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About MPC
The main idea of MPC is to use, for each time instant, a
control signal that is computed from an optimal plan that
minimizes an objective function and verifies the constraints, in
an sliding time horizon.
A good references to start with MPC is Camacho, E. and
Bordons, C. (2004). Model Predictive Control.
How one does typically MPC:

1 Discretize the system for a finite number of time intervals
(time horizon), assuming inputs constant (ZOH).

2 Predict the state, based on the actual state and the future
inputs of the system (which are to be computed ).

3 Optimize the inputs for the time horizon such that a given
objective function is minimized, and input, state and terminal
constraints are.

4 Apply the first input or inputs corresponding to the current
time interval.

5 When the next time interval begins, repeat (thus closing the
loop!). This is called a receding or sliding horizon. 3 / 51
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LTI example. Discretization.

Consider:
ẋ = Ax + Bu

Set Np time intervals with duration of T , i.e. [kT , (k + 1)T ]
for k = 0, . . . ,Np. Denote tk = kT and x(k) = x(tk).

Assume u constant during tk and equal to u(k).

Then:
x(k + 1) = Adx(k) + Bdu(k)

where the matrices Ad and Bd are computed as:

Ad = eAT , Bd =

∫ T

0
eA(T−τ)Bdτ
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LTI example. Prediction of the state.

From
x(k + 1) = Adx(k) + Bdu(k)

we predict x(k + j):

x(k + j) = Aj
dx(k) +

j−1∑
i=0

Aj−i−1
d Bdu(k + i)

This can be written as:

x(k + j) = F (j)x(k) + G (j)


u(k)

u(k + 1)
...

u(k + j − 1)


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LTI example. Optimization.

Given inequality constraints

∀k ∈ [0,Np − 1], Aix(k) ≤ bi , Auu ≤ bu

and terminal constraints Atx(Np) = bt .

Given an objective function J(x , u) to minimize over a finite
horizon K ∈ [0,Np].

If we know x(0), all constraints can be put in terms of u(0),
. . ., u(Np − 1).

Since the inputs are a discrete, finite set → finite-dimensional
optimization problem. Easily solvable if the objective function
is quadratic or linear!
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LTI example. Receding horizon

We now apply the first control u(0).

Uncertainties/unmodelled dynamics might make the
prediction to fail.

That is the reason why open-loop optimal control usually does
not work in practice (on its own).

The approach of MPC is: “discard” the pre-computed values
u(1), . . ., u(Np − 1) and repeat the optimization process
(using x(1), which we know, as a new initial condition!).

In the optimization process, we compute
u(1), . . ., u(Np − 1), u(Np). Again we
apply only u(1) and when we reach x(2)
we repeat the process!

Thus MPC is really closed-loop control!

t t+1 t+2 t+N 

Control actions 
 

Setpoint 
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A guidance example: first step

t t+1 t+2 

t+N t     t+1    t+2   !!..      t+N    

u(t) 

Only the first  
control move is 
applied 

Errors minimized over 
a finite horizon 

Constraints 
taken into 
account 

Model of 
process used 
for predicting 
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A guidance example: second step

t+2 t+1 

t+N 

t+N+1 

t     t+1    t+2   !!..      t+N   t+N+1   

u(t) 

Only the first 
control move is 
applied again  
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A guidance example:MPC vs PID

MPC 

PID:   u(t)=u(t-1)+g0 e(t) + g1 e(t-1) + g2 e(t-2)  

vs. PID 
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Advantages and Disadvantages of MPC

Advantages: it looks into the future, it is optimal, it can treat
many type of constraints, it guarantees a good performance of
the system. It can also consider disturbances!

Disadvantages: hard for nonlinear systems, requires some time
for optimal input computation.

It has been widely used in real life, for instance in chemical
plants (there are companies specializing in MPC).

However now that computational resources are cheap and
more powerful, MPC is emerging as a feasible technique for
many applications, for instance in the aerospace field.

