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Backstepping for PDEs

In ODEs, a particular approach to stabilization of dynamic systems with “triangular” struc-

ture.

Wildly successful in the area of ODE nonlinear control.

For PDEs, roughly speaking, backstepping is a constructive method that achieves Lya-

punov stabilization by transforming the system into a stable “target system,” which is often

achieved by collectively shifting all the eigenvalues in a favorable direction in the complex

plane, rather than by assigning individual eigenvalues.

Backstepping allows this task can be achieved in a rather elegant way where the control

gains are easy to compute, symbolically, numerically, and in some cases even explicitly.
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Backstepping for PDEs

1. Identify the undesirable terms in the PDE.

2. Choose a target system in which the undesirable terms are to be eliminated by state

transformation and feedback, as in feedback linearization.

3. Find the state transformation typically as identity minus a Volterra operator (in x).

Volterra operator = integral operator from 0 up to x (rather than from 0 to 1).

A Volterra transformation is “triangular” or “spatially causal.”

4. Obtain boundary feedback from the Volterra transformation. The transformation alone

cannot eliminate the undesirable terms, but the transformantion brings them to the

boundary, so control can cancel them.
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Backstepping for PDEs

Gain fcn of boundary controller = kernel of Volterra transformation.

Volterra kernel satisfies a linear PDE.

Backstepping is not “one-size-fits-all.” Requires structure-specific effort by designer.

Reward: elegant controller, clear closed-loop behavior.
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Backstepping for PDEs—An example

Start with one of the simplest unstable PDEs, a (constant-coefficient) reaction-diffusion

equation:

ut(x, t) = uxx(x, t)+ λu(x, t) (1)

u(0, t) = 0 (2)

u(1, t) = U(t) = control (3)

The open-loop system (1), (2) (with u(1, t) = 0) is unstable with arbitrarily many unstable

eigenvalues for sufficiently large λ > 0.

Since the term λu is the source of instability, the natural objective for a boundary feedback

is to “eliminate” this term.

Backstepping solution presented in Smyshlyaev & Krstic, IEEE TAC 2004



Backstepping for PDEs—An example

Target system (exp. stable)

wt(x, t) = wxx(x, t) (4)

w(0, t) = 0 (5)

w(1, t) = 0 (6)

State transformation

w(x, t) = u(x, t)−
∫ x

0
k(x,y)u(y, t)dy (7)

Feedback control

u(1, t) =

∫ 1

0
k(1,y)u(y, t)dy (8)

Task: find kernel k(x,y).



Backstepping for PDEs—An example

Task: find the function k(x,y) (which we call “gain kernel”) that makes the plant (1), (2) with

the controller (8) equivalent to the target system (4)–(6).

We introduce the following notation:

kx(x,x) =
∂

∂x
k(x,y)|y=x

ky(x,x) =
∂

∂y
k(x,y)|y=x

d

dx
k(x,x) = kx(x,x)+ ky(x,x).



Backstepping for PDEs—An example

Differentiating the transformation (7) with respect to x gives

wx(x) = ux(x)− k(x,x)u(x)−
∫ x

0
kx(x,y)u(y)dy

wxx(x) = uxx(x)−
d

dx
(k(x,x)u(x))− kx(x,x)u(x)−

∫ x

0
kxx(x,y)u(y)dy

= uxx(x)−u(x)
d

dx
k(x,x)− k(x,x)ux(x)− kx(x,x)u(x)

−
∫ x

0
kxx(x,y)u(y)dy . (9)



Backstepping for PDEs—An example

Next, we differentiate the transformation (7) with respect to time:

wt(x) = ut(x)−
∫ x

0
k(x,y)ut(y)dy

= uxx(x)+λu(x)−
∫ x

0
k(x,y)

(

uyy(y)+λu(y)
)

dy

= uxx(x)+λu(x)− k(x,x)ux(x)+ k(x,0)ux(0)

+
∫ x

0
ky(x,y)uy(y)dy−

∫ x

0
λk(x,y)u(y)dy (integration by parts)

= uxx(x)+λu(x)− k(x,x)ux(x)+ k(x,0)ux(0)+ ky(x,x)u(x)− ky(x,0)u(0)

−
∫ x

0
kyy(x,y)u(y)dy−

∫ x

0
λk(x,y)u(y)dy . (integration by parts) (10)

Subtracting (9) from (10), we get

wt −wxx =

[

λ+2
d

dx
k(x,x)

]

u(x)+ k(x,0)ux(0)

+

∫ x

0

(

kxx(x,y)− kyy(x,y)−λk(x,y)
)

u(y)dy

= 0



Backstepping for PDEs—An example

For this to hold for all u, three conditions have to be satisfied:

kxx(x,y)− kyy(x,y)−λk(x,y) = 0 (11)

k(x,0) = 0 (12)

λ+2
d

dx
k(x,x) = 0. (13)

We simplify (13) by integrating it with respect to x and noting from (12) that k(0,0) = 0,

which gives us

kxx(x,y)− kyy(x,y) = λk(x,y)

k(x,0) = 0

k(x,x) =−λ

2
x

(14)



Backstepping for PDEs—An example

These three conditions form a well posed PDE of hyperbolic type in the “Goursat form.”

