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a b s t r a c t

We present a PDE observer that estimates the velocity, pressure, electric potential and current fields in a
magnetohydrodynamic (MHD) channel flow, also known as Hartmann flow. This flow is characterized by
an electrically conducting fluid moving between parallel plates in the presence of an externally imposed
transverse magnetic field. The system is described by the inductionless MHD equations, a combination
of the Navier–Stokes equations and a Poisson equation for the electric potential under the so-called
inductionless MHD approximation in a low magnetic Reynolds number regime. We identify physical
quantities (measurable on the wall of the channel) that are sufficient to generate convergent estimates
of the velocity, pressure, and electric potential field away from the walls. Our observer consists of a
copy of the linearized MHD equations, combined with linear injection of output estimation error, with
observer gains designed using backstepping. Pressure, skin friction and current measurements from one
of the walls are used for output injection. For zero magnetic field or nonconducting fluid, the design
reduces to an observer for theNavier–Stokes Poiseuille flow, a benchmark for flow control and turbulence
estimation. We show that for the linearized MHDmodel the estimation error converges to zero in the L2
norm. Despite being a subject of practical interest, the problem of observer design for nondiscretized 3-D
MHD or Navier–Stokes channel flow has so far been an open problem.

© 2008 Elsevier Ltd. All rights reserved.
1. Introduction

Recent years have been marked by dramatic advances in
active flow control, but developments have had little effect on
conducting fluidsmoving inmagnetic fields. There are some recent
results in stabilization though, for instance using nonlinear model
reduction (Baker & Christofides, 2002), open-loop control (Berger,
Kim, Lee, & Lim, 2000) and optimal control (Debbagh, Cathalifaud,
& Airiau, 2007). Some experimental results are available, showing
that control of such flows is technologically feasible; actuators
consist of magnets and electrodes (Breuer & Park, 2004; Pang
& Choi, 2004; Thibault & Rossi, 2003). Mathematical studies of
controllability of magnetohydrodynamic flows have been done,
though they do not provide explicit controllers (Barbu, Popa,
Havarneanu, & Sritharan, 2003; Sritharan, Barbu, Havarneanu, &
Popa, 2005). Despite being a subject of obvious practical interest,
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there are no previous results focusing on estimation of the velocity
and electromagnetic fields for conducting fluids.

In this paper, we consider an incompressible MHD channel
flow, also known as the Hartmann flow, a benchmark model for
applications such as cooling systems (computer systems, fusion
reactors), hypersonic flight, propulsion and laser applications. In
this flow, an electrically conducting fluid moves between parallel
plates and is affected by an imposed transverse magnetic field.
When a conducting fluid moves in the presence of a magnetic
field, it produces an electric field due to charge separation and
subsequently an electric current. The interaction between this
created electric current and the imposed magnetic field originates
a body force, called the Lorentz force, which acts on the fluid
itself. The velocity and electromagnetic fields are mathematically
described by theMHDequations (Muller & Buhler, 2001; Sermange
& Temam, 1983), which are the Navier–Stokes equations coupled
with the Maxwell equations.

Our observer obtains an estimate of the whole velocity,
pressure, electric potential and current fields, derived only from
wall measurements. Obtaining such an estimate can be of interest
in itself, depending on the application. For example, the absence
of effective state estimators modeling turbulent fluid flows is
considered one of the key obstacles to reliable, model-based
weather forecasting. In other engineering applications in which
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active control is needed, such as drag reduction (Pang & Choi,
2004) or mixing enhancement for cooling systems (Schuster
& Krstic, 2003), designs usually assume unrealistic full state
knowledge, therefore a state estimator is necessary for effective
implementation.

This paper extends our previous work for estimation of the
velocity field in a 2-D channel flow (Vazquez & Krstic, 2005). Our
observer is designed for the continuumMHDmodel and consists of
a copy of the plant together with output injection of measurement
error. We identify which physical quantities (measurable on the
wall of the channel) are sufficient to generate convergent estimates
of the velocity, pressure, and electric potential field away from
the walls. The main idea of the design is to apply the observer
backstepping design method for parabolic PDEs (Smyshlyaev &
Krstic, 2005) to the estimator error system; this system is similar
to the Orr–Sommerfeld–Squire system of PDE’s and presents the
same difficulties (nonnormality leading to a large transient growth
mechanism (Jovanovic & Bamieh, 2005; Schmid & Henningson,
2001)). Thus, applying the same ideas as in Cochran, Vazquez,
and Krstic (2006), we use Fourier transform methods and some
of the output injection gains to cast the system in a form
where backstepping is applicable. Then, we design the remaining
output injection gains not only to guarantee stability but also
to decouple the system in order to prevent transients. The
output injection gains can be computed solving linear hyperbolic
PDEs—a much simpler task than, for instance, solving nonlinear
Riccati equations (Smyshlyaev & Krstic, 2004). The observer needs
measurements of pressure, skin friction and current at only one of
the channel walls.

If the fluid is not conductive, or there is no magnetic field,
the problem reduces to the Poiseuille channel flow problem
and our observer design still holds. Frequently cited as a
paradigm for transition to turbulence (Schmid & Henningson,
2001), the Poiseuille flow is a prototypical problem for flow control
and turbulence estimation. There are many results in channel
flow stabilization, for instance, using optimal control (Hogberg,
Bewley, & Henningson, 2003), backstepping (Vazquez & Krstic,
2007), spectral decomposition/pole placement (Barbu, 2006;
Triggiani, 2007), Lyapunov design/passivity (Aamo & Krstic, 2002;
Balogh, Liu, & Krstic, 2001), or nonlinear model reduction/in-
domain actuation (Baker, Armaou, & Christofides, 2000). Observer
designs are more scarce; apart from the continuum backstepping
approach (Vazquez & Krstic, 2005), previous works were in the
form of an Extended Kalman Filter for the spatially discretized
Navier–Stokes equations, employing high-dimensional algebraic
Riccati equations for computation of observer gains (Chevalier,
Hoepffner, Bewley, & Henningson, 2006; Hoepffner, Chevalier,
Bewley, & Henningson, 2005).

The paper is organized as follows. Section 2 introduces the
governing equations of our system. The equilibrium profile
is presented in Section 3 and the observer structure and
measurements are introduced in Section 4. Section 5 presents the
design of the output injection gains to guarantee convergence
of the observer estimates. In Section 6 we present a nonlinear
estimator based on the linear design. We finish the paper with
some concluding remarks in Section 7.

2. Model of the Hartmann flow

Consider an incompressible conducting fluid enclosed between
two plates, separated by a distance L, under the influence of a
pressure gradient ∇P and a magnetic field B0 normal to the walls,
as shown in Fig. 1. Under the assumption of a very small magnetic
Reynolds number

ReM = νρσU0L � 1, (1)
Fig. 1. Hartmann flow.

where ν is the viscosity of the fluid, ρ the density of the fluid,
σ the conductivity of the fluid, and U0 the reference velocity
(maximum velocity of the equilibrium profile), the dynamics of
themagnetic field can be neglected and the dimensionless velocity
and electric potential field is governed by the inductionless MHD
equations (Lee & Choi, 2001).