Spacecraft rendezvous is an excellent example, since it is
very well described by linear equations and it is a slow system.
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HCW model

Under the usual assumptions (chaser close to the target,
target in a keplerian orbit with zero eccentricity) we can use
the Hill-Clohessy-Wiltshire (HCW) model:

ẍ = 3n2x + 2nẏ + ux ,

ÿ = −2nẋ + uy ,

z̈ = −n2z + uz ,

in the LVLH frame, with n the mean orbital velocity.
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Constraints of the problem

Typical constraints:

Thruster limitations and mode of operation (PWM or PAM).
Avoid collisions between chaser and target (safety).
Typically, chaser must approach inside a previously designated
safe zone.
If there are chaser engine failures, rendezvous should still be
achieved, if possible (fault tolerant control).
If the target’s attitude is changing with time (spinning target)
the chaser should couple with that rotation to still guarantee
rendezvous.
In case of total failure, collision probability should be as small
as possible.

Such constraints should be satisfied at the same time that
fuel consumption is optimized (economy).

13 / 51
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Safe zone

In this work we will equal the safe zone with the “line of
sight” (LOS)

These LOS zone in the figure is described by the equations
y ≥ cx(x − x0), y ≥ −cx(x + x0), y ≥ cz(z − z0),
y ≥ −cz(z + z0) and y > 0.
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Actuator constraints and Cost Function

Typically there are two types of actuator:
Pulse-Amplitude Modulated (PAM): Any value of force in a
given range can be used. umin ≤ u(t) ≤ umax . In spacecraft,
this can be achieved by using electrical propulsion.
Pulse-Width Modulated (PWM): The value of force is fixed,
only the start and duration of it can be set. In spacecraft, this
is achieved by using conventional chemical thrusters (however
it is far from perfect).

Spacecraft Attitude Dynamics and Control Course notes 

35 

Actuators for spacecraft attitude control 
 

Thrusters for attitude control 

 
The simplest way to create torques is to create a set of forces with direction not aligned with the 
center of mass, and this can be obtained by mass expulsion techniques. Jet thrusters pose some 
operational problems due to the ignition transient, and besides it is not simple to finely control the 
magnitude of the force, so these devices are not used for fine attitude control. In addition, for 
control quite often the force needed is rather small (milli Newton-meters), while chemical thrusters 
produce forces in the order of at least some Newton. To make them compatible with attitude 
control, they are switched on and off with a given modulation, but this enhances the problems due 
to ignition transients and can cause mechanical ware of the thruster. 
 
These problems can be solved by adopting electric propulsion thrusters, based on electrodynamic 
acceleration of a suitable ionized propellant, that need de-ionization immediately after expulsion to 
avoid charging electrically the spacecraft. These thrusters can be easily modulated in amplitude, 
have a high specific impulse (over 3000) that allows a reduced propellant consumption. The thrust 
produced can be in the order of a few Newton down to 10-6 Newton, so they are well suited to fine 
control actions. Unfortunately, electric thrusters are extremely power consuming, more or less 90% 
is devoted simply to keep it ready to use and only 10% is due to the thrust produced, therefore 
electric propulsion units are often coupled to extremely large solar panels.  
 
With conventional (chemical) thrusters it is not possible to control the amplitude of the thrust; they 
are either switched on or off. The transient delay and the presence of hydraulic circuits make the 
actual thrust profile quite different from the ideal one, requiring a careful calibration for proper 
command selection. 
 

F 
    ideal 
    real 
 
 
 
      t  

 
Use of thruster on spinned satellites 
 
In case of spinning satellites, to control the spin velocity the thrusters must be located on the side of 
the satellite and the thrust direction must be orthogonal to the angular velocity: 
 

MI =ω!

 
 

Also, consumption of fuel should be minimized. Typically
one seeks min

∫ tF
0 |~u(t)|2dt or min

∫ tF
0 |~u(t)|dt.
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HCW model in discrete time with perturbations

Assuming that the control signal is constant for each sampling
time T , we obtain the following discrete time version of the
HCW equations:

x(k + 1) = ATx(k) + BTu(k) + δ(k).

