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a b s t r a c t

Following recent results on the boundary stabilization of coupled first-order hyperbolic equations by
means of integral transformations, here a new result is presented for the problem of state estimation of
coupled linear reaction–diffusion PDEs with Neumann boundary conditions from boundary measure-
ments. For this purpose, an observer is constructed with a prescribed convergence rate. The stability
of the estimation error system is derived by mapping the estimation error system to a stable target
system using a pair of integral transformations. Our method is applicable as well to the dual problem
of boundary stabilization of coupled linear reaction–diffusion PDEs. A numerical scheme, based on
power series approximations of the kernels is formulated, taking into account the fact that the kernels
are only piecewise differentiable.
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1. Introduction

The problems of stabilization and estimation for coupled linear
parabolic equations have been addressed recently, by means of
the backstepping method for PDEs [1], in a series of publica-
tions. First, the stabilization and estimation problems for coupled
reaction–diffusion equations, with constant parameters and equal
diffusion coefficients, were solved in [2,3] and [4]. The extension
to allow distinct diffusion coefficients was proposed later for cou-
pled reaction–diffusion equations with constant coefficients in
[5,6]. Then, boundary stabilization for coupled reaction–diffusion
equations, with a spatially varying reaction, was solved in [7],
in a relative general way. The generality allowed for subsequent
results on the boundary estimation of coupled reaction–diffusion
equations, with a spatially varying reaction, in [8], and on the
boundary stabilization problem for coupled reaction–advection–
diffusion equations with spatial variation in all parameters in [9].
Likewise, the problem of boundary stabilization and output reg-
ulation for one-dimensional coupled parabolic PIDEs with spa-
tially varying coefficients and with Dirichlet, Neumann, and Robin
boundary conditions was addressed in [10] and in [11], respec-
tively. More recently, stabilization for a pair of coupled diffusion–
reaction equations with unknown parameters was studied in [12].
The estimation and stabilization problems are closely related.
In the estimation problem, one commonly designs an observer
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which guarantees some stability property for the origin of the
estimation error system. The stability of the estimation error
system then implies the convergence of the state estimate to the
unknown state.

Briefly speaking, in the backstepping method, one seeks for
an invertible transformation to map a, possibly unstable, PDE
to a carefully selected stable target system. The transformation
is typically an integral transformation and the main difficulty
arises when trying to solve the PDEs verified by the kernels in
the integral transformation. In [7,9] Volterra integral transforma-
tion (of second kind) was employed for a system of n coupled
(advection)-reaction–diffusion equations. The kernels in [7,9] sat-
isfy n2 coupled second-order hyperbolic equations in a triangular
domain and were solved by deriving an equivalent system of
2n2 coupled first-order hyperbolic equations, noticing a resem-
blance with the kernel equations appearing in the boundary
stabilization problem of coupled systems of first-order hyperbolic
equations [13,14]. A similar approach was followed in [8], but
making use of a more recent solution of the boundary stabi-
lization problems of coupled systems of first-order hyperbolic
equations [15].

1.1. Contribution

The contribution of this paper is twofold, we provide a pair of
integral transformations to decoupled the equation in the estima-
tion error system and device a numerical method to compute the
kernel equations.

First, motivated again by advances on the problem of boundary
stabilization for coupled first-order hyperbolic equations [16]
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where a decoupling technique is applied, we propose a new
solution to the state estimation problem for coupled reaction–
diffusion equations from boundary measurements. We show that
a pair of integral transformations allows us to map the estimation
error system into a simple stable target system, with uncoupled
equations. Previous methods [5–11] lead to target systems with
coupled equations, convoluting the assignment of an exact con-
vergence rate or the formulation of robustness with respect to
measurement disturbances [17]. Compared with [2–4], the result
in this paper is not restricted to systems with equal diffusiv-
ity. The case with equal diffusion coefficients is less involved;
in particular, a solution to the kernel equations can be found
following the same method used in the problems with a single
PDE. The result in this paper is not restricted to the problem
of state estimation from boundary measurements. Actually, due
to the similarity of the kernel equations in the problems of
boundary stabilization and boundary estimation, this result is also
applicable to problem of boundary stabilization of coupled linear
reaction–diffusion PDEs. We derive and solve the equations for
the kernels of each transformation; the first one over a triangular
domain and the second one over a square of unit area. The
solutions are constructed by the method of characteristics; where
nontrivial partitions of the domains are required. We show that
for both transformations, the kernel equations are second-order
coupled hyperbolic, with a coupling between some of the kernels
at the boundaries.

Second, we provide a simple numerical method to solve the
kernel equations. The numerical scheme is based on polynomial
approximations of the kernels; taking into account the fact that
the kernels are piecewise differentiable. The problem of approx-
imating solution of kernel equations by polynomials was studied
previously in [18], where the authors formulate the approxima-
tion problem as an optimization problem, but it has not been
applied to kernels with discontinuous derivatives.

1.2. Outline

The structure of the paper is as follows. In Section 2 the
estimation problem is introduced. The main result in presented
in Section 3. The solution to the kernel equations is derived in
Section 4. A numerical scheme to compute the kernels is pre-
sented in Section 5; together with an example of the numerical
computation 6. Finally, we conclude the paper with some remarks
in Section 7.

2. Problem statement

2.1. Notation

• For a function f : [0, 1] ↦→ Rn, with f (x) = [f1(x), . . . , fn(x)]T ,
such that fi ∈ L2(0, 1), for i ∈ {1, . . . , n}, we use the
following norm notation

∥f ∥2
L2 =

∫ 1

0
|f (x)|22dx, |f (x)|22 =

n∑
i=1

|fi(x)|2, (1)

• A function f : [0, 1] ↦→ Rn belong to the space L2(0, 1;Rn)
if

∥f ∥L2 < ∞, (2)

2.2. Coupled parabolic reaction diffusion systems

Consider a linear reaction diffusion equation

ut (x, t) = Σuxx(x, t) + Λ(x)u(x, t), (3)

with coefficients

Σ =

⎡⎢⎣ ϵ1 · · · 0
...

. . .
...

0 · · · ϵn

⎤⎥⎦ , Λ (x) =

⎡⎢⎣ λ11 (x) · · · λ1n (x)
...

. . .
...

λn1 (x) · · · λnn (x)

⎤⎥⎦ .

