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Backstepping for PDEs

In ODEs, a particular approach to stabilization of dynamic systems with “triangular” struc-
ture.

Wildly successful in the area of ODE nonlinear control.

For PDEs, roughly speaking, backstepping is a constructive method that achieves Lya-
punov stabilization by transforming the system into a stable “target system,” which is
often achieved by collectively shifting all the eigenvalues in a favorable direction in the
complex plane, rather than by assigning individual eigenvalues.

Backstepping allows this task can be achieved in a rather elegant way where the
control gains are easy to compute, symbolically, numerically, or even explicitly.
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Backstepping for PDEs

. ldentify the undesirable terms in the PDE.

. Choose a target system in which the undesirable terms are to be eliminated by state
transformation and feedback, as in feedback linearization.

. Find the state transformation typically as identity minus a Volterra operator (in x).
Volterra operator = integral operator from 0 up to x (rather than from 0 to 1).
A Volterra transformation is “triangular” or “spatially causal.”

. Obtain boundary feedback from the Volterra transformation. The transformation alone
cannot eliminate the undesirable terms, but the transformantion brings them to the
boundary, so control can cancel them.
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Backstepping for PDEs
Gain fcn of boundary controller = kernel of Volterra transformation.

Volterra kernel satisfies a linear PDE.

Backstepping is not “one-size-fits-all.” Requires structure-specific effort by designer.

Reward: elegant controller, clear closed-loop behavior.
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Backstepping for PDEs—An example

Start with one of the simplest unstable PDEs, a (constant-coefficient) reaction-diffusion
equation:

ur(x,t) = wpr(x,t) +| Au(x,t) (1)
u(0,1) = 0 (2)
u(l,t) = U(t) = control (3)

The open-loop system (1), (2) (with u(1,¢#) = 0) is unstable with arbitrarily many unstable
eigenvalues for sufficiently large A > 0.

Since the term Au is the source of instability, the natural objective for a boundary feedback
is to “eliminate” this term.

Backstepping solution presented in Smyshlyaev & Krstic, IEEE TAC 2004



Backstepping for PDEs—An example

Target system (exp. stable)

wr(x,1) = wy(x,1)
w(0,7) = 0
w(ljt) = 0

State transformation

Feedback control

Task: find kernel k(x,y).



Backstepping for PDEs—An example

Task: find the function k(x,y) (which we call “gain kernel”) that makes the plant (1), (2) with
the controller (8) equivalent to the target system (4)—(6).

We introduce the following notation:
d

kx(x,x) — ak(xy)’ﬂy:x
0
ky(x,x) = @k(xa)’ﬂy:x

d
ak(xax) — kx(X,X)+ky(X,X).



Backstepping for PDEs—An example

Differentiating the transformation (7) with respect to x gives
we) = a) k(e u(o) — [ h(ry)a(y)dy

Wix(X) = txx(x) — jx(k(x x)u(x)) — ky(x,x)u / kyx (x,y)u

= Uype(x) — u(x)jk(x x) — k(,x)uy (x) — ky(x,x)u(x)

/ kxx 7y



Backstepping for PDEs—An example

Next, we differentiate the transformation (7) with respect to time:
X
wilx) = ()= | kel
— )+ () / k(.3 (1 () + ha(y) dy
= Uy (x) + Au(x) — k(x, x)uy(x) + k(x, ())ux(O)
/ ky(x,y)uy(y)dy — / Ak (x,y)u y (integration by parts)
= Uyxe(X) + Au(x) — k(x, x)ux(x) + k(x, O)ux(O)—l—ky(x,x)u(x)—ky(x,O)u(O)
/ kyy(x,y)u dy—/o Ak(x,y)u(y)dy. (integration by parts) (10)

Subtracting (9) from (10), we get

Wi — Wyy = [7» + Z%k(x,x)] u(x) + k(x,0)u,(0)

+ [t bt )
=0




Backstepping for PDEs—An example

For this to hold for all u, three conditions have to be satisfied:

ke (x,y) — kyy(x,y) = Mk(x,y) = 0 (11)
d

We simplify (13) by integrating it with respect to x and noting from (12) that £(0,0) = 0,
which gives us

k(x,0) =0 (14)




Backstepping for PDEs—An example
These three conditions form a well posed PDE of hyperbolic type in the “Goursat form.”
One can think of the k-PDE as a wave equation with an extra term Ak.
x plays the role of time and y of space.

