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A B S T R A C T

E-sail technology enables a continuous propulsion system based on the repulsive force exerted
by solar wind protons on a set of positively charged tethers. Diverse methods have been explored
within the last two decades to investigate the dynamics of E-sail. This work introduces a dynamic
multibody model combining Absolute Nodal Coordinate Formulation (ANCF) and Natural
Coordinates (NC) to describe flexible and rigid bodies, respectively. A complete formulation
for cable elements considering nonlinear bending and internal damping is provided. Coulomb
propulsive forces are included and the expressions for the integration of the resulting Differential
Algebraic Equation (DAE) system are given. Based on the simulation results obtained from
the proposed model, the convenience of considering bending stiffness to accurately capture the
dynamics is proven. The in-plane and out-of-plane oscillations of the tethers are reported and
explained. By means of the Power Spectral Density (PSD) representation, the relevant role on
the E-sail dynamics of the spin, bending and axial modes, associated to the well-known problem
of a rotating cable with a tip mass, is described. The force and perturbation moments transmitted
to the central body are compared to the generated thrust, and its complexity and instability under
non-null sailing angle operation is established.

1. Introduction
The E-sail is a propellantless propulsion technology proposed by Janhunen [1], which extracts thrust from the

solar wind protons. The most extended configuration of the E-sail follows a hub-spoke architecture in which the main
spacecraft is located in the center and the positively charged tethers are distributed radially [2]. The whole system
spins around the principal axis and tethers’ stability is increased thank to the centrifugal force exerted on the remote
units located at their outer end. The repulsion phenomenon and force generation, which are the base of the E-sail
propulsion, have been analyzed in detail [3–7] with different models. The influence of the solar wind density and
speed, or the difference of electric potential at the wire, among others, is quantified and the modulation of the wire
voltage is identified as a key control magnitude of the E-sail [8].

The performance of the E-sail concept as a main propulsion system has been assessed [3, 9], showing promising
results in terms of competitiveness, [10, 11], for a wide range of missions: planetary rendez vous [12], heliocentric
transfer missions [13, 14], non-Keplerian orbits [15] or asteroids exploration [16] between others. To navigate the
planned trajectories, on the one hand, the module of the propulsive force may be adjusted thanks to voltage modulation.
On the other hand, the orientation of the thrust force can be established by modifying the orientation of the E-sail axis
respect to the solar rays; the angle formed between them is commonly referred to as sailing angle. When this angle is
not null, the thrust has a component on the spin plane [9] which, together with the orbital Coriolis forces, generates
effects that may conduce to tether collision [16]. In order to mitigate this risk, different solutions are proposed [17]
such as the inclusion of auxiliary tethers, active remote units or photonic blades.

Early research on E-sail dynamics proposed the use of an spherical pendulum model [8], in which tethers are
modelled as rotating rigid thin wires under the effect of orbital and Coulomb forces, and where the use of a secondary
tether is considered. Under this approach, it is proven that a stable evolution as well as spin rate and orientation control
of the sail can be ensured by means of the modulation of tether voltage. The previous spherical pendulum model is
improved by including the centrifugal forces associated to the spin of the E-sail, acting on main tether and remote
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mass [18]. As a first result, a criterion for the selection of the spin frequency is established, ensuring that the ratio
of centrifugal and Coulomb effects is greater than 5. Secondly, it is proven that the voltage modulation on secondary
tethers may be sufficient to compensate the secular variation of spin rate associated to orbit Coriolis forces, reinforcing
the propellantless character of the E-sail. The spherical pendulum model applied to a single rotating tether [19], is
considered for the derivation of control efficiency and indicates that a on-off modulation of the main tether voltage
makes possible the operation on amplified transverse thrust conditions. Under this modulation it is verified that thrust
angle approximately equals the sailing angle, in contrast to continuous modulation in which the thrust angles is half of
the sailing angle. In addition, a reduction of power consumption is established.

E-sail modelling is further ameliorated by the contributions of studies providing analytical approximations for
realistic sail shapes under the effect of Coulomb and centrifugal forces [20]. Under this approach, Coulomb forces
and torques are computed and the voltage modulation required to counteract the torque and maintain E-sail attitude is
given. On a similar line, the equilibrium deformed shape is computed under the hypothesis of axial-symmetry, [21],
and considered to define voltage modulation to remove torque and perform attitude control under null or small sailing
angle conditions [22, 23].

