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Abstract

Recently, the problem of boundary stabilization and estimation for unstable linear constant-
coefficient reaction-diffusion equation on n-balls (in particular, disks and spheres) has been solved
by means of the backstepping method. However, the extension of this result to spatially-varying
coefficients is far from trivial. Some early success has been achieved under simplifying conditions,
such as radially-varying reaction coefficients under revolution symmetry, on a disk or a sphere.
These particular cases notwithstanding, the problem remains open. The main issue is that the equa-
tions become singular in the radius; when applying the backstepping method, the same type of
singularity appears in the kernel equations. Traditionally, well-posedness of these equations has
been proved by transforming them into integral equations and then applying the method of succes-
sive approximations. In this case, with the resulting integral equation becoming singular, successive
approximations do not easily apply. This paper takes a different route and directly addresses the
kernel equations via a power series approach (in the spirit of the method of Frobenius for ordinary
differential equations), finding in the process the required conditions for the radially-varying reac-
tion (namely, analyticity and evenness) and showing the existence and convergence of the series
solution. This approach provides a direct numerical method that can be readily applied, despite
singularities, to both control and observer boundary design problems.
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1. Prologue

It is with admiration that we contribute this article to celebrate the 80th birthday of Professor
Art Krener in a special issue in Systems & Control Letters—a journal in which he has published
some of his most impactful papers, such as his 1983 introduction of nonlinear observers, jointly
with Isidori, and his 1984 single-authored introduction of approximate feedback linearization.

Art’s contributions are not only deep but also remarkably broad, including nonlinear controlla-
bility/observability, nonlinear representation theory, feedback linearization, observer design, con-
trol of bifurcations, optimal/bang-bang control, nonlinear H-infinity control, solutions to Hamilton-
Jacobi PDEs, and estimation and analysis of stochastic systems.

His career in control theory started with his work on the maximum principle for problems where
the first order conditions are inconclusive. In order to generate conclusive results with the help of
higher order terms, he turned to Lie algebra and differential geometry tools and employed his
extension of Chow’s theorem whose answer to the questions of accessibility and reachable states
leads to higher order necessary conditions for optimality.

Art then transitioned to representation theory, to answer when a control-affine state-space model
can be represented as an input-output model via Volterra series and, somewhat conversely, when
a nonlinear input-output map can be represented as a bilinear state-space model. His work was a
significant inspiration for our spatial Volterra series approach to control of nonlinear PDEs [33].

Art’s most impactful contribution resulted when he turned his attention to controllability in
his 1977 IEEE Transactions on Automatic Control paper with mathematical physicist Hermann.
Krener provided a comprehensive set of results on controllability, observability, and minimality for
nonlinear systems, tackling them analogously to the linear case—using rank conditions and leading
to decompositions into controllable and uncontrollable subsystems.

The initial idea for the celebrated feedback linearization originated in Krener’s necessary and
sufficient conditions for the existance of a change of state variables that yields a transformed system
that is linear. Brockett, Hunt and Su, and Jacubczyk and Respondek extended this idea by adding
feedback to the state transformation, producing the general framework now known as feedback
linearization. (One could argue that “PDE backstepping” [23] is a PDE realization of the feedback
linearization idea, with a PDE target system extending the finite-dimensional Brunovsky form.)
Recognizing himself that feedback linearizability is not satisfied for some important physical sys-
tems, Krener then went on to develop a theory of “approximate feedback linearization,” published
in Systems & Control Letters [19].

Pursuing a dual of the feedback linearization approach, for the problem of state estimation,
Krener developed an approach to the design of observers for nonlinear systems, in collaboration
with Isidori in Systems & Control Letters [22], and later with Respondek, which employs a state
transformation and the injection of measured output. What we do in Section 6 of the present paper
is a PDE analog of Krener’s approach.

Art pursued nonlinear control for systems with disturbances in several waves—first in a paper
with Isidori, Gori-Giorgi and Monaco in an award-winning paper that gives existence conditions
and constructions of decoupling and noninteracting control laws, and then several years later in the
context of nonlinear H-infinity control and estimation.
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In the early and mid-1990s, inspired by “bifurcation control,” wildly popular in the physics
community at that time, and linked to interesting applications, Krener and Kang developed control
designs for normal forms that include locally quadratic dependencies, which remain the definitive
results of the art on this subject.

Art Krener cast an eye on PDE control systems at least as early as the mid-1990s, in the frame-
work of a US Air Force funded project on nonlinear control of jet engine instabilities. While
other researchers focused on the first-order Galerkin approximations of the models of rotating stall
instabilities in axial flow compressors in jet engines, Art formulated and studied generalized higher-
order Moore-Greitzer nonlinear models [15].

It is a delight to see Art Krener take on PDE control as the preoccupation for the present stage
of his career [20, 21]. Going beyond the conventional development of operator Riccati equations,
and the limitation to the study of their well posedness, in his trademark fashion, Art is produc-
ing computable approximate solutions to Riccati PDEs using Al’brekht’s approach, which he has
already brought to its state-of-the art form for nonlinear and stochastic ODEs.

2. Introduction

In this paper we introduce an explicit boundary output-feedback control law to stabilize an
unstable linear radially-dependent reaction-diffusion equation on an n-ball (which in 2-D is a disk
and in 3-D a sphere).

This paper extends the spherical harmonics [7] approach of [36], which assumed constant co-
efficients, using some of the ideas of [40]. For a finite number of harmonics, we design boundary
feedback laws and output injection gains using the backstepping method [23] (with kernels com-
puted using a power series approach) which allows us to obtain exponential stability of the origin in
the L2 norm. Higher harmonics will be naturally open-loop stable. The required conditions for the
radially-varying coefficients are found in the analysis of the numerical method and are non-obvious
(evenness of the reaction coefficient). The idea of using a power series to compute backstepping
kernels was first seen in [4] (without much analysis of the method itself, but rather numerically
optimizing the approximation) and later in [10], where piecewise-smooth kernels require the use of
several series. Here, we prove that the method provides a unique converging solution, in the spirit
of the method of Frobenius for ordinary differential equations.

Some partial results towards the solution of this problem were obtained in [38] and [37] for
the disk and sphere, respectively; however they required simmetry conditions. Older results in this
spirit were obtained in [34] and [28]. This paper extends and completes our conference contribu-
tion [41] where the ideas where initially presented (without proof).

To the best of our knowledge, this paper presents the first rigorous proof of convergence of
a power series solution for the backstepping kernel equations. Thus, this work consolidates the
method as a valid alternative to more traditional numerical approaches, which include finite dif-
ference approximations of the kernel equations [23, 17, 11, 3], the use of symbolical successive
approximation series [35], or the numerical solution of the integral version of the kernel equa-
tions [16, 6]. The main advantages of the method are its simplicity (it does not require the some-
times cumbersome conversion to integral equations thus preventing mistakes or any consideration
about discrete meshes), speed (modern computing systems can reach high orders of the series in
seconds), precision (one reaches a simple polynomial in one variable for the gain at the boundary
that does not require interpolation), adaptability (it can be adapted to settings with discontinuous
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kernels by breaking the domain in pieces, see [10]), and capacity to produce kernels depending on
parameters (by symbolically solving the kernel equations). The main drawback is the analyticity
requirement of the system coefficients, even though most physical systems and examples seen in
backstepping papers indeed posses analytic coefficients, and possibly a slow convergence rate of
the series in some cases.

Previous results and applications in multi-dimensional domains include multi-agent deploy-
ment in 3-D space [29] (by combining the ideas of [36] and [26]), convection problem on annu-
lar domains [35], PDEs with boundary conditions governed by lower-dimensional PDEs [30, 40],
multi-dimensional cuboid domains [27].

The backstepping method has proved itself to be an ubiquitous method for PDE control, with
many other applications including, among others, flow control [32, 39], nonlinear PDEs [33], hy-
perbolic 1-D systems [14, 5, 2], or delays [24]. Nevertheless, other design methods are also appli-
cable to the geometry considered in this paper (see for instance [31] or [8]).

The structure of the paper is as follows. In Section 3 we introduce the problem. In Section 4
we state our stability result. We study the well-posedness of the kernels in Section 5, which is the
main result of the paper, proving existence of the kernels and providing means for their computa-
tion; interestingly, odd and even dimensions require a slightly different approach. We briefly talk
next about the observer in Section 6, but skip most details based on its duality with respect to the
controller. Then, we give some simulation results in Section 7. We finally conclude the paper with
some remarks in Section 8.

