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Outline

• Reaction-diffusion equation on an n-dimensional ball

• Control design: Spherical harmonics & backstepping

• Stability (sketch of proof)

• Observer design

• Extensions & open problems: non-constant coefficients

• Application to motion planning problems



Reaction-diffusion equation on an n-dimensional ball

Let the state u = u(t, x⃗), with x⃗ = [x1,x2, . . . ,xn]T , verify

∂u

∂t
= ε

(

∂2u

∂x2
1

+
∂2u

∂x2
2

+ . . .+
∂2u

∂x2
n

)

+λu = ε△n u+λu,

for constant ε > 0, λ(r,⃗θ), and for t > 0, in the n-ball Bn(R) defined as

Bn(R) = {⃗x ∈ R
n : ∥⃗x∥< R} ,

with b.c. on the boundary of Bn(R), the (n−1)-sphere Sn−1(R):

Sn−1(R) = {⃗x ∈ R
n : ∥⃗x∥= R} .

The b.c. is of Dirichlet type:

u(t, x⃗)
∣

∣

∣

x⃗∈Sn−1(R)
=U(t, x⃗)

where U(t, x⃗) is the actuation variable.
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Reaction-diffusion equation on an n-dimensional ball

Ball geometry is the simplest possible n-dimensional geometry, appears in applications

(typically n = 2,3).

Unstable system for large values of λ
ε

Objective: find an explicit stabilizing feedback law

The backstepping method stabilizes the 1-D problem

ut = εuxx+λu, x ∈ [0,L], u(t,0) = 0, u(t,L) =U(t)

with feedback law

U(t,x) =
∫ L

0
−ξ

λ

ε

I1

[

√

λ
ε(L

2−ξ2)

]

√

λ
ε(L

2−ξ2)
u(t,ξ)dξ

Can we obtain a similar result?
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Inspiration: The backstepping method stabilizes the 1-D problem
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Can we obtain an explicit feedback law?

Utility of an explicit control law:

• Understanding the structure of the control law

• Understanding the dependence with respect to parameters of the plant

• Very easy and precise to implement (rare commodity in PDEs)

• Adaptive control!

Explicit solutions are possible for this case (constant coefficients ε and λ, arbitrary dimen-

sion)!



Ultraspherical coordinates

The n-ball domain is well described in n-dimensional spherical coordinates, also known as

ultraspherical coordinates:

• one radial coordinate r, r ∈ [0,R).

• n− 1 angular coordinates: θ⃗ = [θ1,θ2, . . . ,θn−1]
T , with θ1 ∈ [0,2π) and θi ∈ [0,π]

for 2 ≤ i ≤ n−1.

Definition:

x1 = r cosθ1 sinθ2 sinθ3 . . .sinθn−1,

x2 = r sinθ1 sinθ2 sinθ3 . . .sinθn−1,

x3 = r cosθ2 sinθ3 . . .sinθn−1,
...

xn−1 = r cosθn−2 sinθn−1,

xn = r cosθn−1.



Ultraspherical coordinates: Examples

n=2

Polar coordinates: r ∈ [0,R), θ1 ∈ [0,2π).

x1 = r cosθ1

x2 = r sinθ1



Ultraspherical coordinates: Examples

n=3

Spherical coordinates: r ∈ [0,R), θ1 ∈ [0,2π), θ2 ∈ [0,π]

x1 = r cosθ1 cosθ2

x2 = r sinθ1 cosθ2

x3 = r sinθ2



Laplacian in ultraspherical coordinates

Writing the reaction diffusion equation in ultraspherical coordinates

ut =
ε

rn−1
∂r

(

rn−1∂ru
)

+
1

r2
△∗

n−1 u+λu,

u(t,R,⃗θ ) = U(t ,⃗θ ),

where △∗
n−1 is called the Laplace-Beltrami operator and represents the Laplacian over the

(n−1)-sphere.

It is defined recursively as

△∗
1 =

∂2

∂θ2
1

,

△∗
n =

1

sinn−1 θn

∂

∂θn

(

sinn−1 θn
∂

∂θn

)

+
△∗

n−1

sin2 θn
,

Example:

△∗
2 =

1

sinθ2

∂

∂θ2

(

sinθ2
∂

∂θ2

)

+
1

sin2 θ2

∂2

∂θ2
1

.



Designing a boundary feedback law

• Exploit periodicity in θ⃗ by using Spherical Harmonics

• Apply the backstepping method to each harmonic coefficient

• Solve the backstepping kernel equations to find a feedback law for each harmonic

• Re-assemble the feedback law in Spherical Harmonics back to physical space



Spherical Harmonics

Develop u and U in term of Spherical Harmonics coefficients um
l and Um

l :

u(t,r,⃗θ) =
l=∞

∑
l=0

m=N(l,n)−1

∑
m=0

um
l (r, t)Y

n
lm(⃗θ), U(t ,⃗θ) =

l=∞

∑
l=0

m=N(l,n)−1

∑
m=0

Um
l (t)Y n

lm(⃗θ),

N(l,n): number of (linearly independent) n-dimensional spherical harmonics of degree l

N(l,n) =
2l +n−2

l

(

l +n−3
l −1

)

, l > 0; N(0,n) = 1

Y n
lm(⃗θ): m-th order n-dimensional spherical harmonic of degree l

Coefficients are defined as:

um
l (r, t) =

∫ π

0
. . .

∫ π

0

∫ 2π

0
u(t,r,⃗θ)Ȳ n

lm(⃗θ)sinn−2 θn−1 sinn−3 θn−2 . . .sinθ2d⃗θ,

Um
l (t) =

∫ π

0
. . .

∫ π

0

∫ 2π

0
U(t ,⃗θ)Ȳ n

lm(⃗θ)sinn−2 θn−1 sinn−3 θn−2 . . .sinθ2d⃗θ,

(d⃗θ = dθn−1dθn−2 . . .dθ2dθ1, Ȳ n
lm is the complex conjugate of Y n

lm)



Spherical Harmonics

The n-dimensional spherical harmonics are eigenfunctions for the Laplacian △∗
n−1:

△∗
n−1Y n

lm =−l(l +n−2)Y n
lm.

Thus, each harmonic coefficient um
l (t,r) for l ∈ N and 0 ≤ m ≤ N(l,n), verifies

∂tu
m
l =

ε

rn−1
∂r

(

rn−1∂rum
l

)

− l(l +n−2)
ε

r2
um

l +λum
l ,

evolving in r ∈ [0,R], t > 0, with boundary conditions

um
l (t,R) = Um

l (t),

The PDEs for the harmonics are not coupled: we can independently design each Um
l and

later assemble all of the them to find an expression for U .



Backstepping control of Spherical Harmonics coefficients

To design Um
l (t) seek transformation of

∂tu
m
l =

ε

rn−1
∂r

(

rn−1∂rum
l

)

− l(l +n−2)
ε

r2
um

l +λum
l

into the (stable) target system

∂tw
m
l =

ε

rn−1
∂r

(

rn−1∂rwm
l

)

− l(l +n−2)
ε

r2
wm

l

with boundary conditions

wm
l (t,R) = 0

The transformation is

wm
l (t,r) = um

l (t,r)−
∫ r

0
Kn

lmr,ρ)um
l (t,ρ)dρ

with kernels Kn
lm to be found.

