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MPC successful in 
industry.

�Many and very diverse and  successful 
applications:
� Refining, petrochemical, polymers, 
� Semiconductor production scheduling,
� Air traffic control
� Clinical anesthesia,
� ….
� Life Extending of Boiler-Turbine Systems via 

Model Predictive Methods, Li et al (2004)
�Many MPC vendors.
If Eto
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MPC successful in 
Academia

� Many MPC sessions in  control 
conferences and control journals, MPC 
workshops.

� 4/8 finalist papers for the CEP best paper 
award were MPC papers (2/3 finally 
awarded were MPC papers)

f- SEE



Tariq Samad , IEEE CONTROL SYSTEMS MAGAZINE
,
2017
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Why is MPC so successful ?

� MPC is Most general way of posing the 
control problem in the time domain:
� Optimal control
� Stochastic control
� Known references
� Measurable disturbances
� Multivariable
� Dead time
� Constraints
� Uncertainties

got Iot
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Real reason of success: Economics
� MPC can be used to optimize operating points  (economic 

objectives).  Optimum usually at the intersection of a set of 
constraints.

� Obtaining smaller variance and taking constraints into account 
allow to operate closer to constraints (and optimum).

� Repsol reported 2-6 months payback periods for new MPC 
applications.

P1 P2

Pmax

TO added
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Flash

Línea 2

Línea 1 Lavado

Contacto 1

Contacto 3

Contacto 2

ESQUEMA GENERAL CIRCUITO DE GASES

d- GOT
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Benefits

� Yearly saving of more that 1900 MWh
� Standard deviation of the mixing chamber 

pressure reduced from 0.94 to 0.66 mm 
water column.

� Operator’s supervisory effort: percentage 
of time operating in auto  mode  raised 
from 27% to 84%.

STEG taped
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Outline
� A little bit of history 
� Model Predictive Control concepts
� Linear MPC
� Multivariable
� Constraints
� Nonlinear MPC
� Stability and robustness
� Hybrid systems 
� Implementation
� Some applications
� Conclusions

tqgEGBEp#→B
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MPC Objetive

�Compute at each time instant the sequence 
of future control moves that will make the 
future predicted controlled variables to best 
follow the reference over a finite horizon and 
taking into account the control effort.

�Only the first element of the sequence is 
used and the computation is done again at 
the next sampling time.

GENET
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MPC basic concepts

�Common ideas:
�Explicit use of a model to predict output.

�Compute the control moves minimizing an objective fuction.

�Receding horizon strategy. Estrategia deslizante (el horizonte 
se desplaza hacia el futuro).

�The algorithms mainly differ in the type of 
model and objective function used.
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MPC strategy

� At sampling time t  the future 
control sequence is compute  so 
that the future sequence of 
predicted output y(t+k/t) along a 
horizon N follows the future 
references as best as possible.

� The first control signal is used 
and the rest disregarded.

�The process is repeated at the 
next sampling instant t+1

t t+1 t+2 t+N

Acciones de control

Setpoint

Btg Ets
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tt+1t+2

t+N t     t+1    t+2   ……..      t+N

u(t)

Only the first  
control move is 
applied

Errors minimized over 
a finite horizon

Constraints 
taken into 
account

Model of 
process used 
for predicting

Attached
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t+2 t+1

t+N

t+N+1

t     t+1    t+2   ……..      t+N t+N+1

u(t)

Only the first 
control move is 
applied again 

Big asset



Eduardo F. Camacho                 MPC:An Introductory Survey   22Paris'2010

MPC

PID:   u(t)=u(t-1)+g0 e(t) + g1 e(t-1) + g2 e(t-2) 

vs. PID

Ed Tose
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Constraints in process control

� All process are constrained
� Actuators have a limited range and slew 

rate 
� Safety limits: maximun pressure or 

temperature
� Tecnological  or quality requirements
� Enviromental legislation

Gta good
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Real reason of success: Economics
� MPC can be used to optimize operating points  (economic 

objectives).  Optimum usually at the intersection of a set of 
constraints.

� Obtaining smaller variance and taking constraints into account 
allow to operate closer to constraints (and optimum).

� Repsol reported 2-6 months payback periods for new MPC 
applications.

P1 P2

Pmax

oooh sooooo
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Work close to the optimal 
but not violating it

120
Fine

400 Euros

3 points

C . BORDON S !
L

dogteeth
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Control predictivo lineal

 MODEL COST FUNCTION CONSTRAINTS SOLUTION

Linear      Quadratic       None    Explicit

     Linear      Quadratic          Linear       QP

     Linear        Norm-1          Linear       LP

BEETSON
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Constraints formulation
� Input constraints: 
�Amplitude in u
� Slew-rate in u

ytyy

ututuu

UtuU

dd

d��d

dd

)(

)1()(

)(

yGy

uu

UtuTU

1fu1
1u1

11u1

d�d

dd

d��d )1(
In matrix form

For all t

i
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Output constraints

� Output constraints must be expressed as functions of u using the 
prediction equations

� The prediction is computed as: y = Gu + f
Free response

+ 
Forced response

Current time

FuturePast

Depends on 
future control
actions

ytyy

ututuu

UtuU

dd

d��d

dd

)(

)1()(

)(

yGy

uu

UtuTU

1fu1
1u1

11u1

d�d

dd

d��d )1(
For all t

In matrix form

Amplitude contraints:

•
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Constraints general form
Notice that these constraints are inequalities 
involving vector u (increment of the 
manipulated variables) and can be written in 
compact form as

with the following matrix and vector:

cRu d

SB
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Formulation

All the constraints shown (except the dead zone) are inequalities 
depending on u that can be described in matrix form by

where z is a vector composed of present and past signals. It is 
equal to the current state if a state-space representations if 
used, or composed of current output and past input and outputs 
in CARIMA models (a way of representing the state). Therefore:

)(txVrRu �d

VzrRu �d

Depend on process 
parameters and signal bounds 
(not frequent changes)

State that changes at every 
sampling time

Decision variable

At



Paris  ECCI 47

Solution

The implementation fo MPC with constraints involves the 
minimization of a quadratic cost function subjet to linear 
inequalities: Quadratic Programming (QP)

There are many reliable QP algorithms 
• Active Set methods
• Feasible Direction methods
• Pivoting methods, etc.

All methods use iterative algorithms (computation time)

minimize

Subject to: 

•
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WP2

WP3

WP4

WP5

WP1

AOB 3000 AGL

ATA FL240

WP0

WP6
WP7

AT 1000 AGL

MPC control of UA V (AIDL) trajectories
(Project funded by Boeing)  

Bobcat
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Conclusions 

� Well established in industry and 
academia

� Great expectations for MPC 
� Many contribution from the research 

community but …
� Many open issues
� Good hunting ground for PhD students.

BBA SBE
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Outline

1 Introduction
MPC
Rendezvous model, Constraints, Cost Function

2 MPC applied to Rendezvous
MPC formulation for Spacecraft Rendezvous
Robust and Chance-Constrained MPC with perturbation
estimator
Simulation Results for Chance-Constrained MPC

3 ON/OFF thrusters
Model
Algorithm
Simulations
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MPC

Rendezvous model, Constraints, Cost Function

About MPC
The main idea of MPC is to use, for each time instant, a
control signal that is computed from an optimal plan that
minimizes an objective function and verifies the constraints, in
an sliding time horizon.
A good references to start with MPC is Camacho, E. and
Bordons, C. (2004). Model Predictive Control.
How one does typically MPC:

1 Discretize the system for a finite number of time intervals
(time horizon), assuming inputs constant (ZOH).

2 Predict the state, based on the actual state and the future
inputs of the system (which are to be computed ).

3 Optimize the inputs for the time horizon such that a given
objective function is minimized, and input, state and terminal
constraints are.

4 Apply the first input or inputs corresponding to the current
time interval.

5 When the next time interval begins, repeat (thus closing the
loop!). This is called a receding or sliding horizon. 3 / 51



Introduction

MPC applied to Rendezvous
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LTI example. Discretization.

Consider:
ẋ = Ax + Bu

Set Np time intervals with duration of T , i.e. [kT , (k + 1)T ]
for k = 0, . . . ,Np. Denote tk = kT and x(k) = x(tk).

Assume u constant during tk and equal to u(k).

Then:
x(k + 1) = Adx(k) + Bdu(k)

where the matrices Ad and Bd are computed as:

Ad = eAT , Bd =

Z
T

0

eA(T�⌧)Bd⌧

4 / 51
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MPC applied to Rendezvous
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Rendezvous model, Constraints, Cost Function

LTI example. Prediction of the state.

From
x(k + 1) = Adx(k) + Bdu(k)

we predict x(k + j):

x(k + j) = Aj

d
x(k) +

j�1X

i=0

Aj�i�1

d
Bdu(k + i)

This can be written as:

x(k + j) = F (j)x(k) + G (j)

2

6664

u(k)
u(k + 1)

...
u(k + j � 1)

3

7775

5 / 51
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MPC applied to Rendezvous

ON/OFF thrusters

MPC

Rendezvous model, Constraints, Cost Function

LTI example. Optimization.

Given inequality constraints

8k 2 [0,Np � 1], Aix(k)  bi , Auu  bu

and terminal constraints Atx(Np) = bt .

Given an objective function J(x , u) to minimize over a finite
horizon K 2 [0,Np].

If we know x(0), all constraints can be put in terms of u(0),
. . ., u(Np � 1).

Since the inputs are a discrete, finite set ! finite-dimensional
optimization problem. Easily solvable if the objective function
is quadratic or linear!

6 / 51



Introduction

MPC applied to Rendezvous

ON/OFF thrusters

MPC
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LTI example. Receding horizon

We now apply the first control u(0).

Uncertainties/unmodelled dynamics might make the
prediction to fail.

That is the reason why open-loop optimal control usually does
not work in practice (on its own).

The approach of MPC is: “discard” the pre-computed values
u(1), . . ., u(Np � 1) and repeat the optimization process
(using x(1), which we know, as a new initial condition!).

In the optimization process, we compute
u(1), . . ., u(Np � 1), u(Np). Again we
apply only u(1) and when we reach x(2)
we repeat the process!

Thus MPC is really closed-loop control!

t t+1 t+2 t+N 

Control actions 
 

Setpoint 
 

7 / 51
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Rendezvous model, Constraints, Cost Function

Advantages and Disadvantages of MPC

Advantages: it looks into the future, it is optimal, it can treat
many type of constraints, it guarantees a good performance of
the system. It can also consider disturbances!

Disadvantages: hard for nonlinear systems, requires some time
for optimal input computation.

It has been widely used in real life, for instance in chemical
plants (there are companies specializing in MPC).

However now that computational resources are cheap and
more powerful, MPC is emerging as a feasible technique for
many applications, for instance in the aerospace field.

Spacecraft rendezvous is an excellent example, since it is
very well described by linear equations and it is a slow system.

11 / 51
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Introduction

For spacecraft, “rendezvous” is the controlled close
encounter of two (or more) space vehicles.

Rendezvous between Apollo and Soyuz in 1975. First joint
US/Soviet space flight mission. Docked during two days.

2 / 63
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Constraints

Introduction

We will consider the most usual case: two vehicles.

One of the spacecraft is the “target vehicle” or just
“target”. Known orbit. It is considered passive.

The other is the “chaser spacecraft” or just “chaser”.
Begins from a known position and maneuvers to target.
Rendezvous must be done in a controlled fashion:

Control in position, to get the chaser close in position to the
target.
Control in velocity, to get the chaser close in velocity to the
target.

Rendezvous and interception:
Rendezvous: as above.
Interception: Only looks to get close in position. Velocity can
be di↵erent. Impact can be an objective (e.g. a missile).

Both problems are studied using similar techniques.
3 / 63
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Gemini: The first rendezvous mission

on the horizon [13]. Less than a year later, a similar dual mission,
historically known for launching the first woman into space,
performed a similar rendezvous feat. On 16 June 1963 Valentina
Tereshkova, who was the only cosmonaut launched aboard
Vostok 6, came within 5 km of Vostok 5. Once again, the direct
ascent trajectory did not allow the two nonmaneuvering vehicles to
maintain a close relative distance.

The Vostok program was analogous to the United States Mercury
program, whose primary objective was to place an astronaut into
Earth orbit, examine man’s ability to survive and function in the
weightlessness of space, and return him safely back to Earth. The
Soviets’ initial experience with manned spaceflight reveals valuable
insight about their tendency to gravitate toward automated systems.
The fame of this program came when Yuri Gagarin orbited once
about the Earth in Vostok 1, becoming the first man in space on
12 April 1961. (Alan Shephard made his famous Freedom 7 flight on
15 May 1961, a month after Yuri Gagarin’s flight. Shephard was
scheduled to make his launch a fewmonths earlier in March, but due
to some minor problems with the booster, NASA delayed his flight
until earlyMay to allow time formore unmanned testing. If this delay
never occurred, the title of “first man in space” could have belonged
to Alan Shephard [14].) Shortly after Gagarin’s flight, eighteen
Vostok-type spacecraft were ordered, half of which were for piloted
missions and the others reserved for military reconnaissance
missions. The military’s influence in the space program pushed to
maximize the use of automatic devices, with manual override to be
used only in emergencies, such that a minimal redesign was required
between manned and reconnaissance missions [11]. In addition, the
Vostok program lacked specific objectives and as it evolved, the
military’s presence became more apparent. At times, the piloted
space program was not only reduced to a nonpriority, but it was
viewed as a hindrance to the reconnaissance effort [12]. This
perspective carried over into subsequent programs and continued to
prevail as an underlying ideology for the Russian space program.

B. Gemini
The National Aeronautics and Space Administration’s Gemini

program served as a bridge between the path-breaking but limited
Earth-orbital missions of Project Mercury and the unprecedented
lunar missions of Apollo. With President John F. Kennedy’s
historical speech that committed the United States to landing a man
on the moon and returning him safely to Earth, Gemini’s central
purpose was defined. Gemini was charged to demonstrate several
key objectives including long duration spaceflight, astronaut activity
outside the confines of a spacecraft, and precision landing. However
Gemini was first and foremost a project to develop and prove
equipment and techniques for orbital rendezvous and docking [15].