(4)

for x ∈ (0, 1), t ∈ (0, T ], with λij ∈ C1(0, 1) for all i, j ∈

{1, 2, . . . , n} and distinct diffusivities ϵi > 0, for all i ∈ {1, 2, . . . ,
n}. The state u(x, t) ∈ Rn is defined as

u(x, t) = [u1(x, t), u2(x, t), . . . , un(x, t)]T . (5)

The boundary conditions are of Neumann type

ux(0, t) = f0(t), ux(1, t) = f1(t) + Au(1, t), (6)

and initial conditions u0 ∈ L2(0, 1), and A1 ∈ Rn×n. The states
are ordered so that ϵn > · · · > ϵ2 > ϵ1 > 0. The well-posedness
of the system follows from standard results on linear parabolic
equations [19, Subsection 7.1.3], [20]. In particular, we consider
solutions which, as functions of the spatial variable, belong to the
space L2(0, 1). Eq. (3) and boundary conditions (6) constitute a
dynamic system with state u ∈ C

(
[0, T ];L2(0, 1)

)
, known inputs

f0 ∈ L2([0, T ]), f1 ∈ L2([0, T ]), and output measurement y ∈

L ([0, t]), with y(t) = u(1, t). The estimation problem is to obtain
an estimate û of u, from boundary measurements f0, f1 and y. A
boundary observer that provides a solution to this problem, with
prescribed convergence rate, is provided in the next section.

Remark 1. The diffusion of lithium ions in the porous elec-
trodes of lithium-ion batteries (with multiple active materials),
is described by a system of (radial) diffusion equations, i.e., a
system with Λ = 0, with a nonlinear coupling at the boundary.
Linearization of the boundary coupling results in a boundary
condition of the form (6), where f1(t) is related to the charge
(or discharge) current, the matrix A relates the flux lithium ions
in all the materials within the electrode to satisfy a potential
equilibrium assumption.

2.3. Observer and estimation error systems

The proposed state observer is a copy of the reaction–diffusion
system (3) with boundary conditions (6) together with boundary
output error feedback

ût (x, t) = Σ ûxx(x, t) + Λ(x)̂u(x, t) + P(x) [u(1, t) − û(1, t)] (7)

for x ∈ (0, 1), t ∈ (0, T ], with boundary conditions

ûx(0, t) = f0(t), (8)

ûx(1, t) = f1(t) + Au(1, t) + Q [u(1, t) − û(1, t)] , (9)

and initial conditions û0 ∈ L2(0, 1). The observer state is û ∈

C ([0, T ];L) and u(1, t) − û(1, t) is the boundary output error.
Observer gains P(x) and Q are yet to be chosen. The estimation
error system can be found by subtracting (7), (9) from (3), (6), to
obtain

ũt (x, t) = Σ ũxx(x, t) + Λ(x)̃u(x, t) − P(x)̃u(1, t), (10)

ũx(0, t) = 0, ũx(1, t) = −Q ũ(1, t), (11)
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where ũ (x, t) = u (x, t) − û (x, t), is the estimation error. The
problem is then to find observer gains P(x) and Q that guarantee
exponential stability of the estimation error system

P(x) = −K (x, 1)ΣB − Ks(x, 1)Σ, (12)

Q = B − K (1, 1), (13)

where the matrix K (x, s) ∈ Rn×n is a solution of the following
hyperbolic system of PDEs

ΣKxx − KssΣ = −KC − Λ(x)K , (14)

in the domain T = {(x, s) : 0 < x < s < 1} with boundary
conditions

0 = K (x, x)Σ − ΣK (x, x), (15)
Λ(x) + C = − ΣKx (x, x) − Ks (x, x) Σ

− Σ
d
dx

[K (x, x)] , (16)

H(s) = Kx(0, s), (17)

0 = K (0, 0), (18)

where B and C are user defined diagonal matrices; with diagonal
entries b1, b2, . . . , bn ≥ 0 and c1, c2, . . . , cn > 0. The matrix H(s)
in (17) is lower triangular, that is hij = 0 if j ≥ i. Each non-zero
element hij(s) is defined piecewise

hij(s) =

⎧⎪⎪⎨⎪⎪⎩
K ij
x (0, s) for 0 ≤ s ≤ 1 −

√
ϵj

ϵi
,

Ǩ ij
x (0, s) for 1 −

√
ϵj

ϵi
≤ s ≤ 1,

(19)

and the matrix Ǩ (x, s) is a solution of a second hyperbolic system
of PDEs

Σ Ǩxx − ǨssΣ = CǨ − ǨC (20)

defined in the square S = {(x, s) : 0 < x < 1, 0 < s < 1} with
boundary conditions

Ǩs(x, 1) = Ǩs(x, 0) = Ǩx(1, s) = Ǩ (x, 0) = 0, (21)

Ǩx(0, s) = H(s). (22)

The main results in the paper, stated in the next theorem, provide
a solution to the estimation problem.

3. Stability of the estimation error system

Theorem 1. The origin of the estimation error system (10)–(11),
with initial condition ũ0 ∈ L2(0, 1) and observer gains computed
from (13), is exponentially stable, that is, for any prescribed σ > 0,
there exists a positive constant κ , such thatũ(·, t)L2 ≤ κ exp [−σ t] , (23)

for all t > 0.

In the proof of Theorem 1, the main question is if the ker-
nel PDEs (14)–(18) and (20)–(22) do indeed have a solution, as
implicitly assumed in the theorem’s statement, The next result
answers this question.

Theorem 2. Both systems of kernel equations (14)–(18) and
(20)–(22) possess a continuous piecewise differentiable solution,
K (x, s) and Ǩ (x, s), in their respective domains of definition, T and
S . In addition, the transformations T , Ť defined by

T [f ](x) = f (x) −

∫ 1

x
K (x, s)f (s)ds, (24)

Ť [f ](x) = f (x) −

∫ 1

0
Ǩ (x, s)f (s)ds, (25)

are invertible and both, the transformations and their inverses T−1

and Ť−1, map L2(0, 1) functions into L2(0, 1) functions, verifying

k1∥f ∥L2 ≤ ∥T [f ]∥L2 ≤ k2∥f ∥L2 , (26)

k3∥f ∥L2 ≤ ∥Ť [f ]∥L2 ≤ k4∥f ∥L2 . (27)

for some k1, k2, k3, k4 > 0

The proof of Theorem 1 is presented in Section 3.2 and the
proof of Theorem 2 is delivered in Section 4.

3.1. Target system

To prove that the choice of P(x) and Q in (13) the origin of
the estimation error system is exponentially stable two integral
transformations are employed. The first transformation defined
in (31), maps the estimation error system (10)–(11) to a first
target system (28)–(29). The first transformation is a second-kind
Volterra integral transformation, and alone, it will map the esti-
mation error system to a target system with coupled boundary
conditions along with set of kernel equations with some arbitrary
terms in the boundary conditions [9]. Here, the first target system
includes a boundary feedback term H : L2(0, 1) ↦→ R, defined
precisely such that a second transformation (32) exists, which
will map the first target system (28)–(29) to a set of n uncoupled
and stable diffusion reaction equations (33)–(34) and the kernel
systems for both transformations include no arbitrary terms. The
first target system is

wt (x, t) = Σwxx (x, t) − Cw (x, t) , (28)

for x ∈ (0, 1), t ∈ (0, T ], with target state w(x, t) = [w1(x, t), . . . ,
wn(x, t)]T , and boundary conditions

wx(0, t) = H[w](x, t), wx(1, t) = −Bw (1, t) . (29)

