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I. INTRODUCTION

Recent years have seen a considerable growth in the
development of flight control systems for unmanned air
vehicles (UAVs). One of the key components of a flight
control system (often grossly simplified) is the guidance
system, which should guarantee that the airplane is able to
safely and efficiently accomplish its mission; a good
design should also be able to improve the autonomy and
the performance of the aircraft.

The object of this paper is the design of a
path-following guidance law that generates commands to
the attitude control system to follow a given reference
trajectory. Thus, a path-following guidance algorithm
requires a compatible flight planner and attitude control
system; the outputs of the flight planner and the inputs of
the attitude controller become, respectively, the inputs and
outputs of the guidance law. This three-layer aircraft
control framework, with guidance in the middle layer, is
common in UAVs (see, e.g., [1, 2]).

Traditionally, airplane guidance systems have been
based on classical missile guidance laws (see [3–5]). For
instance, in [6, 7], proportional navigation and pure
pursuit are applied to UAVs. Similarly, in [8], a “good
helmsman behavior” strategy is employed for UAV path
following. The basis of these algorithms is to introduce a
virtual target that follows the reference and then apply
missile guidance to track the virtual target. While these
laws are simple (being easily implemented onboard) and
robust, they are reactive (not using future information
about the reference) and tend to be aggressive, often
demanding high control power (leading to efficiency loss).

These limitations have motivated the development of
guidance laws based on modern control techniques, such
as gain scheduling [9], optimal control [10], sliding mode
control [11], control Lyapunov functions [12], vector
fields [13], or even extremum seeking [14]. An excellent
survey of different guidance techniques for fixed wing
UAV can be found in [15].

A control method with potential applicability to
guidance is model predictive control (MPC) [16]. This
technique is based on the idea of computing an optimal
sequence of control signals that optimizes a certain cost
function, possibly with state and control constraints. Once
the first inputs are applied and the aircraft moves, the
prediction and optimization steps are again repeated, and a
new control sequence is obtained, thus closing the loop.
Unfortunately, this procedure is difficult to implement
because it requires solving a nonlinear optimization
problem online. In addition, there is no guarantee of
finding a feasible control solution (which could
compromise the mission safety).

Examples of MPC guidance already exist. For
instance, in [17], the authors introduce a decentralized
MPC controller for coordination of two UAV for seeking a
ground reference (in which the nonlinear optimization
problem is solved by the gradient method). Another
cooperative MPC strategy is shown in [18], which
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addresses the coordination of multiple UAV solving a
distributed mixed-integer linear programming (MILP)
problem. Similarly, [19] presents a MPC guidance scheme
based on a robust MILP optimization problem with
applications to UAV collision avoidance. On the other
hand, [20] formulates a predictive guidance law on the
basis of a linearized prediction model, leading to a simpler
and easy-to-implement optimization process. In [21], MPC
is applied for cooperative control of multiple vehicles,
including communication failures. Another example of
MPC applied to cooperative search by multiple UAVs is
given in [22]. In [23], the authors develop MPC guidance
laws with controlled arrival time. Similarly, [24] shows
both experiments and simulations of an MPC guidance
algorithm based on offline linearizations computed along a
reference trajectory. Finally, in [25], genetic algorithms
are used to solve the associated optimization problem.

In this work, we propose a novel path-following
guidance strategy based on MPC that computes optimized
values of airspeed, flight path angle, and bank angle.
These are commanded to a low-level attitude control
system in order to make the UAV follow a precomputed
reference trajectory (given by straight flight segments).
Inspired by [26], the nonlinear optimization problem is
addressed by iteratively solving a set of linearized
problems around a nominal controls sequence. Also, the
algorithm is initialized by a complementary low-level
guidance law based on L1 navigation law (L1), a robust
law that guarantees having an initial feasible solution and
that provides stability properties [27].

The contribution of this paper is the design of a
guidance law that enjoys the benefits of MPC techniques
(in the sense of optimality, constraints handling, and use
of precomputed reference knowledge) and solves its
instantaneity and feasibility problems by the use of L1 to
generate a feasible solution and linearization to quickly
improve the solution. To our knowledge, our approach is
novel compared with previous works. Additional features
include time synchronization and disturbance rejection,
properties that are not usually provided by other
algorithms in the literature.

The paper is structured as follows. First, Section II
presents the model used in this work. Section III
formulates the MPC guidance law. Section IV deals with
obtaining a feasible initial solution by using L1 guidance,
while Section V gives a practical algorithm to find the
MPC solution. Simulation results are shown in Section VI,
and, finally, Section VII closes the paper with some
remarks.

II. AIRPLANE MODEL

The low-level attitude controller used in this work (see
[28]) is able to follow airspeed (V), flight path angle (γ ),
and bank angle (φ) references. Thus, the guidance law has
to generate these inputs to follow a reference trajectory. To
compute the airplane position from the inputs, a 3-DoF

Fig. 1. Airplane model.

kinematic aircraft model is used [29]:

dx

dt
= V cos γ cos χ + wx, (1)

dy

dt
= V cos γ sin χ + wy, (2)

dz

dt
= −V sin γ + wz, (3)

where, as can be seen in Fig. 1, x, y, and z are the
coordinates of the center of gravity (formulated in a NED
frame); wx, wy, and wz denote, respectively, the north,
east, and down components of the wind speed; and χ is
the heading angle. For the sake of clarity, the wind speed
will be omitted momentarily (its effect will be included
afterward as an additive disturbance).

