  - (t, x)
TB\theta  - (t, x)dx+ C24\| \gamma \| \infty V3

\leq  - \theta  - (t, 0)
T
\Bigl( 
B  - S  - M\mu e\delta \scrC  - C25(\| \zeta \| \infty + \| \theta \| L2\| \gamma \| \infty + \| \gamma \| \infty )Im

\Bigr) 
\theta  - (t, 0)

+C26(\| \theta \| L2 + \| \zeta \| \infty )| \zeta  - (t, 0)| 2 + C22| \zeta  - (t, 0)| 4 +
\int 1

0

e - \delta x\theta +(t, x)
T \theta +(t, x)dx

+mM\mu 

\int 1

0

e\delta x\theta  - (t, x)
TB\theta  - (t, x)dx+ C25\| \gamma \| \infty V3.

On the other hand, applying Lemmas B.4--B.8, one has
(4.69)
XIX

\leq C26(1 + \| \gamma \| \infty + \| \gamma x\| \infty )\| \zeta \| \infty \| \theta \| L2\| \zeta \| L2 + C27(1 + \| \gamma \| \infty + \| \gamma x\| \infty )\| \theta \| L2\| \zeta \| 2L2

+ C28(\| \zeta \| L\infty \| \theta \| L2\| \zeta x\| L2 +\| \zeta \| 2L2\| \theta \| L2 +\| \theta \| L2\| \zeta \| L2\| \zeta x\| L2 +\| \theta \| 2L2(\| \gamma \| \infty +\| \gamma x\| \infty ))

+ C29(\| \gamma \| L2 + \| \gamma \| \infty )\| \theta \| 2L2 + C30\| \theta \| L2(| \zeta (t, 0)| 2 + | \gamma (t, 0)| | \theta (t, 0)| )
\leq C31(\| \zeta \| \infty \| \theta \| L2\| \zeta \| L2 +\| \theta \| L2\| \zeta \| 2L2)+C32\| \theta \| L2(| \zeta  - (t, 0)| 2+ | \gamma  - (t, 0)| 2+ | \theta  - (t, 0)| 2)
+ C33(\| \zeta \| L\infty \| \theta \| L2\| \zeta x\| L2 +\| \zeta \| 2L2\| \theta \| L2 +\| \theta \| L2\| \zeta \| L2\| \zeta x\| L2 +\| \theta \| 2L2(\| \gamma \| \infty +\| \gamma x\| \infty ))

\leq C34(V
1
2
1 V

1
2
3 V

1
2
2 + V

1
2
3 V2 + V

1
2
2 V3 + V1V

1
2
3 + V3V

1
2
1 + V

3
2
3 )

+ C35\| \theta \| L2(| \zeta  - (t, 0)| 2 + | \gamma  - (t, 0)| 2 + | \theta  - (t, 0)| 2).

Then by similar procedures in section 4.3 for XI, we have

XV I \leq  - \delta 

\int 1

0

e - \delta x\theta +(t, x)
T \theta +(t, x)dx - \delta 

\int 1

0

e\delta x\theta  - (t, x)
TB\theta  - (t, x)dx

+ C36\| \theta \| 2L2(\| \gamma \| \infty + \| \gamma x\| \infty ),(4.70)

XV III \leq C37\| \theta \| 2L2\| \zeta \| \infty (4.71)

which, together with (4.68)--(4.69), yields the following.
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Proposition 4.4. For any given \lambda > 0, there exists \delta 5 > 0, such that

\.V3 \leq  - \lambda V3 + C38(V
1
2
1 V

1
2
3 V

1
2
2 + V

1
2
3 V2 + V

1
2
2 V3 + V1V

1
2
3 + V3V

1
2
1 + V

3
2
3 )

+ C39(\| \theta \| L2 + \| \zeta \| \infty )(| \zeta  - (t, 0)| 2 + | \gamma  - (t, 0)| 2)
+ C40(\| \gamma \| \infty + \| \zeta \| \infty + \| \gamma x\| \infty )V3,

(4.72)

provided that \| \gamma \| \infty + \| \zeta \| \infty + \| \theta \| L2 \leq \delta 5.

4.5. Proof of the \bfitH \bftwo stability for \bfitgamma . In this subsection, we analyze the fast
decay of \| \gamma (t, \cdot )\| H2(0,1) as t \rightarrow +\infty , which is sufficient to prove Theorem 1.1 because
of the equivalence of the H2 norm between \gamma and u. Similar proofs can also be found
in [6, 7, 13]. Denote W = V1 + V2 + V3, by Propositions 4.1, 4.3, and 4.4 as well as
Lemma B.8, one can show that for any given \lambda > 0, there exists \delta 6 > 0 and C41 > 0,
such that

\.W \leq  - \lambda W + C41W
3
2 ,(4.73)

provided that \| \gamma \| \infty + \| \zeta \| \infty + \| \theta \| L2 \leq \delta 6. Then, for any \nu with 0 < \nu < \lambda , there
exists \delta 7 such that

C41W
3
2 < (\lambda  - \nu )W \forall W < \delta 7,(4.74)

which, combining with (4.73), yields

\.W \leq  - \nu W \leq 0 \forall W \leq \delta 7,(4.75)

i.e.,

W (t) \leq e - \nu tW (0) \forall W \leq \delta 7(4.76)

under the assumption that both \| \gamma \| \infty and \| \zeta \| \infty are small enough. Therefore, let
T \ast > 0 be sufficiently large, \exists \~\delta > 0, such that for any given \gamma 0 \in H2(0, 1;\BbbR n) with
\| \gamma 0\| H2(0,1) \leq \~\delta , which also satisfies the C1 compatibility conditions at the points
(t, x) = (0, 0) and (0, 1), by noting (4.16)--(4.18) and using Lemma 1.1 (see especially
[2, Appendix B]), one finds that there exists \scrQ = \scrQ (\~\delta ) > 0 with lim\~\delta \rightarrow 0+ \scrQ (\~\delta ) = 0
such that there exists a unique solution \gamma = \gamma (t, x) in C0([0, T \ast );H2((0, 1);\BbbR n))
satisfying