We set nondimensional coordinates (x, y, z), where x is the
streamwise direction (parallel to the pressure gradient), y the wall
normal direction (parallel to the magnetic field), z the spanwise
direction, andwhere (x, y, z) ∈ (−∞,∞)×[0, 1]×(−∞,∞). Let
ft denote the timederivative of a function f , similarly fx, fy and fz the
derivatives with respect to x, y and z, and define the 3-D Laplacian
operator as 4 = ∂xx + ∂yy + ∂zz . The governing equations of the
Hartmann flow are

Ut =
4U
Re

− UUx − VUy − WUz − Px + Nφz − NU, (2)

Vt =
4V
Re

− UVx − VVy − WVz − Py, (3)

Wt =
4W
Re

− UWx − VWy − WWz − Pz − Nφx − NW , (4)

4φ = Uz − Wx, (5)
where U(t, x, y, z), V (t, x, y, z) and W (t, x, y, z) denote, respec-
tively, the streamwise, wall-normal and spanwise velocities,
P(t, x, y, z) the pressure, φ(t, x, y, z) the electric potential, Re =

U0L
ν

is the Reynolds number andN =
σ LB20
ρU0

the Stuart number. Since
the fluid is incompressible, the continuity equation is verified
Ux + Vy + Wz = 0. (6)
The boundary conditions for the velocity field are
U(t, x, 0, z) = U(t, x, 1, z) = 0, (7)
V (t, x, 0, z) = V (t, x, 1, z) = 0, (8)
W (t, x, 0, z) = W (t, x, 1, z) = 0, (9)
and assuming perfectly conducting walls, the electric potential
must verify
φ(t, x, 0, z) = φ(t, x, 1, z) = 0. (10)
The nondimensional electric current, j(t, x, y, z), is a vector field
that can be directly computed from the electric potential and
velocity fields as follows,

jx(t, x, y, z) = −φx − W , (11)

jy(t, x, y, z) = −φy, (12)

jz(t, x, y, z) = −φz + U, (13)
where jx, jy, and jz denote the components of j.

Remark 1. If we set N = 0 (zero magnetic field, or nonconducting
fluid) in Eqs. (2)–(5), they reduce to the classical Navier–Stokes
equations without body forces. Then Eqs. (2)–(4) and (6)–(9)
describe a pressure driven channel flow, the so-called Poiseuille
flow.
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3. Equilibrium profile

The equilibrium profile for system (2)–(5) can be calculated
assuming a steady solutionwith only one nonzero nondimensional
velocity component, Ue, that depends only on the y coordinate.
Substituting Ue in Eq. (2), one finds that it verifies the following
equation,

0 =
Ue
yy(y)

Re
− Pe

x − NUe(y), (14)

whose solution is, setting Pe such that the maximum velocity
(centerline velocity) is 1,

Ue(y) =
sinh(H(1 − y))− sinhH + sinh(Hy)

2 sinhH/2 − sinhH
, (15)

V e
= W e

= φe
= 0, (16)

Pe
=

N sinhH
2 sinhH/2 − sinhH

x, (17)

jxe = jye = 0, (18)

jze = Ue(y), (19)

where H =
√
Re N = B0L

√
σ
ρν

is the Hartmann number. In

Fig. 2 (left) we show Ue(y) for different values of H . Note that
the equilibrium profile is nondimensional so that the centerline
velocity is always 1. For H = 0 the classic parabolic Poiseuille
profile is recovered. In Fig. 2 (right) we show the equilibrium
velocity gradient, Ue

y(y), proportional to shear stress, whose
maximum is reached at the boundaries and grows with H .

4. Observer

Define the fluctuation variables

u(t, x, y, z) = U(t, x, y, z)− Ue(y), (20)

where Ue(y) is the equilibrium of the Hartmann flow, as defined in
(15). Define also p(t, x, y, z) = P(t, x, y, z)− Pe(y)where Pe(y) is
defined in (17). We do not need to define fluctuation variables for
V ,W or φ since V e

= W e
= φe

= 0.
The linearization of (2)–(4) around the Hartmann equilibrium

profile, written in the fluctuation variables (u, V ,W , p, φ), is

ut =
4u
Re

− Ue(y)ux − ue
y(y)V − px + Nφz − NU, (21)

Vt =
4V
Re

− Ue(y)Vx − py, (22)

Wt =
4W
Re

− Ue(y)Wx − pz − Nφx − NW . (23)

Note that we don’t need to linearize the potential Eq. (5), which
using u is now 4φ = uz − Wx, or the continuity Eq. (6), which is
ux + Vy + Wz = 0, as they are already linear.

We design the observer for the linearized equations. It consists
of a copy of (21)–(23) and (5)–(10), to which we add output
injection of the pressure p, the potential flux φy (proportional
to current), and both the streamwise and spanwise velocity
gradients, uy and Wy, (proportional to friction) at the bottom
wall. We will show that this set of measurements (all of which
are obtained from physically measurable quantities) is sufficient
to generate convergent estimates of the velocity, pressure, and
electric potential field away from the walls.
Denoting the observer (estimated) variables by a hat, the
equations for the estimated velocity field are

ût =
4û
Re

− Ue(y)ûx − Ue
y(y)V̂ − p̂x + Nφ̂z − Nû − Q U , (24)

V̂t =
4V̂
Re

− Ue(y)V̂x − p̂y − Q V , (25)

Ŵt =
4Ŵ
Re

− Ue(y)Ŵx − p̂z − Nφ̂x − NŴ − QW . (26)

The additional Q terms in the observer equation are related to
output injection and defined as follows.Q U

Q V

QW

 =

∫
∞

−∞

∫
∞

−∞

L(x − ξ, y, z − ζ )

×


p(t, ξ , 0, ζ )− p̂(t, ξ , 0, ζ )
uy(t, ξ , 0, ζ )− ûy(t, ξ , 0, ζ )
Wy(t, ξ , 0, ζ )− Ŵy(t, ξ , 0, ζ )
φy(t, ξ , 0, ζ )− φ̂y(t, ξ , 0, ζ )

 dξdζ , (27)

where L is an output injection kernel matrix, defined as

L =

LUP LUU LUW LUφ

LVP LVU LVW LVφ

LWP LWU LWW LWφ

 , (28)

whose entries (which are functions of space) will be determined to
ensure observer convergence. The estimated potential is computed
from

4φ̂ = ûz − Ŵx, (29)

and the observer verifies the continuity equation,

ûx + V̂y + Ŵz = 0, (30)

and Dirichlet boundary conditions,

û(t, x, 0, z) = Ŵ (t, x, 0, z) = V̂ (t, x, 0, z) = 0, (31)

û(t, x, 1, z) = Ŵ (t, x, 1, z) = V̂ (t, x, 1, z) = 0, (32)

φ̂(t, x, 0, z) = φ̂(t, x, 1, z) = 0. (33)

The estimated current field is computed from the other estimated
variables using a copy of Eqs. (11)–(13).