Substituting at r = Rwe find Un as

Un(t) =
∫ R

0
Kn

lm(R,ρ)un(t,ρ)dρ



Backstepping control of Spherical Harmonics coefficients

To design Um
l (t) seek transformation of

∂tu
m
l =

ε

rn−1
∂r

(

rn−1∂rum
l

)

− l(l +n−2)
ε

r2
um

l +λum
l

into the (stable) target system

∂tw
m
l =

ε

rn−1
∂r

(

rn−1∂rwm
l

)

− l(l +n−2)
ε

r2
wm

l

with boundary conditions

wm
l (t,R) = 0

The transformation is

wm
l (t,r) = um

l (t,r)−
∫ r

0
Kn

lm(r,ρ)u
m
l (t,ρ)dρ

with kernels Kn
lm to be found.

Substituting at r = Rwe find Un as

Un(t) =
∫ R

0
Kn

lm(R,ρ)un(t,ρ)dρ



Backstepping control of Spherical Harmonics coefficients

To design Um
l (t)(t) seek transformation of

∂tu
m
l =

ε

rn−1
∂r

(

rn−1∂rum
l

)

− l(l +n−2)
ε

r2
um

l +λum
l

into the (stable) target system

∂tw
m
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ε

rn−1
∂r
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rn−1∂rwm
l
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− l(l +n−2)
ε

r2
wm
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l (t,r) = um
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0
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lm(r,ρ)u
m
l (t,ρ)dρ

with kernels Kn
lm to be found.

Substituting at r = R we find Um
l (t) as

Um
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∫ R

0
Kn

lm(R,ρ)u
m
l (t,ρ)dρ



Kernel equation

The control kernels Kn
lm(r,ρ) are found, for a given n ≥ 2 and each l,m, from

1

rn−1
∂r

(

rn−1∂rKn
lm

)

−∂ρ

(

ρn−1∂ρ

(

Kn
lm

ρn−1

))

− l(l +n−2)

(

1

r2
−

1

ρ2

)

Kn
lm =

λ

ε
Kn

lm.

with BC

λ+2ε
d

dr

(

Kn
lm(r,r)

)

= 0

Kn
lm(r,0) = 0

(n−2)∂ρKn
lm(r,ρ)|ρ=0 = 0

The first BC integrates to

Kn
lm(r,r) = −

∫ r

0

λ

2ε
dρ =−

λr

2ε



Kernel equation

The control kernels Kn
lm(r,ρ) are found, for a given n ≥ 2 and each l,m, from

1

rn−1
∂r

(

rn−1∂rKn
lm

)

−∂ρ

(

ρn−1∂ρ

(

Kn
lm

ρn−1

))

− l(l +n−2)

(

1

r2
−

1

ρ2

)

Kn
lm =

λ

ε
Kn

lm.

with BC

λ+2ε
d

dr

(

Kn
lm(r,r)

)

= 0

Kn
lm(r,0) = 0

(n−2)∂ρKn
lm(r,ρ)|ρ=0 = 0

The first BC integrates (using Kn
lm(0,0) = 0) to

Kn
lm(r,r) = −

∫ r

0

λ

2ε
dρ =−

λr

2ε



Solving the kernel equation

To solve

1

rn−1
∂r

(

rn−1∂rKn
lm

)

−∂ρ

(

ρn−1∂ρ

(

Kn
lm

ρn−1

))

− l(l +n−2)

(

1

r2
−

1

ρ2

)

Kn
lm =

λ

ε
Kn

lm

Kn
lm(r,r) = −

λr

2ε
Kn

lm(r,0) = 0

(n−2)∂ρKn
lm(r,ρ)|ρ=0 = 0

define Kn
lm(r,ρ) = Gn

lm(r,ρ)ρ
(ρ

r

)l+n−2
. The two last BCs are automatically verified, and

writing the kernel equation in terms of Gn
lm

∂rrGn
lm+(3−n−2l)

∂rG
n
lm

r
−∂ρρGn

lm+(1−n−2l)
∂ρGn

lm

ρ
=

λ

ε
Gn

lm

Gn
lm(r,r) = −

λ

2ε



Solving the kernel equation

To solve

∂rrGn
lm+(3−n−2l)

∂rG
n
lm

r
−∂ρρGn

lm+(1−n−2l)
∂ρGn

lm

ρ
=

λ

ε
Gn

lm

Gn
lm(r,r) = −

λ

2ε

assume a solution of the form Gn
lm(r,ρ) = Φ

(

(

λ
ε(r

2−ρ2)
)1/2

)

, where Φ(s) is to be

found (independent of n, l and m!).

We find, calling x =
(

λ
ε(r

2−ρ2)
)1/2

,

Φ′′(x)+
3

x
Φ′(x)−Φ(x) = 0

Φ(0) = −
λ

2ε
Note that n, l and m do not appear in the equation.

Note that we have gone from a PDE to an ODE.



Solving the kernel equation

To solve

Φ′′(x)+
3

x
Φ′(x)−Φ(x) = 0

Φ(0) = −
λ

2ε

call Ψ(x) = xΦ(x):
(

Ψ′′

x
−2

Ψ′

x2
+2

Ψ

x3

)

+
3

x

(

Ψ′

x
−

Ψ

x2

)

−
Ψ

x
= 0

which cross-multiplied by x3 gives

x2Ψ′′+ xΨ′ − (1+ x2)Ψ = 0

Bessel’s modified differential equation of order 1, whose bounded solution is

Ψ(x) =C1I1(x)

where I1 is the first-order modified Bessel function of the first kind.



Solving the kernel equation

To solve

Φ′′(x)+
3

x
Φ′(x)−Φ(x) = 0

Φ(0) = −
λ

2ε

call Ψ(x) = xΦ(x):
(

Ψ′′

x
−2

Ψ′

x2
+2

Ψ

x3

)

+
3

x

(

Ψ′

x
−

Ψ

x2

)

−
Ψ

x
= 0

which cross-multiplied by x3 gives

x2Ψ′′+ xΨ′ − (1+ x2)Ψ = 0

Bessel’s modified differential equation of order 1, whose bounded solution is

Ψ(x) =C1I1(x)

where I1 is the first-order modified Bessel function of the first kind.