In (28), matrices B and C are user-defined diagonal matrices. The
term H in (29) is a linear bounded operator acting on the state w
and applied in the boundary as feedback. The operator H has the
form

H[w](t) =

∫ 1

0
H(s)w(s, t)ds. (30)

The matrix H(s) is lower triangular, with non-zero entries defined
in the transformation T : L2(0, 1) → L2(0, 1) that maps the first
target system into the estimation error system is defined as

ũ (x, t) = T [w](x, t) = w (x, t) −

∫ 1

x
K (x, s) w (s, t) ds, (31)

where the kernel matrix K (x, s) has entries denoted as K ij(x, s).
The second transformation Ť : L2(0, 1) → L2(0, 1) is

v(x, t) = Ť [w](x, t) = w(x, t) −

∫ 1

0
Ǩ (x, s)w(s, t)ds, (32)

where Ǩ (x, s) is a lower triangular matrix, that is Ǩ ij(x, s) = 0 if
j ≥ i, which maps the second target system into the first target
system. The second target system is

vt (x, t) = Σvxx(x, t) − Cv(x, t), (33)

with boundary conditions

vx(0, t) = 0, vx(1, t) = −Bv(1, t). (34)

The pair of transformation is summarized conceptually in Fig. 1.
Now, we prove the stability property needed for the second target
system.
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Fig. 1. Maps between the estimation error systems and the first and second
target systems.

Proposition 3. The origin v ≡ 0 of the system (33) with boundary
conditions (34), and initial conditions v0 ∈ L2(0, 1) is exponentially
stable in the L2 norm.

Proof. The stability of the system (33)–(34), can be verified with
the Lyapunov functional

V (t) =
1
2

∫ 1

0
v(x, t)Tv(x, t)dx. (35)

Taking the time derivate of V (t) along the solutions of (33)–(34),
and applying integrations by parts twice lets to

dV
dt

(t) = −

n∑
i=1

ϵi

(
biv(1, t)2 +

∫ 1

0

(
∂vi

∂x
(x, t)

)2

dx

)
(36)

= −

n∑
i=1

ci

∫ 1

0
vi(x, t)2dx, (37)

For each i ∈ {1, . . . , n}, Wirtinger’s inequality implies∫ 1

0
(vi(x, t) − vi(1, t))2 dx ≤

4
π2

∫ 1

0

(
∂vi

∂x
(x, t)

)2

dx, (38)

Then, using Young’s inequality in the left hand side of (38) results
in

γ

γ + 1

∫ 1

0
vi(x, t)2dx − γ v2

i (1, t) ≤
4
π2

∫ 1

0

(
∂vi

∂x
(x, t)

)2

dx, (39)

for any γ > 0. In particular, by choosing γ = 4bi/π2, the
inequalities in (39) become

π2bi
π2 + 4bi

∫ 1

0
vi(x, t)2dx ≤ biv2

i (1, t) +

∫ 1

0

(
∂vi

∂x
(x, t)

)2

dx. (40)

Substituting (40) into (36) lets to

dV
dt

(t) ≤ −

n∑
i=1

(
ϵi

π2bi
π2 + 4bi

+ ci

)∫ 1

0
vi(x, t)2dx, (41)

therefore
dV
dt

(t) ≤ −2σV (t), with σ = min
i∈{1,...,n}

{
ϵiπ

2bi
π2 + 4bi

+ ci

}
. (42)

Finally, by the comparison principle

∥v(·, t)∥L2 ≤ ∥v0∥L2 exp [−σ t] . □ (43)

3.2. Proof of Theorem 1

Proof. Assume for the moment that Theorem 2 holds and
that there is a solution to both kernel systems, (14)–(18) and
(20)–(22), such that the transformations T and Ť are invertible
and both, transformations and their inverses, map L2(0, 1) func-
tions into L2(0, 1) functions. Consider now the second target
system in (33)–(34), with initial conditions v0(x) given by apply-
ing Ť−1 to the initial condition of the first target system w0(x),
that is

v0(x) = Ť−1 [w0] (x) = w0(x) −

∫ 1

0
Ǐ(x, s)w0(s)ds, (44)

where Ǐ(x, s) is the kernel of the inverse transformation. Assume
for that w0 ∈ L2(0, 1), thus have v0 ∈ L2(0, 1), and

∥w(·, t)∥2 ≤
k3
k4

∥w0∥2 exp [−σ t] . (45)

Consider now the first target system in (28)–(29), with initial
conditions w0(x) given by applying T−1 to ũ0(x), that is

w0(x) = T−1 [ũ0
]
(x) = ũ0(x) −

∫ 1

0
I(x, s)ũ0(s)ds, (46)

where Ǐ(x, s) is the kernel of the inverse transformation. Since
u0 ∈ L2(0, 1), we do have w0 ∈ L2(0, 1), and from (45), it follows
that

∥ũ(·, t)∥2 ≤
k1k3
k2k4

∥ũ0∥2 exp [−σ t] , (47)

and Theorem 1 is proved. □

In the next section, we construct the solution to both kernel
systems and verify the invertibility of both transformations. The
result is the proof for Theorem 2.

Remark 2. The well-posedness of the second target system
(33)–(34) follows also from standard results on linear parabolic
equations. This, along with the fact that transformations T and Ť
(and their inverses) map functions in L2(0, 1) to L2(0, 1), results
in the well-posedness of observer system (7)–(8). In particular,
we consider solutions û(x, t) which, as functions of the spatial
variable, belong to the space L2(0, 1).

4. Solution to the kernel equations

4.1. Kernel equations for first transformation

The coefficients in the diagonal of K (x, s) satisfy the equation

ϵiK ii
xx (x, s) − ϵiK ii

ss(x, s) = − ciK ii(x, s)

−

l=n∑
l=1

λil(x)K li(x, s), (48)

for i ∈ {1, 2, . . . , n}, with boundary conditions

d
dx

[
K ii(x, x)

]
= −

ci + λii(x)
2ϵi

, (49)

K ii
x (0, s) = 0, K ii(0, 0) = 0. (50)

The coefficients in the upper triangular part of K (x, s) satisfy the
equation

ϵiK ij
xx(x, s) − ϵjK ij

ss(x, s) = − cjK ij (x, s)

−

l=n∑
l=1

λil(x)K lj(x, s), (51)

for i ∈ {1, 2, . . . , n − 1} and i < j, with boundary conditions

K ij
x (x, x) =

λij(x)
ϵj − ϵi

, K ij
s (x, x) =

λij(x)
ϵi − ϵj

, (52)

K ij(x, x) = 0, K ij
x (0, s) = 0, K ij(0, 0) = 0. (53)

The coefficients in the lower triangular part of K (x, s) satisfy the
equation

ϵiK ij
xx(x, s) − ϵjK ij

ss(x, s) = − cjK ij(x, s)

−

l=n∑
l=1

λil(x)K lj(x, s), (54)
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Fig. 2. Domain, boundary and characteristic lines for the upper diagonal
coefficients of matrices L(x, s) and R(x, s).

for i ∈ {2, 3, . . . , n} and j < i, with boundary conditions

K ij
x (x, x) =

λij(x)
ϵj − ϵi

, K ij
s (x, x) =

λij(x)
ϵi − ϵj

, (55)

K ij(x, x) = 0, K ij
x (0, s) = hij(s), K ij(0, 0) = 0. (56)

4.2. Well posedness of kernel equations in first transformation

Lemma 4. Assume each hij(s) is known, bounded and continuous
along the segment 1 −

√
ϵj/ϵi ≤ s ≤ 1. Then, there exists a

unique solution K (x, s), satisfying Eq. (14) with boundary conditions
(15)–(18). The solution is continuous and piecewise differentiable.