Most previous works use a discretization scheme
based on the heading angle, velocity, and flight path angle.
In particular, if the heading angle is assumed constant at
each discretization step, this is equivalent to assuming that
the airplane trajectory is split in straight segments with
constant velocity, flight path angle, and heading angle
(see, e.g., [30]). In addition, it is common to uncouple the
horizontal and vertical kinematics by assuming cos γ ≈ 1
and sin γ ≈ γ . While these assumptions provide a simple
prediction law (simplifying the optimization problem),
they unrealistically imply that the airplane can perform
instantaneous changes of the heading angle. We instead
use the bank angle (a much faster state variable) and split
the trajectory in segments with constant velocity V,
constant path angle γ , and constant bank angle φ. These
hypotheses imply that the horizontal movement is
composed by constant curvature segments (with
continuously changing heading angles), which is a more
realistic approximation. In addition, this strategy implies
that there is no need of a low-level heading controller
since this angle is now a state variable, directly managed
by the guidance system. Also, it allows explicitly
including limitations in turns as constraints.

Thus, we consider that the aircraft performs steady
horizontal turns with zero sideslip and small values of γ .
Then it follows that

dχ

dt
= g tan φ

V
. (4)

Next, a discrete-time evolution law is obtained from the
continuous model (1)–(4). Assume a sampling interval of
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duration Ts and denote by Vk, γ k, φk, xk, yk, zk, and χ k the
values of the states and inputs at time tk.

Under the assumption of constant Vk, γ k, and φk, the
time evolution of the heading angle for t ∈ [tk, tk + 1] is

χ(t) = g tan φk

Vk

(t − tk) + χk. (5)

Substituting (5) in (1)–(3) and integrating for t ∈ [tk, tk + 1],
one obtains

xk+1 = Vk cos γkTs

κk

(sin (κk + χk) − sin χk) + xk, (6)

yk+1 = Vk cos γkTs

κk

(cos χk − cos (κk + χk)) + yk, (7)

zk+1 = −Vk sin γkTs + zk, (8)

χk+1 = κk + χk, (9)

where for compactness we denote

κk = g tan φkTs

Vk

. (10)

This discrete (nonlinear) model provides the future
state xk+1 = [xk+1 yk+1 zk+1 χk+1]T as a function
of their previous value xk and the present inputs
uk = [Vk γk κk]T .

III. PREDICTIVE GUIDANCE FORMULATION

MPC requires a prediction model to compute (at each
sampling time) an optimized control sequence. In practice,
given that the model is not exact and there are
disturbances, the prediction is not perfect, and one closes
the loop by applying only the first control signals and next
recomputing the optimal input sequence. Thus, MPC
requires solving an optimization problem at each time step.

Since the prediction model (6)–(9) is nonlinear in the
control sequence, one would need to solve a challenging
nonlinear optimization program at every time step. This is
unfeasible given the onboard computational limitations.

To overcome this problem, first we compute a feasible
control sequence from a complementary and robust
guidance algorithm that does not require optimization.
Next, we obtain a linear (and explicit) prediction model
by linearizing (6)–(9) around this precomputed control
sequence. Then a standard linear optimization problem is
solved, and its solution is used to improve the linearization
and optimize again. This iterative process is followed until
a local minimum is found or the computational time is up.
Furthermore, to cope with disturbances (e.g., due to wind),
an online disturbance estimator is included in the control
strategy.

Next, we separately describe the state prediction
model, the disturbance estimator, the constraints
formulation, and the definition of the objective function.

A. Linearization of the State Prediction Model

Denote the prediction horizon by Np. Using (9) to
propagate the heading angle,

χk =
i=k−1∑
i=0

κi + χ0. (11)

Substituting this equation into (6) and (7), one has

xk+1 = fk (Vk, γk, κk, κk−1, . . . , κ0, χ0) + δk + xk, (12)

where we have introduced a vector δ to model additive
disturbances (such as wind) and where fk is defined as

fk =

⎡
⎢⎢⎢⎢⎢⎣

2Vk cos γkTs

κk
cos

(
κk

2 + ∑i=k−1
i=0 κi + χ0

)
sin κk

2

2Vk cos γkTs

κk
sin

(
κk

2 + ∑i=k−1
i=0 κi + χ0

)
sin κk

2

−Vk sin γkTs

κk

⎤
⎥⎥⎥⎥⎥⎦ .

(13)
Notice that future states are a nonlinear function of the
control signals but depend linearly on the previous states.
Since disturbances are unknown, the prediction of future
states has to be statistical. Taking the mathematical
expectation in (12) and iterating, one can establish the
following recursive law:

xk+1|0 =
i=k∑
i=0

(
fi (Vi, γi, κi, κi−1, . . . , κ0, χ0) + δ̄i

) + x0,

(14)
where xi |j denotes the prediction of the state in the instant j
given the measurement in the instant j and δ̄i = E[δi].