\| \gamma (t, \cdot )\| H2(0,1) \leq \scrQ (\~\delta ) \forall t \in [0, T \ast ].(4.77)

Since by the classical Sobolev's inequality (B.33), one has

\| \gamma (t, \cdot )\| \infty \leq C42\| \gamma (t, \cdot )\| H2(0,1) \forall t \in [0, T \ast ],(4.78)

one can choose \~\delta small enough such that \| \gamma (t, \cdot )\| \infty is sufficiently small. Then by
Lemma B.6 and Sobolev's inequality (B.33) again, one has

\| \zeta (t, \cdot )\| \infty \leq C43\| \gamma (t, \cdot )\| H2(0,1) \forall t \in [0, T \ast ](4.79)

which implies that Lemmas B.6--B.8 and Proposition B.5 valid at t = 0 and that

\| \theta (t, \cdot )\| L2 \leq C44\| \gamma 0\| H2(0,1) \forall t \in [0, T \ast ]
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which is also small enough if \| \gamma 0\| H2(0,1) is chosen to be small. On the other hand,
noting Proposition B.5 and Lemmas B.6--B.8, it is easy to see that there exists C45 \geq 1
such that (\| \gamma \| \infty + \| \zeta \| \infty should be small enough, which is indeed the case because of
(4.78)--(4.79))

1

C45
W (t) \leq \| \gamma (t, \cdot )\| H2(0,1) \leq C45W (t).(4.80)

Thus, by (4.80), we have

W (t) \leq C45\| \gamma (t, \cdot )\| H2(0,1) \forall t \in [0, T \ast ](4.81)

which implies W (t) \leq \delta 7 if we choose \~\delta small enough. Combining with (4.76) and
(4.80), we obtain

\| \gamma (t, \cdot )\| H2(0,1) \leq C2
45e

 - \nu t\| \gamma 0\| H2(0,1) \forall t \in [0, T \ast ].(4.82)

Then, if T \ast > 0 is chosen such that

C2
45e

 - \nu T\ast 
\leq 1,(4.83)

i.e.,

T \ast \geq 2
lnC45

\nu 
,(4.84)

it is easy to repeat the above procedures on the time interval [T \ast 2T \ast ], [2T \ast 3T \ast ], . . . ,
which yields a unique global solution of \gamma in C0([0,+\infty ), H2((0, 1);\BbbR n)). In addition,
noticing that (4.77) holds, one has

\| \gamma (t, \cdot )\| H2(0,1) \leq \scrQ (\~\delta ) \forall t \in [0,+\infty ).(4.85)

Then, applying the above arguments (4.77)--(4.82) (just change the time interval
[0, T \ast ] to [0,+\infty )) a second time, we get

\| \gamma (t, \cdot )\| H2(0,1) \leq C2
45e

 - \nu t\| \gamma 0\| H2(0,1) \forall t \in [0,+\infty ).(4.86)

Since the H2 norms of u and \gamma are also equivalent (see the transformation (2.40) and
its inverse (2.53)), we immediately obtain the conclusion of Theorem 1.1.

Appendix A. In this section, we will show the well-posedness and piecewise
smoothness of the kernels K and L. Let

\rho si (x) := \phi  - 1
s (\phi i(x)) \forall 1 \leq i \leq s \leq m,(A.1)

\rho m+1
i (x) := 0 \forall i = 1, . . . ,m(A.2)

with \phi i (1 \leq i \leq n) defined in (2.29). It is easy to see that

0 = \rho m+1
i (x) < \rho mi (x) < \cdot \cdot \cdot < \rho ii(x) = x, i = 1, . . . ,m,(A.3)
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and

d\rho si (x)

dx
=

\lambda s(\rho 
s
i (x))

\lambda i(x)
, x \in [0, 1], \forall 1 \leq i \leq s \leq m,(A.4)

provided that \Lambda \in C1[0, 1].
Define also

\scrT s
i = \{ (x, \xi )| 0 \leq x \leq 1, \rho s+1

i (x) \leq \xi \leq \rho si (x)\} \forall 1 \leq i \leq s \leq m;(A.5)

then \scrT =
\bigcup m

s=i \scrT s
i (\forall 1 \leq i \leq m) and meas(\scrT s

i

\bigcap 
\scrT k
i ) = 0 (\forall 1 \leq i \leq s, k \leq m, s \not = k).

Then one has the following theorems.

Theorem A.1. Let N \in \BbbN +. Under the assumption that \sigma ij \in CN [0, 1], \lambda i \in 
CN [0, 1] (i, j = 1, . . . , n), there exists a unique piecewise CN (\scrT ) solution K to the
hyperbolic system (2.45)--(2.49) with K(x, 0) \in CN [0, 1]. Moreover,

(1) for the case 1 \leq i \leq m, 1 \leq j \leq n, suppose that the CN compatibility
conditions at the point (x, \xi ) = (1, 1) are satisfied, then Kij are CN functions
on each \scrT s

i (\forall 1 \leq i \leq s \leq m) and satisfy the continuous conditions on the
curves \xi = \rho si (x) (s \not = j),

Kij(x, \rho 
s
i (x) + 0) = Kij(x, \rho 

s
i (x) - 0),\forall 1 \leq i < s \leq m, 1 \leq j \leq n, and j \not = s;

(A.6)

(2) for the case m + 1 \leq i \leq n, 1 \leq j \leq n, Kij are CN (\scrT ) functions, provided
that the CN compatibility conditions at the points (x, \xi ) = (1, 1) and (0, 0)
are satisfied, respectively.

