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Abstract—Research on stabilization of coupled hyperbolic PDEs
has been dominated by the focus on pairs of counter-convecting
(“heterodirectional”) transport PDEs with distributed local cou-
pling and with controls at one or both boundaries. A recent
extension allows stabilization using only one control for a system
containing an arbitrary number of coupled transport PDEs that
convect at different speeds against the direction of the PDE whose
boundary is actuated. In this paper we present a solution to the
fully general case, in which the number of PDEs in either direction
is arbitrary, and where actuation is applied on only one boundary
(to all the PDEs that convect downstream from that boundary). To
solve this general problem, we solve, as a special case, the problem
of control of coupled “homodirectional” hyperbolic linear PDEs,
where multiple transport PDEs convect in the same direction
with arbitrary local coupling. Our approach is based on PDE
backstepping and yields solutions to stabilization, by both full-
state and observer-based output feedback, and trajectory tracking
problems.

Index Terms—Backstepping, boundary control, boundary
observer, general coupled hyperbolic system, trajectory tracking.

I. INTRODUCTION

a) Background: Coupled first-order linear hyperbolic sys-
tems, typically formulated on a 1-D spatial domain normalized
to the interval (0, 1), are common in modeling of traffic flow [2],
heat exchangers [31], open channel flow [7], [10] or multiphase
flow [11], [15], [16].
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Research on stabilization of such PDEs has been dominated
by the focus on pairs of counter-convecting transport PDEs with
distributed local coupling. In [8], a first solution allowing actua-
tion on only one boundary and permitting coupling coefficients
of arbitrary size was presented. A recent extension [13] by three
of the authors of the present paper allows stabilization using
only one control for a system containing an arbitrary number of
coupled transport PDEs that convect at different speeds against
the direction of the PDE whose boundary is actuated.

In this paper we present a solution to the fully general case
of coupled hyperbolic PDEs. We divide such PDE systems into
two categories:

• Homodirectional systems of m transport PDEs, for which
all the m transport velocities have the same signs, i.e., all
of the PDEs convect in the same direction. Because of the
finite length of the spatial domain, these are inherently sta-
ble but the coupling between states can cause undesirable
transient behaviors and the trajectory planning problem is
non-trivial.

• Heterodirectional systems of n+m transport PDEs, for
which there exist at least two transport velocities with
opposite signs, i.e., where m PDEs convect in one direc-
tion and n PDEs convect in the opposite direction. The
coupling between states traveling in opposite directions
may cause instability.

In this paper we show control designs for the fully general
case of coupled heterodirectionalhyperbolic PDEs, allowing the
numbers m and n of PDEs in either direction to be arbitrary,
with actuation applied on only one boundary (to all the m PDEs
that convect downstream from that boundary). To solve this
general problem, we solve, as a special case, the heretofore
unsolved problem of control of coupled homodirectional hyper-
bolic linear PDEs, where multiple transport PDEs convect in the
same direction, have possibly distinct speeds, and arbitrary
local coupling (see Section V).

Our approach is based on PDE backstepping and yields
solutions to stabilization, by both full-state and observer-based
output feedback, trajectory planning, and trajectory tracking
problems.

b) Literature: Controllability of hyperbolic systems has
first been investigated by using explicit computation of the
solution along the characteristic curves in the framework of
C1 norm [17], [24], [26], [32]. Later, the so-called Control
Lyapunov Functions methods emerged, enabling the design
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of dissipative boundary conditions for nonlinear hyperbolic
systems in the context of both C1 norm and H2 norm [5],
[6], [9]. Further, using Lyapunov functions method, sufficient
boundary conditions for the exponential stability of linear [14]
or nonlinear [18], [19] hyperbolic systems of balance laws have
been derived. All of these results impose restrictions on the
magnitude of the coupling coefficients, which are responsible
for potential instabilities.

In [8], a full-state feedback control law, with actuation only
on one end of the domain, which achieves H2 exponential
stability of closed-loop 2-state heterodirectional linear and
quasilinear hyperbolic systems is derived using a backstepping
method. With a similar backstepping transformation, an output-
feedback controller is designed in [13] for heterodirectional
systems with m = 1 (controlled) negative velocity and n (ar-
bitrary) positive ones. These results hold regardless of the
(bounded) magnitude of the coupling coefficients. Unfortu-
nately, the method presented in [8] and [13] can not be extended
to the case m > 1.

c) Contribution: The first step towards this paper’s general
solution for m > 1 was presented (but not published as a paper)
in [27] for m = 2 and n = 0. In conference paper [21], an
extension to m = 2 and n = 1 is achieved.

The contribution of this article is two-fold. First, we derive
a stabilizing boundary feedback law that ensures finite-time
convergence of all the states to zero. Then, we solve the tracking
problem for an arbitrary output reference trajectory at the
uncontrolled boundary.

Both designs rely on the backstepping approach. A particular
choice of the target system, featuring a cascade structure similar
to [8, Section 3.5], enables the use of a classical Volterra
integral transformation. Well-posedness of the system of kernel
equations, which is the main technical challenge of this paper, is
proved by a method of successive approximations using a novel
recursive bound.

When solving the null stabilization problem, the approach
yields a full-state feedback law that would necessitate full distrib-
uted measurements to be implemented, which is not realistic in
practice. For this reason, we derive an observer relying on mea-
surements of the states at a single boundary (the anti-controlled
one). Along with the full-state feedback law, this yields an
output feedback controller amenable to implementation.

Solving the trajectory tracking problem also yields a full-
state feedback law plus feedforward terms enabling the tracking
of an output reference trajectory. Interestingly, in the case
where the system only consists of two homodirectional states,
the entire control law, including the backstepping kernels is
explicitly expressed in terms of the system parameters.

d) Organization: In Section II, we introduce the model
equations. In Section III, we present the stabilization result:
the target system is presented in Section III-A, while the
backstepping transformation is derived in Section III-B. The
design is summarized in Section III-C. In Section IV, we present
the boundary observer design. In Section V, we present the
trajectory tracking result. Section VI contains the main tech-
nical difficulty of the paper, i.e., the proof of well-posedness of
the backstepping transformation. We finish in Section VII with
some concluding remarks.

II. SYSTEM DESCRIPTION

We consider the following general linear hyperbolic system,
which appear in Saint-Venant(-Exner) equations, plug flow
chemical reactors equations, heat exchangers equations and
other linear hyperbolic balance laws (see [3]):

ut(t, x) + Λ+ux(t, x) = Σ++u(t, x) + Σ+−v(t, x) (1)

vt(t, x)− Λ−vx(t, x) = Σ−+u(t, x) + Σ−−v(t, x) (2)

with the following linear boundary conditions:

u(t, 0) = Q0v(t, 0), v(t, 1) = R1u(t, 1) + U(t) (3)

where

u = (u1 · · · un)
T , v = (v1 · · · vm)T (4)

Λ+ =

⎛
⎜⎝
λ1 0

. . .
0 λn

⎞
⎟⎠ , Λ− =

⎛
⎜⎝
μ1 0

. . .
0 μm

⎞
⎟⎠

(5)

with constant speeds

−μ1 < · · · < −μm < 0 < λ1 ≤ · · · ≤ λn (6)

and constant coupling matrices, as well as the feedback control
input

Σ++ =
{
σ++
ij

}
1≤i≤n,1≤j≤n

,Σ+− =
{
σ+−
ij

}
1≤i≤n,1≤j≤m

(7)

Σ−+ =
{
σ−+
ij

}
1≤i≤m,1≤j≤n

,Σ−− =
{
σ−−
ij

}
1≤i≤m,1≤j≤m

(8)

Q0 = {qij}1≤i≤n,1≤j≤m, R1 = {ρij}1≤i≤m,1≤j≤n (9)

U(t) = (U1(t) · · · Um(t))T . (10)

Remark 1: The method presented here extends to spatially
varying coefficients, with more involved technical developments.

