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This paper deals with the swath acquisition planning problem for
multisatellite Earth observation missions. Given a set of satellites and
a mission time frame, the problem we solve consists of selecting a set
of acquisitions from the satellites in order to cover a given region of
interest during the requested time frame, optimizing a certain
objective function. We show that the planning problem can be
modeled as a set covering problem, using basic tools of mathematical
programming. The formulation of the model requires the solution of
a complex computational geometry problem, and therefore the use of
heuristics and metaheuristics applies. In this paper, we discuss the
efficiency of the constructive phase of a greedy randomized adaptive
search procedure algorithm. Computational results comparing the
heuristic algorithms with the exact approach are presented.
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I. INTRODUCTION

Among the class of geocentric satellites, Earth
observation satellites (EOSs) are used to collect data of the
Earth in order to study lands, oceans, atmosphere, etc.
Such data might become useful for fire detection,
earthquake and tsunami alerts, identifying fishing zones,
etc. Because of their limited number, and their associated
costs, efficiently managing their operations is a must.

Despite advances in technology, satellites are
frequently manually managed by mission planners (see,
for instance, [1–3]). The increasing number of EOSs, as
well as the need of optimally coordinating several of them
for a given set of observations, makes manual planning
infeasible. Therefore, automatic mission coordination
tools are necessary (see [4] for a review on the progress
that has been made in the use of automated techniques for
scheduling space mission operations).

In addition, decisions must be made rapidly or even in
real time. Consider for instance humanitarian assistance or
damage assessment [5]. Even when the response need not
be that urgent, possible constant changes in input data
might require the reevaluation of the situation more
frequently (for instance, clouds might force a different
assignment of EOS’s with respect to the original plan). In
fact, as satellites are not permanently visible for ground
control stations, it would be advisable to design tools able
to make autonomous decisions on board, especially in the
case of agile satellites (see, for instance. [6, 7]).

In this paper, we start from a set of available EOSs, a
region of interest, and a mission time frame, and then
consider the problem of selecting a subset of EOSs in
order to cover the region of interest at minimum cost
during the requested time frame. We denote this problem
as the swath acquisition problem (SAP), which we model
as a set covering problem [8]. A preliminary version of
our algorithms to solve the SAP was presented in [9].

Our approach to solve the SAP is as follows. First, we
abstract the SAP as a mathematical programming problem
with linear constraints and objective function and with
binary variables. This constitutes an integer linear
programming (ILP) problem. ILP is one of the most
frequently used tools of operations research. It models
problems in which a linear function must be optimized
while some linear constraints are satisfied. The reader is
referred to [10, 11] for a complete introduction on linear
programming.

Then, in order to build the ILP model for our SAP, the
region of interest is divided into the subregions generated
by the available acquisitions. For each such subregion, we
check which of the available EOSs can cover it. This
problem might be intractable for realistic instances due to
the NP-completeness of the set covering problem, see
[12]. To be able to obtain a solution in a reasonable time,
we propose a heuristic algorithm. A heuristic algorithm is
a procedure that rapidly obtains a feasible solution to a
large optimization problem, which is hoped to be close to
an optimal solution; see [13, 14] for an introduction to
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heuristics. In this paper, we apply the constructive phase
of a GRASP1 algorithm to the SAP; the algorithm is tested
in numerical experiments and shown to provide a feasible
solution close to the exact solution of the ILP problem in a
fraction of the time taken by an exact solver. Both the
exact and heuristic algorithms could be easily integrated
into existing multisatellite swath planners [16].