The goal was manned orbital rendezvous, not automated orbital
rendezvous. From the onset of the program, manned space flight was
the top priority and automated featureswere included onlywhen time
and budget constraints allowed. If a decision between manual or
autonomous control was debatable, the scale tipped in favor of
manual operation. Autonomy became a nicety, not a necessity. This
trend and view of spaceflight shaped the techniques and methods of
orbital rendezvous implemented by the U.S. space program for the
years that followed and continues to exist today.

By the summer of 1965 Gemini’s rendezvous test flights began
with Gordon Cooper and Charles Conrad piloting Gemini V in a
phantom rendezvous operation which became the first-ever
astronaut-controlled maneuver in space. Later that year the first-
ever orbital rendezvous between two spacecraft occurred. On
4 December 1965, Frank Borman and James Lovell were launched
into orbit aboard Gemini VII for a long duration space flight mission.
Eleven days into their flight, on the 15December,Walter Schirra and
Thomas Stafford pulled their Gemini VI spacecraft to within 40 m of
Gemini VII for the first-ever orbital rendezvous. Over the next three
orbits the two spacecraft stayed within ranges of 30 cm to 90 m. The
first docking between two spacecraft finally occurred several months
later on 16March 1966whenNeil Armstrong andDave Scott docked
Gemini VIII with an Agena target vehicle. This great success did not
last long when a stuck thruster valve [16] caused the two vehicles to
inadvertently roll. Unable to stop this undesirable motion,
Armstrong undocked Gemini, throwing them into a violent spin.
Switching to the reentry control thrusters, they were able to stabilize
the spacecraft, but forced to cut the mission short. The astronauts’
effective display of detecting and resolvingmission critical problems
in real time seemed to reinforce NASA’s position of using manual
control over autonomous systems. The Gemini program ended with
four successful missions including the accolades of the first dual
rendezvous, the first rendezvous with a passive target using optical
navigation, and various tethered operations.

The baseline mission for Gemini’s orbital rendezvous flights used
an Atlas rocket to launch an unmanned Agena vehicle into a 298 km
circular orbit to serve as the target vehicle. Once in orbit, Agena was
stabilized using attitude and maneuvering control systems. It could
be operated either by radio commands from the Gemini spacecraft or
a uhf command link from the ground. Agena’s docking adapter was
equipped with flashing acquisition lights, submerged floodlights,
and phosphorescent markings to enhance visibility and it also
contained a radar transponder that received signals from the chaser’s
transmitter and amplified the return to improve observability [17].
Following Agena’s successful orbit insertion, the Gemini spacecraft
was carried to orbit on a Titan launch vehicle and acted as the chaser.
After the initial ascent phase, the Gemini spacecraft was eventually
inserted into a coelliptic orbit 28 km below the Agena vehicle [18] as

Inertial LVLH
Altitude

Downrange

(TPI) (MC)

Fig. 1 Gemini coelliptic approach.

WOFFINDEN AND GELLER 899

Gemini missions (US) tested rendezvous technology in 1965.
Rendezvous was performed manually by the astronauts on
board the spacecraft.
December 15, 1965 was the first succesful orbital rendezvous
in history (between Gemini VI and Gemini VII).

4 / 63
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Soyuz: the Russian approach

crew transfer between two piloted spaceships. For years Komarov
and other commanders debated with engineers over the operation
mode for docking as to whether the Igla system should perform the
entire procedure. The cosmonautswere reluctant to let automation do
the whole thing and suggested that the Igla system could
autonomously bring the active vehicle within 200–300 m of the
passive vehicle, after which the cosmonaut could manually dock the
two spacecraft. Just a few days before the launch of Soyuz 1, this
semi-automatic approachwon approval. Unfortunately none of these
plans materialized when the Soyuz 1 spacecraft began having
problems with the solar panel deployment, the backup antenna
system, and the attitude control sensor [23]. The launch of Soyuz 2
was immediately canceled and Soyuz 1 was ordered to return home.
Upon reentry, the parachutes did not open causing the vehicle to
crash and killing Komarov.

Althoughmanned operations came to a temporary halt, automated
missions continued to move forward. Under the cover name of
Kosmos 186 (chaser) andKosmos 188 (target) two unmanned Soyuz
prototypes were launched in October 1967 and performed the first-
ever rendezvous and docking between two robotic spaceships. After
Kosmos 188 direct ascent brought it within 24 km of Kosmos 186,
the Igla rendezvous radar system automatically guided the two
vehicles together within 62min of the launch of Kosmos 188 [26]. A
similar successful unmanned rendezvous and docking mission was

performed six months later with Kosmos 212 (chaser) and
Kosmos 213 (target). This impressive display of automation
bolstered their position of using automation and cast a questioning
shadow upon Soviet piloted flights.

By October 1968, six months following the successful mission of
Kosmos 212/213, manned missions were back in the rotation. On
27 October, a day after the unmanned launch of Soyuz 2, Georgi
Beregovoi was placed into orbit aboard Soyuz 3. The Igla system
automatically brought the Soyuz 3 vehicle to within 200 m of the
Soyuz 2 target when Beregovoi took over the controls. Because of
piloting errors, he exhausted too much fuel and was unable to dock
the spacecraft [26]. The perception ofmanual control was once again
tainted. What finally cemented Russia’s commitment to automated
space flight came a few months later in December 1968 when
Apollo 8 circled the moon. Unable to keep pace with Apollo, the
Russian space program shifted gears. It now claimed that manned
lunar flights were never in their plans but that the key to exploring
other planets was automation beginning with the development of
orbital space stations. From this point on, automation and space
station building became the rallying creed of the Russian space
agency. The high expectations of the Soyuz program eventually
materialized in January 1969 with the Soyuz 4/5 orbital rendezvous,
docking and crew transfer mission that the Russians strategically
proclaimed as the world’s first “experimental orbital station” [25].
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Fig. 2 The Soyuz Igla (Needle) rendezvous radar system.

WOFFINDEN AND GELLER 901

In 1967 took place the first
automated rendezvous between two
unmanned space vehicles (two
Soyuz spacecraft)

Much more complex than the
American system.

Based on navigation system
communication between the two
vehicles, using several antennas
they could obtain relative position,
velocity and attitude.

Requires a cooperative target.
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Rendezvous in the Apollo mission

The program finally concluded in October 1969 with an impressive
rendezvous mission involving three Soyuz vehicles, but these final
missions failed to receive much attention with NASA already
sending routine trips to the moon.

D. Apollo

The Apollo lunar program was the original motivation and
inspiration for the U.S. Space program to develop the capabilities for
orbital rendezvous. It was well understood that to go to themoon and
return the astronauts safely back to Earth, orbital rendezvous would
be required and the time had finally come for its implementation.
Although these moon missions were unprecedented and would
eventually take 24 astronauts to lunar orbit and land 12 of themon the
surface, the orbital rendezvous and docking techniques had been
tried and proven. For Apollo, the critical orbital rendezvous phase
occurred in lunar orbit with the ascent stage of the lunar excursion
module (LEM) chasing the target command/service (CSM) to
rendezvous and dock before the return trip back to Earth. Similar to
the Gemini program, the LEMwas equipped with a digital guidance
computer, an inertial measurement unit (IMU), optical equipment,
and rendezvous radar [27,28]. The rendezvous radar provided the
range, range rate, and bearing to the CSM and operated at ranges
from 740 km to 24 m [4]. During the entire rendezvous process,
astronauts played an important role from monitoring the launch to
actually docking the LEM to the CSM.

Approximately 70 s after the CSM passed over the LEM’s landing
site in its 110 km circular orbit, the LEM ascent stage was launched
from the lunar surface as shown in Fig. 3. At an altitude of 18 km it
was inserted into a transfer orbit (point A) that would bring it 28 km
below the CSM (point B) into a coelliptic phasing orbit. About 2.5 h
after liftoff the TPI burn occurred (point C). (For the Apollo 11 lunar
mission the height differential was actually 26 km instead of the
nominal 28 km. This lower relative altitude decreased the catchup
rate and required an extra 6.5 min to get the proper angular geometry
for the terminal-phase burn.) At this critical point the look angle to
the CSM as measured from the LEM’s local horizontal (i.e.,
elevation angle), reached 26.6 deg. Regardless of the actual height
differential between the two vehicles, this angle corresponded with a
required thrust in the direction toward the CSM which provided a
convenient visual reference in emergency backup situations.
Nominally the magnitude of this burn was about 7:6 m=s and would
cause the LEM to intercept the CSM approximately 45 min later
following a 130 deg central-angle travel. This central travel angle
(i.e., the angle between point C, the center of the moon, and D) of
130 degwas chosen fromGemini experience as the optimumvalue to
produce desirable line-of-sight rates during the final approach. The
entire rendezvous sequencewas completed approximately 3.5 h after
liftoff with the docking of the two spacecraft [9].

After the historic Apollo lunar missions, the United States
followed the Russian course of pursuing the capability of developing
orbital space stations for long space duration missions. The first of
these, Skylab, was built and visited using the Apollo spacecraft. The
same Apollo vehicle was also used to rendezvous and dock with the
Russian Soyuz vehicle for the first-ever linkup between spacecraft
from different nations. Although these missions played an important
role in gaining experience with orbital rendezvous, they essentially
implemented the same orbital rendezvous technology and techniques
described previously for the Apollo lunar missions. The close of the
Apollo era signaled the beginning of a new phase of orbital
rendezvous.

III. Orbital Rendezvous Refined
Following the initial space race to the moon, humans had

developed the ability to have frequent access to space and maintain a
long-term presence there. The focus of the two competing space
programs shifted from creating orbital rendezvous technology to
implementing these newly acquired capabilities. The innovative
applications ranged from the construction and routine use of space
stations to retrieving and servicing a variety of space assets.
Although orbital rendezvous played a pivotal role and advancements
continued, the major emphasis was on the application, not the
enhancement of orbital rendezvous. As expected, both the United
States and Russian space programs used their respective manual and
automated rendezvous approaches with limited modifications to the
two original systems. The emerging vehicles from this era capable of
performing rendezvous operations included the U.S. space shuttle
and the Russian manned and unmanned vehicles, Soyuz and
Progress.

A. Space Shuttle
In just over two decades from June 1983 toAugust 2005, the space

shuttle performed 57missions that had as one of its objectives at least
one rendezvous or close proximity operation. The vast experience of
the shuttle with respect to rendezvous and docking is meticulously
documented with descriptions of the first rendezvous demonstration
flights, satellite servicing missions, deployment and retrieval of
scientific payloads, missions retrieving and returning satellites back
to Earth, flights to the Russian space station Mir, and the assembly,
crew exchange, and resupply missions to the International Space
Station (ISS) [10]. Even though the shuttle was expected to perform a
greater variety of complex rendezvous missions than Gemini or
Apollo, the rendezvous navigation system used for these missions
still had a striking similarity to its predecessors. It has guidance
digital computers, IMUs, optical equipment, and rendezvous radar.
The range of operation of the rendezvous radar system depends on
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Fig. 3 Apollo orbital rendezvous scenario.
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For the American space program, the Apollo missions were
the main reason to obtain rendezvous capacity.
A critical stage in the mission to the Moon was the
rendezvous between the Command Module and the Lunar
Module. Performed manually (trained with simulator).
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the target vehicle’s status. If it has active sensing capabilities (i.e.,
contains a transponder), the rendezvous radar system can operate at
ranges from 555 km to 30 m. If the target has passive sensing where
the radar is simply reflected off the target vehicle, the rendezvous
radar has a range of 22 km to 30m [4]. There are also three additional
tools available on the space shuttle to help the astronauts navigate
during the rendezvous and docking phase. Mounted in the orbiter’s
payload bay is a laser ranging device that provides range, range rate,
and bearing to the target for display to the crew at distances varying
from1.5 km to 1.5m. There is also a centerline camera attached to the
center of the orbiter’s dockingmechanism.When the shuttle iswithin
90 m of the target, it generates images that serve as a visual aid to the
crew for docking. Also available to the crew is a hand-held laser
ranging device which can measure range and range rate during
approach to complement the other navigation equipment.

The aggressive requirements for the shuttle necessitated the
orbiter to have the capability to rendezvous, retrieve, deploy, and
service multiple targets that had different sizes, possessed varying
degrees of navigational aids (transponders or lights), and in many
cases were not designed (or functioning) to support these operations
[29]. In addition, when the shuttle wasn’t visiting one of the different
space stations itwas typically larger than its rendezvous target, which
often contained sensitive payloads. With Apollo and Gemini plume
impingement issues were not significant, but for the shuttle serious
considerations regarding contamination and induced dynamics on
the target had to be faced. As a consequence, the approach trajectory
was redesigned. Instead of the direct approach as performed
previously, the shuttlewould transition to a station-keeping point and
then perform one of a variety of possible final approach trajectories.

A typical rendezvous scenario for the shuttle to the International
Space Station is as follows [30]. The ground controllers compute the
necessary phasingmaneuvers to get the space shuttle within 74 kmof
the target, as shown in Fig. 4 (point A). From this moment on, either
the shuttle’s guidance, navigation, and control (GNC) system
automatically calculates and executes the remaining maneuvers or
the flight crew manually guides the spacecraft. Initially the onboard
GNC system has control and automatically executes the first
maneuver that transfers the crew to a specified point about 15 km
behind the target (point B) in preparation for the terminal-phase
initiation maneuver. Once the shuttle executes this initiation burn to
place itself near the target, it enters a trajectory that will pass

underneath the target (point C) and place it in front of the target
(point D). Shortly before the shuttle passes underneath the target, the
astronauts assume control over the vehicle. Using hand controls and
displays, the crewmembers will manually guide the shuttle until it is
securely docked.