Besides, we also make the following assumption without loss
of generality:

∀ j = 1, . . . ,m σ−−
jj = 0 (11)

i.e., there are no (internal) diagonal coupling terms for v-system.
Such coupling terms can be removed using a change of coordi-
nates as presented in, e.g., [8] and [21]. This yields spatially-
varying coupling terms, which is not an issue in the light of
Remark 1.

Remark 2: In this paper, we only focus on the linear problem
(both of the systems and boundary conditions are linear). The
case of general quasililinear systems with nonlinear boundary
conditions will be the topic of future work (see [22]).

Remark 3: Throughout this paper, we only deal with one-
sided actuation. In the case of two-sided actuation, with control
variables at both boundaries x = 0 and x = 1, stronger con-
trollability results hold [25]. In particular, it should be possible
to perform state trajectory tracking since the system is exactly
controllable. This study is, however, out of the scope of this
paper.
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III. STABILIZATION TO ZERO

In this section, we derive a stabilizing feedback law for the
general (n+m)-state system. Notice that this is interesting
only in the case n �= 0, since instability arises from coupling
between states traveling in opposite directions. Following the
backstepping approach, we seek to map system (1)–(3) to a
target system with desirable stability properties using an invert-
ible Volterra transformation.

A. Target System

1) Target System Design: We map system (1)–(3) to the
following target system:

αt(t, x) + Λ+αx(t, x)

= Σ++α(t, x) + Σ+−β(t, x) +

x∫
0

C+(x, ξ)α(t, ξ)dξ

+

x∫
0

C−(x, ξ)β(t, ξ)dξ (12)

βt(t, x)− Λ−βx(t, x) = G(x)β(t, 0) (13)

with the following boundary conditions:

α(t, 0) = Q0β(t, 0), β(t, 1) = 0 (14)

where C+ and C− are L∞ matrix functions on the domain

T = {0 ≤ ξ ≤ x ≤ 1} (15)

while G ∈ L∞(0, 1) is a lower triangular matrix with the fol-
lowing structures:

G(x) =

⎛
⎜⎜⎜⎜⎝

0 · · · · · · 0

g2,1(x)
. . .

. . .
...

...
. . .

. . .
...

gm,1(x) · · · gm,m−1(x) 0

⎞
⎟⎟⎟⎟⎠ . (16)

The coefficients of C+, C−, and G will be determined in
Section III-B.

2) Convergence of the Target System to Zero: The following
lemma asseses the finite-time convergence of the target system
to zero.

Lemma 3.1: Consider system (12), (13) with boundary condi-
tions (14). Its zero equilibrium is reached in finite time t = tF ,
where

tF :=
1

λ1
+

m∑
j=1

1

μj
. (17)

Proof 3.2: Noting (13), (14) and the particular structure
of (16), we find that the β-system is in fact a cascade system,
which allows us to explicitely solve it by recursion as follows.
The explicit solution of β1 is given by

β1(t, x) =

{
β1(0, x+ μ1t) if t < 1−x

μ1

0 if t ≥ 1−x
μ1

.
(18)

Notice in particular that β1 is identically zero for t ≥ μ−1
1 . From

the time t ≥ μ−1
1 on, we have that β2(t, x) satisfies the follow-

ing equation:

β2t(t, x)− μ2β2x(t, x) = 0. (19)

Similarly, by expressing the solution along the characteristic
lines, one obtains that

β2(t, x) ≡ 0 ∀ t ≥ μ−1
1 + μ−1

2 . (20)

Thus, by mathematical induction, one can easily get that βj(j =
1, . . . ,m) vanishes after

t =

j∑
k=1

1

μk
. (21)

This yields that

β(t, x) ≡ 0, t >

m∑
j=1

1

μj
. (22)

When t >
∑m

j=1(1/μj), the α-system becomes

αt(t, x) + Λ+αx(t, x) = Σ++α(t, x) +

x∫
0

C+(x, ξ)α(ξ)dξ

(23)
with the boundary conditions [see (14)]

α(t, 0) = 0. (24)

Since there are no zero transport velocities for the α-system
[see (6)], we may change the status of t and x, and (23) can be
rewritten as

αx(t, x) + (Λ+)
−1
αt(t, x) = (Λ+)

−1
Σ++α(t, x)

+

x∫
0

(Λ+)
−1
C+(x, ξ)α(ξ)dξ (25)

with the null initial condition (24). Then by the uniqueness
of the system (24), (25), and noting the order of the transport
speeds of the α-system [see (6)], this yields that, no matter
how large entries Σ appears in α-system which may result in
increasing, α eventually identically vanishes for

t ≥ 1

λ1
+

m∑
j=1

1

μj
. (26)

This concludes the proof.

B. Backstepping Transformation

To map system (1)–(3) to the target system (12)–(14), we
consider the following backstepping (Volterra) transformation

α(t, x) = u(t, x) (27)

β(t, x) = v(t, x)−
x∫

0

[K(x, ξ)u(ξ) + L(x, ξ)v(ξ)] dξ (28)
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where the kernels to be determined K and L are defined on the
triangular domain T . Deriving (28) with respect to space and
time, plugging into the target system equations and noticing
that β(t, 0) ≡ v(t, 0) yields the following system of kernel
equations:

0 = K(x, x)Λ+ + Λ−K(x, x) + Σ−+ (29)
0 = Λ−L(x, x)− L(x, x)Λ− +Σ−− (30)

0 = K(x, 0)Λ+Q0 +G(x)− L(x, 0)Λ− (31)

0 = Λ−Kx(x, ξ)−Kξ(x, ξ)Λ
+−K(x, ξ)Σ++−L(x, ξ)Σ−+

(32)

0 = Λ−Lx(x, ξ) + Lξ(x, ξ)Λ
− − L(x, ξ)Σ−− −K(x, ξ)Σ+−

(33)

and yields the following equations for C−(x, ξ) and C+(x, ξ):

C−(x, ξ) =Σ+−L(x, ξ) +

x∫
ξ

C−(x, s)L(s, ξ)dξ (34)

C+(x, ξ) =Σ+−K(x, ξ) +

x∫
ξ

C−(x, s)K(s, ξ)dξ. (35)

Remark 4: For each x ∈ [0, 1], (34) is a Volterra equation of
the second kind on [0, x] with C−(x, ·) as the unknown. Be-
sides, (35) explicitly gives C+(x, ξ) as a function of C−(x, ξ)
and K(x, ξ). Therefore, provided the kernels K and L are well-
defined and bounded, so are C+ and C−.