In quantum physics such PDEs are called Klein-Gordon PDEs.



0 1 X

Domain of the PDE for gain kernel k(x,y).

The boundary conditions are prescribed on hypotenuse and the lower cathetus of the
triangle.

The value of k(x,y) on the vertical cathetus gives us the control gain k(1,y).



Backstepping for PDEs—An example
To find a solution of the k-PDE (14) we first convert it into an integral equation.

Introducing the change of variables

E=x+y, M=x—y

we have

k(x,y) = G(&n)



Backstepping for PDEs—An example

Thus, the gain kernel PDE becomes

Gen&m) = G(EM)
G&g = 0
GE0) = 3t

Integrating (16) with respect to | from O to 1, we get

Ge(Em) = +/ :—%+/OH%G(§ s)ds

Next, we integrate (19) with respect to & from m to & to get the integral equation

S
6 =5 +3 [ [ aesdsas

The G-integral eqn is easier to analyze than the k-PDE.

(19)

(20)



Backstepping for PDEs—An example

Start with an initial guess

G'(Emn) =0

and set up the recursive formula for (20) as follows:

g
M) = &)+ / [ o (z.s)asa

If this functional iteration converges, we can write the solution G(&,m) as

G(&m) = lim G*(&,n).

(21)

(22)

(23)



Backstepping for PDEs—An example

Let us denote the difference between two consecutive terms as

AGn(&?ﬂ) — Gn+1 (gﬂl) o Gn(&?ﬂ) .
Then

A S M
n+1 _ n
AG™ (&) =7 /n /0 AG"(t,5)dsdr

and (23) can be alternatively written as

GEm) = ¥ AG"Em)

Computing AG" from (25) starting with

AG)=G'(Em) = (&),

we can observe the pattern which leads to the following formula:

E e 2

AG"(Em) = —

This formula can be verified by induction.

(24)

(23)

(26)

(27)

(28)



Backstepping for PDEs—An example

The solution to the integral equation is given by

00 o 7 n+1
cem—-Y G () 29

= nl(n+1)!

To compute the series (29), note that a first order modified Bessel function of the first kind
can be represented as
oo )C/2 2n+1

(30)

n:O n! n—i_l



Backstepping for PDEs—An example

Comparing (30) with (29) we obtain

I

or, returning to the original x, y variables,

X (V=)

VA2 =)

k(xay) -




Backstepping for PDEs—An example

0 f
- A=10
\ S
10N N T~ A=15
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_40 1 1 1 1
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Control gain k(1,y) for different values of A
As A gets larger, the plant becomes more unstable which requires more control effort.

Low gain near the boundaries is logical: near x = 0 the state is small even without control
because of the boundary condition #(0) = 0; near x = 1 the control has the most impact.



Backstepping for PDEs—An example

We need to establish that stability of the w-target system (4)—(6) implies stability of the
u-closed-loop system (1), (2), (8), by showing that the transformation u — w is invertible.

Invertibility is obvious by seeing the backstepping transformation as an integral equation
in u.

Postulate an inverse transformation in the form

u(x) =wx) + [ 1 yw()dy. 3

where [(x,y) is the transformation kernel.

Given the direct transformation (7) and the inverse transformation (33), the kernels k(x, y)
and [(x,y) satisfy

I(x,y) = k(xy) + /y k() ) dE (34)




Backstepping for PDEs—An example

One can find also kernel equations for /(x, y):

lxx(xa)’) - lyy(xa)’) — _M(xa)’)
/(x,0) =0
[(x,x) = —%x

Comparing this PDE with the PDE (14) for k(x,y), we see that

[(x,yih) = —k(x,y;—=A).