Proof. We divide the proof into two parts. We first prove (2). For this, we only
prove the case N = 1. For N \geq 1, the results can be obtained by induction. On
the case N = 1, one can, in fact, refer to [15] and Remark A.2 to find unique C0(\scrT )
kernels Kij (i = m + 1, . . . , n, j = 1, . . . , n) for the boundary problem (2.45), (2.46),
(2.48) and (2.49) with m+ 1 \leq i \leq n, 1 \leq j \leq n, provided that the C0 compatibility
conditions are satisfied at the the points (x, \xi ) = (1, 1) (see, in particular, (2.50) with
m+1 \leq i < j \leq n) and (0, 0), respectively. Though only constant coupling coefficients
and transport velocities are considered, the method in [15] straightforwardly extends
to spatially varying coefficients with more involved technical developments.

Next, we will improve the regulality of Kij (m + 1 \leq i \leq n, 1 \leq j \leq n). Let
\scrH ij = \partial xKij(x, \xi ) and \scrY ij = \partial \xi Kij(x, \xi ). By differentiating with respect to x in
(2.45), one can show that

(A.7)

\lambda i(x)\partial x\scrH ij(x, \xi ) + \lambda j(\xi )\partial \xi \scrH ij(x, \xi )

=  - 
n\sum 

k=1

\bigl( 
\sigma kj(\xi ) + \delta kj\lambda 

\prime 
j(\xi )

\bigr) 
\scrH ik(x, \xi ) - \lambda \prime 

i(x)\scrH ij(x, \xi ).

Differentiating the boundary conditions in (2.46), we have

\scrH ij(x, x) + \scrY ij(x, x) = k\prime ij(x) for m+ 1 \leq i \leq n, 1 \leq j \leq n.(A.8)

Next, differentiating the boundary conditions in (2.48)--(2.49), we have

\scrY ij(1, \xi ) = (k
(1)
ij )\prime (\xi ) for m+ 1 \leq i < j \leq n(A.9)
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and the boundary conditions for \scrH ij (n \geq i \geq j \geq m+ 1) on \xi = 0:

\scrH ij(x, 0) = (k
(2)
ij )\prime (x) for m+ 1 \leq j \leq i \leq n.(A.10)

In view of (2.45), it is easy to see that

\lambda i(x)\scrH ij(x, x) + \lambda j(x)\scrY ij(x, x) =  - 
n\sum 

k=1

\bigl( 
\sigma kj(x) + \delta kj\lambda 

\prime 
j(x)

\bigr) 
Kik(x, x),(A.11)

\lambda i(1)\scrH ij(1, \xi ) + \lambda j(\xi )\scrY ij(1, \xi ) =  - 
n\sum 

k=1

\bigl( 
\sigma kj(\xi ) + \delta kj\lambda 

\prime 
j(\xi )

\bigr) 
Kik(1, \xi ).(A.12)

Combining (A.8) and (A.11), we have

(A.13) \scrH ij(x, x) =

\lambda j(x)k
\prime 
ij(x) +

n\sum 
k=1

\bigl( 
\sigma kj(x) + \delta kj\lambda 

\prime 
j(x)

\bigr) 
Kik(x, x)

\lambda j(x) - \lambda i(x)

for m+ 1 \leq i \leq n, 1 \leq j \leq n(i \not = j).

Similarly, plugging (A.9) into (A.12), one immediately obtains, for m+1 \leq i < j \leq n,
we have

\scrH ij(1, \xi ) =  - 1

\lambda i(1)

\Biggl( 
n\sum 

k=1

\bigl( 
\sigma kj(\xi ) + \delta kj\lambda 

\prime 
j(\xi )

\bigr) 
Kik(1, \xi ) + \lambda j(\xi )(k

(1))\prime ij(\xi )

\Biggr) 
,(A.14)

which is a C0[0, 1] function. By the theory in [15] (see also Remark A.2), we can prove
that there exists a unique \scrH \in C0(\scrT ) for the boundary value problem (A.7), (A.10)
and (A.13)--(A.14), provided that the corresponding C0 compatibility conditions are
satisfied at the points (x, \xi ) = (1, 1) (see, in particular, (2.51) with m+1 \leq i < j \leq n)
and (0, 0), respectively. Noting (2.45), we know that \scrY shares the same regularity as
\scrH . Kij(x, 0) and Kij(x, x) (i = m+1, . . . , n, j = 1, . . . , n) are C1[0, 1] functions. This
then finishes the proof of (2).