3. n-D Reaction-Diffusion System on an n-ball

Consider the following constant-coefficient reaction-diffusion system in an n-dimensional ball
of radius R:

∂u
∂t

= ε

(
∂2u
∂x2

1
+

∂2u
∂x2

2
+ . . .+

∂2u
∂x2

n

)
+λu = ε4n u+λ(~x)u, (1)

where u = u(t,~x), with ~x = [x1,x2, . . . ,xn]
T , is the state variable, evolving for t > 0 in the n-ball

Bn(R) defined as
Bn(R) = {~x ∈ Rn : ‖~x‖ ≤ R} , (2)

with boundary conditions on the boundary of Bn(R), which is the (n− 1)-sphere Sn−1(R) defined
as

Sn−1(R) = {~x ∈ Rn : ‖~x‖= R} . (3)

The boundary condition is assumed to be of Dirichlet type,

u(t,~x)
∣∣∣
~x∈Sn−1(R)

=U(t,~x), (4)

where U(t,~x) is the actuation. On the other hand the measurement y(t,~x) is defined as

y(t,~x) = ∂ru(t,~x)
∣∣∣
~x∈Sn−1(R)

, (5)

where ∂r denotes the derivative in the radial direction (normal to the (n−1)-sphere), which would
be defined as ∂ru(t,~x) = ~∇u · ~x

‖~x‖ .
Differently from [36], we consider non-constant λ(~x) verifying the following assumption.
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Assumption 3.1. The coefficient λ(~x) is an analytic function of ~x and depends exclusively on the
radius r = ‖~x‖.

Following [36], both the state and the actuation variable can be written in n-dimensional spher-
ical coordinates, also known as ultraspherical coordinates (see [7], p. 93), which consist of one ra-
dial coordinate r and n−1 angular coordinates~θ. Then, using a (complex-valued) Fourier-Laplace
series of Spherical Harmonics1 to handle the angular dependencies, defined as

u(t,r,~θ) =
l=∞

∑
l=0

m=N(l,n)

∑
m=0

um
l (r, t)Y

n
lm(

~θ), (6)

U(t,~θ) =
l=∞

∑
l=0

m=N(l,n)

∑
m=0

Um
l (t)Y n

lm(
~θ), (7)

where N(l,n) is the number of (linearly independent) n-dimensional spherical harmonics of degree
l, given by N(0,n) = 1 (representing the mean value over the n-ball) and, for l > 0,

N(l,n) =
2l +n−2

l

(
l +n−3

l−1

)
, (8)

with Y n
lm being the m-th n-dimensional spherical harmonic of degree l. The coefficients in (6)–(7)

are possibly complex-valued.
Following [36] and using (6)–(7) one reaches the following independent complex-valued 1-D

reaction-diffusion equation for each spherical harmonic coefficient:

∂tum
l =

ε

rn−1 ∂r
(
rn−1

∂rum
l
)
− l(l +n−2)

ε

r2 um
l +λ(r)um

l , (9)

evolving in r ∈ (0,R], t > 0, with boundary conditions

um
l (t,R) = Um

l (t), (10)

In these equations, we have considered Dirichlet boundary conditions. The measurement would be
the flux at the boundary, namely ∂rum

l (t,R).
Note that following [12, p. 640], a second boundary condition, reflecting the second-order

character of (9) and the need to avoid singular behaviors, can be expressed as:

|um
l (t,0)| < ∞. (11)

In the above equations, the integers m and l stand for the order and degree of the harmonic,
respectively. Note that the higher the degree (corresponding to high frequencies), the more “natu-
rally” stable (9)–(10) is, as seen next. Define the L2 norm

‖ f‖L2 =

√√√√√ R∫
0

| f (r)|2rn−1dr. (12)

and the associated L2 space as usual, where | f |2 = f f ∗, being f ∗ the complex conjugate of f .

1Spherical harmonics were introduced by Laplace to solve the homonymous equation and have been widely used
since, particularly in geodesics, electromagnetism and computer graphics. A very complete treatment on the subject
can be found in [7].
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Lemma 3.1. Given λ(r) and R, there exists L ∈N such that, for all l > L, the equilibrium um
l ≡ 0 of

system (9)-(10) is open loop exponentially stable, namely, for Um
l = 0 in (10) there exists a positive

constant D1, such that for all t

‖um
l (t, ·)‖L2 ≤ e−D1t‖um

l (0, ·)‖L2. (13)

D1 is independent of l, and only depends on n, λ(r), ε, and R, and can be chosen as large as desired
just by increasing the values of L.

The proof is skipped as it mimics [40] just by using the L2 norm as a Lyapunov function and
Poincare’s inequality.

Thus one only needs to stabilize the unstable mode with l < L. Since the different modes are
not coupled, it allows us to stabilize them separately and re-assembling them. Moreover since only
a finite number of harmonics is stabilized, there is no need to worry about the convergence of the
control law as in [36], with its Spherical Harmonics series being just a finite sum.

Our objective can now be stated as follows. Considering only the unstable modes, design an
output-feedback control law for Um

l using, for each mode, only the measurement of ∂rum
l (t,R). Our

design procedure is established in the next section along with our main stability result.

4. Stability of controlled harmonics

Next, for the unstable modes we design the output-feedback law. The observer and controller
are designed separately using the backstepping method, by following [36]; in this reference it is
shown that both the feedback and the output injection gains can be found by solving a certain
kernel PDE equation, which is essentially the same for both the controller and the observer. Thus,
for the sake of brevity and to avoid repetitive material, we only show how to obtain the (full-state)
control law, giving the basic observer design and some additional remarks later in Section 6.

4.1. Design of a full-state feedback control law for unstable modes
Based on the backstepping method [23], our idea is utilizing an invertible Volterra integral

transformation

wm
l (t,r) = um

l (t,r)−
r∫

0

Kn
lm(r,ρ)u

m
l (t,ρ)dρ, (14)

where the kernel Kn
lm(r,ρ) is to be determined, which defined on the domain Tk = {(r,ρ) ∈R2;0≤

ρ≤ r ≤ R} to convert the unstable system (9)-(10) into an exponentially target system:

∂twm
l = ε

∂r(rn−1∂rwm
l )

rn−1 − εl(l +n−2)
wm

l
r2 − cwm

l , (15)

wm
l (t,R) = 0, (16)

where the constant c > 0 is an adjustable convergence rate. From (14) and (16), let r = R, we obtain
the boundary control as the following full-state law

Um
l (t) =

R∫
0

Kn
lm(R,ρ)u

m
l (t,ρ)dρ. (17)
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Following closely the steps of [36] to find conditions for the kernels, and defining Kn
lm(r,ρ) =

Gn
lm(r,ρ)ρ

(
ρ

r

)l+n−2, we finally reach a PDE that the G-kernels need to verify:

λ(ρ)+ c
ε

Gn
lm = ∂rrGn

lm +(3−n−2l)
∂rGn

lm
r
−∂ρρGn

lm +(1−n−2l)
∂ρGn

lm
ρ

, (18)

with only one boundary condition:

Gn
lm(r,r) = −

∫ r
0 (λ(σ)+ c)dσ

2rε
. (19)

We assume as usual that these kernel equations are well-posed and the resulting kernel is bounded
in T ; this will be analyzed later in Section 5, providing also a numerical method for its computation.

4.2. Closed-loop stability analysis of unstable modes
To obtain the stability result of closed-loop system, we need three elements. We begin by

stating the stability result for the target system. We follow by obtaining the existence of an inverse
transformation that allows us to recover our original variable from the transformed variable. Then
we relate the L2 norm with spherical harmonics. With these elements, we construct the proof of
stability mapping the result for the target system to the original system. This is done by showing
that the transformation is an invertible map from L2 into L2.

We first discuss the stability of the target system, having the following lemma:

Lemma 4.1. For all l ∈ N, and for c≥ 0, the equilibrium wm
l ≡ 0 of system (15)–(16) is exponen-

tially stable, i.e., there exists a positive constant D2 such that for all t,

‖wm
l (t, ·)‖L2≤ e−D2t‖wm

l (0, ·)‖L2, (20)

where the constant D2 is independent of n, l or m, and only depends on c, ε, and R; it can be chosen
as large as desired just by increasing the value of c.

Proof. Consider the Lyapunov function:

V2(t) =
1
2
‖wm

l (t, ·)‖
2
L2, (21)

then, taking its time derivative, we obtain

V̇2 =

R∫
0

w̄m
l ∂twm

l +wm
l ∂tw̄m

l
2

rn−1dr ≤−
(

ε

4R2 + c
)
‖wm

l ‖
2
L2 (22)

choosing

c = D2−
ε

4R2 (23)

we then obtain, independent of the value of n,

V̇2 ≤−2D2V2, (24)

thus proving the result.
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Lemma 4.2. For |l|≤ L, let c be chosen as in Lemma 4.1, and assume that the kernel Kn
lm(r,ρ) is

bounded and integrable. The system (9) with boundary control (17) is closed-loop exponentially
stable, namely there exists positive constants C and D2 such that

‖um
l (t, ·)‖L2≤Ce−D2t‖um

l (0, ·)‖L2, (25)

C and D2 are independent of m or l, and only depend on n, L, λ(r), ε and R.