ĵx(t, x, y, z) = −φ̂x − Ŵ , (34)

ĵy(t, x, y, z) = −φ̂y, (35)

ĵz(t, x, y, z) = −φ̂z + û. (36)

Remark 2. Note that the observer Eqs. (24)–(36) can be regarded
as forced MHD equations, with the output injection acting as a
body force. This means that any standard scheme for solving the
forced MHD equations can be used to implement the observer,
once the gains L in (28) have been calculated, as explained in the
next section (the gains can be pre-computed before running the
observer, and do not need to be updated afterwards).

Remark 3. As inputs to the observer, appearing in (27), one needs
measurements of pressure, skin friction and current in the lower
wall. For obtaining these measurements, pressure, skin friction
and current sensors have to be embedded into one of the walls.
Pressure and skin friction sensors are common in flow control,
while for current measurement one could use an array of discrete
current sensors, as depicted in Fig. 3.
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Fig. 2. Streamwise equilibrium velocity (left) and gradient of streamwise equilibrium velocity (right), for different values of H . Solid, H = 0; dash-dotted, H = 10; dashed,
H = 50.
Fig. 3. An array of current sensors in the lower wall.

5. Observer design and convergence analysis

Subtracting the observer equations from the linearized plant
equations we obtain the error equations, with states Ũ = u − û =

U − Û, Ṽ = V − V̂ , W̃ = W − Ŵ , P̃ = p − p̂, φ̃ = φ − φ̂,

Ũt =
4Ũ
Re

− Ue(y)Ũx − Ue
y(y)Ṽ − P̃x + Nφ̃z − NŨ + Q U , (37)

Ṽt =
4Ṽ
Re

− Ue(y)Ṽx − P̃y + Q V , (38)

W̃t =
4W̃
Re

− Ue(y)W̃x − P̃z − Nφ̃x − NW̃ + QW . (39)

The observer error verifies the continuity equation,

Ũx + Ṽy + W̃z = 0, (40)

while the potential error is governed by

4φ̃ = Ũz − W̃x. (41)

The boundary conditions for the error states are

Ũ(t, x, 0, z) = Ṽ (t, x, 0, z) = W̃ (t, x, 0, z) = 0, (42)

Ũ(t, x, 1, z) = Ṽ (t, x, 1, z) = W̃ (t, x, 1, z) = 0, (43)

φ̃(t, x, 0, z) = φ̃(t, x, 1, z) = 0. (44)

To guarantee observer convergence, our design task is to design the
output injection gains L defined in (27) that appear in Q U , Q V and
QW , so that the origin of the error system is exponentially stable.

Since the observer error plant is linear and spatially invari-
ant (Bamieh, Paganini, & Dahleh, 2000), we use a Fourier transform
in the x and z coordinates (the spatially invariant directions). The
transform pair (direct and inverse transform) is defined as

f (t, kx, y, kz) =

∫
∞

−∞

∫
∞

−∞

f (t, x, y, z)e−2π i(kxx+kz z)dzdx, (45)

f (t, x, y, z) =

∫
∞

−∞

∫
∞

−∞

f (t, kx, y, kz)e2π i(kxx+kz z)dkzdkx. (46)

Note that we use the same symbol f for both the original
f (t, x, y, z) and the image f (t, kx, y, kz). In hydrodynamics kx and
kz are referred to as the ‘‘wave numbers’’.

The observer error equations in Fourier space are

Ũt =
−α2Ũ + Ũyy

Re
− βŨ − Ue

y Ṽ − 2πkxiP̃ + LUPP0 + LUUUy0

+ LUWWy0 + LUφφy0 + 2πkz iNφ̃ − NŨ, (47)

Ṽt =
−α2Ṽ + Ṽyy

Re
− βṼ − P̃y

+ LVPP0 + LVUUy0 + LVWWy0 + LVφφy0, (48)

W̃t =
−α2W̃ + Wyy

Re
− βW̃ − 2πkz iP̃ + LWPP0 + LWUUy0

+ LWWWy0 + LWφφy0 − 2πkxiNφ̃ − NW̃ (49)

where α2
= 4π2(k2x + k2z ), the L’s are the entries of L in Fourier

space, and where we have used the definition (27) of the output
injection terms as convolutions, which become products in Fourier
space. We have written for short P0 = P̃(t, kx, 0, kz), Uy0 =

Ũy(t, kx, 0, kz),Wy0 = W̃y(t, kx, 0, kz), φy0 = φ̃y(t, kx, 0, kz).
The continuity equation in Fourier space is expressed as

2π ikxŨ + Ṽy + 2πkzW̃ = 0, (50)

and the equation for the potential is

−α2φ̃ + φ̂yy = 2π i
(
kz Ũ − kxW̃

)
. (51)

Note that (47)–(51) is uncoupled for eachwave number. This is due
to spatial invariance (Bamieh et al., 2000) of the plant and linearity
of the equations in physical space, (37)–(39). Hence, the observer
gains can be determined separately for each pair of wave numbers
kx and kz . For small wave numbers, verifying that k2x + k2z ≤ M2 for
a parameter M that will be determined, we will design the output
injection gains L to guarantee exponential stability of the origin
of the error system (47)–(51), thus ensuring convergence of the
estimates.Wewill refer to thewave number range k2x +k2z ≤ M2 as
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the observedwave number range. For the rest of thewave numbers,
that verify k2x + k2z > M2, we will show that the origin of the error
system (47)–(51) is already exponentially stable without output
injection, so we just set L = 0. We will refer to this wave number
range as the unobserved wave number range. Once stability for all
wave numbers (in both the observed and unobserved range) is
established, stability in physical space follows (see Vazquez and
Krstic (2007)). The numberM is computed in Section 5.2 to ensure
stability for the unobserved wave number range.