There are two common final approach modes used by the shuttle:
the v-bar or r-bar approaches. (In the local vertical local horizontal
reference frame, the v bar generally points along the target’s velocity
vector and is commonly known as the downrange or local horizontal
axis, whereas the r bar refers to the relative altitude or local vertical
axis and points radially upward.) If the r-bar approach is selected, an
impulsive maneuver in the negative downrange direction is
performed when the shuttle crosses the r bar (point C) reducing the
forward velocity. Because of orbital mechanics, the shuttle will
naturally follow a course which crosses the r bar again. At this point
another impulsive maneuver directed up and in the negative
downrange direction causes the shuttle to slowly hop itsway up to the
target. For a v-bar approach the shuttle transfers to a point downrange
from the target (point D). The final approach begins with a change of
velocity toward the target. To remain on the v bar, an upward !v is
required causing the shuttle to slowly hop toward the target. It will
gradually move toward the target at a controlled rate proportional to
the relative range distance [v! "range=1000# m=s] until the
vehicles have docked.

B. Soyuz/Progress

The man-rated Soyuz vehicle and the cargo carrying Progress
vehicle are Russia’s work horses for space station activity. Initially
these vehicles were equipped with the Igla rendezvous and docking
system but in the mid-1980s the Soviet space program replaced the
Igla systemwith the newKurs (Course) system.During the transition
to the new system, the Mir space station actually incorporated both;
the Kurs system from one docking port and the Igla system from
another. Currently the Kurs system supports the rendezvous and
docking efforts at the International Space Station. It provides all of
the necessary relative navigation information from target acquisition
to docking which includes range, range-rate, line-of-sight angles,
and relative attitude measurements. Some of the noticeable changes
between the Igla andKurs systems are that Kurs uses a different set of
antennas, allows for acquisition and maneuvering at much greater
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Fig. 4 Shuttle orbital rendezvous scenarios.
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Profile of a rendezvous between the ISS and the Space
Shuttle. Two options: V-bar approach and R-bar approach.

The final phase is still manually performed!
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which hemisphere the target is located in (see Fig. 5). If needed, an
attitude maneuver is initiated to ensure the spacecraft is properly
pointed in the direction of the target. Once the Kurs system knows
which hemisphere the target is in and the Soyuz is oriented
appropriately, the scanning antenna (A3) is activated to determine
more precisely the pointing direction to the target. Eventually the
distance and orientation of the Soyuz spacecraft with respect to the
target is sufficient to allow the main tracking antenna (A4) to
interrogate the target to obtain range and range-rate information.
With this additional information, the Kurs system updates the
estimated position of both vehicles and executes a correction
maneuver (M5).

To ensure a smooth braking velocity profile when approaching the
target vehicle, three impulsive maneuvers are implemented (M6–
M8) as shown in Fig. 7. The first one (M6) occurs when the Soyuz is
about 1 km below the target’s orbit. Following the last maneuver
(M8), it is likely that the current approach trajectory is not aligned
with the target’s docking port. To position itself along the target’s
docking axis for the final approach, the Soyuz performs a fly-around
at a relative distance between 200–400 m. Regardless of whether
docking axis is pointed along the v bar, r bar, or some inertially fixed
axis, the Soyuz begins transferring to intersect this final approach
line. During the fly-around, the scanning antenna on the Soyuz (A4)
tracks the target antenna B3 to obtain range, range-rate, and line of

Altitude

Downrange

M2

M1M0

M3 M4

M5

Launch

Kurs

Fig. 6 Phasing and rendezvous sequence for Soyuz/Progress vehicles.

Altitude

Downrange

M6

M7
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Fig. 7 Final approach sequence for Soyuz/Progress vehicles.
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The Russians developed the Kurs
(course) system which allowed
rendezvous between Soyuz and
MIR.

Also automatic but more precise
and with more range than their
older system.

Does not require target
cooperation.

However, it weights a lot (85 kg.)
and requires about 270 Watt
(similarly in the target side).
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ATV (Automated Transfer Vehicle) incorporates automated
rendezvous capability with the ISS. Operative since 2008.
Developed by EADS/Astrium.
Does not require target cooperation, however uses specific
equipment on both sides.
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Typically, rendezvous problems are divided in several phases:
1 Orbital phase: The chaser begins on Earth or in a di↵erent

orbit from the target. Launch and orbital maneuvers have to
be performed to approach the orbit of the target.

2 Far range rendezvous: The chaser is “close” to the target
(⇠ 10� 100 km), and must approach it (⇠ 100� 1000 m).
Typically relative navigation is used.

3 Close range rendezvous: Maneuvers are performed to get the
target very close to the target (about 1 meter or less, relative
speeds of cm/s). This is the phase considered in this talk.

4 Docking/berthing: Smooth capture is performed followed by
structural union among the spacecraft. Also an interesting
control problem!!

A good general reference for rendezvous: Fehse, W. (2003).
Automated Rendezvous and Docking of Spacecraft.
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(Close range) Rendezvous Model

There are many rendezvous models for spacecraft, according
to which orbital perturbation model is used and the orbit of
the target.

The simplest possible case:
the target follows a circular keplerian orbit (i.e. zero
eccentricity) around a central body (tipically the Earth).
the target is passive (does not perform maneuvers).
the chaser is very close (less than 1 kilometer).

Call:
~R vector from central body to target.
R : radius of the orbit of the target (given in kilometers).
µ: the gravitational parameter of the central body (for the
Earth, µ = 398600.4 km3/s2).
Target mean (angular) velocity is n =

p µ
R3 .

~r position of target with respect to chaser.
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Under the usual assumptions (chaser close to the target,
target in a keplerian orbit with zero eccentricity) we can use
the Hill-Clohessy-Wiltshire (HCW) model:

ẍ = 3n2x + 2nẏ + ux ,

ÿ = �2nẋ + uy ,

z̈ = �n2z + uz ,

in the LVLH frame, with n the mean orbital velocity.
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Constraints of the problem

Typical constraints:
Thruster limitations and mode of operation (PWM or PAM).
Avoid collisions between chaser and target (safety).
Typically, chaser must approach inside a previously designated
safe zone.
If there are chaser engine failures, rendezvous should still be
achieved, if possible (fault tolerant control).
If the target’s attitude is changing with time (spinning target)
the chaser should couple with that rotation to still guarantee
rendezvous.
In case of total failure, collision probability should be as small
as possible.

Such constraints should be satisfied at the same time that
fuel consumption is optimized (economy).
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Safe zone

In this work we will equal the safe zone with the “line of
sight” (LOS)

These LOS zone in the figure is described by the equations
y � cx(x � x0), y � �cx(x + x0), y � cz(z � z0),
y � �cz(z + z0) and y > 0.
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Actuator constraints and Cost Function

Typically there are two types of actuator:
Pulse-Amplitude Modulated (PAM): Any value of force in a
given range can be used. umin  u(t)  umax . In spacecraft,
this can be achieved by using electrical propulsion.
Pulse-Width Modulated (PWM): The value of force is fixed,
only the start and duration of it can be set. In spacecraft, this
is achieved by using conventional chemical thrusters (however
it is far from perfect).

Spacecraft Attitude Dynamics and Control Course notes 

35 

Actuators for spacecraft attitude control 
 

Thrusters for attitude control 

 
The simplest way to create torques is to create a set of forces with direction not aligned with the 
center of mass, and this can be obtained by mass expulsion techniques. Jet thrusters pose some 
operational problems due to the ignition transient, and besides it is not simple to finely control the 
magnitude of the force, so these devices are not used for fine attitude control. In addition, for 
control quite often the force needed is rather small (milli Newton-meters), while chemical thrusters 
produce forces in the order of at least some Newton. To make them compatible with attitude 
control, they are switched on and off with a given modulation, but this enhances the problems due 
to ignition transients and can cause mechanical ware of the thruster. 
 
These problems can be solved by adopting electric propulsion thrusters, based on electrodynamic 
acceleration of a suitable ionized propellant, that need de-ionization immediately after expulsion to 
avoid charging electrically the spacecraft. These thrusters can be easily modulated in amplitude, 
have a high specific impulse (over 3000) that allows a reduced propellant consumption. The thrust 
produced can be in the order of a few Newton down to 10-6 Newton, so they are well suited to fine 
control actions. Unfortunately, electric thrusters are extremely power consuming, more or less 90% 
is devoted simply to keep it ready to use and only 10% is due to the thrust produced, therefore 
electric propulsion units are often coupled to extremely large solar panels.  
 
With conventional (chemical) thrusters it is not possible to control the amplitude of the thrust; they 
are either switched on or off. The transient delay and the presence of hydraulic circuits make the 
actual thrust profile quite different from the ideal one, requiring a careful calibration for proper 
command selection. 
 

F 
    ideal 
    real 
 
 
 
      t  

 
Use of thruster on spinned satellites 
 
In case of spinning satellites, to control the spin velocity the thrusters must be located on the side of 
the satellite and the thrust direction must be orthogonal to the angular velocity: 
 

MI =ω!

 
 

Also, consumption of fuel should be minimized. Typically
one seeks min

R
tF

0
|~u(t)|2dt or min

R
tF

0
|~u(t)|dt.
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HCW model in discrete time with perturbations

Assuming that the control signal is constant for each sampling
time T , we obtain the following discrete time version of the
HCW equations:

x(k + 1) = ATx(k) + BTu(k) + �(k).

AT and BT are:

AT =

2

66666664

4 � 3C 0 0
S

n

2(1�C)

n
0

6(S � nT ) 1 0 � 2(1�C)

n

4S�3nT

n
0

0 0 C 0 0
S

n

3nS 0 0 C 2S 0

�6n(1 � C) 0 0 �2S 4C � 3 0

0 0 �nS 0 0 C

3

77777775

BT =

2

6666666664
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n2
� 3T

2

2
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1�C

n2
0

0 0
1�C
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S

n
2
1�C

n
0

2(C�1)

n
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S

n
0

0 0
S

n

3

7777777775

where S = sin nT y C = cos nT (T = 60 s is used in this
work). We will drop the subindex T in AT and BT . 16 / 51
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State, perturbation and control variables

x(k), u(k) y �(k) denote respectively the state (position and
velocity), control e↵ort (propulsive force per unit mass) and
perturbation for time t = k , where:

x = [x y z ẋ ẏ ż ]T , u = [ux uy uz ]
T ,

� = [�x �y �z �ẋ �ẏ �ż ]
T .

x , y , and z are position in the LVLH local frame about the
center of gravity of the target.

x is radial position, y is position along the orbit and z is
perpendicular to the orbit.

Velocity, control u(k) and perturbations �(k) are also written
in the LVLH frame.

Perturbations are unknown, hence �(k) is a 6-D random
variable, of mean �̄ and covariance matrix ⌃ also unknown.
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Prediction of state and compact notation

The state at t = k + j is predicted from the past state x(k)
and control and disturbances at times from t = k to time
t = k + j � 1 as:

x(k + j) = Aj
x(k) +

j�1X

i=0

Aj�i�1Bu(k + i) +
j�1X

i=0

Aj�i�1�(k + i).

We use a compact (stack) notation where we denote:

xS(k) =

2

66664

x(k + 1)

x(k + 2)

.

.

.

x(k + Np)

3

77775
, uS(k) =

2

66664

u(k)

u(k + 1)

.

.

.

u(k + Np � 1)

3

77775
, �S(k) =

2

66664

�(k)
�(k + 1)

.

.

.

�(k + Np � 1)

3

77775
.

Hence we can write the prediction equations as:

xS(k) = Fx(k) + GuuS(k) + G��S(k),

where F, Gu and G� are defined from the model matrices
A and B .
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Constraints

Two kind of constraints have been included. Other constraints
could be included as well.

In the first place, it is required that the
chaser is always inside a Line of Sight
zone (LOS) with respect to the target.
We write the restriction as
ALOSx(k)  bLOS .

ALOS =

2

6664

0 �1 0 0 0 0

cx �1 0 0 0 0

�cx �1 0 0 0 0

0 �1 cz 0 0 0

0 �1 �cz 0 0 0

3

7775

bLOS =
⇥

0 cx x0 cx x0 cz z0 cz z0

⇤
T

Restrictions in the control signal: umin  u(k)  umax
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Objective function

Taking expectation we define: x̂(k + j |k) = E [x(k + j)|x(k)]
Similary x̂S(k + j |k) = E [xS(k + j)|x(k)].
Objective function:

J(k) =

NpX

i=1

h
x̂
T
(k + i|k)R(k + i)x̂(k + i|k)

i
+

NpX

i=1

h
u
T
(k + i � 1)Qu(k + i � 1)

i
,

where Np is the control horizon.

Q = Id3⇥3 and R(k) is defined as:

R(k) = �h(k � ka)


Id3⇥3 ⇥3⇥3

⇥3⇥3 ⇥3⇥3

�
.

where h is the step function, ka is the desired arrival time and
� is a large number. Hence R = 0 before the arrival time, and
after arrival time it gives a large weight to the error in
position (distance from the origin).
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Objective function and constraints in compact notation

The objective function can be written as:

J(k) = (GuuS(k) + Fx(k) + G� �̄S)
T
RS(GuuS(k) + Fx(k) + G� �̄S) + uS

T
QSuS

where prediction of the state has been used. Note that it
depends on the state at t = k and the control and
disturbances up to the control horizon. The matrices RS and
QS appearing in the expression are defined from R and Q
respectively. The compact variable �̄S contains the
disturbances mean.
Similarly the LOS constraints are written as:

AcxS  bc ,

and using prediction of the state :

AcGuuS  bc � AcFx(k)� AcG��S

Control signal restriction are written as umin  uS  umax .
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Computation of control signal

For t = k , the MPC problem is formulated as:

min
uS

J(x(k),uS, �̄S)

subject to AcGuuS  bc � AcFx(k)� AcG��S, 8�S
umin  uS  umax

It is a quadratic cost function with linear constraints; x(k) is
known, uS has to be found.
If perturbations �S were known (or e.g. zero) the problem is
easily solved. For instance, in MATLAB, using quadprog.
The problem is solved for a time instante t = k , and one
computes a complete history of future control signals from the
state x(k). However only the control signal u(k) is used and
the rest are discarded. The next time instant t = k + 1 the
solution of the problem is recomputed using the new state
x(k + 1), thus closing the loop.
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Robust MPC with known perturbation bounds

If perturbations are unknown, the previous problem is not
solvable.