We are now in the position to prove (1). Similarly, we only prove the case N = 1.
For N \geq 1, the results can be obtained by induction. For the case 1 \leq i \leq m, 1 \leq 
j \leq n, the corresponding compatibility conditions on the point (x, \xi ) = (0, 0) can not
be satisfied beforehand (see, in particular, the boundary conditions (2.46) and (2.47)
on the point (x, \xi ) = (0, 0) with 1 \leq i < j \leq m). Therefore, jumps may happen
when, for example, taking the derivatives of space on the transformation (2.40) and
using integrations by parts. Here, we point out that this is not an issue thanks to
the fact that the possible discontinuity of Kij(x, \xi ) (1 \leq i < j \leq m) is just along
its characteristic curve, respectively. Suppose that the transformation (2.40) with
1 \leq i \leq m is given by

\gamma i(t, x) = wi(t, x) - 
n\sum 

j=1

m\sum 
s=i

\int \rho s
i (x)

\rho s+1
i (x)

Ks
ij(x, \xi )wj(t, \xi )d\xi , i = 1, . . . ,m,(A.15)

where Ks
ij (s = i, . . . ,m) are assumed to be suitable smooth functions on the domain

\scrT s
i = \{ (x, \xi )| 0 \leq x \leq 1, \rho s+1

i (x) \leq \xi \leq \rho si (x)\} . Thus the computations for (2.40) with
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1 \leq i \leq m should be
(A.16)

\partial t\gamma i(t, x) =  - \lambda i(x)\partial xwi(t, x) +

n\sum 
j=1

\sigma ij(x)wj(t, x)

 - 
n\sum 

j=1

m\sum 
s=i

\int \rho s
i (x)

\rho s+1
i (x)

Ks
ij(x, \xi )

\Biggl( 
 - \lambda j(\xi )\partial \xi wj(t, \xi ) +

n\sum 
k=1

\sigma jk(\xi )wk(t, \xi )

\Biggr) 
d\xi 

=  - \lambda i(x)\partial xwi(t, x) +

n\sum 
j=1

\sigma ij(x)wj(t, x)

+

n\sum 
j=1

m\sum 
s=i

Ks
ij(x, \rho 

s
i (x))\lambda j(\rho 

s
i (x))wj(t, \rho 

s
i (x))

 - 
n\sum 

j=1

m\sum 
s=i

Ks
ij(x, \rho 

s+1
i (x))\lambda j(\rho 

s+1
i (x))wj(t, \rho 

s+1
i (x))

 - 
n\sum 

j=1

m\sum 
s=i

\int \rho s
i (x)

\rho s+1
i (x)

\partial \xi K
s
ij(x, \xi )\lambda j(\xi )wj(t, \xi )

 - 
n\sum 

j=1

m\sum 
s=i

\int \rho s
i (x)

\rho s+1
i (x)

Ks
ij(x, \xi )\lambda 

\prime 
j(\xi )wj(t, \xi )

 - 
n\sum 

j=1

m\sum 
s=i

n\sum 
k=1

\int \rho s
i (x)

\rho s+1
i (x)

Ks
ij(x, \xi )\sigma jk(\xi )wk(t, \xi )d\xi 

and

(A.17)

\partial x\gamma i(t, x) = \partial xwi(t, x) - 
n\sum 

j=1

m\sum 
s=i

\lambda s(\rho 
s
i (x))

\lambda i(x)
Ks

ij(x, \rho 
s
i (x))wj(t, \rho 

s
i (x))

+

n\sum 
j=1

m - 1\sum 
s=i

\lambda s+1(\rho 
s+1
i (x))

\lambda i(x)
Ks

ij(x, \rho 
s+1
i (x))wj(t, \rho 

s+1
i (x))

 - 
n\sum 

j=1

m\sum 
s=i

\int \rho s
i (x)

\rho s+1
i (x)

\partial xK
s
ij(x, \xi )wj(t, \xi )d\xi .

Then

\partial t\gamma i(t, x) + \lambda i(x)\partial x\gamma i(t, x) =

i - 1\sum 
j=1

gij(x)\gamma (t, 0)(A.18)

yields the kernels equations

(A.19)

\lambda i(x)\partial xK
s
ij(x, \xi ) + \lambda j(\xi )\partial \xi K

s
ij(x, \xi )

=  - 
n\sum 

k=1

(\sigma kj(\xi ) + \delta kj\lambda 
\prime 
j(\xi ))K

s
ik(x, \xi ) \forall 1 \leq i \leq s \leq m, 1 \leq j \leq n

and the boundary conditions

Ki
ij(x, x) =

\sigma ij(x)

\lambda i(x) - \lambda j(x)
, j \not = i,(A.20)
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Km
ij (x, 0) =  - 1

\lambda j(0)

n - m\sum 
k=1

\lambda m+k(0)K
m
i,m+k(x, 0)qk,j \forall 1 \leq i \leq j \leq m(A.21)

with continuous conditions on the curves \xi = \rho si (x) (s \not = j)

Ks - 1
ij (x, \rho si (x)) = Ks

ij(x, \rho 
s
i (x)) \forall 1 \leq i < s \leq m, 1 \leq j \leq n, and j \not = s.(A.22)

The artificial boundary conditions (see (2.48)) for Ks
ij are given by

Ks
ij(1, \xi ) = k

(1)
ij (\xi ), \xi \in [\rho s+1

i (1), \rho si (1)], s = i, . . . ,m, 1 \leq j < i \leq m(A.23)

which satisfy the desired compatibility conditions at the points s = \rho i+1
i (1), . . . , \rho mi (1),

respectively. To prove the continuity of the kernel equations

Ks
ij (i = 1, . . . ,m, s = i, . . . ,m, j = 1, . . . , n)

on each piece \scrT s
i , we can classically transform the differential equations (A.19) into

the integral equations. Thanks to the continuous conditions (A.6) for Ks
ij with s \not = j

along \xi = \rho si (x), such integral equations have the same form as the one given in
[15, section VI.A]. Therefore, by using the method of successive approximations and
the same argument in [15, section VI] (see also Remark A.2), one can obtain the C0

kernels Ks
ij on each \scrT s

i which satisfies (A.19)--(A.23).
Next, we will improve the regularity of Ks

ij (1 \leq i \leq s \leq m, 1 \leq j \leq n). Let
\scrH s

ij = \partial xK
s
ij(x, \xi ) and \scrY s

ij = \partial \xi K
s
ij(x, \xi ). By differentiating with respect to x in

(A.19), one can show that \forall i = 1, . . . ,m, s = i, . . . ,m, j = 1, . . . , n,

(A.24)

\lambda i(x)\partial x\scrH s
ij(x, \xi ) + \lambda j(\xi )\partial \xi \scrH s

ij(x, \xi )

=  - 
n\sum 

k=1

(\sigma kj(\xi ) + \delta kj\lambda 
\prime 
j(\xi ))\scrH s

ik(x, \xi ) - \lambda \prime 
i(x)\scrH s

ij(x, \xi ).