We define χ , a truncating function, as

χ(kx, kz) =

{
1, k2x + k2z ≤ M2,
0, otherwise. (52)

Then, we reflect that we don’t use output injection for unobserved
wave numbers by writing

L = χ(kx, y, kz)R(kx, y, kx). (53)

This can be written in physical space, using the definition of the
Fourier transform, as

L(x, y, z) =

∫
∞

−∞

∫
∞

−∞

χ(kx, y, kz)R(kx, y, kz)

× e2π i(kxx+kz z)dkzdkx. (54)

The matrix R is defined as

R =

RUP RUU RUW RUφ

RVP RVU RVW RVφ

RWP RWU RWW RWφ

 , (55)

and using Rwe can write the observer error equations as

Ũt =
−α2Ũ + Ũyy

Re
− βŨ − Ue

y Ṽ − 2πkxiP̃ + χ(kx, kz)

×
{
RUPP0 + RUUUy0 + RUWWy0 + RUφφy0

}
+ 2πkz iNφ̃ − NŨ, (56)

Ṽt =
−α2Ṽ + Ṽyy

Re
− βṼ − P̃y + χ(kx, kz)

×
{
RVPP0 + RVUUy0 + RVWWy0RVφφy0

}
, (57)

W̃t =
−α2W̃ + Wyy

Re
− βW̃ − 2πkz iP̃ + χ(kx, kz)

×
{
RWPP0 + RWUUy0 + RWWWy0 + RWφφy0

}
− 2πkxiNφ̃ − NW̃ . (58)

Note that once R is determined, we obtain L using (54).

5.1. Observed wave number analysis

Consider k2x + k2z ≤ M2. Then χ = 1, so output injection is
present. Using the continuity equation (50) and Eqs. (56)–(58), the
following Poisson equation for the pressure is derived,

−α2P̃ + P̃yy = Υ − 4πkxiUe
y(y)Ṽ + NVy, (59)

where Υ contains all the terms due to output injection,

Υ = P0
(
2π ikxRUP

+ RVP
y + 2πkzRWP)

+Uy0
(
2π ikxRUU

+ RVU
y + 2πkzRWU)

+Wy0
(
2π ikxRUW

+ RVW
y + 2πkzRWW )

+φy0
(
2π ikxRUφ

+ RVφ
y + 2πkzRWφ) . (60)
We want to make (59) independent of the output injection gains,
for which we need Υ = 0. Hence, we set
RVP(kx, y, kz) = RVP(kx, 0, kz)

− 2π i
∫ y

0

(
kxRUP

+ kzRWP) (kx, η, kz)dη, (61)

RVU(kx, y, kz) = RVU(kx, 0, kz)

− 2π i
∫ y

0

(
kxRUU

+ kzRWU)
(kx, η, kz)dη, (62)

RVW (kx, y, kz) = RVW (kx, 0, kz)

− 2π i
∫ y

0

(
kxRUW

+ kzRWW )
(kx, η, kz)dη, (63)

RVφ(kx, y, kz) = RVφ(kx, 0, kz)

− 2π i
∫ y

0

(
kxRUφ

+ kzRWφ) (kx, η, kz)dη, (64)

which means that, in physical space, ∇ · L = 0. Hence, as Eq. (59)
is derived by taking divergence of (56)–(58), the output injection
terms cancel away.

Expression (59) can be solved in terms of the values of the
pressure at the bottom wall.

P̃ = −
4πkxi
α

∫ y

0
Ue
y(η) sinh (α(y − η)) Ṽ (t, kx, η, kz)dη

+ cosh (αy) P0 +
sinh (αy)

α
P̃y(t, kx, 0, kz)

+N
∫ y

0

sinh (α(y − η))

α
Ṽy(t, kx, η, kz)dη. (65)

Evaluating Eq. (57) at y = 0 one finds that

P̃y(t, kx, 0, kz) = Υ0 +
Ṽyy(t, kx, 0, kz)

Re

= Υ0 − 2π i
kxUy0 + kzW̃y0

Re
, (66)

where we have used (50) for expressing Ṽyy at the bottom in terms
of measurements. In (66),
Υ0 = P0RVP(kx, 0, kz)+ Uy0RVU(kx, 0, kz)

+Wy0RVW (kx, 0, kz)+ φy0RVφ(kx, 0, kz), (67)
and as before we need the pressure to be independent of any
output injection gains. Hence, we set
RVP(kx, 0, kz) = RVU(kx, 0, kz) = RVW (kx, 0, kz)

= RVφ(kx, 0, kz) = 0. (68)
Then, the pressure can be expressed independently of the
output injection gains in terms of a strict-feedback (Krstic,
Kanellakopoulos, & Kokotovic, 1995) integral of the state Ṽ and
measurements,

P̃ = −
4πkxi
α

∫ y

0
Ue
y(η) sinh (α(y − η)) Ṽ (t, kx, η, kz)dη

+ cosh (αy) P0 − 2π i
sinh (αy)

Reα

(
kxUy0 + kzWy0

)
+N

∫ y

0

sinh (α(y − η))

α
Ṽy(t, kx, η, kz)dη. (69)

Similarly, solving for φ in terms of the measurement φy0 and the
right hand side of its Poisson Eq. (51),

φ̃ =
2π i
α

∫ y

0
sinh (α(y − η))

(
kz Ũ(t, kx, η, kz)

− kxW̃ (t, kx, η, kz)
)
dη +

sinh (αy)
α

φy0. (70)
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Introducing the expressions (69) and (70) in (56) and (58), we
get

Ũt =
−α2Ũ + Ũyy

Re
− βŨ − Ue

y(y)Ṽ − NŨ

+ P0
(
RUP

− 2πkxi cosh (αy)
)

+Uy0

(
RUU

−
4π2k2x
αRe

sinh (αy)
)

+Wy0

(
RUW

−
4π2kxkz
αRe

sinh (αy)
)

+φy0

(
RUφ

+ N
2πkz i
α

sinh (αy)
)

−
8πk2x
α

∫ y

0
Ue
y(η) sinh (α(y − η)) Ṽ (t, kx, η, kz)dη

− 2π ikxN
∫ y

0

sinh (α(y − η))

α
Ṽy(t, kx, η, kz)dη

−
4π2kzN
α

∫ y

0
sinh (α(y − η))

×

(
kz Ũ(t, kx, η, kz)− kxW̃ (t, kx, η, kz)

)
dη, (71)

W̃t =
−α2W̃ + Wyy

Re
− βW̃ − NW̃

+ P0
(
RWP

− 2πkz i cosh (αy)
)

+Uy0

(
RWU

−
4π2kxkz
αRe

sinh (αy)
)

+Wy0

(
RWW

−
4π2k2z
αRe

sinh (αy)
)

+φy0

(
RWφ

− N
2πkxi
α

sinh (αy)
)

−
8πkxkz
α

∫ y

0
Ue
y(η) sinh (α(y − η)) Ṽ (t, kx, η, kz)dη

− 2π ikzN
∫ y

0

sinh (α(y − η))

α
Ṽy(t, kx, η, kz)dη

+
4π2kxN
α

∫ y

0
sinh (α(y − η))

×

(
kz Ũ(t, kx, η, kz)− kxW̃ (t, kx, η, kz)

)
dη. (72)

Note that we have omitted the equation for Ṽ since, from (50) and
using the fact that Ṽ (t, kx, 0, kz) = 0, Ṽ is computed from Ũ and
W̃ :

Ṽ = −2π i
∫ y

0

(
kxŨ(t, kx, η, kz)+ kzW̃ (t, kx, η, kz)