One can think of the k-PDE as a wave equation with an extra term λk.

x plays the role of time and y of space.

In quantum physics such PDEs are called Klein-Gordon PDEs.



y

x0 1

1

Domain of the PDE for gain kernel k(x,y).

The boundary conditions are prescribed on hypotenuse and the lower cathetus of the

triangle.

The value of k(x,y) on the vertical cathetus gives us the control gain k(1,y).



Backstepping for PDEs—An example

To find a solution of the k-PDE (14) we first convert it into an integral equation.

Introducing the change of variables

ξ = x+ y, η = x− y (15)

we have

k(x,y) = G(ξ,η)

kx = Gξ+Gη

kxx = Gξξ+2Gξη+Gηη

ky = Gξ−Gη

kyy = Gξξ−2Gξη+Gηη .



Backstepping for PDEs—An example

Thus, the gain kernel PDE becomes

Gξη(ξ,η) =
λ

4
G(ξ,η) (16)

G(ξ,ξ) = 0 (17)

G(ξ,0) = −λ

4
ξ . (18)

Integrating (16) with respect to η from 0 to η, we get

Gξ(ξ,η) = Gξ(ξ,0)+

∫ η

0

λ

4
G(ξ,s)ds =−λ

4
+

∫ η

0

λ

4
G(ξ,s)ds . (19)

Next, we integrate (19) with respect to ξ from η to ξ to get the integral equation

G(ξ,η) =−λ

4
(ξ−η)+

λ

4

∫ ξ

η

∫ η

0
G(τ,s)dsdτ (20)

The G-integral eqn is easier to analyze than the k-PDE.



Backstepping for PDEs—An example

Start with an initial guess

G0(ξ,η) = 0 (21)

and set up the recursive formula for (20) as follows:

Gn+1(ξ,η) =−λ

4
(ξ−η)+

λ

4

∫ ξ

η

∫ η

0
Gn(τ,s)dsdτ (22)

If this functional iteration converges, we can write the solution G(ξ,η) as

G(ξ,η) = lim
n→∞

Gn(ξ,η) . (23)



Backstepping for PDEs—An example

Let us denote the difference between two consecutive terms as

∆Gn(ξ,η) = Gn+1(ξ,η)−Gn(ξ,η) . (24)

Then

∆Gn+1(ξ,η) =
λ

4

∫ ξ

η

∫ η

0
∆Gn(τ,s)dsdτ (25)

and (23) can be alternatively written as

G(ξ,η) =
∞

∑
n=0

∆Gn(ξ,η) . (26)

Computing ∆Gn from (25) starting with

∆G0 = G1(ξ,η) =−λ

4
(ξ−η) , (27)

we can observe the pattern which leads to the following formula:

∆Gn(ξ,η) =−(ξ−η)ξnηn

n!(n+1)!

(

λ

4

)n+1

(28)

This formula can be verified by induction.



Backstepping for PDEs—An example

The solution to the integral equation is given by

G(ξ,η) =−
∞

∑
n=0

(ξ−η)ξnηn

n!(n+1)!

(

λ

4

)n+1

. (29)

To compute the series (29), note that a first order modified Bessel function of the first kind

can be represented as

I1(x) =
∞

∑
n=0

(x/2)2n+1

n!(n+1)!
. (30)



Backstepping for PDEs—An example

Comparing (30) with (29) we obtain

G(ξ,η) =−λ

2
(ξ−η)

I1(
√

λξη)
√

λξη
(31)

or, returning to the original x, y variables,

k(x,y) =−λy

I1

(

√

λ(x2− y2)

)

√

λ(x2− y2)
(32)



Backstepping for PDEs—An example

k1(y)

y

λ = 10

λ = 15

λ = 20

λ = 25

0 0.2 0.4 0.6 0.8 1
-40

-30

-20

-10

0

Control gain k(1,y) for different values of λ

As λ gets larger, the plant becomes more unstable which requires more control effort.

Low gain near the boundaries is logical: near x = 0 the state is small even without control

because of the boundary condition u(0) = 0; near x = 1 the control has the most impact.



Backstepping for PDEs—An example

We need to establish that stability of the w-target system (4)–(6) implies stability of the

u-closed-loop system (1), (2), (8), by showing that the transformation u 7→ w is invertible.

Invertibility is obvious by seeing the backstepping transformation as an integral equation

in u.

Postulate an inverse transformation in the form

u(x) = w(x)+
∫ x

0
l(x,y)w(y)dy , (33)

where l(x,y) is the transformation kernel.

