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The Rijke Tube Experiment

I A vertical tube opened in both ends.

I A heat source is inserted in the lower half of
the tube.

I Under the right conditions, the tube begins to
hum loudly (thermoacoustic instability).

I A microphone at the top of the tube can be
used for measurement of acoustic pressure.

I A speaker at the bottom is used as actuator to
stabilize the system.

Click for video



The Rijke Tube Experiment

Microphone signal at the onset of instability showing growth, and then saturation of
the limit cycle. A zoomed-in picture shows the periodic, but nonsymetric, limit-cycle
behavior.
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Motivation

I Thermoacoustic instabilities are often encoun-
tered in steam and gas turbines, industrial
burners, and jet and ramjet engines.

I At best, they produce vibrations potentially affecting delicate instrumentation and
payloads.

At their worst, the oscillations may increase the average pressure, resulting even in
rupture of the system.

However, these instabilities are notorious difficult to model and study.

The absence of combustion process in the Rijke tube makes the modeling and anal-
ysis more tractable.

The Rijke tube experiment provides an accessible platform to explore and study
stabilization and state estimation of thermoacoustic oscillations.
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Thermoacoustic dynamics

Starting from the conservation of mass, momentum, and energy, we arrive at

∂tρ+ ∂x(ρv) = 0, mass conservation

∂t(ρv) + ∂x
(
ρv2 + P

)
= 0, momentum balance

∂t

(
ρU + ρv2

2

)
+ ∂x

(
v

(
ρU + ρv2

2

)
+ Pv

)
= q, energy balance

with boundary conditions

P (t, 0) = P0 + g(v(t, 0)) + u(t), open end with speaker

P (t, L) = P0 + f(v(t, L)). open end



Heat release dynamics

We assume that the heat input is concentrated at a single point x0:

q(x, t) = 1
A
δ(x− x0)Q(t).

King’s Law describes the dependence of heat transfer on gas velocity:

τQ̇(t) = −Q(t) +QK(t),

QK(t) = lw(Tw − T )(κ+ κv
√
|v(t, x0)|).



Linearization of thermoacoustic dynamics

Assume constant steady-state solution, (ρ, v, P ) = (ρ, v, P ), ∀t ∈ [0, +∞), ∀x ∈ [0, L].
Then, we can obtain the following linearized model:

∂tρ̃+ v∂xρ̃+ ρ∂xṽ = 0,

∂tṽ + v∂xṽ + 1
ρ
∂xP̃ = 0,

∂tP̃ + γP∂xṽ + v∂xP̃ = γ

A
δ(x− x0)Q̃,

Taking into account that v is very small if compared to the speed of sound, it is easy to
see that the contribution of v to the gas dynamics is negligible. Therefore, making v = 0
and noticing that the density ρ̃ is decoupled from the velocity and pressure dynamics, it
is obtained that the remaining coupled part of the dynamics is a wave equation!

∂tṽ + 1
ρ
∂xP̃ = 0,

∂tP̃ + γP∂xṽ = γ

A
δ(x− x0)Q̃.
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Linearization of heat release dynamics and boundary Conditions

Linearizing King’s Law yields

Q̃K(t) = f(v)T
ρ
ρ̃+ f ′(v)(Tw − T )ṽ − f(v)T

P
P̃ .

Comparing the size of the gains of each state in the above equation it is possible to
conclude that the velocity fluctuations are the main driver of the heat dynamics, hence it
is reasonable to drop out the density and pressure influence of the above equation

Q̃K(t) ≈ f ′(v)(Tw − T )ṽ(t, x0).

Thus,

τ ˙̃Q(t) = −Q̃(t) + Q̃K(t).

