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MPC successful in
iIndustry.

Many and very diverse and successful
applications:

» Refining, petrochemical, polymers,

s Semiconductor production scheduling,

m Air traffic control

m Clinical anesthesia,

. ...

m Life Extending of Boiler-Turbine Systems via

Model Predictive Methods, Li et al (2004)

Many MPC vendors.

MPC:An Introductory Survey
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MPC successful in
Academia

m Many MPC sessions in control
conferences and control journals, MPC
workshops.

m 4/8 finalist papers for the CEP best paper
award were MPC papers (2/3 finally
awarded were MPC papers)

MPC:An Introductory Survey




\

(TABLE 1 A list of the survey results in order of industry impact as perceived by R
the committee members. |
Rank and Technology High-Impact Ratings Low- or No-Impact Ratings
PID control 100% 0%

Model predictive control 78% 9%
System identification 61% 9%
Process data analytics 61% 17%
Soft sensing 52% 22%
Fault detection and 50% 18%
identification

Decentralized and/or 48% 30%
coordinated control

Intelligent control 35% 30%
Discrete-event systems 23% 32%
Nonlinear control 22% 35%
Adaptive control 17% 43%
Robust control 13% 43%
Hybrid dynamical systems 13% 43%
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Why is MPC so successful ?

MPC is Most general way of posing the
control problem in the time domain:

= Optimal control

m Stochastic control

s Known references

s Measurable disturbances

= Multivariable

m Dead time

m Constraints

s Uncertainties

MPC:An Introductory Survey 8




Real reason of success: Economics

m MPC can be used to optimize operating points (economic
objectives). Optimum usually at the intersection of a set of

constraints.

m  Obtaining smaller variance and taking constraints into account
allow to operate closer to constraints (and optimum).

m  Repsol reported 2-6 months payback periods for new MPC
applications.

Pmax

P1 P2

MPC:An Introductory Survey 9
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Fig. 14. Electrical consumption reduction.
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Benefits

m Yearly saving of more that 1900 MWh

m Standard deviation of the mixing chamber
pressure reduced from 0.94 to 0.66 mm
water column.

m Operator’'s supervisory effort. percentage
of time operating in auto mode raised
from 27% to 84%.

MPC:An Introductory Survey 14




Outline

m A little bit of history

m Model Predictive Control concepts
m Linear MPC

m Multivariable

m Constraints

MPC:An Introductory Survey
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MPC Obijetive

¢ Compute at each time instant the sequence
of future control moves that will make the
future predicted controlled variables to best
follow the reference over a finite horizon and
taking into account the control effort.

¢Only the first element of the sequence is
used and the computation is done again at
the next sampling time.

MPC:An Introductory Survey 17




MPC basic concepts

mCommon ideas:

Explicit use of a model to predict output.

Compute the control moves minimizing an objective fuction.

Receding horizon strategy.

m [ he algorithms mainly differ in the type of
model and objective function used.

MPC:An Introductory Survey
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MPC strategy

£
S
A " ]
| I N E
) s
N
AR

m At sampling time t the future

control sequence is compute so
that the future sequence of .
predicted output y(t+k/t) along a Acciones de control
horizon N follows the future o 4
references as best as possible. L

m The first control signal is used
and the rest disregarded. o !

m [ he process is repeated at the

next sampling instant t+1

MPC:An Introductory Survey 19
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Only the first
control move is
applied again

MPC:An Introductory Survey
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PID: u(t)=u(t-1)+g,e(t) + g, e(t-1) + g, e(t-2)

MPC:An Introductory Survey 22




Constraints in process control

m All process are constrained

m Actuators have a limited range and slew
rate

m Safety limits: maximun pressure or
temperature

m Tecnological or quality requirements
m Enviromental legislation

MPC:An Introductory Survey 37




Real reason of success: Economics

m MPC can be used to optimize operating points (economic
objectives). Optimum usually at the intersection of a set of

constraints.

m  Obtaining smaller variance and taking constraints into account
allow to operate closer to constraints (and optimum).

m  Repsol reported 2-6 months payback periods for new MPC
applications.

Pmax

P1 P2
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Work close to the optimal

u but not violating it

@ )

Fine
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Linear

Linear

Linear

Control predictivo lineal

COST FUNCTION CONSTRAINTS SOLUTION

Quadratic None Explicit
Quadratic Linear QP
Norm-1 Linear LP

MPC:An Introductory Survey 41




u&* Constraints formulation
'm Input constraints:

Amplitude in u

Slew-rate in u
In matrix form

U<u(t)<U WU <Tu+u(t-D1<1U
u<u(t)—u(t—1)<u lu<u<lu

For all t

43




Output constraints
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m  Output constraints must be expressed as functions of u using the
prediction equations

m The prediction is computed as:

A

y=Gu+f

emmsmnmamenes Free response

R —— Forced response
¥ e
—_— | .'l
¥
/\T Amplitude contraints:
Past Future —
> y<y(t)<y Forallt

A\ b
Depends on
future control In matrix form

e 1y<Gu+f<ly

Current time
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Constraints general form

Notice that these constraints are inequalities
involving vector u (increment of the
manipulated variables) and can be written in
compact form as

Ru <c

with the following matrix and vector:

INXN 1w
—InNy N —lu
B T . 1 U —lu(t—1)
k= _p “T |l AU+ lu@—1)
G ly—f
-G - ly+t
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Formulation

All the constraints shown (except the dead zone) are inequalities
depending on u that can be described in matrix form by

Ru<r+Vz

where zis a vector composed of present and past signals. It is
equal to the current state if a state-space representations if
used, or composed of current output and past input and outputs
in CARIMA models (a way of representing the state). Therefore:

Decision variable

<r+,Vx(1)

|

Depend on process State that changes at every
parameters and signal bounds sampling time
(not frequent changes)

4646




Solution
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The implementation fo MPC with constraints involves the
minimization of a quadratic cost function subijet to linear
inequalities: Quadratic Programming (QP)

L 1
minimize  j(u) = 5 u’Hu + bu + f;

Subject to: Ru <r+ Vz(t)

There are many reliable QP algorithms
» Active Set methods
« Feasible Direction methods
* Pivoting methods, etc.
All methods use iterative algorithms (computation time)

47




MPC control of UAV (AIDL) trajectories
(Project funded by Boeing)
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Conclusions

m Well established in industry and
academia

m Great expectations for MPC

m Many contribution from the research
community but ...

m Many open issues
m Good hunting ground for PhD students.

MPC:An Introductory Survey 49
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Spacecraft Rendezvous using Chance-Constrained
Model Predictive Control and ON/OFF thrusters

Rafael Vazquez

Francisco Gavildan  Eduardo F. Camacho

Universidad de Sevilla



Introduction MPC

Rendezvous model, Constraints, Cost Function

Outline

Introduction
m MPC
m Rendezvous model, Constraints, Cost Function

MPC applied to Rendezvous

m MPC formulation for Spacecraft Rendezvous

m Robust and Chance-Constrained MPC with perturbation
estimator

m Simulation Results for Chance-Constrained MPC

ON/OFF thrusters

m Model

m Algorithm

m Simulations 5



Introduction MPC

Rendezvous model, Constraints, Cost Function

About MPC

m [he main idea of MPC is to use, for each time instant, a
control signal that is computed from an optimal plan that
minimizes an objective function and verifies the constraints, in
an sliding time horizon.

m A good references to start with MPC is Camacho, E. and

Bordons, C. (2004). Model Predictive Control.
m How one does typically MPC:

Discretize the system for a finite number of time intervals
(time horizon), assuming inputs constant (ZOH).

Predict the state, based on the actual state and the future
inputs of the system (which are to be computed ).

Optimize the inputs for the time horizon such that a given
objective function is minimized, and input, state and terminal
constraints are.

Apply the first input or inputs corresponding to the current
time interval.

E When the next time interval begins, repeat (thus closing the u*&f
loop!). This is called a receding or sliding horizon. 3/51



Introduction MPC

Rendezvous model, Constraints, Cost Function

LT| example. Discretization.

m Consider:
x = Ax + Bu

m Set N, time intervals with duration of T, i.e. [kT,(k+1)T]
for k =0,...,N,. Denote t,x = kT and x(k) = x(tx).

m Assume u constant during t, and equal to u(k).

m [hen:
x(k +1) = Agx(k) + Bgyu(k)

where the matrices Ay and By are computed as:
T
Ag = eAT, By = / AT =) Bdr
0

-
Us

4 /51



Introduction MPC

Rendezvous model, Constraints, Cost Function

LT| example. Prediction of the state.

m From
x(k + 1) = Agx(k) + Byu(k)

we predict x(k + j):
j—1

x(k+j) = Alx(k) +Y AT T Byu(k + i)
=0

m [ his can be written as:

u(k)

. | | u(k +1)
x(k+j) = F(j)x(k) + G()) |

- u(k —I-.j -1)
u#

5/51



Introduction MPC

Rendezvous model, Constraints, Cost Function

LTI example. Optimization.

m Given inequality constraints

Vk € [0, N, —1], Aix(k)<b;,  Auu<b,

and terminal constraints A:x(Np) = by.

m Given an objective function J(x, u) to minimize over a finite
horizon K € [0, N,].

m If we know x(0), all constraints can be put in terms of u(0),
oo u(N, —1).

m Since the inputs are a discrete, finite set — finite-dimensional
optimization problem. Easily solvable if the objective function
Is quadratic or linear!



LT| example. Receding horizon

m We now apply the first control u(0).

m Uncertainties/unmodelled dynamics might make the
prediction to fail.

m That is the reason why open-loop optimal control usually does
not work in practice (on its own).

m The approach of MPC is: “discard” the pre-computed values
u(l), ..., u(N, — 1) and repeat the optimization process
(using x(1), which we know, as a new initial condition!).

m In the optimization process, we compute Controlactions
u(l), ..., u(N, —1), u(N,). Again we el
apply only u(1) and when we reach x(2) ~——
we repeat the process! Cel v oN 8
. =
m Thus MPC is really closed-loop control! u@é‘



Introduction MPC

Rendezvous model, Constraints, Cost Function

Advantages and Disadvantages of MPC

m Advantages: it looks into the future, it is optimal, it can treat
many type of constraints, it guarantees a good performance of
the system. It can also consider disturbances!

m Disadvantages: hard for nonlinear systems, requires some time
for optimal input computation.

m It has been widely used in real life, for instance in chemical
plants (there are companies specializing in MPC).

m However now that computational resources are cheap and
more powerful, MPC is emerging as a feasible technique for
many applications, for instance in the aerospace field.

m Spacecraft rendezvous is an excellent example, since it is

very well described by linear equations and it is a slow system.;%:_\

11/51



Introduction: Rendezvous Historical perspective
Rendezvouz model: HCW equations
Constraints

Introduction

m For spacecraft, “rendezvous” is the controlled close
encounter of two (or more) space vehicles.

m Rendezvous between Apollo and Soyuz in 1975. First joint ®
US/Soviet space flight mission. Docked during two days. ‘ljg‘

2/63



Introduction: Rendezvous Historical perspective
Rendezvouz model: HCW equations
Constraints

Introduction

m We will consider the most usual case: two vehicles.

m One of the spacecraft is the “target vehicle’ or just
“target’. Known orbit. It is considered passive.

m T[he other is the “chaser spacecraft” or just “chaser”.
Begins from a known position and maneuvers to target.
m Rendezvous must be done in a controlled fashion:

m Control in position, to get the chaser close in position to the
target.

m Control in velocity, to get the chaser close in velocity to the
target.

m Rendezvous and interception:

m Rendezvous: as above.
m Interception: Only looks to get close in position. Velocity can
be different. Impact can be an objective (e.g. a missile). S
m Both problems are studied using similar techniques. o
3/63



Introduction: Rendezvous Historical perspective
Rendezvouz model: HCW equations
Constraints

Gemini: The first rendezvous mission

>

. Altitude 1
Inertial LVLH

Downrange

A -
>

”

28 km Terminal Phase Initiation Mid-Course Corrections
(TPI) MO)

Q 28 km
Y272 V‘V)/

m Gemini missions (US) tested rendezvous technology in 1965.
m Rendezvous was performed manually by the astronauts on
board the spacecraft.
m December 15, 1965 was the first succesful orbital rendezvous ng

in history (between Gemini VI and Gemini VII).
4/63



Introduction: Rendezvous

Soyuz: the Russian approach

Chaser

Historical perspective
Rendezvouz model: HCW equations
Constraints

In 1967 took place the first
automated rendezvous between two
unmanned space vehicles (two
Soyuz spacecraft)

Much more complex than the
American system.

Based on navigation system
communication between the two
vehicles, using several antennas
they could obtain relative position,
velocity and attitude.

Requires a cooperative target.

us”

5/63



Introduction: Rendezvous Historical perspective
Rendezvouz model: HCW equations
Constraints

Rendezvous in the Apollo mission

Altitude f

Inertial LVLH

CSM Downrange

A -
'

28 km

L‘i& ‘) 26.6 deg
\

Terminal Phase Initiation Mid-Course Corrections
(TPI) (MC)

m For the American space program, the Apollo missions were
the main reason to obtain rendezvous capacity.
m A critical stage in the mission to the Moon was the
rendezvous between the Command Module and the Lunar ‘g‘

Module. Performed manually (trained with simulator).
6/63



Introduction: Rendezvous Historical perspective
MPC Rendezvouz model: HCW equations
Simulation Results and Conclusions Constraints

The Space Shuttle

V-bar

\ 4

Far Range Rendezvous Profile

Final Approach Profiles

m Profile of a rendezvous between the ISS and the Space
Shuttle. Two options: V-bar approach and R-bar approach. -

m The final phase is still manually performed! Ujg

7/63



Introduction: Rendezvous Historical perspective
Rendezvouz model: HCW equations
Constraints

Modern Russian rendezvous systems

" m m The Russians developed the Kurs
1 (course) system which allowed

rendezvous between Soyuz and
MIR.

s m Also automatic but more precise
and with more range than their
older system.

\ A

|

m Does not require target
cooperation.