Proof. The proof consists of two parts, one is existence of an inverse transformation, and then
showing the equivalence of norms of the variables un

lm and wn
lm; the result then follows from the

stability of the target system.
As shown in [36], when Kn(r,ρ) is bounded and integrable, the map (14) is invertible and its

inverse transformation is

um
l (t,r) = wm

l (t,r)+
r∫

0

Ln
lm(r,ρ)w

m
l (t,ρ)dρ, (26)

which is also bounded and integrable. Call now K̄ and L̄ the maximum of the bounds of the function
Ǩn

lm and Ľn
lm for a given n and all l ≤ L in their respective domains. It is easy to get

‖wm
l (t, ·)‖

2
L2≤M1‖um

l (t, ·)‖
2
L2, (27)

‖um
l (t, ·)‖

2
L2≤M2‖wm

l (t, ·)‖
2
L2. (28)

where M1 = 2+R4K̄/(2n) and M2 = 2+R4L̄/(2n). Combining then Lemma 4.1 with the norm
equivalence between um

l and wm
l system stated as in (27) and (28), it is easy to obtain

‖um
l (t, ·)‖L2≤

√
M2‖wm

l (t, ·)‖L2≤
√

M2e−D2t‖wm
l (0, ·)‖L2≤

√
M1M2e−D2t‖um

l (0, ·)‖L2. (29)

Let C =
√

M1M2, the result then follows.

Note that combining Lemmas 3.1 and 4.2 and taking D = min{D1,D2}, we get the following
stability result for all spherical harmonics and thus the full physical system.

Theorem 1. Under the assumption that the kernel Kn
lm(r,ρ) is bounded and integrable, the equilib-

rium um
l ≡ 0 of system (9)-(10) under control law (17) is closed-loop exponentially stable, namely,

there exists a positive constant D, such that for all t

‖um
l (t, ·)‖L2 ≤Ce−Dt‖um

l (0, ·)‖L2. (30)

where D can be chosen as large as desired just by increasing the value of L and c in the control
design process.

5. Well-posedness of the kernel equations

Next, we state the main result of the paper, which was in part assumed in Theorem 1, also giving
the requirements for λ(r). In addition the proof of the result also provides a numerical method to
compute the kernels, which is an alternative to successive approximations which do not work in
this case (due to the singularities at the origin; see for instance [38] to see the resulting singular
integral equation that needs to be solved).
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Theorem 2. Under the assumption that λ(r) is an even real analytic function in [0,R], then for a
given n > 1 and all values of l ∈ N, there is a unique power series solution Gn

lm(r,ρ) for (18)–(19),
even in its two variables in the domain T , which is real analytic in the domain. In addition, if λ(r)
is analytic, but not even, then there is no power series solution to (18)–(19) for most values l ∈ N.

The requirement of evenness for λ(r) might seem unusual. However, if we carefully consider

Assumption 3.1, and since r = ‖~x‖ =
√

x2
1 + x2

2 + . . .+ x2
n, in physical space λ(~x) will be non-

analytic, unless it is even. Thus, while solutions to the kernel equations might exist for non-even
λ(r), we cannot expect them to be analytic. This result notwithstanding, if one is interested in
controlling only very low-order harmonics, kernels do exist without this requirement, as shown
in [38, 37], which only consider the 0-th order harmonic (the mean) respectively for a disk and a
sphere, and only require boundedness of λ(r).

5.1. Proof of Theorem 2
We start by giving out an algorithmic method to compute the power series for Gn

lm(r,ρ), which
will allow us to prove Theorem 2 as well as numerically approximating the kernels.

First of all, we show that the evenness of λ(r) is a necessary condition to find an analytic solu-
tion. Next, it is possible to establish that the series for Gn

lm(r,ρ) only has even powers. Exploiting
this property to suitably express (18)–(19), we finally show the existence of the power series and
thus Theorem 2 follows. Convergence and related issues (radius of convergence) is studied towards
the end, finishing the proof.

5.1.1. Computing a power series solution for the kernels
Starting from the most basic assumption of Theorem 2, we consider that λ(r) is analytic in [0,R],

therefore it can be written as a convergent series (encompassing c and ε for notational convenience):

λ(r)+ c
ε

=
∞

∑
i=0

λiri, (31)

which, by the evenness of λ, may only contain even powers2, this is, λi = 0 if i is odd. We then,
in the spirit of the method of Frobenius for ordinary differential equations, seek for a solution of
(18)–(19) of the form:

Gn
lm(r,ρ) =

∞

∑
i=0

(
i

∑
j=0

Ci jr j
ρ

i− j

)
, (32)

where the dependence on n, l and m has been omitted for simplicity (the solution will depend on
these values). The series in (32) collects together (in the parenthesis) all the polynomial terms with
the same degree.

It is easy to see that the boundary condition (19) implies:

∀i,
i

∑
j=0

Ci j =−
λi

2(i+1)
, (33)

2It is a known fact of analysis that even functions (respectively, odd functions) contain only even powers (re-
spectively, odd powers) in their Taylor series. This fact has an easy proof by substituting the series in the definition of
evenness f (r) = f (−r) (respectively, oddness f (r) =− f (−r)) and checking the conditions verified by the coefficients.
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which in particular implies C00 =−λ0
2ε

. On the other hand, the left-hand side of (18) becomes

λ(ρ)+ c
ε

Gn
lm =

[
∞

∑
i=0

(
i

∑
j=0

Ci jr j
ρ

i− j

)]
∞

∑
i=0

λiρ
i =

∞

∑
i=0

(
i

∑
j=0

Bi jr j
ρ

i− j

)
, (34)

where we have defined

Bi j =
i

∑
k= j

Ck jλi−k. (35)

Finally, to express the right-hand side of (18), denote γ = n+ 2l− 2 ≥ 0 and define the operators
D1 = ∂rr +(1− γ)1/r∂r and D2 =−∂ρρ +(−1− γ)1/ρ∂ρ. Then

D1Gn
lm =

∞

∑
i=1

(
i

∑
j=1

j( j− γ)Ci jr j−2
ρ

i− j

)
, (36)

D2Gn
lm =

∞

∑
i=1

(
i−1

∑
j=0

(i− j)( j− i− γ)Ci jr j
ρ

i− j−2

)
, (37)

and thus, rewriting the sum to be homogeneous with (34),we find

(D1 +D2)Gn
lm =

∞

∑
i=−1

(
i+1

∑
j=−1

Di jr j
ρ

i− j

)
, (38)

where, (assuming Ci j = 0 if i, j < 0 or j > i),

Di j = ( j+2)( j+2− γ)C(i+2)( j+2)− (i− j+2)(i− j+2+ γ)C(i+2) j, (39)

Equating (38) and (34), we obtain a system of equations:

∀i≥−1, Di(i+1) = Di(−1) = 0, (40)
∀i≥ 0,0≤ j ≤ i, ( j+2)( j+2− γ)C(i+2)( j+2)− (i− j+2)(i− j+2+ γ)C(i+2) j = Bi j.(41)

With λ(r) and n are fixed, we want to show that the kernel equations are solvable for all values
of l ∈ N. Thus, γ takes increasing values. In addition we can assume γ 6= 1, since the case n = 3,
l = 0 was already addressed in [37] showing that it reduces to the usual 1-D kernel equations for
parabolic systems [23], which admits a power series solution according to [4].

The first two equalities, if γ 6= 1, imply

∀i≥ 1, Ci1 =Ci(i−1) = 0, (42)

and, in particular, C10 =C01 = 0, whereas the second equality results in a system of equations that
needs to be solved recursively, starting at i = 0. It can be rewritten as follows to start at i = 2 (since
C00, C10 and C01 are already determined).

∀i≥ 2, 0≤ j ≤ i−2, ( j+2)( j+2− γ)Ci( j+2)− (i− j)( j− i− γ)Ci j =
i−2

∑
k= j

Ck jλi−2−k. (43)

Note that for each i ≥ 2, there are i+1 coefficients in (32) but i+2 relations: one from (33), two
from (42) and i−1 from (43). Thus, it would seem that (33)–(42)–(43) is in general an incompatible
system. This is indeed the case if λ(r) is not even, i.e., if the series (31) contains odd powers, as
shown in the next section.

10



5.1.2. Evenness requirement of λ(r)
We start with the following result.

Lemma 5.1. If λ(r) is not even, then there are values of l ∈ N for which there is no solution to
(18)–(19) in the form of (32).

Proof. We show that, if there exists i odd such that λi 6= 0, then there is no solution in the form of
a power series. First, if λ1 6= 0, then from (33) we know that C01 +C10 =−λ1

4ε
, however since form

(42) one has C01 =C10 = 0, this cannot hold. Consider now there is indeed a value i > 1 for which
a coefficient λi is distinct from zero and let us show the result by contradiction. Consider the first
such i. Now, since the right-hand side of (43) depends on C(i−2) j, one gets that for all odd i′ < i
Ci′ j must zero from (33)–(42)–(43) all having a zero right-hand side (this can be formalized with
an induction argument; we skip the details). Thus, at i, the following system of equations has to be
verified:

Ci1 = Ci(i−1) = 0, (44)
i

∑
j=0

Ci j = − λi

2ε(i+1)
, (45)

and for 0≤ j ≤ i−2,

( j+2)( j+2− γ)Ci( j+2)− (i− j)(i− j+ γ)Ci j = 0, (46)

Let us consider l sufficiently large such that γ> i, so that the coefficient ( j+2−γ) in (46) is distinct
from zero in the full range of j, namely 0≤ j ≤ i−2. Then none of the coefficients in (46) is zero.
Therefore, combining (44) with (46), from Ci1 we can find Ci3, then Ci5, and so on. Similarly, from
Ci(i−1) we can find Ci(i−3), Ci(i−5) and so on. These two sequences don’t overlap because i is odd
and therefore, one finds Ci j = 0 for all 0 ≤ j ≤ i which is not compatible with (45) unless λi = 0,
which contradicts our initial assumption.