(39)

(36)



From (32) we have

Backstepping for PDEs—An example

(37)



Summary of control design for the reaction-diffusion equation

Plant

Controller

Transformation

Target system

U = Uyx + AUt
u(0)=0
p h (\/7&(1 _yz))
u(l)y=— [ yA u(y)dy
VTS

(38)
(39)

(40)

(41)




Outline

Foundations of backstepping: basic design for a 1D parabolic equation

Coupled hyperbolic systems

Coupled parabolic systems

Extension to n-balls

Bilateral design

Some open problems



Backstepping control of coupled hyperbolic 1-D systems

wr(1,x) + X ue(t,x) = AT Tu(t, x) + AT v(t,x)
ve(t,x) =7 ve(t,x) = A" Tu(t,x) +

N——
g
|
<
~ N\
\.N
S
N——

with the following boundary conditions

u(t,0) =0, v(t,1) =U(r)
where
T T
u= (u ) v= (v Vim)
€1 0 U1 0
>t = , Y =
with

<< <0 <gp <o < gy



Backstepping control of coupled hyperbolic 1-D systems

Backstepping transformation
o(t,x) = u(t,x)

B(t.x) = v(t.) — [ IL(x. () + K Ev(E)

L and K defined on the triangular domain 7.

Target system

l6.0) +Z (i) = AT oe, ) + AT B0 + [ D (e + [ D (kLB
Bt(tvx) _Z_BX(tax) — G(X)B(O)

with boundary conditions

o(t,0) =B(t,1)=0



Backstepping control of coupled hyperbolic 1-D systems

Structure of G is lower-diagonal with diagonal of zeros

0 0
G(x) _ g2,1.(x) - .

8m,1 (x) - gm,m—l(x) 0
It can be shown to make stable

Be(2,x) =7 Px(r,x) = G(x)B(0)

From there follows target system stability.



Backstepping control of coupled hyperbolic 1-D systems

Structure of G is lower-diagonal with diagonal of zeros

0 0
G(x) _ g2,1.(x) - .

8m,1 (x) - gm,m—l(x) 0
It can be shown to make stable

Be(7,x) =X Bx(t,x) = G(x)B(0)
From there follows target system stability.

G(x) is not chosen, but computed from the kernels.



Backstepping control of coupled hyperbolic 1-D systems

Kernel equations
0=2"Ly(x,§) = Lg(x,§) 2" —L(x, ) AT —K(x,§)A™"
0=2"Ki(x,E) + Kg( %, EET —K(x,E)A™ T —L(x,§)AT~
with boundary conditions
0=L(x,x)Z" + X L(x,x) + A~ T

0=X"K(x,x) —K(x,x)X~ + A~
0=G(x) — K(x,0)X~

Too many boundary conditions?



Backstepping control of coupled hyperbolic 1-D systems

Kernel equations

0 :Z_LX( 7E.>) ( E.>)2+ o L(X,E_,)A—l_—'_ o K(X, g)A_—l_
0 :Z_Kx( 7&) +K§( g)z_ o K(X, g)A__ —L(X, g)A+_

with boundary conditions

0=L(x,x)ZT +X L(x,x)+A" T
0=X"K(x,x) —K(x,x)X~ + A~
0=G(x) —K(x,0)X~

Again, too many boundary conditions?

No, in fact more boundary conditions are needed — Nonuniqueness!




Backstepping control of coupled hyperbolic 1-D systems
Developing the equations:
pidxLij(x,8) —€j0eLij(x,.6) = Y M Ll Z A, Kip

,ul-axK,-j(x, ) —|—,uja€Kl'j<x, ) = Z }\,;J-_Kl‘p()c,&_,) + Z }\‘l_c‘jj_l’
k=1

with boundary conditions:

AT
VI<i<m1<j<n, Lij(xx)=——2
Mi+€;
A~
VI<ij<mi#j, Kj(xx)=-—
Hi — M
Vi<i<j<m,  K;jx,0)=0
Vi<j<i<m,  K;;(1,€)=1;

Vi<j<i<m,  gj(x)=uiK;j(x,0)

Well-posedness depends on the characteristics!