AT and BT are:

AT =



4− 3C 0 0 S
n

2(1−C)
n

0

6(S − nT ) 1 0 − 2(1−C)
n

4S−3nT
n

0

0 0 C 0 0 S
n

3nS 0 0 C 2S 0
−6n(1− C) 0 0 −2S 4C − 3 0

0 0 −nS 0 0 C



BT =



1−C

n2
2nT−2S

n2 0

2(S−nT )

n2 − 3T2

2
+ 4 1−C

n2 0

0 0 1−C

n2
S
n

2 1−C
n

0
2(C−1)

n
−3T + 4 S

n
0

0 0 S
n


where S = sin nT y C = cos nT (T = 60 s is used in this

work). We will drop the subindex T in AT and BT .
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State, perturbation and control variables

x(k), u(k) y δ(k) denote respectively the state (position and
velocity), control effort (propulsive force per unit mass) and
perturbation for time t = k , where:

x = [x y z ẋ ẏ ż ]T , u = [ux uy uz ]T ,

δ = [δx δy δz δẋ δẏ δż ]T .

x , y , and z are position in the LVLH local frame about the
center of gravity of the target.

x is radial position, y is position along the orbit and z is
perpendicular to the orbit.

Velocity, control u(k) and perturbations δ(k) are also written
in the LVLH frame.

Perturbations are unknown, hence δ(k) is a 6-D random
variable, of mean δ̄ and covariance matrix Σ also unknown.
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Prediction of state and compact notation

The state at t = k + j is predicted from the past state x(k)
and control and disturbances at times from t = k to time
t = k + j − 1 as:

x(k + j) = Ajx(k) +

j−1∑
i=0

Aj−i−1Bu(k + i) +

j−1∑
i=0

Aj−i−1δ(k + i).

We use a compact (stack) notation where we denote:

xS(k) =


x(k + 1)
x(k + 2)

.

.

.
x(k + Np)

 , uS(k) =


u(k)

u(k + 1)

.

.

.
u(k + Np − 1)

 , δS(k) =


δ(k)

δ(k + 1)

.

.

.
δ(k + Np − 1)

 .

Hence we can write the prediction equations as:

xS(k) = Fx(k) + GuuS(k) + GδδS(k),

where F, Gu and Gδ are defined from the model matrices
A and B.
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Constraints

Two kind of constraints have been included. Other constraints
could be included as well.

In the first place, it is required that the
chaser is always inside a Line of Sight
zone (LOS) with respect to the target.

We write the restriction as
ALOSx(k) ≤ bLOS .

ALOS =


0 −1 0 0 0 0
cx −1 0 0 0 0
−cx −1 0 0 0 0

0 −1 cz 0 0 0
0 −1 −cz 0 0 0


bLOS =

[
0 cx x0 cx x0 cz z0 cz z0

]T

Restrictions in the control signal: umin ≤ u(k) ≤ umax
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Objective function

Taking expectation we define: x̂(k + j |k) = E [x(k + j)|x(k)]

Similary x̂S(k + j |k) = E [xS(k + j)|x(k)].
Objective function:

J(k) =

Np∑
i=1

[
x̂T (k + i|k)R(k + i)x̂(k + i|k)

]
+

Np∑
i=1

[
uT (k + i − 1)Qu(k + i − 1)

]
,

where Np is the control horizon.

Q = Id3×3 and R(k) is defined as:

R(k) = γh(k − ka)

[
Id3×3 Θ3×3

Θ3×3 Θ3×3

]
.

where h is the step function, ka is the desired arrival time and
γ is a large number. Hence R = 0 before the arrival time, and
after arrival time it gives a large weight to the error in
position (distance from the origin).
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Objective function and constraints in compact notation

The objective function can be written as:

J(k) = (GuuS(k) + Fx(k) + Gδ δ̄S)T RS(GuuS(k) + Fx(k) + Gδ δ̄S) + uS
T QSuS

where prediction of the state has been used. Note that it
depends on the state at t = k and the control and
disturbances up to the control horizon. The matrices RS and
QS appearing in the expression are defined from R and Q
respectively. The compact variable δ̄S contains the
disturbances mean.

Similarly the LOS constraints are written as:

AcxS ≤ bc ,

and using prediction of the state :

AcGuuS ≤ bc − AcFx(k)− AcGδδS

Control signal restriction are written as umin ≤ uS ≤ umax .
21 / 51
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Computation of control signal

For t = k , the MPC problem is formulated as:

min
uS

J(x(k),uS, δ̄S)

subject to AcGuuS ≤ bc − AcFx(k)− AcGδδS, ∀δS

umin ≤ uS ≤ umax

It is a quadratic cost function with linear constraints; x(k) is
known, uS has to be found.
If perturbations δS were known (or e.g. zero) the problem is
easily solved. For instance, in MATLAB, using quadprog.
The problem is solved for a time instante t = k , and one
computes a complete history of future control signals from the
state x(k). However only the control signal u(k) is used and
the rest are discarded. The next time instant t = k + 1 the
solution of the problem is recomputed using the new state
x(k + 1), thus closing the loop.
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Robust MPC with known perturbation bounds

If perturbations are unknown, the previous problem is not
solvable.