Assume small increments in the control signals:

Vi = V̄i + �Vi, γi = γ̄i + �γi, κi = κ̄i + �κi,

(15)
where (·)i denotes the nominal value of a control signal at
the time i, while �(·)i denotes the increment respect to its
nominal value. The complete sequence of control signals
during the prediction horizon Np can be written in a
compact fashion by introducing the following “stack”
vector:

uS = [
uT

0 uT
1 · · · uT

Np−1

]T
(16)

and similarly for the nominal control signals (ūS) and
increments (�uS). Linearizing fi from (14) around ūS, one
has

xk+1|0 =
i=k∑
i=0

(
fi (ūS, χ0) + ∂fi

∂uS
(ūS, χ0) �uS + δ̄i

)
+ x0,

(17)
where the matrix ∂fi

∂uS
(ūS, χ0) (given in the appendix) can

be obtained explicitly; thus, the linearization is instantly
computed. Introducing now

xS = [
xT

1|0 xT
2|0 · · · xT

Np |0
]T

(18)

and defining δS as the stack vector containing the sequence
of mean additive disturbances during the prediction
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horizon, the prediction model (17) can be written as

xS = F + Gu�uS + GδδS, (19)

where F and Gu are defined as

F =

⎡
⎢⎢⎢⎢⎢⎣

f0 (ūS, χ0) + x0

f1 (ūS, χ0) + f0 (ūS, χ0) + x0

...

fNp−1 (ūS, χ0) + · · · + f0 (ūS, χ0) + x0

⎤
⎥⎥⎥⎥⎥⎦ , (20)

Gu =

⎡
⎢⎢⎢⎢⎢⎣

∂f0
∂uS

(ūS, χ0)
∂f1
∂uS

(ūS, χ0) + ∂f0
∂uS

(ūS, χ0)

...
∂fNp−1

∂uS
(ūS, χ0) + · · · + ∂f0

∂uS
(ūS, χ0)

⎤
⎥⎥⎥⎥⎥⎦ , (21)

and Gδ is a block-diagonal matrix, each block being I4 × 4.

B. Estimator of Disturbances

Equation (19) requires values for δ̄ i . If one can
measure past disturbances, the following simple
estimator1 can be used:

δ̂k =
∑k−1

i=0 e−λ(k−i)δi∑k−1
i=0 e−λ(k−i)

, (22)

which is the expression of a weighted average with
exponential weights that emphasize recent measurements.
In (22), δ̂k is the estimate of δ̄k based on past disturbances,
and λ > 0 is a forgetting factor that controls the decay of
past measurements.

Following [31], if we define

ρk =
k−1∑
i=0

e−λ(k−i) = e−λ
(
1 − e−λk

)
1 − e−λ

, (23)

estimator (22) can be recursively computed as δ̂0 = 0,

δ̂k = e−λ

ρk

(
ρk−1δ̂k−1 + δk−1

)
. (24)

Since this approach requires measuring past disturbances,
a straightforward approach [31] is to use the difference
between the real airplane state at each sampling time and
the expected state from the prediction in the previous
sampling time:

δk−1 = xk − fk (Vk−1, γk−1, κk−1, χk−1) − xk−1. (25)

Note that measurement noises in (25) would falsify the
estimation of disturbances, in particular those related to
estimation of position and velocity. If the aircraft has a
well-designed navigation system (typically some type of
Kalman filter using IMU, GPS, magnetometer, and

1 More advanced estimators, such as the extended Kalman filter or the
unscented Kalman filter, could be used. However, to reduce the
computational burden and to simplify the discussion and since we require
only the mean of the disturbances, we have chosen this rather simple
approach.

Fig. 2. Oscillations due to choice of cost function.

barometric measurements), these errors should remain
bounded.

Disturbances are sampled at a higher frequency than
the main guidance law, applying (26) each Tδ seconds
(Tδ < Ts). That is,

δ′
j−1 = xj − fj

(
V̂j−1, γ̂j−1, κ̂j−1, χj−1

) Tδ

Ts

− xj−1,

(26)
where V̂ , γ̂ , and κ̂ denote the real measured controls (not
the commanded ones) at each sampling time and δ′ is the
vector of mean disturbances along each oversampled
interval.

C. Formulation of Constraints

First, due to operational limitations of the airplane,
there are maximum and minimum values for the control
signals:

umin ≤ uk ≤ umax. (27)

Writing these limitations as functions of the increments
�u,

umin − ūk ≤ �uk ≤ umax − ūk. (28)

Also, the absolute values of �uk must be bounded to
ensure that the linearization holds:

− δu ≤ �uk ≤ δu, (29)

See Section VI for the specific values of these constraints.

D. Objective Function

The goals of the path-following guidance law, in order
of relevancy, are the following:

1) The airplane must follow a precomputed reference
path (given as a concatenation of straight flight segments).

2) The guidance law must avoid excessive oscillations.
3) The airplane and reference trajectories should be

synchronized in time, if possible.

If a standard quadratic cost penalizing the position
error at each sampling time is used, we would minimize
the difference between the trajectory and virtual
waypoints. As seen in Fig. 2 (where pk and pref k denote,
respectively, the airplane and the reference positions at the
instant k), this approach might lead to an oscillatory
trajectory.

To avoid this situation, an alternative formulation is
proposed. First, following Fig. 3, the distance between the
aircraft and the tracked reference segment is penalized.
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Fig. 3. Distance between the airplane’s position and the reference flight
segment.

Fig. 4. Projection of the position on the reference segment.