Linearization of the boundary conditions yields

P̃ (t, 0) = −Z0ṽ(t, L) + U(t),
P̃ (t, 0) = ZLṽ(t, L).
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Model in Terms of Characteristic Coordinates

Since the system is hyperbolic, there exists an invertible linear transformation such that(
ṽ

P̃

)
= T

(
R1
R2

)
=
( 1

2
√
γPρ

− 1
2
√
γPρ

1
2

1
2

)(
R1
R2

)
.

Then, the linearized system is rewritten to

∂tR1 + λ∂xR1 = c1δ(x− x0)Q̃(t),
∂tR2 − λ∂xR2 = c1δ(x− x0)Q̃(t),
R1(t, 0) = k0R2(t, 0) + 2U(t),
R2(t, L) = kLR1(t, L).

τ ˙̃Q(t) = −Q̃(t) + c2(R1(t, x0)−R2(t, x0)).



Schematic view of the jumping point at the solution of the PDE
system

The following relations are satisfied:

R1(t, x+
0 ) = R1(t, x−0 ) + c1Q̃(t),

R2(t, x−0 ) = R2(t, x+
0 ) + c1Q̃(t).



Representation in characteristic coordinates

Folding transformation:
Now, we introduce the following state variables

R1(t, x) =
{

α1(t, x), x ∈ [0, x0],
β2(t, x), x ∈ [x0, L],

R2(t, x) =
{

β1(t, x), x ∈ [0, x0],
α2(t, x), x ∈ [x0, L],

and the rescaled spatial variable, so that everything evolves on the same domain:

z =
{

x
x0

if x ∈ [0, x0]
L−x
L−x0

if x ∈ [x0, L]



Representation in characteristic coordinates

Then, the system linearized system is equivalent to

∂tα1(t, z) + λ1∂zα1(t, z) = 0,
∂tβ1(t, z)− λ1∂zβ1(t, z) = 0,
∂tβ2(t, z)− λ2∂zβ2(t, z) = 0,
∂tα2(t, z) + λ2∂zα2(t, z) = 0,

with boundary conditions

α1(t, 0) = k0β1(t, 0) + 2U(t),
β1(t, 1) = α2(t, 1) + c1Q̃(t),
β2(t, 1) = α1(t, 1) + c1Q̃(t),
α2(t, 0) = kLβ2(t, 0),

τ ˙̃Q(t) = −Q̃(t) + c2(α1(t, 1)− α2(t, 1)).



Representation in characteristic coordinates

I The boundary conditions represent two ef-
fects: reflection of the acoustic waves; and the
feedback coupling between β2 and α2, and be-
tween α1 and β1.

I Under the right conditions the system becomes
unstable due to this feedback between the
states.

I Our objective is to design an output feedback
control law that exponentially stabilize the
zero equilibrium of the system.
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Backstepping for PDEs: a brief introduction

Roughly speaking, backstepping is a constructive method that achieves Lyapunov stabi-
lization by transforming the system into a stable “target system”, which is often achieved
by collectively shifting all the eigenvalues in a favorable direction in the complex plane,
rather than by assigning individual eigenvalues.

Backstepping is not “one-size-fits-all”. Requires structure-specific effort by designer.

Reward: elegant controller/observer, (mostly) clear closed-loop behavior.



Backstepping for PDEs: a brief introduction

Basic steps in the backstepping methodology:

1. Identify the undesirable terms in the PDE.

2. Choose a target system in which the undesirable terms are to be eliminated by state
transformation and feedback.

3. Find the state transformation.

4. Obtain the boundary feedback/observer gains from the transformation. The trans-
formation alone cannot eliminate the undesirable terms, but the transformation brings
them to the boundary, so control can cancel them.
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Backstepping-based controller design: target system

We want to map the Rijke tube model into
the following target system

∂tχ1(t, z) + λ1∂zχ1(t, z) = 0,
∂tβ1(t, z)− λ1∂zβ1(t, z) = 0,
∂tβ2(t, z)− λ2∂zβ2(t, z) = 0,

∂tα2(t, z) + λ2∂zR22(t, z) = 0,

with the following boundary conditions

χ1(t, 0) = 0,
β1(t, 1) = α2(t, 1) + c1Q̃(t),
β2(t, 1) = kLχ1(t, 1),
α2(t, 0) = β2(t, 0),

τ ˙̃Q(t) = −(1 + c1c2)Q̃(t) + c2(χ1(t, 1)− α2(t, 1)).