Differentiating the boundary conditions in (A.20) and (A.21), we have

\scrH i
ij(x, x) + \scrY i

ij(x, x) = k\prime ij(x) for 1 \leq i \leq m, 1 \leq j \leq n (i \not = j),

(A.25)

\scrH m
ij (x, 0) =  - 1

\lambda j(0)

n - m\sum 
k=1

\lambda m+k(0)\scrH m
i,m+k(x, 0)qk,j for 1 \leq i \leq j \leq m.

(A.26)

By noting (A.19), one has

(A.27) \scrH i
ij(x, x) =

\lambda j(x)k
\prime 
ij(x) +

n\sum 
k=1

\bigl( 
\sigma kj(x) + \delta kj\lambda 

\prime 
j(x)

\bigr) 
Ki

ik(x, x)

\lambda j(x) - \lambda i(x)

for 1 \leq i \leq m, 1 \leq j \leq n (i \not = j).

Next, differentiating the continuous conditions on \xi = \rho si (x) (s \not = j) in (A.6), for
s = i+ 1, . . . ,m, m \geq i \geq j \geq 1 or s = i+ 1, . . . , j  - 1, j + 1, . . . ,m,m \geq j > i \geq 1 or
1 \leq i \leq s \leq m, m+ 1 \leq j \leq n (i.e., s \not = j), we have

\scrH s - 1
ij (x, \rho si (x)) +

\lambda s(\rho 
s
i (x))

\lambda i(x)
\scrY s - 1
ij (x, \rho si (x)) = \scrH s

ij(x, \rho 
s
i (x)) +

\lambda s(\rho 
s
i (x))

\lambda i(x)
\scrY s
ij(x, \rho 

s
i (x)),

(A.28)D
ow
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which, combining with (A.19), yields that

\scrH s - 1
ij (x, \rho si (x)) =\scrH s

ij(x, \rho 
s
i (x))+

\lambda s(\rho 
s
i (x))\sigma sj(\rho 

s
i (x))(K

s - 1
is (x, \rho si (x)) - Ks

is(x, \rho 
s
i (x)))

\lambda i(x)(\lambda j(\rho si (x)) - \lambda s(\rho si (x)))
.

(A.29)

Similarly, plugging (A.23) into (A.19), one immediately obtains, for s = i+ 1, . . . ,m,
1 \leq j < i \leq m, we have

(A.30) \scrH s
ij(1, \xi ) =  - 1

\lambda i(1)

\Biggl( 
n\sum 

k=1

(\sigma kj(\xi ) + \delta kj\lambda 
\prime 
j(\xi ))K

s
ik(1, \xi ) - \lambda j(\xi )\partial \xi k

(1)
ij (\xi )

\Biggr) 
,

\xi \in [\rho s+1
i (1), \rho si (1)].

Then by following the same argument in [15, section VI], one can obtain the C0 kernels
\scrH s

ij (1 \leq i \leq s \leq m, 1 \leq j \leq n) on each \scrT s
i which satisfy (A.24) and the boundary

conditions (A.26), (A.27), (A.29), and (A.30). Noting (A.19), we know that \scrY s shares
the same regularity as \scrH s. Once Ks

ij (i = 1, . . . ,m, s = i, . . . ,m, j = 1, . . . , n) exist

in C1(\scrT s
i ), respectively, one can easily see that Kij(x, 0) \equiv Km

ij (x, 0) and Kij(x, x) \equiv 
Ki

ij(x, x) (1 \leq i \leq m, 1 \leq j \leq n) are C1[0, 1] functions. These complete the proof of
(1).

Remark A.1. Due to the potential jump of Ks - 1
is and Ks

is along \xi = \rho si (x), one
has to notice that we also have a discontinuity for \scrH s - 1

is and \scrH s
is along \xi = \rho si (x) even

with s \not = j, which is different form (A.6).

Remark A.2. It is worth mentioning that in [15], we only prove K \in L\infty (\scrT ) and
do not clarify the regularity of the kernel because of brevity purposes. However, since
the solutions of the kernel equations can be expressed by a series

Kij(x, \xi ) =

\infty \sum 
n=0

\Delta Kn
ij(x, \xi ) (m+ 1 \leq i \leq n, 1 \leq j \leq n),(A.31)

and the initialization \Delta K0
ij is continuous thanks to the C0 compatibility conditions on

the points (x, \xi ) = (1, 1) and (0, 0), with almost the same procedure in [9, section A.3]
and [15], one can prove that \Delta Kn

ij(x, \xi ) (n \geq 0) is continuous (since it is an integral
of \Delta Kn - 1, which can be assumed to be continuous by induction) and

\Delta Kn
ij(x, \xi ) \leq \=\phi 

Mn(\phi i(x) - (1 - \epsilon )\phi i(\xi ))
n

n!
(n \geq 0)(A.32)

in which \=\phi , M , and 0 < \epsilon < 1 are some positive constants (see [15] for the case with
constant matrix \Lambda ), which yields that there exists unique C0(\scrT ) solutions
Kij (i = m + 1, . . . , n, j = 1, . . . , n) satisfying the boundary problem (2.45), (2.46),
(2.48), and (2.49), provided that \sigma ij \in C0[0, 1], \lambda i \in C1[0, 1] with m+1 \leq i \leq n, 1 \leq 
j \leq n, and the C0 compatibility conditions (2.50) are satisfied at the the points
(x, \xi ) = (1, 1) and (0, 0), respectively.