)
dη. (73)

We now set the output injection terms to directly cancel the
boundary terms coming from (69) and (70),while still leaving some
additional gains to stabilize the system. Thus, we define

RUP
= 2πkxi cosh (αy) , (74)

RWP
= 2πkz i cosh (αy) , (75)

RUU
=

4π2k2x
αRe

sinh (αy)+Π1(kx, y, kz), (76)

RWU
=

4π2kxkz
αRe

sinh (αy)+Π2(kx, y, kz), (77)

RUW
=

4π2kxkz
αRe

sinh (αy)+Π3(kx, y, kz), (78)

RWW
=

4π2k2z
αRe

sinh (αy)+Π4(kx, y, kz), (79)
RUφ
= −N

2πkz i
α

sinh (αy) , (80)

RWφ
= N

2πkxi
α

sinh (αy) , (81)

where the gains Π1, Π2, Π3 and Π4 are to be defined later. From
(61)–(64), (68) and (74)–(81), we get a explicit expression for the
remaining entries of R,

RVP
= α sinh (αy) , (82)

RVU
= 2π i(kx + kz)

1 − cosh (αy)
Re

− 2π i

×

∫ y

0
(kxΠ1(kx, η, kz)+ kzΠ2(kx, η, kz)) dη, (83)

RVW
= 2π i(kx + kz)

1 − cosh (αy)
Re

− 2π i

×

∫ y

0
(kxΠ3(kx, η, kz)+ kzΠ4(kx, η, kz)) dη, (84)

RVφ
= 0. (85)

Introducing (74)–(85) in Eqs. (71) and (72) we get

Ũt =
−α2Ũ + Ũyy

Re
− βŨ − Ue

y(y)Ṽ − NŨ

+Π1Uy0 +Π3Wy0 −
4π2kzN
α

∫ y

0
sinh (α(y − η))

×

(
kz Ũ(t, kx, η, kz)− kxW̃ (t, kx, η, kz)

)
dη

−
8πk2x
α

∫ y

0
Ue
y(η) sinh (α(y − η)) Ṽ (t, kx, η, kz)dη

− 2π ikxN
∫ y

0

sinh (α(y − η))

α
Ṽy(t, kx, η, kz)dη, (86)

W̃t =
−α2W̃ + Wyy

Re
− βW̃ − NW̃ +Π2Uy0 +Π4Wy0

−
8πkxkz
α

∫ y

0
Ue
y(η) sinh (α(y − η)) Ṽ (t, kx, η, kz)dη

− 2π ikzN
∫ y

0

sinh (α(y − η))

α
Ṽy(t, kx, η, kz)dη

+
4π2kxN
α

∫ y

0
sinh (α(y − η))

×

(
kz Ũ(t, kx, η, kz)− kxW̃ (t, kx, η, kz)

)
dη. (87)

Now, we introduce the following change of variables and its
inverse,

Y = 2π i
(
kxŨ + kzW̃

)
, ω = 2π i

(
kz Ũ − kxW̃

)
, (88)

Ũ =
2π i
α2 (kxY + kzω) , W̃ =

2π i
α2 (kzY − kxω) . (89)

Defining ε =
1
Re and the following functions

β(kx, y) = 2π ikxUe(y), (90)

f (kx, y, η, kz) = 4π ikx

{Ue
y(y)

2
+

∫ y

η

sinh (α(y − σ))

α

×Ue
y(σ )dσ

}
+ Nα sinh (α(y − η)) , (91)

h1(y, kz) = 2π ikzUe
y(y), (92)

h2(kx, y, η, kz) = −Nα sinh (α(y − η)) . (93)
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Eqs. (86) and (87) expressed in terms of Y and ω are

Yt = ε
(
−α2Y + Yyy

)
− βY − NY

+
4π2

α2

(
k2xΠ1 + kxkzΠ2 + kxkzΠ3 + k2zΠ4

)
Yy0

+
4π2

α2

(
kxkzΠ1 + k2zΠ2 − k2xΠ3 − kxkzΠ4

)
ωy0

+

∫ y

0
f (kx, y, η, kz)Y (t, kx, η, kz)dη, (94)

ωt = ε
(
−α2ω + ωyy

)
− βω − Nω

+
4π2

α2

(
kxkzΠ1 − k2xΠ2 + k2zΠ3 − kxkzΠ4

)
Yy0

+
4π2

α2

(
k2zΠ1 − kxkzΠ2 − kxkzΠ3 + k2xΠ4

)
ωy0

+ h1(y, kz)
∫ y

0
Y (t, kx, η, kz)dη

+

∫ y

0
h2(kx, y, η, kz)ω(t, kx, η, kz)dη, (95)

where we have used the inverse change of variables (89) to
express Uy0 and Wy0 in terms of Yy0 = Y (t, kx, 0, kz) and ωy0 =

ω(t, kx, 0, kz). We define now the output injection gains Π1, Π2,
Π3 andΠ4 in the following wayΠ1
Π2
Π3
Π4

 = A−1

 l(kx, y, 0, kz)
0

θ1(kx, y, 0, kz)
θ2(kx, y, 0, kz)

 . (96)

The matrix A is defined as

A =
4π2

α2


k2x kxkz kxkz k2z
kxkz k2z −k2x −kxkz
kxkz −k2x k2z −kxkz
k2z −kxkz −kxkz k2x

 , (97)

and since det(A) = −1 its inverse appearing in Eq. (96) is well-
defined, whereas the functions l(kx, y, η, kz), θ1(kx, y, η, kz), and
θ2(kx, y, η, kz) in (96) are to be found. Using (96), Eqs. (94) and (95)
become

Yt = ε
(
−α2Y + Yyy

)
− βY − NY + l(kx, y, 0, kz)Yy0

+

∫ y

0
f (kx, y, η, kz)Y (kx, η, kz)dη, (98)

ωt = ε
(
−α2ω + ωyy

)
− βω − Nω + θ1(kx, y, 0, kz)Yy0

+ θ2(kx, y, 0, kz)ωy0 + h1

∫ y

0
Y (kx, η, kz)dη

+

∫ y

0
h2(kx, y, η, kz)ω(kx, η, kz)dη. (99)

Eqs. (98) and (99) are a coupled, strict-feedback plant, with
integral and reaction terms. A variant of the design presented
in Smyshlyaev and Krstic (2005) can be used to design the gains
l(kx, y, 0, kz), θ1(kx, y, 0, kz) and θ2(kx, y, 0, kz) using a double
backstepping transformation. The transformation maps, for each
kx and kz , the variables (Y , ω) into the variables (Ψ ,Ω), that verify
the following family of heat equations (parameterized in kx, kz).