Backstepping-based controller design: transformation

To do that, we consider the following backstepping transformation

χ1(t, z) = α1(t, z)− ϕ(z)Q̃(t)−
∫ 1

z

α1(t, ξ)K(z, ξ)dξ−∫ 1

0
α2(t, ξ)G(z, ξ)dξ −

∫ 1

0
β2(t, ξ)H(z, ξ)dξ.

I Domain of the K kernel:

T0 = {(z, ξ) ∈ R2|0 ≤ z ≤ ξ ≤ 1},

I Domain of G and H kernels:

T1 = {(z, ξ) ∈ R2|0 ≤ ξ ≤ 1, 0 ≤ z ≤ 1},

I ϕ is a one-dimensional kernel defined on the interval z ∈ [0, 1].



Backstepping-based controller design: kernel equations

Differentiating the transformation with respect to space and time, integrating by parts,
and plugging the target system equation, we obtain that the original system is mapped
into the target system if and only if the kernels satisfy the following equations:

∂ξK(z, ξ) + ∂zK(z, ξ) = 0,

∂ξG(z, ξ) + λ1

λ2
∂zG(z, ξ) = 0,

∂ξH(z, ξ)− λ1

λ2
∂zH(z, ξ) = 0,

λ1ϕ
′(z)− 1

τ
ϕ(z) + λ2c1H(z, 1) = 0,

with

λ1K(z, 1)− c2

τ
ϕ(z)− λ2H(z, 1) = 0, G(1, ξ) = 0,

λ2G(z, 1) + c2

τ
ϕ(z) = 0, H(1, ξ) = 0,

αG(z, 0)−H(z, 0) = 0, ϕ(1) = −c1.



Backstepping-based controller design: kernel equations

The boundary value problem for the K kernel:

∂ξK(z, ξ) + ∂zK(z, ξ) = 0,

λ1K(z, 1)− c2

τ
ϕ(z)− λ2H(z, 1) = 0.

Solution:

K(z, ξ) = c2

λ1τ
ϕ(z − ξ + 1) + λ2

λ1
H(z − ξ + 1, 1).



Backstepping-based controller design: kernel equations

The boundary value problem for the G kernel:

∂ξG(z, ξ) + λ1

λ2
∂zG(z, ξ) = 0

λ2G(z, 1) + c2

τ
ϕ(z) = 0,

G(1, ξ) = 0.

Solution:

G(z, ξ) =
{

0 ξ − 1 ≤ λ2
λ1

(z − 1),
− c2
λ2τ

ϕ
(
z − λ1

λ2
(ξ − 1)

)
, otherwise.



Backstepping-based controller design: kernel equations

The boundary value problem for the H kernel:

∂ξH(z, ξ)− λ1

λ2
∂zH(z, ξ) = 0,

αG(z, 0)−H(z, 0) = 0,
H(1, ξ) = 0.

Solution:

H(z, ξ) =
{

0 ξ + 1 ≥ λ2
λ1

(1− z),
−αc2
λ2τ

ϕ
(
z + λ1

λ2
(ξ + 1)

)
, otherwise.



Backstepping-based controller design: kernel equations

The boundary value problem for the ϕ kernel:

λ1ϕ
′(z)− 1

τ
ϕ(z) + λ2c1H(z, 1) = 0,

ϕ(1) = −c1.

ϕ may have a discontinuity depending on the values of H(z, 1).