:uiaxLij (X, &)

Characteristics for ;;

—EjagLij(X,&) = Z?\++L

Lyjxy) = — =
l J




Characteristics for K;;

g 1 Boundary
conditions
1 Slllleasracteristic
0 (xf;(2,6),¢f (2,€))
1i0:Kii(x,€) + ideKi(x,€) = Y AT Kip(x,€) + ) MG Lu(x,§)
p=1 k=1

K,-,-(x,O) =0



Characteristics for K;,i < j

(x4; (o, &)

»
>

0fi(a1, &), ¢fi@,6)) € =01

/JiaxKij(xag) +/Jja?;Kij(x7&) — Z 7\‘p_j_Kip(x7&) + Z 7\‘1—5‘_[’76()67&.‘)
=1 k=1
L

Hi — Hj
K,-j(x,O) = 0

Kij(x,x) =




Characteristics for K;;,i > j

r=§

(Xf; (33(), €0)7 C'L‘I;(an 60))

(fi; (21, €1, ¢ (21, 61))

/JiaxKij(x:E;) +/~’ja?;Kij(x7E.>) - f xp_]'_Kip(xag) + i 7\‘1—5‘_L'k(x7§)
k=1

Kl-j(x,x) = - Y

Kij(1,§) = I
gij(x) = wiK;j(x,0)




Backstepping control of coupled hyperbolic 1-D systems

The presented approach produces piecewise continuous and differentiable kernels.
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There are potential lines of discontinuity, which complicate kernel calculation, but do not
affect the stability result.



Backstepping control of coupled hyperbolic 1-D systems
The presented approach produces piecewise continuous and differentiable kernels.

There are potential lines of discontinuity, which complicate kernel calculation, but do not
affect the stability result.

Next we see how we can produce a strikingly similar result for reaction-diffusion equations.
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Coupled parabolic systems

Consider
ur(t,x) = X (£, ) + A(x)u(t, x)

x€ 0,1, >0,u e R”

I er 0 ... O ] I 7\.11()6) 7»12()6) Xln(x)
v _ (:) & - (:) AR = 7»21:(?6) 7»22:(?6) N 7»2;1:(?6)
i O O ce gn | i }Lnl(X) }\‘I’ZZ(X) “o }\«nn(X) i
with €; > O ordered, i.e., €1 > & > ... > €, > 0, and boundary conditions
u(0,1) = 0,
u(l,r) = U(r)

with U € R™.




Backstepping approach

Consider the Backstepping Transformation :

witx) = ult.x) ~ [ K Eu(r, &)

with K(x,&) a n x n matrix of kernels, and w verifies the Target System :

wi(t,x) = Ewxx(t,x) — Cw(t,x) — G(x)wy(0,1),
with C and G(x):

- - 0 0 0 0
O ... O
i)l c 0 g21(x) 0 0 0
0 0 .. ¢ Zun(®) guopl®) .. 0 0
- n | i gnl (-x) gI’LZ(-x) N gn(n—l)(x) O |

where cy,ca,...,c, > 0. Control law is then

1
U(r) = | K(1LEu(r.E)dE

The challenge is to prove that K(x,&) exists and has good properties — Kernel equa-
tions




Kernel equations

XKy — K&Z = KA(E'.) + CK,

with b.c.

G(x) = —K(x,0)%,

K(x,x)L = XK(x,x),

C+A(x) = —XKy(x,x)— Z%K(x,x) — K (x,x)X.



Kernel equations

XKy — Kggz = KA(E'.) + CK,

with b.c.
G(x) = —K(x,0)%,
K(x,x)L = XK(x,x),
C+A(x) = —XKy(x,x)— Z%K(x,x) — K (x,x)X.