Considering the regularity of inverse kernels, we have the following theorem.

Theorem A.2. Under the assumptions of Theorem A.1, for any N \in \BbbN +, there
exists a unique piecewise CN (\scrT ) kernel L with finitely many discontinuities. More-
over, all the possible discontinuous curves have the similar form \xi = \Omega (x) in which
\Omega (\cdot ) \in CN [0, 1] is a monotonically increasing function with \Omega (0) = 0 and 0 < \Omega (x) <
x (\forall x \in (0, 1]).
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Proof. We only prove the case N = 1. Other cases can be easily proved by
induction. Since the inverse kernels L satisfy the solution of the following Volterra
equations

L(x, \xi ) = K(x, \xi ) +

\int x

\xi 

K(x, s)L(s, \xi )ds,(A.33)

we next prove that L(x, \xi ) is a piecewise continuous function which has the same
potential discontinuities as the kernel K on \scrT (see Appendix A.1). In fact, L(x, \xi )
can be expressed by a series

L(x, \xi ) =

\infty \sum 
n=0

\Delta Ln(x, \xi )(A.34)

in which

\Delta L0 = K(x, \xi )(A.35)

is a piecewise continuous matrix function and \Delta Ln (n \geq 1) satisfy the following iter-
ation,

\Delta Ln(x, \xi ) =

\int x

\xi 

K(x, s)\Delta Ln - 1(s, \xi )ds.(A.36)

Due to (A.6), the only possible discontinuity of the kernel Kij with 1 \leq i < j \leq m

is along the C1 monotonically increasing curve \xi = \rho ji (x). Then it is easy to see that
\Delta L1(x, \xi ) =

\int x

\xi 
K(x, s)K(s, \xi )ds is a continuous matrix function on \scrT . By induction,

one immediately obtains that \Delta Ln (n \geq 1) are C0 functions on \scrT and

| \Delta Ln(x, \xi )| \leq 
\| K\| n+1

\infty (x - \xi )n

n!
, n \geq 0.(A.37)

Therefore, L(x, \xi ) =
\sum \infty 

n=0 \Delta Ln(x, \xi ) is uniformly convergent on \scrT , which is piece-
wise continuous (since \Delta L0 = K is a piecewise continuous function). The potential
discontinuities of L are the same as the one which appeared on K (see, in particular,
Theorem A.1).

Once L is determined on \scrT , one can, according to (A.33) and

L(x, \xi ) = K(x, \xi ) +

\int x

\xi 

L(x, s)K(s, \xi )ds,(A.38)

calculate Lx and L\xi , respectively, which are piecewise continuous functions on \scrT 
with finitely many discontinuities. Moreover, all the possible discontinuous curves
have similar form \xi = \Omega (x) in which \Omega (\cdot ) \in CN [0, 1] is a monotonically increasing
function with \Omega (0) = 0 and 0 < \Omega (x) < x (\forall x \in (0, 1]).

Appendix B. In this appendix, we first sketch out four useful lemmas (the
details can be found in [9]), but here we also have to take into account the jump
terms due to the piecewise discontinuity of the kernels. Letting ci (i = 1, 2 . . .) denote
positive constants, then one has the following.

Lemma B.1.

| \scrK [\gamma ]| + | \scrL [\gamma ]| \leq c1(| \gamma | + \| \gamma \| L1),(B.1)

| \scrK 1[\gamma ]| + | \scrK 2[\gamma ]| + | \scrL 1[\gamma ]| \leq c2(| \gamma | + \| \gamma \| L1 + | \gamma (\Omega (x))| ).(B.2)
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Proof. (B.1) can be found in [9], and (B.2) can be easily obtained by (4.8)--
(4.10).

Lemma B.2. Suppose \| \gamma \| \infty is suitably small, so that one can see that

| F1| \leq c3(| \gamma | + \| \gamma \| L1),(B.3)

| F2| \leq c4(| \gamma | 2 + \| \gamma \| 2L1),(B.4)

| F3| \leq c5(| \gamma | + \| \gamma \| L2)(\| \gamma x\| L2 + | \gamma x| ),(B.5)

| F4| \leq c6(| \gamma | 2 + \| \gamma \| 2L2 + | \gamma (\Omega (x))| 2).(B.6)

Proof. Equations (B.3)--(B.5) can be found in [9], thus we only prove (B.6). By
noting Lemma B.1, (B.3)--(B.4), one has

| F4| \leq c7

\Biggl( 
(| \gamma | + \| \gamma \| L1)(| \gamma | + \| \gamma \| L1 + | \gamma (\Omega (x))| ) + | \gamma | + \| \gamma \| L1

+
\bigm\| \bigm\| \bigm\| (| \gamma | + \| \gamma \| L1)(| \gamma | + \| \gamma \| L1 + | \gamma (\Omega (x))| ) + | \gamma | + \| \gamma \| L1

\bigm\| \bigm\| \bigm\| 
L1

\Biggr) 
,

(B.7)

since \Omega is a strictly increasing function on C2[0, 1] with \Omega (0) = 0 and 0 < \Omega (x) \leq 
x (\forall 0 < x \leq 1); then we can see that

\| \gamma (\Omega )\| L2 \leq c8\| \gamma \| L2 ,(B.8)

together with (B.7) and the H\"older inequality, immediately yields (B.6).