Denoting by rk = [rx,k, ry,k, rz,k]T the position of the
starting point of the tracked flight segment at the time tk
and by vr,k = [vx,k, vy,k, vz,k]T its unitary direction vector,
the distance between the aircraft and the segment is

lk = vr,k ∧ (pk − rk)

=

⎡
⎢⎣

0 −vz,k vy,k

vz,k 0 −vx,k

−vy,k vx,k 0

⎤
⎥⎦ (pk − rk) . (30)

Using (30), we penalize the path-tracking error defining2

J1,k =
Np∑
i=1

[(
Vk+i

(
xk+i|k − r̂k+i

))T
R1,k+i

× (
Vk+i

(
xk+i|k − r̂k+i

))]
, (31)

where

Vi =

⎡
⎢⎢⎢⎣

0 −vz,i vy,i 0

vz,i 0 −vx,i 0

−vy,i vx,i 0 0

0 0 0 0

⎤
⎥⎥⎥⎦ , r̂k =

⎡
⎢⎢⎢⎣

rx,k

ry,k

rz,k

0

⎤
⎥⎥⎥⎦ (32)

and R1,k + i is a diagonal weight matrix.
However, during turns, minimizing (31) does not

guarantee a turn in the correct direction (a segment flown
in both directions results in the same cost). This is solved
by including time synchronization. Consider the airplane’s
position error (respect to the reference points at each
sampling time) projected on the reference segment. From
Fig. 4, this error is

2 One can find in the literature some related works, such as [30], which
uses a cost function similar to (31), with reference heading angles to
avoid ambiguity in turn direction. However, in that reference, the time
synchronization problem is not addressed.

dk = vr,k · (pk − rk) − vr,k · (
prefk − rk

)
= vr,k · (

pk − prefk

)
. (33)

Then, introducing the square of this error, we define

J2,k =
Np∑
i=1

[(
vk+i

(
xk+i|k − xrefk+i

))T
R2,k+i

× (
vk+i

(
xk+i|k − xrefk+i

))]
, (34)

where R2,k+ i is a scalar weight and vk and xref k are

vk = [
c
(
χr,k

)
c
(
γr,k

)
s
(
χr,k

)
c
(
γr,k

) − s
(
γr,k

)
0
]
,

(35)

xrefk = [
pref

T
k 0

]T
, (36)

where χ r,k and γ r,k are, respectively, the heading and the
trajectory angle of the reference segment r at the instant k
and c(·) and s(·) denote, respectively, the cosine and sine.

Now, to avoid excessive control usage and oscillations,
define

J3,k =
Np−1∑
i=1

(uk+i − uk+i−1)T Qk+i (uk+i − uk+i−1)

+ (uk − ûk)T Qk (uk − ûk) , (37)

where ûk represents the actual, real values of Vk, γ k, and
κk (regulated by a continuous-time low-level controller
whose reference is uk). Then the first term weights the
control signals increments along the prediction horizon,
whereas the last term weights the increment of the
reference control signal above its real value.

The cost function is set as the sum of the previous
three, added from the present time interval from k up to
the prediction horizon k + Np:

J (xk, �uS) = J1,k + J2,k + J3,k. (38)

The weight matrices in (38) are

Qi = kQdiag

(
1

δV 2
,

1

δγ 2
,

1

δκ2

)
, (39)

R1,i = kR1ζi diag (1, 1, 1, 0) , (40)

R2,i = kR2ζi, (41)

where δV, δγ , and δκ are the ones used in (29) and are
introduced to be able to compare the control variables.
The scalar weights kQ, kR1 , and kR2 are given in Section
VI-C. Additionally, ζ i is a function introduced to avoid
penalizing errors during the first sampling times (allowing
some transients), defined as

ζi =
{

0, If i ≤ 3,

1, If i ∈ [
4, Np

]
.

(42)
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Fig. 5. Diagram for the L1 guidance law.

IV. INITIALIZATION PROBLEM: L1 NAVIGATION LAW

The procedure outlined in Section III-A requires an
initial control sequence for linearization. We obtain it
from a nonlinear guidance law that we refer to as L1

navigation law (L1). Introduced in [27], this guidance law
has been widely used; see, for instance, [32, 33]. The law
ensures the availability of feasible solutions with
negligible computational burden.

Following [27], one introduces a virtual target (at
certain distance from the aircraft, L1) that follows the
reference trajectory at the reference speed. L1 then
computes accelerations, which are commanded to a
low-level control system. Since the flight path angles are
assumed small, this algorithm can be split in horizontal
and vertical guidance laws. In this paper, we introduce a
slight modification of L1 that provides commands in flight
path angle (vertical channel) and bank angle (horizontal
channel) and takes into account airplane physical
limitations. Velocity is set at the same value as the virtual
target.

A. Horizontal Guidance Law

Consider horizontal steady turns as depicted in Fig. 5.
From [27], the horizontal acceleration computed by the
guidance algorithm is

ahor = 2V 2 sin ηhor

L1
.

For a steady turn, the airplane load factor is given by

n =
√(

ahor

g

)2

+ 1 =
√(

2V 2 sin ηhor

gL1

)2

+ 1, (43)

where the relationship between turn radius R, the virtual
target distance L1, and the target angle ηhor can be
obtained from Fig. 5. To get the bank angle, we use the
following equation from flight mechanics:

φ = sgn (sin ηhor ) arccos
1

n
, (44)

where the sign operator is introduced for right- and
left-turn disambiguation.

This guidance scheme lets us introduce bounds in the
load factor (nmax), avoiding adverse situations, such as

stalls or structural problems; thus, if in (44) n > nmax, we
just set n = nmax. Moreover, turnover maneuvers are also
allowed since if |ηhor | ≥ π

2 is demanded, the guidance law
commands a maximum load factor turn. These maneuvers
would not be easy to capture with linearization given their
extreme nonlinear nature.