Y

m However, it weights a lot (85 kg.)
and requires about 270 Watt
(similarly in the target side).

us”

8/63



Introduction: Rendezvous Historical perspective

Rendezvouz model: HCW equations
Constraints

What about Europe?

m ATV (Automated Transfer Vehicle) incorporates automated
rendezvous capability with the ISS. Operative since 2008.
m Developed by EADS/Astrium.

m Does not require target cooperation, however uses specific
equipment on both sides.

U

9/63



Introduction: Rendezvous Historical perspective
Rendezvouz model: HCW equations
Constraints

Rendezvous segments

m Typically, rendezvous problems are divided in several phases:

Orbital phase: The chaser begins on Earth or in a different
orbit from the target. Launch and orbital maneuvers have to
be performed to approach the orbit of the target.

Far range rendezvous: The chaser is “close” to the target
(~ 10 — 100 km), and must approach it (~ 100 — 1000 m).
Typically relative navigation is used.

Close range rendezvous: Maneuvers are performed to get the
target very close to the target (about 1 meter or less, relative
speeds of cm/s). This is the phase considered in this talk.

Docking/berthing: Smooth capture is performed followed by
structural union among the spacecraft. Also an interesting
control problem!!

m A good general reference for rendezvous: Fehse, W. (2003).
Automated Rendezvous and Docking of Spacecraft. g



Introduction: Rendezvous Historical perspective
Rendezvouz model: HCW equations
Constraints

(Close range) Rendezvous Model

m T[here are many rendezvous models for spacecraft, according
to which orbital perturbation model is used and the orbit of
the target.

m [he simplest possible case:

m the target follows a circular keplerian orbit (i.e. zero
eccentricity) around a central body (tipically the Earth).

m the target is passive (does not perform maneuvers).

m the chaser is very close (less than 1 kilometer).

m Call:

m R vector from central body to target.

m R: radius of the orbit of the target (given in kilometers).

m ;. the gravitational parameter of the central body (for the
Earth, ;1 = 398600.4 km?/s?).

m Target mean (angular) velocity is n = /4. .

m 7 position of target with respect to chaser. u@g‘



Introduction MPC

Rendezvous model, Constraints, Cost Function

HCW model

m Under the usual assumptions (chaser close to the target,
target in a keplerian orbit with zero eccentricity) we can use
the Hill-Clohessy-Wiltshire (HCW) model:

= 3n°x +2ny + uy,
= —=2nx + uy,
> = —nz+ Uy,

in the LVLH frame, with n the mean orbital velocity.

CHASER

LVLH FRAME 12 /51



Introduction MPC

Rendezvous model, Constraints, Cost Function

Constraints of the problem

m Typical constraints:

Thruster limitations and mode of operation (PWM or PAM).
Avoid collisions between chaser and target (safety).

Typically, chaser must approach inside a previously designated
safe zone.

If there are chaser engine failures, rendezvous should still be
achieved, if possible (fault tolerant control).

If the target's attitude is changing with time (spinning target)
the chaser should couple with that rotation to still guarantee
rendezvous.

In case of total failure, collision probability should be as small
as possible.

m Such constraints should be satisfied at the same time that
fuel consumption is optimized (economy). A



Introduction MPC

Rendezvous model, Constraints, Cost Function

Safe zone

m In this work we will equal the safe zone with the “line of

sight” (LOS)

y = c.(z — 20)

LOS region

<ZB

y = cz(x — o)

m [hese LOS zone in the figure is described by the equations

y 2 &x(x —x0), y = —cx(x+x0), y = ¢z(z — 20),
y > —cz(z+ z) and y > 0.



Introduction MPC

Rendezvous model, Constraints, Cost Function

Actuator constraints and Cost Function

m Typically there are two types of actuator:

m Pulse-Amplitude Modulated (PAM): Any value of force in a
given range can be used. Umin < U(t) < Umax. In spacecraft,
this can be achieved by using electrical propulsion.

m Pulse-Width Modulated (PWM): The value of force is fixed,
only the start and duration of it can be set. In spacecraft, this
is achieved by using conventional chemical thrusters (however
it is far from perfect).

F 4
-..Adeal
__real
>
t
m Also, consumption of fuel should be minimized. Typically s
one seeks min [,F |(t)|?dt or min [,F |u(t)|dt. U=

15 /51



MPC formulation for Spacecraft Rendezvous
Robust and Chance-Constrained MPC with perturbation estimator
Simulation Results for Chance-Constrained MPC

MPC applied to Rendezvous

HCW model in discrete time with perturbations

m Assuming that the control signal is constant for each sampling
time T, we obtain the following discrete time version of the
HCW equations:

x(k +1) = Arx(k) + Bru(k) + d(k).
m A7 and By are:

4—3C 0 0 2 n 0
6(5—nT) 1 0 (=€) 45-3T
n n
AT = 0 0 C 0 0 %
3nS 0 0 C 25 0
—6n(1—C) 0 0 —25 4C—3 0
0 0 —nS 0 0 C
- 1-C 2nT—25 .
2 : 2 0
n n
BT = n2
s pl=C 0
(1) " .S
~ 3T +42 0
L0 0 2

2(1—C)

where S =sinnT y C =cosnT (T =60s is used in this 11%‘
work). We will drop the subindex T in At and Br. "

16 /51



MPC formulation for Spacecraft Rendezvous
MPC applied to Rendezvous Robust and Chance-Constrained MPC with perturbation estimator
Simulation Results for Chance-Constrained MPC

State, perturbation and control variables

m x(k), u(k) y d(k) denote respectively the state (position and
velocity), control effort (propulsive force per unit mass) and
perturbation for time t = k, where:

X = [xyzkyZ]T,UZ[UX Uy Uz]T7

= [6x 8, 0, 05 0y 0]

m X, y, and z are position in the LVLH local frame about the
center of gravity of the target.

m x is radial position, y is position along the orbit and z is
perpendicular to the orbit.

m Velocity, control u(k) and perturbations §(k) are also written
in the LVLH frame.

m Perturbations are unknown, hence d(k) is a 6-D random

u ~He
variable, of mean 0 and covariance matrix X also unknown. U:@'
17 /51



MPC formulation for Spacecraft Rendezvous
MPC applied to Rendezvous Robust and Chance-Constrained MPC with perturbation estimator
Simulation Results for Chance-Constrained MPC

Prediction of state and compact notation

m The state at t = k + j is predicted from the past state x(k)
and control and disturbances at times from t = k to time
t=k+j—1 as:

j—1 j—1
x(k+j) = Ax(k)+ > A 'Bu(k+i)+ Y A1k +).
iI=0 =0

m We use a compact (stack) notation where we denote:

T x(k+1) T i u(k) T i o (k)
x(k + 2) u(k + 1) S(k +1)
xs(k) = : , ug(k) = : , 0s (k) =
| x(k + Np) | u(k N, — 1) ] | Sk N, —1) |

m Hence we can write the prediction equations as:
xs(k) = Fx(k) + Guus(k) + Gsos(k),

where F, G, and G; are defined from the model matrices -
A and B. u@

18 /51



MPC formulation for Spacecraft Rendezvous
MPC applied to Rendezvous Robust and Chance-Constrained MPC with perturbation estimator
Simulation Results for Chance-Constrained MPC

Constraints

m Two kind of constraints have been included. Other constraints
could be included as well.

m In the first place, it is required that the
chaser is always inside a Line of Sight
zone (LOS) with respect to the target.

m We write the restriction as
Arosx(k) < bros.

y > c.(z — 20)

[Z‘B

LOS region

~*B

Y > ¢ (I

y > —cg(x + x0) 0 -1 0 0O 0 O
Cx —1 0 0O 0 O
ALOS = —Cx —1 0 0 0 0
0 —1 Cz 0O 0 O
0 —1 —cz; 0 O O
bLOS = [ 0 Cx X0 Cx X0 Cz2) Cz2p } T

m Restrictions in the control signal: upi, < u(k) < upmax 11%@

19/51



MPC formulation for Spacecraft Rendezvous
MPC applied to Rendezvous Robust and Chance-Constrained MPC with perturbation estimator
Simulation Results for Chance-Constrained MPC

Objective function

m Taking expectation we define: X(k + j|k) = E[x(k + j)|x(k)]
m Similary Xs(k + j|k) = E[xs(k + j)|x(k)].
m Objective function:

Np

Np
JKk) = > [)“(T(k + i|k)R(k 4 1)X(k + i|k)] +> [UT(k 4 i—1)Qu(k +i— 1)] ,
i=1 i=1

where N, is the control horizon.
m Q = Id3«3 and R(k) is defined as:

Id3x3 ©3x3 ]
R(k) = vh(k — k, :
(k) = 7 )[ O3x3 ©O3x3
where h is the step function, k; is the desired arrival time and

v is a large number. Hence R = 0 before the arrival time, and
after arrival time it gives a large weight to the error in

T
position (distance from the origin). U=
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MPC formulation for Spacecraft Rendezvous
MPC applied to Rendezvous Robust and Chance-Constrained MPC with perturbation estimator
Simulation Results for Chance-Constrained MPC

Objective function and constraints in compact notation

m The objective function can be written as:

J(K) = (Guus(k)+ Fx(k) + G53ds) Rs(Guus (k) + Fx(k) + Gs5ds) + us ' Qsus

where prediction of the state has been used. Note that it
depends on the state at t = k and the control and
disturbances up to the control horizon. The matrices Rg and
Qs appearing in the expression are defined from R and @
respectively. The compact variable dg contains the
disturbances mean.

m Similarly the LOS constraints are written as:
Acxs < b,
and using prediction of the state :
A.Gyus < b, — A-Fx(k) — A.Gsds

m Control signal restriction are written as U, < us < Upmax. u%
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MPC formulation for Spacecraft Rendezvous
MPC applied to Rendezvous Robust and Chance-Constrained MPC with perturbation estimator
Simulation Results for Chance-Constrained MPC

Computation of control signal

m For t = k, the MPC problem is formulated as:
min J(x(k), us, ds)

us
subject to A Gyus < b, — AFx(k) — A Ggsis, Vis

Umin < Us < Umax

m It is a quadratic cost function with linear constraints; x(k) is
known, us has to be found.

m If perturbations ds were known (or e.g. zero) the problem is
easily solved. For instance, in MATLAB, using quadprog.

m [he problem is solved for a time instante t = k, and one
computes a complete history of future control signals from the
state x(k). However only the control signal u(k) is used and
the rest are discarded. The next time instant t = k 4+ 1 the
solution of the problem is recomputed using the new state ol
x(k + 1), thus closing the loop. Us
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MPC formulation for Spacecraft Rendezvous
MPC applied to Rendezvous Robust and Chance-Constrained MPC with perturbation estimator
Simulation Results for Chance-Constrained MPC

Robust MPC with known perturbation bounds

m If perturbations are unknown, the previous problem is not
solvable.

m Assume instead that we just know perturbation bounds:

A;6s < cs (admissible perturbations) and perturbation means
0s.
m A control system that achieves its objective for all admissible

perturbations is called robust.

m [o accommodate all admissible perturbations, we bound
—A_Gs0s which appears in the minimization constraints, for
all admissible perturbations.

m This procedure is always possible for bounded perturbations
(with known bounds).

us
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MPC formulation for Spacecraft Rendezvous
MPC applied to Rendezvous Robust and Chance-Constrained MPC with perturbation estimator
Simulation Results for Chance-Constrained MPC

Computation of control (known perturbation bounds)

m Hence to compute the control signal in t = k we solve:

min J(x(k), us, 0s)

us
subject to A.Gyus < b, — A-Fx(k)+ by

Umin < Us < Upax
where b is a column vector, whose i-th terms (bs); is given by

bs), = min  a;0
( )I s.t. Asdos<<cs S

and where a; is the i-th row of the matrix —A.Gg

m Hence for each time t = kK a minimization subproblem has to
be solved before computing the control signal from the main -
minimization problem. u&
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MPC formulation for Spacecraft Rendezvous
MPC applied to Rendezvous Robust and Chance-Constrained MP C with perturbation estimator
Simulation Results for Chance-Constrained MPC

Some Remarks about Robust MPC

m When solving the minimization subproblem for the
constraints, we get the constraints computed for the worst
case scenario for admissible perturbations.

m Hence, since constraints are verified for that case, they are
robustly verified, i.e., verified for any perturbation from the
set of admissible perturbations.

m [ he minimization subproblem consists on a minimization
problem for every row for the matrix —A.Gs. However, being
a linear optimization problem with linear restrictions, it can be
efficiently solved in numerical form. For instance, in
MATLAB, using the command linprog.

(I use GuoRoB) mw*d“j") ﬁ;g
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MPC formulation for Spacecraft Rendezvous
MPC applied to Rendezvous Robust and Chance-Constrained MP C with perturbation estimator
Simulation Results for Chance-Constrained MPC

Robust MPC: Chance Constrained approach

However, perturbation bounds are not always known a priori.
Or they are too conservative. Then we can model the
perturbations as random variables.

Assumption: & ~ Ng(d,%). (Non-Gaussian models can also be
used, however then the formulation is more complicated)
Assume for the moment we know the mean & and the
covariance matrix X of the perturbations.

A chance constrained robust control law is one that
achieves its objective with a certain given probability.

Thus, we find a bound for the term —A.Gsds which appears
in the minimization constraints, verified with a probability p.
Since 0 ~ N6(5, Y ), for a given p, one can find a confidence

region (ellipsoid), i.e., compute « such that
(6-38)" £ 1(6-3) <a .
iIs verified with probability p. % /51



MPC formulation for Spacecraft Rendezvous
MPC applied to Rendezvous Robust and Chance-Constrained MPC with perturbation estimator
Simulation Results for Chance-Constrained MPC

Computation of control (Chance Constrained approach)

m o compute the control signal in t = k we solve:
min  J(x(k),us,ds)
us
subject to A .Gyus < b, — A-Fx(k)+ by

Umin < Us < Upax
where b is a column vector, whose i-th terms (bs); is given by

(bs)i = min a;0s
S.t. (5—5)TZ_1(5—5)§Q

and where a; is the i-th row of the matrix —A.Gg

m Again for each time t = k a minimization subproblem has to
be solved. However, this time it has an explicit solution:

Np—1
(bs(k); = > (—vay/agza] +2;3)

uE
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MPC formulation for Spacecraft Rendezvous
MPC applied to Rendezvous Robust and Chance-Constrained MP C with perturbation estimator
Simulation Results for Chance-Constrained MPC

Some Remarks about the Chance Constrained approach

m Since the minimization subproblem is explicitly solved, this
approach gives an algorithm as fast as the non-robust MPC.

m However:

m Needs estimation of statistical properties.

m [ he normal distribution is unbounded: cannot choose the
probability p of constraint satisfaction too large:
conservativeness or even unfeasibility.

m Each constraint satisfied with probability p: global probability
smaller. However compensated with the receding horizon of
MPC!