Solving the kernel equation

Undoing all the transformations:

Φ(x) =C1
I1(x)

x

since Φ(0) =− λ
2ε and limx→0

I1(x)
x = 1/2 we obtain C1 =−λ

ε

Thus

Φ(x) =−
λ

ε

I1(x)

x
therefore

Gn
lm(r,ρ) =−

λ

ε

I1

[

√

λ
ε(r

2−ρ2)

]

√

λ
ε(r

2−ρ2)

and finally

Kn
lm(r,ρ) =−ρ

(ρ

r

)|n| λ

ε

I1

[

√

λ
ε(r

2−ρ2)

]

√

λ
ε(r

2−ρ2)
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√

λ
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]
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λ
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and finally

Kn
lm(r,ρ) =−ρ

(ρ

r

)l+n−2 λ

ε

I1

[

√

λ
ε(r

2−ρ2)

]

√

λ
ε(r

2−ρ2)



Explicit feedback law

The feedback law for each spherical harmonic is

Um
l (t) =

∫ R

0
Kn

lm(R,ρ)u
m
l (t,ρ)dρ =

∫ R

0
−ρ
(ρ

R

)l+n−2 λ

ε

I1

[

√

λ
ε(R

2−ρ2)

]

√

λ
ε(R

2−ρ2)
um

l (t,ρ)dρ

Summing to obtain the physical-space feedback law

U(t ,⃗θ) =
l=∞

∑
l=0

m=N(l,n)−1

∑
m=0

Um
l (t)Y n

lm(⃗θ)

=
l=∞

∑
l=0

m=N(l,n)−1

∑
m=0

∫ R

0
−ρ
(ρ

R

)l+n−2 λ

ε

I1

[

√

λ
ε(R

2−ρ2)

]

√

λ
ε(R

2−ρ2)
um

l (t,ρ)dρY n
lm(⃗θ)

Formally exchanging the integral with the infinite sum (it can be proved correct)

U(t,θ) =
∫ R

0
−ρ

λ

ε

I1

[

√

λ
ε(R

2−ρ2)

]

√

λ
ε(R

2−ρ2)

⎡

⎣

l=∞

∑
l=0

m=N(l,n)−1

∑
m=0

(ρ

R

)l+n−2
um

l (t,ρ)Y
n
lm(⃗θ)

⎤

⎦dρ



Explicit feedback law

In the term in brackets, inserting the definition of um
l in terms of u

l=∞

∑
l=0

m=N(l,n)−1

∑
m=0

(ρ

R

)l+n−2
um

l (t,ρ)Y
n
lm(⃗θ)

=
l=∞

∑
l=0

m=N(l,n)−1

∑
m=0

(ρ

R

)l+n−2∫ π

0
. . .

∫ π

0

∫ 2π

0
u(t,r,⃗φ)Ȳ n

lm(⃗φ)sinn−2 φn−1 sinn−3 φn−2 . . .sinφ2d⃗φY n
lm(⃗θ)

The Addition Theorem for Spherical Harmonics states:

N(l,n)−1

∑
m=0

Y n
lm(⃗θ)Ȳ

n
lm(⃗φ) =

N(l,n)

Area(Sn−1)
Pl,n(cosω),

where Pl,n is the Legendre polynomial of degree l in n dimensions, Area(Sn−1) = 2π
n
2

Γ(n
2)

is

the surface area of the unit (n−1)-sphere, and ω is the geodesic distance between θ⃗ and

φ⃗ on the (n−1)-sphere:

ω = cos−1{cosφn−1 cosθn−1+ sinφn−1 sinθn−1× [cosφn−2 cosθn−2+ sinφn−2 sinθn−2

×[. . . [cosφ2 cosθ2+ sinφ2 sinθ2 cos(θ1−φ1)] . . .]]} .



Explicit feedback law

In the term in brackets, inserting the definition of um
l in terms of u
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∑
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∑
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(ρ

R
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l (t,ρ)Y
n
lm(⃗θ)

=
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(ρ

R
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Y n
lm(⃗θ)Ȳ

n
lm(⃗φ) =

N(l,n)

Area(Sn−1)
Pl,n(cosω)

where Pl,n is the Legendre polynomial of degree l in n dimensions, Area(Sn−1) = 2π
n
2

Γ(n
2)

is

the surface area of the unit (n−1)-sphere, and ω is the geodesic distance between the

points given by θ⃗ and φ⃗ on the unit (n−1)-sphere:

ω = cos−1{cosφn−1 cosθn−1+ sinφn−1 sinθn−1× [cosφn−2 cosθn−2+ sinφn−2 sinθn−2

×[. . . [cosφ2 cosθ2+ sinφ2 sinθ2 cos(θ1−φ1)] . . .]]} .



Explicit feedback law

Thus, the term in brackets is

l=∞

∑
l=0

m=N(l,n)−1

∑
m=0

(ρ

R

)l+n−2
um

l (t,ρ)Y
n
lm(⃗θ)

=
l=∞

∑
l=0

(ρ

R

)l+n−2
∫ π

0
. . .

∫ π

0

∫ 2π

0
u(t,r,⃗φ)

N(l,n)Pl,n(cosω)

Area(Sn−1)
sinn−2 φn−1 sinn−3 φn−2 . . .sinφ2d⃗φ

On the other hand, the Poisson identity states

∞

∑
l=0

N(l,n)slPl,n(t) =
1− s2

(

1+ s2−2st
)n/2

.

thus

l=∞

∑
l=0

m=N(l,n)−1

∑
m=0

(ρ

R

)l+n−2
um

l (t,ρ)Y
n
lm(⃗θ)

=
∫ π

0
. . .

∫ π

0

∫ 2π

0
u(t,r,⃗φ)

ρn−2

Area(Sn−1)

R2−ρ2

(

R2+ρ2−2ρRcosω
)n/2

sinn−2 φn−1 sinn−3 φn−2 . . .sinφ2d⃗φ



Explicit feedback law
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Explicit feedback law

The function

P(R,ρ,⃗θ,⃗φ) =
1

Area(Sn−1)

R2−ρ2

(

R2+ρ2−2ρRcosω
)n/2

is the Poisson kernel for an n-ball

• Used to express the solution for the Laplace problem in an n-ball as an integral:

∆v(r,⃗θ) = 0, v(R,⃗θ) = F (⃗θ)

can be explicitly solved as

v(r,⃗θ) =
∫ π

0
. . .

∫ π

0

∫ 2π

0
P(R,r,⃗θ,⃗φ)F (⃗φ)Rn−2 sinn−2 φn−1 sinn−3 φn−2 . . .sinφ2d⃗φ

• Tends to a Dirac delta δ(⃗θ− ψ⃗) when r goes to ρ



Explicit feedback law

Thus we obtain finally our explicit feedback law

U(t,θ) = −
∫ R

0

∫ π

0
. . .

∫ π

0

∫ 2π

0

λ

ε

I1

[

√

λ
ε(R

2−ρ2)

]

√

λ
ε(R

2−ρ2)
P(R,ρ,⃗θ,⃗φ)

×u(t,ρ,⃗φ)ρn−1 sinn−2 φn−1 sinn−3 φn−2 . . .sinφ2d⃗φdρ

= −
λ

ε

∫ R

0
ρ

I1

[

√

λ
ε(R

2−ρ2)

]

√

λ
ε(R

2−ρ2)

×
[∫ π

0
. . .

∫ π

0

∫ 2π

0
P(R,ρ,⃗θ,⃗φ)u(t,ρ,⃗φ)ρn−1 sinn−2 φn−1 sinn−3 φn−2 . . .sinφ2d⃗φ

]

dρ

Compare with the explicit backstepping controller for 1-D reaction-diffusion equation:

U(t,x) =−
λ

ε

∫ L

0
ξ

I1

[

√

λ
ε(L

2−ξ2)

]

√

λ
ε(L

2−ξ2)
u(t,ξ)dξ



Explicit feedback law
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Explicit feedback law in rectangular coordinates

Noticing that

ρn−1 sinn−2 φn−1 sinn−3 φn−2 . . .sinφ2

is the “volume” element for an n-ball, we can write the control law back in rectangular

coordinates

U(t, x⃗) = −
1

Area(Sn−1)

√

λ

ε

∫
Bn(R)

I1

[
√

λ

ε
(R2−∥⃗ξ∥2)

]

√

R2−∥⃗ξ∥2

∥⃗x− ξ⃗∥n
u(t ,⃗ξ)d⃗ξ,

where the integral is extended to the complete n-ball Bn(R) and x⃗ ∈ Sn−1(R).