Developing(29)–(33) leads to the following set of kernel PDEs:

for 1 ≤ i ≤ m, 1 ≤ j ≤ n

μi∂xKij(x, ξ)− λj∂ξKij(x, ξ)

=

n∑
k=1

σ++
kj Kik(x, ξ) +

m∑
p=1

σ−+
pj Lip(x, ξ) (36)

for 1 ≤ i ≤ m, 1 ≤ j ≤ m

μi∂xLij(x, ξ) + μj∂ξLij(x, ξ)

=

m∑
p=1

σ−−
pj Lip(x, ξ) +

n∑
k=1

σ+−
kj Kik(x, ξ) (37)

along with the following set of boundary conditions:

∀ 1 ≤ i ≤ m, 1 ≤ j ≤ n,Kij(x, x) = −
σ−+
ij

μi + λj
� kij (38)

∀ 1 ≤ i, j ≤ m, i �= j, Lij(x, x) = −
σ−−
ij

μi − μj
� lij (39)

∀ 1 ≤ i ≤ j ≤ m, μjLij(x, 0) =

n∑
k=1

λkKik(x, 0)qk,j . (40)

Equations (36)–(40) do not uniquely define kernelsK and L. To
ensure well-posedness of the equations, we add the following
artificial boundary conditions for Lij(i > j):

Lij(1, ξ) = lij , for 1 ≤ j < i ≤ m. (41)

While the gij , for 1 ≤ j < i ≤ n, are given by

gij(x) = μjLij(x, 0)−
n∑

p=1

λpqpjKip(x, 0) (42)

provided the K andL kernels are properly defined by (36)–(41),
which we prove in the next section.

Remark 5: The choice of imposing (41) as the boundary
condition for Lij , (1 ≤ j < i ≤ m), on the boundary x = 1
is, a priori arbitrary. Importantly, the equations are well-posed
regardless of this choice. An “appropriate” choice of bound-
ary conditions is difficult to define. In [22], it is highlighted
that continuity of the Lij kernels at (x, y) = (1, 1) has to
be imposed to deal with quasilinear systems. Notice that, in
the present form (41), this continuity is imposed. For linear
cases, however, one could e.g. impose Lij(1, ξ) = 0 (1 ≤ j <
i ≤ m), which may make U(t) more concise. This degree of
freedom in the control design has never appeared in previous
backstepping designs for hyperbolic systems [8], [13]. The
impact of the boundary values of Lij , 1 ≤ j < i ≤ m on the
transient behavior of the closed-loop system remains an open
question, which we leave for future work.

Remark 6: As indicated in (6), we consider in this paper
distinct speeds for v-system. This ensures the denominator in
(39) is nonzero. If two or more states of v have the same
transport speeds (i.e., μi = μj for some i �= j) we refer to those
states as isotachic. To deal with isotachic states, we consider the
change of coordinates v̄(t, x) = A(x)v(t, x). The matrix A(x)
is a block-diagonal matrix, with Aii = 1 if μi �= μj for j �= i. If
there is a set of ni isotachic states (i.e., there is i such that μj =
μi for j = i+ 1, . . . , i+ ni − 1, then there is in A(x) a corre-
sponding block B(x) of dimension ni × ni in A(x). Each of
these B(x) is computed independently for each isotachic set of
states. If we call Σiso the matrix of coupling coefficients among
these isotachic states (i.e., with coefficients σj̄k̄ for j, k = i, i+
1, . . . , i+ ni − 1), thenB(x) is computed from the initial value
problem (d/dx)B(x) = 1/μiB(x)Σiso, B(0) = Ini×ni

. It is
easy to see that this transformation is invertible, since one can
define a matrix C(x) from (d/dx)C(x) = −1/μiΣisoC(x),
C(0) = Ini×ni

. One has that C(x) is the inverse of B(x) as
B(0)C(0) = Ini×ni

and (d/dx)B(x)C(x) = 0. Applying this
invertible transformation eliminates the coupling coefficients
between isotachic states, but results in some spatially-varying
coupling terms, which is not an issue as explained in Remark 1.
If there are isotachic states, and the transformation explained in
Remark 6 is applied, then the Lij kernels for i, j corresponding
to isotachic states (μi = μj) have all boundary conditions of the
type (40) instead of (39)—which would become singular—or
(41). The results that follow do not change, but we have omitted
the case for the sake of brevity.

The well-posedness of the target system equations is assessed
in the following theorem.

Theorem 3.3: Consider system (36)–(41). There exists a
unique solution K and L in L∞(T ). Moreover, all the boundary
traces for the K-kernel and L-kernel are functions of L∞(0, 1).

The proof of this Theorem is the main technical difficulty of
the paper and is presented in Section VI.
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C. Control Law and Main Stabilization Result

We are now ready to state the main stabilization result as
follows.

Theorem 3.4: Consider system (1), (2) with boundary condi-
tions (3) and the following feedback control law:

U(t)=−R1u(t, 1)+

1∫
0

[K(1, ξ)u(ξ)+L(1, ξ)v(ξ)]dξ. (43)

For any initial condition (u0, v0) ∈ (L∞(0, 1))(n+m)×(n+m),
the zero equilibrium is reached in finite time t = tF , where tF
is given by (17).

Proof 3.5: First, notice that evaluating transformation
(28) at x = 1 yields (43). Besides, rewriting transformation (28)
as follows:(

α(t, x)
β(t, x)

)
=

(
u(t, x)
v(t, x)

)
−

x∫
0

(
0 0

K(x, ξ) L(x, ξ)

)(
u(t, ξ)
v(t, ξ)

)
dξ (44)

one notices that it is a classical Volterra equation of the second
kind. One can check from, e.g., [20] that there exists a unique
matrix function R ∈ (L∞(T ))(n+m)×(n+m) such that(

u(t, x)
v(t, x)

)
=

(
α(t, x)
β(t, x)

)
−

x∫
0

R(x, ξ)

(
α(t, ξ)
β(t, ξ)

)
dξ. (45)

Applying Lemma 3.1 implies that (α, β) go to zero in finite
time t = tF , therefore, by (45), (u, v) also converge to zero in
finite time.

IV. UNCOLLOCATED OBSERVER DESIGN AND

OUTPUT FEEDBACK CONTROLLER

In this section, we derive an observer that relies on the mea-
surement of the v states at the left boundary, i.e.,

y(t) = v(t, 0). (46)

Then, using the estimates from the observer along with the
control law (43), we derive an output feedback controller.

A. Observer Design

The observer equations read as follows:

ût(t, x) + Λ+ûx(t, x) = Σ++û(t, x) + Σ+−v̂(t, x)

− P+(x) (v̂(t, 0)− v(t, 0)) (47)
v̂t(t, x)− Λ−v̂x(t, x) = Σ−+û(t, x) + Σ−−v̂(t, x)

− P−(x) (v̂(t, 0)− v(t, 0)) (48)

with the following boundary conditions:

û(t, 0) = Q0v(t, 0), v̂(t, 1) = R1û(t, 1) + û(t) (49)

where P+(·) and P−(·) have yet to be designed. This yields the
following error system:

ũt(t, x) + Λ+ũx(t, x) = Σ++ũ(t, x) + Σ+−ṽ(t, x)

− P+(x)ṽ(t, 0) (50)
ṽt(t, x) − Λ−ṽx(t, x) = Σ−+ũ(t, x) + Σ−−ṽ(t, x)

− P−(x)ṽ(t, 0) (51)

with the following boundary conditions:

ũ(t, 0) = 0, ṽ(t, 1) = R1ũ(t, 1). (52)

Remark 7: One should notice that the output is directly
injected at the left boundary, which means potential sensor
noise is only filtered throughout the spatial domain. Combining
the approach of [13] and the cascade structure of (12)–(14), we
now derive a target system and backstepping transformation to
design observer gains P+(·) and P−(·) that yield finite-time
stability of the error system (50)–(52).

B. Target System and Backstepping Tranformation

We map system (50)–(52) to the following target system:

α̃t(t, x) + Λ+α̃x(t, x) = Σ++α̃(t, x) +

x∫
0

D+(x, ξ)α̃(ξ)dξ

(53)

β̃t(t, x) − Λ−β̃x(t, x) = Σ−+α̃(t, x) +

x∫
0

D−(x, ξ)α̃(ξ)dξ

(54)

with the following boundary conditions:

α̃(t, 0)=0, β̃(t, 1) = R1α̃(t, 1)−
1∫

0

H(ξ)β̃(ξ)dξ (55)

where D+ and D− are L∞ matrix functions on the domain T
and H ∈ L∞(0, 1) is an upper triangular matrix with the fol-
lowing structure:

H(x) =

⎛
⎜⎜⎜⎜⎝
0 h1,2(x) · · · h1,m(x)
...