Given the direct transformation (7) and the inverse transformation (33), the kernels k(x,y)

and l(x,y) satisfy

l(x,y) = k(x,y)+
∫ x

y
k(x,ξ)l(ξ,y)dξ (34)



Backstepping for PDEs—An example

One can find also kernel equations for l(x,y):

lxx(x,y)− lyy(x,y) =−λl(x,y)

l(x,0) = 0

l(x,x) =−λ

2
x

(35)

Comparing this PDE with the PDE (14) for k(x,y), we see that

l(x,y;λ) =−k(x,y;−λ) . (36)



Backstepping for PDEs—An example

From (32) we have

l(x,y) = −λy

I1

(

√

−λ(x2− y2)

)

√

−λ(x2− y2)
=−λy

I1

(

j

√

λ(x2− y2)

)

j

√

λ(x2− y2)
,

or, using the properties of I1,

l(x,y) =−λy

J1

(

√

λ(x2− y2)

)

√

λ(x2− y2)
(37)



Summary of control design for the reaction-diffusion equation

Plant ut = uxx+λu (38)

u(0) = 0 (39)

Controller u(1) =−
∫ 1

0
yλ

I1

(

√

λ(1− y2)

)

√

λ(1− y2)
u(y)dy (40)

Transformation w(x) = u(x)+

∫ x

0
λy

I1

(

√

λ(x2− y2)

)

√

λ(x2− y2)
u(y)dy (41)

u(x) = w(x)−
∫ x

0
λy

J1

(

√

λ(x2− y2)

)

√

λ(x2− y2)
w(y)dy (42)

Target system wt = wxx (43)

w(0) = 0 (44)

w(1) = 0 (45)
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Backstepping control of coupled hyperbolic 1-D systems

ut(t,x)+Σ+ux(t,x) = Λ++u(t,x)+Λ+−v(t,x)

vt(t,x)−Σ−vx(t,x) = Λ−+u(t,x)+Λ−−v(t,x)

with the following boundary conditions

u(t,0) = 0, v(t,1) =U(t)

where

u =
(

u1 · · · un

)T
, v =

(

v1 · · · vm

)T

Σ+ =





ε1 0
. . .

0 εn



 , Σ− =





µ1 0
. . .

0 µm





with

−µ1 < · · ·<−µm < 0 < ε1 ≤ ·· · ≤ εn



Backstepping control of coupled hyperbolic 1-D systems

Backstepping transformation

α(t,x) = u(t,x)

β(t,x) = v(t,x)−
∫ x

0
[L(x,ξ)u(ξ)+K(x,ξ)v(ξ)]dξ

L and K defined on the triangular domain T .

Target system

αt(t,x)+Σ+αx(t,x) = Λ++α(t,x)+Λ+−β(t,x)+

∫ x

0
D+(x,ξ)α(ξ)dξ+

∫ x

0
D−(x,ξ)β(ξ)dξ

βt(t,x)−Σ−βx(t,x) = G(x)β(0)

with boundary conditions

α(t,0) = β(t,1) = 0



Backstepping control of coupled hyperbolic 1-D systems

Structure of G is lower-diagonal with diagonal of zeros

G(x) =









0 · · · · · · 0

g2,1(x)
. . . . . . ...

... . . . . . . ...

gm,1(x) · · · gm,m−1(x) 0









It can be shown to make stable

βt(t,x)−Σ−βx(t,x) = G(x)β(0)

From there follows target system stability.

G(x) is not chosen, but computed from the kernels.
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Backstepping control of coupled hyperbolic 1-D systems

Kernel equations

0 =Σ−Lx(x,ξ)−Lξ(x,ξ)Σ
+−L(x,ξ)Λ++−K(x,ξ)Λ−+

0 =Σ−Kx(x,ξ)+Kξ(x,ξ)Σ
−−K(x,ξ)Λ−−−L(x,ξ)Λ+−

with boundary conditions

0 =L(x,x)Σ++Σ−L(x,x)+Λ−+

0 =Σ−K(x,x)−K(x,x)Σ−+Λ−−

0 =G(x)−K(x,0)Σ−

Too many boundary conditions?

No, in fact more boundary conditions are needed −→ Nonuniqueness!
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Backstepping control of coupled hyperbolic 1-D systems

Developing the equations:

µi∂xLi j(x,ξ)− ε j∂ξLi j(x,ξ) =
n

∑
k=1

λ++
k j

Lik(x,ξ)+
m

∑
p=1

λ−+
p j Kip(x,ξ)

µi∂xKi j(x,ξ)+µ j∂ξKi j(x,ξ) =
m

∑
p=1

λ−−
p j Kip(x,ξ)+

n

∑
k=1

λ+−
k j

Lik(x,ξ)

with boundary conditions:

∀1 ≤ i ≤ m,1 ≤ j ≤ n, Li j(x,x) =−
λ−+

i j

µi+ ε j

∀1 ≤ i, j ≤ m, i 6= j, Ki j(x,x) =−
λ−−

i j

µi−µ j

∀1 ≤ i ≤ j ≤ m, Ki j(x,0) = 0

∀1 ≤ j < i ≤ m, Ki j(1,ξ) = li j

∀1 ≤ j < i ≤ m, gi j(x) = µ jKi j(x,0)

Well-posedness depends on the characteristics!