Other SAPs have been formulated and solved in the
literature. For instance, [2] defined the swath segment
selection problem, which consists of selecting the areas to
be observed and the acquisitions needed to observe each
of them. This problem was solved via Lagrangian
relaxation by [17]. In [18], the planning of two satellites
with several modes to detect overflow regions in real time
was undertaken with an optimization strategy of the swath
covering, analogous to the one introduced in this paper. A
multiple criteria approach, for a supporting planner in the
selection of a satisfying feasible shot sequence, is
addressed in [19] with a two-stage procedure. The authors
of [20] address the scheduling problem of a fleet of EOSs,
by means of an heuristic stochastic greedy algorithm. In
[21], the planning and scheduling of the Cosmo-SkyMed
constellation, including both the image up and down load,
was analyzed. In [22], large satellite scheduling problems
with complex constraints (duty cycle, ground station
availability, or even coordination of multiple satellites) are
studied. A genetic algorithm, simulated annealing, and
stochastic hill climbing are compared, together with
random and squeaky transmission. Simulated annealing is
proved to perform best over a certain set of problems. A
heuristic approach was introduced in [5] to solve the
scheduling problem of an Earth-observing natural
disaster-monitoring constellation in which several
satellites compete to take images under complex
operational constraints in a short time. The case of
multisatellite, multiorbit, and multiuser management of
Earth-observing satellites over a planning horizon is
analyzed in [23], with a heuristic tabu search algorithm.

It must be noted that the SAP formulated in this paper
is not exactly the same as in the above-referenced works,
which makes it difficult to compare our results with those
previously obtained by other authors. Our contribution
mostly lies in formulating a simple model (which
nevertheless captures the essentials of the SAP) and
solving it with basic tools from computational geometry
and operations research. Having a simple model allows us
to solve the problem exactly (thus finding the best
solution, albeit at the price of computational speed) and
heuristically (much faster, but finding a feasible, but not
necessarily optimal, solution), and compare both
solutions. The ILP model and the constructive GRASP
algorithm developed here can serve as a starting point
for many other (similar) EOSs scheduling problems and

1 Greedy randomized adaptive search procedure (GRASP) algorithms
were introduced by Feo and Resende [15] and have since been widely
used for solving large-scale optimization problems.

thus constitute a useful addition to the literature on the
SAP.

The rest of the paper is organized as follows. In
Section II, we formally define our SAP. Section III
introduces the ILP model we have developed for this
problem. The heuristic designed for more rapidly finding a
feasible solution to the SAP is explained in Section IV.
Both the ILP model and the heuristic are computationally
evaluated and compared in Section V.

II. THE SWATH ACQUISITION PROBLEM

A. Problem Inputs

To formulate the SAP, the following inputs are needed:

1) R is the region of interest, i.e., the region of the
Earth that needs to be covered. If there are several regions
of interest, then R is the union of all of them. However,
note that different regions with different acquisition
requirements are not included in the model.

2) The time frame for the planning problem is an
interval T = [T0, Tf], given by the initial and final times T0

and Tf.
3) S is the set of available EOSs.
4) For each satellite s ∈ S, the relevant sensor field of

view αs is also necessary.
5) Ps is the set of possible sensor angle positions for

satellite s ∈ S (for satellites with off-nadir viewing
capabilities).

6) Using these concepts, an acquisition a(s, k, t0, t1) is
defined as the surface of the Earth covered by the swath of
satellite s ∈ S, during [t0, t1] ⊂ T, when its sensor is in
position k∈ Ps. The set A of all possible acquisitions is
another required input for the SAP, which however should
be computed from the satellite orbits, as explained in the
next section.

For simplification purposes, we assume that
instruments rotate in-between acquisitions and not during
a given acquisition. It is also assumed that satellite storage
capabilities and downlink opportunities are sufficient to
handle all acquisition data and do not need to appear
explicitly in the constraints of the problem.

B. Computation of Acquisitions

For completeness’ purposes, we next explain how to
calculate the set of possible acquisitions for all satellites in
S, when their orbits are given, for instance, as two-line
elements for a certain epoch (which should be close to the
time frame). However it must be emphasized that this is
not part of the SAP algorithm itself, but rather a
prerequisite computation.

To compute the acquisitions, the first step is to
propagate the orbital elements of the satellites during the
time interval of the mission. This can be done using any of
the many possible methods available in the literature,
which incorporate more or less accurate models of orbit
perturbations (see, for instance, [24] and the references
therein). Once the elements are known at all times t ∈ T,
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the vector position �rs(t) can be computed [25]. Then, the
subsatellite point (ground track) is calculated according to
the Earth model that is used (typically ellipsoidal or
spherical). From the ground track, and taking into account
the sensor field of view αs and the sensor angle position k
∈ Ps, the footprint of the swath is then obtained. As the
satellite moves along its orbit, the swath describes a
strip-like figure along the surface of the Earth (following
the ground track). The intersection of this surface with the
region of interest R is what we call an acquisition.