. . .
. . .

...
...

. . .
. . . hm−1,m(x)

0 · · · · · · 0

⎞
⎟⎟⎟⎟⎠ (56)

all of which have yet to be determined.
Proposition 4.1: The solutions of system (14)–(53) converge

to zero in finite time. More precisely, one has

∀ t ≥ tF , α̃ ≡ β̃ ≡ 0 (57)

where tF is defined by (17).
Proof: The system consists in a cascade of the α̃-system

(that has zero input at the left boundary) into the β̃-system.
Further, the β̃ is a cascade of its slow states into its fast states.
The rigorous proof follows the same steps that the proof of
Lemma 3.1 and is therefore omitted here.

To map system (50)–(52) to the target system (53)–(55), we
consider the following backstepping (Volterra) transformation:

ũ(t, x) = α̃(t, x) +

x∫
0

M(x, ξ)β̃(ξ)dξ (58)

ṽ(t, x) = β̃(t, x) +

x∫
0

N(x, ξ)β̃(ξ)dξ (59)
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where the kernels to be determinedM and N are defined on the
triangular domain T . Deriving (58), (59) with respect to space
and time yields the following kernel equations:

for 1 ≤ i ≤ n, 1 ≤ j ≤ m

λi∂xMij(x, ξ)− μj∂ξMij(x, ξ)

=

n∑
k=1

σ++
ik Mkj(x, ξ) +

m∑
p=1

σ+−
ip Npj(x, ξ) (60)

for 1 ≤ i ≤ m, 1 ≤ j ≤ m

μi∂xNij(x, ξ) + μj∂ξNij(x, ξ)

=

n∑
k=1

σ−+
ik Mkj(x, ξ) +

m∑
p=1

σ−−
ip Npj(x, ξ) (61)

along with the following set of boundary conditions:

∀ 1 ≤ i ≤ m, 1 ≤ j ≤ n, Mij(x, x) =
σ+−
ij

μi + λj
� mij (62)

∀ 1 ≤ i, j ≤ m, i �= j, Nij(x, x) =
σ−−
ij

μi − μj
(63)

besides, evaluating (58), (59) at x = 1 yields

∀ 1 ≤ j ≤ i ≤ m Nij(1, x) =

n∑
k=1

ρikMkj(1, x). (64)

To ensure well-posedness of the kernel equations, we add the
following artificial boundary conditions for Nij(i < j):

∀ 1 ≤ i < j ≤ m, Nij(x, 0) = 0 (65)

while the d+ij , d−ij , and hij are given by

hij(x) = Nij(1, x)−
n∑

k=1

ρikMkj(1, x) (66)

d+ij(x, ξ) = −
m∑

k=1

Mik(x, ξ)σ
−+
kj +

x∫
ξ

m∑
k=1

Mik(x, s)d
−
kj(s, ξ)ds

(67)

d−ij(x, ξ) = −
m∑

k=1

Nik(x, ξ)σ
−+
kj +

x∫
ξ

m∑
k=1

Nik(x, s)d
−
kj(s, ξ)ds

(68)

provided the M and N kernels are properly defined. Finally, the
observer gains are given by

p+ij(x) = μjmij(x, 0) (69)

p−ij(x) = μjnij(x, 0). (70)

Interestingly, the well-posedness of the system of kernel equa-
tions of the observer (60)–(65) is equivalent to that of the
controller kernels (36)–(41). Indeed, considering the following
alternate variables:

M̄ij(χ, y) = Mij(1 − y, 1− χ) = Mij(x, ξ) (71)

N̄ij(χ, y) = Nij(1− y, 1− χ) = Nij(x, ξ) (72)

yields

for 1 ≤ i ≤ n, 1 ≤ j ≤ m

μj∂χM̄ij(χ, y)− λi∂yM̄ij(χ, y)

= −
n∑

k=1

σ++
ik M̄kj(χ, y)−

m∑
p=1

σ+−
ip N̄pj(χ, y) (73)

for 1 ≤ i ≤ m, 1 ≤ j ≤ m

μj∂χN̄ij(χ, y) + μi∂yN̄ij(χ, y)

= −
n∑

k=1

σ−+
ik M̄kj(χ, y)−

m∑
p=1

σ−−
ip N̄pj(χ, y) (74)

along with the following set of boundary conditions:

1 ≤ i ≤ m, 1 ≤ j ≤ n M̄ij(χ, χ) =
σ+−
ij

μi + λj
� mij

∀ 1 ≤ i, j ≤ m, i �= j, N̄ij(χ, χ) = 0

∀ 1 ≤ j ≤ i ≤ m, N̄ij(χ, 0) =

n∑
k=1

ρikM̄kj(χ, 0)

∀ 1 ≤ i < j ≤ m, N̄ij(1, y) = 0

which has the exact same structure as the controller kernel sys-
tem, the well-posedness of which is assessed in Theorem 3.3.

C. Output Feedback Controller

The estimates can be used in an observer-controller scheme
to derive an output feedback law yielding finite-time stability
of the zero equilibrium. More precisely, we have the following
Lemma.

Lemma 4.2: Consider the system composed of the original
(1)–(3) and target systems (47)–(49) with the following con-
trol law:

U(t)=

1∫
0

[K(1, ξ)û(ξ)+L(1, ξ)v̂(ξ)] dξ −R1û(t, 1) (75)

where K and L are defined by (36)–(41). Its solutions (u, v,
û, v̂) converge in finite time to zero.

Proof: Proposition 4.1 along with the existence of the
observer backstepping transformation (58), (59) yields conver-
gence of the observer error states ũ, ṽ defined by (50)–(52)
to zero for t ≥ tF .1 Therefore, for t ≥ tF , one has v(t, 0) =
v̂(t, 0) and Theorem 3.4 applies to the observer system
(47)–(49). Therefore, for t ≥ 2tF , one has (ũ, ṽ, û, v̂) ≡ 0
which also yields (u, v) ≡ 0.

V. TRAJECTORY TRACKING

The motion planning problem for hyperbolic system has been
investigated in [30], where an existence result is given. Here, we
explictly solve the problem of trajectory tracking, defined in the
next section.

1the proof of this claim follows the exact same steps as in the controller case,
see Section III-C
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A. Definition of the Trajectory Tracking

Consider the following (finite-time) trajectory tracking prob-
lem. Given Φ(t), a known function defined as

Φ(t) = (Φ1(t) · · · Φn(t))
T (76)

find the value of U(t) in (3) so that v(t, 0) = Φ(t) for t ≥ tM ,
for some tM > 0.