Characteristics for Li j

µi∂xLi j(x,ξ)− ε j∂ξLi j(x,ξ) =
n

∑
k=1

λ++
k j Lik(x,ξ)+

m

∑
p=1

λ−+
p j Kip(x,ξ)

Li j(x,x) = −
λ−+

i j

µi+ ε j



Characteristics for Kii

µi∂xKii(x,ξ)+µi∂ξKii(x,ξ) =
m

∑
p=1

λ−−
pi Kip(x,ξ)+

n

∑
k=1

λ+−
ki Lik(x,ξ)

Kii(x,0) = 0



Characteristics for Ki j, i < j

µi∂xKi j(x,ξ)+µ j∂ξKi j(x,ξ) =
m

∑
p=1

λ−−
p j Kip(x,ξ)+

n

∑
k=1

λ+−
k j Lik(x,ξ)

Ki j(x,x) = −
λ−−

i j

µi−µ j

Ki j(x,0) = 0



Characteristics for Ki j, i > j

µi∂xKi j(x,ξ)+µ j∂ξKi j(x,ξ) =
m

∑
p=1

λ−−
p j Kip(x,ξ)+

n

∑
k=1

λ+−
k j Lik(x,ξ)

Ki j(x,x) = −
λ−−

i j

µi−µ j

Ki j(1,ξ) = li j

gi j(x) = µ jKi j(x,0)



Backstepping control of coupled hyperbolic 1-D systems

The presented approach produces piecewise continuous and differentiable kernels.

There are potential lines of discontinuity, which complicate kernel calculation, but do not

affect the stability result.

Next we see how we can produce a strikingly similar result for reaction-diffusion equations.
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Coupled parabolic systems

Consider

ut(t,x) = Σuxx(t,x)+Λ(x)u(t,x)

x ∈ [0,1], t > 0, u ∈ R
n

Σ =









ε1 0 . . . 0

0 ε2 . . . 0
... ... . . . ...

0 0 . . . εn









, Λ(x) =









λ11(x) λ12(x) . . . λ1n(x)
λ21(x) λ22(x) . . . λ2n(x)

... ... . . . ...

λn1(x) λn2(x) . . . λnn(x)









with εi > 0 ordered, i.e., ε1 > ε2 > .. . > εn > 0, and boundary conditions

u(0, t) = 0,

u(1, t) = U(t)

with U ∈ R
n.



Backstepping approach

Consider the Backstepping Transformation :

w(t,x) = u(t,x)−
∫ x

0
K(x,ξ)u(t,ξ)dξ

with K(x,ξ) a n×n matrix of kernels, and w verifies the Target System :

wt(t,x) = Σwxx(t,x)−Cw(t,x)−G(x)wx(0, t),

with C and G(x):

C =









c1 0 . . . 0

0 c2 . . . 0
...

... . . . ...

0 0 . . . cn









, G =













0 0 . . . 0 0

g21(x) 0 . . . 0 0
...

... . . . ...
...

g(n−1)1(x) g(n−1)2(x) . . . 0 0

gn1(x) gn2(x) . . . gn(n−1)(x) 0













where c1,c2, . . . ,cn > 0. Control law is then

U(t) =

∫ 1

0
K(1,ξ)u(t,ξ)dξ

The challenge is to prove that K(x,ξ) exists and has good properties −→ Kernel equa-

tions



Kernel equations

ΣKxx−KξξΣ = KΛ(ξ)+CK,

with b.c.

G(x) = −K(x,0)Σ,

K(x,x)Σ = ΣK(x,x),

C+Λ(x) = −ΣKx(x,x)−Σ
d

dx
K(x,x)−Kξ(x,x)Σ.

First b.c. with structure of G becomes:

Ki j(x,0) = 0, ∀ j ≥ i,

and

gi j(x) =−Ki j(x,0)ε j, ∀ j < i,
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Ki j(x,x) = 0, ∀ j 6= i,

(no boundary condition for Kii(x,x) )



Kernel equations

ΣKxx−KξξΣ = KΛ(ξ)+CK,

with b.c.

G(x) = −K(x,0)Σ,

K(x,x)Σ = ΣK(x,x),

C+Λ(x) = −ΣKx(x,x)−Σ
d

dx
K(x,x)−Kξ(x,x)Σ.