Next we show that evenness of λ implies evenness of the kernels.

Lemma 5.2. If λ(r) is even, then, a solution to (18)–(19) in the form of (32) only has even powers.

Proof. We need to prove that Ci j = 0 if either i or j is odd. From the proof of Lemma 5.1, we
directly know that for odd i one has Ci j = 0. Fix, then, i even and consider j odd; for i = 2, the
result is obvious. Assuming Ci′ j = 0 for all even numbers i′ < i and j odd, let us prove the result by
induction on the first coefficient. As before, we would need to solve (45)–(43). The right-hand side
Bi j = ∑

i−2
k= j Ck jλi−2−k of (43) is zero as in (46) by the induction hypothesis (if k even) or directly

zero if k odd. Then, following again the proof of Lemma 5.1, we have the same system of equations
(45)–(46) for our even i and odd j’s. Now:

Ci j =
( j+2)( j+2− γ)

(i− j)(i− j+ γ)
Ci( j+2),

so starting from Ci(i−1) = 0 we find Ci(i−3) = 0, then Ci(i−5), and so on; however, with i being even,
this sequence ends now in Ci1 (thus, the proof of Lemma 5.1 does not apply because the sequences
starting at Ci1 and Ci(i−1) overlap). Thus, one finds Ci j = 0 for all odd values of j between 1 and
i−1.
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5.1.3. Well-posedness of the coefficient system
Next, we show that the coefficients of the power series can always be found, which by the

previous lemmas only requires studying the even coefficients. For simplification, we redefine (31)
and (32) as:

λ(r)+ c
ε

=
∞

∑
i=0

λir2i, Gn
lm(r,ρ) =

∞

∑
i=0

(
i

∑
j=0

Ci jr2 j
ρ

2(i− j)

)
, (47)

without bothering to redefine the coefficients (note that (35) does not require any change). Defining
as well γ′ = γ

2 = n
2 + l−1≥ 0, the new system of equations to be solved is

∀i,
i

∑
j=0

Ci j =−
λi

2(2i+1)
, (48)

and

∀i≥ 1,0≤ j ≤ i−1, ( j+1)( j+1− γ
′)Ci( j+1)+(i− j)( j− i− γ

′)Ci j =
i−1

∑
k= j

Ck jλi−1−k = B(i−1) j.

(49)
Let us outline the solution procedure, and later derive some conclusions. Solving in (49) every Ci j
as a function of Ci( j+1) we get:

Ci j =
( j+1)( j+1− γ′)Ci( j+1)+B(i−1) j

(i− j)(i− j+ γ′)
, (50)

which can be written more briefly if we define, for i > 0 and 0≤ j < i,

ai j(γ
′) =

( j+1)( j+1− γ′)

(i− j)(i− j+ γ′)
, (51)

as

Ci j = ai j(γ
′)Ci( j+1)+

B(i−1) j

(i− j)(i− j+ γ′)
. (52)

To be able to simplify a bit the equation, redefine

B̂(i−1) j =
B(i−1) j

(i− j)(i− j+ γ′)
(53)

then,
Ci j = ai j(γ

′)Ci( j+1)+ B̂(i−1) j. (54)

and iterating this equality until reaching Cii, we get

Ci j =

[
k=i−1

∏
k= j

aik(γ
′)

]
Cii + B̂(i−1) j +

i−1

∑
r= j+1

k=i−1

∏
k=r

aik(γ
′)B̂(i−1)r,

and inserting this into (48), we reach an equation for Cii, namely

Cii =−
1

κ(i,γ′)

[
λi

2ε(2i+1)
+Hi

]
, (55)
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where

κ(i,γ′) = 1+
i−1

∑
j=0

k=i−1

∏
k= j

aik(γ
′), (56)

and

Hi =
i−1

∑
j=0

B̂(i−1) j +
i−2

∑
j=0

i−1

∑
r= j+1

k=i−1

∏
k=r

aik(γ
′)B̂(i−1)r

=
i−1

∑
j=0

B̂(i−1) j +
i−1

∑
r=1

r−1

∑
j=0

k=i−1

∏
k=r

aik(γ
′)B̂(i−1)r

=
i−1

∑
j=0

B̂(i−1) j +
i−1

∑
r=1

r
k=i−1

∏
k=r

aik(γ
′)B̂(i−1)r

=
i−1

∑
j=0

(
1+ j

k=i−1

∏
k= j

aik(γ
′)

)
B̂(i−1) j (57)

It is quite clear that these κ(i,γ′) will play an important role; in particular, if they are non-zero, one
can always find a unique solution for the coefficients Ci j. Thus one needs to show that κ(i,γ′) 6= 0 for
any possible i or γ′. The following lemma shows this is indeed the case, by exploiting a connection
of the ai j coefficients with Gauss’ hypergeometric functions.

Lemma 5.3. Let i be a positive integer and γ′ ≥ 0 a real number. Then, it holds that

κ(i,γ′) =
2i!
i!

Γ(γ′+1)
Γ(i+ γ′+1)

> 0, (58)

where Γ denotes the Gamma function [1, p.255].

Proof. Recalling from (56) and (51) the definitions of κ(i,γ′) and ai j, respectively, one has

κ(i,γ′) = 1+
i−1

∑
j=0

k=i−1

∏
k= j

(k+1)(k+1− γ′)

(i− k)(i− k+ γ′)
(59)

which can be rewritten in terms of binomial numbers and rising/falling factorials3 [18] as

κ(i,γ′) =
i

∑
j=0

(
i
j

)
(i− γ′)i− j

(1+ γ′)i− j
(60)

and reordering the sum and using
(

i
j

)
=

(
i

i− j

)
,

κ(i,γ′) =
i

∑
j=0

(
i
j

)
(i− γ′) j

(1+ γ′) j
=

i

∑
j=0

(−1) j
(

i
j

)
(γ′− i) j

(1+ γ′) j
, (61)

3Rising factorials (x)n are sometimes expressed using the Pochhammer’s symbol, with a slightly different notation,
namely (x)n.
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where the obvious fact (x) j = (−1) j(−x) j has been used. Consider now the finite polynomial
pi(x,γ′) defined as

pi(x,γ) =
i

∑
j=0

(−1) j
(

i
j

)
(γ′− i) j

(1+ γ′) j
x j (62)

From the definition of Gauss’ hypergeometric function [1, p.561], denoted as 2F1(a,b;c;x), in the

polynomial case (a or b non-positive integer) and noting (−1) j
(

i
j

)
= (−i) j

j! , it is immediate that

pi(x,γ) = 2F1(−i,γ′− i;1+ γ
′;x) (63)

and therefore, from Gauss’ summation theorem [1, p.556], which is applicable in this case since
1+2i > 0,

κ(i,γ′) = pi(1,γ) = 2F1(−i,γ′− i;1+ γ
′;1) =

Γ(1+ γ′)

Γ(1+ γ′+ i)
Γ(1+2i)
Γ(1+ i)

=
2i!
i!

Γ(1+ γ′)

Γ(1+ γ′+ i)
, (64)

finishing the proof.

The next result is an immediate conclusion of the positivity of κ(i,γ′):

Lemma 5.4. If λ(r) is even, then, for all values of l ∈ R, the coefficientes in (47) that solve (18)–
(19) can be uniquely found up to any order i.

To conclude the proof of Theorem 2, we need to prove analyticity of the series (47). This
step, however, requires splitting the problem in two possible cases: odd dimension (thus, γ′ =
n/2+2l−1 is not an integer) and even dimension (γ′ integer).

5.1.4. Proof of analyticity for odd dimension
In the odd-dimension case, define the following coefficients:

Li0 = 1, Li j =

(
i
j

)
(i+ γ′)(i−1+ γ′) . . .(i− j+ γ′+1)

(1− γ′)(2− γ′) . . .( j− γ′)
, j > 0 (65)

with Li0 defined as 1; these are well-defined given that γ′ is non-integer. They can also be expressed
as

Li j =

(
i
j

)
Γ(1− γ′)Γ(i+1+ γ′)

Γ( j+1− γ′)Γ(i− j+1+ γ′)

Now, in (48)–(49), denote Ci j = Li jČi j. Replacing in the recurrence we get

B(i−1) j = ( j+1)( j+1− γ
′)

(
i

j+1

)
Γ(1− γ′)Γ(i+1+ γ′)

Γ( j+2− γ′)Γ(i− j+ γ′)
Či( j+1)

−(i− j)(i− j+ γ
′)

(
i
j

)
Γ(1− γ′)Γ(i+1+ γ′)

Γ( j+1− γ′)Γ(i− j+1+ γ′)
Či j

= (i− j)(i− j+ γ
′)Li j

(
Či( j+1)−Či j

)
(66)

Define now

B̌(i−1) j =
B(i−1) j

(i− j)(i− j+ γ′)Li j
(67)
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and the new set of recurrence equations for Či j becomes rather simple:

∀i,
i

∑
j=0

Li jČi j =−
λi

2(2i+1)
, (68)