Proof. Define auxiliary variables L(x, s) and R(x, s) as follows

L(x, s) =
√

ΣKx(x, s) − Ks(x, s)
√

Σ, (57)

R(x, s) =
√

ΣKx(x, s) + Ks(x, s)
√

Σ . (58)

Then, replacing (57) and (58) in (14) we obtain
√

ΣLx + Ls
√

Σ = −KC − Λ(x)K , (59)
√

ΣRx − Rs
√

Σ = −KC − Λ(x)K . (60)

Boundary conditions for (59) and (60) can be derived by substi-
tuting (57) and (58) in (15)–(18). The fact that K (x, s) still appears
on the right hand side of Eqs. (59) and (60) is not a problem since
K (x, s) can computed from L(x, s) and R(x, s) integrating (57) and
(58) along horizontal lines and using the known values of K (x, s)
in the diagonal, that is

K ij(x, s) = K ij(s, s) −
1

2
√

ϵi

∫ s

x

[
Rij(z, s) + Lij(z, s)

]
dz, (61)

Eqs. (59) and (60) are analog to those found in [15,16]. The classi-
fication introduced for the elements of K (x, s) remains unchanged
after the change of variables and is useful to construct a solution
for (59) and (60) using the method of characteristics. The diagonal
coefficients of L(x, s) and R(x, s) satisfy the equations
√

ϵiLiix (x, s) +
√

ϵiLiis (x, s) = − ciK ii(x, s)

−

l=n∑
l=1

λil(x)K li(x, s), (62)

√
ϵiRii

x (x, s) −
√

ϵiRii
s (x, s) = −ciK ii(x, s)

−

l=n∑
l=1

λil(x)K li (x, s) , (63)

for i ∈ {1, 2, . . . , n}, with boundary conditions

Lii (0, s) = −Rii (0, s) , (64)

Rii (x, x) = −
ci + λii(x)

√
ϵi

. (65)

Eqs. (62) and (63) with boundary conditions (65), can be solved
using the method of characteristics. That is, writing (62) and (63)
as integral equations along the characteristic; straight lines with
slope 1 for (62) and slope −1 for (63). The coefficients of the
upper triangular part of matrices L(x, s) and R(x, s) satisfy the
equations
√

ϵiLijx (x, s) +
√

ϵjLijs (x, s) = − cjK ij(x, s),

−

l=n∑
l=1

λil(x)K lj(x, s), (66)

√
ϵiRij

x (x, s) −
√

ϵjRij
s (x, s) = − cjK ij(x, s)

−

l=n∑
l=1

λil(x)K lj(x, s), (67)

for i ∈ {1, 2, . . . , n − 1}, and i < j, with boundary conditions

Lij(x, x) =
λij(x)

√
ϵj −

√
ϵi

, Lij(0, s) = −Rij(0, s), (68)

Rij(x, x) = −
λij(x)

√
ϵi +

√
ϵj

. (69)

Eqs. (66) and (67), with boundary conditions (68), (69), can
be solved using the method of characteristics. That is, writing
(66) and (67) as integral equations along the characteristic lines;
straight lines with slope

√
ϵj/ϵi for (66) and −

√
ϵj/ϵi for (66). The

boundary condition (69) provides enough information to solve
for Rij(x, s) in the whole domain. However, to solve for Lij(x, s),
boundary information from two segments of the boundary is
needed. Specifically, to compute Lij(x, s) in the set Aij

1 = {(x, s) ∈

T :
√

ϵjx ≤
√

ϵis}, the boundary condition (68), given at the left
side of the triangle (x = 0), is needed. On the other hand, to
compute Lij(x, s) in the set Aij

2 = {(x, s) ∈ T :
√

ϵis ≤
√

ϵjx},
the boundary condition (68), given at the diagonal of the triangle
(x = s), is needed. This results in a discontinuity for the function
Lij(x, s) at the line

√
ϵis =

√
ϵjx, but results only in a discontinuity

for the first derivatives of the elements K ij(x, s), as can be seen
from the definition (57). The geometry of the problem, that is,
the characteristic lines, the boundary, and the partition of the
domain in sets Aij

1 and Aij
2, is shown in Fig. 2. The coefficients in

the lower triangular part of the matrices L(x, s) and R(x, s) satisfy
the equations
√

ϵiLijx (x, s)+
√

ϵjLijs (x, s) = −cjK ij(x, s)

−

l=n∑
l=1

λil(x)K lj(x, s), (70)

√
ϵiRij

x (x, s)−
√

ϵjRij
s (x, s) = −cjK ij(x, s)

−

l=n∑
l=1

λil(x)K lj (x, s) , (71)

for i ∈ {2, 3, . . . , n} and j < i, with boundary conditions

Lij(x, x) =
λij(x)

√
ϵj −

√
ϵi

, (72)

and

Lij(0, s) = 2
√

ϵihij(s) − Rij(0, s), (73)

Rij(x, x) = −
λij(x)

√
ϵi +

√
ϵj

. (74)
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Fig. 3. Domain, boundary and characteristic lines for the lower diagonal
coefficients of matrices L(x, s) and R(x, s).