Third boundary condition:

0 = λi j(x)+δi jci+Ki jξ(x,x)ε j + εiKi jx(x,x)+ εi
d

dx

(

Ki j(x,x)
)

,



Duplicating the kernel equations

Key idea (“duplication”): define

L(x,ξ) =
√

ΣKx(x,ξ)+Kξ(x,ξ)
√

Σ −→ Li j(x,x) =
√

εiKi jx(x,x)+
√

ε jKi jξ(x,x)

Then we can rewrite the “duplicated” kernel equations as

√
ΣKx+Kξ

√
Σ = L

√
ΣLx−Lξ

√
Σ = KΛ(ξ)+CK

Same structure as in the coupled hyperbolic result!

Third boundary condition becomes:

i = j: 0 = λii(x)+ ci+2εi(Kiix(x,x)+Kiiξ(x,x)) −→ Lii(x,x) =−λii(x)+ci

2
√

εi

i 6= j: 0 = λi j(x)+(εi− ε j)Ki jx(x,x) −→ Li j(x,x) =− λi j(x)√
εi+

√
ε j



Duplicating the kernel equations

The boundary conditions therefore are:

• If i = j

Lii(x,x) = −λii(x)+ ci

2
√

εi

Kii(x,0) = 0

• If i < j

Ki j(x,x) = Ki j(x,0) = 0

Li j(x,x) = − λi j(x)√
εi +

√
ε j

• Finally if i > j

Ki j(x,x) = 0

Ki j(1,ξ) = li j(ξ)

Li j(x,x) = − λi j(x)√
εi +

√
ε j

and the additional condition gi j(x) =−Ki j(x,0)ε j

Same structure as in the coupled hyperbolic result!



Extension to reaction-advection-diffusion systems with

spatially-varying coefficients

The method can be extended to

ut = ∂x (Σ(x)ux)+Φ(x)ux+Λ(x)u



Outline

• Foundations of backstepping: basic design for a 1D parabolic equation

• Coupled hyperbolic systems

• Coupled parabolic systems

• Extension to n-balls

• Bilateral design

• Some open problems



Reaction-diffusion equation on an n-dimensional ball

Let the state u = u(t,~x), with~x = [x1,x2, . . . ,xn]
T , verify

∂u

∂t
= ε

(

∂2u

∂x2
1

+
∂2u

∂x2
2

+ . . .+
∂2u

∂x2
n

)

+λu = ε△n u+λu,

for constant ε > 0, λ(r,~θ), and for t > 0, in the n-ball Bn(R) defined as

Bn(R) = {~x ∈ R
n

: ‖~x‖< R} ,

with b.c. on the boundary of Bn(R), the (n−1)-sphere Sn−1(R):

Sn−1(R) = {~x ∈ R
n

: ‖~x‖= R} .

The b.c. is of Dirichlet type:

u(t,~x)
∣

∣

∣

~x∈Sn−1(R)
=U(t,~x)

where U(t,~x) is the actuation variable.



Ultraspherical coordinates

The n-ball domain is well described in n-dimensional spherical coordinates, also known as

ultraspherical coordinates:

• one radial coordinate r, r ∈ [0,R).

• n− 1 angular coordinates: ~θ = [θ1,θ2, . . . ,θn−1]
T , with θ1 ∈ [0,2π) and θi ∈ [0,π]

for 2 ≤ i ≤ n−1.

Definition:

x1 = r cosθ1 sinθ2 sinθ3 . . .sinθn−1,

x2 = r sinθ1 sinθ2 sinθ3 . . .sinθn−1,

x3 = r cosθ2 sinθ3 . . .sinθn−1,
...

xn−1 = r cosθn−2 sinθn−1,

xn = r cosθn−1.



Laplacian in ultraspherical coordinates

Writing the reaction diffusion equation in ultraspherical coordinates

ut =
ε

rn−1
∂r

(

rn−1∂ru
)

+
1

r2
△∗

n−1 u+λu,

u(t,R,~θ ) = U(t,~θ ),

where △∗
n−1

is called the Laplace-Beltrami operator and represents the Laplacian over the

(n−1)-sphere.

It is defined recursively as

△∗
1 =

∂2

∂θ2
1

,

△∗
n =

1

sinn−1 θn

∂

∂θn

(

sin
n−1 θn

∂

∂θn

)

+
△∗

n−1

sin2 θn

,

Example:

△∗
2 =

1

sinθ2

∂

∂θ2

(

sinθ2

∂

∂θ2

)

+
1

sin2 θ2

∂2

∂θ2
1

.



Designing a boundary feedback law

• Exploit periodicity in~θ by using Spherical Harmonics

• Apply the backstepping method to each harmonic coefficient

• Solve the backstepping kernel equations to find a feedback law for each harmonic

• Re-assemble the feedback law in Spherical Harmonics back to physical space



Spherical Harmonics

Develop u and U in term of Spherical Harmonics coefficients um
l

and Um
l

:

u(t,r,~θ) =
l=∞

∑
l=0

m=N(l,n)−1

∑
m=0

um
l (r, t)Y

n
lm(

~θ), U(t,~θ) =
l=∞

∑
l=0

m=N(l,n)−1

∑
m=0

Um
l (t)Y n

lm(
~θ),

N(l,n): number of (linearly independent) n-dimensional spherical harmonics of degree l

N(l,n) =
2l +n−2

l

(

l +n−3

l −1

)

, l > 0; N(0,n) = 1

Y n
lm
(~θ): m-th order n-dimensional spherical harmonic of degree l

Coefficients are defined as:

um
l (r, t) =

∫ π

0
. . .