B. Vertical Guidance Law

Following a similar approach to L1, the vertical
acceleration that tracks the virtual target is given by

aver = Nver

V 2

L1
sin ηver , (45)

where Nver is a gain and ηver is the vertical target angle,
defined as ηhor. Thus,

�γ ≈ aver

V
Ts = Nver

V

L1
sin ηverTs. (46)

V. GUIDANCE ALGORITHM

In this section, we present an algorithm to solve the
nonlinear optimization problem for the MPC stated in
Section V. An iterative optimization process is used so that
in each step, a linearized MPC problem around a feasible
control sequence is solved; this solution is subsequently
refined in the next iteration step. This iterative process is
“hotstarted” by the robust L1 law of Section IV. Next, the
algorithm is described in detail.

1) Initial control sequence:
a) L1 navigation law (“hotstart”): If there is no

feasible solution available from the previous
time step, the L1 method described in Section
IV is applied sequentially along the prediction
horizon Np to find a control sequence along the
prediction horizon:

i) Using the state measurement at the current
sampling time (denoted by xk), Vk, γk

and φk are computed as in Section IV.
ii) The state estimation at the next step (xk + 1)

is computed using (6)–(9).
iii) Repeat until the controls uk, . . . , uk+Np−1

are computed.
b) Predictive guidance (“refinement”): If there

exists an optimized guidance solution from the
previous time step, that control sequence
(removing the first component) is used as a
starting point. The last component is computed
using the L1 method.

2) Linearization: Linearize around the initial control
sequence using the prediction model (19).

3) Optimization: Based on Section V, we define the
following optimization problem:

min
�uS

J (xk, �uS)

s.t. �uk ≥ max (umin − ūk , − δu) , (47)

�uk ≤ min (umax − ūk , δu) .
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Fig. 6. Vertical profile of successive trajectories computed along the
iterations.

TABLE I
Evolution of the Cost Function Along the Iterations

L1 Iteration 1 Iteration 2 Iteration 3 Iteration 4

Cost ( × 102) 14.1059 8.9940 3.2152 3.1888 3.1888
Time (s) 0.04 0.12 0.16 0.19 0.21

If (47) is solved in the allowable computation time,
a new optimized control sequence is obtained:
uS = ūS + �uS. If (47) fails or time reaches its
limit, the last nominal control sequence is used, that
is, uS = ūS.

4) Nominal sequence updating and iteration: If there
is time, the optimized control sequence is
considered as the new nominal control sequence
(ūS = uS), and steps 2–3 are repeated; this
procedure is further iterated until the control
solution converges (the cost function does not
improve significantly) or time is up.

To illustrate convergence of the iterative algorithm,
Fig. 6 shows several vertical profiles computed along
successive iterations (with parameters given in Section
VI). Each iteration clearly refines the guidance solution,
improving tracking. Table I shows the cost function during
the iterations and the cumulated computation time at the
end of each iteration. A local minimum was reached,
halting the iterative algorithm.

VI. SIMULATION RESULTS

We next present a simulation study showing the
performance of iterative model predictive guidance
(referred to as IMPG in this section). First, we test the
algorithm for an example plane mission to compare it with
other guidance algorithms (Section VI-A). We follow with
a more in-depth study for a 3D reconnaissance mission
(Section VI-B). We finish with a parametric study in
Section VI-C.

Some basic parameters of the simulation were
Ts = 1 s, Tδ = Ts/10 = 0.1 s, Vmin = 15 m/s,
Vmax = 30 m/s, γmin = −15◦, γmax = 15◦, κmin =
−0.6540Ts rad, κmax = 0.6540Ts rad, Nver = 1.5,

L1 = 150 m, λ = 0.23. Other parameters are discussed in
Section VI-C. The simulation test bed is a nonlinear model
of a light aircraft (Cefiro UAV) designed and built at the
University of Seville (Spain). Cefiro is a 23-kg airplane
designed with a cruise speed of 20 m/s. The model uses
the general 6-DoF equations of motion (see, e.g., [34]),
together with a nonlinear aerodynamic and propulsive
model. Additionally, there is a low-level attitude controller
that makes the airplane follow references in airspeed,
flight path angle, and bank angle, maintaining zero
sideslip. Further details regarding the attitude controller,
the geometry of Cefiro, and its aerodynamic and
propulsive models are given in [28, 35, 37]. The reference
trajectories used in the simulations have been obtained
using an optimal trajectory generator [37].

In what follows, to compare results, we define several
metrics. First, the mean mission control effort is quantified
as

CE = 1

NCE

∑
k

[
(uk − ûk)T Q̄k (uk − ûk)

] 1
2 , (48)

using a normalized weight matrix Q̄k, defined as in (39),
with kQ = 1 and a number of samples NCE (defined as the
mission time span divided by the IMPG sampling time).
This nondimensional definition takes into account the
heterogeneous nature of the control signals.

To measure mission tracking performance, we might
use the L2 norm of the oversampled tracking error at all
times:

T E = 1

NT E

∑
t∈S

‖p(t) − pref(t)‖2, (49)

where S is a set containing the oversampled times (we have
chosen an oversampling frequency 10 times faster than the
one used in the IMPG algorithm), and NTE is again the
number of samples (in this case, the mission time span
divided by the oversampling time). This metric, however,
is not fair to guidance laws without time synchronization
capabilities. Thus, for comparison with such laws, we
define a metric based on (30) considering only deviations
with respect to the reference flight segments:

PE = 1

NT E

∑
t∈S

‖l(t)‖2, (50)

It is important to remark that these metrics are useful
when comparing different guidance algorithms performing
the same mission, but they should not be understood as a
general performance index of a guidance method in any
scenario since the achieved values will depend noticeably
on the number of turns in the mission (which are the
maneuvers in which more error and control usage is
accumulated).
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Fig. 7. Comparison between different guidance strategies.