First b.c. with structure of G becomes:
Kij(x,O):O, \V/jZi,
and

gij(x) = —K;j(x,0)g;,  Vj<i,



Kernel equations

XKy — Kggz = KA(E'.) + CK,

with b.c.
G(x) = —K(x,0)%,
K(x,x)L = XK(x,x),
d
C+A(x) = —XKy(x,x)— ZEK(x,x) — K (x,x)X.

Second b.c. is:
Kij(x,x) =0, Vj#i,

(no boundary condition for K;;(x,x) )



Kernel equations

XKy — K&Z = KA(E'.) + CK,

with b.c.
G(x) = —K(x,0)%,
K(x,x)L = XK(x,x),
C+A(x) = —XKy(x,x)— Z%K(x,x) — K (x,x)X.

Third boundary condition:

d
0 = Ayj(x)+0ijci+ Kije (x,x)€ + &Kijx(x,2) + &~ (Kij(x,x)),



Duplicating the kernel equations

Key idea (“duplication”): define

L(Xa g) — \/EKX()C?EJ) +KE_,(X7 g)\/i —>Lij(x7x) \/7Kl]x X, x + \/— ]{3 X x

Then we can rewrite the “duplicated” kernel equations as

VIK,+K:VE = L
VEIL,—L:VE = KA(E)+CK

Same structure as in the coupled hyperbolic result!

Third boundary condition becomes:

= J: 0= Xii(x) —I—Ci—|—28i(Kiix(x,x) +Kii§(x7x)) — L,-i(x,x) = —

, . Aji(x
i 7 J: 0= RAj(x) + (& — €))Kij(x,x) — Lij(x,x) = _\@i{:\/)gj




Duplicating the kernel equations

The boundary conditions therefore are:

o Ifi=
o Kii(x) + ¢
Li(x,x) = ve
Kii(xao) = 0
o Ifi<y
Kl-j(x,x) = K,-j(x,O) =0
Aij(x)
Lij(x,x) = —m
e Finally if i > j
Kij(x,x) = 0
Kij(1,8) = 1;(S)
Aij(x)
L;j(x,x) _\/EJT\/e_j

and the additional condition g;;(x) = —K;;(x,0)g;

Same structure as in the coupled hyperbolic result!



Extension to reaction-advection-diffusion systems with

spatially-varying coefficients

The method can be extended to

ur = Iy (X(x)uy) + P(x)uy + Alx)u
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Reaction-diffusion equation on an n-dimensional ball

Let the state u = u(t, %), with ¥ = [x{,xo,...,x,]!, verify
du %u  0%u 0%u
— = € + +...+t=—= | +Au=eNu+Au,
ot (8}% ax% ox2 "

for constant € > 0, A(r,0), and for ¢ > 0, in the n-ball B"(R) defined as
B"(R) ={x € R": ||X|]| < R},
with b.c. on the boundary of B*(R), the (n — 1)-sphere S*~1(R):
"N R)={keR":||X|| =R}.
The b.c. is of Dirichlet type:

u(t,Xx) = U(t,X)

xcS"1(R)

where U (t,X) is the actuation variable.



Ultraspherical coordinates

The n-ball domain is well described in n-dimensional spherical coordinates, also known as
ultraspherical coordinates:

e one radial coordinate r, r € |0, R).

e n— 1 angular coordinates: 6 = 01,6,,...,6,_1]", with 6; € [0,27) and ©; € [0, 7]
for2<i<m—1.

Definition:
X1 = rcos0;sinB,sin0O3...s1n0O,_1,
X» = rsin@1sinB,sinB3...s1n06,,_1,
x3 = rcos0rsinB3...sin0,,_1,
X,—1 = rcos0,,_»sin0,_1,

Xn = 1rcosf,_j.



Laplacian in ultraspherical coordinates

Writing the reaction diffusion equation in ultraspherical coordinates

€ 1 1
rn_lar (r" aru) + = AN u+ A,

u(t,R,0) = U(1,0),

where A;‘l_l is called the Laplace-Beltrami operator and represents the Laplacian over the
(n—1)-sphere.