Because we are considering intersections with the
region R, satellites will generate an acquisition only each
time the ground track passes close to R (at most once or
rarely twice each satellite revolution). However, if R is
nonconvex, the ground track might consecutively enter
and exit the region more than once, generating a
fragmented acquisition (consisting on two or more
nonconnected parts with gaps in between); for all purposes
of our model, each of these nonconnected acquisition
fragments is considered a different acquisition by itself.

Notice that the considered satellites will frequently
have sun-synchronous orbits [26] because this is the most
commonly used orbit for EOSs due to constant lighting
properties. Given that these satellites have almost-polar
orbits, their ground tracks are approximately straight
diagonal lines for latitudes far away from the poles. Thus,
for nonpolar regions of interest, their acquisitions will
approximate slanted rectangles, and if the region is small,
they will generate at most one or two acquisitions per day;
this very much simplifies the computational geometry
subproblem.

C. Formulation of the Problem

To formulate the SAP, the following concepts are
defined:

1) Each acquisition is denoted as ai(si, ki, t
i
0, t

i
1), with

si ∈ S, ki ∈ Psi
, t i0 ≥ T0, t

i
1 ≤ Tf . We might denote

acquisitions simply as ai, whenever this creates no
confusion. Therefore, given the set of satellites, their
possible sensor positions and the time frame, let
A = {a1, ..., an} be the set of all possible acquisitions.

2) For each a ∈ A, ca > 0 is the cost incurred when
using a.

3) The intersection of the elements of the set A with
themselves, and with the region R, defines a set of
subregions, whose union is equal to the region of interest.
Let {R1, . . ., Rm} be the set of all such subregions (note
that the calculation of this set is a rather intensive task,
which is performed by using algorithms of computational
geometry).

These definitions are illustrated in Figs. 1 and 2.
Based on these concepts, we now define the

admissibility of acquisitions for the EOSs planning
problem. We say a selection of n′ acquisitions
{ai(si, ki, t

i
0, t

i
1), i = 1, . . . , n′} ⊂ A is admissible if:

Fig. 1. Simplified example of SAP. Region R of interest (solid
rectangle) is being covered by four acquisitions {a1, a2, a3, a4} sorted in

arriving time.

Fig. 2. Subregions generated in R by intersection of acquisitions with
each other and with region of interest. In this simple example, 18

subregions are generated.

1) Each individual satellite s in the selection is not
used more than once at any given time instant. This
condition can be mathematically expressed as:
∀ i, j = 1, . . . , n, si = sj ⇒ [t i0, t

i
1] ∩ [t j0 , t

j

1 ] = ∅.
2) If a satellite s in the selection is used more than

once with different sensor positions, �tks units of time are
needed to change its sensor position. Mathematically,

∀ i, j = 1, . . . , n, si = sj , ki = kj ⇒[
t i0, t

i
1 + �tki

] ∩ [
t
j

0 , t
j

1 + �tkj

] = ∅.

With this notation, we are in position to formulate our
SAP as follows:

SAP: Find a selection of admissible acquisitions
{ai(si, ki, [t i0, t

i
1]) ∈ A, i = 1, . . . , n} such that

R ⊂ ∪n
i=1ai at minimum cost. The reader should note that

other definitions of objective functions are possible:
completion time, number of satellites, area covered more
than requested, surface covered having a threshold value
for the final time and/or maximum budget, etc. In the
example shown in Fig. 1, it is easy to see that acquisition
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a3 is redundant. Therefore, an optimal solution minimizing
overall costs is to choose acquisitions a1, a2, a4.