∫ π

0

∫ 2π

0
u(t,r,~θ)Ȳ n

lm(
~θ)sin

n−2 θn−1 sin
n−3 θn−2 . . .sinθ2d~θ,

Um
l (t) =

∫ π

0
. . .

∫ π

0

∫ 2π

0
U(t,~θ)Ȳ n

lm(
~θ)sin

n−2 θn−1 sin
n−3 θn−2 . . .sinθ2d~θ,

(d~θ = dθn−1dθn−2 . . .dθ2dθ1, Ȳ n
lm

is the complex conjugate of Y n
lm

)



Spherical Harmonics

The n-dimensional spherical harmonics are eigenfunctions for the Laplacian △∗
n−1

:

△∗
n−1Y n

lm =−l(l +n−2)Y n
lm.

Thus, each harmonic coefficient um
l
(t,r) for l ∈ N and 0 ≤ m ≤ N(l,n), verifies

∂tu
m
l =

ε

rn−1
∂r

(

rn−1∂rum
l

)

− l(l +n−2)
ε

r2
um

l +λum
l ,

evolving in r ∈ [0,R], t > 0, with boundary conditions

um
l (t,R) = Um

l (t),

The PDEs for the harmonics are not coupled: we can independently design each Um
l

and

later assemble all of the them to find an expression for U .



Backstepping control of Spherical Harmonics coefficients

To design Um
l
(t) seek transformation of

∂tu
m
l =

ε

rn−1
∂r

(

rn−1∂rum
l

)

− l(l +n−2)
ε

r2
um

l +λum
l

into the (stable) target system

∂tw
m
l =

ε

rn−1
∂r

(

rn−1∂rwm
l

)

− l(l +n−2)
ε

r2
wm

l

with boundary conditions

wm
l (t,R) = 0

The transformation is

wm
l (t,r) = um

l (t,r)−
∫ r

0
Kn

lmr,ρ)um
l (t,ρ)dρ

with kernels Kn
lm

to be found.

Substituting at r = Rwe find Un as

Un(t) =
∫ R

0
Kn

lm(R,ρ)un(t,ρ)dρ
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Backstepping control of Spherical Harmonics coefficients

To design Um
l
(t) seek transformation of

∂tu
m
l =

ε

rn−1
∂r

(

rn−1∂rum
l

)

− l(l +n−2)
ε

r2
um

l +λum
l

into the (stable) target system

∂tw
m
l =

ε

rn−1
∂r

(

rn−1∂rwm
l

)

− l(l +n−2)
ε

r2
wm

l

with boundary conditions

wm
l (t,R) = 0

The transformation is

wm
l (t,r) = um

l (t,r)−
∫ r

0
Kn

lm(r,ρ)u
m
l (t,ρ)dρ

with kernels Kn
lm

to be found.

Substituting at r = R we find Um
l
(t) as

Um
l (t)(t) =

∫ R

0
Kn

lm(R,ρ)u
m
l (t,ρ)dρ



Kernel equation

The control kernels Kn
lm
(r,ρ) are found, for a given n ≥ 2 and each l,m, from

1

rn−1
∂r

(

rn−1∂rKn
lm

)

−∂ρ

(

ρn−1∂ρ

(

Kn
lm

ρn−1

))

− l(l +n−2)

(

1

r2
− 1

ρ2

)

Kn
lm =

λ

ε
Kn

lm.

with BC

λ+2ε
d

dr

(

Kn
lm(r,r)

)

= 0

Kn
lm(r,0) = 0

(n−2)∂ρKn
lm(r,ρ)|ρ=0 = 0

The first BC integrates to

Kn
lm(r,r) = −

∫ r

0

λ

2ε
dρ =−λr

2ε



Kernel equation

The control kernels Kn
lm
(r,ρ) are found, for a given n ≥ 2 and each l,m, from

1

rn−1
∂r

(

rn−1∂rKn
lm

)

−∂ρ

(

ρn−1∂ρ

(

Kn
lm

ρn−1

))

− l(l +n−2)

(

1

r2
− 1

ρ2

)

Kn
lm =

λ

ε
Kn

lm.

with BC

λ+2ε
d

dr

(

Kn
lm(r,r)

)

= 0

Kn
lm(r,0) = 0

(n−2)∂ρKn
lm(r,ρ)|ρ=0 = 0

The first BC integrates (using Kn
lm
(0,0) = 0) to

Kn
lm(r,r) = −

∫ r

0

λ

2ε
dρ =−λr

2ε



Explicit Kernel equation solution and feedback law

It is found that

Kn
lm(r,ρ) =−ρ

(ρ

r

)l+n−2 λ

ε

I1

[

√

λ
ε(r

2−ρ2)