U

It is defined recursively as

82
AT — —2,
062
1 0 B AN
A* — Sinl’l—le _) _l_ n—l)
" sin”_l 0, 00, ( naen SiIl2 0,

Example:

1 9 0 1 0?2
Ny = — sin0,—— | + .
2 sin 0, 06, ( 2 392) sin® 0, 007




Designing a boundary feedback law

Exploit periodicity in 0 by using Spherical Harmonics

Apply the backstepping method to each harmonic coefficient

Solve the backstepping kernel equations to find a feedback law for each harmonic

Re-assemble the feedback law in Spherical Harmonics back to physical space



Spherical Harmonics

Develop « and U in term of Spherical Harmonics coefficients u;" and U;":

[=com=N(l,n)— - ~ [—=com=N(l,n)—1 -
Z Z ul (rat)chln(e% U(tae) — Z Z Ulm(t)Yl’:n(e>7
[=0 m=0

N(l,n): number of (linearly independent) n-dimensional spherical harmonics of degree [

204n—2 ( I4+n—73

), [>0;, N(O,n)=1

Yl’;‘n(é): m-th order n-dimensional spherical harmonic of degree [

Coefficients are defined as:

o o1 (@ 2 3 2
up'(r,t) = / // 0)7/ (8)sin" *@,_;sin" >0, ...sinB,d6,

U(t) = i v =29 "3 in0,d6
() = Ut Ylm 0) sin n—1 sin n—2 - -.8in0-,do,

(d6 = dOn_ldOn_z . .dezdel, Yl’;‘n is the complex conjugate of ¥/ )



Spherical Harmonics

The n-dimensional spherical harmonics are eigenfunctions for the Laplacian An |

Yy =—=l(l+n-2)Y] .

Thus, each harmonic coefficient u"(¢,r) for l € Nand 0 <m < N([,n), verifies

atu’l””:rn%a (" larul)—l(l—|—n 2) suj + Ay,

evolving in r € [0,R], t > 0, with boundary conditions

u’ln(t7R) — Ulm(t)a

The PDEs for the harmonics are not coupled: we can independently design each Ulm and
later assemble all of the them to find an expression for U.



Backstepping control of Spherical Harmonics coefficients

To design U;" (t) seek transformation of

€
ol = J, (rn—laru}") —I(l+n— 2)f—2u’ln + Ay’

n—1
into the (stable) target system

aﬂVT —

with boundary conditions

€

_ (&

wi'(t,R) = 0



Backstepping control of Spherical Harmonics coefficients

To design U;" (t) seek transformation of

€
ol = € J, (rn—laru;") —l(l—l—n—2)r—2u’ln—|—7uu71

n—1
into the (stable) target system

(&
aﬂVT —

n—1
with boundary conditions

_ (&

wi'(t,R) = 0
The transformation is
;
W (e, = (e = [ KG (0 (1, p)dp

with kernels Kl”m to be found.



Backstepping control of Spherical Harmonics coefficients

To design U;" (t) seek transformation of

duy' = r—gla (” larul)—l(l—l—n 2) Suy + )

into the (stable) target system

€ €
oWt = d, (,,n—la,,w’;’l) —l(l+n—2)5w

yn—1 r

with boundary conditions
wi'(t,R) = 0

The transformation is

r
W e,) = ' (r,r) = | K (P2 p)dp

with kernels Kl”m to be found.

Substituting at » = R we find U;"(¢) as

o0 = [ K .0



Kernel equation

The control kernels Kl”m(r, p) are found, for a given n > 2 and each [, m, from

1 » e < 11 A

with BC

d
7»4—28%([(?”1(7’,1”)) =0

K, (r0) = 0
(n—=2)0pKp,(r.p)lp=0 =



Kernel equation

The control kernels Kl”m(r, p) are found, for a given n > 2 and each /,m, from

! —1 —1 Ky, 1 1 A
r”—lar(rn arKfm)_ap (p” I (pnml — (I +n=2) P2 p2 Kfm:EKfm

with BC

7»—|—28% (K, (rr)) = 0
K, (r0) = 0
(n—=2)0pK], (r,p)lp=0 =

The first BC integrates (using K (0,0) = 0) to

K, (rnr) = — | —dp=——



Explicit Kernel equation solution and feedback law

It is found that

/ (R, P)uy"(1,p)dp = /—p ) - u"(1,p)dp



Explicit feedback law

Using some spherical harmonics machinery one obtains an explicit feedback law

T T p2T oo | ) 3 .
>< [ L[ [ P(R.p.8.8)ule,p,8)p" sin" 20,y sin" 4,5 .. sin02dB)| dp