MPC formulation for Spacecraft Rendezvous
MPC applied to Rendezvous Robust and Chance-Constrained MPC with perturbation estimator
Simulation Results for Chance-Constrained MPC

Algorithm for estimating perturbations

m [ he Chance Constrained Robust MPC, as it has been

formulated, requires knowing the mean and covariance of the
perturbations.

m Frequently, perturbations are totally unknown and these data
has to be obtained online using an estimator.

m Then, for each t = k we estimate § y ¥ taking into account
past perturbations, using:

5(i) = x(i + 1) — Ax(i) — Bu(i),

fori=1,...,k—1.
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MPC formulation for Spacecraft Rendezvous
MPC applied to Rendezvous Robust and Chance-Constrained MPC with perturbation estimator
Simulation Results for Chance-Constrained MPC

Estimating mean and covariance

m Denoting by d(k) y (k) the estimations of § y ¥ at t = k:

. =1 (k1) g
5(/() _ Zl:Oe 5(’)

ShT e
A g e 0 (500) — 800y ) (6) - 86))
2(k) = SR oA (k—) !

m The function e/ weights in the value of §(/) in the sum,

where A\ > 0 is a forgetting factor,

m This is done to give more importance to the recent values of ¢
than to its past history.

m This weighting is useful is properties of the perturbations
change with time, i.e., perturbations are not only random s m
variables but stochastic processes. u&
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MPC formulation for Spacecraft Rendezvous
MPC applied to Rendezvous Robust and Chance-Constrained MPC with perturbation estimator
Simulation Results for Chance-Constrained MPC

Recursive formulae

m It is possible to use recursive formulae for the previous
computations of mean and covariance:

—A

S(k) = %{ (yk_lg(k — 1)+ 6(k — 1)) |
B0 = - (waSk- 1
+(8(k = 1) = §(k)) (o(k = 1) = 6(K)) T)
where 7, = < ™)

m [hese allow to discard past values of 0 and save memory.

m Once mean and covariance are obtained, it is possible to get
the confidence region for disturbances that was used in the ~
chance constrained approach. u,g‘
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MPC formulation for Spacecraft Rendezvous
MPC applied to Rendezvous Robust and Chance-Constrained MPC with perturbation estimator
Simulation Results for Chance-Constrained MPC

Simulations

m For numerical simulations, several scenarios have been
considered with and without perturbations.

m Parameters used: Ry = 6878km, n = 1.1068 - 103 rad/s, and
LOS constraint parameters: xp = zg = 1.5m and ¢, = ¢, = 1.

m We included propulsive perturbations in the form:
Ureal = (1 + 01) T(60)u, where:

B U, IS the real control signal given by the propulsive system.

m u is the computed (desired) control signal.

m 0; is a normally distributed random variable. Physically, 0;
represents errors in the actuators.

m T(d60) is a rotation matrix with rotation angles given by §6,
which is a normally distributed random vector of (small)
angles. Physically, it comes from small errors in attitude that
cause the engines to be slightly off course.

~He
o

m Much more complex than nominal model.
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Introduction
MPC applied to Rendezvous

MPC formulation for Spacecraft Rendezvous
ON/OFF thrusters

Robust and Chance-Constrained MPC with perturbation estimator
Simulation Results for Chance-Constrained MPC
Non-robust MPC controller

XY plane trajectory
- Starting poin*trf_ et ' Ph
N, Non-robust MPC,
) disturbed case
1 5 | v r, \‘l\l
T Non-robust MPC, ", Constraint violation
- undisturbed case !
10 r l
|
‘I
' Forbidden area
5 8
WVOUS
0 \
5 0 5 10

15 20
x [m]

m Good results without perturbations (solid line).
m Fails when perturbations are present (dashed line). However
if perturbations are small, still works.

us
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Introduction MPC formulation for Spacecraft Rendezvous
MPC applied to Rendezvous Robust and Chance-Constrained MPC with perturbation estimator
ON/OFF thrusters Simulation Results for Chance-Constrained MPC

Chance Constrained MPC controller with perturbations

3D chaser path

| Forbidden
| area -

| Safe zone |

z [m]

 Starting 'pbin_t o

m Includes perturbations. Good results! 11%‘
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Introduction MPC formulation for Spacecraft Rendezvous
MPC applied to Rendezvous Robust and Chance-Constrained MPC with perturbation estimator
ON/OFF thrusters Simulation Results for Chance-Constrained MPC

Chance Constrained MPC controller with perturbations

0.2 T T T T T T T

_005 1 1 1 1 1 1 1
0 500 1000 1500 2000 2500 3000 3500
Time [s]

m Commanded control (solid) and applied control (dotted). ufg‘



MPC formulation for Spacecraft Rendezvous
MPC applied to Rendezvous Robust and Chance-Constrained MPC with perturbation estimator
Simulation Results for Chance-Constrained MPC

Monte Carlo simulations

m Simulated 1220 cases (with different disturbances). For each
case we perform a simulation with the non-robust and another
with the robust (chance constrained) approach.

m In the table d is the relative distance at the desired arrival

time.
Non-robust MPC Robust MPC

Constraint violations 59% 0%

d <0.2m 19% 100%
02m<d<05m 22% 0%

0.5m<d 0% 0%

Mean cost (m/s) of 0.2444 0.2039

successful missions 1&(’#‘



MPC formulation for Spacecraft Rendezvous
MPC applied to Rendezvous Robust and Chance-Constrained MPC with perturbation estimator
Simulation Results for Chance-Constrained MPC

Monte Carlo simulations

0.45
*  Robust MPC ©
O
0.4F O Non-robust MPC o & *|
0.35}
% 03f
£
2
o 0.25f
[
S
3
S o2
0.15}
01f
0.05 : ‘
0 05 1 15
[ o, | -4

m Plot of total cost of successful missions for both robust and
non-robust approach, against L; norm of the mean of the
disturbances.

m It can be found that using the non-robust controller implies u@

a 15% of cost increment.
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MPC formulation for Spacecraft Rendezvous
MPC applied to Rendezvous Robust and Chance-Constrained MPC with perturbation estimator
Simulation Results for Chance-Constrained MPC

Monte Carlo simulations

0.12 , |
‘* Ky *
0.1 e
*
* £ % * %
— ** * ¥ ji « **
E *y k' H g *
° * *
o 0.06F % . 7 X %% Rk . |
8 X #**%é§%§i§¥** -
q%_J *ijﬁ *ﬂ%’k% Yol * .
% 0.04 - % hﬁé% mﬁg&% 3'§ aﬁe * i
8 * * %@I?K s*\;k R * *
o Mk #5@ * ¥ * o oF
& o0.02f Ao %jk*"*%f* ok *
=
0
002} f*‘*?@ SO ]
*
-0.04 1 i
0 0.5 1 1.5
g1, [m/s] 10~

a

m Increase in cost of the non-robust MPC with respect to the 1Ig~

chance constrained MPC.
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MPC formulation for Spacecraft Rendezvous
MPC applied to Rendezvous Robust and Chance-Constrained MPC with perturbation estimator
Simulation Results for Chance-Constrained MPC

Non-robust MPC controller with unmodeled dynamics

XY plane chaser path

Starting point

50+
r
40 |
0.08}
0.06 -
— 30 0.04F
=
';' 0.02+
0
20+ T ————" — Constraint
-0.02+
-0.04+
-0.06 —+

0.2 0.3 04 0.5 0.6 0.7 0.8 09
10+ & /

Rendezvous

X [m]

m Assume that the target orbit is elliptic (i.e. has some
eccentricy e) instead of circular: unmodeled dynamics.

m Non-robust MPC is able to rendezvous, however it violates 1i%~

the constraints at the end.
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Introduction MPC formulation for Spacecraft Rendezvous
MPC applied to Rendezvous Robust and Chance-Constrained MPC with perturbation estimator
ON/OFF thrusters Simulation Results for Chance-Constrained MPC

Robust MPC controller with unmodeled dynamics

50

40

30

y [m]

20

10

XY plane chaser path

Starting point

(
04r

0.35+
03r
- 0.25¢
02r
0.15}

01r

0.05"

0

-0.05+

- -02 -0.1 0 0.1 0.2 03 04 05 06

N
Rendezvous

N —— e,
0 5 110 115
x [m]
m Robust (chance-constrained) MPC does not violate
constraints at the end. ﬁ
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Introduction MPC formulation for Spacecraft Rendezvous
MPC applied to Rendezvous Robust and Chance-Constrained MPC with perturbation estimator
ON/OFF thrusters Simulation Results for Chance-Constrained MPC

Rotating target, chance constrained MPC

3D chaser path

20~

LOS constraints
15
0y — — | Forbidden
-1 Safe zone . area
E oo
[a0]
N

_104 ‘S'tvértivng,poih't K

Xg [m] -30 60 Yy [m]

m Rotating target (trajectory shown for axes fixed in target). ligs

Rendezvous is achieved.
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Introduction: Rendezvous Introduction
Rendezvous models
Objectives and Constraints

Trajectory Planning with On/Off (PWM) Thrusters

m Lots of previous results, but most consider impulsive or

continuous thrust.

m Normally thrusters are pulsed: fixed amount of propulsion for
a variable time of actuation (PWM).

m There are some previous results with PWM thrusters using
filters or multirate approaches, but do not directly include the

PWM constraints.

4 /22


Rafael Vazquez



Introduction: Rendezvous Introduction
Rendezvous models
Objectives and Constraints

Trajectory Planning with On/Off (PWM) Thrusters

Lots of previous results, but most consider impulsive or

continuous thrust.

Normally thrusters are pulsed: fixed amount of propulsion for

a variable time of actuation (PWM).

There are some previous results with PWM thrusters using

filters or multirate approaches, but do not directly include the
PWM constraints.

Our previous result (IFAC WC 2011) considered circular orbits
(LTI system).

In this work we present a close-range rendezvous

planning algorithm for the more realistic PWM (On/Off)
thruster case for elliptical orbits.

Since the orbits are elliptical, the models is LTV and more
nonlinear in PWM variables. Basic transformations from o
PAM or impulsive actuation to PWM do not work very | ]
well. 4 /22



Introduction: Rendezvous Introduction
Rendezvous models
Objectives and Constraints

Rendezvous Model (free motion)

m Elliptical orbits: Tschauner-Hempel model.

m Target is passive and follows an elliptical keplerian orbit of
eccentricity e and semi-major axis a, with starting eccentric
anomaly Ej at tp.

m The chaser is close (kilometers) compared with target orbital
radius (thousands of kilometers).

m The model is linear but time-varying, and time-discrete
(sampling time T).
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Objectives and Constraints

Rendezvous Model (free motion)

m Elliptical orbits: Tschauner-Hempel model.
m Target is passive and follows an elliptical keplerian orbit of

eccentricity e and semi-major axis a, with starting eccentric
anomaly Ej at tp.

m The chaser is close (kilometers) compared with target orbital
radius (thousands of kilometers).

m The model is linear but time-varying, and time-discrete
(sampling time T).

Tschauner-Hempel model (free motion)
-
Xk+1 = A(tkr1, th)Xks Xk = [Xk Yk Zk Vek Vy k Vz k]

m The matrix A(txs1, tx) can be written explicitly if instead of
time ty, true anomaly (6x) or eccentric anomaly (Ey) is used.
They are related through Kepler's equation and Eg so that, for
instance, Ex = K(tx). %

m A convenient form was expressed by Yamanaka and AnkersenU@r
where A(tk_|_1,tk) YK(tk+1) K(t) with Y, Y™ eXp|ICIt. 5 /22



Introduction: Rendezvous Introduction
Rendezvous models
Objectives and Constraints

Rendezvous Model (impulsive thrust)

m A typical actuator model considers impulsive thrust, such that
the velocity is instantaneously changed.

m Impulses are placed at the beginning of the time interval.

m Good model if the impulses are high and short, not so good if
the impulses are low and maintained for a certain interval of
time.
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Rendezvous Model (impulsive thrust)

m A typical actuator model considers impulsive thrust, such that
the velocity is instantaneously changed.

m Impulses are placed at the beginning of the time interval.

m Good model if the impulses are high and short, not so good if
the impulses are low and maintained for a certain interval of
time.

Tschauner-Hempel model (impulsive thrust)

Xpr1 = At 1, )Xk + Bt 1, t)Uk, Ug = [txk Uy k Uz k]

m The vector ug represent the impulses (AV).

m The matrix B(txi1, tx) is explicitly found from A(txyi1, tk).

us”
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Rendezvous models
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Rendezvous Model (ON/OFF thrust)

m Thrusters typically can be only switched on or off and produce
a fixed amount of force: PWM control.

m Assume an aligned pair of thrusters for each direction

I = 1,2,3 with opposing orientation.Positive and negative are
denoted as u,7L and u; .

m The (fixed) value of thrust is &;” and @, respectively.
m During each sample time each thruster fires only once.



Introduction: Rendezvous Introduction
Rendezvous models
Objectives and Constraints

Rendezvous Model (ON/OFF thrust)

Thrusters typically can be only switched on or off and produce
a fixed amount of force: PWM control.

Assume an aligned pair of thrusters for each direction

I = 1,2,3 with opposing orientation.Positive and negative are
denoted as u,7L and u; .

The (fixed) value of thrust is 7" and @;, respectively.