]

√

λ
ε(r

2−ρ2)

Thus the feedback law for each spherical harmonic is

Um
l (t) =

∫ R

0
Kn

lm(R,ρ)u
m
l (t,ρ)dρ =

∫ R

0
−ρ
(ρ

R

)l+n−2 λ

ε

I1

[

√

λ
ε(R

2−ρ2)

]

√

λ
ε(R

2−ρ2)
um

l (t,ρ)dρ



Explicit feedback law

Using some spherical harmonics machinery one obtains an explicit feedback law

U(t,θ) = −λ

ε

∫ R

0
ρ

I1

[

√

λ
ε(R

2−ρ2)

]

√

λ
ε(R

2−ρ2)

×
[∫ π

0
. . .

∫ π

0

∫ 2π

0
P(R,ρ,~θ,~φ)u(t,ρ,~φ)ρn−1

sin
n−2 φn−1 sin

n−3 φn−2 . . .sinφ2d~φ

]

dρ

where P(R,ρ,~θ,~φ) is the Poisson kernel for the n-ball.

Back in rectangular coordinates

U(t,~x) = − 1

Area(Sn−1)

√

λ

ε

∫
Bn(R)

I1

[
√

λ

ε
(R2−‖~ξ‖2)

]

√

R2−‖~ξ‖2

‖~x−~ξ‖n
u(t,~ξ)d~ξ,

where the integral is extended to the complete n-ball Bn(R) and~x ∈ Sn−1(R).



Outline

• Foundations of backstepping: basic design for a 1D parabolic equation

• Coupled hyperbolic systems

• Coupled parabolic systems

• Extension to n-balls

• Bilateral design

• Some open problems



Bilateral vs. unilateral boundary control

1-D PDE boundary control problems, x ∈ [−L,L]

Unilateral boundary control: One side controlled, one side uncontrolled

�✁✂✄

☎✆✝✞

�✞✟✁✂✠

☎✆✞

✞

Bilateral boundary control: Both sides controlled

�✁✂✄☎�✁✂✆☎

✝✞✟✠

�✠✡✁✂☛

✝✞✠

✠

• One more actuator, but total effort may be less (more on this later)

• Backstepping design is different (transformation has to be changed)

• Interesting in practice, opens the door for fault-tolerant designs

• Similar results for boundary observer with sensors on both ends



Bilateral vs. unilateral boundary control

1-D PDE boundary control problems, x ∈ [−L,L]

Unilateral boundary control: One side controlled, one side uncontrolled

�✁✂✄

☎✆✝✞

�✞✟✁✂✠

☎✆✞

✞

Bilateral boundary control: Both sides controlled

�✁✂✄☎�✁✂✆☎

✝✞✟✠

�✠✡✁✂☛

✝✞✠

✠

• One more actuator, but total effort may be less(more on this later)

• Backstepping design has to be modified (transformation needs to be changed)

• Interesting in practice, opens the door for fault-tolerant designs

• Similar results for boundary observer with sensors on both ends



Reaction-diffusion PDEs

Bilateral problem:

ut = εuxx +λ(x)u

u(t,L) = U1(t)

u(t,−L) = U2(t)

Bilateral backstepping design:

w(t,x)= u(t,x)−
∫ x

−x
K(x,ξ)u(t,ξ)dξ −→ U1(t)=

∫ L

−L
K(L,ξ)u(t,ξ)dξ, U2(t)=

∫ L

−L
K(−L,ξ)u(t,ξ)dξ

with w(t,x) (target variable) verifying

wt = εwxx

w(t,L) = w(t,−L) = 0

Kernel equations:

Kxx(x,ξ)−Kξξ(x,ξ) =
λ(ξ)

ε
K(x,ξ) for x ∈ [−L,L], ξ ∈ [−|x|, |x|]

K(x,x) = −
∫ x

0

λ(ξ)

2ε
dξ

K(x,−x) = 0
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Reaction-diffusion PDEs

Bilateral problem:

ut = εuxx +λ(x)u

u(t,L) = U1(t)

u(t,−L) = U2(t)

Bilateral backstepping design:

w(t,x)= u(t,x)−
∫ x

−x
K(x,ξ)u(t,ξ)dξ −→ U1(t)=

∫ L

−L
K(L,ξ)u(t,ξ)dξ, U2(t)=−

∫ L

−L
K(−L,ξ)u(t,ξ)dξ

with w(t,x) (target variable) verifying

wt = εwxx

w(t,L) = w(t,−L) = 0

Kernel equations:

Kxx(x,ξ)−Kξξ(x,ξ) =
λ(ξ)

ε
K(x,ξ) for x ∈ [−L,L], ξ ∈ [−|x|, |x|]

K(x,x) = −
∫ x

0

λ(ξ)