where P(R, p,é,@) is the Poisson kernel for the n-ball.

Back in rectangular coordinates
) L w oo VR-IER

U(t = — — I — (R — = t,G)dc,
(1.%) Area(sn_l)ﬂ Jyre 11|V B >] ERCPREEE

where the integral is extended to the complete n-ball B*(R) and ¥ € S"~ ! (R).
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Bilateral vs. unilateral boundary control
1-D PDE boundary control problems, x € [—L, L]

Unilateral boundary control: One side controlled, one side uncontrolled

r=1L =L
| ud T

X

Bilateral boundary control: Both sides controlled

r=-L u(x,t)
U(t) et ’ < U\(?)

XL




Bilateral vs. unilateral boundary control
1-D PDE boundary control problems, x € [—L, L]
Unilateral boundary control: One side controlled, one side uncontrolled
r=—L =L

| ) T

X

Bilateral boundary control: Both sides controlled

r=-L u(x,t)
U(t) et ’ < U\(?)

XL

e One more actuator, but total effort may be less(more on this later)

Backstepping design has to be modified (transformation needs to be changed)

Interesting in practice, opens the door for fault-tolerant designs

e Similar results for boundary observer with sensors on both ends



Reaction-diffusion PDEs

Bilateral problem:

Uy = €+ MX)u
u(t,L) = U(t)
u(t,—L) = U(t)



Reaction-diffusion PDEs

Bilateral problem:

Uy = €y +MxX)u
u(t,L) = U(t)
u(t,—L) = U (1)
Bilateral backstepping design:
X
wl(t,0) =u(t,0)~ [ K(xu(t,E)dE
—X
with w(z,x) (target variable) verifying
Wr = EWxy

w(t,L) = w(t,—L)=0



Reaction-diffusion PDEs

Bilateral problem:

Uy = €y +MxX)u
u(t,L) = U(t)
u(t,—L) = Us(t)

Bilateral backstepping design:

wit,x) = u(t,x) — /_iK(x,&)u(t,@)d& Ui = /

—L

with w(z,x) (target variable) verifying

w(t,—L) =0

w(t,L)



Reaction-diffusion PDEs

Bilateral problem:

Uy = €+ MX)u
u(t,L) = U(t)
u(t,—L) = Us(t)

Bilateral backstepping design:

L

w0 =ut0)~ [ KeBuds — 0= [ KLEu8E, v =— [ K(-L (L)

with w(z,x) (target variable) verifying

W = EWx
w(t,L) = w(t,—L)=0
Kernel equations:
Ka(vd) ~Kg(vd) = “OK(xg) for xe[-LL]&e [

K(x,x) = —/Ox%i)dé

K(x,—x) = 0



Reaction-diffusion PDEs

Domain for unilateral kernel equations

e Right sided triangle

e Information propagates from diagonal (§ = x) and lower (€ = 0) boundary up to x = L
(control kernel)



Reaction-diffusion PDEs

Domain for bilateral kernel equations

e Hourglass shape , two independent domains 77, ‘%>

e Information propagates from both diagonals (§ = x, & = —x) up to the boundaries
x = L,—L (control kernels)



Reaction-diffusion PDEs

Domain for bilateral kernel equations: characteristics

Both boundaries are characteristic! Actually an easier problem. The boundary conditions
have to match at zero for continuity



Reaction-diffusion PDEs

Explicit control law for unilateral problem (Smyshlyaev & Krstic, IEEE TAC 2004) for con-
stant A

o= [ s

u(t,6)dg

€

L [\/ - g4 n?)