Assume instead that we just know perturbation bounds:
A��S  c� (admissible perturbations) and perturbation means
�̄S.

A control system that achieves its objective for all admissible
perturbations is called robust.

To accommodate all admissible perturbations, we bound
�AcG��S which appears in the minimization constraints, for
all admissible perturbations.

This procedure is always possible for bounded perturbations
(with known bounds).
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Computation of control (known perturbation bounds)

Hence to compute the control signal in t = k we solve:

min
uS

J(x(k),uS, �̄S)

subject to AcGuuS  bc � AcFx(k) + b�

umin  uS  umax

where b� is a column vector, whose i-th terms (b�)i is given by

(b�)i = min
s.t. A��Sc�

ai�S

and where ai is the i-th row of the matrix �AcG�

Hence for each time t = k a minimization subproblem has to
be solved before computing the control signal from the main
minimization problem.
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Some Remarks about Robust MPC

When solving the minimization subproblem for the
constraints, we get the constraints computed for the worst
case scenario for admissible perturbations.

Hence, since constraints are verified for that case, they are
robustly verified, i.e., verified for any perturbation from the
set of admissible perturbations.

The minimization subproblem consists on a minimization
problem for every row for the matrix �AcG�. However, being
a linear optimization problem with linear restrictions, it can be
e�ciently solved in numerical form. For instance, in
MATLAB, using the command linprog.
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Robust MPC: Chance Constrained approach

However, perturbation bounds are not always known a priori.
Or they are too conservative. Then we can model the
perturbations as random variables.
Assumption: � ⇠ N6(�̄,⌃). (Non-Gaussian models can also be
used, however then the formulation is more complicated)
Assume for the moment we know the mean �̄ and the
covariance matrix ⌃ of the perturbations.
A chance constrained robust control law is one that
achieves its objective with a certain given probability.
Thus, we find a bound for the term �AcG��S which appears
in the minimization constraints, verified with a probability p.
Since � ⇠ N6(�̄,⌃), for a given p, one can find a confidence
region (ellipsoid), i.e., compute ↵ such that

�
� � �̄

�T
⌃�1

�
� � �̄

�
 ↵

is verified with probability p.
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Computation of control (Chance Constrained approach)

To compute the control signal in t = k we solve:

min
uS

J(x(k),uS, �̄S)

subject to AcGuuS  bc � AcFx(k) + b�

umin  uS  umax

where b� is a column vector, whose i-th terms (b�)i is given by

(b�)i = min
s.t. (���̄)T⌃�1(���̄)↵

ai�S

and where ai is the i-th row of the matrix �AcG�
Again for each time t = k a minimization subproblem has to
be solved. However, this time it has an explicit solution:

(b�(k))i =

Np�1X

j=0

⇣
�
p

↵
q

aij⌃aT
ij

+ aij �̄
⌘

27 / 51



Introduction

MPC applied to Rendezvous

ON/OFF thrusters

MPC formulation for Spacecraft Rendezvous

Robust and Chance-ConstrainedMPC with perturbation estimator

Simulation Results for Chance-Constrained MPC

Some Remarks about the Chance Constrained approach

Since the minimization subproblem is explicitly solved, this
approach gives an algorithm as fast as the non-robust MPC.

However:
Needs estimation of statistical properties.
The normal distribution is unbounded: cannot choose the
probability p of constraint satisfaction too large:
conservativeness or even unfeasibility.
Each constraint satisfied with probability p: global probability
smaller. However compensated with the receding horizon of
MPC!
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Algorithm for estimating perturbations

The Chance Constrained Robust MPC, as it has been
formulated, requires knowing the mean and covariance of the
perturbations.

Frequently, perturbations are totally unknown and these data
has to be obtained online using an estimator.

Then, for each t = k we estimate �̄ y ⌃ taking into account
past perturbations, using:

�(i) = x(i + 1)� Ax(i)� Bu(i),

for i = 1, . . . , k � 1.
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Estimating mean and covariance

Denoting by �̂(k) y ⌃̂(k) the estimations of �̄ y ⌃ at t = k :

�̂(k) =

P
k�1

i=0
e��(k�i)�(i)

P
k�1

i=0
e��(k�i)

,

⌃̂(k) =

P
k�1

i=0
e��(k�i)

⇣
�(i)� �̂(i)

⌘⇣
�(i)� �̂(i)

⌘T

P
k�1

i=0
e��(k�i)

,

The function e��i weights in the value of �(i) in the sum,
where � > 0 is a forgetting factor.

This is done to give more importance to the recent values of �
than to its past history.

This weighting is useful is properties of the perturbations
change with time, i.e., perturbations are not only random
variables but stochastic processes.
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Recursive formulae

It is possible to use recursive formulae for the previous
computations of mean and covariance:

�̂(k) =
e��

�k

⇣
�k�1�̂(k � 1) + �(k � 1)

⌘
,

⌃̂(k) =
e��

�k

⇣
�k�1⌃̂(k � 1)

+
⇣
�(k � 1)� �̂(k)

⌘⇣
�(k � 1)� �̂(k)

⌘
T

⌘
,

where �k =
e��(1�e��k)

1�e��

These allow to discard past values of � and save memory.

Once mean and covariance are obtained, it is possible to get
the confidence region for disturbances that was used in the
chance constrained approach.
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Simulations

For numerical simulations, several scenarios have been
considered with and without perturbations.

Parameters used: R0 = 6878 km, n = 1.1068 · 10�3 rad/s, and
LOS constraint parameters: x0 = z0 = 1.5m and cx = cz = 1.

We included propulsive perturbations in the form:
ureal = (1 + �1)T (�✓)u, where:

ureal is the real control signal given by the propulsive system.
u is the computed (desired) control signal.
�1 is a normally distributed random variable. Physically, �1
represents errors in the actuators.
T (�✓) is a rotation matrix with rotation angles given by �✓,
which is a normally distributed random vector of (small)
angles. Physically, it comes from small errors in attitude that
cause the engines to be slightly o↵ course.

Much more complex than nominal model.
32 / 51



Introduction

MPC applied to Rendezvous

ON/OFF thrusters

MPC formulation for Spacecraft Rendezvous

Robust and Chance-ConstrainedMPC with perturbation estimator

Simulation Results for Chance-Constrained MPC

Non-robust MPC controller

Good results without perturbations (solid line).

Fails when perturbations are present (dashed line). However
if perturbations are small, still works.
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Chance Constrained MPC controller with perturbations

−20
−10

0
10

20 0

20

40

60

−20

−15

−10

−5

0

5

10

15

20

y [m]

3D chaser path

x [m]

z 
[m

]

Starting point

rendezvous

LOS constraints

Safe zone

Forbidden
area

Includes perturbations. Good results!

34 / 51



Introduction

MPC applied to Rendezvous

ON/OFF thrusters

MPC formulation for Spacecraft Rendezvous

Robust and Chance-ConstrainedMPC with perturbation estimator

Simulation Results for Chance-Constrained MPC

Chance Constrained MPC controller with perturbations
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Monte Carlo simulations

Simulated 1220 cases (with di↵erent disturbances). For each
case we perform a simulation with the non-robust and another
with the robust (chance constrained) approach.

In the table d is the relative distance at the desired arrival
time.

Non-robust MPC Robust MPC
Constraint violations 59% 0%
d  0.2m 19% 100%
0.2m  d  0.5m 22% 0%
0.5m  d 0% 0%
Mean cost (m/s) of
successful missions

0.2444 0.2039
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a 15% of cost increment.
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Simulation Results for Chance-Constrained MPC

Non-robust MPC controller with unmodeled dynamics

Assume that the target orbit is elliptic (i.e. has some
eccentricy e) instead of circular: unmodeled dynamics.
Non-robust MPC is able to rendezvous, however it violates
the constraints at the end.
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Robust MPC controller with unmodeled dynamics

Robust (chance-constrained) MPC does not violate
constraints at the end.
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Simulation Results for Chance-Constrained MPC

Rotating target, chance constrained MPC
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Trajectory Planning with On/O↵ (PWM) Thrusters

Lots of previous results, but most consider impulsive or
continuous thrust.
Normally thrusters are pulsed: fixed amount of propulsion for
a variable time of actuation (PWM).
There are some previous results with PWM thrusters using
filters or multirate approaches, but do not directly include the
PWM constraints.
Our previous result (IFAC WC 2011) considered circular orbits
(LTI system).

In this work we present a close-range rendezvous

planning algorithm for the more realistic PWM (On/O↵)

thruster case for elliptical orbits.

Since the orbits are elliptical, the models is LTV and more
nonlinear in PWM variables. Basic transformations from

PAM or impulsive actuation to PWM do not work very

well.
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Rendezvous Model (free motion)

Elliptical orbits: Tschauner-Hempel model.
Target is passive and follows an elliptical keplerian orbit of
eccentricity e and semi-major axis a, with starting eccentric
anomaly E0 at t0.
The chaser is close (kilometers) compared with target orbital
radius (thousands of kilometers).
The model is linear but time-varying, and time-discrete
(sampling time T ).

Tschauner-Hempel model (free motion)

xk+1 = A(tk+1, tk)xk , xk = [xk yk zk vx ,k vy ,k vz,k ]
T ,

The matrix A(tk+1, tk) can be written explicitly if instead of
time tk , true anomaly (✓k) or eccentric anomaly (Ek) is used.
They are related through Kepler’s equation and E0 so that, for
instance, Ek = K (tk).
A convenient form was expressed by Yamanaka and Ankersen,
where A(tk+1, tk) = YK(tk+1)

Y�1

K(tk )
, with Y , Y�1 explicit.
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Rendezvous Model (impulsive thrust)

A typical actuator model considers impulsive thrust, such that
the velocity is instantaneously changed.

Impulses are placed at the beginning of the time interval.

Good model if the impulses are high and short, not so good if
the impulses are low and maintained for a certain interval of
time.

Tschauner-Hempel model (impulsive thrust)

xk+1 = A(tk+1, tk)xk + B(tk+1, tk)uk , uk = [ux ,k uy ,k uz,k ]
T

The vector uk represent the impulses (�V ).

The matrix B(tk+1, tk) is explicitly found from A(tk+1, tk).
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Rendezvous Model (ON/OFF thrust)

Thrusters typically can be only switched on or o↵ and produce
a fixed amount of force: PWM control.
Assume an aligned pair of thrusters for each direction
i = 1, 2, 3 with opposing orientation.Positive and negative are
denoted as u+

i
and u�

i
.

The (fixed) value of thrust is ū+
i

and ū�
i
, respectively.

During each sample time each thruster fires only once.

PWM control variables:
The pulse width .
The pulse start time ⌧ .

For simplification, consider only one pulse per time interval.
Need six thrusters, one for each axis, and one for each
direction (denoted by + and -).
12 control variables for each k : +

1
(k), +

2
(k), +

3
(k), +

1
(k),

�
2
(k), �

3
(k), ⌧+

1
(k), ⌧+

2
(k), ⌧+

3
(k), ⌧+

1
(k), ⌧�

2
(k), ⌧�

3
(k)
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Rendezvous Model (ON/OFF thrust)

Call uP
k
=

⇥
⌧+

1,k +

1,k ⌧�
1,k �

1,k ⌧+

2,k +

2,k ⌧�
2,k �

2,k ⌧+

3,k +

3,k ⌧�
3,k �

3,k

⇤T

u
P

k
contains all the PWM control variables.

Denote

bi (t, ⌧i , i ) =

Z
K(t+⌧i+i )

K(t+⌧i )
Y�1

E
Ci+3

1� e cosE

n
dE

where Ci is a column vector of zeros with a 1 in the i-th row.
The integrals in bi cannot be carried out explicitly. The
nonlinear dependence of the system on the PWM parameters
is contained in bi .

Tschauner-Hempel model (ON/OFF thrust)

xk+1 = A(tk+1, tk)xk + BPWM(tk+1, tk ,u
P

k )

In the equation BPWM =
P

i=3

i=1
B+

i
ū+
i
+
P

i=3

i=1
B�
i
ū�
i
, with

B±
i
(tk+1, tk ,uPk ) = Y (tk+1)bi (t, ⌧

±
i ,k , 

±
i ,k).

8 / 22

Rafael Vazquez




Introduction: Rendezvous

Planning Algorithm

Simulation Results and Conclusions

Introduction

Rendezvous models

Objectives and Constraints

Rendezvous Model (ON/OFF thrust)

Call uP
k
=

⇥
⌧+

1,k +

1,k ⌧�
1,k �

1,k ⌧+

2,k +

2,k ⌧�
2,k �

2,k ⌧+

3,k +

3,k ⌧�
3,k �

3,k

⇤T

u
P

k
contains all the PWM control variables.

Denote

bi (t, ⌧i , i ) =

Z
K(t+⌧i+i )

K(t+⌧i )
Y�1

E
Ci+3

1� e cosE

n
dE

where Ci is a column vector of zeros with a 1 in the i-th row.
The integrals in bi cannot be carried out explicitly. The
nonlinear dependence of the system on the PWM parameters
is contained in bi .

Tschauner-Hempel model (ON/OFF thrust)

xk+1 = A(tk+1, tk)xk + BPWM(tk+1, tk ,u
P

k )

In the equation BPWM =
P

i=3

i=1
B+

i
ū+
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Objectives and State Constraints

Time of rendezvous TR is usually fixed beforehand.
A sampling time T is chosen for discretization such that
TR = NT , where N is the discrete time of rendezvous.