Ψt = ε
(
−α2Ψ + Ψyy

)
− βΨ − Nψ, (100)

Ωt = ε
(
−α2Ω +Ωyy

)
− βΩ − NΩ, (101)

with boundary conditions

Ψ (t, kx, 0, kz) = Ψ (t, kx, 1, kz) = 0, (102)
Ω(t, kx, 0, kz) = Ω(t, kx, 1, kz) = 0. (103)
The transformation is defined as follows,

Y = Ψ −

∫ y

0
l(kx, y, η, kz)Ψ (t, kx, η, kz)dη, (104)

ω = Ω −

∫ y

0
θ1(kx, y, η, kz)Ψ (t, kx, η, kz)dη

−

∫ y

0
θ2(kx, y, η, kz)Ω(t, kx, η, kz)dη. (105)

Following Smyshlyaev and Krstic (2004, 2005), the functions
l(kx, y, η, kz), θ1(kx, y, η, kz), and θ2(kx, y, η, kz) are found as the
solution of the following partial integro-differential equations,

εlηη = εlyy − (β(kx, y)− β(kx, η)) l − f

+

∫ y

η

f (kx, y, ξ , kz)l(kx, ξ , η, kz)dξ, (106)

εθ1ηη = εθ1yy − (β(kx, y)− β(kx, η)) θ1 − h1

+ h1

∫ y

η

l(kx, ξ , η, kz)dξ

+

∫ y

η

h2(kx, y, ξ , kz)θ1(kx, ξ , η, kz)dξ, (107)

εθ2ηη = εθ2yy − (β(kx, y)− β(kx, η)) θ2 − h2

+

∫ y

η

h2(kx, y, ξ , kz)θ2(kx, ξ , η, kz)dξ . (108)

Eqs. (106)–(108) are hyperbolic partial integro-differential equa-
tion in the region T = {(y, η) : 0 ≤ y ≤ 1, 0 ≤ η ≤ y}. Their
boundary conditions are

l(kx, y, y, kz) = l(kx, 1, η, kz) = 0, (109)
θ1(kx, y, y, kz) = θ1(kx, 1, η, kz) = 0, (110)
θ2(kx, y, y, kz) = θ2(kx, 1, η, kz) = 0. (111)

Remark 4. Eqs. (106)–(111) are well-posed and can be solved
symbolically, by means of a successive approximation series,
or numerically. See Smyshlyaev and Krstic (2004, 2005) for
techniques in solving similar equations. Note that both (106) and
(108) are autonomous. Hence, onemust solve first for l(kx, y, η, kz)
and θ2(kx, y, η, kz). Then the solution for l is plugged in (107)
which then can be solved for θ1(kx, y, η, kz). The observer gains
are then found just by setting η = 0 in the kernels l(kx, y, η, kz),
θ2(kx, y, η, kz) and θ1(kx, y, η, kz).

Stability in the observedwave number range follows from stability
of (100) and (101) and the invertibility of the transformation (104)
and (105). The proof uses the same argument as in Smyshlyaev
and Krstic (2004), slightly modified to account for a complex-
valued kernel and using the fact that the terms are analytic in k.
See Vazquez and Krstic (2007) for a detailed explanation.

5.2. Unobserved wave number analysis

When k2x + k2z > M , there is no output injection, as χ = 0, and
the linearized observer error verifies the following equations

Ũt =
−α2Ũ + Ũyy

Re
− βŨ − Ue

y(y)Ṽ

− 2πkxiP̃ + 2πkz iNφ̃ − NŨ, (112)

Ṽt =
−α2Ṽ + Ṽyy

Re
− βṼ − P̃y, (113)

W̃t =
−α2W̃ + Wyy

Re
− φW̃ − 2πkz iP̃

−2πkxiNφ̃ − NW̃ , (114)
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the Poisson equation for the potential (51) and the continuity
Eq. (50). Using the change of variables (88) and following the same
steps as in Section 5.1, one gets the following equations for Y andω.

Yt = ε
(
−α2Y + Yyy

)
− βY − 2πkxiUe

y Ṽ + α2P̃ − NY , (115)

ωt = ε
(
−α2ω + ωyy

)
− βω − 2πkz iUe

y Ṽ − α2Nφ̃ − Nω. (116)

The Poisson equation for the potential is, in terms of ω,

−α2φ̃ + φyy = ω. (117)

The boundary conditions for (115) and (116) are

Y (t, kx, 0, kz) = Y (t, kx, 1, kz) = 0, (118)
ω(t, kx, 0, kz) = ω(t, kx, 1, kz) = 0, (119)

φ̃(t, kx, 0, kz) = φ̃(t, kx, 1, kz) = 0. (120)

Consider the Lyapunov function

Λ =

∫ 1

0

|Ũ|
2
+ |Ṽ |

2
+ |W̃ |

2

2
dy, (121)

where we write, for short,
∫ 1
0 f =

∫ 1
0 f (t, kx, y, kz)dy. The function

Λ represents the L2 norm (energy) of the observer error.
Denote by f ∗ the complex conjugate of f . Substituting Y and ω

from (89) into (121), we get

Λ =

∫ 1

0
4π2

[
k2x |Y |

2
+ k2z |W |

2
+ kxkz(Y ∗W + YW ∗)

2α4

+
k2z |Y |

2
+ k2x |W |

2
− kxkz(Y ∗W + YW ∗)

2α4

]
dy

+

∫ 1

0

|Ṽ |
2

2
dy

=

∫ 1

0

|Y |
2
+ |W |

2
+ α2

|Ṽ |
2

2α2
dy. (122)

Define then a new Lyapunov function,

Λ1 = α2Λ =

∫ 1

0

|Y |
2
+ |ω|

2
+ α2

|Ṽ |
2

2
dy. (123)

The time derivative ofΛ1 can be estimated as follows,

Λ̇1 = −2εα2Λ1 − ε

∫ 1

0

(
|Yy|

2
+ |ωy|

2
+ α2

|Ṽy|
2
)

−N
∫ 1

0

(
|Y |

2
+ |ω|

2)
− α2N

∫ 1

0

φ̃∗ω + φ̃ω∗

2

+

∫ 1

0
π iUe

y(y)Ṽ
∗(2kxY + kzω)

−

∫ 1

0
π iUe

y(y)Ṽ (2kxY
∗
+ kzω∗)

+α2
∫ 1

0

P∗Y + PY ∗
− P∗

y Ṽ − PyṼ ∗

2
. (124)

For bounding (124), we use the following two lemmas.

Lemma 5.1. For ω and φ̃ verifying (116)–(120), the following holds.