III. AN ILP MODEL FOR SAP

Assume we have a number of EOSs available with
steerable sensor, i.e., the sensor angle with respect to the
nadir can be changed within a certain range, if necessary.
We assume that each EOS must keep the chosen mode for
the whole acquisition, while the satellite is scanning the
region of interest. Let K be the number of possible sensor
positions, N the number of acquisitions, and M the number
of subregions generated by the intersections of all
available acquisitions and the region of interest R. Let R1,
. . ., RM be the subregions. Parameter qk

ij is defined as one
if acquisition i in position k covers subregion j, and zero
otherwise, ∀ i = 1, . . ., N, j = 1, . . ., M, k = 1, . . ., K. Let
Q be the tridimensional matrix whose entries are the
parameters qk

ij . Our SAP is modeled as an ILP program
using the following variables:

xk
i =

{
1 if acquisition iis selected in mode k,

0 otherwise

min
K∑

k=1

N∑
i=1

cix
k
i (1)

s.t.
K∑

k=1

N∑
i=1

xk
i q

k
ij ≥ 1, ∀ j = 1, . . . , M, (2)

K∑
k=1

xk
i ≤ 1, ∀ i = 1, . . . , N, (3)

xk
i ∈ {0, 1} , ∀ i = 1, . . . , N,∀ k = 1, . . . , K. (4)

Equation (1) is the objective to be minimized, the cost
of the acquisitions. Constraints (2) ensure that all
subregions must be covered by at least one acquisition at
one of its possible modes.2 Constraints (3) ensure that the
same acquisition cannot be used in more than one position.

A bottleneck in the previous formulation is the
calculation of parameters qk

ij , which requires the
calculation of all possible intersections. The complexity
entailed by the underlying computational geometry
problem might make it very hard (and slow) to explicitly
formulate problem (1). To tackle this issue, in the next
section, we propose a faster method for selecting a set of
acquisitions so that the region of interest is covered,
without having to compute Q.

IV. A HEURISTIC ALGORITHM

The need to obtain a good solution in a short time asks
for the use of heuristic and/or metaheuristic algorithms.

2 Note that we could substitute the one in the right-hand side of (2) by a
parameter. The modified constraint implies that the jth region is covered
at least dj times, thus allowing redundant acquisitions over more
important areas.

Heuristic algorithms are procedures to rapidly obtain a
solution, which is hoped to be (nearly) optimal.

In this section, we design the construction phase of a
GRASP algorithm that consists of randomly adding
elements to the problem’s solution set, out of the set of �

elements that individually yield the largest improvement
in the objective function, when added to the solution
obtained in the previous iteration (the so-called restricted
candidate list). This procedure is repeated until a certain
stop criterion is met, and each of the (possibly) different
obtained solutions forms a set of feasible solutions. Note
that, the randomness of the procedure makes it possible
that solutions obtained in different runs differ from one
another. The final solution, chosen by the heuristic, is the
best one out of the feasible solution set obtained in the
different runs. When � = 1, that is, when we choose at
each iteration the element that individually yields the
largest improvement in the objective function, the
procedure obtained is called a greedy algorithm. A
pseudocode of our heuristic is given in Algorithm 1.

Algorithm 1 Pseudocode of our heuristic.

Data: Input data: Q, �, R, {a1, . . ., aN}.
Assumption: R ⊂ ∪ai .

Set Reg = R, Aq = {a1, . . ., aN}, Sol = {};
while STOP = False do

if # of elements of Aq ≤ � then
Set Fq = Aq

else
Fq is the set constituted by the � acquisitions in
Aq whose strips individually cover the maximum
area of Reg

end
Randomly pick one acquisition aj in Fq;
Sol = Sol ∪ {aj};
Set Aq = Aq – ∪ {ak}, where the {ak} encompass
all different modes of acquisition {aj} (including
{aj} itself);
Set Reg = Reg \ Sa (Sa is the region covered by
acquisition a);
if Reg = ∅ then

STOP = True
end

end
Result: A feasible solution Sol.

This procedure gives a feasible solution to the SAP,
Sol1, i.e., a set of satellites whose strips cover the whole
region of interest R. In order to explore the feasible
solution set, we repeat this problem until we run out of
computational time or we have calculated a fixed
maximum number of solutions. Note that, different runs of
this algorithm may yield different solutions, due to the
randomization introduced when picking one acquisition in
Fq. Let {Sol1, . . ., Solw} be the set of feasible solutions
calculated. If Costj denotes the cost of solution Solj, i.e.,
Costj = ∑

i∈Solj
ci, our algorithm finishes by choosing

the best feasible solution among all that have been
calculated. That is, the final solution is Solj∗ , where j* is
such that minj = 1, ..., w Costj = Costj*.
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Fig. 3. Extremadura within Spain.