During each sample time each thruster fires only once.
A T

PWM control variables: N >
m [ he pulse width . ) K
m [ he pulse start time 7. « > |
—> 1

For simplification, consider only one pulse per time interval.

Need six thrusters, one for each axis, and one for each

direction (denoted by + and -). -
12 control variables for each k: x] (k), ry (k), k3 (k), /ff(k)ug
k3 (K), w3 (K), 7 (K), 75 (K), 75 (K), 71 (k). 75 (k) 5 (k) o



Introduction: Rendezvous Introduction
Rendezvous models
Objectives and Constraints

Rendezvous Model (ON/OFF thrust)

P_ 7 + + - ,— 4+ + — — _+ .+ - -
m Callu, = [ Tk F1k Tk Bk Tok ok To k R ik T3k B3 1 T3k K3 i
Ll uf contains all the PWM control variables.

m Denote

K(t+14kK;) 1 — E
bi(t, T, ki) :/ Y- Ciys C dE
K(t—I—T,') n

]'T

where C; is a column vector of zeros with a 1 in the /-th row.

m The integrals in b; can be carried out explicitly. The
nonlinear dependence of the system on the PWM parameters
Is contained in b;.
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Rendezvous Model (ON/OFF thrust)

P_ [  + + — — -+ + — — 4+ .+ . — — 1T
m Callu, = [ Tk F1k Tk Bk Tok ok To k Fo i T3k B3 1 T3 “3,k]
Ll uf contains all the PWM control variables.

m Denote
K(t—I—T,'—|—K,,') 1 E
-1 — € COS
b,'(t,T,', /ﬁ:,') = / YE C,'_|_3 dE
K(t—|—’7’,') n

where C; is a column vector of zeros with a 1 in the /-th row.
m [he integrals in b; can be carried out explicitly. The

nonlinear dependence of the system on the PWM parameters
Is contained in b;.

Tschauner-Hempel model (ON/OFF thrust)
Xki1 = A(tk_|_1, tk)xk ain BPWM(tk—|—17 tk7 ull-(-))

m In the equation Bpyyy = S.1=; B o + 32125 B @i, with S
B,'j:(tk—l—la tkaullj) — Y(tk—i—l) (t Tik?"{’/:'l,:k)' u@
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Objectives and State Constraints

m [ime of rendezvous Tg is usually fixed beforehand.
m A sampling time T is chosen for discretization such that
Tr = NT, where N is the discrete time of rendezvous.
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Objectives and State Constraints

m [ime of rendezvous Tg is usually fixed beforehand.

m A sampling time T is chosen for discretization such that
Tr = NT, where N is the discrete time of rendezvous.

m Consumption of fuel should be minimized:

min /O ()] + [y (8)] + |ua(2)]) o
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Objectives and State Constraints

m [ime of rendezvous Tg is usually fixed beforehand.

m A sampling time T is chosen for discretization such that
Tr = NT, where N is the discrete time of rendezvous.

m Consumption of fuel should be minimized:

min /O (u6)] + Juy(8)] + |uz(2)]) e

y > c.(z — 20)

m State should remain in
safe zone for security and
sensing purposes: “line of

sight” (LOS) region

'B

LOS region

<TB

y > cx(z —%g)



Introduction: Rendezvous Introduction
Rendezvous models
Objectives and Constraints

Constraints of the problem: Actuator constraints

m Implusive:
: | m Any value of impulse in a given range
i : can be used, i.e. Upmin < U(t) < Upmax.
m In spacecraft, high-force thrusters
A : actuating for a short time can be

: : ' modeled as impulsive.

4 : Impulsive

t L 2 ty m Not realistic for small spacecraft!

I m Pulse-Width Modulated (PWM):

PWM

m [ he value of force is fixed to a value
u, only the start and duration of it
- can be set.

m Conventional chemical thrusters.
m \We will consider this constraint;

us”
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Step 1. impulsive solution.
Planning Algorithm Step 2. impulsive/PWM filter.
Step 3. Linearization around PWM solution.

Planning algorithm for ON/OFF thrusters

m As seen, equations are highly nonlinear and not explicit in
PWM control variables (pulse start point and width).
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Step 1. impulsive solution.
Planning Algorithm Step 2. impulsive/PWM filter.
Step 3. Linearization around PWM solution.

Planning algorithm for ON/OFF thrusters

m As seen, equations are highly nonlinear and not explicit in
PWM control variables (pulse start point and width).

m The following algorithm is applied:

PWM Rendezvous Planning Algorithm

Initially solve the rendezvous problem for standard impulsive control.

From the impulsive solution find an initial starting guess for the
PWM solution.

Linearize around PWM solution and find small increments in the
PWM controls improving the solution.

Repeat previous step until convergence or time is up.
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Step 1. impulsive solution.
Planning Algorithm Step 2. impulsive/PWM filter.
Step 3. Linearization around PWM solution.

Planning algorithm for ON/OFF thrusters

m As seen, equations are highly nonlinear and not explicit in
PWM control variables (pulse start point and width).

m The following algorithm is applied:

PWM Rendezvous Planning Algorithm

Initially solve the rendezvous problem for standard impulsive control.

From the impulsive solution find an initial starting guess for the
PWM solution.

Linearize around PWM solution and find small increments in the
PWM controls improving the solution.

Repeat previous step until convergence or time is up.

m Linearization explicit and easy to compute.

m Since we have a reasonable initial guess the algorithm works _ =

well. u*&
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Step 1. impulsive solution.
Planning Algorithm Step 2. impulsive/PWM filter.
Step 3. Linearization around PWM solution.

Step 1. Finding a solution with impulsive actuation

m Using the impulsive Tschauner-Hempel model, and iterating:
k

X1 = A(tkt1, 10)X(0) + 2 A(tir1, ti41) B(tjta, t)u;
i=0

m We have used the property
A(tiva, t1)A(Li, tio1) = A(titr, tiz).
m Compact (stack) notation for the whole planning horizon:

[ x(1) ] [ u(0)
x(2) u(l)

Xs us

| x(V) | | u(N - 1) |
m Compact propagation equation:
Xg = FX(O) + Guus

=
F and G, defined in the paper. ug

12 /22



Step 1. impulsive solution.
Planning Algorithm Step 2. impulsive/PWM filter.
Step 3. Linearization around PWM solution.

Step 1. Finding a solution with impulsive actuation

m The objective function (fuel consumption) can be written as:
J = Tus][
m Using the compact notation, the LOS constraints are written
Axs < b,
and using propagation of the state in terms of ug:
A.Gyus < b, — A.Fx(0)

m Similarly, terminal constraints (x(/V) = 0) are written as
A.xs = 0, thus in terms of ug:

A.G,us = —A.Fx(0)

~ -

m Control signal restriction are written as —Tu~ <us < TU" _ e
(see step 2). U=

13 /22



Step 1. impulsive solution.

Planning Algorithm Step 2. impulsive/PWM filter.

Step 3. Linearization around PWM solution.

Step 1. Finding a solution with impulsive actuation

m [ he trajectory planning problem with impulsive actuation is

formulated as:

min
us
subject to

J(us)

A.G,us < b, — A.Fx(0)
—Ta~ <us < Ta"
A.G,us = —A.Fx(0)
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Step 1. impulsive solution.
Planning Algorithm Step 2. impulsive/PWM filter.
Step 3. Linearization around PWM solution.

Step 1. Finding a solution with impulsive actuation

m [ he trajectory planning problem with impulsive actuation is
formulated as:

min  J(us)
us

subject to A Gyus < b, — A-Fx(0)
—Ta~ <us < Tu"
A.G,us = —A-Fx(0)

m L!'-norm optimization with linear inequality and equality
constraints; x(0) is known, us has to be found.

m Easily solvable, for instance, in MATLARB, using linprog.

us”

14 / 22



Step 1. impulsive solution.
Planning Algorithm Step 2. impulsive/PWM filter.
Step 3. Linearization around PWM solution.

Step 2. A fist PWM solution

B Remember the PWM control . ‘f _____ . g
variables: o k|
. P> :
m [he pulse width k. « > :
m [he pulse start time 7. —> ¢

m To find an initial guess of the PWM control variables from the
impulsive actuation, we use:
Use a positive or negative thruster according to the sign of u; k.
The pulse width has an area equal to the impulse value:
“?,Zk = lLLflTk' where U,-i is the maximum level of the (positive or

negative) thruster i (since — T~ <us < Tat, ki, < T).
Since the impulse was modeled to start at the beginning of a

. +
time sample, Tix = 0.

0 uf constructed by this method is not optimal and might not
even verify the constraints or reach the target. However it is -

- -
close to a PWM solution. U=
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Step 1. impulsive solution.
Planning Algorithm Step 2. impulsive/PWM filter.
Step 3. Linearization around PWM solution.

Step 3. Linearization of the PWM model

m The linearized model is written as
= A(tis1, t)Xe + Bpwmi(terts te ul ) + B2 (tigt, te, ul )Au)
Xk+1 k415 Lk )Xk PWMN\ Lk+1, Tk, Uy k+1, Lk, Uy u,,

m Au) are the increments in the PWM signals and the matrix
BA(t, k(k)) is defined as

Ay O(Bpwm(tist, tk,up))i
(B )17./ T P 9
O(uy ),

which is explicit (derivative of an integral). See the paper.
m Constraints:
—ArF(k) < RF(K), —ATE(K) < 77 (K)
ATE(K) + ARE(K) < T — (k) — k()



Step 1. impulsive solution.
Planning Algorithm Step 2. impulsive/PWM filter.
Step 3. Linearization around PWM solution.

Step 3. Linearization of the PWM model

m The linearized model is written as
= A(tis1, t)Xe + Bpwmi(terts te ul ) + B2 (tigt, te, ul )Au)
Xk+1 k415 Lk )Xk PWMN\ Lk+1, Tk, Uy k+1, Lk, Uy u,,

m Au) are the increments in the PWM signals and the matrix
BA(t, k(k)) is defined as

Ay O(Bpwm(tist, tk,up))i
(B )17./ T P 9
O(uy ),

which is explicit (derivative of an integral). See the paper.

m Constraints:
~Ari (k)
AT (k) + Ak; (k)

’f%(k)a _ATii(k) < Tii(k)

<
< T- Tij:(k) - “?E(k)

m Add additional constraint on Auf size to avoid going too far =
away from linearization point:]Au,’f\ < AMAX u@'

16 /22



Step 1. impulsive solution.
Planning Algorithm Step 2. impulsive/PWM filter.
Step 3. Linearization around PWM solution.

Step 3. Linearization of the PWM model

m Compact/stack notation: ug for the PWM variables, Aug for
the increments.

m PWM Compact formulation around the linearized point:
_ P\— P P
Xg = FX(O) -+ Gpwm(us)Us -+ GA(US)AUS,
m State constraints written in terms of Aug:

ACGA(UE)AUSP S bc — ACFX(O) — ACGpwm(ug)ﬁs
AeGA(Ug)AuSP = —AeFX(O) — Aerwm(uSP)l_Js

m Summarize PWM actuation constraints as AAAug < ba.



Step 1. impulsive solution.
Planning Algorithm Step 2. impulsive/PWM filter.
Step 3. Linearization around PWM solution.

Step 3. Linearization of the PWM model

= Objective function J = Jpwm(ug) + J2(Auf), where

JA(AuE) = ZZ (T AkF (k) + o7 Ak; (k)

k=0 i=1
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Step 1. impulsive solution.
Planning Algorithm Step 2. impulsive/PWM filter.

Step 3. Linearization around PWM solution.

Step 3. Linearization of the PWM model

= Objective function J = Jpwm(ug) + J2(Auf), where

JA(AuE) = ZZ (T AkF (k) + o7 Ak; (k)
k=0 i=1
m Optimization on increment Aug:

min  JA(Auf)

Aug
subject to: A.GaAu: < b.— AFx(0) - ACGpWM(ug)ﬁs
AAAUE S bA
A.GaAul = —AFx(0) — A.Gpwm(ug )is

18 /22



Step 1. impulsive solution.
Planning Algorithm Step 2. impulsive/PWM filter.
Step 3. Linearization around PWM solution.

Step 3. Linearization of the PWM model

Objective function J = JPWM(UE) + JA(AUE), where
N,—1 3
AB6E) = ST (@ AnT (K) + B Ary (K))
k=0 i=1

Optimization on increment Aug:
min  JA(Auf)
Aug
: . P P\c
subject to: A.GalAus; < b.— AFx(0) — A.Gpwm(ug)us
AAAUE S bA
A.GaAul = —AFx(0) — A.Gpwm(ug )is

Linear cost function with linear inequality and equality

constraints; very fast solution!

Add solution Aug to previous linearization point ug to find

new PWM values u¢ (new): new linearization point. S
Linearize around new solution and iterate until cost function u&
does not improve or time is up! 18/22



Simulations

) ) . Conclusions
Simulation Results and Conclusions

Simulation results for the PWM algorithm

m Matlab simulation of a high eccentricity case (e = 0.7).

m Parameters: N, = 50 as planning horizon, T = 60 s, and
0= 1071 N/kg. The target orbit has perigee altitude
h, = 500 km.

m Initial conditions were 0y = 45°, rg =
[0.25 0.4 —0.2]7 km, vg = [0.005 — 0.005 — 0.005]" km/s.
The LOS constraint is defined by xg = 0.001 km and
Cios = tan 30°.

m Impulsive initial cost: 14.6 m/s.

m After 6 iterations, the solution converges. Each iteration took
about 1 second to compute.

m Final PWM cost: 15.5 m/s



Simulations

) ) . Conclusions
Simulation Results and Conclusions

Simulation results for the PWM algorithm

0.4
0.31
= 0.2r
.ﬁ.
)
0.1t
O_,
Restricted area /‘,"‘
_O i J‘.-"/ i i
—6.1 0) 0.1 0.2 0.3
x [km]
m Trajectories: impulsive (green), PWM computed from S
impulsive (red), final computed PWM(blue) U=
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Simulations

) ) . Conclusions
Simulation Results and Conclusions

Simulation results for the PWM algorithm

m Comparison between PWM computed from impulsive (red)
and final computed PWM control signals (blue).
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Simulations

) ) . Conclusions
Simulation Results and Conclusions

Conclusions

m We have presented a planning algorithm to solve the problem
of automatic spacecraft rendezvousfor elliptical target orbits.

m Line-of-sight state constraints and PWM control constraints
are included in the model.

m To overcome nonlinear optimization, algorithm uses a hot
start obtained from impulsive actuation and refines it using
explicit linearization.

m In simulations it is shown that the algorithm converges.