Case I (λ1 ≥ λ2): In this case H(z, 1) = 0, ∀z ∈ [0, 1]. Then,

λ1ϕ̇(z)− 1
τ
ϕ(z) = 0

ϕ(1) = −c1

}
⇒ ϕ(z) = −c1e

z−1
λ1τ



Backstepping-based controller design: kernel equations

Case II (λ1 < λ2): In this case, the ϕ kernel equations can be solved backwards.

Observing the behavior of H(z, 1) backwards, one can note that it is zero for all z ∈
[1− 2λ1

λ2
, 1]. Therefore, the solution ϕ for z ∈ [1− 2λ1

λ2
, 1] satisfies

λ1ϕ̇(z)− 1
τ
ϕ(z) = 0

ϕ(1) = −c1

}
⇒ ϕ(z) = −c1e

z−1
λ1τ

Once the solution ϕ is known on [1−2λ1
λ2
, 1], we can repeat the same procedure, starting

with the solution on [1 − 2λ1
λ2
, 1], to find the solution ϕ for z ∈ [1 − 4λ1

λ2
, 1 − 2λ1

λ2
] by

computing the solution of the following boundary value problem:

λ1ϕ̇(z)− 1
τ
ϕ(z) + αc2

1c2

τ
e
λ2(z−1)+2λ1

λ2λ1τ = 0,

ϕ
(

1− 2λ1

λ2

)
= −c1e−

2
λ2τ .

We can repeat the same procedure, starting with the solution on [1 − 4λ1
λ2
, 1 − 2λ1

λ2
], to

find the solution ϕ for z ∈ [1− 8λ1
λ2
, 1− 4λ1

λ2
], and so on.
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Backstepping-based controller design: kernel equations

Applying this iterative procedure n times, where n ∈ N is the largest integer such that
L−x0
x0

> 1
2n , yields a unique, globally defined, solution ϕ when λ1 < λ2.

The closer the heat element is to the uncontrolled boundary, the larger the number of
pieces of the solution ϕ.

From a practical point of view, the case λ1 > λ2 occurs when the heat release is located
in the lower half of the tube. Similarly, λ1 < λ2 if the heat release is located in the upper
half of the tube.



Backstepping-based controller design: invertibility of the
transformation

To ensure that the closed-loop system and the target system have the same stability
property, the backstepping transformation has to be invertible.

Rewrite the transformation as

α1(t, z) =
∫ 1

z

α1(t, ξ)K(z, ξ)dξ + ψ(t, z).

This equation can be seen as a Volterra integral equation of the second kind.

Since K(z, ξ) is bounded, the equation has a unique solution, allowing us to write an
inverse transformation, thus proving the invertibility of the transformation.



Backstepping-based controller design: kernel visuals (case I)
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Backstepping-based controller design: kernel visuals (case II)
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Backstepping-based controller design: simulation results (case I)



Backstepping-based controller design: simulation results (case II)



Remarks

The backstepping control law requires full-state measurement

U(t) = 1
2

(
k0β1(t, 0) + ϕ(0)Q̃(t) +

∫ 1

0
α1(t, ξ)K(0, ξ)dξ

+
∫ 1

0
α2(t, ξ)G(0, ξ)dξ +

∫ 1

0
β2(t, ξ)H(0, ξ)dξ

)
.

Therefore, the control law must be applied together with a state-observer in order to
produce experiments.
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Backstepping-based observer design

I We design the observe as a copy of the plant plus output injection terms:

∂tα̂1(t, z) + λ1∂zα̂1(t, z) = −p11(z)Ỹ (t),

∂tβ̂1(t, z)− λ1∂zβ̂1(t, z) = −p12(z)Ỹ (t),

∂tβ̂2(t, z)− λ2∂zβ̂2(t, z) = −p21(z)Ỹ (t),
∂tα̂22(t, z) + λ2∂zα̂2(t, z) = −p22(z)Ỹ (t),

τ
˙̂
Q(t) = −Q̂(t) + c2(α̂1(t, 1)− α̂2(t, 1))− pQỸ (t),

with Ỹ (t) = ZL
ZL+ρcβ2(t, 0).