Eqs. (70) and (71) with boundary conditions (72)–(74) can be
solved using the method of characteristics. That is, writing
(70) and (71) as integral equations along the characteristic lines.
The characteristic lines are straight lines with slope

√
ϵj/ϵi for

(70) and −
√

ϵj/ϵi for (71). Boundary condition (74) provides
enough information to compute Rij(x, s) in the whole domain.
Boundary conditions (72) at the diagonal (x = s) allow us
to compute Lij(x, s) in the set Bij

1 = {(x, s) ∈ T :
√

ϵis +
√

ϵj ≤
√

ϵjx +
√

ϵi}. The segment of the left boundary that
coincides with the piece Bij

1 is precisely the segment where hij(s)
is defined in terms of Kx(0, s); hence, avoiding inconsistency due
to overdetermination. Boundary conditions (73) at the left side
(x = 0), allow us to compute Lij(x, s) in the remaining set, that is,
Bij
2 = {(x, s) ∈ T :

√
ϵjx +

√
ϵi ≤

√
ϵis +

√
ϵj}. The segment of

the left boundary that coincides with Bij
2 is precisely the segment

where hij(s) is defined in terms of Ǩx(0, s). Thus, the piecewise
definition of hij(s) in (19) serves the double purpose of avoiding
overdetermination and providing boundary conditions to avoid
underdetermination. Again, there is a discontinuity in the function
Lij(x, s) at the line

√
ϵis+

√
ϵj =

√
ϵjx+

√
ϵi, but results only in a

discontinuity for the first derivatives of the elements K ij(x, s), as
can be seen from definition (57). The geometry of the problem,
that is, the characteristic lines, the boundary, and the partition
of the domain in sets Bij

1 and Bij
2 , is shown in Fig. 3. Using the

method of successive approximation, it can be verified that the
integral equations for all the coefficients of L(x, s) and R(x, s) have
a unique solution. Eq. (61) is then used to recover K (x, s) from
L(x, s) and R(x, s). □

Next, we construct a solution in the system (20)–(22).

4.3. Kernel equations for second transformation

For each coefficient Ǩ ij(x, s), we divide the domain in Mij + 1
polygons (Mij of which are triangles and 1 quadrilateral), with

Mij = 2

⌈
1
2

(√
ϵi

ϵj
− 1

)⌉
+ 1, (75)

where ⌈·⌉ stands for the ceiling function. We denote these poly-
gons Cij

k ; for k ∈ {0, 1, . . . ,Mij}. The sets Cij
0 and Cij

Mij
are triangles

defined as

Cij
0 =

{
(x, s) ∈ S : 0 ≤ s ≤

√
ϵj

ϵi
x
}

, (76)

Cij
Mij

=

{
(x, s) ∈ S : 1 + (x − 1)

√
ϵj

ϵi
≤ s ≤ 1

}
. (77)

Fig. 4. Partition of the domain for the kernel in the second transformation.

For 0 < k < Mij, the sets Cij
k are polygons defined as

Cij
k :=

{
(x, s) ∈ S : sijk(x) ≤ s ≤ sijk(x),

s ≤ 1 + (x − 1)
√

ϵj

ϵi

}
, (78)

with

sijk(x) =

⎧⎨⎩ (k − 1)
√

ϵj
ϵi

+ x
√

ϵj
ϵi

for k odd,

k
√

ϵj
ϵi

− x
√

ϵj
ϵi

for k even,
(79)

sijk(x) =

⎧⎨⎩ (k + 1)
√

ϵj
ϵi

+ x
√

ϵj
ϵi

for k odd,

k
√

ϵj
ϵi

+ x
√

ϵj
ϵi
, for k even.

(80)

Note that S =
⋃Mij

k=0 C
ij
k ; Fig. 4 shows this partition. In the triangle

Cij
0 , the element Ǩ ij(x, s) satisfies

ϵiǨ ij
xx(x, s) − ϵjǨ ij

ss(x, s) = [ci − cj]Ǩ ij(x, s), (81)

with boundary conditions

Ǩ ij(x, 0) = Ǩ ij
s (x, 0) = Ǩ ij

x (1, s) = 0. (82)

Thus, in the piece Cij
0 , the unique solution is simply

Ǩ ij(x, s) = 0. (83)

For k odd and 0 < k < Mij, the sets Cij
k are either triangles or

a quadrilateral if k = Mij − 2. In these sets the function Ǩ ij(x, s)
satisfies the equation

ϵiǨ ij
xx(x, s) − ϵjǨ ij

ss(x, s) = [ci − cj]Ǩ ij(x, s), (84)

with a boundary condition

Ǩ ij
x (0, s) = hij(s). (85)

In addition, continuity at the intersection between Cij
k and Cij

k−1
implies that Ǩ ij(x, s) is given along the segment defined by sijk(x);
assuming a unique solution has been found in the previous piece
Cij
k−1.
For k even and 0 < k < Mij, the sets C ij

k are all triangles, and
in these sets the function K ij(x, s) satisfies the equation

ϵiǨ ij
xx(x, s) − ϵjǨ ij

ss(x, s) = [ci − cj]Ǩ ij(x, s), (86)

and a boundary condition

Ǩ ij
x (0, s) = 0. (87)
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Fig. 5. Polygon Cij
k for k odd.

Fig. 6. Polygon Cij
k for k even.

In addition, the continuity requirement at the intersection
between Cij

k and Cij
k−1 implies that Ǩ ij(x, s) is given along the

segment defined by sijk(x); assuming a unique solution has been
found in the previous piece Cij

k−1.
Finally, in the triangle Cij

Mij
the function Ǩ ij(x, s) satisfies

ϵiǨ ij
xx(x, s) − ϵjǨ ij

ss(x, s) = [ci − cj]Ǩ ij(x, s), (88)

with the boundary condition

Ǩ ij
s (x, 1) = 0. (89)

In addition, the continuity requirement at the intersections be-
tween Cij

Mij
and Cij

Mij−1 and between Cij
Mij

and Cij
Mij−2 implies that

Ǩ ij(x, s) is given along the segment defined by s = 1+ (x−1)
√

ϵj
ϵi
,

from the assumption that a unique solution has been found in the
previous set Cij

Mij−1.

Note that finding the solution Ǩ (x, s) at CMij completes the
piecewise definition of H(s), i.e.

hij(s) =

⎧⎪⎪⎨⎪⎪⎩
K ij
x (0, s) for 0 ≤ s ≤ 1 −

√
ϵj

ϵi
,

Ǩ ij
x (0, s) for 1 −

√
ϵj

ϵi
≤ s ≤ 1.

(90)

Therefore, the boundary condition used to solve system (14)–(18)
is not longer arbitrary.

4.4. Well posedness of kernel equations in second transformation

Lemma 5. If each hij(0, s) is bounded and continuous on the
segment 0 ≤ s ≤ 1 −

√
ϵj/ϵi, then there exists a unique solution

Ǩ ij(x, s) satisfying Eq. (20) and boundary conditions (21)–(22). The
solution is defined piecewise and is continuous over all the domain.

Proof. Since the unique solution at C ij
0 is Ǩ ij(x, s) = 0, to find

a (continuous) solution in the whole domain, it is sufficient to

prove that a unique solution can be found at C ij
k given a solution

in all previous sets C ij
k−1, C

ij
k−2, . . . , C

ij
0 .