Conclusions

m We have presented a robust M PC controller to solve the
problem of automatic spacecraft rendezvous.

m Perturbations are estimated online and accommodated.

m In simulations it is shown that the method can overcome large
disturbance and unmodeled dynamics.

m PWM control constraints have been included in the model.
m Future work:

Include eccentricity and orbital perturbations.

Add an state estimator (based e.g. on observations from
target).

Include fault-tolerant schemes and safety constraints.

Use more sophisticated disturbance estimation techniques.
Study stability of the closed loop system.

Reduce # of actuators, include attitude dynamics (nonlinear).

m References:

F. Gavilan, R. Vazquez, E. F. Camacho, “Robust Model Predictive Control for Spacecraft
Rendezvous with Online Prediction of Disturbance Bounds,” IFAC AGNFCS‘09, Samara, Russia,
20009.

R. Vazquez, F. Gavilan, E. F. Camacho, “Trajectory Planning for Spacecraft Rendezvous with

On/Off Thrusters,” IFAC World Congress, 2011. ~alSo IFAC ZO)L// CEP 20[ ?—

F. Gavilan, R. Vazquez and E. F. Camacho, “Chance-constrained Model Predictive Control for
Spacecraft Rendezvous with Disturbance Estimation,” Control Engineering Practice, 20 (2),
111-122, 2012.
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Introduction

Objective

Generate optimal rendezvous trajectories for a single-thruster!:2
spacecraft equipped with an ACS.

Methodology

Exploit the state transition matrix for translational motion and the
flatness property® for angular motion. Then, discretize the problem to
obtain a tractable static program.

'0land, E., et al. Aerospace Conference (2013).
*Moon, G.H., et al. European Control Conference (2016).
3Louembet, C., et al. IET Control Theory and Applications (2009).

Univ. de Sevilla/Univ. de Toulouse Rendezvous for Single-Thruster Spacecraft May 29, 2019 4 /29
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6-DOF Model
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Translational motion |

Target in circular obit.
Target & chaser close (~1 km).
HCW equations!® in LVLH frame

X =2nz,
y =-—-ny,
7 =3n%z — 2nx.
o
n=\%

'Clohessy, W., et al. Journal of Aerospace Sciences (1960).

Univ. de Sevilla/Univ. de Toulouse

Rendezvous for Single-Thruster Spacecraft

May 29, 2019 6 /29



Translational motion Il

m Propulsion modelled as discrete impulses:

Np
u(t) = > uwed(t — t).
k=1

m From HCW equations to state transition matrix

|x(t) = A(t, to)xo + Bu(t),

where

x=[x,y,z,%,y,2]",

u = [ux, uy, uy]".

Univ. de Sevilla/Univ. de Toulouse Rendezvous for Single-Thruster Spacecraft May 29, 2019 7 /29



Rotational motion |

Modified Rodrigues parameters!, MRP, for attitude representation wrt
LVLH frame
m MRP are a minimal attitude representation (no unit-norm quaternion
constraint)
m Denoted as 02[01,02,03]T, related with rotation axis e and angle

Orot as o=etan(0,ot/4).
m Singularities at 6,,,==427 avoided constraining 0,,:€(—2m, 27).

m Rotation (DCM) matrix:

8o*a* —4(1 — ||o||3)o*
- .
2
(1+]o13)

R(o) =1d +

'Marandi, S., et al. Acta Astronautica (1987).
May 29, 2019
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Rotational motion |l

Rotational kinematics
51 1+02 —02—02 2(c10p — 03) 2(c103 + 02) w1 )
{52] = [ Aoror Los) 1 ol + 03— 0} 20303 — o1) w| = a(t) = Clo(t))w(t)
2(c103 — o3) 2(op03 + 01) 1-— of — og + 0'32’ w3
Rotational dynamics (body axes chosen as principal axes)
har = My — (B — b)wows,

by = My — (hh — B)wiws,
Bws = M3 — (b — I )wiws.

ACS w/ reaction wheels is being considered but torque M taken as
control input for simplicity

Univ. de Sevilla/Univ. de Toulouse Rendezvous for Single-Thruster Spacecraft May 29, 2019



Coupled motion

Single-thruster pointing at the v direction (in body axes). Projection of
impulse u(t) on LVLH frame is

Coupled 6 DoF system is

x(t) = A(t to)x(to) + BR(o(t))vu(t),
o(t) C(o(t))w(t),
oo (t) :M() w(t) x lw(t).

Coupling arises through the propulsion term of the translational equation
(gravity gradient effects neglected).

Univ. de Sevilla/Univ. de Toulouse

Rendezvous for Single-Thruster Spacecraft

May 29, 2019 10 / 29



Outline

Rendezvous planning problem
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m Line of sight (LOS):
A x(t) <b;.

m Control input bounds:

0 < u(t)
_Mmax S Mi(t)

Umax,  LOSREGION

<
< Mpax. T2 _Cz(z+ ZO)

m Terminal conditions:

x(tf) = 07
o(tr) =or,
w(t'f) =0.

Univ. de Sevilla/Univ. de Toulouse Rendezvous for Single-Thruster Spacecraft May 29, 2019 12 /29



Objective function

Minimize fuel consumption — minimize the L1-norm of impulses

e tr d
T Jo 1(Oh &

subject to  x(t) = A(t, tp)xo + BR(o(t))vu(t),
o(t) = C(o(t)w(t),
lw(t) = M(t) —w(t) x lw(t),
Arx(t) < by,
0< U(t) < Umax,
_Mmax < Mi(t) < Mmax: i = 172737

X(tf) = 0,
O'(tf) =0y,
w(tr) =0.

Univ. de Sevilla/Univ. de Toulouse Rendezvous for Single-Thruster Spacecraft May 29, 2019 13 /29
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Optimal control computation
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Attitude flatness property

Flatness property

A Flat system! has a flat output, which can be used to explicitly express
all states and inputs in terms of the flat output and a finite number of its
derivatives.

Attitude flatness
Attitude dynamics has the flatness property. Flat output — MRP.

{w(t) = C(o)0,

w(t) = CY(o)s + CY(d,0)0,

and torque is parameterized with the MRP

M(t) = I[C1(6,0)6 + C(0)6] + [CL(0)d] x IC(0)s.

'Fliess, M., et al. Journal of Guidance Control and Dynamics {1995).

Univ. de Sevilla/Univ. de Toulouse Rendezvous for Single-Thruster Spacecraft May 29, 2019



NLP description |

m Manoeuvre divided into N, intervals of duration T = (tr — to)/Np.
m MRP parameterization! based on mth degree splines

Ui(t) = ijzo ai,j,k(t - tk*l)a i=1,2,3,
t € [tkmr,tu], tk =to+ kT, k=1...Np.

m C? continuity at the nodes

o(tk,ak):a(tk,ak_l), k:2...Np,
d(tk,ak):d(tk,ak_l), k:2...Np,
&(tk,ak):&(tk,ak,l), k:2...Np,

— T
where Ay = [31707/( -«-81.mk; 82,0,k ---42mk>d30,k - - - 337,7-,7/(] .

"Louembet, C., et al. IET Control Theory and Applications (2009).

Univ. de Sevilla/Univ. de Toulouse Rendezvous for Single-Thruster Spacecraft May 29, 2019



NLP description I

= Minimal rotation path: between consecutive nodes 6,,:€[—, 7]

m Torque constraint discretization: grid each interval k with ny,
subintervals of duration Ty=T/ny

tk,I:t0+(k—1)T+/TM, I=0...np.

_Mmax < M,'(tk7/,ak) < MmaXa i = 172737

Univ. de Sevilla/Univ. de Toulouse Rendezvous for Single-Thruster Spacecraft May 29, 2019



Compact formulation

Compact formulation®: stack vectors

Xg = [xz-a xérv .. XNP]T
us = [u1, Uz,---,UN,,]T
as = [a]7_-a a;-a .. aNp]T

and stack matrices
F= [AT, (Az)T7 ) (ANP)T]T7 Gik = Ai_kBRakV-

Dynamics compactly expressed as:

‘Xs = Fxo + G(as)us ‘

'Vazquez, R., et al. Control Engineering Practice (2017).

Univ. de Sevilla/Univ. de Toulouse Rendezvous for Single-Thruster Spacecraft May 29, 2019



Discrete optimization problem |

Finite dimension static program in compact formulation (NLP)

minimize lus||1,
us, as

subject to  A;sG(as)us < b;s — Fxo,
0< us < USmax;
_Mmax S Mi(tk,l,ak) S MmaX7
ArendG(aS)uS - _ArendFX07
O‘(to,al) =0y,
d‘(to,al) = 09,
a(tf,aNp) =0y,
d‘(t,r,aNp) =0,
Aczas =0,
frot(aS) < 0.

Univ. de Sevilla/Univ. de Toulouse Rendezvous for Single-Thruster Spacecraft May 29, 2019 19 /29



Discrete optimization problem |l

Initial guess (hotstart):
3DoF rendezvous posed as a linear programming (LP) problem (6
thusters assumed).
LP solution converted to NLP decision variables ug & as:

Uk = |JuLp kll2 — us
Attitude coefficients from the required vy impulse orientation at the
nodes

Vig = [tk Uy ks Uz k] /uee ill2, i [luce il > 0,
Rotation angle and axis:

Vig X Vi

ekl. = aCOS(Vk,. . vki—l)’ €. = m
i i—1

i

From 6. and e,. obtain MRP — ag (see details in paper)
If ux=0 attitude interpolated between non-zero impulses.

()] =

Univ. de Sevilla/Univ. de Toulouse Rendezvous for Single-Thruster Spacecraft May 29, 2019
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Results
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Simulation parameters

m Target parameters: h=600 km, yo=20=2.5 m, ¢,=c,=1/tan(w/4).
m Chaser parameters: | = diag(28,45,49)kg - m2,umax = 1 m/s,
Mmax = 0.02 N-m,v = [0,0, 1] .
m Manoeuvre conditions: tr=900 s, x(0)=[400, -250, -200]" m,
x(0) = [1,1,-1]" m/s, w(0) = [0,0,0]"s~ %,
(91(0) = 92(0) = 93(0) =0, 91(tf):0, 92(tf):—7['/2, 93(tf)E free.
(1,2,3 Euler angles sequence).
(Thruster nozzle pointing towards the +x axis at the end to avoid
plume impingement).
m Planning parameters: N,=20, T=45s, ny=12, Ty=3.75s, m=3.
m Linear solver: GUROBI (<1 second). Nonlinear solver: IPOPT

(1.5 minutes; 260 decision variables and ~ 1700 constraints).
Routines integrated in Matlab.

Univ. de Sevilla/Univ. de Toulouse Rendezvous for Single-Thruster Spacecraft May 29, 2019 22 /29



Simulation results |

3D chaser path
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Simulation results Il

Chaser attitude
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Simulation results Il

Impulses
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Simulation results IV

Torque
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Conclusions

m We have presented a rendezvous trajectory planning algorithm for
a single-thruster spacecraft equipped with ACS.

m Solution based on translational state transition matrix + attitude
flatness property — exact description.

m Problem is discretized and posed as NLP. No need of numerical
integration.

m Formulation extendeds to arbitrary number of thrusters.

m As future work, MPC scheme based on linearization around the
computed solution — deal with unmodelled dynamics and
disturbances.

m Extension to constellation formation flying w/ relative attitude
objectives also possible

Univ. de Sevilla/Univ. de Toulouse Rendezvous for Single-Thruster Spacecraft May 29, 2019 28 /29






A Predictive Guidance Algorithm for Autonomous

Asteroid Soft Landing

Julio Cesar Sanchez Merino
Francisco Gavilan Jimenez
Rafael Vazquez Valenzuela

Universidad de Sevilla. Sevilla, Spain

jsanchezm@us.es, fgavilan@us.es, rvazquezl@us.es

May 29, 2019

Universidad de Sevilla Asteroid Soft Landing May 29, 2019 1/33



Table of contents

Introduction

N =

Asteroid modelling

=

Landing problem

[~

Optimal control computation
m Change of variables

m Discretization

m lterative process

MPC Guidance

&

A Results
m Simulation parameters
m Simulation results

Conclusions

Universidad de Sevilla Asteroid Soft Landing May 29, 2019 2/33



Outline

Introduction

Universidad de Sevilla Asteroid Soft Landing May 29, 2019



Introduction

Soft Landing

A soft landing is any type of aircraft, rocket or spacecraft landing that
does not result in damages to the vehicle or anything on board.

The objective of this work is to present an autonomous guidance
algorithm for soft-landing on an asteroid.

Methodology

The resolution approach is based on constraints convexification?,
discretization and an iterative method? . Then, this approach is
embedded in a decreasing horizon MPC scheme.

'Acikmese, B., et al. Journal of Guidance, Control and Dynamics (2007).
2Pinson, R., et al. AAS/AIAA Astrodynamics Specialist Conference-(2015).
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Asteroid modelling |

m Asteroid fixed frame in principal inertia axes (z major axis, x minor)

{F =—wxr—2wxtr—wx(wxr)+(F+T)/m,
m = —[|T2/vex,

where r=[x,y,z]" relative position, m lander mass, w asteroid
rotation rate, T thrust, F external forces on the lander, vey the
escape gases velocity.

m Most relevant external force: asteroid central gravity field,
F=F;=mV U,.