The next two lemmas follow from Lemmas B.1--B.2, (B.8), and straightforward
computations.

Lemma B.3. Suppose \| \gamma \| \infty is suitably small, so that one can see that

| F11| \leq c9(| \zeta | + \| \zeta \| L1),(B.9)

| F12| \leq c10(| \gamma x| + | \gamma | + \| \gamma \| L1 + | \gamma (\Omega (x))| ),(B.10)

| F21| \leq c11(| \gamma | + \| \gamma \| L1)(| \zeta | + \| \zeta \| L1),(B.11)

| F5| \leq c12

\Bigl( 
| \zeta | + \| \zeta \| L2)(| \gamma | + \| \gamma \| L2) + (| \zeta | + \| \zeta \| L2)(| \gamma x| + \| \gamma x\| L2)

+ | \gamma (0)| | \zeta (0)| + | \gamma (\Omega (x))| | \zeta (\Omega (x))| 
\Bigr) 
,(B.12)

| F6| \leq c13(| \gamma | + \| \gamma \| L2 + | \gamma (\Omega (x))| )(| \zeta | + \| \zeta \| L2 + | \zeta (\Omega (x))| ).(B.13)

Lemma B.4. Suppose \| \gamma \| \infty is suitably small, so that one can see that

| F13| \leq c14(| \zeta | 2 + \| \zeta \| 2L1 + | \theta | + \| \theta \| L1),

(B.14)

| F14| \leq c15

\Bigl( 
(| \zeta | + \| \zeta \| L1)(1 + | \gamma x| + | \gamma | + \| \gamma \| L1 + | \gamma (\Omega (x))| )

+ | \zeta | + | \zeta x| + \| \zeta \| L1 + | \zeta (\Omega (x))| 
\Bigr) 
,(B.15)

| F22| \leq c16

\Bigl( 
(| \gamma | + \| \gamma \| L1)(| \theta | + \| \theta \| L1) + | \zeta | 2 + \| \zeta \| 2L1

\Bigr) 
,

(B.16)

| F7| \leq c17(| \zeta | 2 + \| \zeta \| 2L2)(1 + \| \gamma \| \infty + \| \gamma x\| \infty )
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+ c18(| \zeta (\Omega (x))| 2 + \| \zeta \| L1 | \zeta (\Omega (x))| + | \gamma (\Omega (x))| | \theta (\Omega (x))| + \| \gamma \| L1 | \theta (\Omega (x))| )
+ c19(| \zeta | + \| \zeta \| L2)(| \zeta x| + \| \zeta x\| L2 + \| \zeta \| L2)(B.17)

+ c20(| \gamma | + \| \gamma \| L2 + \| \gamma x\| \infty )(| \theta | + \| \theta \| L2) + c21(| \zeta (0)| 2 + | \gamma (0)| | \theta (0)| ),

| F8| \leq c22

\Bigl( 
(| \zeta | 2 + \| \zeta \| 2L2)(1 + \| \gamma \| \infty ) + (| \gamma | + \| \gamma \| L2)(| \theta | + \| \theta \| L2) + | \zeta (\Omega (x))| 2

+ | \gamma | | \theta (\Omega (x))| + \| \gamma \| L1 | \theta (\Omega (x))| + | \theta | | \gamma (\Omega (x))| + \| \theta \| L1 | \gamma (\Omega (x))| 
\Bigr) 
.(B.18)

Next, we show the following proposition which is also mentioned in [9], however,
here more technical developments are involved.

Proposition B.5. There exists \delta > 0 such that for any \| \gamma \| \infty + \| \zeta \| \infty \leq \delta , one
has

\| \theta \| \infty \leq c23(\| \gamma xx\| \infty + \| \gamma x\| \infty + \| \gamma \| \infty ),(B.19)

\| \theta \| L2 \leq c24(\| \gamma xx\| L2 + \| \gamma x\| L2 + \| \gamma \| L2),(B.20)

\| \gamma xx\| \infty \leq c25(\| \theta \| \infty + \| \zeta \| \infty + \| \gamma \| \infty ),(B.21)

\| \gamma xx\| L2 \leq c26(\| \theta \| L2 + \| \zeta \| L2 + \| \gamma \| L2).(B.22)

Proof. We prove the next three lemmas to get Proposition B.5.

Lemma B.6. There exists \delta such that, if \| \gamma \| \infty \leq \delta , then the following inequalities
hold:

\| \zeta \| \infty \leq c27(\| \gamma x\| \infty + \| \gamma \| \infty ),(B.23)

\| \zeta \| L2 \leq c28(\| \gamma x\| L2 + \| \gamma \| L2),(B.24)

\| \gamma x\| \infty \leq c29(\| \zeta \| \infty + \| \gamma \| \infty ),(B.25)

\| \gamma x\| L2 \leq c30(\| \zeta \| L2 + \| \gamma \| L2).(B.26)

Proof. Noting (4.16), one can easily see that

\zeta (t, x) + \Lambda (x)\gamma x(t, x) - G(x)\gamma (t, 0) = F3[\gamma , \gamma x] + F4[\gamma ]+Gbou[\gamma ](t).(B.27)

The difference between our proof and the proof in [9, Lemma B.6] is the appearance
of the term G(x)\gamma (t, 0) in (B.27). Noting (2.44) and Theorem A.1, we have G(\cdot ) \in 
C1[0, 1]. Then since one can show that