TABLE II
Comparison Between IMPG, VF, and L1 for a Plane Mission

Algorithm CE PE (m)

L1 0.2951 9.9512
VF 3.4802 4.4065

IMPG 0.1479 2.8874

A. Example Plane Mission

We compare, in the absence of wind and for an
example 2D mission, several guidance laws. The objective
of this comparative analysis is to understand the
path-following capabilities of three rather different
algorithms: IMPG, which is a predictive law; L1 (as
described in Section IV), which is LOS based; and vector
field (VF; see [38]), which modifies the system dynamics
to makes the desired path attractive).

The implemented VF guidance law is based on [38]
and (12), with the tuning parameters k = 0.04, ξ∞ =
1.3 rad, ε = 1 rad, and κ = 0.1680. Additionally, a
low-level PID heading controller for VF has been
implemented, with a typical turning speed α = 0.28 rad/s.
To make VF less reactive and able to anticipate corners,
the next reference flight segment is used when the
cross-track error with respect to it is less than 120 m.

Fig. 7 shows the resulting trajectories from using the
three different guidance algorithms. Compared with VF
and L1, IMPG shows excellent tracking capabilities. L1 is
perhaps too anticipative because it reacts as soon as the
point being tracked takes a turn. On the other hand, VF is
more precise in the path following but less efficient in the
control usage. The results of Table II support these
intuitive conclusions. For fairness, it must be mentioned
that both L1 and VF have negligible computational
costs and have proven mathematical properties, such as
stability.

Fig. 8. Example exploration mission (3D view).

B. Example 3D Exploration Mission with Moderate
Crosswind

Next, we perform a more in-depth study in which the
guidance system is required to follow a 3D reference
trajectory (a reconnaissance mission around a square
area), including time synchronization and wind
disturbances. Only IMPG and L1 are considered.
Computational times are given at the end.

The random wind in the simulation was modeled as

wx = V̄w cos ξ̄w + δwx, (51)

wy = V̄w sin ξ̄w + δwy, (52)

wz = δwz, (53)

where V̄w and ξ̄w are the mean wind speed and direction
and δwi are stationary Gaussian random processes
satisfying

δẇi =
{

0, if |δwi | ≥ δwmax

ν(σ ), else.
(54)

In (54), ν(σ ) is Gaussian white noise with standard
deviation σ , and a maximum deviation from the mean has
been imposed to avoid excessive (and unrealistic) wind
excursions from its nominal value. Chosen values were
Vw = 4 m/s, ξw = 210◦, σ = 10−2m/s, and
δwmax = 3 m/s.

Fig. 8 depicts the 3D view of the reference and the
path followed by the airplane. L1 keeps the airplane close
to the reference path even in presence of wind but with
increasing errors at turns and climbs/descents. On the
other hand, IMPG performs better than L1, accomplishing
tight turns at corners and without appreciable error in the
steady flight segments despite the wind, thanks to the
online disturbance estimator.

Fig. 9 depicts the wind components during the mission
as well as its estimation by the IMPG law, which closely
follow the real wind. Notice that this ability to estimate
wind could be a useful feature to obtain approximate wind
maps with small UAVs.

Figs. 10 and 11 show the evolution of the airplane
position and the control signals for both guidance methods
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Fig. 9. Time evolution of the x, y, and z components of the wind speed
(solid lines) and the estimated disturbances (dashed lines).

Fig. 10. Time evolution of the airplane position. Solid line: IMPG;
dashed-dotted: L1. Dashed line with bullets denotes the reference.

Fig. 11. Time evolution of the control signals computed by the IMPG
(solid line) and the L1 (dashed line) algorithms.

TABLE III
Comparison Between IMPG and L1 for a 3D Mission

Algorithm CE PE (m) Algorithm CE PE (m)

L1 0.1579 6.0949 IMPG 0.1567 1.9466

with respect to the reference trajectory. While L1
accumulates appreciable delays during the mission (as
time does not enter explicitly in its formulation), IMPG is
able to synchronize with the reference, compensating time
gaps at turns, and reaching the end point with less than 1 s
of delay.

The simulation was run on an Intel i7 2.2 GHz CPU.
The algorithms were implemented in Matlab (without
code compilation). The iterative algorithm was stopped
when the variation of the cost function was less than one
(typical values of the cost function are about 103); with
this bound, convergence was quick, with a mean number
of iterations of 2.9373 and a maximum number of six.
Moreover, the mean time to run one iteration was 0.0579 s
(using Matlab’s quadprog, with 42 states), while the
computation time of L1 was found negligible. During the
overall mission, the maximum amount of time to complete
the iterative IMPG algorithm was 0.3750 s (with five
iterations). Compared with the sampling time, the
computational burden is acceptable (37.5%) and could be
further reduced by using a compiled programming
language and/or a faster optimizer. Thus, real-time
execution of the algorithm is doable, and therefore its
onboard implementation is feasible.