\/4L2 (E+L)?



Reaction-diffusion PDEs

Explicit control law for unilateral problem (Smyshlyaev & Krstic, IEEE TAC 2005) for con-
stant A

u(t,6)dg

— N M- g+
_|_

-

Explicit control law for bilateral problem




Reaction-diffusion PDEs

Comparing unilateral and bilateral control laws

Writing 6 = L\/g

11!

== [Unilateral Kernel === Bilateral Kernel

For sufficiently large 0 = L\/g the bilateral control law requires less total actuation
(long domains, slow diffusion, and/or highly unstable plants)
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Some open problems

Underactuated coupled hyperbolic and parabolic systems.

Robustness properties of backstepping controllers.

Non-strict-feedback terms (terms that are not “spatially-causal”).

Reaction-diffusion equation in the n-ball with non-constant diffusion.



Design on the disk with A(7,0)
U = E(ru,f),,—l— %uee + A(r,0)u,
r r

It is not possible to use spherical harmonics (they are no longer eigenfunctions that de-

couple the problem).

Pose a physical-space transformation:

r rm
w = M_L /_nK(r,p,G,w)u(p,\p)dwdp,

to transform the u equation into the target system

€ €
Wi = S wn), + e



Design on the disk with A(7,0)

The kernel verifies the ultrahyperbolic equation

K, Ko K Kgg Kyy Ap,V)
or - — K
Kyr+ I’ Kpp + o p2 2 + p2 .
with BC
K(r,p,0,y) = K(r,p,m, V)
K(r,p,0,0) = K(r,p,0,m)
K(r,0,0,y) = 0,
T r 9
[ koo wutway = — [M8Vapuro)
—T 0 €
this last boundary condition can be verified if
. B "A(p,0)
lim K(r,p,0,y) = —5(9—‘4!)/0 ~e 4P



Design on the disk with A(7,0)

The kernel verifies the ultrahyperbolic equation
Ko K Koo Kyy _ApW)

ro P p p2 20 p2 £
with BC
K(r.p,0,y) = K(rp,T,y)
K(r,p,0,0) = K(r,p,0,m)
K(r,0,8,y) = 0,
T r
[ koo wutway = — [M8Vapuro)
—T 0 €
this last boundary condition can be verified if
. B "Ap,0)
lim K(r,p,0,y) = —5(9—‘4!)/0 ~e 4P

We don’t know how to solve, only know there is a solution for constant A!

\ 11[ %(”2—92)]

r2_p2

K(r7p767\|1) =P

€

27e \/x(rz 02 r?+p?—2rpcos(6— )



Muito Obrigado!

Questions?

Some references:

e A. Smyshlyaev and M. Krstic, “Closed form boundary state feedbacks for a class of partial integro-
differential equations,” IEEE Transactions on Automatic Control, 2004.

e Long Hu, Florent Di Meglio, Rafael Vazquez, Miroslav Krstic, "Control of Homodirectional and General
Heterodirectional Linear Coupled Hyperbolic PDEs,” IEEE Transactions on Automatic Control, 2016.

e R. Vazquez and M. Krstic, "Boundary Control of Coupled Reaction-Advection-Diffusion Systems with
Spatially-Varying Coefficients,” IEEE Transactions on Automatic Control, 2017.

e lLong Hu, Rafael Vazquez, Florent Di Meglio, Miroslav Krstic, "Boundary exponential stabilization of
1-D inhomogeneous quasilinear hyperbolic systems,” under review, 2016. Preprint in ArXiv.

e R. Vazquez and M. Krstic, "Explicit output-feedback boundary control of reaction-diffusion PDEs on
arbitrary-dimensional balls,” ESAIM:COCYV, 2016.

e R. Vazquez and M. Krstic, "Bilateral Boundary Control of One-Dimensional First- and Second-Order
PDEs using Infinite-Dimensional Backstepping, ” Conference on Decision and Control, Las Vegas,
2016.
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