∀i≥ 1,0≤ j ≤ i−1, Či( j+1)−Či j = B̌(i−1) j, (69)

and the recurrence is easily solvable in terms of one element; for instance, Čii:

Či j = Čii−
r=i−1

∑
r= j

B̌(i−1)r (70)

for j = 1, . . . , i. Replacing in (68) we reach

i

∑
j=0

Li jČii−
i−1

∑
j=0

Li j

r=i−1

∑
r= j

B̌(i−1)r =−
λi

2(2i+1)

Thus:

Čii =
− λi

2(2i+1) +∑
k=i−1
k=0 ∑

r=i−1
r=k LikB̌(i−1)r

∑
k=i
k=0 Lik

=
− λi

2(2i+1) +∑
r=i−1
r=0 B̌(i−1)r

(
∑

k=r
k=0 Lik

)
∑

k=i
k=0 Lik

(71)

Call

Ri j =
k= j

∑
k=0

Lik, Ri =
k=i

∑
k=0

Lik = Rii. (72)

Then

Čii =
− λi

2(2i+1) +∑
r=i−1
r=0 B̌(i−1)rRir

Ri
(73)

Now, solving for the remaining coefficients from (70):

Či j =
− λi

2(2i+1) +∑
r=i−1
r=0 B̌(i−1)rRir

Ri
−

r=i−1

∑
r= j

B̌(i−1)r

=
− λi

2(2i+1) +∑
r=i−1
r=0 B̌(i−1)rRir−∑

r=i−1
r= j B̌(i−1)rRi

Ri

=
− λi

2(2i+1) +∑
r= j−1
r=0 B̌(i−1)rRir−∑

r=i−1
r= j B̌(i−1)r(Ri−Rir)

Ri
(74)

Finally, recovering the coefficients Ci j from Ci j = Li jČi j and using (67):

Ci j =
− λi

2(2i+1)Li j +∑
r= j−1
r=0 B(i−1)r

Li jRir
(i−r)(i−r+γ′)Lir

−∑
r=i−1
r= j B(i−1)r

Li j(Ri−Rir)
(i−r)(i−r+γ′)Lir

Ri
, (75)
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which is quite explicit.
Notice that since ρ≤ r,

|Gn
lm(r,ρ)| ≤

∞

∑
i=0

(
i

∑
j=0
|Ci j|r2 j

ρ
2(i− j)

)
≤

∞

∑
i=0

r2i

(
i

∑
j=0
|Ci j|

)
,

thus, defining αi = ∑
i
j=0 |Ci j|, if we can prove that ∑

∞
i=0 αir2i converges for a certain radius of

convergence R, so does Gn
lm(r,ρ) for ρ≤ r ≤ R, and thus we obtain the required analyticity. Now:

αi =
i

∑
j=0
|Ci j|

≤ |λi|
2(2i+1)

∑
i
j=0 |Li j|
|Ri|

+
∑

i
j=0 ∑

r= j−1
r=0 |B(i−1)r||

Li jRir
(i−r)(i−r+γ′)Lir

|
|Ri|

+
∑

i
j=0 ∑

r=i−1
r= j |B(i−1)r||

Li j(Ri−Rir)
(i−r)(i−r+γ′)Lir

|
|Ri|

=
|λi|

2(2i+1)
∑

i
j=0 |Li j|
|Ri|

+
∑

i−1
r=0 ∑

i
j=r+1 |B(i−1)r||

Li jRir
(i−r)(i−r+γ′)Lir

|
|Ri|

+
∑

r=i−1
r=0 ∑

r
j=0 |B(i−1)r||

Li j(Ri−Rir)
(i−r)(i−r+γ′)Lir

|
|Ri|

≤ |λi|
2(2i+1)

∑
i
j=0 |Li j|
|Ri|

+
i−1

∑
r=0
|B(i−1)r|

(
|Rir|∑i

j=r+1 |Li j|+ |Ri−Rir|∑r
j=0 |Li j|

(i− r)(i− r+ γ′)|Lir||Ri|

)
, (76)

To prove the convergence of the power series ∑
∞
i=0 αir2i consider the following lemma, inspired

by [25]:

Lemma 5.5. Consider g(x) = ∑
∞
i=0 gix2i and h(x) = ∑

∞
i=0 hix2i analytic functions, both with radius

of convergence R. Let i0 be a nonnegative integer, let (ai)
∞
i=0 be a sequence of real numbers, and

define f (x) = ∑
∞
i=0 aix2i, where ai verify, for i > i0

ai ≤ bi|gi|+ ci

i−1

∑
j=0

a j|hi−1− j| (77)

where the sequences bi,ci ≥ 0 are decreasing for i > i0, with ci also verifying limi→∞ ci = 0. Then,
f (x) is analytic with radius of convergence at least R.

Proof. Since g and h analytic with radius of convergence R we can write |gi|, |hi| ≤MR−2i, where
the definition as power series of squares has been taken into account. Thus:

ai ≤ biMR−2i + ci

i−1

∑
j=0

a jMR−2i+1+2 j (78)
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Define ǎi = ai for i ≤ i0 and, for i > i0, ǎi = biMR−2i + ci ∑
i−1
j=0 ǎ jMR−2i+1+2 j. Obvioulsy ai ≤ ǎi

and therefore the radius of convergence of f (x) would be at least the radius of convergence of
f̌ (x) = ∑

∞
i=0 ǎix2i. Now:

ǎi+1 = bi+1MR−2i−2+ci+1

i

∑
j=0

ǎ jMR−2i+2 j−1 = bi+1MR−2i−2+ci+1Mǎi+ci+1R−2
i−1

∑
j=0

ǎ jMR−2i2+ j+1

(79)
It is sufficient to compute

lim
i→∞

ǎi+1

ǎi
= lim

i→∞

bi+1MR−2i−2 + ci+1Mǎi + ci+1R−2
∑

i−1
j=0 ǎ jMR−2i+2 j+1

ǎi

= lim
i→∞

Mci+1 + lim
i→∞

bi+1MR−2i−2 + ci+1R−2
∑

i−1
j=0 ǎ jMR−2i+2 j+1

biMR−2i + ci ∑
i−1
j=0 ǎ jMR−2i+1+2 j

= R−2 lim
i→∞

bi+1 + ci+1 ∑
i−1
j=0 ǎ jR2 j+1

bi + ci ∑
i−1
j=0 ǎ jR1+2 j

≤ R−2 lim
i→∞

bi + ci ∑
i−1
j=0 ǎ jR2 j+1

bi + ci ∑
i−1
j=0 ǎ jR1+2 j

= R−2, (80)

where the inequality holds for sufficiently large i > i0 and thus in the limit, therefore proving the
lemma.

To apply Lemma 5.5 to (76) we need to bound some of the terms. In particular, if we are able
to find bi and ci such that

∑
i
j=0 |Li j|

2(2i+1)|Ri|
≤ bi, max

r∈{0,...,i−1}

(
|Rir|∑i

j=r+1 |Li j|+ |Ri−Rir|∑r
j=0 |Li j|

(i− r)(i− r+ γ′)|Lir||Ri|

)
≤ ci, (81)

we get

αi ≤ bi|λi|+ ci

i−1

∑
r=0
|B(i−1)r|

= bi|λi|+ ci

i−1

∑
r=0

i−1

∑
k=r
|Ckr||λi−1−k|

= bi|λi|+ ci

i−1

∑
k=0

k

∑
r=0
|Ckr||λi−1−k|

= bi|λi|+ ci

i−1

∑
k=0

αk|λi−1−k|. (82)

Thus, assuming that bi and ci verify the conditions given in Lemma 5.5, and given that λ(x) has a
radius of convergence of at least R, we see that Gn

lm(r,ρ) converges and defines an analytic function
for ρ≤ r ≤ R, thus proving Theorem 2 for the odd-dimension case.
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It remains to find such bi and ci. Proceeding exactly as in Lemma 5.3 with a slight modification,
we directly find

Ri = 2F1(−i,−(γ′+ i);1− γ
′;1) =

Γ(1− γ′)Γ(2i+1)
Γ(−γ′+1+ i)Γ(i+1)

=
2i!
i!

Γ(1− γ′)

Γ(1− γ′+ i)
(83)

Now, let N = γ′−1/2 and i > 2N. One can see that for 1≤ j ≤ N,

|Li j| =

(
i
j

)
(i+ γ′)(i−1+ γ′) . . .(i− j+ γ′+1)

(γ′−1)(γ′−2) . . .(γ′− j)
≤ |LiN |

=

(
i
N

)
(i+ γ′)(i−1+ γ′) . . .(i+3/2)

(γ′−1)(γ′−2) . . .(1/2)

≤ i!
N!(i−N)!

(i+N +1)!
(i+1)!

1
(N−1)!

(84)

and

|Ri|=
2i!
i!

∣∣∣∣ Γ(γ′−1)
Γ(i+1− γ′)

∣∣∣∣≥ 2i!
i!(i−N)!N!

. (85)

Thus, for i > 2N, calling di the following sequence

di =
∑

N
j=0 |Li j|
|Ri|

≤ i!(i+N +1)!
(i+1)(N−1)!2i!