Numerical approaches based on lumped mass models have also been investigated [24, 25]. The control of the secular
variation of spin rate by aux tether voltage modulation is proven for two types of secondary tethers configurations:
galvanically connected “T-tether” and insulated “I-tethers” [24]. The complexity of the E-sail dynamics is confirmed
by the oscillating behaviour of the relative position of the ends of a single tether firstly revealed in [25], and associated
to the combined action of inertial, Coulomb and tether internal forces. Their lumped mass model (in which a viscous-
elastic tether is proposed) reveals the influence of the spin rate in the system dynamics, subsequently known as coning
motion. The comparison of the lumped mass model against the dumbbell idealization for a single tether, in which
transverse deformation is neglected, validates the use of the latter in the case that centrifugal forces are dominant
and the transversal effects can be disregarded. The use of finite elements based on the Nodal Position Finite Element
Method (NPFEM), [26], is applied to deorbit electrodynamics tethered systems [27] and to E-sail concept [28]. In
[28], a multi-physic model is defined for an E-sail in which tethers are represented by flexible truss elements and
central vehicle as a point mass. Orbit and attitude coupling is investigated, concluding that it is a long-term effect
and negligible for the short term. Results for unbalanced configuration and parametric analysis are also provided for a
deeper understanding of the dynamics of an E-sail containing auxiliary tethers. Additional parameters and the influence
of relative solar wind velocity are explored considering the same modelling approach [29] and the control of secular
spin rate oscillation is validated under the NPFEM strategy. An important milestone in the comprehension of E-sail
dynamics is achieved with the deduction of the coning motion frequency and equilibrium angle presented in [30].

Concerning the multibody character of the proposed E-sail models, most of the works on this topic neglect the
dynamics of the central body, given the typical length of the tethers, and model it as a lumped mass. An exception can
be found in [31], where a multibody model based on dumbbell simplifications is proposed and studied, but only null
sailing angle configuration are explored. Additionally, a multibody idealization, considering a rigid body for the main
spacecraft and flexible tethers formulated by NPFEM, is investigated in [32], which demonstrates the appearance of
perturbation torques on the main spacecraft due to the motion of the center of mass and the evolution of the thrust
force. Additional fluctuations of tether tension leading to disturbances on the spacecraft angular rate and attitude are
identified and finally, the necessity of using remote units to control the spin rate is showed in this notable contribution
[32].

In addition to the NPFEM [28–30, 32] and the lumped mass approximation [24, 25] previously exposed,
other methods have also been investigated to analyse the dynamics of the E-sail. The Reference Nodal Coordinate
Formulation (RNCF) and the nonlinear Floating Frame of Reference Method (FFRM), are compared for studying
the dynamics and defining control strategies of a flexible E-sail in [33]. Moreover, the Absolute Nodal Coordinate
Formulation (ANCF) has also been considered [34, 35]. The ANCF is a widely used formulation, which presents
the advantage, with respect to the NPFEM, of making possible the formulation of non-singular cable elements to
account for bending stiffness, as pointed out in [26]. The necessity of incorporating the cable bending stiffness into
tethers models has been proven [36–38], and justifies efforts oriented to achieve this objective for NPFEM [39, 40].
However, even when the formulation is improved, to avoid ill-conditioning a moderate element slenderness has to be
ensured, forcing an unaffordable reduced integration time step [26]. Proposed in [41, 42], and given the use of absolute
nodal coordinates and the selection of the shape functions, ANCF allows a zero strain condition under rigid body
motion, and is able to consider large displacement and nonlinear behaviours. The selection of nodal displacements and
slopes as nodal coordinates, enables the formulation of bi-dimensional and three-dimensional beam elements with a
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constant mass matrix [43, 44]. In contrast, the expressions of elastic forces become highly nonlinear. The available
beam elements formulated under ANCF can be separated into those considering shear and cross section deformation
[43, 44] and those with gradient deficient elements where transverse shear deformation cannot be captured [45, 46].
These last group is of special interest for tether applications. Given that slope vectors on the transverse directions are
omitted from the nodal coordinates vector, cross sectional deformation, torsion or Poisson effects cannot be directly
derived [46]. However, modified formulations have been proposed [47, 48] to tackle these issues and improve the
capabilities of the original ACNF cable formulation. In addition to the elemental capabilities, the adequacy of a
formulation to integrate joint constraints is a relevant aspect for applications on multibody systems. There are an
extensive number of contributions for ANCF in this regard, [49, 50] which propose and evaluate a wide range of
formulations for joint constraints, contacts or sliding joints, among others. For the current application, only spherical
joints are formulated according to [51, 52], and the corresponding set of linear constraints equations is incorporated
to the associated Differential Algebraic Equation (DAE) system. The combined use of ANCF for the formulation of
flexible elements, and Natural Coordinates (NC) for rigid elements notably simplifies the formulation of combined
rigid-flexible joint constraint equations [53, 54].