Consumption of fuel should be minimized:

min

Z
tF

0

(|ux(t)|+ |uy (t)|+ |uz(t)|) dt

State should remain in
safe zone for security and
sensing purposes: “line of
sight” (LOS) region
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Constraints of the problem: Actuator constraints

Impulsive

PWM

0t 1t 2t 3t

Implusive:
Any value of impulse in a given range
can be used, i.e. umin  u(t)  umax .
In spacecraft, high-force thrusters
actuating for a short time can be
modeled as impulsive.
Not realistic for small spacecraft!

Pulse-Width Modulated (PWM):
The value of force is fixed to a value
ū, only the start and duration of it
can be set.
Conventional chemical thrusters.
We will consider this constraint.
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Step 1. impulsive solution.

Step 2. impulsive/PWM filter.

Step 3. Linearization around PWM solution.

Planning algorithm for ON/OFF thrusters

As seen, equations are highly nonlinear and not explicit in
PWM control variables (pulse start point and width).

The following algorithm is applied:

PWM Rendezvous Planning Algorithm

1 Initially solve the rendezvous problem for standard impulsive control.

2 From the impulsive solution find an initial starting guess for the
PWM solution.

3 Linearize around PWM solution and find small increments in the
PWM controls improving the solution.

4 Repeat previous step until convergence or time is up.

Linearization explicit and easy to compute.

Since we have a reasonable initial guess the algorithm works
well.
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PWM solution.

3 Linearize around PWM solution and find small increments in the
PWM controls improving the solution.

4 Repeat previous step until convergence or time is up.

Linearization explicit and easy to compute.

Since we have a reasonable initial guess the algorithm works
well.
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Introduction: Rendezvous

Planning Algorithm

Simulation Results and Conclusions

Step 1. impulsive solution.

Step 2. impulsive/PWM filter.

Step 3. Linearization around PWM solution.

Step 1. Finding a solution with impulsive actuation

Using the impulsive Tschauner-Hempel model, and iterating:

xk+1 = A(tk+1, t0)x(0) +
kP

j=0

A(tk+1, tj+1)B(tj+1, tj)uj

We have used the property
A(ti+1, ti )A(ti , ti�1) = A(ti+1, ti�1).

Compact (stack) notation for the whole planning horizon:

xS =

2

66664

x(1)

x(2)

.

.

.

x(N)

3

77775
, uS =

2

66664

u(0)

u(1)

.

.

.

u(N � 1)

3

77775

Compact propagation equation:

xS = Fx(0) + GuuS

F and Gu defined in the paper.
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Step 1. impulsive solution.

Step 2. impulsive/PWM filter.

Step 3. Linearization around PWM solution.

Step 1. Finding a solution with impulsive actuation

The objective function (fuel consumption) can be written as:

J = TkuSkL1

Using the compact notation, the LOS constraints are written

AcxS  bc ,

and using propagation of the state in terms of uS:

AcGuuS  bc � AcFx(0)

Similarly, terminal constraints (x(N) = 0) are written as
AexS = 0, thus in terms of uS:

AeGuuS = �AeFx(0)

Control signal restriction are written as �T ū
�  uS  T ū

+

(see step 2).
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Step 1. impulsive solution.

Step 2. impulsive/PWM filter.

Step 3. Linearization around PWM solution.

Step 1. Finding a solution with impulsive actuation

The trajectory planning problem with impulsive actuation is
formulated as:

min
uS

J(uS)

subject to AcGuuS  bc � AcFx(0)

�T ū
�  uS  T ū

+

AeGuuS = �AeFx(0)

L1-norm optimization with linear inequality and equality
constraints; x(0) is known, uS has to be found.

Easily solvable, for instance, in MATLAB, using linprog.
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Step 1. impulsive solution.

Step 2. impulsive/PWM filter.

Step 3. Linearization around PWM solution.

Step 2. A fist PWM solution

Remember the PWM control
variables:

The pulse width .
The pulse start time ⌧ .

maxu

t

T

·
¿

To find an initial guess of the PWM control variables from the
impulsive actuation, we use:

1 Use a positive or negative thruster according to the sign of ui,k .
2 The pulse width has an area equal to the impulse value:

±
i,k = |ui,k |

ū
±
i

, where ū±
i

is the maximum level of the (positive or

negative) thruster i (since �T ū
�  uS  T ū

+, ±
i,k  T ).

3 Since the impulse was modeled to start at the beginning of a
time sample, ⌧±

i,k = 0.

u
P

k
constructed by this method is not optimal and might not

even verify the constraints or reach the target. However it is
close to a PWM solution.
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Step 1. impulsive solution.

Step 2. impulsive/PWM filter.

Step 3. Linearization around PWM solution.

Step 3. Linearization of the PWM model

The linearized model is written as

xk+1 = A(tk+1, tk)xk + BPWM(tk+1, tk ,u
P

k ) + B�(tk+1, tk ,u
P

k )�u
P

k ,

�u
P

k
are the increments in the PWM signals and the matrix

B�(⌧, (k)) is defined as

(B�)i ,j =
@(BPWM(tk+1, tk ,uPk ))i

@(uP
k
)j

,

which is explicit (derivative of an integral). See the paper.
Constraints:

��±
i
(k)  ±

i
(k), ��⌧±

i
(k)  ⌧±

i
(k)

�⌧±
i
(k) +�±

i
(k)  T � ⌧±

i
(k)� ±

i
(k)

Add additional constraint on �u
P

k
size to avoid going too far

away from linearization point:|�u
P

k
|  �

MAX .
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Introduction: Rendezvous

Planning Algorithm

Simulation Results and Conclusions

Step 1. impulsive solution.

Step 2. impulsive/PWM filter.

Step 3. Linearization around PWM solution.

Step 3. Linearization of the PWM model

Compact/stack notation: uP
S
for the PWM variables, �u

P

S
for

the increments.

PWM Compact formulation around the linearized point:

xS = Fx(0) + GPWM(uPS)ūS + G�(u
P

S)�u
P

S ,

State constraints written in terms of �u
P

S
:

AcG�(u
P

S)�u
P

S  bc � AcFx(0)� AcGPWM(uPS)ūS

AeG�(u
P

S)�u
P

S = �AeFx(0)� AeGPWM(uPS)ūS

Summarize PWM actuation constraints as A��u
P

S
 b�.
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Step 1. impulsive solution.

Step 2. impulsive/PWM filter.

Step 3. Linearization around PWM solution.

Step 3. Linearization of the PWM model

Objective function J = JPWM(uP
S
) + J

�(�u
P

S
), where

J�(�u
P

S) =

Np�1X

k=0

3X

i=1

�
ū+
i
�+

i
(k) + ū�

i
��

i
(k)

�

Optimization on increment �u
P

S
:

min
�uP

S

J�(�u
P

S
)

subject to: AcG��u
P

S
 bc � AcFx(0)� AcGPWM(uPS)ūS

A��u
P

S
 b�

AeG��u
P

S
= �AeFx(0)� AeGPWM(uPS)ūS

Linear cost function with linear inequality and equality
constraints; very fast solution!
Add solution �u

P

S
to previous linearization point uP

S
to find

new PWM values uP
S
(new): new linearization point.

Linearize around new solution and iterate until cost function
does not improve or time is up!
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Conclusions

Simulation results for the PWM algorithm

Matlab simulation of a high eccentricity case (e = 0.7).

Parameters: Np = 50 as planning horizon, T = 60 s, and
ū = 10�1 N/kg. The target orbit has perigee altitude
hp = 500 km.

Initial conditions were ✓0 = 45o, r0 =
[0.25 0.4 � 0.2]T km, v0 = [0.005 � 0.005 � 0.005]T km/s.
The LOS constraint is defined by x0 = 0.001 km and
CLOS = tan 30o.

Impulsive initial cost: 14.6 m/s.

After 6 iterations, the solution converges. Each iteration took
about 1 second to compute.

Final PWM cost: 15.5 m/s
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Simulation results for the PWM algorithm
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Trajectories: impulsive (green), PWM computed from
impulsive (red), final computed PWM(blue)
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Conclusions

Simulation results for the PWM algorithm

Comparison between PWM computed from impulsive (red)
and final computed PWM control signals (blue).
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Conclusions

We have presented a planning algorithm to solve the problem
of automatic spacecraft rendezvousfor elliptical target orbits.

Line-of-sight state constraints and PWM control constraints
are included in the model.

To overcome nonlinear optimization, algorithm uses a hot

start obtained from impulsive actuation and refines it using
explicit linearization.

In simulations it is shown that the algorithm converges.

Future work:
Include the algorithm in a Model Predictive Controller.
Include fault-tolerant schemes and safety constraints.
Reduce the number of actuators, incorporate attitude
dynamics (nonlinear).
Formulate the algorithm for general PWM-actuated systems,
studying convergence theoretically.
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Conclusions

We have presented a robust MPC controller to solve the
problem of automatic spacecraft rendezvous.
Perturbations are estimated online and accommodated.
In simulations it is shown that the method can overcome large
disturbance and unmodeled dynamics.
PWM control constraints have been included in the model.
Future work:

Include eccentricity and orbital perturbations.
Add an state estimator (based e.g. on observations from
target).
Include fault-tolerant schemes and safety constraints.
Use more sophisticated disturbance estimation techniques.
Study stability of the closed loop system.
Reduce # of actuators, include attitude dynamics (nonlinear).
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Introduction

Objective

Generate optimal rendezvous trajectories for a single-thruster
1,2

spacecraft equipped with an ACS.

Methodology

Exploit the state transition matrix for translational motion and the
flatness property

3 for angular motion. Then, discretize the problem to
obtain a tractable static program.

1Oland, E., et al. Aerospace Conference (2013).
2Moon, G.H., et al. European Control Conference (2016).
3Louembet, C., et al. IET Control Theory and Applications (2009).
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Translational motion I

Target in circular obit.
Target & chaser close (≥1 km).
HCW equations

1
in LVLH frame

Y
__]

__[

ẍ = 2nż ,

ÿ = ≠n2y ,

z̈ = 3n2z ≠ 2nẋ .

n =
Ò

µü
R3

1Clohessy, W., et al. Journal of Aerospace Sciences (1960).
Univ. de Sevilla/Univ. de Toulouse Rendezvous for Single-Thruster Spacecraft May 29, 2019 6 / 29



Translational motion II

Propulsion modelled as discrete impulses:

u(t) =
Npÿ

k=1
uk”(t ≠ tk).

From HCW equations to state transition matrix

x(t) = A(t, t0)x0 + Bu(t),

where

x = [x , y , z , ẋ , ẏ , ż]T ,

u = [ux , uy , uz ]T .

Univ. de Sevilla/Univ. de Toulouse Rendezvous for Single-Thruster Spacecraft May 29, 2019 7 / 29



Rotational motion I

Modified Rodrigues parameters
1, MRP, for attitude representation wrt

LVLH frame
MRP are a minimal attitude representation (no unit-norm quaternion
constraint)
Denoted as ‡‡‡=[‡1, ‡2, ‡3]T , related with rotation axis e and angle
◊rot as ‡‡‡=e tan(◊rot/4).
Singularities at ◊rot=±2fi avoided constraining ◊rotœ(≠2fi, 2fi).
Rotation (DCM) matrix:

R(‡‡‡) = Id + 8‡‡‡◊‡‡‡◊ ≠ 4(1 ≠ Î‡‡‡Î2
2)‡‡‡◊

1
1 + Î‡‡‡Î2

2
22 .

1Marandi, S., et al. Acta Astronautica (1987).
Univ. de Sevilla/Univ. de Toulouse Rendezvous for Single-Thruster Spacecraft May 29, 2019 8 / 29



Rotational motion II

Rotational kinematics

5
‡̇1
‡̇2
‡̇3

6
=

5
1 + ‡2

1 ≠ ‡2
2 ≠ ‡2

3 2(‡1‡2 ≠ ‡3) 2(‡1‡3 + ‡2)
2(‡1‡2 + ‡3) 1 ≠ ‡2

1 + ‡2
2 ≠ ‡2

3 2(‡2‡3 ≠ ‡1)
2(‡1‡3 ≠ ‡2) 2(‡2‡3 + ‡1) 1 ≠ ‡2

1 ≠ ‡2
2 + ‡2

3

6 5
Ê1
Ê2
Ê3

6
æ ‡̇‡‡(t) = C(‡‡‡(t))ÊÊÊ(t)

Rotational dynamics (body axes chosen as principal axes)
Y
__]

__[

I1Ê̇1 = M1 ≠ (I3 ≠ I2)Ê2Ê3,

I2Ê̇2 = M2 ≠ (I1 ≠ I3)Ê1Ê3,

I3Ê̇3 = M3 ≠ (I2 ≠ I1)Ê1Ê2.

ACS w/ reaction wheels is being considered but torque M taken as
control input for simplicity

Univ. de Sevilla/Univ. de Toulouse Rendezvous for Single-Thruster Spacecraft May 29, 2019 9 / 29



Coupled motion

Single-thruster pointing at the v direction (in body axes). Projection of
impulse u(t) on LVLH frame is

u(t) = R(‡‡‡(t))vu(t).

Coupled 6 DoF system is
Y
__]

__[

x(t) = A(t, t0)x(t0) + BR(‡‡‡(t))vu(t),
‡̇‡‡(t) = C(‡‡‡(t))ÊÊÊ(t),
IÊ̇ÊÊ(t) = M(t) ≠ ÊÊÊ(t) ◊ IÊÊÊ(t).

Coupling arises through the propulsion term of the translational equation
(gravity gradient e�ects neglected).

Univ. de Sevilla/Univ. de Toulouse Rendezvous for Single-Thruster Spacecraft May 29, 2019 10 / 29
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Constraints

Line of sight (LOS):

ALx(t) Æ bL.

Control input bounds:

0 Æ u(t) Æ umax ,

≠Mmax Æ Mi(t) Æ Mmax .

Terminal conditions:

x(tf ) = 0,

‡‡‡(tf ) = ‡‡‡f ,

ÊÊÊ(tf ) = 0.