Define again auxiliary variables Ľ(x, s) and Ř(x, s) as follows

Ľ(x, s) =
√

Σ Ǩx(x, s) − Ǩs(x, s)
√

Σ, (91)

Ř(x, s) =
√

Σ Ǩx(x, s) + Ǩs(x, s)
√

Σ . (92)

In the case k is odd and 0 < k < Mij, the functions Ľij(x, s) and
Řij(x, s) satisfy the first order equations
√

ϵiĽijx (x, s) +
√

ϵjĽijs (x, s) =
[
ci − cj

]
Ǩ ij(x, s) (93)

√
ϵiŘij

x (x, s) −
√

ϵjŘij
s (x, s) =

[
ci − cj

]
Ǩ ij(x, s) (94)

with boundary conditions

Ľij(0, s) = 2
√

ϵih(s) − Řij(0, s), (95)

Řij(x, sijk(x)) =
√

ϵiǨ ij
x

(
x, sijk(x)

)
+

√
ϵjǨ ij

s

(
x, sijk(x)

)
. (96)

The fact that there is a shared boundary between C ij
k and C ij

k−1,
i.e. sijk(x) = sijk−1(x), and the assumption that Ǩ ij(x, s) is known
at C ij

k−1, implies that the right hand side of (96) is known and
bounded. Eqs. (93) and (94) with boundary conditions (95) and
(96) can be solved using the method of characteristics. That
is, writing (93) and (94) as integral equations along the char-
acteristic lines. The characteristic lines are straight lines with
slope

√
ϵj/ϵi for (93) and −

√
ϵj/ϵi for (94). The geometry of the

problem, that is, the characteristic lines, the boundary, and the
domain C ij

k (for k odd and 0 < k < Mij) is depicted in Fig. 5.
In the case k is even and 0 < k < Mij, functions Ľij(x, s) and

Řij(x, s) satisfy the same first-order hyperbolic equations
√

ϵiĽijx (x, s) +
√

ϵjĽijs (x, s) =
[
ci − cj

]
Ǩ ij(x, s) (97)

√
ϵiŘij

x (x, s) −
√

ϵjŘij
s (x, s) =

[
ci − cj

]
Ǩ ij(x, s) (98)

with boundary conditions

Ľij(x, sijk(x)) =
√

ϵiǨ ij
x

(
x, sijk(x)

)
−

√
ϵjǨ ij

s

(
x, sijk(x)

)
, (99)

Řij(1, s) = −Ľij(1, s). (100)

The fact that there is a shared boundary between C ij
k and C ij

k−1,
i.e. sijk(x) = sijk−1(x), and the assumption that Ǩ ij(x, s) is known at
C ij
k−1, imply that the right hand side of (99) is known and bounded.

Eqs. (97) and (98) with boundary conditions (99) and (100) can
be solved using the method of characteristics. That is, writing
(97) and (98) as integral equations along the characteristic lines.
The characteristic lines are straight lines with slope

√
ϵj/ϵi for

(97) and −
√

ϵj/ϵi for (98). The geometry of the problem, that is,
the characteristic lines, the boundary, and the domain C ij

k (for k
even and 0 < k < Mij) is depicted in Fig. 6.

Finally, for k = Mij, functions Ľij(x, s) and Řij(x, s) satisfy the
same first-order hyperbolic equations
√

ϵiĽijx (x, s) +
√

ϵjĽijs (x, s) =
[
ci − cj

]
Ǩ ij(x, s), (101)

√
ϵiŘij

x (x, s) −
√

ϵjŘij
s (x, s) =

[
ci − cj

]
Ǩ ij(x, s), (102)

and boundary conditions

Ľij(x, 1) = Řij(x, 1), (103)

Řij
(
x, 1 + (x − 1)

√
ϵj

ϵi

)
=

√
ϵiǨ ij

x

(
x, 1 + (x − 1)

√
ϵj

ϵi

)
+

√
ϵjǨ ij

s

(
x, 1 + (x − 1)

√
ϵj

ϵi

)
. (104)

In this case, C ij
Mij

shares a boundary with two previous sets:

C ij
Mij−1 and C ij

Mij−2. The assumption that Ǩ ij(x, s) is known at C ij
Mij−1,
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Fig. 7. Polygon Cij
Mij

. Note that solving Ǩ ij in section Cij
Mij

provides the value of
hij(s) along the segment.

and C ij
Mij−2, implies that the right hand side of (103) is known

and bounded. Eqs. (101) and (102) with boundary conditions
(103) and (104) can be solved using the method of characteris-
tics. The characteristic lines are straight lines with slope

√
ϵj/ϵi

for Eq. (101) and −
√

ϵj/ϵi for Eq. (102). The geometry of the
problem, that is, the characteristic lines, the boundary, and the
domain C ij

Mij
is depicted in Fig. 7.

The fact that Ǩ ij(x, s) appears on the right hand side of the
equations is not a problem, since for 0 < k < Mij

Ǩ ij(x, s) = Ǩ ij(x, sijk(x)) +
1

2√ϵj

∫ s

sijk (x)

[
Řij(x, ξ )

+ Ľij(x, ξ )
]
dξ, (105)

for (x, s) ∈ Aij
k . And, for k = Mij

Ǩ ij(x, s) = Ǩ ij
(
x, 1 + (x − 1)

√
ϵj

ϵi

)
+

1
2√ϵj

∫ s

1+(x−1)
√

ϵj
ϵi

[
Řij(x, ξ ) + Ľij(x, ξ )

]
dξ, (106)

for (x, s) ∈ Aij
Mij

. Using the method of successive approximations,
it can be verified that the integral equations derived from the
method of characteristics have a unique solution. Eqs. (105) and
(106) are used to recover Ǩ (x, s) from the solutions Ľ(x, s) and
Ř(x, s). □

Lemma 6. There is a unique solution K (x, s), Ǩ (x, s) to Eqs.
(14) and (20) with boundary conditions (15)–(18) and (21)–(22).
The solution is defined piecewise and is continuous over all the
domain

Proof. The n elements in a given column j ∈ {1, 2, . . . , n} of
K (x, s) together with the j − 1 non-zero elements in the same
column j of Ǩ (x, s) form a system that is independent of all
other elements in both matrices. Thus, the problem can be solved
in a column-wise fashion. In particular, for the last column, all
elements of Ǩ (x, s) are zero and the elements K i,n(x, s) for i ∈

{1, 2, . . . , n} can be solved following Lemma 4 without the need
to solve for Ǩ (x, s). For any other column j ∈ {1, 2, . . . , n − 1},
the problem can be solve sequentially as follows. For a fix column
j⋆ ∈ {1, 2, . . . , n − 1}, all elements K i,j⋆ (x, s), i ∈ {1, 2, . . . , n} can
be found in the subset Bn,j⋆

1 (see Fig. 3), without need to solve for
any element in Ǩ i,j⋆ (x, s), following to Lemma 4. In particular, the

solution K n,j⋆ , restricted to the subset Bn,j⋆
1 , provides the boundary

conditions needed to solve for Ǩ n,j⋆ (x, s), in its whole domain
of definition S , following Lemma 5. Since Ǩ n,j⋆ (x, s) is available,
one can solve for all elements K ij⋆ (x, s), i ∈ {1, 2, . . . , n} in the
subset Bn−1,j⋆