The transformation in physical coordinates

To get additional insight the backstepping transformation can be expressed in physical

coordinates.

We have found a transformation from

ut =
ε

rn−1

(

rn−1ur

)

r
+

1

r2
△∗

n−1 u+λu,

into

wt =
ε

rn−1

(

rn−1wr

)

r
+

1

r2
△∗

n−1 w

as follows:

w(t,r,⃗θ) = u(t,r,⃗θ)−
∫ r

0

∫ π

0
. . .

∫ π

0

∫ 2π

0
K(r,ρ,⃗θ,⃗φ)

×u(t,ρ,⃗φ)sinn−2 φn−1 sinn−3 φn−2 . . .sinφ2dφ1dφ2 . . .dφn−1,

where

K(r,ρ,⃗θ,⃗φ) = −
ρn−1

Area(Sn−1)

√

λ

ε

I1

[

√

λ
ε(r

2−ρ2)

]

√

r2−ρ2
P(r,ρ,⃗θ,⃗φ),
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Stability result (L2)

Theorem

Consider the following PDE on the n-ball Bn(R)

∂u(t, x⃗)

∂t
= ε△n u(t, x⃗)+λu(t, x⃗)

u(t, x⃗)
∣

∣

∣

x⃗∈Sn−1(R)
= U(t, x⃗),

with initial conditions u0(⃗x) and

U(t, x⃗) = −
1

Area(Sn−1)

√

λ

ε

∫
Bn(R)

I1

[
√

λ

ε
(R2−∥⃗ξ∥2)

]

√

R2−∥⃗ξ∥2

∥⃗x− ξ⃗∥n
u(t ,⃗ξ)d⃗ξ,

Assume in addition that u0 ∈ L2(Bn(R)).

Then the closed-loop system has a unique C([0,∞);L2(Bn(R))) solution, and the equilib-

rium profile u ≡ 0 is exponentially stable in the L2(Bn(R)) norm, i.e., there exists c1,c2 > 0

such that

∥u(t, ·)∥L2(Bn(R)) ≤ c1e−c2t∥u0∥L2(Bn(R)).



Stability result (H1)

Theorem

For the previous PDE, assume in addition that u0 ∈ H1(Bn(R)) and the compatibility con-

dition

u0(⃗x)
∣

∣

∣

x⃗∈Sn−1(R)
= −

1

Area(Sn−1)

√

λ

ε

∫
Bn(R)

I1

[
√

λ

ε
(R2−∥⃗ξ∥2)

]

√

R2−∥⃗ξ∥2

∥⃗x− ξ⃗∥n
u0(⃗ξ)d⃗ξ,

Then the closed-loop system has a unique C([0,∞);H1(Bn(R))) solution, and the equilib-

rium profile u≡ 0 is exponentially stable in the H1(Bn(R)) norm, i.e., there exists c1,c2 > 0

such that

∥u(t, ·)∥H1(Bn(R)) ≤ c1e−c2t∥u0∥H1(Bn(R)).



Sketch of proof

The strategy of the proof (for both L2 and H1 norms) is as follows.

1. We start from a well-known well-posedness and stability open-loop result on the n-ball

for a Sobolev space W (Bn(R)), apply to the target system.

wt(t, x⃗) = ε△n w(t, x⃗), t > 0, x⃗ ∈ Bn(R)

w(t, x⃗)
∣

∣

∣

x⃗∈Sn−1(R)
= 0,

w(0, x⃗) = w0(⃗x), w0 ∈W (Bn(R)).

(this might require compatibility conditions )

and deduce the stability result for the target system (using e.g. known energy estimates or

Lyapunov analysis)

∥w(t, ·)∥W ≤ b1e−b2t∥w0∥W .

with b1,b2 > 0.



Sketch of proof

2. We then show that the backstepping transformation is a map from W (Bn(R)) to

W (Bn(R)):

w(t, x⃗) = u(t, x⃗)−
∫

Bn(∥⃗x∥)
K(⃗x,⃗ξ)u(t ,⃗ξ)dξ = K [u(t, x⃗)](⃗x).

In particular we need to show ∥w(t, ·)∥W ≤ K∥u(t, ·)∥W for K > 0

Thus, if the initial conditions in u coordinates (u0) are in W (Bn(R)), then the corresponding

w0 = K [u0] are in W (Bn(R)) as well, and ∥w0(·)∥W ≤ K∥u0(·)∥W



Sketch of proof

3. We show that the backstepping transformation is invertible:

u(t, x⃗) = w(t, x⃗)+
∫

Bn(∥⃗x∥)
L(⃗x,⃗ξ)w(t ,⃗ξ)dξ = L [w(t, x⃗)](⃗x).

and the inverse transformation is again a map from W (Bn(R)) to W (Bn(R)), i.e.

∥u(t, ·)∥W ≤ L∥w(t, ·)∥W for L > 0.

Therefore the u system inherits the well-posedness properties of the target system.



Sketch of proof

4. Having shown well-posedness of the closed-loop system, we can now finally state the

desired results, namely, well-posedness and stability properties which are expressed as

exponential decay with time of the Sobolev norm of the state.

In particular:

∥u(t, ·)∥W ≤ L∥w(t, ·)∥W

≤ Lb1e−b2t∥w0∥W

≤ Lb1Ke−b2t∥u0∥W



Sketch of proof

Example for L2:

1. For the PDE

wt(t, x⃗) = ε△n w(t, x⃗), t > 0, x⃗ ∈ Bn(R)

w(t, x⃗)
∣

∣

∣

x⃗∈Sn−1(R)
= 0,

w(0, x⃗) = w0(⃗x), w0 ∈W (Bn(R)).

we have (see any standard textbook such as Brezis, ”Functional Analysis, Sobolev Spaces,

and Partial Differential Equations”) that u ∈C1((0,∞);L2(Bn(R))).

The stability result can be found, as usual, from using the definition ∥w(t, ·)∥2
L2(Bn(R))

=∫
Bn(R)w2(t, x⃗)d⃗x, and then

d

dt

1

2
∥w(t, ·)∥2

L2(Bn(R)) = ε
∫

Bn(R)
w(t, x⃗)△n w(t, x⃗)d⃗x =−ε

∫
Bn(R)

(∇nw(t, x⃗))2d⃗x ≤−c0ε∥w(t, ·)∥2
L2(Bn(R))

therefore finding

∥w(t, ·)∥L2(Bn(R)) ≤ b1e−b2t∥w0∥L2(Bn(R)).