Univ. de Sevilla/Univ. de Toulouse Rendezvous for Single-Thruster Spacecraft May 29, 2019 12 / 29



Objective function

Minimize fuel consumption ≠æ minimize the L1-norm of impulses

minimize
u(t),M(t)

s tf
t0 Îu(t)Î1 dt,

subject to x(t) = A(t, t0)x0 + BR(‡‡‡(t))vu(t),
‡̇‡‡(t) = C(‡‡‡(t))ÊÊÊ(t),
IÊ̇ÊÊ(t) = M(t) ≠ ÊÊÊ(t) ◊ IÊÊÊ(t),
ALx(t) Æ bL,
0 Æ u(t) Æ umax ,
≠Mmax Æ Mi(t) Æ Mmax , i = 1, 2, 3,
x(tf ) = 0,
‡‡‡(tf ) = ‡‡‡f ,
ÊÊÊ(tf ) = 0.

Univ. de Sevilla/Univ. de Toulouse Rendezvous for Single-Thruster Spacecraft May 29, 2019 13 / 29
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Attitude flatness property

Flatness property

A Flat system
1 has a flat output, which can be used to explicitly express

all states and inputs in terms of the flat output and a finite number of its
derivatives.

Attitude flatness

Attitude dynamics has the flatness property. Flat output ≠æ MRP.

I
ÊÊÊ(t) = C

≠1(‡‡‡)‡̇‡‡,

Ê̇ÊÊ(t) = C
≠1(‡‡‡)‡̈‡‡ + Ċ

≠1(‡̇‡‡,‡‡‡)‡̇‡‡,

and torque is parameterized with the MRP

M(t) = I[Ċ≠1(‡̇‡‡,‡‡‡)‡̇‡‡ + C
≠1(‡‡‡)‡̈‡‡] + [C≠1(‡‡‡)‡̇‡‡] ◊ IC

≠1(‡‡‡)‡̇‡‡.

1Fliess, M., et al. Journal of Guidance Control and Dynamics (1995).
Univ. de Sevilla/Univ. de Toulouse Rendezvous for Single-Thruster Spacecraft May 29, 2019 15 / 29



NLP description I

Manoeuvre divided into Np intervals of duration T = (tf ≠ t0)/Np.
MRP parameterization1 based on mth degree splines

‡i(t) =
qm

j=0 ai ,j,k(t ≠ tk≠1), i = 1, 2, 3,
t œ [tk≠1, tk ], tk = t0 + kT , k = 1 . . . Np.

C2
continuity at the nodes

Y
__]

__[

‡‡‡(tk , ak) = ‡‡‡(tk , ak≠1), k = 2 . . . Np,

‡̇‡‡(tk , ak) = ‡̇‡‡(tk , ak≠1), k = 2 . . . Np,

‡̈‡‡(tk , ak) = ‡̈‡‡(tk , ak≠1), k = 2 . . . Np,

where ak = [a1,0,k . . . a1,m,k , a2,0,k . . . a2,m,k , a3,0,k . . . a3,m,k ]T .

1Louembet, C., et al. IET Control Theory and Applications (2009).
Univ. de Sevilla/Univ. de Toulouse Rendezvous for Single-Thruster Spacecraft May 29, 2019 16 / 29



NLP description II

Minimal rotation path: between consecutive nodes ◊rotœ[≠fi, fi]
Torque constraint discretization: grid each interval k with nM
subintervals of duration TM=T/nM

≠Mmax Æ Mi(tk,l , ak) Æ Mmax , i = 1, 2, 3,
tk,l = t0 + (k ≠ 1)T + lTM , l = 0 . . . nM .
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Compact formulation

Compact formulation1: stack vectors

xS = [xT
1 , x

T
2 , . . . , x

T
Np ]T ,

uS = [u1, u2, . . . , uNp ]T ,

aS = [aT
1 , a

T
2 , . . . , a

T
Np ]T .

and stack matrices

F = [AT , (A2)T , . . . , (ANp )T ]T , Gik = A
i≠k

BRak v.

Dynamics compactly expressed as:

xS = Fx0 + G(aS)uS

1Vazquez, R., et al. Control Engineering Practice (2017).
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Discrete optimization problem I

Finite dimension static program in compact formulation (NLP)

minimize
uS, aS

ÎuSÎ1,

subject to ALSG(aS)uS Æ bLS ≠ Fx0,
0 Æ uS Æ uSmax ,
≠Mmax Æ Mi(tk,l , ak) Æ Mmax ,
ArendG(aS)uS = ≠ArendFx0,
‡‡‡(t0, a1) = ‡‡‡0,
‡̇‡‡(t0, a1) = ‡̇‡‡0,
‡‡‡(tf , aNp ) = ‡‡‡f ,
‡̇‡‡(tf , aNp ) = 0,
AC2aS = 0,
frot(aS) Æ 0.
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Discrete optimization problem II

Initial guess (hotstart):
1 3DoF rendezvous posed as a linear programming (LP) problem (6

thusters assumed).
2 LP solution converted to NLP decision variables uS & aS:

1 uk = ÎuLP,kÎ2 æ uS

2 Attitude coe�cients from the required uk impulse orientation at the
nodes

vki = [ux ,ki , uy ,ki , uz,ki ]T /ÎuLP,kÎ2, if ÎuLP,kÎ2 > 0,

3 Rotation angle and axis:

◊ki = acos(vki · vki≠1), eki =
vki ◊ vki≠1

Îvki ◊ vki≠1Î2
.

4 From ◊ki and eki obtain MRP æ aS (see details in paper)
5 If uk=0 attitude interpolated between non-zero impulses.
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Simulation parameters

Target parameters: h=600 km, y0=z0=2.5 m, cy =cz=1/ tan(fi/4).
Chaser parameters: I = diag(28, 45, 49)kg · m2,umax = 1 m/s,
Mmax = 0.02 N·m,v = [0, 0, ≠1]T .
Manoeuvre conditions: tf =900 s, x(0)=[400, -250, -200]T m,
ẋ(0) = [1, 1, ≠1]T m/s, ÊÊÊ(0) = [0, 0, 0]T s≠1,
◊1(0) = ◊2(0) = ◊3(0) = 0, ◊1(tf )=0, ◊2(tf )=-fi/2, ◊3(tf )© free.
(1,2,3 Euler angles sequence).
(Thruster nozzle pointing towards the +x axis at the end to avoid
plume impingement).
Planning parameters: Np=20, T=45 s, nM=12, TM=3.75 s, m=3.
Linear solver: GUROBI (<1 second). Nonlinear solver: IPOPT
(1.5 minutes; 260 decision variables and ≥ 1700 constraints).
Routines integrated in Matlab.
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Simulation results I
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Simulation results II
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Simulation results III
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Simulation results IV
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Conclusions

We have presented a rendezvous trajectory planning algorithm for

a single-thruster spacecraft equipped with ACS.
Solution based on translational state transition matrix + attitude

flatness property ≠æ exact description.
Problem is discretized and posed as NLP. No need of numerical
integration.
Formulation extendeds to arbitrary number of thrusters.
As future work, MPC scheme based on linearization around the
computed solution æ deal with unmodelled dynamics and
disturbances.
Extension to constellation formation flying w/ relative attitude
objectives also possible
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Introduction

Soft Landing

A soft landing is any type of aircraft, rocket or spacecraft landing that

does not result in damages to the vehicle or anything on board.

Objective

The objective of this work is to present an autonomous guidance
algorithm for soft-landing on an asteroid.

Methodology

The resolution approach is based on constraints convexification1
,

discretization and an iterative method2
. Then, this approach is

embedded in a decreasing horizon MPC scheme.

1Acikmese, B., et al. Journal of Guidance, Control and Dynamics (2007).
2Pinson, R., et al. AAS/AIAA Astrodynamics Specialist Conference (2015).
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Asteroid modelling I

Asteroid fixed frame in principal inertia axes (z major axis, x minor)

I
r̈ = ≠Ê̇ÊÊ ◊ r ≠ 2ÊÊÊ ◊ ṙ ≠ ÊÊÊ ◊ (ÊÊÊ ◊ r) + (F + T)/m,

ṁ = ≠ÎTÎ2/vex ,

where r=[x , y , z]
T

relative position, m lander mass, ÊÊÊ asteroid

rotation rate, T thrust, F external forces on the lander, vex the

escape gases velocity.

Most relevant external force: asteroid central gravity field,

F=Fg=mÒÒÒUg .

Universidad de Sevilla Asteroid Soft Landing May 29, 2019 6 / 33



Asteroid modelling II
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Asteroid modelling III

Polyhedron model1: exact potential of a polyhedron shape body w/

constant density

Ug =
Gfl

2

Q

a
ÿ

eœedges
rT
e EereLe ≠

ÿ

f œfaces
rT
f FT

f rf Êf

R

b .

(“reality” in the simulation)

Mass-concentrations model2: discrete masses

Ug =

nÿ

i=1

Gmi
Îr ≠ riÎ2

.

used to compute controls (lower computational load)

1Werner, R.A., et al. Celestial Mechanics and Dynamical Astronomy (1996).
2Kubota, T., et al. ISAS 16th Workshop on Astrodynamics and Flight Mechanics

(2006).
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Constraints I

Thrust bounds: engine cannot be shut down when turned on

(Tmin>0)

Tmin Æ ÎT(t)Î2 Æ Tmax .

Fuel consumption:

m(t) Ø mdry .

Surface avoidance:

Circumnavigation phase
1

(rotating tangent plane to the minimum

volume ellipsoid)

(r(t) ≠ rt(t))
T nT

t Ø 0, t œ [t0, t0 + tcirc ].

Landing phase (line of sight form landing point)

AL(r(t) ≠ rF ) Æ bL, t œ (t0 + tcirc , tf ].

Terminal constraints:

r(tf ) = rf , v(tf ) = 0.
1Dunham, W., et al. American Control Conference (2016).
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Constraints II

Asteroid surface avoidance constraint
1

illustration

Ellipsoid
Rotating plane
LOS region
Departure
Target

y'

x'
y

x

1Dunham, W., et al. American Control Conference (2016).
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Objective function

Minimize fuel consumption (maximize the final mass value)

min
T(t)

≠m(tf ),

s.t. ṙ(t) = v,
v̇(t) = ≠2ÊÊÊ ◊ v ≠ ÊÊÊ ◊ (ÊÊÊ ◊ r) + T/m

+ÒUg(r),
ṁ(t) = ≠ÎTÎ2/vex ,

ÎT(t)Î2 Æ Tmax ,
ÎT(t)Î2 Ø Tmin,

m(t) Ø mdry ,
rT
t (t)nt(t) Æ rT

(t)nt(t), t œ [t0, t0 + tcirc ],
ALr(t) Æ bL ≠ ALrF , t œ (t0 + tcirc , tf ],

r(tf ) = rF ,
v(tf ) = 0.
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Change of variables I

Non-convex thrust constraint:

at = T/m, atm = ÎTÎ2/m.

Mass variable:

q = ln(m) ≠æ q̇ = ≠atm/vex linear!

This change of variables relaxes1
the non-convex thrust lower bound:

Tmine≠q Æatm Æ Tmaxe≠q,

ÎatÎ2 Æatm ≠æ SOCP!

The mass term can be linearized as e≠q¥e≠qr [1 ≠ (q ≠ qr )].

1Acikmese, B., et al. Journal of Guidance, Control and Dynamics (2007).
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Change of variables II

min
at ,atm

≠q(tf ),

s.t. ṙ(t) = v,
v̇(t) = ≠2ÊÊÊ ◊ v ≠ ÊÊÊ ◊ (ÊÊÊ ◊ r) + at

+ÒÒÒUg(r),
q̇(t) = ≠atm/vex ,
q(t) Ø qdry ,

atm(t) Ø Tmine≠qr (t)
[1 ≠ (q(t) ≠ qr (t))],

atm(t) Æ Tmaxe≠qr (t)
[1 ≠ (q(t) ≠ qr (t))],

Îat(t)Î2 Æ atm(t),
rT
t (t)nt(t) Æ rT

(t)nt(t), t œ [t0, t0 + tcirc ],
ALr(t) Æ bL ≠ ALrF , t œ (t0 + tcirc , tf ],

r(tf ) = rF ,
v(tf ) = 0.

Note that the constraints are linear or second-order cones. The asteroid

gravity field is the sole non-linearity of the model.
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Discretization I

The asteroid gravity field non-linearities are tackled using an iterative
process where the gravity terms are evaluated with the last iteration data

ẋ[j]
= Ax[j]

+ Bu[j]
+ c(r[j≠1]

), x = [rT , vT , q]
T , u = [aT

t , atm]
T ,

A =

S

WWWWWWWWWWU

0 0 0 1 0 0 0

0 0 0 0 1 0 0

0 0 0 0 0 1 0

Ê2
0 0 0 2Ê 0 0

0 Ê2
0 ≠2Ê 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

T

XXXXXXXXXXV

, B =

S

WWWWWWWWWWU

0 0 0 0

0 0 0 0

0 0 0 0

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 ≠v≠1
ex

T

XXXXXXXXXXV

,

c = ≠
nÿ

i=1

Gmi
Îr ≠ riÎ3

2
[0, 0, 0, (x ≠ xi), (y ≠ yi), (z ≠ zi), 0]

T .
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Discretization II

Manoeuvre is discretized into N intervals of duration �T=(tf ≠ t0)/N
Trapezoidal integration rule to obtain the states at the nodes

xk = xk≠1 + �T [A(xk + xk≠1) + B(uk + uk≠1) + ck + ck≠1]/2,

solving for xk

xk = Cxk≠1 + D(uk + uk≠1) + E(ck + ck≠1),

where

C = (I ≠ �TA/2)
≠1

(I + �TA/2),

D = (I ≠ �TA/2)
≠1

�TB/2,

E = (I ≠ �TA/2)
≠1

�T/2.
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Discretization III

Compact formulation1

xS = [xT
1 , . . . , xT

N ]
T , uS = [uT

0 , . . . , uT
N ]

T ,

F =

S

WWWWU

C
C2
.
.
.

CN

T

XXXXV
, H =

S

WWWWU

E(c1 + c0)

E(c2 + c1) + CE(c1 + c0)

.