B. Tracking Control Design

The following result solves the trajectory tracking problem.
Theorem 5.1: Consider system (1), (2) with boundary condi-

tions (3) and the following feedback control law:

U(t) = −R1u(t, 1) + Φi

(
t+

1

μi

)

−
i−1∑
j=1

1∫
0

μj

μi
gij(ξ)Φj

(
t+

1− ξ

μi

)
dξ

+

1∫
0

[K(1, ξ)u(ξ) + L(1, ξ)v(ξ)] dξ. (77)

Then, v(t, 0) ≡ Φ(t) if t ≥ tM , for tM =
∑m

j=1(1/μj).
Proof 5.2: We start by using the backstepping transfor-

mation (28) to map (1), (2) into the target system (12), (13) with
the following boundary conditions:

α(t, 0) = Q0β(t, 0), β(t, 1) = B(t) (78)

where B(t) in (78) is a function defined as

B(t) = (B1(t) · · · Bn(t))
T (79)

with components to be determined. B represents an extra
degree of freedom that did not appear in the target system for
the stabilization problem (14). It will be used to solve the mo-
tion planning problem. The presence of B(t) in the boundary
conditions does not change the backstepping transformation;
however it modifies the feedback control law to

U(t) = B(t) +

1∫
0

[K(1, ξ)u(ξ) + L(1, ξ)v(ξ)] dξ. (80)

Now, noticing that if one sets x = 0 in the transformation (28)
one obtains vi(t, 0) = βi(t, 0), it is clear that we only need to
solve the motion planning problem for the target β system by
using B(t). The next steps of the proof are devoted to finding
the value of B(t).

Using the method of characteristics, the explicit solution for
each state βi(t, x) of (78) with boundary condition (78) at time
t ≥ ((1− x)/μi) is

βi(t, x)=Bi

(
t+

x− 1

μi

)
+

1

μi

1∫
x

G(ξ)β

(
t+

x− ξ

μi
, 0

)
dξ.

(81)

Using (16), we obtain

βi(t, x)=Bi

(
t+

x−1

μi

)
+

i−1∑
j=1

1∫
x

μj

μi
gij(ξ)βj

(
t+

x−ξ

μi
, 0

)
dξ.

(82)

To solve now the motion planning problem, consider first
(82) for i = 1 and x = 0, for t ≥ 1/μ1. Imposing β1(t, 0) =
Φ1(t), we obtain

Φ1(t) = B1

(
t− 1

μ1

)
(83)

thus, setting B1(t) = Φ1(t+ (1/μ1)) for t ≥ 0, we obtain the
desired behavior for β1(t, 0) for t ≥ 1/μ1. Now consider (82)
for i = 2 and x = 0, for t ≥ 1/μ2. Imposing β2(t, 0) = Φ2(t),
we obtain

Φ2(t) = B2

(
t− 1

μ2

)
+

1∫
0

μ2

μ1
L21(ξ, 0)β1

(
t− ξ

μ2
, 0

)
dξ.

(84)

Solving for B2 as before

B2(t) = Φ2

(
t+

1

μ2

)
−

1∫
0

μ1

μ2
L21(ξ, 0)β1

(
t+

1− ξ

μ2
, 0

)
dξ.

(85)

To be able to substitute β1(t, 0) for Φ1(t) in the whole domain
of the integral in (85), we need to wait until t = 1/μ1. Thus,
choosing

B2(t) = Φ2

(
t+

1

μ2

)
−

1∫
0

μ1

μ2
L21(ξ, 0)Φ1

(
t+

1− ξ

μ2
, 0

)
dξ

(86)

we get that β2(t, 0) = Φ2(t) for t ≥ (1/μ1) + (1/μ2) (as we
have to wait an extra 1/μ2 time for (86) to propagate). It is clear
that this procedure can be continued for i = 3, . . . ,m. Thus, we
obtain that

Bi(t) = Φi

(
t+

1

μi

)
−

i−1∑
j=1

1∫
0

μj

μi
Lij(ξ, 0)Φj

(
t+

1− ξ

μi

)
dξ

(87)

solves the motion problem for βi for t ≥
∑i

j=1(1/μj). Apply-
ing (87) for i = 1, . . . ,m and substituting in (80) produces the
feedback law (77), thus solving the motion planning problem in
time tM =

∑m
j=1(1/μj).

Remark 8: Using Theorem 5.1, one can obtain a pure motion
planning result. For that, one should take (82)—the explicit
solutions of the target system obtained in the proof of the
theorem—and substitute the values of Bi found in (87), so
that the βi’s are explicit functions of the Φi’s. The α system
should be solved as well. Then, using the inverse backstepping
transformation (45), find the ui’s and vi’s as explicit functions
of the Φi’s and substitute them in the control law (77), which
would then be an exclusive function of the outputs. We omit
this result for the sake of brevity.
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C. An Explicit Motion Planning Example

To illustrate our results, we present an specific example of a
motion planning problem for n = 0, m = 2. Although this ex-
ample is presented here as an academic illustration, it presents
the advantage to be explicitly solvable. In particular, as will
appear, the backstepping kernels can be expressed in closed
form (101)–(104). Consider the plant

v1t(t, x) − μ1v1x(t, x) = σ12v2(t, x) (88)

v2t(t, x) − μ2v2x(t, x) = σ21v1(t, x) (89)

with boundary conditions

v1(t, 1) = U1(t), v2(t, 1) = U2. (90)

The objective is to design U1(t) and U2(t) so that v1(t, 0) =
Φ1(t) and v2(t, 0) = Φ2(t) for some functions Φ1,Φ2 for t ≥
tM . Notice that since (88)–(90) is explicitly solvable, one might
think that the inputs can be directly designed. Using the method
of characteristics to explicitly write a solution of the system,
one gets, after time t = 1/μ2

v1(t, 0) = U1

(
t− 1

μ1

)
+

1

μ1

1∫
0

σ12v2

(
t− ξ

μ1
, ξ

)
dξ (91)

v2(t, 0) = U2

(
t− 1

μ2

)
+

1

μ2

1∫
0

σ21v1

(
t− ξ

μ2
, ξ

)
dξ. (92)

However, if one tries to proceed as in the proof of Theorem 5.1,
by plugging in Φ1(t) in (91) and Φ2(t) in (92), and then solve
for U1(t) and U2(t), one ends up with a feedback law that
requires knowing future values of v1 and v2, i.e., a non-causal
(and therefore not implementable) feedback law. Thus, a direct
approach does not work even for the m = 2 case. To solve the
motion planning problem, we resort to Theorem 5.1; in this

particular case, the motion planning problem is solved by the
inputs

U1(t) = Φ1

(
t+

1

μ1

)
+

1∫
0

L11(1, ξ)v1(ξ)dξ

+

1∫
0

L12(1, ξ)v2(ξ)dξ (93)

U2(t) = Φ2

(
t+

1

μ2

)
−

1∫
0

μ1

μ2
L21(ξ, 0)Φ1

(
t+

1− ξ

μ2

)
dξ

+

1∫
0

L21(1, ξ)v1(ξ)dξ +

1∫
0

L22(1, ξ)v2(ξ)dξ (94)

where the kernels L11, L12, L21, and L22 satisfy

μ1∂xL11(x, ξ) + μ1∂ξL11(x, ξ) = σ21L12(x, ξ) (95)

μ1∂xL12(x, ξ) + μ2∂ξL12(x, ξ) = σ12L11(x, ξ) (96)

μ2∂xL21(x, ξ) + μ1∂ξL21(x, ξ) = σ21L22(x, ξ) (97)

μ2∂xL22(x, ξ) + μ2∂ξL22(x, ξ) = σ12L21(x, ξ) (98)

with boundary conditions

L11(x, 0) = L12(x, 0) = L22(x, 0) = 0 (99)

L12(x, x) =
σ12

μ2 − μ1
, L21(x, x) =

σ21

μ1 − μ2
(100)

plus the artificial boundary conditionL21(1, ξ) = l21(ξ), where
the function l21 is arbitrary. These kernel PDEs can be explicitly
solved using techniques akin to those used in [28]. The resulting
kernels (whose validity can be verified by substitution in the
kernel equations) are given by (101)–(104), shown at the bottom
of the page, where I0 and I1 are the modified Bessel functions
of order 0 and 1, and J0 and J1 are the (regular) Bessel
functions of order 0 and 1, respectively.