Universidad de Sevilla Asteroid Soft Landing May 29, 2019 6 /33



Asteroid modelling Il

433 Eros 216 Kleopatra 1620 Geographos

6489 Golevka 1998 Ky26

4179 Toutatis 2063 Bacchus 4769 Castalia
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Asteroid modelling Il

m Polyhedron model': exact potential of a polyhedron shape body w/
constant density

Gp

_ T TeT

Ug == 7 Z re EereLe - Z re Ff Frwyr
ecedges fefaces

(“reality” in the simulation)

m Mass-concentrations model?: discrete masses

" Gm;

Z 7 llr

used to compute controls (lower computational load)

- l'l||2

Werner, R.A., et al. Celestial Mechanics and Dynamical Astronomy (1996).
2Kubota, T., et al. ISAS 16" Workshop on Astrodynamics and Flight Mechanics
(2006).
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Outline

Landing problem
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Constraints |

m Thrust bounds: engine cannot be shut down when turned on
(Tm,'n>0)
7—min < ||T(t)H2 < 7—max-
m Fuel consumption:
m(t) > myp,.
m Surface avoidance:
Circumnavigation phase! (rotating tangent plane to the minimum
volume ellipsoid)

(r(t) - I’t(t))Tl’lZ— > 07 te [tO’ to + tcirc]-
Landing phase (line of sight form landing point)
Au(r(t) —rF) <bg,  t € (to+ tere, tr].

m Terminal constraints:

'Dunham. W. al.__American Control Conference (2016).
10 / 33
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Constraints |l

Asteroid surface avoidance constraint! illustration

- Ellipsoid

—Rotating plane

---LOS region
% Departure . ~ . ] %
X Target

'Dunham, W., et al. American Control Conference (2016).
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Objective function

Minimize fuel consumption (maximize the final mass value)

min
T(t)
s.t.

_m(tf)7

m(t)
IT(2)l]2
T2

AN IANIVIVIA

v,

2w XxVv—wX(wxr)+T/m

+VUg(I’)’

_HTH2/VeXa

Tmaxa
Tmina
Mdry,

7 (E)ne(t),
b, — Arrg,
rr,

0.

te [th to + tcirc]a
t € (to + teirc, tf],

Universidad de Sevilla
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Outline

Optimal control computation
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Change of variables |

m Non-convex thrust constraint:

lac=T/m, am=|T|2/m.|

m Mass variable:

‘q =In(m) — § = —aym/Vvex linear! ‘

This change of variables relaxes! the non-convex thrust lower bound:

7—mine_q Satm S Tmaxe_qv

||at||2 Satm — SOCPI

The mass term can be linearized as e”9~e"9[1 — (q — q/)].

'Acikmese, B., et al. Journal of Guidance, Control and Dynamics (2007):
Universidad de Sevilla Asteroid Soft Landing May 29, 2019 14 / 33



Change of variables Il

min —q(tf),

s.t. r(t)

VAR VANI VAN VAN AVAR AV

v7

2w X Vv—wX (wxr)+a;
+V Ug(r),

—atm/ Vex,

Adry

Tmine= 9 O[1 = (q(t) — g/(1))],
Tmaxe” T W[1 — (q(t) — q.(1))],
arm(t),

rT(t)nt(t)’ te [th to + tcirc],
b, —Are,  t e (to+ ter, trl,
re,

0.

Note that the constraints are linear or second-order cones. The asteroid
gravity field is the sole non-linearity of the model.
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Discretization |

The asteroid gravity field non-linearities are tackled using an iterative
process where the gravity terms are evaluated with the last iteration data

XU = AxV 4 Bull + c(rU=U), x=[r" w7, q]", u=[a/], am]",

0 00 1 0 00 000 O
0 00 0 1 00 000 O
0 00 0 0 10 000 O
A=|w?> 0 0 0 20 00|,B=[100 0 ,
0 w> 0 —2w 0 00 010 O
0 00 0 0 00O 001 O
| 0 00 0 0 0 0] 100 0 —vg! |
" Gmj

CZ_ZH — I||3 [0 0, 0, (X ')7 (y_)/i)? (Z_Zi)7 O]T'

Universidad de Sevilla Asteroid Soft Landing May 29, 2019 16 / 33



Discretization |l

Manoeuvre is discretized into N intervals of duration AT=(tr — to)/N
Trapezoidal integration rule to obtain the states at the nodes

Xk = Xk—1 + AT[A(Xk + xx—1) + B(ug +ug_1) + € + cx-1]/2,

solving for x

‘Xk = Cxx—1 + D(ux +ux_1) + E(ck + €x-1), ‘

where
C = (I-ATA/2) Y1+ ATA/2),

(1-ATA/2)ATB/2,
E = (I-ATA/2)7'AT)2.

o
|

Universidad de Sevilla Asteroid Soft Landing May 29, 2019 17 / 33



Discretization IlI

Compact formulation?

Xs = [xi’-, ...,x,-’\;]T, us = [u(;r, e uE]T,
C E(Cl +C0)
C? E(c2 + ¢1) + CE(c; + ¢o)
F=| |, H= . ,
cV 1 CVIE(G + ¢1)
D D G)szl . .. 67><4
cV-'p c"2(01+cpb ch3(+CD ... D

'Vazquez, R., et al. Control Engineering Practice (2017).
Universidad de Sevilla Asteroid Soft Landing May 29, 2019 18 / 33



Discretization IV

Dynamics in compact formulation:
xs = Fxp + Gug + H.

Discrete optimization problem (SOCP) in compact formulation

min - —qn,
us
s.t. ATminuS > bTmim
ATmaxuS < bTmaxa
|]at7kH2 S atm,k, k = 1...N,
Acsxs < bgs,
Aisxs < bys,
Ayxs < by,
rn = FF,
vy = 0.

Universidad de Sevilla Asteroid Soft Landing May 29, 2019 19 / 33



lterative process

Iterative algorithm®:

Evaluate asteroid gravity with the initial spacecraft position, rg.
Consider the vehicle flying at minimum thrust so initial mass
reference is m, y=mo— KAT(Tmin/Vex)-

Compute a solution of the SOCP problem, usU] — r,g], v,Ei], m,g].

Go back to Step 2, using r,[f_l] and m,[f_ll to update asteroid gravity

and mass, until max(r,[("—l] - r,[(j_z]) <Tol or j>jmax-

'Pinson, R., et al. AAS/AIAA Astrodynamics Specialist Conference-(2015).
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Outline

MPC Guidance
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MPC Guidance

Autonomous landing requires a closed-loop scheme to cope with model
uncertainties and disturbances.

A decreasing horizon MPC, relaxing terminal constraints to costs, is
proposed

Ivpc = —qn + 7 (rn — tE) "1ty — rE) + v flv.

Use the presented iterative algorithm to start at k = 0 and planning
horizon N.

Apply the commanded thrust for the current interval k. Decrease the
planning horizon by one.

Since disturbances perturb the planned path, from the reached point
recompute control using Jypc and without terminal constraints. Go
back to Step 2 until the planning horizon ends.

Universidad de Sevilla Asteroid Soft Landing May 29, 2019 22 /33



Outline

@A Results
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Simulation parameters |

m Asteroid 433 Eros parameters: p=2.67 g/cm3, T,0t=b.27 h.

m Lander parameters': mg=600 kg, ma,, =487 kg, Tmax=80 N,
Tmin=20 N, vex=2000 m/s.

= Manoeuvre parameters: rp=[—0.5114, —2.836, 1.443]7 km,
ro=[0, 35, 0]" km, vo=[-3.5709, 0, 0]7 m/s, tr=2000 s, t,c=1500
s, X4=24=10 m, c,y=cy=1/tan(w/4).

m Mascons model parameters: n=4841 (equidistant), m;=pV /n.

m Polyhedron model parameters?: 25350 vertexes and 49152 faces.

m Controller parameters: N=100, AT=20 s, N¢c=75, v,=~,=100,
jmaX:6, ToI:O.O2HrF||2.

Lantoine, G., AE8900 MS Special Problems Report (2006).
Gaskell, R.W., NASA Planetary Data System (2008).
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Simulation parameters ||

1

m Disturbances® on each thruster component are added as

Trear = Q2(00)[T comm(1 +90) +0T],

where 80 is a vector of random small angles, d is a vector of random
multiplicative noises and T is a vector of additive noises.

m The disturbances model several physical aspects such as alignment
errors, thrust noises or even unmodeled dynamics as SRP, sun gravity,
etc.

m Disturbances parameters (normal distributions): 66=0, 6=[0.01,
0.01, 0.01]7, §T=[0.01, 0.01, 0.01]" Tonax, Ls0,;=0.04363;;,

3 5;7=0.050;;, 57 ,;j=0.02 T max0j;.

!Gavilan, F., et al. Control Engineering Practice (2012).
Universidad de Sevilla Asteroid Soft Landing May 29, 2019 25 /33



Simulation results |

Lander trajectory

¢ Departure point
Circumnavigation
—Landing
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Simulation results Il

Lander velocities
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Simulation results IV

Lander mass evolution

600 B T 1T 1 r1rrrriroT I T 1T 1rrrrrrrrtoT I T 1T 1 r1rrrriroT I T 1T 1 r1rrrriroT :
590 =
I ]
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Simulation results V

Lander thrust evolution
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Outline

Conclusions
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Conclusions

m A MPC guidance algorithm to autonomously land powered probes
on small bodies while handling with unmodelled dynamics and
disturbances has been presented.

m Lossless convexification, discretization and a successive solution
method were features of the solution.

m Future work may include comparisons with other state of the art
methods, a detailed sensitivity analysis with problem parameters as
well as including the circumnavigation and landing durations as
decision variables.

m Additionally a six-degrees of freedom model shall be considered.
The lander would have an ACS (e.g. reaction wheels or a RCS) to
control its orientation.
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Introduction High level Guidance System Simulations Conclusions

Introduction

Our goal:

@ Design a path-following guidance system for airplane autonomous operation.
Main features:

o Follows a reference
e Prescribed flying times
@ Must take wind into account

The challenge:

@ Nonlinear model

@ Disturbances entering the system (wind)

@ Feasible control solution must be available at any sampling time
Proposed solution:

@ Hierarchical control architecture to handle system complexity

@ High level control: airplane guidance

e Makes the airplane follow a reference trajectory, computing high level commands
(velocity/flight path angle/bank angle)

e lterative Model Predictive Control: uses robust backup L1 navigation to compute a
“hotstart” solution, refined in a iterative optimization process

@ Low level control: airplane stabilization and high level (velocity/flight path
angle/bank angle) reference seeking (outside of the scope of this presentation)

Gavilan, Vazquez, Camacho A High-Level Model Predictive Control Guidance Law for Unmanned Aerial Vehicles 3/26
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Introduction High level Guidance System Simulations Conclusions

Model Predictive Guidance for UAVs

Model Predictive Control
Using a prediction law xx4+1 = f(xk, ux), compute the sequence of control signals along
the prediction horizon ug, ug41, ..., uks+n,—1, which optimizes the desired cost function.

Gavilan, Vazquez, Camacho A High-Level Model Predictive Control Guidance Law for Unmanned Aerial Vehicles 5/ 26



Introduction High level Guidance System Simulations Conclusions

Model Predictive Guidance for UAVs

Model Predictive Control
Using a prediction law xx4+1 = f(xk, ux), compute the sequence of control signals along
the prediction horizon ug, ug41, ..., uks+n,—1, which optimizes the desired cost function.

MPC for UAV guidance

O Discretization. 3 DoF airplane model:
e Sampling time Ts = 1s
@ Prediction law: i—f = V cosycosyx + wg,
f( ) Xg = [Xl X2 ... XNp]T dy
Xs — uS7 X0 ¥ — ]
us = [wou; ... uNp—l]T 17 V cosysin x + wy,
© Computation of the optimal control sequence: dz — _Vasiny
dt ’
min J(xs(us) — Xref,s, Us)
us \. J

Nonlinear optimization problem

Gavilan, Vazquez, Camacho A High-Level Model Predictive Control Guidance Law for Unmanned Aerial Vehicles 5/ 26



Introduction High level Guidance System Simulations Conclusions

Discretization of equations of motion

Classic approaches:

Tk+1 = Vi cosygcosxk + Tk, |
Constant V, v, x flight segments
Yk+1 = Vi COSYSin Xk + Yk,
Zk+1 = —Viesinyg + zk.
: . _ x S
@ Constant heading flight segments, inputs Vi, V&, Xk I Reference trajectory
@ Instantaneous turns: not feasible 7

Gavilan, Vazquez, Camacho A High-Level Model Predictive Control Guidance Law for Unmanned Aerial Vehicles 6 /26
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Discretization of equations of motion

Classic approaches:

Tk+1 = Vi cosygcosxk + Tk,
Constant V, v, x flight segments
Yk+1 = Vi COSYSin Xk + Yk,
Zk+1 = —Viesinyg + zk.
X T
@ Constant heading flight segments, inputs Vi, V&, Xk I Reference trajectory
@ Instantaneous turns: not feasible 7
Proposed discretization
Vi cosviTs , . ) .
Tt 1 _ k > YkLs (Sll’l (K/k: 4+ Xk) _ sin Xk:) + 2, Constant V', ~, ¢ flight segments
k
Vi cos v T's
Ykt+l = (cos xx — cos (kg + Xk)) + Yk,
lﬁ‘,k T O NA\ T e
Zkr1 = —Visiny,Ts + zg, Reference trajectory
_ _ gtangy Y
Xk+1 = Kg+ Xk K = ———.

Vi
@ Constant curvature flight segments: realistic approach

Gavilan, Vazquez, Camacho A High-Level Model Predictive Control Guidance Law for Unmanned Aerial Vehicles 6 /26



Introduction High level Guidance System Simulations Conclusions

Discretization of equations of motion

Classic approaches:

Tk+1 = Vi cosygcosxk + Tk,
Constant V, v, x flight segments
Yk+1 = Vi COSYSin Xk + Yk,
Zk+1 = —Viesinyg + zk.
X O
@ Constant heading flight segments, inputs Vi, V&, Xk I Reference trajectory
@ Instantaneous turns: not feasible 7
Proposed discretization
Vi cosviTs , . ) .
Tt 1 _ k > YkLs (Sll’l (K/k: 4+ Xk) _ sin Xk:) + 2, Constant V', ~, ¢ flight segments
k
Vi cos v T's
Ykt1 = (cos x — cos (Kk + Xk)) + Yk,
K r N AN\ e e
Zkr1 = —Visiny,Ts + zg, Reference trajectory
_ _ gtan¢g Y
Xk+1 = Kk + Xk K = ———.