To further compare IMPG with L1, we show in
Table III the control usage and trajectory tracking
performance of both methods using metrics (48) and (50).
IMPG has a 1% of control effort saving with respect to the
classical L1 law and a much better path-following
performance and, in addition, time synchronization
capabilities.

C. Parametric Study

There are several design parameters in the IMPG
formulation (see Section III). To get more insight into the
impact of these parameters in the IMPG performance, a
parametric study is carried out. Thus, a batch of
simulations are performed for a short mission similar to
the one presented in Section VI-B.

Fig. 12 shows the effect of Np (the prediction horizon)
on the final total mission cost (computed from (38) but
using the real state and the real applied controls), the mean
computation time for a single iteration of IMPG, the mean
total time to solve the optimization at each sampling time,
and the maximum time for an iteration during the whole
mission. It can be seen that mission cost reaches a
minimum at Np = 14 (selected value). This behavior is
explained since the greater Np is, the more future
information about the reference trajectory can be used.
However, large Np values degrade the guidance
effectiveness since the algorithm is forced to optimize a
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Fig. 12. Influence of Np in the mission cost and computational times.

Fig. 13. Mean number of iterations and total mission cost as function of
�κ with �V as a parameter (see the legend).

rather long future trajectory, diluting the effect of the first
control signal (the one effectively applied). On the other
hand, the computational burden increases monotonically
with Np as each increment implies three new state
variables in the optimization. At the selected horizon
(Np = 14), the computation times are affordable, with a
mean value of 0.1733 s, far below the employed sampling
time (Ts = 1 s). Even in the worst-case scenario, the
maximum time per iteration is still small (83.3 ms) so that
at least one iteration can be computed before stopping the
iterative process to avoid overruns. Finally, the mean
number of iterations (not shown in the figure) has been
found to be quite insensible to Np, having values near to
3.2.

Next, the maximum increment of the control signals in
(29), �V, �γ , and �κ (which ensure the validity of the
linearized model), are studied. Figs. 13 and 14 show the
mean number of iterations and the total mission cost as
functions of these parameters. Fig. 13 shows that both �κ

Fig. 14. Mean number of iterations and total mission cost as function of
the parameters and �V and �γ .

and �V have a strong influence in the algorithm
performance. Higher values of �κ lead to less cost and
iterations, but the curves flatten for �κ > 7◦. Large values
of �κ might lead to less accurate predictions, which could
subsequently have a negative impact in integrity. Thus, a
value of �κ = 7.5◦ was selected.

With respect to �V, both figures show that values
below 2 m/s raise considerably the mean number of
iterations and reduce the mission cost (and vice versa).
Thus, a trade-off value �V = 2.5 m/s was chosen.

Fig. 13 shows that �γ has a weak impact in both
performance indicators, with curves for values greater
than 1.5◦ almost overlapping. This is due to changes in the
reference flight path angle being relatively small
compared to changes in heading angles or velocity. Thus,
�γ = 3◦ was selected.

Finally, the weights in the cost function R1i , R2i , and
Qi, used, respectively, in (31), (34), and (37), are studied.
Following [15], a Pareto analysis is performed to have a
comprehensive view of the influence of those weights in
the achievement of the problem’s objectives (path
following, time synchronization, and control saving),
quantified using the metrics (48) and (49) for the control
effort and the tracking error, respectively. A batch of
mission simulations has been performed varying the
weight matrices. They have been kept diagonal (following
the structure of (39–41)). Only the scalar weights kQ and
kR2 are varied since only the ratio between these two
parameters and kR1 (set to 10) matters. Thus, the following
sets have been considered:

kQ ∈ [0.05, 0.1, 0.5, 1, 5, 10, 30, 60, 100], (55)

kR2 ∈ [0.01, 0.05, 0.1, 0.5, 1, 5, 10, 50, 100]. (56)

Fig. 15 (left) shows the metrics for each combination
of values of kQ and kR2. Fig. 15 (right) shows a zoom close
to the origin (low tracking error and control effort). A
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Fig. 15. Pareto analysis of the influence of the weights in the IMPG performance. Control effort and tracking error are defined in (48) and (49). Text
annotations define, for each point, which component of (55) and (56) is selected for kQ and kR2 (in that order). The star is the selected point.

Pareto front emerges, representing the best trade-off
between the objectives. The weight combinations kQ = 30
and kR2 = 0.1 (depicted by a star) have been selected.

VII. CONCLUSIONS

In this paper, a new MPC path-following guidance
algorithm has been introduced to follow a precomputed
reference trajectory. The main features of the algorithm
are the use of the bank angle instead of the heading angle,
an explicit linearization scheme to solve nonlinear
optimization, disturbance estimation, and the use of a
modified robust L1 navigation law as hotstart and backup,
thus guaranteeing feasibility. Simulations show good
path-seeking performance and time synchronization
capabilities, even in the presence of moderate wind. The
iterative optimization process converges quickly, making it
suitable for onboard implementation in UAVs. Finally, in
contrast to the most common guidance algorithms (based
on waypoints), this guidance law uses a continuous
reference trajectory with passage times, which can be
preoptimized for an efficient mission accomplishment.

Undergoing research is focused on the implementation
of the guidance law in the real airplane for flight
experiments and the extension of this algorithm to
formation flying. In addition, the use of robust model
predictive schemes [31] to (mathematically) guarantee
good performance and constraint satisfaction even in the
presence of wind disturbances will be analyzed. These
schemes would require employing a more advanced
disturbance estimator (e.g., an extended or unscented
Kalman filter).