2ε
dξ

K(x,−x) = 0



Reaction-diffusion PDEs

Domain for unilateral kernel equations

ξ

x

ξ = −L

ξ = x

• Right sided triangle

• Information propagates from diagonal (ξ = x) and lower (ξ = 0) boundary up to x = L

(control kernel)



Reaction-diffusion PDEs

Domain for bilateral kernel equations

ξ

x T1T2

ξ = x

ξ = −x

x = 1
x = −1

• Hourglass shape , two independent domains T1,T2

• Information propagates from both diagonals (ξ = x, ξ = −x) up to the boundaries

x = L,−L (control kernels)



Reaction-diffusion PDEs

Domain for bilateral kernel equations: characteristics

ξ

x

Both boundaries are characteristic! Actually an easier problem. The boundary conditions

have to match at zero for continuity



Reaction-diffusion PDEs

Explicit control law for unilateral problem (Smyshlyaev & Krstic, IEEE TAC 2004) for con-

stant λ

U =−
∫ L

−L

√

λ

ε

ξ
√

4L2− (ξ+L)2

I1

[
√

λ

ε
(4L2− (ξ+L)2)

]

u(t,ξ)dξ

Explicit control law for bilateral problem

U1 = −1

2

√

λ

ε

∫ L

−L

√

L+ξ

L−ξ
I1

[
√

λ

ε
(L2−ξ2)

]

u(t,ξ)dξ

U2 = −1

2

√

λ

ε

∫ L

−L

√

L−ξ

L+ξ
I1

[
√

λ

ε
(L2−ξ2)

]

u(t,ξ)dξ



Reaction-diffusion PDEs

Explicit control law for unilateral problem (Smyshlyaev & Krstic, IEEE TAC 2005) for con-

stant λ

U =−
∫ L

−L

√

λ

ε

ξ
√

4L2− (ξ+L)2

I1

[
√

λ

ε
(4L2− (ξ+L)2)

]

u(t,ξ)dξ

Explicit control law for bilateral problem

U1 = −1

2

√

λ

ε

∫ L

−L

√

L+ξ

L−ξ
I1

[
√

λ

ε
(L2−ξ2)

]

u(t,ξ)dξ

U2 = −1

2

√

λ

ε

∫ L

−L

√

L−ξ

L+ξ
I1

[
√

λ

ε
(L2−ξ2)

]

u(t,ξ)dξ



Reaction-diffusion PDEs

Comparing unilateral and bilateral control laws

Writing δ = L

√

λ
ε

0 2 4 6 8 10

10
6

10
3

10
0

10
!3

10
!6

∆

!
."
1

Unilateral Kernel Bilateral Kernel

For sufficiently large δ = L

√

λ
ε the bilateral control law requires less total actuation

(long domains, slow diffusion, and/or highly unstable plants)



Outline

• Foundations of backstepping: basic design for a 1D parabolic equation

• Coupled hyperbolic systems

• Coupled parabolic systems
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• Some open problems



Some open problems

• Underactuated coupled hyperbolic and parabolic systems.

• Robustness properties of backstepping controllers.

• Non-strict-feedback terms (terms that are not “spatially-causal”).

• Reaction-diffusion equation in the n-ball with non-constant diffusion.



Design on the disk with λ(r,θ)

ut =
ε

r
(rur)r +

ε

r2
uθθ+λ(r,θ)u,

It is not possible to use spherical harmonics (they are no longer eigenfunctions that de-

couple the problem).

Pose a physical-space transformation:

w = u−
∫ r

0

∫ π

−π
K(r,ρ,θ,ψ)u(ρ,ψ)dψdρ,

to transform the u equation into the target system

wt =
ε

r
(rwr)r +

ε

r2
wθθ,



Design on the disk with λ(r,θ)

The kernel verifies the ultrahyperbolic equation

Krr +
Kr

r
−Kρρ+

Kρ

ρ
− K

ρ2
− Kθθ

r2
+

Kψψ

ρ2
=

λ(ρ,ψ)

ε
K

with BC

K(r,ρ,0,ψ) = K(r,ρ,π,ψ)

K(r,ρ,θ,0) = K(r,ρ,θ,π)

K(r,0,θ,ψ) = 0,∫ π

−π
K(r,r,θ,ψ)u(r,ψ)dψ = −

∫ r

0

λ(ρ,θ)

2ε
dρu(r,θ),

this last boundary condition can be verified if

lim
ρ→r

K(r,ρ,θ,ψ) = −δ(θ−ψ)

∫ r

0

λ(ρ,θ)

2ε
dρ.

We don’t know how to solve, only know there is a solution for constant λ!

K(r,ρ,θ,ψ) =−ρ
λ

2πε

I1

[

√

λ
ε(r

2−ρ2)

]

√

λ
ε(r

2−ρ2)

r2−ρ2

r2+ρ2−2rρcos(θ−ψ)
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Muito Obrigado!
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