Vi
@ Constant curvature flight segments: realistic approach

@ The guidance algorithm handles turn control, inputs Vi, Y&, ki (ok)
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Discretization of equations of motion

Classic approaches:

Tk+1 = Vi cosygcosxk + Tk,
Constant V, v, x flight segments
Yk+1 = Vi COSYSin Xk + Yk,
Zk+1 = —Viesinyg + zk.
X O
@ Constant heading flight segments, inputs Vi, V&, Xk I Reference trajectory
@ Instantaneous turns: not feasible 7
Proposed discretization
Vi cosviTs , . ) .
Tt 1 _ k > YkLs (Sll’l (K/k: 4+ Xk) _ sin Xk:) + 2, Constant V', ~, ¢ flight segments
k
Vi cos v T's
Ykt1 = (cos x — cos (Kk + Xk)) + Yk,
K r N AN\ e e
Zkr1 = —Visiny,Ts + zg, Reference trajectory
_ _ gtan¢g Y
Xk+1 = Kk + Xk K = ———.

Vi
@ Constant curvature flight segments: realistic approach

@ The guidance algorithm handles turn control, inputs Vi, Y&, ki (ok)

@ Quite more complex optimization problem

Gavilan, Vazquez, Camacho A High-Level Model Predictive Control Guidance Law for Unmanned Aerial Vehicles 6 /26
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Proposed guidance strategy

" Linearization: us = ug
Position L1 Guidance Law] us
_ ofy, _
Vv, ¢ J Xk+1 = fx(Us) + a—u];(US)AUS + Xo

Iterative execution

Gavilan, Vazquez, Camacho A High-Level Model Predictive Control Guidance Law for Unmanned Aerial Vehicles 7/ 26



Introduction High level Guidance System Simulations Conclusions

Proposed guidance strategy

. Linearization: ug = ug
Position L1 Guidance Law] us
Vi, ¢ J xg = F(x¢, ts) + GuAug + Gsds,
Quadratic Optimization
Disturbance gl’n J(xx, Aug, 0s)
Estimator 5 ' Hs
S sa. ¢g(Aug) <0
lAuS

[us = l_lsv—l— AUS]
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Proposed guidance strategy

. Linearization: ug = ug
Position L1 Guidance Law] us us
V7 s ¢ J Xs = F(XO, ﬁs) + GyAus + Ggisg,
Quadratic Optimization
Disturbance gl’n J(xx, Aug, 0s)
Estimator 5 ' us
S sa. g(Aug) <0
lAuS

[us = l_lsv—l— AUS}
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High level Guidance System

Simulations

Conclusions

Introduction
Proposed guidance strategy

Position

L1 Guidance Law] us

Gavilan, Vazquez, Camacho

Viv, ¢ J -
l;
=
(o)
(7))
9
o)
Im)
©
(]
18

Disturbance
Estimator 5
S

Iterative Optimization
with Feasible Initial
Solution

Linearization: ug = ug

Xg = F(XQ, l_ls) + GuAus + Ggos,

us

|

Quadratic Optimization
min  J(xy, Aus,s)
Aug

sa. ¢g(Aug) <0

lAuS

[us = l_ls'—|— AUS}

>

Y
Low Level Control System
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Hotstart: L1 Navigation

L1 Navigation

Vv V2

Virtual target ahor = Nhor S T)hor,

Qhor // l;t
2
N |7
a = — S1n .
Reference trajectory ver ver Lt flver
Ahor Auer
AX % Ts, Afy % —Ts, AV — Vref - V-

V V

L1 modification to include load factors at turns n

For circular flight segments:

|4
4 )\
Ahor
Y 2V 2 sinny, 2
/ n — ( th oL ) _|_ ]‘7
R Reference trajectory ¢ = Sgn(sin T]hor) arc cos % 5
\ )

Gavilan, Vazquez, Camacho A High-Level Model Predictive Control Guidance Law for Unmanned Aerial Vehicles



Simulations Conclusions

Introduction High level Guidance System
Linearized model

Linearized prediction law:

_ _ T
Xg = F(XO, us) —+ G’u(XO, US)AUS + G558 Xg = |: X,{ Xg ce X%p ]
— afO _ -
] _ i Fua (US, X0)
fo(ts, x0) + %0 ot Ous of
f1(ds, xo0) + fo(as, xo0) + xo0 aug (U8, x0) + z5g (Us, X0)
F = , Gu =
| fn _1(8s, x0) + - - - + fo (s, x0) + %0 i ofn. 1 9Fn
i ﬁ(ﬁsﬁm)#ﬂ“%— ﬁ(us,xo) .

e Explicit computation of F(xg,ts) and Gy(xo, Us)
@ Additive disturbances included

Constraints:
© Airplane limitations: lower and upper bounds of the airspeed, flight path angle and

T
bank angle. u = [ V. v & }
@ Linearization constraints: control signals are bounded to ensure that the

linearization holds
—du < Aui < du

with du = [§V, v, Ok]*

Gavilan, Vazquez, Camacho
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Disturbance estimator

The prediction law requires values for §;.
Simple approach to compute from past disturbances:
k—1 _—X(k—i
5 - Zz’:O e N )573

ko = k—1 N
—ANk—1
Zi:o e~ Ak—1)

Where &, is the estimate of 8, and A > 0 is a forgetting factor.
This can be written recursively by defining 5o = 0,
~ e_>‘ ~
o, = —— (pk—15k—1 + 5k—1) :
Pk

e_>‘(1—e_>‘k)

l—e—A
Past disturbances are computed (approximately) by comparing the real airplane state
at each sampling time and the expected state from the prediction in the previous
sampling time:

where p, =

Or—1 =Xk — e (Vk—1,Vk—1,Kk—1, Xk—1) — Xk—1.

It is convenient to sample disturbances are sampled at a higher frequency than the
main guidance law.

Vazquez, Camacho A High-Level Model Predictive Control Guidance Law for Unmanned Aerial Vehicles 10 / 26
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Cost Function

@ If a standard quadratic cost penalizing the position error at each sampling time is
used, we would minimize the difference between the trajectory and virtual waypoints.

@ However, this approach might lead to an oscillatory trajectory:

Reference position at sampling time k

pk—HOx """ P Dk
P \\ k+2 _|_4
P ot 0O Pk43 . ------- O.. Pk+5
O A\ o= O—= )% O—==2===0
o et
presz/@y Prefi+1 Prefyp43--"" Prefk4+3 Prefipis Prefiis

Airplane position at sampling time k

@ Thus, we propose an alternative approach, combining 3 different cost functions.

Gavilan, Vazquez, Camacho A High-Level Model Predictive Control Guidance Law for Unmanned Aerial Vehicles
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Cost Function

(D Distance to the reference flight segment

_77/\(fk_7?k)

Ok —
| U & |
NP
A T A
— Z (Vk—i—i (Xk:—l—z'|k - rk:—i—i)) R ki (Vk:—|—i<xk:—|—z'|k - rk:—l—z'))
Yy k =1

Segment Initial Point
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Cost Function

(D Distance to the reference flight segment

_77/\(fk_7?k)

O —
|V k|
NP
~ T ~
= Z (Vk—i—i (Xk—l—z'|k - rk:—i—i)) Ry gy (Vk:—|—i<xk:—|—z'|k — rk:—l—z'))
yH k Segment Initial Point =1
ZH -
T
Segment Initial [ % e
@ Time synchronization Point = o O T e e
dp = 67“,]{: . (fk: — fref,k:) +
N, Y ' Uy, - (T — T)
~ T ~
JQ(k) = Z (Vk:+i<Xk—|—i|k — Xrefk—l—i)) Ro kv (Vk:+i(xkz—|—z'|k — Xrefk:+i))

1=1
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Cost Function

(D Distance to the reference flight segment

_77/\(fk_7?k)

O —
|V k|
NP
~ T ~
— Z (Vk—i—i (Xk—l—z'|k - rk:—i—i)) R ki (Vk:—|—i<xk—|—z'|k - rk:—l—z'))
yH k Segment Initial Point =1
ZH -
T
Segment Initial [ > .
@ Time synchronization Point = o O T e e
dp = 67“,]{: . (fk: — fref,k:) +
N, Y ' Uy, - (T — T)
~ T ~
JQ(k) = Z (Vk:+i<Xk—|—i|k — Xrefk—l—i)) Ro kv (Vk:+i(xkz—|—z'|k — Xrefk:+i))
i=1
@ Avoid excessive control use
N,—1
J3(k) — Z (uk—i—i — uk+z‘—1)T Qrti (uk—i—i — uk—l—i—l)""(uk — ﬁk)T Q. (uk - ﬁk)
i=1
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Cost Function: how to choose weights

@ T he total cost function is a combination of the three cost functions

J (X, Aug) = J1 i + J2.k + J3.k.

@ The weights are chosen as

. 1 1 1
Qi - kQ dla’g (5‘/2 ) 572 ) 5/{2) 9
Ri: = kg Cidiag (]-7 I, 1, 0) )
Rei = kr,G,

where 0V, dv and dk are the input bounds used in the constraints.

@ (; is a function introduced to avoid penalizing errors during the first sampling times:

(= 0, Ifi<3,
ol 1, If e [4,N,].

@ The scalar weights kg, kr, and kr, were chosen performing a Pareto analysis.

Gavilan, Vazquez, Camacho A High-Level Model Predictive Control Guidance Law for Unmanned Aerial Vehicles 13 / 26
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High level Guidance System

Cost function: how to choose weights

Simulations

Conclusions

Pareto Analysis to choose relative weights.

(3 612 6)
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Outline

© Simulations
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Simulations

Vertical profile of successive trajectories computed along the iterations.

20 ! ! ! ! ! ! !

—
o

— — — Reference
() Starting point

Altitude [m]
T

—sv— L1 guidance

| | | | —>—IMPG - Iter 1
HCS Gt i S | —=—1IMPG - Tter 2 |7
| | | | | ——TMPG - Tter 3
el - - o | ——IMPG - Tter 4

250 300 350 400 450 500 550 600
z [m]
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Simulations |

Comparison with vector field (VF) and L1 guidance for a plane mission

500 . . .

400{

300f N

200f

1m
—h
o
o

T

—100[ | - - - Reference
— IMPG

* L1
-300r| v VF

-200

-400 -200
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Simulations |l

Trajectory for a 3-D surveillance mission (with wind)

100

80 -

60 -
=)

40

20

— — — Reference
0 - v IMPG
_ * L1
1000
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Time synchronization for a 3-D surveillance mission (with wind)

X component—y, -~ 4
"

;oo N

N

100

1000
500
El
> 0
>
-500
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0
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T |
— 50 -
=
0

— — — Reference
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Introduction High level Guidance System
Simulations |V

Wind estimation

4 ! ! ! ! ! !

z component

S

0 50 100 150 200 250 300

Time [s]
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Conclusions

Parametric study |

Influence of N,
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0.7189 \
0.70781 \
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+ Solid line axis Dashed line axis —

- =y—Max. time per iteration [s]
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Parametric study Il

Influence of Ak
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Parametric study IlI

Influence of AV
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Outline

@ Conclusions
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Conclusions

We have presented a flight control system based on a hierarchical architecture:
@ Tlop level: lterative model predictive guidance
@ Low level: Flight controller.
v" Main features
@ Robust “hotstart” guidance algorithm. Feasibility assessment
@ Disturbance (wind) estimator.

@ Good performances in an accurate simulation model
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Conclusions

We have presented a flight control system based on a hierarchical architecture:

@ Top level: lterative model predictive guidance
@ Low level: Flight controller.
v" Main features
@ Robust “hotstart” guidance algorithm. Feasibility assessment
@ Disturbance (wind) estimator.

@ Good performances in an accurate simulation model

v' Future work
@ Improve the prediction law.
@ Optimization of the guidance algorithm, towards a realtime implementation.
@ Extend guidance algorithm for formation flying.

@ Develop a flight test campaign.
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Outline

UAV Contingencies
Why AIDL?
Why MPC?