L11(x, ξ) =

⎧⎨
⎩

√
σ12σ21

μ2−μ1

√
μ1ξ−μ2x
μ1(x−ξ) I1

(
2

μ1−μ2

√
σ12σ21(x−ξ)(μ1ξ−μ2x)

μ1

)
, ξ ≥ μ2

μ1
x

0, ξ < μ2

μ1
x

(101)

L12(x, ξ) =

⎧⎨
⎩

σ21

μ2−μ1
I0

(
2

μ1−μ2

√
σ12σ21(x−ξ)(μ1ξ−μ2x)

μ1

)
, ξ ≥ μ2

μ1
x

0, ξ < μ2

μ1
x

(102)

L21(x, ξ) =
σ21ξ

μ1x− μ2ξ
J0

(
2

μ1 − μ2

√
σ12σ21(x− ξ)(μ1x− μ2ξ)

μ2

)

+ μ1

√
σ21μ2(x − ξ)

σ12(μ1x− μ2ξ)3
J1

(
2

μ1 − μ2

√
σ12σ21(x− ξ)(μ1x− μ2ξ)

μ2

)
(103)

L22(x, ξ) = ξ

√
σ12σ21

μ2(x − ξ)(μ1x− μ2ξ)
J1

(
2

μ1 − μ2

√
σ12σ21(x− ξ)(μ1x− μ2ξ)

μ2

)
(104)
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Fig. 1. Motion planning kernels (n = 0, m = 2). Solid: L11(1, ξ) and
L21(ξ, 0). Dash-dotted: L12(1, ξ). Dotted: L21(1, ξ). Dashed: L22(1, ξ).

Fig. 2. Motion planning kernels L11(x, ξ) and L12(x, ξ) (n = 0, m = 2).

The kernels appearing in (91) and (92) are depicted in Fig. 1
for the case μ1=1, μ2=0.2, and σ12=2, σ21=5. It can be seen
that L11(1, ξ) and L12(1, ξ) have a monotone behavior (they
are always negative or zero), whereas L21(1, ξ), L21(ξ, 0), and
L22(1, ξ) are oscillatory. Fig. 2 shows L11 and L12 in the whole
domain T ; notice that L12(x, ξ) is discontinuous along the line
ξ = μ2/μ1 (which is the lower domain on Fig. 6), whereas
L11(x, ξ) is not discontinuous. On the other hand, it is evident
that l21(ξ) = L21(1, ξ) is rather non-trivial. In fact, the proce-
dure that was followed to find these explicit solutions was not
setting a value of l21 a priori, but rather extending the domain
shown in Fig. 4 up to x = μ1/(μ1 − μ2), so that boundary
condition (100) can be used to actually find the value of l21.

VI. PROOF OF THEOREM 3.3: WELL-POSEDNESS

OF THE KERNEL EQUATIONS

To prove well-posedness of the kernel equations, we classi-
cally transform them into integral equations and use the method
of successive approximations. Although this approach to solv-
ing hyperbolic equations is classical (see [23] and [29]), the
particular geometry of the problem and the coupling between
kernels, both in-domain and at the boundaries, could lead the
equations to explode in finite space on the triangle. For this
reason, we provide a detailed proof of well-posedness.

Remark 9: Similar proofs have been derived for less general
systems, e.g., in [8] or [13]. The proof is more involved here
due to the existence of homodirectional controlled states, which
lead to the homodirectional kernel PDEs (37).

A. Method of Characteristics

1) Characteristics of the K Kernels: For each 1 ≤ i ≤ m,
1 ≤ j ≤ n, and (x, ξ) ∈ T , we define the following character-

Fig. 3. Characteristic lines of the K kernels.

istic lines (xij(x, ξ; ·), ξij(x, ξ; ·)) corresponding to (36):{
dxij

ds (x, ξ; s) = −μi, s ∈
[
0, sFij(x, ξ)

]
xij(x, ξ; 0) = x, xij

(
x, ξ; sFij(x, ξ)

)
=xF

ij(x, ξ)
(105){

dξij
ds (x, ξ; s) = λj , s ∈

[
0, sFij(x, ξ)

]
ξij(x, ξ; 0) = ξ, ξij

(
x, ξ; sFij(x, ξ)

)
=xF

ij(x, ξ).
(106)

These lines, depicted on Fig. 3, originate at the point (x, ξ) and
terminate on the hypotenuse at the point (xF

ij(x, ξ), x
F
ij(x, ξ)).

The expressions ofxij(x, ξ; s), ξij(x, ξ; s)sFij(x, ξ)andxF
ij(x, ξ)

are omitted here for simplicity, but are straightforward to
compute. Integrating (36) along these characteristic lines and
plugging in the boundary condition (38) yields

Kij(x, ξ)=kij+

sFij(x,ξ)∫
0

[
n∑

k=1

σ++
kj Kik(xij(x, ξ; s), ξij(x, ξ; s))

+

m∑
p=1

σ−+
pj Lip (xij(x, ξ; s), ξij(x, ξ; s))

]
ds. (107)

2) Characteristics of the L Kernels: For each 1 ≤ i ≤ m,
1 ≤ j ≤ m, and (x, ξ) ∈ T , we define the following character-
istic lines (χij(x, ξ; ·), ζij(x, ξ; ·)) corresponding to (37):{

dχij

dν (x, ξ; ν) = εijμi, ν ∈
[
0, νFij(x, ξ)

]
χij(x, ξ; 0) = x, χij

(
x, ξ; νFij (x, ξ)

)
= χF

ij(x, ξ)

(108){
dζij
dν (x, ξ; ν) = εijμj , ν ∈

[
0, νFij(x, ξ)

]
ζij(x, ξ; 0) = ξ, ζij

(
x, ξ; νFij (x, ξ)

)
= ζFij (x, ξ)

(109)

where εij is defined by

εij(x, ξ) =

{
1, if i > j

−1, otherwise.
(110)

These lines all originate at (x, ξ) and terminate on ∂T at the
point (χF

ij(x, ξ), ζ
F
ij (x, ξ)). They are depicted on Figs. 4–6 in

the three distinct cases i < j, i = j, and i > j. The detailed
expressions of χij(x, ξ; s), ζij(x, ξ; s) νFij (x, ξ), χ

F
ij(x, ξ), and

ζFij (x, ξ) are, again, omitted here because of space constraints.
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Fig. 4. Characteristic lines of the kernels Lij for i > j.

Fig. 5. Characteristic lines of the kernels Lii.

Fig. 6. Characteristic lines of the kernels Lij for i < j.