−α2
∫ 1

0

φ̃∗ω + φ̃ω∗

2
≤

∫ 1

0
|ω|

2. (125)
Proof. The term we want to estimate is

−α2
∫ 1

0

φ̃∗ω + φ̃ω∗

2
. (126)

Substituting α2φ from (117), (126) can be written as

−

∫ 1

0

φ̃∗
yyω + φ̃yyω

∗

2
+

∫ 1

0
|ω|

2. (127)

Therefore, we need to prove that∫ 1

0

(
φ̃∗

yyω + φ̃yyω
∗

)
≥ 0. (128)

Substituting ω from Eq. (117) into (128), we get∫ 1

0

(
φ̃∗

yyω + φ̃yyω
∗

)
=

∫ 1

0
|φ̃yy|

2
− α2

∫ 1

0

(
φ̃∗

yyφ̃ + φ̃yyφ̃
∗

)
=

∫ 1

0
|φ̃yy|

2
+ α2

∫ 1

0
|φ̃y|

2, (129)

which is nonnegative. �

Lemma 5.2. Consider the function Ue
y(y) as defined in (15). Then, the

following holds:

|Ue
y(y)| ≤ 4 + H. (130)

Proof. Computing Ue
y(y) from (15),

Ue
y(y) = H

cosh(Hy)− cosh(H(1 − y))
2 sinhH/2 − sinhH

. (131)

Calling g1(y) = cosh(Hy) − cosh(H(1 − y)), since g ′

1(y) =

H (sinh(Hy)+ sinh(H(1 − y))) is always positive for y ∈ (0, 1),
the maximummust be in the boundaries. Therefore,

|Ue
y(y)| ≤ g2(H) = H

coshH − 1
sinhH − 2 sinhH/2

. (132)

One can rewrite g2 as

g2 = H
sinhH/2

coshH/2 − 1
. (133)

Since g2(0) = 4, it suffices to verify that g ′

2(H) ≤ 1.

g ′

2(H) =
g3
g4

=
sinhH/2 − H2/2
coshH/2 − 1

. (134)

This is equivalent to verify that g3 ≤ g4. Since g3(0) = g4(0) = 0,
it is enough to prove g ′

3 ≤ g ′

4, which comes from the fact that

g ′

3 = H/2 (coshH/2 − 2H) ≤ H/2(sinhH/2) = g ′

4, (135)

because cosh x − 4x ≤ sinh x. �

Integrating by parts and applying Lemma 5.1,

Λ̇1 ≤ −2εα2Λ1 − ε

∫ 1

0

(
|Yy|

2
+ |ωy|

2
+ α2

|Ṽy|
2
)

+

∫ 1

0
π iUe

y(y)Ṽ
∗(kxY + kzω)

−

∫ 1

0
π iUe

y(y)Ṽ (kxY
∗
+ kzω∗)− N

∫ 1

0
|Y |

2. (136)
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Using Lemma 5.2 to bound Ue
y in (136),

Λ̇1 ≤ −2ε
(
1 + α2)Λ1 − N

∫ 1

0
|Y |

2dy

+ 2π (4 + H)
∫ 1

0

(
|Ṽ ||kx||Y | + |kz ||ω|

)
dy

≤
(
4 + H − 2ε

(
1 + α2))Λ1 (137)

wherewe have applied Young’s and Poincare’s inequalities. Hence,
if α2

≥
4+H
2ε ,

Λ̇1 ≤ −2εΛ1. (138)

Dividing (138) by α2 and using definition (123), we get that

Λ̇ ≤ −2εΛ, (139)

and stability in the unobserved wave number range follows when
k2x + k2z ≥ M2 forM (conservatively) chosen as

M ≥
1
2π

√
(H + 4)Re

2
. (140)

5.3. Main result

The following result holds regarding the convergence of the
observer.

Theorem 1. Consider the system (21)–(23) and (6), with boundary
conditions (7)–(10), and the system (24)–(33) with the gains L
as computed in Section 5.1, and suppose that both have classical
solutions. Then, the L2 norms of Ũ , Ṽ , W̃ converge to zero, i.e.,

lim
t→∞

∫
∞

−∞

∫ 1

0

∫
∞

−∞

(
Ũ2

+ Ṽ 2
+ W̃ 2

)
(t)dxdydz = 0. (141)

Proof. It is shown in Vazquez and Krstic (2007) (for a 2-D
system possessing only one wave number) that if the origin of
a (Fourier transformed) system is proven L2 exponentially stable
for every wave number, then the origin of the system is L2
exponentially stable in physical space, i.e., considering all wave
numbers together. A similar argument holds for our 3-D system
with a set of two wave numbers.

We have established in Section 5.1 L2 exponential stability for
(56)–(58) in the observed wave range with the output injection
gains computed using the backstepping method. In Section 5.2
we show that the unobserved wave range is also L2 exponentially
stable without output injection, by deriving a Lyapunov estimate
(139). Hence all wave numbers are L2 exponentially stable and
physical stability follows as arguedbefore. Thismeans thatwehave∫

∞

−∞

∫ 1

0

∫
∞

−∞

(
Ũ2

+ Ṽ 2
+ W̃ 2

)
(t)dxdydz

≤ C1e−C2t
∫

∞

−∞

∫ 1

0

∫
∞

−∞

(
Ũ2

+ Ṽ 2
+ W̃ 2

)
(0)dxdydz, (142)

for some C1 ≥ 1, C2 > 0. Taking the limit as t goes to infinity in
(142) gives us (141). �

Since we are dealing with a linearized version of the plant, this
theorem has to be carefully interpreted. For a fully developedMHD
flow (whether laminar or turbulent, if using the mean turbulent
profile), with a Reynolds number possibly above the critical value
(which for a MHD flow depends on N) but not too far above it,
the observer is guaranteed to be convergent to the real velocity
field, provided its initial estimates are not too far from the actual
initial profile. Then convergence to the real pressure and electric
potential follows.
Remark 5. See Sermange and Temam (1983) for a statement of
well-posedness of MHD equations in bounded domains. However,
there are no results aboutwell-posedness of 3-DMHD equations in
unbounded domains and such a study is beyond the scope of this
paper. Hence we assume that the solutions for the velocity field,
pressure and electric field, and their estimates, exist, are unique
and regular enough for all statements and a priori estimates to
make sense.

6. A nonlinear estimator

Since the original plant is nonlinear, we postulate a nonlinear
observer to improve the convergence result of the linear estimator.
This observer has the same structure and gains as the linear
observer, but the nonlinear terms are added. In this we follow the
design technique of the Extended Kalman Filter, in which gains are
deduced for a linearized version of the plant and then used for a
nonlinear observer.

The nonlinear observer equations are the following

Ût =
4Û
Re

− ÛÛx − V̂ Ûy − Ŵ Ûz − P̂x + Nφ̂z − NÛ − Q U , (143)

V̂t =
4V̂
Re

− Û V̂x − V̂ V̂y − Ŵ V̂z − P̂y − Q V , (144)

Ŵt =
4Ŵ
Re

− ÛŴx − V̂ Ŵy − ŴŴz − P̂z − Nφ̂x

−NŴ − QW . (145)
The estimated potential is computed from

4φ̂ = Ûz − Ŵx, (146)
and the observer verifies the continuity equation,

Ûx + V̂y + Ŵz = 0, (147)
and Dirichlet boundary conditions,

Û(t, x, 0, z) = Ŵ (t, x, 0, z) = V̂ (t, x, 0, z) = 0, (148)

Û(t, x, 1, z) = Ŵ (t, x, 1, z) = V̂ (t, x, 1, z) = 0, (149)

φ̂(t, x, 0, z) = φ̂(t, x, 1, z) = 0. (150)
The estimated current field is computed from the other estimated
variables using a copy of Eqs. (11)–(13).