Assume instead that we just know perturbation bounds:
AδδS ≤ cδ (admissible perturbations) and perturbation means
δ̄S.

A control system that achieves its objective for all admissible
perturbations is called robust.

To accommodate all admissible perturbations, we bound
−AcGδδS which appears in the minimization constraints, for
all admissible perturbations.

This procedure is always possible for bounded perturbations
(with known bounds).
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Computation of control (known perturbation bounds)

Hence to compute the control signal in t = k we solve:

min
uS

J(x(k),uS, δ̄S)

subject to AcGuuS ≤ bc − AcFx(k) + bδ

umin ≤ uS ≤ umax

where bδ is a column vector, whose i-th terms (bδ)i is given by

(bδ)i = min
s.t. AδδS≤cδ

aiδS

and where ai is the i-th row of the matrix −AcGδ

Hence for each time t = k a minimization subproblem has to
be solved before computing the control signal from the main
minimization problem.

24 / 51
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Some Remarks about Robust MPC

When solving the minimization subproblem for the
constraints, we get the constraints computed for the worst
case scenario for admissible perturbations.

Hence, since constraints are verified for that case, they are
robustly verified, i.e., verified for any perturbation from the
set of admissible perturbations.

The minimization subproblem consists on a minimization
problem for every row for the matrix −AcGδ. However, being
a linear optimization problem with linear restrictions, it can be
efficiently solved in numerical form. For instance, in
MATLAB, using the command linprog.
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Robust MPC: Chance Constrained approach

However, perturbation bounds are not always known a priori.
Or they are too conservative. Then we can model the
perturbations as random variables.
Assumption: δ ∼ N6(δ̄,Σ). (Non-Gaussian models can also be
used, however then the formulation is more complicated)
Assume for the moment we know the mean δ̄ and the
covariance matrix Σ of the perturbations.
A chance constrained robust control law is one that
achieves its objective with a certain given probability.
Thus, we find a bound for the term −AcGδδS which appears
in the minimization constraints, verified with a probability p.
Since δ ∼ N6(δ̄,Σ), for a given p, one can find a confidence
region (ellipsoid), i.e., compute α such that(

δ − δ̄
)T

Σ−1
(
δ − δ̄

)
≤ α

is verified with probability p. 26 / 51
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Computation of control (Chance Constrained approach)

To compute the control signal in t = k we solve:

min
uS

J(x(k),uS, δ̄S)

subject to AcGuuS ≤ bc − AcFx(k) + bδ

umin ≤ uS ≤ umax

where bδ is a column vector, whose i-th terms (bδ)i is given by

(bδ)i = min
s.t. (δ−δ̄)

T
Σ−1(δ−δ̄)≤α

aiδS

and where ai is the i-th row of the matrix −AcGδ

Again for each time t = k a minimization subproblem has to
be solved. However, this time it has an explicit solution:

(bδ(k))i =

Np−1∑
j=0

(
−
√
α
√

aijΣaTij + aij δ̄
)

27 / 51
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Some Remarks about the Chance Constrained approach

Since the minimization subproblem is explicitly solved, this
approach gives an algorithm as fast as the non-robust MPC.

However:

Needs estimation of statistical properties.
The normal distribution is unbounded: cannot choose the
probability p of constraint satisfaction too large:
conservativeness or even unfeasibility.
Each constraint satisfied with probability p: global probability
smaller. However compensated with the receding horizon of
MPC!
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Algorithm for estimating perturbations

The Chance Constrained Robust MPC, as it has been
formulated, requires knowing the mean and covariance of the
perturbations.

Frequently, perturbations are totally unknown and these data
has to be obtained online using an estimator.