Sketch of proof
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therefore finding
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Sketch of proof

Example for L2:

2. We next need to show ∥w(t, ·)∥W ≤ K∥u(t, ·)∥W

|wlm|2 =

∣

∣

∣

∣

ulm(r)−
∫ r

0
Kn

lm(r,ρ)ulm(ρ)dρ

∣

∣

∣

∣

2

≤ 2|ulm|2 +2

∣

∣

∣

∣

∫ r

0
Kn

lm(r,ρ)ulm(ρ)dρ

∣

∣

∣

∣

2

≤ 2|ulm|2 +2C2
1

(∫ r

0
ρ
(ρ

r

)l+n−2

dρ

)(∫ r

0
ρ
(ρ

r

)l+n−2

|ulm(ρ)|2dρ

)

≤ 2|ulm|2 +C2
1r4−n

(∫ r

0
ρn−1|ulm(ρ)|2dρ

)

,

and therefore

∥wlm∥2
L2 =

∫ R

0
rn−1|wlm(r)|2dr ≤

(

2+
R4C2

1

4

)

∥u2
lm∥L2 = K∥u2

lm∥L2

so finally

∥w∥2
L2(Bn(R))

=
∞

∑
l=0

N(l,n)−1

∑
m=0

∥wlm∥2
L2 ≤ K

∞

∑
l=0

N(l,n)−1

∑
m=0

∥ulm∥2
L2 = K∥u∥2

L2(Bn(R))
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Sketch of proof

Example for L2:

3. We show that the backstepping transformation is invertible. Pose an inverse transform:

ulm(t,r) = wlm(t,r)+
∫ r

0
Ln

lm(r,ρ)wlm(t,ρ)dρ,

and as before we find the following kernel equations for Ln
lm:

Ln
lmrr +(n−1)

Ln
lmr

r
−Ln

lmρρ+(n−1)
Ln

lmρ

ρ
− (n−1)

Ln
lm

ρ2
− l(l+n−2)

(

1

r2
−

1

ρ2

)

Ln
lm =−

λ

ε
Ln

lm

Ln
lm(r,0) = (n−2)Ln

lmρ(r,0) = 0,

Ln
lm(r,r) =−

λr

2ε
,

same as for Kn
lm but substituting λ by −λ and changing sign. We thus find:

Ln
lm(r,ρ) =−ρ

(ρ

r

)l+n−2 λ

ε

J1

[

√

λ
ε(r

2−ρ2)

]

√

λ
ε(r

2−ρ2)
.

and as before ∥u∥2
L2(Bn(R))

≤
(

2+
R4C2

2
4

)

∥w∥2
L2(Bn(R))

= L∥w∥2
L2(Bn(R))

.
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ε(r

2−ρ2)
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Sketch of proof

4. We finish finally:

∥u(t, ·)∥L2(Bn(R)) ≤ L∥L2(Bn(R))(t, ·)∥L2(Bn(R))

≤ Le−b2t∥L2(Bn(R))0∥L2(Bn(R))

≤ LKe−b2t∥u0∥L2(Bn(R))



Further remarks about stability

• For n = 2 it is possible to prove exponential stability in the H p(Bn(R)) space, for

any positive integer p, under suitable compatibility conditions. Thus any degree of

smoothness is possible (even C∞!).

• The critical step is proving ∥w(t, ·)∥H p(Bn(R)) ≤ Kp∥u(t, ·)∥H p(Bn(R)).

• The main idea of the proof is taking derivatives of the backstepping transformation

and then integrating by parts to pass the derivatives in the kernel to derivatives in the

state.

• This idea does not seem to generalize for n > 2. So far, no more than H1(Bn(R)) has

been proved for n > 2.



Observer design

Consider now the same equation

ut =
ε

rn−1
∂r

(

rn−1∂ru
)

+
1

r2
△∗

n−1 u+λu,

u(t,R,⃗θ ) = U(t ,⃗θ ),

but now our objective is to estimate u(r,⃗θ) from measurements at the boundary. In partic-

ular, ur(t,R,⃗θ ) is measured.

The following observer produces a convergent estimate û(r,⃗θ):

ût =
ε

rn−1

(

rn−1ûr

)

r
+

1

r2
△∗

n−1 û+λû+P
[

ur(t,R,⃗θ)− ûr(t,R,⃗θ
]

(r,⃗θ)

û(t,R,⃗θ ) = U(t ,⃗θ ).

where P is defined:

P[Ψ(⃗θ)](r,⃗θ) = −
Rn−1

√
λε

Area(Sn−1)

I1

[

√

λ
ε(R

2− r2)

]

√

R2− r2

∫ π

0
. . .

∫ π

0

∫ 2π

0
Ψ(⃗φ)P(r,ρ,⃗θ,⃗φ)

×sinn−2 φn−1 sinn−3 φn−2 . . .sinφ2dφ1dφ2 . . .dφn−1dρ
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Observer design

Expressing the observer equationin rectangular coordinates, we obtain

ût = ε△n û+λû−
√

λε

Area(Sn−1)
I1

[
√

λ

ε
(R2−∥⃗x∥2)

]

√

R2−∥⃗x∥2
∫

Sn−1(R)

ur(t ,⃗ξ)− ûr(t ,⃗ξ)

∥⃗x− ξ⃗∥n
d⃗ξ

with BC

û(t, x⃗)
∣

∣

∣

x⃗∈Sn−1(R)
= U(t, x⃗)

We can show ∥u(t, ·)− û(t, ·)∥ goes to zero as t → ∞ exponentially, in both L2 and H1

norms.



Observer design

The idea is the same as for the controller. Starting with the plant expressed in spherical

harmonics:

ulmt =
ε

rn−1

(

rn−1ulmr

)

r
− l(l +n−2)

ε

r2
ulm+λulm,

ulm(t,R) = Ulm(t),

We assume we measure ulmr(t,R) and wish to estimate the state ulm inside the domain.

Construct our observer as a copy of the plant plus output injection terms:

ûlmt =
ε

rn−1

(

rn−1ûlmr

)

r
− l(l +n−2)

ε

r2
ûlm+λûlm+ pn

lm(ulmr(t,R)− ûlmr(t,R)),

ûlm(t,R) = Ûlm(t).

We need to design p(r).

Define the observer error as ũ = u− û. The observer error dynamics are given by

ũlmt =
ε

rn−1

(

rn−1ũlmr

)

r
− l(l +n−2)

ε

r2
ũlm+λũlm− pn

lm(r)ũlmr(t,R),

ũlm(t,R) = 0.
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Observer design

Need to make the dynamics of ũ stable with pn
lm(r). Our approach to design pn

lm(r) is to

seek a mapping that transforms ũ into the following target system

w̃lmt =
ε

rn−1

(

rn−1w̃lmr

)

r
− l(l +n−2)

ε

r2
w̃lm,

w̃lm(t,R) = 0.

The transformation is defined as follows:

ũlm(t,r) = w̃lm(t,r)−
∫ R

r
Pn

lm(r,ρ)w̃lm(t,ρ)dρ

and then pn
lm(r) will be found from transformation kernel.



Observer design

Need to make the dynamics of ũ stable with pn
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The transformation is defined as follows:

ũlm(t,r) = w̃lm(t,r)−
∫ R

r
Pn

lm(r,ρ)w̃lm(t,ρ)dρ

and then pn
lm(r) will be found from the transformation kernel Pn

lm.