The applicability and efficiency of ANCF to model nonlinear dynamics have been investigated and demonstrated,
not only for space applications, but also in other fields [55, 56]. ANCF’s capability to address large displacement
problems has been highlighted in numerous flexible multibody dynamics reviews [49, 50, 57, 58] and demonstrated by
its extensive use in the field of Tethered Satellite System (TSS). Research on TSS has led to remarkable contributions
and applications of the ANCF method. Namely, the development of variable length ANCF cable elements and its
application to the deployment and control of TSS [59–61], the vibration and stability analysis of Long Tethered Satellite
Systems under a multibody perspective [62], or the investigation of space tethered-net dynamics [63, 64]. ANCF Cable
elements are used to study the E-sail dynamics in [34], where the the importance of transverse effects for small spin
rates is highlighted. However, despite of the high potential of ANCF and the numerous contributions on the TSS field,
an specific development of a multibody E-sail model considering a detailed formulation of the tether has not yet been
proposed.

Regarding numerical algorithms and techniques, significant integration schemes for the solution of the DAE system,
are based on implicit Runge-Kutta scheme [65, 66], generalized-𝛼 algorithm [67, 68] and structure-preserving methods
[69, 70]. On one hand, symplectic methods are the most adequate option for long-term simulations in which the
preservation of energy and momentum need to be ensured. On the other hand, the generalized-𝛼 scheme presents
a second order convergence rate and adjustable numerical damping at high-frequency [68] and its implementation is
simple and direct which justifies its choice for the present work.

In the current work, a high-fidelity dynamical model for an electric solar wind sail is presented. A rigid-flexible
multibody approach is proposed considering the main spacecraft, the tethers and the remote masses. The central
spacecraft is modeled as a rigid cylinder formulated using NC, the tethers are represented by cable elements established
in ANCF and remote units are considered as lumped masses. The dynamic problem is stated using the Lagrangian
formulation and Lagrange multipliers are used to establish the pinned joint condition between the cables and the center
body at the anchor points. In contrast to previous works considering multibody and flexible tethers in NPFEM [32],
the proposed cable elements include bending stiffness which is proven to be critical to capture the cable dynamics in
a more accurate way. The formulation of an E-sail considering ANCF proposed in [34], is improved by the multibody
approach and the inclusion of structural damping capability and nonlinear bending for the tethers. Regarding external
forces, a Coulomb propulsive force model according to [71] is considered, whereas gravitational forces are neglected
given its long-term nature revealed in [28]. The full set of expressions for the evaluation of Jacobians and additional
elements necessary for integration of the DAE system by means of the generalized-𝛼 algorithm are provided [68].
Results on generalized coordinates are translated into a more comprehensible set of dynamic and attitude variables.
It should be noted that, given the multibody character of the model, two attitudes are calculated. Firstly, the attitude
of the central vehicle, given by the Euler angles 𝜓 , 𝜃 and 𝜙. And secondly, the attitude of the E-sail, defined as the
orientation of the mean plane containing the remote masses, and given by the angles 𝛹 , 𝛩 and 𝛷. Simulations are
carried out for an E-sail baseline configuration to investigate the evolution of dynamic variables defining the motion
of the tethers and central vehicle.

The original contributions of this work are as follows. It presents the first multibody model of an E-sail solely
based on absolute coordinates, in which ANCF is used for the tethers and NC for the central body. The formulation
for bending forces includes the nonlinear curvature effect, therefore allowing the comparison with models considering
linear bending or truss elements for the mathematical representation of tethers. In addition, the inclusion of internal
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damping enables the evaluation of the effect of internal dissipation in the dynamics of the system. Furthermore, this
work contributes to the understanding of the E-sail dynamics by the identification of the main governing frequencies:
spin, already identified in previous works, but also bending and axial modes. Besides, the current work presents a novel
study of the tether in-plane oscillation for an E-sail, being of special interest to assess the risk of collision of the cables
for configuration without secondary tethers, which is a risk mentioned in the literature [16], but not deeply investigated
until today. An E-sail configuration without secondary tethers involves a greater specific propulsion and a notably
simpler deployment process, and the identification and explanation of tether lagging presented in the current work
represents an advance in the comprehension of the E-sail system. The accurate modelling and precise understanding
of the E-sail dynamics from a multibody perspective is also a valuable asset for the progress of advanced stability and
deployment analyses [72, 73]. Moreover, and for the first time, the evolution of the orientation of the tethers at the
anchor points is explicitly described and the participating vibration modes examined. As a consequence, the forces
transmitted to the central vehicle are detailed, allowing to improve the comprehension of the existing perturbation
torques applied to the central vehicle and explaining the corresponding angular rates oscillations. Finally, and as a
consequence of the multibody character of the proposed model, the evolution of the attitude is studied and compared
for both the central vehicle and the remote units mean plane.