, (86)

it is clear that di is a decreasing sequence, since from the ratio test r = limi→∞
di+1
di

= 1/4.
Now, set i0 = 2N. For i > i0,

∑
i
j=0 |Li j|

2ε(2i+1)|Ri|
=

∑
N
j=0 |Li j|+∑

i
j=N+1 |Li j|

2(2i+1)|Ri|
≤ di +1

2(2i+1)
= bi (87)

It is obvious that bi is decreasing, since di is decreasing.
Now we need to find a sequence ci for the second term in (81). First of all,

|Rir|∑i
j=r+1 |Li j|+ |Ri−Rir|∑r

j=0 |Li j|
(i− r)(i− r+ γ′)|Lir||Ri|

≤
2∑

i
j=r+1 |Li j|∑r

j=0 |Li j|
(i− r)(i− r+ γ′)|Lir||Ri|

(88)

The following lemmas are needed to find a bound to (88).

Lemma 5.6. Let N = γ′−1/2 and i> 2N+1. Then, define j∗= b i−1+N
2 c. It holds that |Li j| ≤ |Li j∗|.

Proof. Consider the ratio |Li j+1|
|Li j| . It is easy to see that

|Li j+1|
|Li j|

=
(i− j+ γ′)(i− j)
| j+1− γ′|( j+1)

(89)

Now, if j ≤ N < i/2−1/2, then | j+1− γ′|= γ′− j−1 > γ′−1 = N +1/2. Then, we have

|Li j+1|
|Li j|

=
(i− j+ γ′)(i− j)
(γ′− j−1)( j+1)

>
i/2(i/2+ γ′)

(N +1/2)(N +1)
≥ 1. (90)

18



Thus, the sequence always increases as long as j ≤ N, and we can look for a maximum j∗ > N.
Then, for j > N, denote the ratio of (89) by f :

f =
|Li j+1|
|Li j|

=
(i− j+ γ′)(i− j)
( j+1− γ′)( j+1)

(91)

Now, f ≤ 1 implies (i− j)2+γ′(i− j)≤ ( j+1)2−γ′( j+1). Thus, (i− j)2−( j+1)2+γ′(i+1)≤ 0.
Manipulating the expression, we find (i2− 1)− 2 j(i+ 1)+ γ′(i+ 1) ≤ 0 and canceling the term
(i+1) the following inequality for j is reached:

j ≤ i−1+ γ′

2
(92)

Therefore, if (and only if) the bound given by (92) is verified, |Li j+1|
|Li j| ≤ 1. Therefore, we conclude

that the maximum of the sequence |Li j| is reached at

j = j∗ = b i−1+ γ′

2
c= b i−1+N

2
+1/4c= b i−1+N

2
c (93)

thus finishing the proof.

Lemma 5.7. Let N = γ′−1/2 and i > 2N +1. Then we have
∑

i
j=r+1 |Li j|∑r

j=0 |Li j|
(i−r)(i−r+γ′)|Lir

≤ 2Li j∗ , where j∗

is defined in (93).

Proof. Now, to bound the term ∑
i
j=r+1 |Li j|∑r

j=0 |Li j, consider two possibilities and use
Lemma 5.6. If r < j∗, then ∑

i
j=r+1 |Li j|∑r

j=0 |Li j ≤ (i− r)(r + 1)|Li j∗||Lir|. On the other hand,
if r ≥ j∗, then ∑

i
j=r+1 |Li j|∑r

j=0 |Li j ≤ (i− r)(r+1)|Lir+1||Li j∗|. Therefore, if r < j∗:

∑
i
j=r+1 |Li j|∑r

j=0 |Li j|
(i− r)(i− r+ γ′)|Lir|

≤
(r+1)|Li j∗|

i− r+ γ′
≤

( j∗+1)|Li j∗|
i− j∗+ γ′

else, if r ≥ j∗,
∑

i
j=r+1 |Li j|∑r

j=0 |Li j|
(i− r)(i− r+ γ′)|Lir|

≤
(r+1)|Lir+1||Li j∗|
(i− r+ γ′)|Li j|

and using (91),
∑

i
j=r+1 |Li j|∑r

j=0 |Li j|
(i− r)(i− r+ γ′)|Lir|

≤
(i− r)|Li j∗|
(r+1− γ′)

≤
(i− j∗)|Li j∗ |
( j∗+1− γ′)

Now, since i−1+N
2 ≤ j∗ ≤ i+N

2 , one has that

j∗+1
i− j∗+ γ′

≤
i+N

2 +1
i− i+N

2 +N +1/2
=

i+N +2
i+N +1

< 2,

and similarly,
i− j∗

j∗+1− γ′
≤

i− i−1+N
2

i−1+N
2 +1/2−N

=
i+1−N

i−N
< 2,

thus concluding the proof.
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Thus, we are left with showing that
|Li j∗ |
|Ri| is decreasing, which is expected, since Li j∗ is one

of the elements that appear in the sum Ri. Using the expression (83) and the formula for Li j that
involves the Gamma function, we obtain the following:

|Li j∗ |
|Ri|

=
i!2Γ(1− γ′)Γ(i+1+ γ′)Γ(i+1− γ′)

2i! j∗!(i− j∗)!Γ(γ′−1)Γ( j∗+1− γ′)Γ(i− j∗+1+ γ′)
. (94)

Now, the decreasing character of the sequence is established as follows (consider the case where
i+N is odd, so that j∗ = i−1+N

2 ; the even case is analogous). Consider Stirling’s approximation to
the factorial, namely n!≈

√
2πn

(n
e

)n. Then:

i!2

2i! j∗!(i− j∗)!
=

i!2

2i!
( i−1+N

2

)
!
( i+1−N

2

)
!
≈

√
i

π(i2− (N−1)2)

1
22i

ei( i−1+N
2

) i−1+N
2
( i+1−N

2

) i+1−N
2

.

(95)
On the other hand, Stirling’s approximation to the Gamma function [1, p.257] reads Γ(z) ≈√

2π

z

( z
e

)z, thus

Γ(i+1− γ′)Γ(i+1+ γ′)

Γ( j∗+1− γ′)Γ(i− j∗+1+ γ′)
=

Γ(i+1/2−N)Γ(i+3/2+N)

Γ( i−N
2 )Γ( i+N

2 +2)

≈ 1
ei

√
( i−N

2 )( i+N
2 +2)

(i+1/2−N)(i+3/2+N)

×(i+1/2−N)i+1/2−N(i+3/2+N)i+3/2+N

( i−N
2 )

i−N
2 ( i+N

2 +2)
i+N

2 +2
. (96)

Putting together (95)–(96), we obtain the following.

|Li j∗|
|Ri|

≈ iΓ(1− γ′)√
πΓ(γ′−1)

√
f1(i) f2(i)i f3(i), (97)

where we have broken the approximation into three functions:

f1(i) =
i

π(i2− (N−1)2)

( i−N
2 )( i+N

2 +2)
(i+1/2−N)(i+3/2+N)

, (98)

f2(i) =
(i+1/2−N)(i+3/2+N)√

(i−1+N)(i+1−N)(i−N)(i+N +4)
, (99)

f3(i) =
(i+1/2−N)1/2−N(i+3/2+N)3/2+N( i−1+N

2

)−1+N
2
( i+1−N

2

) 1−N
2 ( i−N

2 )
−N

2 ( i+N
2 +2)

N
2 +2

. (100)

Notice that clearly limi→∞ f1(i) = 0 (since f1(i) behaves like O(1/i) for large i), limi→∞ f2(i) = 1,
and limi→∞ f3(i) = 16, thus it only remains to compute limi→∞ f2(i)i, which is an indeterminate of
the kind 1∞. Resolving it (the details are omitted for brevity) one obtains that the limit is indeed 1.
Thus, it is possible to find the decreasing sequence ci in (81), concluding the proof of convergence
and analyticity in odd dimension.
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5.1.5. Proof of analyticity for even dimension
The fact that γ′ is an integer makes the odd approach a priori impossible, since (65) would not be

well defined (it would contain divisions by zero). However, to overcome that difficulty, we employ
a partial solution for the kernel equations, to the order γ′−1, which helps to regularize the problem.