1 , following Lemma 4. In particular, the solution Ǩ n,j⋆

restricted to the subset Bn−1,j⋆
1 provides all information needed to

solve for Ǩ n−1,j⋆ (x, s) its whole domain of definition S , following
Lemma 5. Note that Bn,j⋆

1 ⊂ Bn−1,j⋆
1 ⊂ . . . ⊂ B1,j⋆

1 . The procedure
is repeated until the solution is found for all non zero terms
Ǩ i,j⋆ (x, s), i ∈ {1, 2, . . . , j⋆ −1} in S. Finally, the solution Ǩ i,j⋆ (x, s),
i ∈ {1, 2, . . . , j⋆ − 1} in S , provides all the boundary conditions
needed to compute K i,j⋆ (x, s), i ∈ {1, 2, . . . , n} in T . □

4.5. Inversion of the transformations

Lemma 7. There exist integral transformations, mapping the func-
tion ũ to w, i.e. an inverse transformation of Ť , in the form

w(x, t) = Ť−1
[̃u](x, t) = ũ(x, t) +

∫ 1

0
I(x, s)̃u(s, t)ds, (107)

Proof. The existence of an inverse transformation follows from
the boundedness of the kernel K (x, s) and known properties of
second-kind Volterra integral equations. □

Lemma 8. There exists an integral transformation, mapping the
function w to v, i.e. an inverse transformation of Ť , in the form

v(x, t) = Ť−1
[w](x, t) = w(x, t) +

∫ 1

0
Ǐ(x, s)w(s, t)ds, (108)

Proof. The structure of Ǩ (x, s) implies the invertibility of trans-
formation Ť . This is verified with an induction argument by
noticing that

v1(x, t) = w1(x, t), (109)

and

vi(x, t) = wi(x, t) +

i−1∑
l=1

∫ 1

0
Ǩ il(x, s)wi(s, t)ds. (110)

for i ∈ {2, . . . , n}. The inverse has, in fact, the same structure as
the direct transformation, that is

v(x, t) = Ť−1
[w](x, t) = w(x, t) +

∫ 1

0
Ǐ(x, s)w(s, t)ds, (111)

where Ǐ(x, s) is lower triangular, where each Ǐ ij(x, s) is simply
computed from Ǩ (x, s). □

5. A numerical method to compute kernels

The numerical approximation of the kernels is based on a
piecewise polynomial approximation that takes into account the
piecewise differential nature of the kernels. For the approxima-
tion of coefficients in K (x, s), the domain is divided according
to the intersection of the sets Aij

1, Aij
2, Bij

1 and Bij
2 , defined in

Section 4 (Figs. 2 and 3) corresponding to all the coefficients
within the same column; due to the column-wise coupling in
Eqs. (48), (51) and (54). For the approximation of coefficients in
Ǩ (x, s), the domain is divided according to the sets Cij

k defined in
Section 4 (Fig. 4), with an additional partition of the set Cij

Mij
. The

extra partition is required since the boundary conditions at the
diagonal side of Cij

Mij
have a discontinuity, due to the fact that

the diagonal side of Cij
Mij

coincides with two other sets, Cij
Mij−1
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and Cij
Mij−2. For each coefficient in K (x, s) or Ǩ (x, s), an index p ∈

{1, . . . , pmax
} is employed to indicate the polynomial approxima-

tion in a particular piece the domain T or S. The numbers of
pieces pmax is not the same for all coefficients. For the coefficient
Ǩ ij(x, s), the number of pieces in the partition of S is

pmax
=

⎧⎪⎨⎪⎩
Mij + 2 if ⌈1/2

(√
ϵi/ϵj − 1

)
⌉ > 1/2

√
ϵi/ϵj,

Mij + 1 if ⌈1/2
(√

ϵi/ϵj − 1
)
⌉ < 1/2

√
ϵi/ϵj,

Mij if ⌈1/2
(√

ϵi/ϵj − 1
)
⌉ = 1/2

√
ϵi/ϵj,

(112)

with Mij defined in (75).
For each piece p ∈ {1, . . . , pmax

}, the mth order triangular
polynomial approximation of K ij(x, y) and Ǩ ij(x, y) has the form

pK ij
m(x, s) =

m∑
a=0

m−a∑
b=0

pd
ij
abx

asb, (113)

pǨ ij
m(x, s) =

m∑
a=0

m−a∑
b=0

pď
ij
abx

asb, (114)

where the values of coefficients pd
ij
ab, pď

ij
ab ∈ R, are found from

equations and boundary or continuity conditions. For the nu-
merical approximation it is convenient to use the second-order
hyperbolic equations (48), (51), (54), and (81), rather than the
first-order equivalent equations (62), (63), (66), (67), (70), (71),
(93) and (94).

5.1. Algebraic system of equations for coefficients in the polynomial
approximation

For each piece p, there are (m + 1)(m + 2)/2 unknown con-
stants in the polynomial approximation of each kernel function
K ij(x, s). Thus, for each piece p, there is a total of n(m + 1)(m +

2)/2 unknown constants, corresponding to all the kernels in a
given column of the matrix K (x, s); whose values have to be
determined. For this purpose, define pDj as the column vector of
dimension n(m+1)(m+2)/2 whose elements are the coefficients
pd

ij
ab of the polynomial approximations of all the kernels in a

given column j ∈ {1, . . . , n} and a given piece of the domain
p ∈ {1, . . . , pmax

}, arranged in some particular order, for example

pDj
=

[
pd

1j
00, pd

1j
10, pd

1j
01, . . . , pd

1j
0m, . . . , pd

nj
0m

]T
. (115)

The problem of approximating K (x, s) with a triangular polyno-
mial of order m is now the problem of finding the values of pDj;
for all the columns j ∈ {1, . . . , n} in K (x, s) and for all pieces
p ∈ {1, . . . , pmax

} of the domain. Each second order hyperbolic
equation in (48), (51) or (54) provides (m − 1)m/2 algebraic
equations. To see this, note that the differential operation in
the left-hand side of the equations, applied to the polynomial
approximation of order m, leads to a (m− 2)th order polynomial,
that is

ϵi
∂pK

ij
m

∂x2
(x, s) − ϵj

∂pK
ij
m

∂s2
(x, s) =

m−2∑
a=0

m−2−a∑
b=0

(

ϵi(a + 2)(a + 1)pd
ij
a+2,b − ϵj(b + 2)(b + 1)pd

ij
a,b+2

)
xasb. (116)

The algebraic operation on the right hand side of the equations
in (48), (51) and (54), applied to a (m − 2)th order polynomial
approximation of the kernels, results in a second (m− 2)th order

polynomial

cjpK
ij
m−2(x, s) −

n∑
l=1

λil(x)lK
lj
m−2(x, s) =

(m−2)∑
a=0

(m−2−a)∑
b=0

(
cjpd

ij
ab −

n∑
l=1

a∑
r=0

pλ
il
r pd

ij
a−r,b

)
xasb, (117)

where pλ
ij
r ∈ R are the coefficients of some mth order polynomial

approximation of λij(x); around some point x0 in the piece p. Since
equations in (48), (51) and (54) hold for all points (x, s) in the
domain, the coefficients of each power xasb have to coincide for
both polynomials in (116) and (117). Thus, for all a + b ≤ m − 2,
and for all i ∈ {1, 2, . . . , n},