V. COMPUTATIONAL RESULTS

This section is divided into two subsections. The first
one aims at checking whether or not the exact approach is
valid for large instances. It also gives a rough estimation
of what the value of the parameter � should be. In these
preliminary experiments, three geographical regions are
tested. The second subsection aims at validating the
accuracy of our heuristics over one region in which the
exact approach can be run to optimality, and thus the
goodness of the heuristic solutions can be tested. All
experiments were run on a laptop, Intel Core2 Duo CPU
T7100 1.8 GHz and 2 Gigabyte of RAM memory,
operating system Windows 7 Professional 32 bits. All
algorithms were implemented in Matlab 7.7.0.

For the experiments, a set of real sun-synchronous
satellites were considered, and their orbital elements were
extracted from the publicly available Space-Track database
[27]. To simplify the computations, a spherical model of
the Earth was used, and the elements of the satellites were
propagated according to the mean J2 propagation model
(i.e., using only the secular variations of the mean
elements due to oblateness of the Earth). To perform the
computational geometry calculations, the Matlab code
Polygon Clipper (based on the gpc-library) was used [28].

A. Experiments I

In order to certify the validity of our procedures and
the need of heuristics, we performed experiments over
three different regions of interest, the three of them located
in Spain: the autonomous regions of Extremadura (41 635
km2, medium size; see Fig. 3) and Andalucı́a (87 597 km2,
large size; see Fig. 4), and the Andalusian province of
Cádiz (7435 km2, small size; see Fig. 5).

Over each region of interest, we analyzed four possible
combinations of satellites:

1) 19 satellites with one mode only;
2) 19 satellites with seven modes, sensor rotating

angle 1 degree;
3) 19 satellites with three modes, sensor rotating angle

4 degrees;
4) eight satellites with seven modes, sensor rotating

angle 1 degree.

Fig. 4. Andalucı́a within Spain.

Fig. 5. Cádiz within Andalucı́a.

We therefore have 3 × 4 = 12 possible scenarios.
Over each scenario, we solved the corresponding problem
by means of the ILP problem, and the heuristic for values
of � = 1, 3, 5, 9, 13. Note that, the heuristic with � = 1
coincides with the classic greedy algorithm. The results
obtained are presented in Table I. The meaning of the
headings in the table is:

1) REGION and SAT are the region and the
combination of satellites, respectively.

2) AC is the number of acquisitions considered, and
SR the number of subregions, for each of the tested
scenarios.

3) SOL_EX and T_EX are the optimal value (number
of acquisitions) obtained by the ILP problem, and the
computation time needed to calculated such solution,
when there was one such optimal solution.

4) T_1 and GAP_1 are the computational time needed
by the heuristic with � = 1, and the gap with respect to the
optimal solution measured in percentage as follows:

GAP = 100
SOL GRASP − SOL EX

SOL GRASP
. (5)

Gap’s can be interpreted as distances to the optimal
solution (0% gap means optimality). T_3, GAP_3, T_5,
GAP_5, T_9, GAP_9, and T_13, GAP_13 are analogously
defined, for the other values of �.

We first note that, in four of the tested scenarios
(33%), the proposed ILP problem could not find an
optimal solution because the computer ran out of RAM
memory. More specifically, these four instances were two
of the medium sized areas of interest (Extremadura) and
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TABLE I
Results Obtained in the 12 Tested Scenarios over Cádiz, Extremadura, and Andalucı́aa