Observer design

The following kernel equation is found:

Pn
lmrr +(n−1)

Pn
lmr

r
−Pn

lmρρ+(n−1)
Pn

lmρ

ρ
− (n−1)

Pn
lm

ρ2
− l(l +n−2)

(

1

r2
−

1

ρ2

)

Pn
lm =−

λ

ε
Pn

lm

Pn
lm(0,ρ) = Pn

lmρ(0,ρ) = 0,

Pn
lm(r,r) =−

λr

2ε
,

and once the kernel is found pn
lm(r) = εPn

lm(r,R)

It turns out this equation can be solved by the control kernel we found, by defining

Pn
lm(r,ρ) =

ρn−1

rn−1
Kn

lm(ρ,r)

Then, by summing the spherical harmonics we reach again a Poisson kernel-like function

times a Bessel function.
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Then, by summing the spherical harmonics we reach again a Poisson kernel-like function
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Output feedback design

Consider now the output feedback problem. For

ut =
ε

rn−1
∂r

(

rn−1∂ru
)

+
1

r2
△∗

n−1 u+λu,

u(t,R,⃗θ ) = U(t ,⃗θ ),

design U to stabilize u(r,⃗θ), but only using measurement ur(t,R,⃗θ ).

The solution is a combination of the controller and observer design. Use the control law

that we found but using the observer estimates

U = −
1

Area(Sn−1)

√

λ

ε

∫
Bn(R)

I1

[
√

λ

ε
(R2−∥⃗ξ∥2)

]

√

R2−∥⃗ξ∥2

∥⃗x− ξ⃗∥n
û(t ,⃗ξ)d⃗ξ,

ût = ε△n û+λû−
√

λε

Area(Sn−1)
I1

[
√

λ

ε
(R2−∥⃗x∥2)

]

√

R2−∥⃗x∥2
∫

Sn−1(R)

ur(t ,⃗ξ)− ûr(t ,⃗ξ)

∥⃗x− ξ⃗∥n
d⃗ξ

It can be proved that (provided some compatibility conditions are fulfilled) the joint (u, û)

system exponentially converges to zero in the H1 norm.
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Application

Application to motion planning: Multi-agent deployment using unstable PDEs

Joint work with Jie Qi (Donghua Univ., Shanghai, China)



Communication topology (polar/disk) (actuated agents in red)
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Typical model of inter-agent interaction: heat PDE
Limited—can achieve only equidistant deployment (in Cartesian topology)

Reaction-diffusion model of inter-agent interaction:
(u = agent’s complex-valued position)

ut(t,r,θ) =
ε
r
(rur(t,r,θ))r+

ε

r2
uθθ(t,r,θ)+ λu(t,r,θ)
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ε,λ ∈ C

Rich deployment shapes but unstable
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Reaction-diffusion model of inter-agent interaction:
(u = agent’s complex-valued position)

ut(t,r,θ) =
ε
r
(rur(t,r,θ))r+

ε

r2
uθθ(t,r,θ)+ λu(t,r,θ)

ε,λ ∈ C

Rich deployment shapes but unstable

Follower agents’ deployment positions as a function of leader agents’ positions:

ū(r,θ) =
1
2π

+∞

∑
n=−∞

Jn
(√

λ
εr
)

Jn
(√

λ
εR

)
∫ π

−π
ejn(θ−ϑ)Ū(ϑ)dϑ



Deployment examples

      



Backstepping controller:

U(t,θ) = Ū(θ)−K {ū}(θ)+K {u}(t,θ)

K {u}(t,θ) =−
λ

4π2ε

∫ R

0
ρ
I1
[√

λ
ε(R

2−ρ2)

]

√
λ
ε(R

2−ρ2)
︸ ︷︷ ︸
Smyshlyaev kernel

∫ π

−π

1− ρ2

R2

1+ ρ2

R2−2
ρ
R cos(θ−ψ)

︸ ︷︷ ︸
Poisson kernel

u(t,ρ,ψ)dψdρ

Qi, Vazquez, K (TAC 2015)



Extensions and open problems

Consider now the same problem but with spatially-varying coefficient λ:

∂u

∂t
= ε△n u+λ(⃗x)u,

u(t, x⃗)
∣

∣

∣

x⃗∈Sn−1(R)
= U(t, x⃗)

the question is: what can be done?



Extensions and open problems

Consider now the same problem but with spatially-varying coefficient λ:

∂u

∂t
= ε△n u+λ(⃗x)u,

u(t, x⃗)
∣

∣

∣

x⃗∈Sn−1(R)
= U(t, x⃗)

the question is: what can be done?

Consider two cases:

• General λ(⃗x)

• Radially-varying λ(∥⃗x∥).

We will concentrate in the 2−D and/or 3−D cases, to simplify:



2-D case—general λ(r,θ)

ut =
ε

r
(rur)r +

ε

r2
uθθ+λ(r,θ)u,

It is not possible to use spherical harmonics (they are no longer eigenfunctions that de-

couple the problem).

Pose a physical-space transformation:

w = u−
∫ r

0

∫ π

−π
K(r,ρ,θ,ψ)u(ρ,ψ)dψdρ,

to transform the u equation into the target system

wt =
ε

r
(rwr)r +

ε

r2
wθθ,



2-D case—general λ(r,θ)

The kernel verifies the ultrahyperbolic equation

Krr +
Kr

r
−Kρρ+

Kρ

ρ
−

K

ρ2
−

Kθθ

r2
+

Kψψ

ρ2
=

λ(ρ,ψ)

ε
K

with BC

K(r,ρ,0,ψ) = K(r,ρ,π,ψ)

K(r,ρ,θ,0) = K(r,ρ,θ,π)

K(r,0,θ,ψ) = 0,∫ π

−π
K(r,r,θ,ψ)u(r,ψ)dψ = −

∫ r

0

λ(ρ,θ)

2ε
dρu(r,θ),

and the second boundary condition can be verified if

lim
ρ→r

K(r,ρ,θ,ψ) = −δ(θ−ψ)
∫ r

0

λ(ρ,θ)

2ε
dρ.

We don’t know how to solve, only know there is a solution for constant λ!

K(r,ρ,θ,ψ) =−ρ
λ

2πε

I1

[

√

λ
ε(r

2−ρ2)

]

√

λ
ε(r

2−ρ2)

r2−ρ2

r2+ρ2−2rρcos(θ−ψ)
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2-D case—radially-varying λ(r)

Now

ut =
ε

r
(rur)r +

ε

r2
uθθ+λ(r)u,

and we can apply Spherical Harmonics (Fourier series in 2-D) to try to solve the problem.

Kernel equations are

Knrr +
Knr

r
−Knρρ+

Knρ

ρ
−

Kn

ρ2
−n2

(

1

r2
−

1

ρ2

)

Kn =
λ(ρ)

ε
Kn, n ∈ Z.

with BC

Kn(r,0) = 0,

Kn(r,r) = −
∫ r

0

λ(ρ)

2ε
dρ, n ∈ Z.

Due to the singular terms, we don’t know how to prove this equation is solvable (or how to

solve it), except for a very special case: n = 0.