APPENDIX. LINEAR APPROXIMATION FOR STATE
PREDICTION

This appendix shows the explicit linearization of f
used in Section III-A. Starting from the definition of f in
(13) and the linearized prediction model (17), one can

write each column of the Jacobian (57) as

∂fi
∂uS

(ūS, χ0)

=
[
�4×2

∂fi
∂κ0

|�4×2
∂fi
∂κ1

| · · · | ∂fi
∂Vi

∂fi
∂γi

∂fi
∂κi

|�4×(Np−1−i)

]
.

(57)

∂fk
∂Vk

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2
cγ̄k

Ts

κ̄k
cos

(
κ̄k

2 +
k−1∑
i=0

κ̄i + χ0

)
s κ̄k

2

2
cγ̄k

Ts

κ̄k
sin

(
κ̄k

2 +
k−1∑
i=0

κ̄i + χ0

)
s κ̄k

2

−sγk
Ts

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (58)

∂fk
∂γk

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−2
V̄ksγ̄k

Ts

κ̄k
cos

(
κ̄k

2 +
k−1∑
i=0

κ̄i + χ0

)
s κ̄k

2

−2
V̄ksγ̄k

Ts

κ̄k
sin

(
κ̄k

2 +
k−1∑
i=0

κ̄i + χ0

)
s κ̄k

2

−Vkcγ̄k
Ts

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (59)

∂fk
∂κk

=

⎡
⎢⎢⎢⎢⎢⎢⎣

V̄kcγ̄k
Ts

(
κ̄kc(κ̄k+χ̄k)−s(κ̄k+χ̄k)+sχ̄k

κ̄2
k

)

V̄kcγ̄k
Ts

(
κ̄ks(κ̄k+χ̄k)+c(κ̄k+χ̄k)−cχ̄k

κ̄2
k

)
0

1

⎤
⎥⎥⎥⎥⎥⎥⎦

, (60)

∂fk
∂κi

=

⎡
⎢⎢⎢⎢⎢⎢⎣

−2
V̄kcγ̄k

Ts

κ̄k
sin

(
κ̄k

2 + χ̄k

)
s κ̄k

2

2
V̄kcγ̄k

Ts

κk
cos

(
κ̄k

2 + χ̄k

)
s κ̄k

2

0

0

⎤
⎥⎥⎥⎥⎥⎥⎦

, i < k, (61)
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where χ̄k = ∑i=k−1
i=0 κ̄i + χ0 and s(·) and c(·), respectively,

denote sine and cosine.
Note that (58–61) may present numerical problems at

straight flight segment since then κ̄k (which appears in
some denominators) is zero. This is, however, a solvable
singularity; approximating fk and (58–61) when κ̄k → 0,
one gets

fk ≈
(

lim
κ̄k→0

fk

)
+

(
lim
κ̄→0

∂fk
∂κ̄k

)
κ̄k, (62)

∂fk
∂(·) ≈

(
lim
κ̄k→0

∂fk
∂(·)

)
+

(
lim
κ̄k→0

∂2fk
∂κ̄k∂(·)

)
κ̄k. (63)

Computing the limits appearing in (62) and (63), one has,
when κk → 0, the following expressions (the subindex k is
omitted for clarity):

f →

⎡
⎢⎢⎢⎣

V̄ cγ̄ Tscχ̄

V̄ cγ̄ Tssχ̄

−V̄ sγ̄ Ts

0

⎤
⎥⎥⎥⎦ ,

∂f
∂κ

→

⎡
⎢⎢⎢⎢⎢⎣

−V̄ cγ̄ Ts

sχ̄

2
V̄ cγ̄ Ts

cχ̄

2
0

1

⎤
⎥⎥⎥⎥⎥⎦ ,

∂f
∂V

→

⎡
⎢⎢⎢⎣

cγ Tscχ̄

cγ Tssχ̄

−sγ̄ Ts

0

⎤
⎥⎥⎥⎦ ,

∂f
∂γ

→

⎡
⎢⎢⎢⎣

−V̄ sγ̄ Tscχ̄

−V̄ sγ̄ Tssχ̄

−V̄ cγ̄ Ts

0

⎤
⎥⎥⎥⎦ ,

∂f
∂κi

→

⎡
⎢⎢⎢⎣

−V̄ cγ Tssχ̄

V̄ cγ Tscχ̄

0

0

⎤
⎥⎥⎥⎦ ,

∂2f
∂κ∂V

→

⎡
⎢⎢⎢⎢⎢⎣

−cγ̄ Ts

sχ̄

2
cγ̄ Ts

cχ̄

2
0

0

⎤
⎥⎥⎥⎥⎥⎦ ,

∂2f
∂κ∂γ

→

⎡
⎢⎢⎢⎢⎢⎣

V̄ sγ Ts

sχ

2
−V̄ sγ Ts

cχ

2
0

0

⎤
⎥⎥⎥⎥⎥⎦ ,

∂2f
∂κ∂κi

→

⎡
⎢⎢⎢⎢⎢⎣

V̄ cγ Ts

cχ

2
−V̄ cγ Ts

sχ

2
0

0

⎤
⎥⎥⎥⎥⎥⎦ ,

∂2f
∂κ2

→

⎡
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−V̄ cγ Ts

cχ

3
−V̄ cγ Ts

sχ

3
0

0

⎤
⎥⎥⎥⎥⎥⎦ .
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