REGION SAT AC SR SOL_EX T_EX T_1 GAP_1 T_3 GAP_3 T_5 GAP_5 T_9 GAP_9 T_13 GAP_13

CADIZ 1 26 220 6 3.35 2.59 0.00% 1.43 0.00% 1.71 0.00% 2.91 0.00% 2.77 25.00%
CADIZ 2 158 3239 3 767.10 3.54 0.00% 3.92 0.00% 4.52 0.00% 5.65 0.00% 6.25 0.00%
CADIZ 3 76 983 3 14.28 2.22 25.00% 2.12 0.00% 2.28 0.00% 2.68 0.00% 3.16 0.00%
CADIZ 4 74 897 3 10.70 1.69 0.00% 2.15 0.00% 2.36 0.00% 3.41 25.00% 3.10 0.00%
EXTREMADURA 1 32 784 12 2.37 3.73 0.00% 4.47 0.00% 5.89 0.00% 8.94 0.00% 16.09 25.00%
EXTREMADURA 2 281 8723 0 38045.00 7.89 –100.00% 18.39 –100.00% 20.77 –100.00% 28.10 –100.00% 28.05 –100.00%
EXTREMADURA 3 133 6338 6 3502.00 7.89 14.29% 10.04 14.29% 11.72 14.29% 12.77 14.29% 16.27 25.00%
EXTREMADURA 4 136 5021 0 1537.00 7.02 –100.00% 8.83 –100.00% 10.66 –100.00% 15.80 –100.00% 17.25 –100.00%
ANDALUCIA 1 136 5021 0 1537.00 71.21 –100.00% 99.82 –100.00% 114.73 –100.00% 104.60 –100.00% 119.72 –100.00%
ANDALUCIA 2 67 1971 17 28.01 17.56 15.00% 24.48 10.53% 23.92 15.00% 39.50 10.53% 46.61 26.09%
ANDALUCIA 3 136 5021 0 1537.00 36.47 –100.00% 45.02 –100.00% 58.36 –100.00% 62.59 –100.00% 76.00 –100.00%
ANDALUCIA 4 196 5021 11 23.07 27.41 15.38% 37.16 21.43% 58.95 15.38% 47.98 26.67% 54.02 35.29%

aWhen the ILP failed in finding an optimal solution, we set SOL_EX = 0, and GAPs = –100%.

TABLE II
Average Computational Times (in s) and GAPs for Instances in Which

ILP Found Optimal Solutions (5)

ILP GRASP1 GRASP3 GRASP5 GRASP9 GRASP13

Time 543.86 8.33 10.72 13.91 15.48 18.53
GAP – 8.71% 5.78% 5.58% 9.56% 17.05%

two of the large sized areas of interest (Andalucı́a). This
fact justifies the need of heuristics algorithms. Table II
shows the average computational times and average GAPs
for the six algorithms tested (ILP, and the heuristic with
five different values of �) in the scenarios in which the ILP
was able to find an optimal solution. A first observation
from this table is that, even in the instances in which ILP
managed to find optimal solutions, the average
computational times of the heuristics are inferior by two
orders of magnitude. Logically, the time spent by GRASP
to calculate one solution increases with the value of �

(more potential solutions are evaluated). The GAPs are
quite controlled, being the heuristics with � = 3 and � = 5
being the lowest of them (around 5% from the optimal
solution, on average). Note that GRASP’s performance
improves if � > 1, except for the cases in which � is too
large. A reason for this poor performance for larger values
of � is that the increasing number of possible solutions
means that the algorithm might choose solutions that are
far from optimal. A reason for the larger GAPs for � = 1 is
given by the (general) bad quality of the solutions given by
the greedy algorithm, see [29].

B. Experiments II

Once we have checked that the ILP model might fail in
calculating a solution on medium-large areas of interest,
we here report on the experiments performed over one
small geographical area (comparable with Cádiz)
independent of the other three, so we guarantee that the
ILP model can find the optimal solution in a reasonable
amount of time, allowing us to therefore test the goodness
of the solutions obtained by the heuristic. The chosen area

Fig. 6. Asturias within Spain.

is the Spanish autonomous region of Asturias (10 604
km2, see Fig. 6).

Also, because we observed that neither � = 1, nor
large values of �, yielded good results, we only tested our
heuristic for values � = 2, 3, 4. We tested our procedures
for five different number of satellites (8, 9, 10, 11, and 12)
and three possible number of modes for each satellite (3,
4, and 5), having this way 5 × 3 = 15 different instances.
The obtained results are shown in Table III. The meaning
of the column headings in the table is:

1) SAT and MOD denote the number of satellites and
the number of sensor modes for each satellite,
respectively, while N_AD is the number of acquisitions.

2) T_EX, T_2, T_3, T_4, is the computational time to
obtain a solution for each algorithm.