I The boundary conditions are given by

α̂1(t, 0) = k0β̂1(t, 0) + 2U(t),

β̂1(t, 1) = α̂2(t, 1) + c1Q̂(t),

β̂2(t, 1) = α̂1(t, 1) + c1Q̂(t),
α̂2(t, 0) = kLβ2(t, 0),

I p11, p12, p21, p22, and pQ are gains to be found.



Backstepping-based observer design: observed error dynamics

Define the error estimation R̃ij = Rij − R̂ij , i, j = 1, 2, whose dynamics is given by

∂tα̃1(t, z) + λ1∂zα̃1(t, z) = p11(z)Ỹ (t),
∂tβ̃1(t, z)− λ1∂zβ̃1(t, z) = p12(z)Ỹ (t),
∂tβ̃2(t, z)− λ2∂zβ̃2(t, z) = p21(z)Ỹ (t),
∂tα̃2(t, z) + λ2∂zα̃2(t, z) = p22(z)Ỹ (t),

τ ˙̃Q(t) = −Q̃(t) + c2(α̃1(t, 1)− α̃2(t, 1)) + pQỸ (t),

and boundary conditions

α̃1(t, 0) = k0β̃1(t, 0),
β̃1(t, 1) = α̃2(t, 1) + c1Q̃(t),
β̃2(t, 1) = α̃1(t, 1) + c1Q̃(t),
α̃2(t, 0) = kLβ̃2(t, 0)− p0Ỹ .



Backstepping-based observer design: target system

To design the observer output injection gains, we
map the error estimation dynamics to the following
appropriate target system:

∂tα̌1(t, z) + λ1∂zα̌1(t, z) = 0,

∂tβ̌1(t, z)− λ1∂zβ̌1(t, z) = 0,

∂tβ̌2(t, z)− λ2∂zβ̌2(t, z) = 0,
∂tα̌2(t, z) + λ2∂zα̌2(t, z) = 0,

τ
˙̌
Q(t) = −(1 + c1c2)Q̌(t)− c2α̌2(t, 1),

with boundary conditions

α̌1(t, 0) = k0β̌1(t, 0),

β̌1(t, 1) = α̌2(t, 1) + c1Q̌(t),

β̌2(t, 1) = α̌1(t, 1) + c1Q̌(t),
α̌2(t, 0) = 0.



Backstepping-based observer design: transformation

We consider the following backstepping transformation:

α̃1(t, z) = α̌1(t, z)−
∫ 1

0
P11(z, ξ)β̌2(t, ξ)dξ,

β̃1(t, z) = β̌1(t, z)−
∫ 1

0
P12(z, ξ)β̌2(t, ξ)dξ,

β̃2(t, z) = β̌2(t, z)−
∫ z

0
P21(z, ξ)β̌2(t, ξ)dξ,

Q̃(t) = Q̌(t)−
∫ 1

0
PQ(ξ)β̌2(t, ξ)dξ,

I Domain of the P21 kernel:

T0 = {(z, ξ) ∈ R2|0 ≤ z ≤ ξ ≤ 1},

I Domain of P11 and P12 kernels:

T1 = {(z, ξ) ∈ R2|0 ≤ ξ ≤ 1, 0 ≤ z ≤ 1},

I PQ is a one-dimensional kernel defined on the interval ξ ∈ [0, 1].



Backstepping-based observer design: kernel equations

Differentiating the transformation with respect to space and time, plugging the target
system equation and integrating by parts, we obtain that the error system dynamics is
mapped into the target system if and only if the kernels satisfy the following equations:

λ2∂ξP11(z, ξ)− λ1∂zP11(z, ξ) = 0,
λ2∂ξP12(z, ξ) + λ1∂zP12(z, ξ) = 0,
∂ξP21(z, ξ) + ∂zP21(z, ξ) = 0,
τλ2P

′
Q(ξ) = PQ(ξ)− c2P11(1, ξ),

and

P21(1, ξ) = P11(1, ξ) + c1PQ(ξ), P11(z, 1) = 0,

PQ(1) = − c2

τλ2
, P12(z, 1) = 0,

P11(0, ξ) = −P12(0, ξ), P12(1, ξ) = c1PQ(ξ).