ĵx(t, x, y, z) = −φ̂x − Ŵ , (151)

ĵy(t, x, y, z) = −φ̂y, (152)

ĵz(t, x, y, z) = −φ̂z + Û . (153)
In Eqs. (143)–(145), the Q terms are the same as for the linear
observer. Hence, the observer is designed for the linearized plant
and then the linear gains are used for the nonlinear observer. Such
a nonlinear observer will produce closer estimates of the states in
a larger range of initial conditions.

Using the fluctuation variable and the observer error variables,
we can write the nonlinear observer velocity field error equations
as follows.

Ũt =
4Ũ
Re

− Ue(y)Ũx + N U(Ũ, Ṽ , W̃ , u, V ,W )

−Ue
y(y)Ṽ − P̃x + Nφ̃z − NŨ + Q U , (154)

Ṽt =
4Ṽ
Re

− Ue(y)Ṽx + N V (Ũ, Ṽ , W̃ , u, V ,W )

− P̃y + Q V , (155)

W̃t =
4W̃
Re

− Ue(y)W̃x + N W (Ũ, Ṽ , W̃ , u, V ,W )

− P̃z − Nφ̃x − NW̃ + QW , (156)
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where we have introduced

N U
= ŨŨx − uŨx − Ũux + Ṽ Ũy − VŨy − Ṽ uy

+ W̃ Ũz − WŨz − W̃uz, (157)

N V
= Ũ Ṽx − uṼx − ŨVx + Ṽ Ṽy − V Ṽy − Ṽ Vy

+ W̃ Ṽz − WṼz − W̃Vz, (158)

N W
= ŨW̃x − uW̃x − ŨWx + Ṽ W̃y − VW̃y − ṼWy

+ W̃W̃z − WW̃z − W̃Wz . (159)

Assuming, for the purposes of observer design and analy-
sis, that the observer state (Û, V̂ , Ŵ ) is close to the actual
state (U, V ,W ) (i.e., the error state is close to zero), and
that the fluctuation (u, V ,W ) around the equilibrium state
is small, then NU(Ũ, Ṽ , W̃ , u, V ,W ), NV (Ũ, Ṽ , W̃ , u, V ,W ) and
NW (Ũ, Ṽ , W̃ , u, V ,W ) are small and dominated by the linear
terms in the equations, so they can be neglected. The linearized
error equations are then

Ũt =
4Ũ
Re

− Ue(y)Ũx − Ue
y(y)Ṽ − P̃x + Nφ̃z − NŨ + Q U , (160)

Ṽt =
4Ṽ
Re

− Ue(y)Ṽx − P̃y + Q V , (161)

W̃t =
4W̃
Re

− Ue(y)W̃x − P̃z − Nφ̃x − NW̃ + QW , (162)

which are the same as (37)–(39). Thus, as expected, the error
equations for the observer designed for the linearized plant, and
the linearized error equations for the nonlinear observer are the
same; this is the main reason why the same gains derived in
Section 5 are used.

Remark 6. Note that we have not defined ũ for the nonlinear
observer, since ũ = Ũ − Ũe

= (U − Û)− (Ue
− Ûe) = U − Û = Ũ ,

i.e., Ũe
= 0, because by definition Ue

= Ûe. This implies that any
function Ue(y) can be used in the design of the nonlinear observer,
even if it is not a true equilibrium, without any changes in the
observer structure. This is not the case for the observer designed in
Sections 4 and 5 for the linearized system, where a nonequilibrium
Ue(y) would produce forcing (nonhomogeneous) terms in both
the linearized system and the observer. Following Chevalier et al.
(2006), we may consider the mean turbulent profile instead of
considering the exact laminar equilibrium profile. This amounts
to changing Ue in definition (15). Since Ue appears in Eqs. (90)–
(93), which are used to compute output injection gains in Eqs.
(106)–(108), the observer gainswill change (quantitatively) for the
turbulent mean profile.

7. Concluding remarks

We have presented an observer that estimates velocity,
pressure, electric potential and current in a Hartmann flow,
characterized by an electrically conducting fluid moving between
parallel plates in the presence of an imposed transverse magnetic
field. The estimator consists of a copy of the linearized MHD
equations, combined with linear injection of output estimation
error, with observer gains designed using backstepping in Fourier
space. Pressure, skin friction and current measurements from the
lower wall are used for output injection.

The convergence result stated in Theorem 1 guarantees
asymptotic convergence of the estimated states to the actual values
of the linearized plant. For this to be true for the nonlinear plant,
the estimates have to be initialized close enough to the real
initial values and the MHD system has to stay in a neighborhood
of the equilibrium at all times. We have presented a nonlinear
observer in Section 6 that incorporates the nonlinearities of
the plant. It is expected that the nonlinear observer will allow
larger discrepancies between the state and the profile while still
producing valid estimates. The nonlinear observer also allows
to use, as in Chevalier et al. (2006), the mean turbulent profile
instead of the exact laminar equilibrium profile, only needing
a quantitative change of the observer gains. For the estimates
obtained using the mean turbulent profile to be good enough we
would need similar assumptions as those given in Theorem 1,
meaning now that the state has to stay close enough to the mean
turbulent profile at all times.

In case that N = 0, meaning that either there is no
imposed magnetic field or the fluid is nonconducting, Eqs. (2)–
(4) are the Navier–Stokes equations and the observer reduces
to a velocity/pressure estimator for a 3-D channel flow. This
is a result of high interest on its own that can be seen as
dual to the channel flow control problem, which was solved
in Cochran et al. (2006) using similar tools. Some physical insight
can be gained analyzing this case. In the context of hydrodynamic
stability theory, the linearized observer error system written
in (Y , ω) variables verify equations analogous to the classical
Orr–Sommerfeld–Squire equations. These are Eqs. (98) and (99) for
observed wave numbers and Eqs. (115) and (116) for unobserved
wavenumbers. As in Cochran et al. (2006),weuse the backstepping
transformations (104) and (105) not only to stabilize (using gain l)
but also to decouple the system (using gains θ1, θ2) in the small
wave number range, where nonnormality effects are more severe.
Even if the linearized system is stable, nonnormality produces large
transient growths (Reddy, Schmid, & Henningson, 1993; Schmid
& Henningson, 2001), which enhanced by nonlinear effects may
allow the error system to go far away from the origin, producing
inaccurate estimates. This warrants the use of extra gains to map
the system into two uncoupled heat equations (100) and (101).
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