3) GAP_2, GAP_3, GAP_4 are the corresponding
gaps when compared with the solution obtained by the
ILP model, which is denoted as Z_EX.

In Table IV we have the average computational times
and average GAPs.

After checking the normality hypotheses by means of
a Kolmogorov-Smirnov test (see last row in Table IV), we
noticed that the computational times of the four algorithms
here tested, on this region of interest, can be considered
normally distributed. An analysis of variance (ANOVA,

1722 IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS VOL. 51, NO. 3 JULY 2015



TABLE III
Results Obtained in the 15 Tested Scenarios over Asturiasa

SAT MOD N_AD T_EX Z_EX T_2 GAP_2 T_3 GAP_3 T_4 GAP_4

8 3 48 5.76 5 4.29 0 2.52 0.2 3.21 0
9 3 55 10.98 5 3.42 0 3.4 0.2 4.78 0

10 3 59 8.72 5 4.03 0 3.98 0 4.73 0.2
11 3 64 13.26 5 3.8 0 4.48 0 5.23 0.2
12 3 72 25.64 5 6.08 0 5.17 0 5.57 0.2

8 4 81 56.46 5 4.46 0 5.25 0 5.52 0.2
9 4 93 127.31 5 5.37 0 5.99 0 6.51 0.2

10 4 101 180.02 5 9.04 0 7.04 0 7.7 0.2
11 4 114 316.14 5 7.42 0 7.47 0 7.71 0
12 4 124 532.78 5 9.05 0 12.6 0 8.83 0

8 5 108 299.14 5 6.64 0 6.07 0 7.45 0
9 5 124 623.84 5 8.08 0 7.96 0 9.17 0

10 5 139 1133.59 5 8.81 0 9.11 0 10.14 0
11 5 154 1956.09 5 9.67 0 10.17 0 11.18 0.2
12 5 168 3093.68 5 11.16 0 11.53 0 12.07 0

aThe ILP model obtained the optimal solution in the 15 scenarios tested.

TABLE IV
Average Computational Times (in s), GAPs for Experiments over Cádiz

(5), and p-Values of Kolmogorov-Smirnov Normality Tests for the
Computational Times of Each Algorithm

ILP GRASP2 GRASP3 GRASP4

Time 558.89 6.75 6.85 7.32
GAP – 0% 2.67% 9.32%
p-value 0.21 0.86 0.94 0.88

see [30]), taking as dependent variable the computational
times, and as unique factor the type of algorithm, yielded a
p = .0015. This means that, at 95% confidence level, we
cannot admit that the average computational times are
equal. Actually, the average computational times using the
heuristic are two orders of magnitude lower than the
average computational time of the ILP model (558 s
against 6–7 s). At the same level of confidence, we cannot
reject that the average computational times of the three
heuristics are the same (p = .827), but we do reject that the
average GAPs are the same (p = .0031), with significant
differences between k = 2, 3 and k = 4. In other words,
the heuristics with � = 2, 3 yielded statistically significant
better results than the heuristic with � = 4 in terms of
quality of solutions. Note that, the heuristic with � = 2
obtained the optimal solution in all instances tested.

VI CONCLUSIONS

In this paper, we have introduced several algorithms to
solve the SAP, which consists of selecting a number of
satellites in order to cover a given region of interest at a
minimum cost. Such problem’s complexity is increasing
continuously, as a result of the ever raising number of
observation satellites, which makes EOS management
more and more complicated. Our procedures have proven
very effective for 24 realistic scenarios, over three different
regions of interest. The exact approach proposed, an ILP,
failed in computing a solution for several scenarios (when

the number of satellites, and subregions generated by the
exact algorithm, is too large). Therefore, the introduction
of a heuristic approach (a fast algorithm which gives good
solutions although not necessarily optimal) is justified. We
have also introduced the construction phase of a GRASP
algorithm. In a second step of our computational
experience, we tested the accuracy of our GRASP
algorithms over instances that could be solved to
optimality by means of the ILP model. The results showed
that, the heuristics proposed, yielded good solutions (most
of the times optimal) in fairly lower computational times
than the exact approach. Future research includes
extending the heuristic algorithm to include more complex
and realistic constraints such as instrument slew times,
onboard storage limitations and downlink opportunities.
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