\| G(\cdot )\gamma (t, 0)\| L2 \leq c31\| G(\cdot )\gamma (t, 0)\| \infty \leq c32\| \gamma \| \infty \leq c33(\| \gamma x\| L2 + \| \gamma \| L2),(B.28)

which yields, by the same arguments as in [9, Lemma B.6], (B.23)--(B.25).
On the other hand, by the special structure of G(x), we have

\| \partial x\gamma 1\| L2 \leq c34(\| \zeta \| L2 + \| \gamma x\| L2\| \gamma \| \infty + \| \gamma \| L2\| \gamma \| \infty +\| \gamma \| 2\infty ),

(B.29)

\| \partial x\gamma 2\| L2 \leq c35(\| \zeta \| L2 + \| \gamma 1\| \infty + \| \gamma x\| L2\| \gamma \| \infty + \| \gamma \| L2\| \gamma \| \infty +\| \gamma \| 2\infty ),

(B.30)

...
...

...
...

\| \partial x\gamma m\| L2 \leq cm+33

\Biggl( 
\| \zeta \| L2 +

m - 1\sum 
r=1

\| \gamma r\| \infty + \| \gamma x\| L2\| \gamma \| \infty + \| \gamma \| L2\| \gamma \| \infty +\| \gamma \| 2\infty 

\Biggr) 
,

(B.31)D
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\| \partial x\gamma s\| L2 \leq cs+33

\Biggl( 
\| \zeta \| L2 +

m\sum 
r=1

\| \gamma r\| \infty + \| \gamma x\| L2\| \gamma \| \infty + \| \gamma \| L2\| \gamma \| \infty +\| \gamma \| 2\infty 

\Biggr) 
,

(B.32)

in which s = m+ 1, . . . , n. Noting the classical Sobolev inequality

\| \gamma \| L\infty \leq \widetilde C1

\Bigl( 
\| \gamma \| L2 + \| \gamma x\| L2

\Bigr) 
\leq \widetilde C2\| \gamma \| H1 ,(B.33)

one gets that

\| \partial x\gamma 1\| L2 \leq \widetilde C3(\| \zeta \| L2 + \| \gamma x\| L2\| \gamma \| \infty + \| \gamma \| L2\| \gamma \| \infty ),

(B.34)

\| \partial x\gamma 2\| L2 \leq \widetilde C4(\| \zeta \| L2 + \| \gamma \| L2 + \| \partial x\gamma 1\| L2 + \| \gamma x\| L2\| \gamma \| \infty + \| \gamma \| L2\| \gamma \| \infty ),

(B.35)

...
...

...
...

\| \partial x\gamma m\| L2 \leq \widetilde Cm+2

\Biggl( 
\| \zeta \| L2 + \| \gamma \| L2 +

m - 1\sum 
r=1

\| \gamma r\| L2 + \| \gamma x\| L2\| \gamma \| \infty + \| \gamma \| L2\| \gamma \| \infty 

\Biggr) 
,

(B.36)

\| \partial x\gamma s\| L2 \leq \widetilde Cs+2

\Biggl( 
\| \zeta \| L2 + \| \gamma \| L2 +

m\sum 
r=1

\| \gamma r\| L2 + \| \gamma x\| L2\| \gamma \| L\infty + \| \gamma \| L2\| \gamma \| \infty 

\Biggr) 
,

(B.37)

where s = m+ 1, . . . , n. Then, we can easily obtain by induction that

\| \gamma x\| L2 \leq \widetilde C(\| \zeta \| L2 + \| \gamma x\| L2\| \gamma \| \infty + \| \gamma \| L2\| \gamma \| \infty + \| \gamma \| L2),(B.38)

which concludes (B.26), under the assumption that \| \gamma \| \infty is small enough.

Combining the same technical approach as in [9, Lemmas B.7 and B.8] and an
analogous argument used in the proof of Lemma B.6 and noting G \in C2[0, 1], the
details of which we omit, one can show the next two lemmas.

Lemma B.7. There exists \delta such that, if \| \gamma \| \infty \leq \delta , then the following inequalities
hold:

\| \gamma xx\| \infty \leq \~c1(\| \zeta x\| \infty + \| \zeta \| \infty + \| \gamma \| \infty ),(B.39)

\| \gamma xx\| L2 \leq \~c2(\| \zeta x\| L2 + \| \zeta \| L2 + \| \gamma \| L2),(B.40)

\| \zeta x\| \infty \leq \~c3(\| \gamma xx\| \infty + \| \zeta \| \infty + \| \gamma \| \infty ),(B.41)

\| \zeta x\| L2 \leq \~c4(\| \gamma xx\| L2 + \| \zeta \| L2 + \| \gamma \| L2),(B.42)

where \~c1, \~c2, \~c3, and \~c4 are positive constants.

Lemma B.8. There exists \delta such that, if \| \gamma \| \infty + \| \zeta \| \infty \leq \delta , then the following
inequalities hold:

\| \theta \| \infty \leq \~c5(\| \zeta x\| \infty + \| \zeta \| \infty + \| \gamma \| \infty ),(B.43)

\| \theta \| L2 \leq \~c6(\| \zeta x\| L2 + \| \zeta \| L2 + \| \gamma \| L2),(B.44)

\| \zeta x\| \infty \leq \~c7(\| \theta \| \infty + \| \zeta \| \infty + \| \gamma \| \infty ),(B.45)

\| \zeta x\| L2 \leq \~c8(\| \theta \| L2 + \| \zeta \| L2 + \| \gamma \| L2),(B.46)

where \~c5, \~c6, \~c7, and \~c8 are positive constants.
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The above three Lemmas B.6--B.8 immediately yield Proposition B.5.
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