2-D and 3-D cases, n = 0—totally symmetric problem

The n = 0 case is of some physical interest: if the initial conditions are symmetric (do not

depend on the angle or angles in 3-D), this is the only mode that plays a role. It is a typical

engineering simplification.

Then the equation is, in 2-D:

ut =
ε

r
(rur)r +λ(r)u

and in 3-D:

ut =
ε

r2

(

r2ur

)

r
+λ(r)u

We apply the method as before but only one kernel (corresponding to the constant Fourier

mode or Spherical Harmonic) is needed.



3-D case—totally symmetric problem

Kernel equation is:

Krr +2
Kr

r
−Kρρ+2

Kρ

ρ
−2

K

ρ2
=

λ(r)

ε
K

K(r,0) = Kρ(r,0) = 0,

K(r,r) = −
λr

2ε
,

Define K(r,ρ) = ρ
r K̄(r,ρ). Then:

K̄rr − K̄ρρ =
λ(r)

ε
K̄

K̄(r,0) = 0,

K̄(r,r) = −
λr

2ε
,

which is the 1-D backstepping equation! Can be proved solvable by successive approxi-

mations (classical backstepping papers).
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3-D case—totally symmetric problem

For instance if λ is constant we directly get:

K(r,ρ) =
ρ

r
K̄(r,ρ) =

ρ2

r

c

ε

I1

[
√

c
ε

(

r2−ρ2
)

]

√

c
ε

(

r2−ρ2
)



2-D case—totally symmetric problem

Interestingly, the 2-D case is harder than the 3-D case. Kernel equations are

Krr +
Kr

r
−Kρρ+

Kρ

ρ
−

K

ρ2
=

λ(ρ)

ε
K,

K(r,0) = 0,

K(r,r) = −
∫ r

0

λ(ρ)

2ε
dρ

Define G =
√

r
ρK. Then, for G we have:

Grr −Gρρ+
G

4r2
−

G

4ρ2
=

λ(ρ)

ε
G

G(r,0) = 0,

G(r,r) = −
∫ r

0

λ(ρ)

2ε
dρ.

and we can try to prove this equation solvable by using the classical successive approxi-

mation method.
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Krr +
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−Kρρ+

Kρ

ρ
−

K
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=

λ(ρ)

ε
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∫ r
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λ(ρ)
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dρ

Define G =
√

r
ρK. Then, for G we have:

Grr −Gρρ+
G

4r2
−

G

4ρ2
=

λ(ρ)

ε
G

G(r,0) = 0,

G(r,r) = −
∫ r

0

λ(ρ)

2ε
dρ.

and we can try to prove existence & uniqueness of a solution by using the classical suc-

cessive approximation method.



2-D case—totally symmetric problem

Define new variables α = r+ρ, β = r−ρ. The G equations become

4Gαβ+
G

(α+β)2
−

G

(α−β)2
=

λ
(

α−β
2

)

ε
G

G(β,β) = 0,

G(α,0) = −
∫ α/2

0

λ(ρ)

2ε
dρ.

This can be transformed into the (singular) integral equation

G(α,β) = −
∫ α/2

β/2

λ(ρ)

2ε
dρ+

∫ α

β

∫ β

0

λ
(

η−σ
2

)

4ε
G(η,σ)dσdη

+
∫ α

β

∫ β

0

ησ

(η2−σ2)2
G(η,σ)dσdη
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2-D case—totally symmetric problem

Try the successive approximations scheme, by defining

G0(α,β) = −
∫ α/2

β/2

λ(ρ)

2ε
dρ

and for k > 0,

Gk(α,β) =
∫ α

β

∫ β

0

λ
(

η−σ
2

)

4ε
Gk−1(η,σ)dσdη+

∫ α

β

∫ β

0

ησ

(η2−σ2)2
Gk−1(η,σ)dσdη

then, the solution to the integral equation would be

G =
∞

∑
k=0

Gk(α,β)

if the series converges.



2-D case—totally symmetric problem

Call λ̄ = max(α,β)∈T ′

∣

∣

∣

∣

∣

∣

∣

λ
(

α−β
2

)

4ε

∣

∣

∣

∣

∣

∣

∣

.

Then one clearly obtains |G0(α,β)|≤ λ̄(α−β).

However when trying to substitute in G1 even the first integral is not so easy to perform.We

use an alternative approach based on the following Lemma:

Define, for n ≥ 0,k ≥ 0,

Fnk(α,β) =
λ̄n+1αnβn

n!(n+1)!
(α−β)

logk
(

α+β
α−β

)

k!
.

and Fnk = 0 if n < 0 or k < 0. Then Fnk is well-defined and nonnegative in the integration

domain for all n,k, Fnk(β,β) = 0 for all n and k, Fnk(α,0) = 0 if n ≥ 1 or k ≥ 1 and

F00(α,0) = α, and we have the following identity valid for n ≥ 1 or k ≥ 1.

Fnk =
∫ α

β

∫ β

0
λ̄F(n−1)k(η,σ)dσdη+4

∫ α

β

∫ β

0

ησ

(η2−σ2)2

(

Fn(k−1)(η,σ)−Fn(k−2)(η,σ)
)

dσdη
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∣

∣

∣

∣
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∣
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∣
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2-D case—totally symmetric problem

We use the lemma to try to find estimates for the terms in the successive approximation

series:

|G0|≤ F00

next

|G1|≤
∫ α

β

∫ β

0
λ̄F00(η,σ)dσdη+

∫ α

β

∫ β

0

ησ

(η2−σ2)2
F00(η,σ)dσdη = F10+

F01

4

where we have used the formulas of the lemma. The next term is

|G2| ≤
∫ α

β

∫ β

0
λ̄

(

F10+
F01

4

)

dσdη+
∫ α

β

∫ β

0

ησ

(η2−σ2)2

(

F10+
F01

4

)

dσdη

= F20+
F11

4
+

F01+F02

16

If we keep going we find

|G3| ≤ F30+
F21

4
+

F11+F12

16
+

2F01+2F02+F03

64



2-D case—totally symmetric problem

The key to find these numbers is the following. Call:

I1[F] =
∫ α

β

∫ β

0
λ̄F(η,σ)dσdη

I2[F] =
∫ α

β

∫ β

0

ησ

(η2−σ2)2
F(η,σ)dσdη

For instance, to find a bound on G4 we find the following:

I1[F30] = F40

I2[F30]+
I1[F21]

4
=

F31

4
I2[F21]

4
+

I1[F11+F12]

16
=

F21+F22

16
I2[F11+F12]

16
+

I1[2F01+2F02+F03]

64
=

2F11+2F12+F13

64
I2[2F01+2F02+F03]

64
=

5F01+5F02+3F03+F04

256
Thus,

|G4|≤ F40+
F31

4
+

F21+F22

16
+

2F11+2F12+F13

64
+

5F01+5F02+3F03+F04

256



2-D case—totally symmetric problem

Based on this structure, we propose the following recursive formula for n > 0:

|Gn|≤ Fn0+
n−1

∑
i=0

j=n−i

∑
j=1

C(n−i) j

4n−i
Fi j

where Ci j verifies Ci j =C(i−1)( j−1)+Ci( j+1), taking C11 = 1, Ci0 = 0, and Ci j = 0 if j > i,

for all i. This set of numbers, known as the “Catalan’s Triangle”, verifies many interesting

properties.