ϵi(a + 2)(a + 1)pd
ij
a+2,b−ϵj(b + 2)(b + 1)pd

ij
a,b+2

−cjpd
ij
a,b −

n∑
l=1

a∑
r=0

pλ
il
r pd

ij
a−r,b = 0. (118)

These are n(m − 1)m/2 linear algebraic equations which can be
arrange in a nm(m − 1)/2 by n(m + 2)(m + 1)/2 matrix pM

j
PDE;

following the order chosen for pDj. Note that n(2m + 1) more
equations are needed to equate the number of equations and
unknowns; these will be provided by boundary and continu-
ity conditions. Since continuity conditions are actually boundary
conditions at the boundaries between pieces, there is no need
to distinguish between both in the polynomial approximation.
Continuity of a kernel function is a Dirichlet-type condition, and
continuity of a derivative of a kernel function is a Neumann-
type boundary condition. Dirichlet-type conditions provide m+1
algebraic equations while Neumann-type conditions provide m
algebraic equations. For example, a Neumann-type condition at
x = 0, that is ∂xpK ij(0, s) = pαij(s), for s ∈ (0, 1), applied to the
mth order polynomial approximation pK

ij
m(x, s) is

m−1∑
b=0

apd
ij
1bs

b
=

m−1∑
b=0

pα
ij
b s

b, (119)

where pα
ij
b are the coefficients of some (m−1)th order polynomial

approximation of pαij(s); around a point s0 in the piece p. Eq. (119)
is true for all values s ∈ (0, 1), therefore

apd
ij
1b = pα

ij
b for all b ∈ {0, . . . ,m − 1} . (120)

On the other hand, a Dirichlet-type condition at some line of the
form s = mslpx, that is pK ij(x,mslpx) = pβij(x), for x ∈ (0, 1),
applied to the mth order polynomial approximation of pK

ij
m(x, s),

is
m∑

r=0

(∑
r=a+b

mb
slppd

ij
ab

)
xr =

m∑
r=0

pβ
ij
r x

r , (121)

where pβ
ij
r are the coefficients of some polynomial approximation

of βij(x); around some point x0 in the piece p. Eq. (121) holds for
all values of x ∈ (0, 1), therefore∑
r=a+b

mb
slppd

ij
ab = pβ

ij
r for all r ∈ {0, . . . ,m} . (122)

Together, one Neumann-type and one Dirichlet-type conditions
provide 2m + 1 algebraic equations of the form (120) or (122).
It is then possible to arrange the 2m + 1 equations for each of
the n kernels in a given column j ∈ {1, . . . , n} of K (x, s), for
particular piece p ∈ {1, . . . , pmax

} of the domain, in a matrix pM
j
BC

of dimensions n(2m + 1) × n(m + 2)(m + 1)/2. Thus a system of
algebraic equations for pDj is obtained[

pM
j
PDE

pM
j
BC

]
pDj

=

⎡⎣ 0
pα

j

pβ
j

⎤⎦ , (123)
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Fig. 8. Piecewise polynomial approximation of the kernel Ǩ 21(x, s).

where pα
j and pβ

j are column vectors with elements pα
ij
b for

b ∈ {0, . . . ,m − 1}, i ∈ {1, . . . , n} and pβ
ij
r for r ∈ {0, . . . ,m},

i ∈ {1, . . . , n}. Note that continuity conditions enforce a particular
order. That is, functions pα

ij and pβ
ij might actually correspond

to a polynomial approximation of K ij(x, s) in a contiguous piece
of the domain. Thus, one can either solve the approximation
problem sequentially, following this order, or simultaneously for
all coefficients in the problem (including those for Ǩ (x, s)). The
construction of a polynomial approximation for Ǩ (x, s) follows the
same approach. In this case, equations are not coupled and there-
fore, a matrix pM̌

ij
PDE can be derived for the unknown constants

pď
ij
ab of a single coefficient of the matrix Ǩ (x, s).

Remark 3. The approximation of K (x, s) and Ǩ (x, s) by poly-
nomials of mth order, requires λij(x) ∈ Cm(0, 1); in particular,
Eqs. (117). This requirement is related to the smoothness of the
solutions to the kernel equations. Indeed, following the steps
in [13, Theorem A.1], the property λij(x) ∈ Cm(0, 1) results
in solutions K (x, s) and Ǩ (x, s), which are piecewise Cm(T ) and
Cm(S), respectively.

6. Example

6.1. Kernel functions

For a pair of coupled reaction–diffusion equation, a total of five
kernel functions have to be computed. Fig. 8 shows a plot of the
polynomial approximation of the non-zero element in the kernel
matrix Ǩ and Fig. 9 shows a plot of the polynomial approximation
of the element K12 The order of polynomial approximation is
m = 10, and the parameters in the problem are the following

Σ =

[
1 0
0 3

]
, Λ (x) =

[
1 x
x 1

]
, C =

[
5 0
0 11

]
. (124)

6.2. Observer

To evaluate the performance of the observer, we consider an
unstable pair of coupled diffusion–reaction equations in the form
(3)–(6), with parameters Σ and Λ(x) in (124), together with

A =
1
10

[
1 1
1 1

]
, f (t) =

[
0
0

]
. (125)

Functions g1(t) and g2(t) are chosen as piecewise constant func-
tions taking values from the set {−10, 0, 10}. The evolution of the
second state u2(x, t), for a particular choice of non-zero initial
conditions, is shown in Fig. 10. The observer for this example
has the form (7)–(8), where gains P and Q are computed from

Fig. 9. Piecewise polynomial approximation of the kernel K 12(x, s).

Fig. 10. Evolution of the second state u2(x, t).

Fig. 11. Estimation error ũ2(x, t) for the second state.

(13); with the matrix B set to zero and the matrix C chosen in
(124). To find P and Q we used the numerical approximation
of K (x, s) computed previously in Section 6.1. The evolution of
the estimation error of the second state, i.e., ũ2(x, t), is shown in
Fig. 11.

7. Conclusion

This paper details the design of observers for coupled systems
of diffusion–reaction equations. The converge of the estimate
follows from the stability of the estimation error system; derived
by mapping the estimation error system to a stable target sys-
tem using a pair of integral transformations. The target system
is a set of n decoupled equations. The simple target system is
advantageous to precisely assign designer-chosen convergence
rates. Future work includes the adaptive estimation problem,
robustness with respect to disturbances, and the use of polyno-
mial approximations as a numerical method for kernel equations
arising in the estimation and stabilization problems for other
classes of PDEs.
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