Then, for each t = k we estimate δ̄ y Σ taking into account
past perturbations, using:

δ(i) = x(i + 1)− Ax(i)− Bu(i),

for i = 1, . . . , k − 1.
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Estimating mean and covariance

Denoting by δ̂(k) y Σ̂(k) the estimations of δ̄ y Σ at t = k :

δ̂(k) =

∑k−1
i=0 e−λ(k−i)δ(i)∑k−1

i=0 e−λ(k−i)
,

Σ̂(k) =

∑k−1
i=0 e−λ(k−i)

(
δ(i)− δ̂(i)

)(
δ(i)− δ̂(i)

)T
∑k−1

i=0 e−λ(k−i)
,

The function e−λi weights in the value of δ(i) in the sum,
where λ > 0 is a forgetting factor.

This is done to give more importance to the recent values of δ
than to its past history.

This weighting is useful is properties of the perturbations
change with time, i.e., perturbations are not only random
variables but stochastic processes.
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Recursive formulae

It is possible to use recursive formulae for the previous
computations of mean and covariance:

δ̂(k) =
e−λ

γk

(
γk−1δ̂(k − 1) + δ(k − 1)

)
,

Σ̂(k) =
e−λ

γk

(
γk−1Σ̂(k − 1)

+
(
δ(k − 1)− δ̂(k)

)(
δ(k − 1)− δ̂(k)

)
T
)
,

where γk =
e−λ(1−e−λk)

1−e−λ

These allow to discard past values of δ and save memory.

Once mean and covariance are obtained, it is possible to get
the confidence region for disturbances that was used in the
chance constrained approach.
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Simulations

For numerical simulations, several scenarios have been
considered with and without perturbations.

Parameters used: R0 = 6878 km, n = 1.1068 · 10−3 rad/s, and
LOS constraint parameters: x0 = z0 = 1.5m and cx = cz = 1.

We included propulsive perturbations in the form:
ureal = (1 + δ1)T (δθ)u, where:

ureal is the real control signal given by the propulsive system.
u is the computed (desired) control signal.
δ1 is a normally distributed random variable. Physically, δ1

represents errors in the actuators.
T (δθ) is a rotation matrix with rotation angles given by δθ,
which is a normally distributed random vector of (small)
angles. Physically, it comes from small errors in attitude that
cause the engines to be slightly off course.

Much more complex than nominal model.
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Non-robust MPC controller

Good results without perturbations (solid line).

Fails when perturbations are present (dashed line). However
if perturbations are small, still works.
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Chance Constrained MPC controller with perturbations
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Chance Constrained MPC controller with perturbations
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Monte Carlo simulations

Simulated 1220 cases (with different disturbances). For each
case we perform a simulation with the non-robust and another
with the robust (chance constrained) approach.

In the table d is the relative distance at the desired arrival
time.

Non-robust MPC Robust MPC

Constraint violations 59% 0%

d ≤ 0.2m 19% 100%

0.2m ≤ d ≤ 0.5m 22% 0%

0.5m ≤ d 0% 0%

Mean cost (m/s) of
successful missions

0.2444 0.2039
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Monte Carlo simulations

0 0.5 1 1.5

x 10−4

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

| δ
1

|

M
is

si
on

 c
os

t [
m

/s
]

Robust MPC

Non−robust MPC

Plot of total cost of successful missions for both robust and
non-robust approach, against L1 norm of the mean of the
disturbances.

It can be found that using the non-robust controller implies
a 15% of cost increment.
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Monte Carlo simulations
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Increase in cost of the non-robust MPC with respect to the
chance constrained MPC.
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Non-robust MPC controller with unmodeled dynamics

Assume that the target orbit is elliptic (i.e. has some
eccentricy e) instead of circular: unmodeled dynamics.

Non-robust MPC is able to rendezvous, however it violates
the constraints at the end.
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Robust MPC controller with unmodeled dynamics

Robust (chance-constrained) MPC does not violate
constraints at the end.
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Rotating target, chance constrained MPC
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Rendezvous with ON/OFF thrusters

PWM control variables:

The pulse width κ.
The pulse start time τ .

maxu

t

T

·
¿

For simplification, consider only one pulse per time interval.

Need six thrusters, one for each axis (denoted by x , y and z),
and one for each direction (denoted by + and -).

12 control variables for each k : κ+
1 (k), κ+

2 (k), κ+
3 (k), κ+

1 (k),
κ−2 (k), κ−3 (k), τ+

1 (k), τ+
2 (k), τ+

3 (k), τ+
1 (k), τ−2 (k), τ−3 (k).