In particular it can be shown

Cii = 1.

Ci j =
i−1

∑
k= j−1

C(i−1)k.

which allows us to write the recursive formula



2-D case—totally symmetric problem

Let us show in a table the first few numbers.

Ci j j = 1 j = 2 j = 3 j = 4 j = 5 j = 6 j = 7 j = 8 j = 9 j = 10

i = 1 1

i = 2 1 1

i = 3 2 2 1

i = 4 5 5 3 1

i = 5 14 14 9 4 1

i = 6 42 42 28 14 5 1

i = 7 132 132 90 48 20 6 1

i = 8 429 429 297 165 75 27 7 1

i = 9 1430 1430 1001 572 275 110 35 8 1

i = 10 4862 4862 3432 2002 1001 429 154 44 9 1

Catalan’s Triangle



2-D case—totally symmetric problem

Now, since the solution verifies

|G|≤
∞

∑
n=0

|Gn(α,β)|

and we found

|Gn|≤ Fn0+
n−1

∑
i=0

j=n−i

∑
j=1

C(n−i) j

4n−i
Fi j

We get

|G|≤
∞

∑
n=0

Fn0+
∞

∑
n=1

n−1

∑
i=0

j=n−i

∑
j=1

C(n−i) j

4n−i
Fi j

and we only need to prove convergence of this series.



2-D case—totally symmetric problem

First term of the series:

∞

∑
n=0

Fn0 =
λ̄n+1αnβn

n!(n+1)!
(α−β) =

√

λ̄

2
(α−β)

I1

[

2

√

λ̄αβ

]

2
√

αβ

For the next term, we use the fact that

∞

∑
n=1

n−1

∑
i=0

H(n, i) =
∞

∑
i=0

∞

∑
l=1

H(l + i, i)

Therefore

∞

∑
n=1

n−1

∑
i=0

j=n−i

∑
j=1

C(n−i) j

4n−i
Fi j =

∞

∑
i=0

∞

∑
l=1

j=l

∑
j=1

Cl j

4l
Fi j =

∞

∑
i=0

j=∞

∑
j=1

⎛

⎝

∞

∑
l= j

Cl j

4l

⎞

⎠Fi j

It turns out that the parenthesis can be calculated and gives an exact sum for each j.



2-D case—totally symmetric problem

To find the sum, consider first the generating function of the Catalan numbers Cl1:

f1(x) =
2

1+
√

1−4x

Remember that a generating function of a sequence of number is a function such that the

coefficients of its power series is exactly those of the sequence of numbers.

Thus,

f1(x) =C11+C21x+C31x2+ . . .=
∞

∑
l=1

Cl1xl−1

Therefore if we evaluate the function at x = 1/4 we find that

f1(
1

4
) =

∞

∑
l=1

Cl1
1

4l−1

thus we find

∞

∑
l=1

Cl1

4l
=

1

4

∞

∑
l=1

Cl j

4l−1
=

f1(
1
4)

4
=

1

2



2-D case—totally symmetric problem

Following the previous argument, it is clear that

∞

∑
l= j

Cl j

4l
=

1

4

∞

∑
l= j

Cl j

4l−1
=

f j(
1
4)

4

where we define the generating function f j as

f j(x) =
∞

∑
l= j

Cl jx
l−1

Now since Cl2 = Cl1 but obviously C12 = 0, it is clear that f2 = f1−C11 = f1− 1. Thus

f2(1/4) = 1 and we find

∞

∑
l=2

Cl2

4l
=

f2(
1
4)

4
=

1

4



2-D case—totally symmetric problem

To find successive generating functions we use the properties of the Catalan’s Triangle

and make the following claim:

fn(x) = fn−1(x)− x fn−2(x)

Based on this fact, we can now prove that

∞

∑
l= j

Cl j

4l
=

1

2 j

Thus we obtain

|G| ≤

√

λ̄

2
(α−β)

I1

[

2

√

λ̄αβ

]

2
√

αβ
+

∞

∑
i=0

j=∞

∑
j=1

Fi j

2 j

=

√

λ̄

2
(α−β)

I1

[

2

√

λ̄αβ

]

2
√

αβ
+

∞

∑
i=0

j=∞

∑
j=1

λ̄i+1αiβi

i!(i+1)!
(α−β)

log j
(

α+β
α−β

)

2 j j!



2-D case—totally symmetric problem

Summing the series

|G| ≤

√

λ̄

2
(α−β)

I1

[

2

√

λ̄αβ

]

2
√

αβ

⎛

⎜

⎝

j=∞

∑
j=0

log j
(

α+β
α−β

)

2 j j!

⎞

⎟

⎠
,

therefore

|G| ≤

√

λ̄

2
(α−β)

I1

[

2

√

λ̄αβ

]

2
√

αβ
e

log

(√

α+β
α−β

)

=

√

λ̄

2

√

α2−β2
I1

[

2

√

λ̄αβ

]

2
√

αβ

In physical variables r and ρ:

|G| ≤
√

λ̄
√

rρ

I1

[

2

√

λ̄(r2−ρ2)

]

2

√

r2−ρ2



2-D case—totally symmetric problem

Finally, going back to the original K, we find

|K(r,ρ)| ≤ ρ
√

λ̄

I1

[

2

√

λ̄(r2−ρ2)

]

2

√

r2−ρ2

Thus, we have shown that the successive approximation series converges, with the solu-

tion K verifying the above bound. Uniqueness can be proved easily from the successive

approximation series.

Unfortunately, this approach does not seem to be extensible for other Fourier coefficients.



Final remarks

We have found explicit stabilizing control laws for a constant-coefficient reaction-diffusion

equation on a ball in arbitrary dimension

Use of Spherical Harmonics and the backstepping method

Very similar to backstepping control law for 1-D reaction-diffusion equation

The well-known Poisson kernel appears in the control law

Easily extended to observer design, output-feedback control laws with measurements on

the boundary

For n = 2 the proof can be extended to Hk(B2(R)) for arbitrary k

Open problems: higher regularity for n > 2, space-varying λ(r,⃗θ) (partial solution for

radially-varying λ), more complicated domains
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Merci!

Questions?

Some references:

• J. Qi, R. Vazquez, M. Krstic, ”Multi-agent Deployment in 3-D via PDE Control,” IEEE Transactions on
Automatic Control, vol. 60 (4), pp. 891-906, 2015.

• R. Vazquez and M. Krstic, ”Explicit boundary control of a reaction-diffusion equation on a disk,” IFAC
World Congress, 2014.

• R. Vazquez and M. Krstic, ”Explicit boundary control of reaction-diffusion PDEs on arbitrary-dimensonal
balls,” 2015 European Control Conference.

• R. Vazquez and M. Krstic, ”Explicit output-feedback boundary control of reaction-diffusion PDEs on
arbitrary-dimensional balls,” to be submitted, 2015.

• R. Vazquez and M. Krstic, ”Boundary control of reaction-diffusion equations on the disk and the sphere
under revolution symmetry conditions,” under preparation, 2015.