Integrating (37) along these characteristics and plugging in the
boundary conditions (39)–(41) yields

Lij(x, ξ) = δij(x, ξ)lij + (1− δij(x, ξ))
1

μj

n∑
r=1

λrqrjKir

×
(
χF
ij(x, ξ), 0

)
− εij

νF
ij(x,ξ)∫
0

×
[

m∑
p=1

σ−−
pj Lip (χij(x, ξ; ν), ζij(x, ξ; ν))

+

n∑
k=1

σ+−
kj Kik (χij(x, ξ; ν), ζij(x, ξ; ν))

]
dν

(111)

where the coefficient δij(x, ξ), defined by

δij(x, ξ) =

⎧⎪⎨
⎪⎩
0 if i = j

0 if i < j and μiξ − μjx ≤ 0

1 otherwise

(112)

reflects the fact that some characteristics terminate on the ξ = 0
boundary of T , while others terminate on the hypotenuse or
on the x = 1 boundary of T . Plugging in (107) evaluated at
(χF

ij(x, ξ), 0) yields

Lij(x, ξ)=δij(x, ξ)lij + (1− δij(x, ξ))
1

μj

n∑
r=1

λrqrjkir

+ (1− δij(x, ξ))
1

μj

n∑
r=1

λrqrj

sFir(χF
ij(x,ξ),0)∫
0

×
[

n∑
k=1

σ++
kr Kik

(
xir

(
χF
ij(x, ξ), 0; s

)
, ξir
(
χF
ij(x, ξ), 0; s

))

+

m∑
p=1

σ−+
pr Lip

(
xir

(
χF
ij(x, ξ), 0; s

)
,

ξir
(
χF
ij(x, ξ), 0; s

)) ]
ds− εij

νF
ij(x,ξ)∫
0

×
[

m∑
p=1

σ−−
pj Lip (χij(x, ξ; ν), ζij(x, ξ; ν))

+

n∑
k=1

σ+−
kj Kik (χij(x, ξ; ν), ζij(x, ξ; ν))

]
dν.

(113)

B. Method of Successive Approximations

We now use the method of successive approximations to
solve (107) and (113). Define first

∀ 1 ≤ i ≤ m, 1 ≤ j ≤ n, ϕij(x, ξ) = kij (114)

∀ 1 ≤ i ≤ m, 1 ≤ j ≤ m,

ψij(x, ξ) = δij(x, ξ)lij + (1− δij(x, ξ))
1

μj

n∑
r=1

λrqrjkir.

(115)

Besides, we defineH as the vector containing all the kernels, re-
ordered line by line and stacked up, and similarly φ, as follows:

H=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

H1

...
Hnm

Hnm+1

...
Hnm+m2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

K11

...
Kmn

L11

...
Lmm

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, φ=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

φ1

...
φnm

φnm+1

...
φnm+m2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

ϕ11

...
ϕmn

ψ11

...
ψmm

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

(116)



HU et al.: CONTROL OF HOMODIRECTIONAL AND GENERAL HETERODIRECTIONAL LINEAR COUPLED HYPERBOLIC PDEs 3311

We consider the following linear operators acting on H, for 1 ≤
i ≤ m, 1 ≤ j ≤ n:

Φij [H](x, ξ) =

sFij(x,ξ)∫
0

[
n∑

k=1

σ++
kj Kik(xij(x, ξ; s), ξij(x, ξ; s))

+
m∑

p=1

σ−+
pj Lip (xij(x, ξ; s), ξij(x, ξ; s))

]
ds (117)

and for 1 ≤ i ≤ m, 1 ≤ j ≤ m

Ψij [H](x, ξ)

= (1− δij(x, ξ))
1

μj

n∑
r=1

λrqrj

sFir(χF
ij(x,ξ),0)∫
0

×
[

n∑
k=1

σ++
kr Kik

(
xir

(
χF
ij(x, ξ), 0; s

)
, ξir

(
χF
ij(x, ξ), 0; s

))

+
m∑

p=1

σ−+
pr Lip

(
xir

(
χF
ij(x, ξ), 0; s

)
, ξir
(
χF
ij (x, ξ), 0; s

))]
ds

− εij

νF
ij(x,ξ)∫
0

[
m∑

p=1

σ−−
pj Lip (χij(x, ξ; ν), ζij(x, ξ; ν))

+

n∑
k=1

σ+−
kj Kik(χij(x, ξ; ν), ζij(x, ξ; ν))

]
dν.

(118)

Define then the following sequence:

H0(x, ξ) = 0 (119)

Hq(x, ξ) = φ(x, ξ) +Φ[Hq−1](x, ξ) (120)

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ϕ11(x, ξ) + Φ11[H
q−1](x, ξ)

...
ϕ1n(x, ξ) + Φ1n[H

q−1](x, ξ)
ϕ21(x, ξ) + Φ21[H

q−1](x, ξ)
...

ϕmn(x, ξ) + Φmn[H
q−1](x, ξ)

ψ11(x, ξ) + Ψ11[H
q−1](x, ξ)

...
ψmm(x, ξ) + Ψmm[Hq−1](x, ξ)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (121)

One should notice that if the limit exists, then H=limq→+∞
Hq(x, ξ) is a solution of the integral equations, and thus
solves the original hyperbolic system. Besides, define for q ≥ 1
the increment ΔHq = Hq −Hq−1, with ΔH0 = φ by defin-
ition. Since the functional Φ is linear, the following equation
ΔHq(x, ξ) = Φ[Hq−1](x, ξ) holds. Using the definition of
ΔHq, it follows that if the sum

∑+∞
q=0 ΔHq(x, ξ) is finite, then:

H(x, ξ) =

+∞∑
q=0

ΔHq(x, ξ). (122)

In the next section, we prove convergence of the series in L∞.

C. Convergence of the Successive Approximation Series

To prove convergence of the series, we look for a recursive
upper bound, similarly to, e.g., [13]. More precisely, let ε be
such that

0 < ε < 1− max
1≤j<i≤m

{
μi

μj

}
. (123)

Then, the following result holds.
Proposition 6.1: For q ≥ 1, assume that

∀ (x, ξ) ∈ T , ∀ i = 1, . . . , nm+

m2 |ΔHq
i (x, ξ)| ≤ φ̄

M q (x− (1− ε)ξ)q

q!
(124)

where ΔHq
i (x, ξ) denotes the i-th (i = 1, . . . ,mn+m2) com-

ponent of ΔHq(x, ξ), then it follows that:

∀ (x, ξ) ∈ T , ∀ i = 1, . . . ,m, ∀ j = 1, . . . , n,

|Φij [ΔHq](x, ξ)| ≤ φ̄
M q+1 (x− (1− ε)ξ)q+1

(q + 1)!
(125)

∀ (x, ξ) ∈ T , ∀ i = 1, . . . ,m, ∀ j = 1, . . . ,m,

|Ψij [ΔHq](x, ξ)| ≤ φ̄
M q+1 (x− (1− ε)ξ)q+1

(q + 1)!
.

(126)

The proof of this proposition relies on the following Lemma,
which is crucial and different from previous works (see [8,
Lemma A.4]).

Lemma 6.2: For q ∈ N, (x, ξ) ∈ T , and sFij(x, ξ), ν
F
ij (x, ξ),

xij(x, ξ, ·), ξij(x, ξ, ·), χij(x, ξ, ·), ζij(x, ξ, ·) defined as in
(105), (106), (108) and (109), respectively, the following in-
equalities holds:

∀ 1 ≤ i ≤ m, ∀ 1 ≤ j ≤ n

sFij(x,ξ)∫
0

× (xij(x, ξ; s) − (1− ε)ξij(x, ξ; s))
q ds

≤ Mλ
(x− (1− ε)ξ)q+1

q + 1
(127)

∀ 1 ≤ i, j ≤ m

νF
ij(x,ξ)∫
0

(χij(x, ξ; ν) − (1− ε)ζij(x, ξ; ν))
q dν

≤ Mλ
(x− (1− ε)ξ)q+1

q + 1
(128)

where

Mλ = max
i,p=1,...,m,j=1,...,n

×
{

1

μi + (1 − ε)λj
,

1

−εij (μi − (1− ε)μp)

}
. (129)
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Proof 6.3: Consider the following change of variables,
noting (105) and (106):

τ = xij(x, ξ; s)− (1− ε)ξij(x, ξ; s)

dτ =

[
dxij

ds
(x, ξ; s) − (1− ε)

dξij
ds

(x, ξ; s)

]
ds

= (−μi − (1− ε)λj) ds.