The new variables control variables verify κ+
i (k) > 0,

τ+
i (k) > 0 and τ+

i (k) + κ+
i (k) < T (to prevent the PWM

signal to spill over to the next time interval).
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Rendezvous with ON/OFF thrusters: model

Define

b1
t =



1−C

n2
2(S−nt)

n2

0
S
n

2(C−1)
n
0


, b2

t =



2nt−2S

n2

− 3t2

2
+ 4 1−C

n2

0

2 1−C
n

−3t + 4 S
n

0


, b3

t =



0
0

1−C

n2

0
0
S
n



The HCW equations are replaced in the PWM case by

x(k + 1) = Ax(k) + BPWM(uP(k))umax

where:

BPWM (uP(k)) =



A
T−τ+

1
(k)−κ+

1
(k)

b1

κ+
1

(k)

A
T−τ

−
1

(k)−κ
−
1

(k)
b1

κ
−
1

(k)

A
T−τ+

2
(k)−κ+

2
(k)

b2

κ+
2

(k)

A
T−τ

−
2

(k)−κ
−
2

(k)
b2

κ
−
2

(k)

A
T−τ+

3
(k)−κ+

3
(k)

b3

κ+
3

(k)

A
T−τ

−
3

(k)−κ
−
3

(k)
b3

κ
−
3

(k)



T

, umax =



u+
1max
−u−1max
u+

2max
−u−2max
u+

3max
−u−3max


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Rendezvous with ON/OFF thrusters: model

The equations are highly nonlinear in the control!

The procedure with PAM control cannot be applied. We use
linearization, applying the following algorithm:

1 Solve the problem using the normal algorithm for PAM control.
2 Use the optimal PAM-PWM filter to get a initial starting guess

of the PWM solution (see next slide).
3 Linearize around the actual PWM solution and find small

increments in the PWM controls that improve the objective
function and satisfy the constraints.

4 Repeat previous step until it converges or time is up.

Linearization is explicit and easy to compute (since the
matrices come from a discretized continuous system).

Since we have a very good initial guess the algorithm works
well.
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Optimal PAM-PWM filter

Since we are linearizing it is crucial to have a good initial
guess.

The optimal PAM-PWM filter is an algorithm that takes a
sequence of PAM control inputs and produces a sequence of
PWM control inputs, such that both system outputs are very
close.

Found in the literature: e.g. Shieh et al, “Design of PAM and
PWM controllers for sampled-data interval systems,” J Dyn
Syst Meas Contr., 118.

Simple and system independent, works specially well for linear
systems. Based on two rules:

The law of areas: both PWM and PAM control inputs must
produce, for each sample interval, the same area.
The pulse (when there is only one) must be centered in the
sample interval.
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Linearization of the PWM model

The linearized model is written as

x(k + 1) = Ax(k) + BPWM(uP(k))umax + B∆(uP(k))∆(k)

∆(k) are the increments in the PWM signals and the matrix
B∆(uP(k)) is defined explicitly as:

B∆=



−A′
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1
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1
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1

)
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.

.

.(
A′
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−
3
−κ
−
3

b3

κ
−
3

− A
T−τ

−
3
−κ
−
3

b3′

κ
−
3

)
u−3max



T

,

In the matrix, A′t = d
dtAt , b

i ′
t = d

dt b
i
t .

Since the model is now linear, optimization is fast (even in
Matlab!).
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Simulation results for the PWM algorithm
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Simulation results for the PWM algorithm
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Simulation results for the PWM algorithm
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Improvement in the cost function for each iteration.

After 5-6 iterations, it converges.

Slight improvement in cost.
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Conclusions

We have presented a robust MPC controller to solve the
problem of automatic spacecraft rendezvous.
Perturbations are estimated online and accommodated.
In simulations it is shown that the method can overcome large
disturbance and unmodeled dynamics.
PWM control constraints have been included in the model.
Future work:

Include eccentricity and orbital perturbations.
Add an state estimator (based e.g. on observations from
target).
Include fault-tolerant schemes and safety constraints.
Use more sophisticated disturbance estimation techniques.
Study stability of the closed loop system.
Reduce # of actuators, include attitude dynamics (nonlinear).
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