The existence and uniqueness of the solution of the kernel equations can be proved in a
similar way to the backstepping control design.
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Backstepping-based observer design: observer gains

The closer the heat element is to the unmeasured boundary, the larger the number of
pieces of the solution ϕ and thus, the higher the complexity of the observer.

Besides, the observer gains are given by

p11(z) = λ2P11(z, 0),
p12(z) = λ2P12(z, 0),
p21(z) = λ2P21(z, 0),

pQ = τλ2PQ(0).



Backstepping-based observer design: kernel visuals (case λ2 > λ1)
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Backstepping-based observer design: kernel visuals (case λ2 < λ1)
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Simulation results: Observer error dynamics
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Backstepping-based observer design: Case II

Assume that the system’s outputs are

y1(t) = P̃ (t, xm),
y2(t) = ṽ(t, xm),

with xm ∈ (0, L).

The in-domain observer problem is the problem to design an observer that provides
accurate online estimates of Q̃(t), P̃ (t, x) and ṽ(t, x). The observer must only make use
of the system input U and outputs y1(t) and y2(t).

Applying a double folding transformation into the Riemann coordinates representation
of the system we can directly extend the previous backstepping design to solve this prob-
lem.
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Double folding transformation

Define x0 and xm as the points to fold the system. We then consider the following
piecewise definition of R1 and R2:

R1(t, x) =

{
α1(t, x), x ∈ [0, x0],
β2(t, x), x ∈ [x0, xm],
α3(t, x), x ∈ [xm, L],

R2(t, x) =

{
β1(t, x), x ∈ [0, x0],
α2(t, x), x ∈ [x0, xm],
β3(t, x), x ∈ [xm, L],

and define the following piecewise spatial transformation in z:

z =


x
x0
, x ∈ [0, x0],

L−x
L−x0

, x ∈ [x0, xm],
x−xm
L−xm , x ∈ [xm, L].



Double folding transformation
This set of scaling and folding transformations allows us to map the system into the
following matrix system:

∂tα(t, z) + Λ∂zα(t, z) = 0,
∂tβ(t, z)− Λ∂zβ(t, z) = 0,
τQ̇(t) +Q(t) = q(α1(t, 1)− α2(t, 1)),

The measurements verify

y1(t) =1
2(β2(t, 0) + β3(t, 0)),

y2(t) = 1
2
√
γPρ

(β2(t, 0)− β3(t, 0)) .



Backstepping-based observer design

We design the observe as a copy of the plant plus output injection terms:

∂tα̂(t, z) + Λ∂zα̂(t, z) = −p+(z)ỹβ2 (t),

∂tβ̂(t, z)− Λ∂zβ̂(t, z) = −p−(z)ỹβ2 (t),

τ
˙̂
Q(t) + Q̂(t) = q(α̂1(t, 1)− α̂2(t, 1))− pQỹβ2 (t),

with boundary conditions

α̂(t, 0) = Niβ̂(t, 0) +NuU(t) + pbcỹ(t),

β̂(t, 1) = Nf α̂(t, 1),+NqQ̂(t),

where p+, p−, pQ and pbc are the gains to be found.

The value of the gains can be found using a similar target system and backstepping
transformation as the previous case!



Simulation results: Observer error dynamics
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Differential-delay observer

Our objective now is to design a state observer that only relies on the measurement of
the pressure fluctuations at some arbitrary location xm:

y = P̃ (t, xm).

The challenge of this observer design is that the available measurement is a linear com-
bination of two states in Riemann coordinates.