For this, consider F(r,ρ) = ∑
γ′−1
i=0 r2iφi(ρ

2). Replacing this function in (18)–(19) results in

γ′−1

∑
i=0

r2i λ(ρ
2)+ c
ε

φi(ρ
2) =

γ′−1

∑
i=0

[
(4i(i− γ

′)r2i−2
φi(ρ

2)− r2i (4ρ
2
φ
′′
i (ρ

2)+2(2+ γ
′)φ′(ρ2)

)]
and one gets the following recursive set of ODEs:

λ(ρ2)+ c
ε

φi(ρ
2) = 4(i+1)(i+1− γ

′)φi+1(ρ
2)−4ρ

2
φ
′′
i (ρ

2)−2(2+ γ
′)φ′

γ′−1(ρ
2)

which is solved starting at i = γ′−1:

λ(ρ2)+ c
ε

φγ′−1(ρ
2) =−4ρ

2
φ
′′
γ′−1(ρ

2)−2(2+ γ
′)φ′

γ′−1(ρ
2)

This can be written as

4xφ
′′
γ′−1 +2(2+ γ

′)φ′
γ′−1 +

λ(x)+ c
ε

φγ′−1 = 0

which is an ODE with a regular singular point at x = 0. By applying the Frobenius method [13,
Chapter 36] one can rewrite this equation as

4x2
φ
′′
γ′−1 +2x(2+ γ

′)φ′
γ′−1 +

λ(x)+ c
ε

xφγ′−1 = 0

and its indicial equation is r(r−1)+(1+ γ′/2)r = 0, thus r1 = 0 and r2 = γ′/2 (non-integer). We
are interested in the solution of the form φγ′/2 =∑

∞
i=0 aiρ

2i and discard the other solution. By Fuchs’
theorem [9, p.146] this solution is analytic where λ(x) is analytic, thus the radius of convergence
of the resulting φγ′−1(ρ

2) is greater than one. Next, for i = γ′−2 up to i = 0:

4xφ
′′
i +2(2+ γ

′)φ′i +
λ(x)+ c

ε
φi = 4(i+1)(i+1− γ

′)φi+1(x)

which, has the same indicial equation and again, also admits a solution in the required form. Ap-
plying once more Fuchs’ theorem, this solution is analytic in intervals where both λ(x) and φi+1
are analytic. Thus, by induction, we find a family of solutions such that the radius of convergence
of all φi is greater than R.

The solutions just found have a degree of freedom (the first coefficient ai of their power series,
which is φi(0)). The idea is to construct the solution such that the boundary condition Gn

lm(r,r) =

H(r) is satisfied up to order 2γ′−2. Thus: F(r,r) = ∑
γ′−1
i=0 r2iφi(r2) and expanding in power series

φi(r2):

F(r,r) =
γ′−1

∑
i=0

r2i
(

φi(0)+
r2

1!
φ
′
i(0)+

r4

2!
φ
′′
i (0)+ . . .

)
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Thus:

φ0(0) = H(0), (101)

φ1(0)+
1
1!

φ
′
0(0) =

1
1!

H ′(0), (102)

φ2(0)+
1
1!

φ
′
1(0)+

1
2!

φ
′′
0(0) =

1
2!

H ′′(0), (103)

. . . (104)

φγ−1(0)+ . . .+
1

(γ−1)!
φ
(γ−1)
0 (0) =

1
(γ−1)!

H(γ−1)(0). (105)

It can be shown that this scheme produces valid initial values for the φi’s. However, an easier ap-
proach is to follow the general series approach of Section 5.1.1 up to order i= γ′−1. By the unique-
ness of the series development and identifying coefficients, it can easily be shown that φi(0) =Cii.

Next, calling Gn
lm(r,ρ) = Ǧn

lm(r,ρ)+F(r,ρ) the new boundary condition for the PDE becomes:
Ǧn

lm(r,r) = H(r)−F(r,r) which starts at order 2γ′. Thus, we can propose Ǧn
lm(r,ρ) = rγF2(r,ρ).

One can see that the PDE for F2 is

λ(ρ)+ c
ε

F2(r,ρ) = ∂rrF2(r,ρ)+(1+ γ)
∂rF2(r,ρ)

r
−∂ρρF2(r,ρ)− (1+ γ)

∂ρF2(r,ρ)
ρ

, (106)

and following previous sections, calling ψ(r2) = H(r)−F(r,r)
r2γ′ and abusing the notation by keep-

ing the same name for the coefficients Ci j, one can find a power series development F2(r,ρ) =

∑
∞
i=0

(
∑

i
j=0Ci jr2 jρ2(i− j)

)
as

∀i,
i

∑
j=0

Ci j =−
ψi

2(2i+1)
, (107)

∀i≥ 1,0≤ j ≤ i−1, ( j+1)( j+1+ γ
′)Ci( j+1)− (i− j)(i− j+ γ

′)Ci j = B(i−1) j, (108)

Now the approach of Section 5.1.4 becomes applicable and even easier, since all coefficients are
positive. Indeed, define

Li0 = 1, Li j =

(
i
j

)
(i+ γ′)(i−1+ γ′) . . .(i− j+ γ′+1)

(1+ γ′)(2+ γ′) . . .( j+ γ′)
> 0, j > 0 (109)

Mimicking Section 5.1.4 we reach

αn =
i

∑
j=0
|Ci j|

≤ |ψi|
2(2i+1)

∑
i
j=0 |Li j|
|Ri|

+
i−1

∑
r=0
|B(i−1)r|

(
|Rir|∑i

j=r+1 |Li j|+ |Ri−Rir|∑r
j=0 |Li j|

(i− r)(i− r+ γ′)|Lir||Ri|

)

=
|ψi|

2(2i+1)
+

i−1

∑
r=0
|B(i−1)r|

2Rir(Ri−Rir)

(i− r)(i− r+ γ′)LirRi
, (110)
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where the last step can be performed due to the positivity of the redefined coefficients Li j compared
to Section 5.1.4. Again, we apply Lemma 5.5 to (110). In this case, we define

bi =
1

2ε(2i+1)
≥ 0

which is already a decreasing sequence. Then we need to find ci such that

max
r∈{0,...,i−1}

2Rir(Ri−Rir)

(i− r)(i− r+ γ′)LirRi
≤ ci (111)

and ci should be shown to be decreasing (for sufficiently large i) and convergent to zero. Consider
the following lemma.

Lemma 5.8. Consider Li j as defined in (109) and Ri, Ri j as defined in (109). Then:
1. Li(i− j) = Li j
2. Ri−Rir = Ri(i−r−1)

3. Let F(i,r) = Rir(Ri−Rir)
(i−r)(i−r+γ′)Lir

for i,r nonnegative integers with r < i. Then we have F(i,r) =
F(i, i− r−1).

4. If r ≤ i/2, R(i,r)≤ (r+1)Lir.
5. It holds that maxr∈{0,...,i−1}

2Rir(Ri−Rir)
(i−r)(i−r+γ′)Lir

≤ 2 i+2
i(i+2γ′)Ri.

Proof. When writing Li j =

(
i
j

)
Γ(1+γ′)Γ(i+1+γ′)

Γ( j+1+γ′)Γ(i− j+1+γ′) the first property becomes evident, whereas

the second property is immediate from the first since Ri− Ri j = ∑
k=i
k= j+1 Lik = ∑

i− j−1
k=0 Li(i−k) =

∑
i− j−1
k=0 Lik = Ri(i− j−1).

For the third property, note that

F(i,r) =
(r+1)(r+1+ γ)

(i− r)(i− r+ γ′)

Li(i−r−1)

Lir
F(i, i− r−1)

=
(r+1)(r+1+ γ)

(i− r)(i− r+ γ′)

Li(r+1)

Lir
F(i, i− r−1)

= F(i, i− r−1) (112)

The fourth property is obvious, noting that Li j ≤ Li( j+1) for j < i/2. Finally, for the last property,
first note that it is only required to study 0≤ r ≤ i/2 given the third property. Now:

F(i,r) =
Rir(Ri−Rir)

(i− r)(i− r+ γ′)Lir

≤
r+1Ri(i−r−1)

(i− r)(i− r+ γ′)

≤ r+1
(i− r)(i− r+ γ′

Ri (113)

and since this is an increasing function of r for 0 ≤ r < i, we can bound it by its value at r = i/2,
thus proving the final property.

Therefore, setting ci = 4 i+2
i(i+2γ′) , a sequence that decreases to zero, we can apply Lemma 5.5 to

(110) and follow the same steps as in Section 5.1.4 to obtain the result of Theorem 2 for the case of
even dimensions.
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6. Observer design

This section designs an observer for (9)-(10) from the measured output ∂rum
l (t,R) as follows:

∂t ûm
l =ε

∂r
(
rn−1∂rûm

l

)
rn−1 − l(l +n−2)

ε

r2 ûm
l +λ(r)ûm

l + pn
lm(r)(∂rum

l (t,R)−∂rûm
l (t,R)), (114)

with boundary condition
ûm

l (t,R) =Um
l (t). (115)

We need to design the output injection gain pn
lm(r). Following closely [36], define the observer

error as ũ = u− û. The observer error dynamics is given by

∂ũlmt

∂t
=

ε

rn−1 ∂r
(
rn−1

∂rũlm
)
− l(l +n−2)

ε

r2 ũlm +λ(r)ũlm− pn
lm(r)∂rũlm(t,R), (116)

with boundary conditions

ũlm(t,R) = 0. (117)

Next, we use the backstepping method to find a value of pn
lm(r) that guarantees the convergence of

ũ to zero. This ensures that the observer estimates tend to the true state values. Our approach to
designing p(r) is to find a mapping that transforms (116) into the following target system

∂w̃lmt

∂t
=

ε

rn−1 ∂r
(
rn−1

∂rw̃lm
)
− cw̃lm− l(l +n−2)

ε

r2 w̃lm, (118)

with boundary conditions

w̃lm(t,R) = 0. (119)

The transformation is defined as follows:

ũlm(t,r) = w̃lm(t,r)−
∫ R

r
Pn

lm(r,ρ)w̃lm(t,ρ)dρ, (120)

and then pn
lm(r) will be found from the transformation kernel as an additional condition.