The left-hand-side of (127) becomes

sFij(x,ξ)∫
0

(xij(x, ξ; s) − (1− ε)ξij(x, ξ; s))
q ds

=

xF
ij(x,ξ)−(1−ε)ξFij(x,ξ)∫

x−(1−ε)ξ

−τq

μi + (1 − ε)λj
dτ

=
(x− (1 − ε)ξ)q+1 −

(
xF
ij(x, ξ) − (1− ε)ξFij(x, ξ)

)q+1

(μi + (1− ε)λj) (q + 1)

≤ Mλ
(x− (1 − ε)ξ)q+1

q + 1

where we have used the fact that for all 1 ≤ i ≤ m, 1 ≤ j ≤ n,
one has

xF
ij(x, ξ) − (1− ε)ξFij(x, ξ) ≥ 0 (130)

which is trivially satisfied since (xF
ij(x, ξ), ξ

F
ij(x, ξ)) ∈ ∂T and

ε > 0. Consider now the following change of variables:

τ = χij(x, ξ; s)− (1− ε)ζij(x, ξ; s)

dτ =

[
dχij

ds
(x, ξ; s)− (1− ε)

dζij
ds

(x, ξ; s)

]
ds

= εij (μi − (1− ε)μj) ds.

Thus, the left-hand-side of (128) becomes

νF
ij(x,ξ)∫
0

(χij(x, ξ; ν) − (1− ε)ζij(x, ξ; ν))
q dν

=

χF
ij(x,ξ)−(1−ε)ζF

ij(x,ξ)∫
x−(1−ε)ξ

τq

εij (μi − (1− ε)μj)
dτ

=
(x− (1 − ε)ξ)q+1 −

(
χF
ij(x, ξ)− (1 − ε)ζFij (x, ξ)

)q+1

−εij (μi − (1− ε)μj) (q + 1)
.

(131)

Given the definition of εij given by (110), one has

−εij (μi − (1− ε)μj) =

{
μi − (1 − ε)μj if i ≤ j

(1− ε)μj − μi if i > j.

Therefore, given the definition of ε (123) in the case i > j and
the ordering of the μi in the case i ≤ j, one has

−εij (μi − (1 − ε)μj) > 0. (132)

Besides, since (χF
ij(x, ξ), ζ

F
ij (x, ξ)) ∈ T , one has (χF

ij(x, ξ) −
(1− ε)ζFij (x, ξ)) > 0 and (131) becomes

νF
ij(x,ξ)∫
0

(χij(x, ξ; ν)− (1 − ε)ζij(x, ξ; ν))
q dν

≤ Mλ
(x− (1− ε)ξ)q+1

q + 1
(133)

which concludes the proof.
Remark 10: Notice that(132) also implies that, for any (x, ξ)∈

T and 1 ≤ i ≤ m, 1 ≤ j ≤ n the function

ν∈
[
0, νFij(x, ξ)

]
�→χij(x, ξ; ν)−(1 − ε)ζij(x, ξ; ν) (134)

is strictly decreasing, in particular the following inequality holds:

0 ≤ χF
ij(x, ξ)− (1 − ε)ζFij (x, ξ) ≤ x− (1− ε)ξ (135)

which will be useful in the proof of Proposition 6.1.
Proof 6.4 (Proof of Proposition 6.1): Define

λ̄ = max{λn, μ1}, λ = max

{
1

λ1
,
1

μn

}

σ̄ = max
i,j

{σ++, σ−+, σ+−, σ−−}, q̄ = max
i,j

{qij}

M = (nλ̄λq̄ + 1)(n+m)σ̄Mλ

φ̄ = max
i,j

max
(x,ξ)∈T

{|ϕi,j(x, ξ)| , |ψi,j(x, ξ)|} .

Let now q ∈ N and assume that

∀ (x, ξ) ∈ T , ∀ i = 1, . . . , nm+

m2 |ΔHq
i (x, ξ)| ≤ φ̄

M q(x − (1− ξ))q

q!
. (136)

Then, for 1 ≤ i ≤ m, 1 ≤ j ≤ n, (x, ξ) ∈ T one has

|Φij [ΔHq](x, ξ)|≤
sFij(x,ξ)∫
0

∣∣∣∣∣
n∑

k=1

σ++
kj ΔKq

ik(xij(x, ξ; s), ξij(x, ξ; s))

+

m∑
p=1

σ−+
pj ΔLq

ip(xij(x, ξ; s), ξij(x, ξ; s))

∣∣∣∣∣ ds
(137)

using (127) and (136), this yields

|Φij [ΔHq](x, ξ)|

≤(n+m)σ̄·
sFij(x,ξ)∫

0

φ̄
M q(xij(x, ξ; s)−(1−ε)ξij(x, ξ; s))

q

q!
ds

≤(n+m)σ̄
φ̄M q

q!
Mλ

(x− (1 − ξ))q+1

q + 1

≤ φ̄
M q+1 (x− (1− ε)ξ)q+1

(q + 1)!
. (138)
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Similarly, for 1 ≤ i, j ≤ m, one gets, using (136)

|Ψij [ΔHq](x, ξ)| ≤ λ̄λq̄(n+m)σ̄
n∑

r=1

sFir(χF
ij(x,ξ),0)∫
0

× φ̄
M q

(
xir

(
χF
ij(x, ξ), 0; s

)
−(1−ε)ξir

(
χF
ij(x, ξ), 0; s

))q
q!

ds

+ (n+m)σ̄

νF
ij(x,ξ)∫
0

φ̄
Mq(χij(x, ξ; ν)−(1−ε)ζij(x, ξ; ν))

q

q!
dν.

(139)

Then, using (127) at (x, ξ) = (χF
ij(x, ξ), 0) and (128) yields

|Ψij [ΔHq](x, ξ)|

≤ λ̄λq̄(n+m)σ̄nφ̄MλM
q

(
χF
ij(x, ξ)−(1−ε)ζFij(x, ξ)

)q+1

(q + 1)!

+ (n+m)σ̄φ̄
M qMλ (x− (1− ε)ξ)q+1

(q + 1)!
. (140)

Inequality (135) yields

|Ψij [ΔHq](x, ξ)|

≤
(
nλ̄λq̄ + 1

)
(n+m)σ̄φ̄Mλ

M q (x− (1 − ε)ξ)q+1

(q + 1)!

≤ φ̄
M q+1 (x− (1− ε)ξ)q+1

(q + 1)!
(141)

which concludes the proof.
Proposition 6.1 directly leads to Theorem 3.3, since by the

same procedures presented in [8] and [13], one has that (122)
converges and

|H(x, ξ)| =
∣∣∣∣∣
+∞∑
q=0

ΔHq(x, ξ)

∣∣∣∣∣ ≤ φ̄eM(x−(1−ε)ξ). (142)

VII. CONCLUDING REMARKS

We have presented boundary control designs for a gen-
eral class of linear first-order hyperbolic systems: an output-
feedback law for stabilization to zero and a control law ensuring
output trajectory tracking.

These results bridge the gap with the results of, e.g., [25],
where the null (or weak) controllability of (n+m)-state hy-
perbolic systems is proved but no explicit design is given.

Our results open the door for a large number of related prob-
lems to be solved, e.g., collocated observer design, disturbance
rejection, similarly to [1], parameter identification as in [12],
output-feedback adaptive control as in [4], and stabilization of
quasilinear systems as in [8] and [22].

Another important question concerns the degree of freedom
given by (41) in the control design. The effect of the boundary
value of the kernels on the transient performances of the closed-
loop system is non-trivial, yet crucial for applications.
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