The backstepping design remains an open problem for this case.



Physical properties of the system

We assume that the physical parameters of the system satisfies the two following condi-
tions:

Condition 1 (robustness to small measurements delays): The coefficients k0 and kL verify
|k0| < 1, |kL| < 1.

Condition 2 (heat addition to the system is sufficiently small): The coefficients of the
system verify the following inequalities:

c2c1k0 < −1,

2
λ1

< τ
arccos( 1

c1c2k0
)√

(c1c2k0)2 − 1
.



Observer design

Copy of the original dynamics (considering x0 and xm as the points to fold) with output
injection gains

∂tα̂(t, z) + Λ∂zα̂(t, z) = 0,

∂tβ̂(t, z)− Λ∂zβ̂(t, z) = 0,

τ
˙̂
Q(t) + Q̂(t) = c2(α̂1(t, 1)− α̂2(t, 1))− P0(2(ỹ(t))),

with boundary conditions

α̂(t, 0) = Niβ̂(t, 0) +NuU(t),

β̂(t, 1) = Nf α̂(t, 1) +NqQ̂(t),

where P0 is a Linear operator to be found.



Error dynamics

Define the estimation error as α̃ = α− α̂, β̃ = β − β̂ and Q̃ = Q− Q̂

∂tα̃(t, z) + Λ∂zα̃(t, z) = 0,
∂tβ̃(t, z)− Λ∂zβ̃(t, z) = 0,

τ ˙̃Q(t) + Q̃(t) = c2(α̃1(t, 1)− α̃2(t, 1)) + 2P0(ỹ(t)),

where the boundary conditions are given by

α̃(t, 0) = Niβ̃(t, 0),
β̃(t, 1) = Nf α̃(t, 1) +NqQ̃(t),

Estabilization of the error system: The exponential convergence of Q̃ to zero implies
the exponential stabilization of the error system.



Time-delay representation

Objective: Express Q̃ as the solution of a neutral equation and stabilize it.

2ỹ(t) =β̃2(t, 0) + β̃3(t, 0) = β̃2(t, 0) + kLβ̃2

(
t− 2

λ3
, 0
)
,

β̃2(t, 0) =k0kLβ̃2(t− τ, 0) + c1

(
Q̃
(
t− 1

λ2

)
+ k0Q̃

(
t− 1

λ2
− 2
λ1

))
α̃1(t, 1) =k0kLα̃1(t− τ, 1) + k0c1

(
Q̃
(
t− 2

λ1

)
+ kLQ̃(t− τ)

)
,

α̃2(t, 1) =k0kLα̃2(t− τ, 1) + kLc1

(
k0Q̃(t− τ) + Q̃

(
t− 2

λ2
− 2
λ3

))
τ ˙̃Q(t) =− Q̃(t) + c2(α̃1(t, 1)− α̃2(t, 1)) + 2P0(ỹ(t))



Laplace transform

We denote s the Laplace variable

2ỹ(s) =(1 + kLe−
2
λ3
s)β̃2(s, 0),

(1− k0kLe−τs)β̃2(s, 0) =c1e−
1
λ2
s(1 + k0e−

2
λ1
s)Q̃(s),

(1− k0kLe−τs)α̃1(s, 1) =k0c1(e−
2
λ1
s + kLe−τs)Q̃(s),

(1− k0kLe−τs)α̃2(s, 1) =kLc1(k0e−τs + e−
2
λ2
s− 2

λ3
s)Q̃(s),

(sτ + 1)Q̃(s) =c2(α̃1(s, 1)− α̃2(s, 1)) + 2P0(ỹ(s)).

The operator (1− k0kLe−τs) does not vanish on the complex Right Half Plane. Multiply-
ing the first and last equation by it, we obtain

(1− k0kLe−τs)(sτ + 1)Q̃(s) = c2c1(k0e−
2
λ1
s − kLe−

2
λ2
s− 2

λ3
s)Q̃(s)

+ (1− k0kLe−τs)2P0(ỹ(s)).