.

.qN
j=1 CN≠jE(cj + cj≠1)

T

XXXXV
,

G=

S

WWWWU

D D �7◊4 . . . �7◊4
CD (I + C)D D . . . �7◊4

.

.

.
.
.
.

.

.

.
. . .

.

.

.

CN≠1D CN≠2
(I + C)D CN≠3

(I + C)D . . . D

T

XXXXV
.

1Vazquez, R., et al. Control Engineering Practice (2017).
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Discretization IV

Dynamics in compact formulation:

xS = Fx0 + GuS + H.

Discrete optimization problem (SOCP) in compact formulation

min
uS

≠qN ,

s.t. ATminuS Ø bTmin,
ATmaxuS Æ bTmax ,

Îat,kÎ2 Æ atm,k , k = 1 . . . N,
ACSxS Æ bCS ,
ALSxS Æ bLS ,
AMxS Æ bM ,

rN = rF ,
vN = 0.
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Iterative process

Iterative algorithm1
:

1 Evaluate asteroid gravity with the initial spacecraft position, r0.

Consider the vehicle flying at minimum thrust so initial mass

reference is mr ,k=m0≠ k�T (Tmin/vex ).

2 Compute a solution of the SOCP problem, uS
[j] ≠æ r[j]

k , v[j]
k , m[j]

k .

3 Go back to Step 2, using r[j≠1]
k and m[j≠1]

k to update asteroid gravity

and mass, until max(r[j≠1]
k ≠ r[j≠2]

k ) <Tol or j>jmax .

1Pinson, R., et al. AAS/AIAA Astrodynamics Specialist Conference (2015).
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MPC Guidance

Autonomous landing requires a closed-loop scheme to cope with model

uncertainties and disturbances.

A decreasing horizon MPC, relaxing terminal constraints to costs, is

proposed

JMPC = ≠qN + “r (rN ≠ rF )
T I(rN ≠ rF ) + “v vT

N IvN .

1 Use the presented iterative algorithm to start at k = 0 and planning

horizon N.

2 Apply the commanded thrust for the current interval k. Decrease the

planning horizon by one.

3 Since disturbances perturb the planned path, from the reached point

recompute control using JMPC and without terminal constraints. Go

back to Step 2 until the planning horizon ends.
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Simulation parameters I

Asteroid 433 Eros parameters: fl=2.67 g/cm
3
, Trot=5.27 h.

Lander parameters1
: m0=600 kg, mdry =487 kg, Tmax=80 N,

Tmin=20 N, vex=2000 m/s.

Manoeuvre parameters: rF =[≠0.5114, ≠2.836, 1.443]
T

km,

r0=[0, 35, 0]
T

km, v0=[≠3.5709, 0, 0]
T

m/s, tf =2000 s, tcirc=1500

s, x Õ
0=z Õ

0=10 m, cx Õ=cz Õ=1/tan(fi/4).

Mascons model parameters: n=4841 (equidistant), mi=flV /n.

Polyhedron model parameters2
: 25350 vertexes and 49152 faces.

Controller parameters: N=100, �T=20 s, NC=75, “r =“v =100,

jmax=6, Tol=0.02ÎrF Î2.

1Lantoine, G., AE8900 MS Special Problems Report (2006).
2Gaskell, R.W., NASA Planetary Data System (2008).
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Simulation parameters II

Disturbances
1

on each thruster component are added as

Treal = ���(”””◊◊◊)[Tcomm(1 + ”””) + ”””T],

where ”””◊◊◊ is a vector of random small angles, ””” is a vector of random

multiplicative noises and ”””T is a vector of additive noises.

The disturbances model several physical aspects such as alignment

errors, thrust noises or even unmodeled dynamics as SRP, sun gravity,

etc.

Disturbances parameters (normal distributions): ”̄””◊◊◊=0, ”̄””=[0.01,

0.01, 0.01]
T

, ¯”””T=[0.01, 0.01, 0.01]
T Tmax , ���”◊,ij=0.0436”ij ,

���”,ij=0.05”ij , ���”T ,ij=0.02Tmax”ij .

1Gavilan, F., et al. Control Engineering Practice (2012).
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Simulation results I
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Simulation results II
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Simulation results III
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Simulation results IV
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Simulation results V

t [s]
0 500 1000 1500 2000

T 
[N

]

-80
-60
-40
-20

0
20
40
60
80

Lander thrust evolution

||T||2
Tx
Ty
Tz

Universidad de Sevilla Asteroid Soft Landing May 29, 2019 30 / 33



Outline

1 Introduction

2 Asteroid modelling

3 Landing problem

4 Optimal control computation

5 MPC Guidance

6 Results

7 Conclusions

Universidad de Sevilla Asteroid Soft Landing May 29, 2019 31 / 33



Conclusions

A MPC guidance algorithm to autonomously land powered probes

on small bodies while handling with unmodelled dynamics and

disturbances has been presented.

Lossless convexification, discretization and a successive solution
method were features of the solution.

Future work may include comparisons with other state of the art

methods, a detailed sensitivity analysis with problem parameters as

well as including the circumnavigation and landing durations as

decision variables.

Additionally a six-degrees of freedom model shall be considered.

The lander would have an ACS (e.g. reaction wheels or a RCS) to

control its orientation.
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Introduction High level Guidance System Simulations Conclusions

Introduction

Our goal:

Design a path-following guidance system for airplane autonomous operation.
Main features:

Follows a reference

Prescribed flying times

Must take wind into account

The challenge:

Nonlinear model

Disturbances entering the system (wind)

Feasible control solution must be available at any sampling time

Proposed solution:

Hierarchical control architecture to handle system complexity
High level control: airplane guidance

Makes the airplane follow a reference trajectory, computing high level commands

(velocity/flight path angle/bank angle)

Iterative Model Predictive Control: uses robust backup L1 navigation to compute a

“hotstart” solution, refined in a iterative optimization process

Low level control: airplane stabilization and high level (velocity/flight path
angle/bank angle) reference seeking (outside of the scope of this presentation)

Gavilán, Vazquez, Camacho A High-Level Model Predictive Control Guidance Law for Unmanned Aerial Vehicles 3 / 26
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Model Predictive Guidance for UAVs

Model Predictive Control

Using a prediction law xk+1 = f(xk,uk), compute the sequence of control signals along
the prediction horizon uk, uk+1, . . . ,uk+Np�1, which optimizes the desired cost function.

MPC for UAV guidance

1 Discretization.
Sampling time Ts = 1 s

2 Prediction law:

xS = f(uS,x0)
xS = [x1 x2 . . . xNp ]

T

uS = [u0 u1 . . . uNp�1]
T

3 Computation of the optimal control sequence:

mı́n
uS

J(xS(uS)� xref ,S,uS)

3 DoF airplane model:

dx
d t

= V cos � cos�+ wx,

d y
d t

= V cos � sin�+ wy,

d z
d t

= �V sin �,

Nonlinear optimization problem

Gavilán, Vazquez, Camacho A High-Level Model Predictive Control Guidance Law for Unmanned Aerial Vehicles 5 / 26
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Model Predictive Guidance for UAVs

Model Predictive Control

Using a prediction law xk+1 = f(xk,uk), compute the sequence of control signals along
the prediction horizon uk, uk+1, . . . ,uk+Np�1, which optimizes the desired cost function.

MPC for UAV guidance

1 Discretization.
Sampling time Ts = 1 s

2 Prediction law:

xS = f(uS,x0)
xS = [x1 x2 . . . xNp ]

T

uS = [u0 u1 . . . uNp�1]
T

3 Computation of the optimal control sequence:

mı́n
uS

J(xS(uS)� xref ,S,uS)

3 DoF airplane model:

dx
d t

= V cos � cos�+ wx,

d y
d t

= V cos � sin�+ wy,

d z
d t

= �V sin �,

Nonlinear optimization problem
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Discretization of equations of motion

Classic approaches:

xk+1 = Vk cos �k cos�k + xk,

yk+1 = Vk cos �k sin�k + yk,

zk+1 = �Vk sin �k + zk.

Constant heading flight segments, inputs Vk, �k, �k

Instantaneous turns: not feasible

Proposed discretization

xk+1 =
Vk cos �kTs

k
(sin (k + �k)� sin�k) + xk,

yk+1 =
Vk cos �kTs

k
(cos�k � cos (k + �k)) + yk,

zk+1 = �Vk sin �kTs + zk,

�k+1 = k + �k, k =
g tan�k

Vk
.

Constant curvature flight segments: realistic approach

The guidance algorithm handles turn control, inputs Vk, �k, k(�k)

Quite more complex optimization problem
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Proposed guidance strategy

Iterative execution

Linearization:
L1 Guidance LawPosition

Gavilán, Vazquez, Camacho A High-Level Model Predictive Control Guidance Law for Unmanned Aerial Vehicles 7 / 26



Introduction High level Guidance System Simulations Conclusions

Proposed guidance strategy

Linearization:

Disturbance
Estimator

Quadratic Optimization

L1 Guidance LawPosition
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Proposed guidance strategy

Optimización iterativa con
condición inicial factible

Fe
as

ib
le

 S
ol

ut
io

n

Iterative Optimization 
with Feasible Initial

Solution

Low Level Control System

Linearization:

Disturbance
Estimator

Quadratic Optimization

L1 Guidance LawPosition
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Hotstart: L1 Navigation

L1 Navigation

ahor = Nhor
V 2

Lt
sin ⌘hor,

aver = Nver
V 2

Lt
sin ⌘ver.

�� ⇡ ahor

V
Ts, �� ⇡ aver

V
Ts, �V = Vref � V.

L1 modification to include load factors at turns n

For circular flight segments:

n =

r⇣
2V 2 sin ⌘hor

gLt

⌘2
+ 1,

� = sgn(sin ⌘hor) arc cos 1
n .
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Linearized model

Linearized prediction law:

xS = F(x0, ūS)+Gu(x0, ūS)�uS +G��S xS =
⇥
xT
1 xT

2 · · · xT
Np

⇤T

F =

2

66664

f0(ūS,�0) + x0
f1(ūS,�0) + f0(ūS,�0) + x0

.

.

.

fNp�1(ūS,�0) + · · · + f0(ūS,�0) + x0

3

77775
, Gu =

2

666666664

@f0
@uS

(ūS,�0)
@f1
@uS

(ūS,�0) +
@f0
@uS

(ūS,�0)

.

.

.

@fNp�1
@uS

(ūS,�0) + · · · + @f0
@uS

(ūS,�0)

3

777777775

.

Explicit computation of F(x0, ūS) and Gu(x0, ūS)
Additive disturbances included

Constraints:

1 Airplane limitations: lower and upper bounds of the airspeed, flight path angle and

bank angle. u =
⇥
V � 

⇤T
2 Linearization constraints: control signals are bounded to ensure that the

linearization holds
� �u  �uk  �u

with �u = [�V, ��, �]T
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Disturbance estimator

The prediction law requires values for �̄i.

Simple approach to compute from past disturbances:

�̂k =

Pk�1
i=0 e��(k�i)�iPk�1
i=0 e��(k�i)

,

Where �̂k is the estimate of �̄k and � > 0 is a forgetting factor.

This can be written recursively by defining �̂0 = 0,

�̂k =
e��

⇢k

⇣
⇢k�1�̂k�1 + �k�1

⌘
.

where ⇢k =
e��(1�e��k)

1�e�� .

Past disturbances are computed (approximately) by comparing the real airplane state
at each sampling time and the expected state from the prediction in the previous
sampling time:

�k�1 = xk � fk(Vk�1, �k�1,k�1,�k�1)� xk�1.

It is convenient to sample disturbances are sampled at a higher frequency than the
main guidance law.
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Cost Function

If a standard quadratic cost penalizing the position error at each sampling time is
used, we would minimize the di↵erence between the trajectory and virtual waypoints.

However, this approach might lead to an oscillatory trajectory:

Thus, we propose an alternative approach, combining 3 di↵erent cost functions.
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Cost Function
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Cost Function: how to choose weights

The total cost function is a combination of the three cost functions

J(xk,�uS) = J1,k + J2,k + J3,k.

The weights are chosen as

Qi = kQ diag

✓
1

�V 2
,

1
��2

,
1

�2

◆
,

R1,i = kR1⇣i diag (1, 1, 1, 0) ,

R2,i = kR2⇣i,

where �V , �� and � are the input bounds used in the constraints.

⇣i is a function introduced to avoid penalizing errors during the first sampling times:

⇣i =

⇢
0, If i  3,
1, If i 2 [4, Np].

The scalar weights kQ, kR1 and kR2 were chosen performing a Pareto analysis.
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Cost function: how to choose weights

Pareto Analysis to choose relative weights.
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Outline

1 Introduction

2 High level Guidance System

3 Simulations

4 Conclusions

Gavilán, Vazquez, Camacho A High-Level Model Predictive Control Guidance Law for Unmanned Aerial Vehicles 15 / 26



Introduction High level Guidance System Simulations Conclusions

Simulations

Vertical profile of successive trajectories computed along the iterations.
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Simulations I

Comparison with vector field (VF) and L1 guidance for a plane mission
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Simulations II

Trajectory for a 3-D surveillance mission (with wind)
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Simulations III

Time synchronization for a 3-D surveillance mission (with wind)
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Simulations IV

Wind estimation
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Parametric study I

Influence of Np
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Parametric study II

Influence of �
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Parametric study III

Influence of �V
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Conclusions

We have presented a flight control system based on a hierarchical architecture:

Top level: Iterative model predictive guidance

Low level: Flight controller.

X Main features

Robust “hotstart” guidance algorithm. Feasibility assessment

Disturbance (wind) estimator.

Good performances in an accurate simulation model

X Future work

Improve the prediction law.

Optimization of the guidance algorithm, towards a realtime implementation.

Extend guidance algorithm for formation flying.

Develop a flight test campaign.
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§ UAV Contingencies

§ Why AIDL?

§ Why MPC?