Control Architecture & Design

Simulation & HW-in-loop Testing



Key UAS/RPAS Integration Requirements

v 4
LOSS OF | .
SEPARATION! UAV @ UAV navigation 7
@ Airworthiness LOSSOF GPS!
~~~~~~~~~~~~~~~~~~~~~~~~ ; oss OF CONTROL! ﬂ
““““““ k ‘W\.H Emergency flight termination
Detect & avoid @ NGINE!

ATC . ,,3»

9 Remote pilot
qualification & training

© ATC G/G link
T o

O ATM policy &
ATC procedures
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Key UAV Contingencies

« Loss of Separation (LoS): Requires UAV to
(autonomously) generate and execute collision
avoidance maneuvers and resume back to the original
flight plan. Key prerequisite to enable safe operations
of UAS in crowded non-segregated environments. Trajectory-Based
Stringent time, spatial and dynamic constraints. Operations

« Loss of Link (LoL): Requires UAV to generate and
execute lost-link trajectories to reestablish command
contact. Critical that the UAV’s behavior and position
be accurately estimated until contact is reestablished.
High awareness of flight specifications and constraints
desirable.

* Loss of Engine (LoE): Requires UAV to generate and
execute emergency landing maneuver. Stringent time,
spatial and dynamic constraints.

« Loss of Control (LoC): Requires UAV to robustly
return to flight envelope, and/or adapt to actuator and Model-Based Control
sensor failures, estimate and compensate for severe
wind conditions.

Maximize Predictability
Copyright © 2018 Boeing. All rights reserved. BOEING PROPRIETARY | 4
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AIDL - Aircraft Intent Description Language

A method to formally capture the necessary and sufficient information that
determines the trajectory of an aerial vehicle (AV), i.e. the aircraft intent

AIDL is a domain-specific formal language (DSL) composed of
— An alphabet (set of “instructions” or atomic ways of describing aircraft behavior)
— A lexicon (set of rules that govern the legal/meaningful combination of elements from the alphabet)
- A sequence control mechanism (set of “friggers” that switch behavioral changes upon reaching conditions)

Requirements Recipe Results

What to fly and why How to operate the AV What comes out

Vertical profile

Actual trajectory

-
-

m——
m—— e N T

Necessary and
sufficient
information that
determines the
AV trajectory

Lateral profile

Copyright © 2018 Boeing. All rights reserved. | 5
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AIDL Aircraft Motion Model

Momentum Equations
Mass variation Motion model
Navigation Equations
+
Aircraft performance model
+

Earth model
(Geodetic, Geopotential, Atmosphere)

+

Motion DOFs: 5 ot
1st DOF — Coordinated lateral control ( + rudder) Lateral = Q1(t)
2nd DOF — Longitudinal control ( J Longitudinal = G2(t) + Control/guidance model

34 DOF — Thrust control ( ) O Thrust = Q3(t)

Configuration DOFs:
1st DOF — High lift devices

2nd DOF — Speed brakes
3 DOF — Landing gear O Lanaing Gear = Ca(l)
41 DOF — Altitude reference (baroaltimeter setting) O Altitude Reference = Ca(t)

O High-Lift Devices = C1(t)

5Speed Brakes — C2(t) \ .
Configuration model

+

Initial conditions

Copyright © 2018 Boeing. All rights reserved. I 6
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AIDL Aircraft Motion Model

) _ _ Momentum Equations
Universal equations governing any

) ) _ Mass variation Motion model
possible aircraft motion NesEen [Seueions
+
Aircraft-specific characteristics 2| Aircraft performance model
+

(Geodetic, Geopotential, Atmosphere)
+

Environment-specific characteristics £ 3| Earth model

O Lateral = Q1(t)
O Longitudinal = 92(t) + Control/guidance model
O Thrust = 93(t)
Characteristics specific to the particular oS

aircraft motion at hands O High-Lift Devices = C1(t)

5Speed Brakes — CZ(t) . .
Configuration model
5Landing Gear — C3(t)

o Altitude Reference — C4(t)

+

Initial conditions

Copyright © 2018 Boeing. All rights reserved. | 7
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AIDL Aircraft Motion Model

Momentum Equations

Universal equations governing any Mass variation Motion model

possible aircraft motion NesEen [Seueions

+
aircraft-specific characteristics £ Aircraft performance model
+

Environment-specific characteristics £ 3| Earth model
(Geodetic, Geopotential, Atmosphere)

Aircraft Intent

Description of how the configuration and motion
degrees of freedom shall be governed along the

Trajectory Recipe c J time so the resulting aircraft motion gets
univocally determined

i.e. anticipated unambiguous description on how
the aircraft is to be operated over time

Initial conditions

Copyright © 2018 Boeing. All rights reserved. | 8
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AIDL Alphabet and Lexicon

Motion profiles (M=LUVUEUSUT)

Copyright © 2018 Boeing. All rights reserved.

Lateral (LAT=L) Longitudinal (LON=VUE) Propulsive (PROP=SUT)
Vertical(V) Energy (E) Speed/Time (S) Thrust (T)
AIDL Alphabet ? T T T ?
Set SBA SPA ST
Law BAL CL LPL VPL AL PAL VSL EL HSL SL TL TL
Hold HBA “-HC HA HPA -HVS HE HHS HS HT
Open loop input OLBA OLPA OLT
N ) J
# | Keyword | Instruction Effect # | Keyword | Instruction Effect Allowed combinations of motion profiles
1 SBA Set Bank Angle denn = XE) 15 VSL Vertical Speed Law g(vrassinyas,E)=f(X,E,t) 1DOF L L L L Lateral profile (LAT)
2 BAL Bank Angle Law 16 HVS Hold Vertical Speed g(vrassinyas,E)=0 : .
24 DOF V|V E S| Longitudinal profile (LON)
3 HBA Hold Bank Angle g(utas)=0 17 Energy Law g(dvras/dh,E)=f(X,E.t)
4| OLBA  OpenLoop Bank Angle  g(uras)=f(t) 18 Hold Energy a(dviag/dh,E)=0 39DOF 8 T T T Propulsive profile (PROP)
5 CL Course Law g(rras,E)=f(X.E,t) 19 Horizontal Speed Law g(vrascosyras,E)=f(X,E,t)
6 HC Hold Course g(rras,E)=0 20 Hold Horizontal Speed g(vrascosytas,E)=0 AM
7 Lateral Path Law 1(2,0,1)=0 21 Speed Law a(vias, E)=F(X,E,1) * 7 instructions, each from a different group
8 Vertical Path Law h=f(1,0,1) 22 Hold Speed g(vias,E)=0 « Of the 7, 3 must belong to motion profiles and 4
9 Altitude Law a(hE)=f(X,E,1) 23 Time Law t=g(viascosyTas, E) to the configuration profile
Hold Altitude 2(h,E)=0 24 | STC  SetThrottle Control * The 3 motion instructions must belong to
Set Path Angle 25| TCL | Throttle Control Law BODHXEL) different motion profiles (L, V, S, T)
Path Angle Law Blrmas EIX.E.0) 26 HTC | Hold Throttle Control a(61)=0 « Of the 3 motion instructions, 1 must come from
Hold Path Angle g(ytas,E)=0 27 OLTC Open Loop Throttle Control  g(57)=f(t) the lateral prOfile (L)
Open Loop Path Angle g(ytas,E)=1(t)
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@ Begin of Al instance |> Milestone
m @ End of Al instance <> Diverter
AIDL Sample Trajectory V oty — Sy
Y Inspective trigger - Diversion link
¥ Explicit trigger
Point Orto Circle L1 WP1 L1 L1 WP4L1 AIDL - Abstract view L1 Wps L1 L1
\YWPO WPT:LI/  WP2:L1\/ ~ WP3IL1\/ WPOL1\y \ >
<> J} @ W\ ORTOPP CIRCOO ORTOPP CIRCOO O..PP C..00 PPC...00 ORTO PP
y ) CAS 280
\/
LL PP PR LON HS MACH HS CAS HELIX PS
HIDL CAS250 CAS220 CAS180
% : S Ak > > Avi
. PROP HS MACH ] HS CAS
4 = < | |_W_| 30% IW 60% IW 90%
00 PC 00 AV AV AVA
HL HHL JsHU HHL JsHU HHL [sHL[ HHL )
@ 4%\4 CAS>250
Y ~Nv e e
) ) sB HSB [HsB] HSB ]
cP PBR LG%WN
. LG \ \ \ [ TIT \ I 1 O A () )
¥ AT6000
—s AR HAR HAR
cC
0 0 04 6 0 0
D il | 2 Ll il Wi 4>T0D Vertical profile
Hippodrome Eight CEZ O N . MACH/CAS transition altitude
mined || LR T
T At (alitude) or below (AOB) ) e
° A At (altitude) or above (AOA) | /el
———O =~
o= :, X At (altitude)
( _———"""O'— XAt (altitude) wih path angle
Sem =" WP4 Distance WP5 WP6 RWY
’
P
- ATA FL240
’
o5
~
~
~o e
\\
~
~
~
\\
~\\
~
“s\
\\\\ <} Reference fix/point
S 4} Waypoint (LO continuity) Helix
\“\/:OB SOAEL <> Waypoint with L1 continuity We7
~:¥ * Waypoint with L2 continuity M
’,' ﬂ?Waypowmwwth bearing
,,’ Bk Distance/time signaled waypoint PS
AT 1000 AGL o/; < WP5 O LO/VO continuity symbol
------ Latitude Q  L1/V1 continuity symbol %
Wp7 : / i
7,4\’:’0 Lateral proflle ®  12/V2 continuity symbol
PP
. . . Longitude
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Why MPC?

= Model Predictive Control is a family of control methods which make explicit
use of a process model to obtain the control by repeated optimization of an
objective function over a receding time horizon

z(t) z(ty+ Ts) TS

ﬁ.(t[ ﬁ(tl + TS) r—/H
2 ol
i(t)) = zh — 2} z 7} ! Tho
u(ty) ub,  CHA

o o
A
a(t)

» Fits naturally into AIDL framework by expressing cost function as minimization of
error to motion constraints associated to AIDL instructions

» Handle hybrid nature by considering trigger activation within receding horizon

* Implement on low SWaP in real-time

Copyright © 2018 Boeing. All rights reserved. | 1 1
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AIDL-MPC Flight Control Architecture

= Top Level MPC:

— Follows three AIDL threads (lateral, longitudinal, propulsive) by enforcing their
respective constraints

— Checks for trigger activation during horizon and in each thread
— Considers estimated wind

= Low Level MPC:

— Receives virtual setpoints from high-level, which may vary depending upon active
AIDL instructions, and defines four actuation inputs

— Maintains symmetric flight
— Operates at 50Hz

ﬁDL referencesa CRAIDS ] \

Triggers
Queries
(" Top-evelMPC ) outputs: / Low-level MPC \
. i - Pseudo-controls
3;ijoF Model (.posmon i - Force, moments and
and force equations). I angular kinematics
- Low sampling rate. equations

- Nonlinear MPC for AIDL Altitude MPC

- Airplane stabilization Outputs:

tracking - Kinematic equation|Qutputs: | . gk handwidth el
- Explicit MPC ‘Pamanglel . Robustness - Aleron
\_ V4 \ / - Elevator
- Rudder
Navigation
&ystem Data FLIGHT CONTROL COMPUTER
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AIDL-MPC Flight Control Architecture
= Top Level MPC:
— State: X = [QD; A h, Va:Xtasrytas]k
— Control: uy, = [a, Urgs, 07l (virtual)
— Problem formulation:
muin J(x,u, xrefruref)
s.a. xx = f(Xk—1,Xk-1)
Umin SUuUS< Umax
Ax =0b

— lterative, discrete state propagation for entire horizon is defined from
nonlinear model

Ax =M - Au

— Repeated linearization in each control cycle together with Sequential
Quadratic Programming (SQP) strategy are used

— Prediction horizon: 7.5s, Control horizon: 5s, Frequency: 2Hz.

— Repeat calculation of longitudinal degree of freedom in separate MPC to
capture faster altitude dynamics

Copyright © 2018 Boeing. All rights reserved. | 13
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AIDL-MPC Flight Control Architecture
= Top Level MPC objective function:

J = ("1' - J'r(ff)T R (41' - J'ref) T (‘u - 'ur(ff)T Q (u' - U'T(:'f)
= Substitute Ax = M - Au and Use U,ry = Ug—1, | =Jx + ]
J, = Au’ (\[TRU) Au + [7JTI?\[ — 22 r(fR\[] Au
Ju = Au"(Q-2Qp+ Qc)Au+ (2(a—1up)" (Q — Qp)) Au

— —

R, 0 - 0 (O, 0 -~ 0
0 Ry -~ 0 0 Qp - 0
R=| . . ., Q=1 .
| 0 0 -+ Rpyyr 0 0 - Qn |

= Coefficients take on 0 or 1 for time step i depending upon whether
corresponding AIDL instruction is active or control not specifically set

(B0 0 0 0 0]

" Ry, .
0 & 0 0o 0 o0 52 0 0
: R,
0 0 M0 0 0 Q,; = 0 55 0
0 0 o0 B o 9 Sopei
"R, 0 0 =
0o 0o o o0 S o 2 sy
X
o o o o o
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AIDL-MPC Trigger Handling

= Triggers indicate transitions from one AIDL instruction to another
» They are typically time or state dependent

 The assumption is made that at most one trigger may appear in the
prediction horizon in each motion thread

= Trigger identification and decoupling from optimization:

— At each iteration, zero detection algorithm is run to check if and when
trigger condition is satisfied

— Once time is identified, objective function is generated appropriately along
prediction horizon

— After optimization, predicted state and subsequently trigger are updated

= Numerical issues obligate the modification of the trigger conditions into
detection of interval crossing

X X

Xtriager — — R N N —_— CATDL
rrager ‘\triq_qr.r

AIDL | . . . . n > = - - -
tragger Xirigger

X

k=1 2 3 4 5 6 7 8 9 10 11 =, k-1 2 3 1 5 G 7 8 q
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AIDL-MPC Experimental Testing

= Simulation scenario of flying around fictitious base with takeofft,
contingency, and landing maneuvers

= Wide range of
wind relative and
absolute
instructions and s
trigger conditions F ==
have been tested. !

= Control
performance
achieves near
exact theoretical

tra_le?t(? ry ] Longitudinal 1 Thread
pred|Ct|On, even in Inst |SpecVar InstCode| TargVal | TrigCode | TrigVar TrigVal | TriglD

the presence of Vis | 1021 | 25 [mps][ 0 ID tH
wind turbulence. S5 1231 0.3 [ 0 ID | tdescend01

HTC
HTC O 1231 0.5 [ 12 Vias |25 [mps]
B - 1021 | 25 [mps] 0 D end

Copyright © 2018 Boeing. All rights reserved. | 16




@ﬂafl,va AIAA SciTech 2018

AIDL-MPC HW-in-loop Testing

= Flight hardware from Skylife Engineering
with Gumstix DuoVero Crystal (Clock speed
1GHz, Dual Core, 1 Gb RAM, Linux OS

= One core calculates:

— AHRS/EKF Navigation based upon sensor
inputs from 9-DOF IMU, wind vanes, air data
sensors

— AIDL-based Guidance system which feeds
control with formulation of current AIDL
instructions, next trigger conditions and
following set of AIDL instructions

Case | N, | N, Gumstix | Notebook
— Low-level MPC 1 |50 |10 |0.03766 |0.06070
= Second core calculates: 2 10 |7 |0.01563 | 0.02470
_ Top-level MPC 3 |10 |5 [0.00520 | 0.02280
» Connected by usb to PC upon which runs: > * 901562 0.05099
5 |8 |4 [0.00339 |0.02160

— Full flight and actuator dynamics

— Environmental model including wind MPC dimensioning
turbulence

— Sensor models
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