2(1− k0kLe−τs)ỹ(s) = c1e−
1
λ2
s(1 + kLe−

2
λ3
s)(1 + k0e−

2
λ1
s)Q̃(s)



Design of the operator P0

Let us consider the operator P0 defined by

P0(ỹ(t)) =− k0P0

(
ỹ(t− 2

λ1
)
)
− kLP0

(
ỹ(t− 2

λ3
)
)
− k0kLP0

(
ỹ(t− 2

λ1
− 2
λ3

)
)

+ 2c2kLỹ
(
t− 2

λ3
− 1
λ2

)
− 2c2kLk

2
0 ỹ
(
t− 4

λ1
− 1
λ2
− 2
λ3

)
.

Then, the state Q̃ exponentially converges to zero.

Proof: Laplace transform:

2(1 + kLe−
2
λ3
s)(1 + k0e−

2
λ1
s)P0(ỹ(s)) =

(c2kLe−
1
λ2
s− 2

λ3
s − c2k

2
0kLe−

2
λ1
se

1
λ2
se−τs)2ỹ(s).

P0 is properly defined: (1 + kLe−
2
λ3
s)(1 + k0e−

2
λ1
s) is strictly positive in the complex

RHP.
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P0(ỹ(t)) =− k0P0

(
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ỹ(t− 2

λ3
)
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)
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+ 2c2kLỹ
(
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)
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2
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(
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λ1
− 1
λ2
− 2
λ3

)
.

Then, the state Q̃ exponentially converges to zero.

Proof: Laplace transform:

2(1 + kLe−
2
λ3
s)(1 + k0e−

2
λ1
s)P0(ỹ(s)) =

(c2kLe−
1
λ2
s− 2

λ3
s − c2k

2
0kLe−

2
λ1
se

1
λ2
se−τs)2ỹ(s).

P0 is properly defined: (1 + kLe−
2
λ3
s)(1 + k0e−

2
λ1
s) is strictly positive in the complex

RHP.
We obtain

2(1− k0kLe−τs)P0(ỹ(s)) =c1(c2kLe−
2
λ2
s− 2

λ3
s − c2k

2
0kLe−

2
λ1
se−τs)Q̃(s),



Convergence of Q̃ to zero

(1− k0kLe−τs)(sτ + 1)Q̃(s) = c2c1(k0e−
2
λ1
s − kLe−

2
λ2
s− 2

λ3
s)Q̃(s)+

(1− k0kLe−τs)2P0(ỹ(s)).

2(1− k0kLe−τs)P0(ỹ(s)) = c1(c2kLe−
2
λ2
s− 2

λ3
s − c2k

2
0kLe−

2
λ1
se−τs)Q̃(s),

It gives the neutral equation

(1− k0kLe−τs)(sτ + 1)Q̃(s) = c2c1(1− k0kLe−τs)k0e−
2
λ1
s
Q̃(s).

⇒ (sτ + 1)Q̃1(s) = c2c1k0e−
2
λ1
s
Q̃1(s)

Detectability of Q̃ from Q̃1 = (1− k0kLe−τs)Q̃.

˙̃Q1(t) = − 1
τ
Q̃1(t) + c2c1k0

τ
Q̃1(t− 2

λ1
),

which goes asymptotically to zero since − c2c1k0
τ

> 1
τ

(Condition 2, applying a Proposi-
tion from Nicolescu’s book on DDEs).



Simulation results: Observer error dynamics
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Final remarks

An output feedback control law can be designed using the reconstruction of the estimated
states profile through the exponential convergent observer with the measurements.

Since our design is based on the linear system, the separation principle holds; i.e., the
combination of a separately designed state feedback controller and observer results in a
stabilizing output-feedback controller.



Thanks for your attention
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