§ Control Architecture & Design

§ Simulation & HW-in-loop Testing
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Key UAS/RPAS Integration Requirements

1 Airworthiness

2 Remote pilot 
qualification & training

4 ATC A/G link

3 ATM policy &
ATC procedures

6 C2 link

5 ATC G/G link

8Detect & avoid

LOSS 
OF LINK!

LOSS OF 
SEPARATION!

LOSS OF GPS!
UAV

GCSATC

9 UAV surveillance

10 UAV navigationTraffic

LOSS OF CONTROL!

LOSS OF ENGINE!
11 Emergency flight termination

7 RF spectrum

BOEING PROPRIETARY
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AT or ABOVE FL290

ALT 3500 FT ASL
CTA 09:45:15
SPD 180 KCAS

• Loss of Separation (LoS): Requires UAV to 
(autonomously) generate and execute collision 
avoidance maneuvers and resume back to the original 
flight plan. Key prerequisite to enable safe operations 
of UAS in crowded non-segregated environments. 
Stringent time, spatial and dynamic constraints.

• Loss of Link (LoL): Requires UAV to generate and 
execute lost-link trajectories to reestablish command 
contact. Critical that the UAV’s behavior and position 
be accurately estimated until contact is reestablished. 
High awareness of flight specifications and constraints 
desirable.

• Loss of Engine (LoE): Requires UAV to generate and 
execute emergency landing maneuver. Stringent time, 
spatial and dynamic constraints.

• Loss of Control (LoC): Requires UAV to robustly 
return to flight envelope, and/or adapt to actuator and 
sensor failures, estimate and compensate for severe 
wind conditions. 

BOEING PROPRIETARY

Model-Based Control

Maximize Predictability

Key UAV Contingencies

Trajectory-Based 
Operations
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AIDL - Aircraft Intent Description Language

Requirements Recipe Results
What to fly and why How to operate the AV What comes out

WP2

WP3

WP4

AOB 3000 AGL

ATOA FL240

WP0

VE

A

A′

N′

N

P′

P

Actual trajectory

Predicted trajectory

Vertical profile

Lateral profile

Necessary and 
sufficient 

information that 
determines the 
AV trajectory

WP5WP6

WP1

A method to formally capture the necessary and sufficient information that 
determines the trajectory of an aerial vehicle (AV), i.e. the aircraft intent

AIDL is a domain-specific formal language (DSL) composed of
− An alphabet (set of “instructions” or atomic ways of describing aircraft behavior)
− A lexicon (set of rules that govern the legal/meaningful combination of elements from the alphabet)
− A sequence control mechanism (set of “triggers” that switch behavioral changes upon reaching conditions)
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AIDL Aircraft Motion Model

Momentum Equations
Mass variation
Navigation Equations

+

Initial conditions

Aircraft performance model

+

Motion model

+
Earth model
(Geodetic, Geopotential, Atmosphere)

+

Motion DOFs:
1st DOF – Coordinated lateral control (ailerons + rudder)
2nd DOF – Longitudinal control (elevators)
3rd DOF – Thrust control (throttle)

xBFS

zBFS

yBFS

Configuration DOFs:
1st DOF – High lift devices
2nd DOF – Speed brakes
3rd DOF – Landing gear
4rd DOF – Altitude reference (baroaltimeter setting)

d High-Lift Devices = c1(t)
d Speed Brakes = c2(t)
d Landing Gear = c3(t)
d Altitude Reference = c4(t)

Configuration model

d Lateral = q1(t)
d Longitudinal = q2(t)
d Thrust = q3(t)

Control/guidance model
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Momentum Equations
Mass variation
Navigation Equations

+

Initial conditions

Aircraft performance model

+

Motion model

+
Earth model
(Geodetic, Geopotential, Atmosphere)

+

d High-Lift Devices = c1(t)
d Speed Brakes = c2(t)
d Landing Gear = c3(t)
d Altitude Reference = c4(t)

Configuration model

d Lateral = q1(t)
d Longitudinal = q2(t)
d Thrust = q3(t)

Control/guidance model

Aircraft-specific characteristics

Environment-specific characteristics

Characteristics specific to the particular 
aircraft motion at hands

Universal equations governing any 
possible aircraft motion

AIDL Aircraft Motion Model
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Momentum Equations
Mass variation
Navigation Equations

+

Initial conditions

Aircraft performance model

+

Motion model

+
Earth model
(Geodetic, Geopotential, Atmosphere)

+

aircraft-specific characteristics

Environment-specific characteristics

Trajectory Recipe

Universal equations governing any 
possible aircraft motion

d High-Lift Devices = c1(t)
d Speed Brakes = c2(t)
d Landing Gear = c3(t)
d Altitude Reference = c4(t)

Configuration model

d Lateral = q1(t)
d Longitudinal = q2(t)
d Thrust = q3(t)

Control/guidance model
Aircraft Intent

Description of how the configuration and motion 
degrees of freedom shall be governed along the 
time so the resulting aircraft motion gets 
univocally determined

i.e. anticipated unambiguous description on how 
the aircraft is to be operated over time 

AIDL Aircraft Motion Model
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Motion profiles (M=L∪V∪E∪S∪T)

Longitudinal (LON=V∪E) Propulsive (PROP=S∪T)

AIDL Alphabet and Lexicon

Set
Law
Hold

Open loop input

AIDL Alphabet

AIDL Lexicon
• 7 instructions, each from a different group
• Of the 7, 3 must belong to motion profiles and 4

to the configuration profile
• The 3 motion instructions must belong to 

different motion profiles (L, V, S, T)
• Of the 3 motion instructions, 1 must come from 

the lateral profile (L)

Lateral (LAT=L)

Speed/Time (S) Thrust (T)

19 HSL Horizontal Speed Law g(vTAScosγTAS,E)=f(X,E,t)

20 HHS Hold Horizontal Speed g(vTAScosγTAS,E)=0

21 SL Speed Law g(vTAS,E)=f(X,E,t)

22 HS Hold Speed g(vTAS,E)=0

23 TL Time Law t=g(vTAScosγTAS, E)

8 VPL Vertical Path Law h=f(λ,φ,t)

9 AL Altitude Law g(h,E)=f(X,E,t)

10 HA Hold Altitude g(h,E)=0

11 SPA Set Path Angle
g(γTAS,E)=f(X,E,t)

12 PAL Path Angle Law

13 HPA Hold Path Angle g(γTAS,E)=0

14 OLPA Open Loop Path Angle g(γTAS,E)=f(t)

24 STC Set Throttle Control
g(δT)=f(X,E,t)

25 TCL Throttle Control Law

26 HTC Hold Throttle Control g(δT)=0

27 OLTC Open Loop Throttle Control g(δT)=f(t)

# Keyword Instruction Effect

1 SBA Set Bank Angle
g(μTAS)=f(X,E,t)

2 BAL Bank Angle Law

3 HBA Hold Bank Angle g(μTAS)=0

4 OLBA Open Loop Bank Angle g(μTAS)=f(t)

5 CL Course Law g(χTAS,E)=f(X,E,t)
6 HC Hold Course g(χTAS,E)=0
7 LPL Lateral Path Law f(λ,φ,t)=0

17 EL Energy Law g(dvTAS/dh,E)=f(X,E,t)

18 HE Hold Energy g(dvTAS/dh,E)=0

# Keyword Instruction Effect

15 VSL Vertical Speed Law g(vTASsinγTAS,E)=f(X,E,t)

16 HVS Hold Vertical Speed g(vTASsinγTAS,E)=0

Allowed combinations of motion profiles
1st DOF L L L L Lateral profile (LAT)
2nd DOF V V E S Longitudinal profile (LON)
3rd DOF S T T T Propulsive profile (PROP)

Energy (E)Vertical(V)

LDC TCSGPAGLDG AG HSGVSGLPG VPG

SL
HS

CL HSL
HHS

SBA
BAL
HBA
OLBA

HC
LPL AL

HA

SPA
PAL
HPA

VPL VSL
HVS

ST
TL
HT
OLT

EG

EL
HE

OLPA

TG

TL
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AIDL Sample Trajectory

Vertical profile

O… PP
c

L1
c
L1

PP ORTO PP PP
c
L1

c
L1

c
L1

c
L1

c
L1

c
L1

c
WP7WP1

cWP0:L1

WP0

WP1

WP4

WP5

WP6

WP7

i
M.78

c
V0

c
AT1000

STHS MACH HS CAS

HSB

HLGSLG

c
HIDL

x

HS CAS
i

CAS 280

i
CAS180

x x xc
30%

c
60%

c
90%

x

HSB

HHL SHL HHL SHL HHL

LG DWN
c

CAS>250
x

SHL

i
AT6000

WP4

x

C… OO

HA

C… OO

HS MACH

HT

HLG

HSB

HAR HAR

HT

HHL

MACH/CAS transition altitude

TOD

ST
c

LIDL

WP5 WP6

CAS250 CAS220

WP4 WP5 WP6

WP7

RWY

Lateral profile

1 2 3 4 5 6 7 8 9 10 11 12 13 .. 15 .. 17 18 .. 20 21 .... 24

ORTO PP

FL240

3000 AGL

AT 1000 AGL

c
AT3000:V1

c
V0

CIRC OOCIRC PP

AR

LG

SB

HL

LAT

LON

PROP

Ops

Point Orto Circle

LL PP PR

OO PC OO

CP

CC

PS

PP

Helix

HELIX PSHELIX PS HELIX PP

WP2

WP3

CIRC OOORTO PPCIRC OOORTO PP
cWP3:L1cWP2:L1cWP1:L1c WP0

0.40.30.20.1

WP0

WP2

WP3

WP4

WP5

WP1

AOB 3000 AGL

ATA FL240

WP0

WP6
WP7

AT 1000 AGL

Hippodrome Eight

OR

OC

PPR

PBR

PBP

c

WP1 WP2 WP0WP3 WP1

At (altitude) wih path angle

At (altitude)

At (altitude) or below (AOB)
At (altitude) or above (AOA)

Waypoint with  bearing
Distance/time signaled waypoint

L2/V2 continuity symbol

L0/V0 continuity symbol

Reference fix/point
Waypoint (L0 continuity)
Waypoint with L1 continuity

Waypoint with L2 continuity

L1/V1 continuity symbol

Begin of AI instance

End of AI instance

Constraint trigger
i Inspective trigger
x Explicit trigger

Milestone

Diverter

Simultaneity link

Diversion link

AIDL – Abstract view

Latitude

Longitude

Altitude

Distance
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Why MPC?
§ Model Predictive Control is a family of control methods which make explicit 

use of a process model to obtain the control by repeated optimization of an 
objective function over a receding time horizon

§ Fits naturally into AIDL framework by expressing cost function as minimization of 
error to motion constraints associated to AIDL instructions  

§ Handle hybrid nature by considering trigger activation within receding horizon

§ Implement on low SWaP in real-time
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AIDL-MPC Flight Control Architecture
▪ Top Level MPC:

– Follows three AIDL threads (lateral, longitudinal, propulsive) by enforcing their 
respective constraints

– Checks for trigger activation during horizon and in each thread
– Considers estimated wind

▪ Low Level MPC:
– Receives virtual setpoints from high-level, which may vary depending upon active 

AIDL instructions, and defines four actuation inputs
– Maintains symmetric flight 
– Operates at 50Hz
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AIDL-MPC Flight Control Architecture
▪ Top Level MPC:

– State: () = +, λ, ℎ, /0, χ203, 4203 )

– Control: 5) = 6, 7203, 89 ) (virtual)
– Problem formulation:

min
=

>((, 5, (@AB, 5@AB)

D. F. () = G ()HI, ()HI
5JKL ≤ 5 ≤ 5J0N
O( = P

– Iterative, discrete state propagation for entire horizon is defined from 
nonlinear model

∆( = R S ∆5

– Repeated linearization in each control cycle together with Sequential 
Quadratic Programming (SQP) strategy are used

– Prediction horizon: 7.5s, Control horizon: 5s, Frequency: 2Hz.
– Repeat calculation of longitudinal degree of freedom in separate MPC to 

capture faster altitude dynamics
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AIDL-MPC Flight Control Architecture
▪ Top Level MPC objective function:

▪ Substitute ∆( = R S ∆5 and use 5@AB,) = 5)HI,  > = >N + >=

▪ Coefficients take on 0 or 1 for time step i depending upon whether 
corresponding AIDL instruction is active or control not specifically set
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AIDL-MPC Trigger Handling
▪ Triggers indicate transitions from one AIDL instruction to another
▪ They are typically time or state dependent
▪ The assumption is made that at most one trigger may appear in the 

prediction horizon in each motion thread
▪ Trigger identification and decoupling from optimization:

– At each iteration, zero detection algorithm is run to check if and when 
trigger condition is satisfied

– Once time is identified, objective function is generated appropriately along 
prediction horizon

– After optimization, predicted state and subsequently trigger are updated
▪ Numerical issues obligate the modification of the trigger conditions into  

detection of interval crossing
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AIDL-MPC Experimental Testing
▪ Simulation scenario of flying around fictitious base with takeoff, 

contingency, and landing maneuvers

▪ Wide range of 
wind relative and 
absolute 
instructions and 
trigger conditions 
have been tested.

▪ Control 
performance 
achieves near 
exact theoretical 
trajectory 
prediction, even in 
the presence of 
wind turbulence.
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AIDL-MPC HW-in-loop Testing
▪ Flight hardware from Skylife Engineering 

with Gumstix DuoVero Crystal (Clock speed 
1GHz, Dual Core, 1 Gb RAM, Linux OS

▪ One core calculates: 
– AHRS/EKF Navigation based upon sensor 

inputs from 9-DOF IMU, wind vanes, air data 
sensors

– AIDL-based Guidance system which feeds 
control with formulation of current AIDL 
instructions, next trigger conditions and 
following set of AIDL instructions

– Low-level MPC
▪ Second core calculates: 

– Top-level MPC
▪ Connected by usb to PC upon which runs:

– Full flight and actuator dynamics
– Environmental model including wind 

turbulence
– Sensor models

MPC dimensioning
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