From [36], one obtains the following PDE that the kernel must verify:

1
rn−1 ∂r

(
rn−1

∂rPn
lm
)
−∂ρ

(
ρ

n−1
∂ρ

(
Pn

lm
ρn−1

))
− l(l +n−2)

(
1
r2 −

1
ρ2

)
Pn

lm =−λ(r)
ε

Pn
lm (121)

In addition, we find a value for the output injection gain kernel

pn
lm(r) = εPn

lm(r,R) (122)

In addition, the following boundary condition must be verified.

0 = λ(r)+ ε(∂rPn
lm(r,ρ))

∣∣∣∣
ρ=r

+
ε

rn−1
d
dr

(
rn−1Pn

lm(r,r)
)
+ ε∂ρ

(
Pn

lm(r,ρ)
ρn−1

)∣∣∣∣
ρ=r

rn−1, (123)
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which can be written as

0 = λ(r)+ ε∂rPn
lm(r,r)+ ε

d
dr

(Pn
lm(r,r))+(n−1)

εPn
lm(r,r)

r
+ ε∂ρPn

lm(r,r)− (n−1)
εPn

lm(r,r)
r

.

(124)
Following [36], and after some computations, we reach the boundary conditions for the kernel
equations as follows:

Pn
lm(0,ρ) = 0, ∀l 6= 0 (125)

Pn
lmr(0,ρ) = 0, ∀l 6= 1 (126)

Pn
lm(r,r) = −

∫ r
0 λ(σ)dσ

2ε
. (127)

It turns out that the observer kernel equation can be transformed into the control kernel equation,
therefore obtaining a similar explicit result. For this, define

P̌n
lm(r,ρ) =

ρn−1

rn−1 Pn
lm(ρ,r), (128)

and it can be verified that the equation now governing P̌n
lm(r,ρ) is exactly the equation satisfied by

Kn
lm(r,ρ). Thus P̌n

lm(r,ρ) = Kn
lm(r,ρ) and we can apply our previous result of Section 5.

The observer error dynamics has the same stability properties derived in Section 4 for the
closed-loop system under full state control. As in the controller case, only a limited number of
modes need to be estimated; namely, those that are not naturally stable by the Lemma 4.1, this
being the main difference from the result given in [36].

Finally, the controller-observer augmented system can be proved closed-loop stable as in [36],
using the separation principle given the linearity of the system, with desired convergence rate, and
without much modification; we skip the details, which requires going up to H1 stability, as in [36].

7. Implementation and simulation study

In this section, the simulation experiment on a three-dimensional unity ball (n = 3,R = 1) is
taken as an example to illustrate the effectiveness of the proposed control, and some implementation
remarks.

The system with the output feedback control law is simulated on 0≤ t ≤ 2 s with the following
parameters: ε = 1,λ(r) = 10r4 + 50r2 + 50, c = 3. We consider that the system initially has the
random quantity u0 ∈ [0,10], and the observer’s initial condition is set as the actual state plus an
error of normal distribution with zero mean and σ2 = 0.5.

Fig. 1 shows the plots of the polynomial approximation of kernels K3
lm, which is obtained by

first expanding λ(r)+c
ε

by using (31), and then finding the coefficients of (32) up to a cutoff in the
p-th powers by solving recursively (39)–(41) for each i up to p; in each step one needs to compute
the coefficients Bi j given by (35) from the previously-found coefficients Ci j. The value of K does
not depend on m, so we omit this subindex, and l is varied from zero to the value given by the
Lemma 3.1. The value of p is chosen as p = 15. Applying the Lemma 3.1, one can obtain l to be
11; however, here, to save space, we only show the first six approximate numerical solutions of the
control gains. As shown in Fig. 1, we find that Kl becomes increasingly smaller as l increases.
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Figure 1: Polynomial approximation of the first six control gains Kl(r,ρ), l = 0,1, . . . ,5.

In order to avoid a dramatic increase in the complexity of simulation caused by the high dimen-
sion, in our simulations, we employ a method also based on spherical harmonic expansions, which
greatly reduces the error. Thus, we only calculate the harmonics um

l that only need discretization in
the radial direction, and then we sum up a finite number S of harmonics to recover u. When S > 0 is
a large enough integer, the error caused by the use of a finite number of harmonics is much smaller
than the angular discretization error. Thus, the simulation is carried out using the formula

u(t,r,θ1,θ2) =
l=S

∑
l=0

m=l

∑
m=−l

um
l (t,r)Y

3
lm(θ1,θ2) (129)

which is a truncated variant of (6), where the spherical harmonics are defined as

Y 3
lm(θ1,θ2) = (−1)m

√
2l +1

4π

(l−m)!
(l +m)!

P3
lm(cos(θ1))e jmθ2 (130)

with P3
lm the associated Legendre polynomial defined as

P3
lm(s) =

1
2ll!

(1− s2)m/2 dl+m

dsl+m (s2−1)l (131)

Fig. 2 and Fig. 3 illustrate the transients of open-loop and closed-loop responses at different
times, respectively, where the color denotes the value of the position at this time. The evolutions of
the L2 norm of u are plotted in Fig. 2(d) and Fig. 3(e), respectively. Note that in these figures, the
ranges of color bars are different and thus avoid too uniform colors in Fig. 3.
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(c) t=0.2s (d) Evolution of ‖u‖L2

Figure 2: Open-loop evolution. (a)-(c) Transient states. (d) L2 norm of state u.
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(a) t=0.1s (b) t=0.2s

(c) t=0.4s (d) t=2s
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Figure 3: Closed-loop evolution using output feedback control. (Note the different upper ranges of the color bars in
Fig. 2 and 3.) (a)-(d) Transient states. (e) L2 norm of state u. (f) L2 norm of observation error ũ.
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Figure 4: The details of closed-loop evolution at different r or~θ. (a) (c) Actual states. (b) (d) Observer errors between
the actual and estimated states.

When the open-loop and closed-loop evolution is compared directly, the validity of the proposed
method is illustrated more intuitively. Fig. 3(f) shows the L2 norm of the observation error, from
which it can be found that the system begins to converge to its zero equilibrium after the observation
error has already settled to zero as well. The evolutions at different layers, namely r = 0.002,
r = 0.3, r = 0.5, and r = 0.8, are shown in Fig. 4 (a)–(c), and the observer errors are presented
in Fig. 4 (b), (d). For clarity, only the first 0.4 s of the response are shown here. Fig. 5 shows
the control effort at the boundary. It can be seen that the system driven by the proposed boundary
control eventually converges after a short-term fluctuation.

8. Conclusion

We have shown a design to stabilize a radially varying reaction-diffusion equation on an n ball,
by using an output-feedback boundary control law (with boundary measurements as well) designed
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Figure 5: The control effort at different~θ.

through a backstepping method. The radially varying case proves to be a challenge, as the kernel
equations become singular in radius; when applying the backstepping method, the same type of
singularity appears in the kernel equations, and successive approximations become difficult to use.
Using a power series approach, a solution is found, thus providing a numerical method that can be
readily applied to both control and observer boundary design. In addition, the required conditions
for the radially varying coefficients (analyticity and evenness) are revealed.

This result can be extended in several ways. If one has Neumann boundary conditions at the
controlled boundary (which implies then that one is measuring the state at the boundary instead of
its normal derivative), or even Robin boundary conditions, the method can be extended straight-
forwardly, since the transformation itself does not change and, therefore, the backstepping kernels
remain the same. Only the particular control/observer gains, deduced from the backstepping ker-
nels, would change; as well as a small modification on Lemma 4.1 to account for the change in the
boundary conditions.

In practice, this result can be of interest for the deployment of multi-agent systems, following
the spirit of [29]; thus, the radial domain mirrors a radial topology of interconnected agents that
follow the reaction-diffusion dynamics to converge to equilibria that represent different deployment
profiles. Since the plant can be chosen as desired (thereby setting the behavior of the agents), the
use of analytic reaction coefficients is not actually a restriction, but opens the door to richer families
of deployment profiles compared to the constant coefficient case of [29].

However, the theoretical side of the result needs to be further investigated; an avenue of research
that can be explored is the relaxation of the analyticity hypothesis by using reaction coefficients
belonging to the Gevrey family; the kernels can then be analyzed to verify if they are still analytic,
or rather Gevrey-type kernels, or simply do not converge. Also, the rate of convergence of the
obtained power series is of interest and shall be explored. We have experimentally observed that
the rate of convergence of the series representation of λ(r) has a considerable influence on it. In
addition, one could also explore how fast the series converges in the case of constant λ, since an
explicit solution is known from [36]. In particular, the worst case in a domain with radius R would
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be given by the convergence rate of the Maclaurin series of I1

[√
λ

ε
R
]

where I1 is a modified Bessel

function of order 1. Since this function behaves quite closely to an exponential if its argument is
large (which would be the case with slowest convergence), the number of required terms would be
given by the remainder of the power series of an exponential. In that case, it is easy to see that the

size of the term
√

λ

ε
R would define the required truncation level. If we extrapolate this behavior,

then, beyond the convergence rate of the series representation of λ(r), we can say that higher
values of R and maxr∈[0,R] |λ(r)| and lower values of ε would result in slower-converging series;
coincidentally, these are exactly the same factors that would result in a more unstable open-loop
plant.
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