The present article is organized as follows. Following the introduction, Sect. 2 describes the formulation of the
multibody rigid-flexible E-sail model, defines the coordinate systems used and the formulation in absolute coordinates
of the rigid body, the flexible cable elements and the displacement constraints. Next Sect. 3 contains the description
of the auxiliary variables and magnitudes defined for a better interpretation of the system dynamics. The analysis
results are provided in Sect. 4. Firstly, the results for the convergence analysis are presented. The effect of keeping or
neglecting the bending stiffness of the tethers is illustrated by comparing the results achieved by considering cable or
truss elements. Secondly, the results for the dynamics of a single tether are presented and described. Finally, the E-sail
dynamics results are provided. Finally, some conclusions and future lines of work are stated in Sect. 5.

2. Formulation of the E-sail model and dynamic problem
In this section, the definition of the E-sail dynamic model is presented. The components considered for the

multibody system are described, the associated constraints introduced, and the contributions considered are identified,
allowing the establishment of the DAE system. Moreover, the assembly process of the system generalized coordinates
vector, mass matrix, generalized forces and constraints is outlined and the implemented DAE integration method
is introduced. Additionally, dedicated sections are incorporated to describe the coordinate frames, as well as the
formulation of the cable elements used to model the flexible tethers and the rigid body considered for the central
vehicle.

The dynamics of the E-sail multibody system is formulated following the Lagrangian approach [42] and its
idealization is established, as described in Fig. 1(a), considering a rigid body for the central vehicle, flexible bodies
for the tethers and point masses for the remote units. The rigid body is assumed to be a cylinder of height ℎ𝑟, radius
𝑅𝑟 and homogeneous density 𝜌𝑟. The flexible tethers are modelled as cables with constant transverse section, given
by area 𝐴𝑡 and inertia 𝐼𝑡, length 𝐿0, homogeneous density 𝜌𝑡 and Young Modulus 𝐸𝑡. The radial tethers considered
in the configuration assessed in this paper, are known as main tethers, and the number of main tethers contained by
the sail is represented by 𝑝. The contribution of the rigid and flexible elements to the constant global mass matrix ℳℳℳ,
and the generalized forces 𝒬𝒬𝒬𝑎(�̇�,𝐪, 𝑡), are computed in terms of the time 𝑡, the generalized coordinate vector 𝐪 and its
velocity vector, �̇�. Their formulation are described in Sect. 2.2 for flexible parts, and in Sect. 2.3 for the rigid body.
The point masses 𝑚𝑢, associated to the remote units are simply added to the mass matrix at the corresponding nodal
coordinates location. Additionally, there exist a set of constraint equations applicable to the system and comprised
at matrix 𝒞𝒞𝒞 (�̇�,𝐪, 𝑡), which are imposed by the introduction of the Lagrange multipliers vector, 𝜆𝜆𝜆. Two main types of
constraints are differentiated: the joints’ constrains associated to the continuity of the displacements between the tethers
and the rigid body at the anchor points, named 𝐂𝑎 and described at Sect. 2.4, and the internal constrains associated
to the formulation of the rigid body formulated as per Sect. 2.3.1 and designated as 𝐂𝑟. Consequently, the system
constraint matrix is determined by the concatenation 𝒞𝒞𝒞 = [𝐂𝑇𝑎 𝐂𝑇𝑟 ]

𝑇 . Defining ̇( ) as the time derivative and ( ),𝐪 and
( ),𝑡 as the partial derivative respect 𝐪 and 𝑡, respectively, the second time derivative of the constrains matrix 𝒞𝒞𝒞 leads
to the expression shown next, which generally defines 𝒬𝒬𝒬𝜆(�̇�,𝐪, 𝑡) as

𝒞𝒞𝒞 ,𝐪�̈� = −𝒞𝒞𝒞 ,𝑡𝑡 −
(

𝒞𝒞𝒞 ,𝐪�̇�
)

,𝐪 �̇� − 2𝒞𝒞𝒞 ,𝐪𝑡�̇� = 𝒬𝒬𝒬𝜆. (1)
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However, given that the constraints previously mentioned are scleronomic, the actual dependence of constrains matrix
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Figure 1: (a) Description of the main components of an E-sail and its interaction with the solar wind, when a positive
bias voltage at tethers is maintained by the operation of an electron gun. Establishment of E-sail body coordinate system
𝐵; (b) Description of the main reference frames considered for the formulation: heliocentric ecliptic inertial 𝐻 , inertial
𝐼 and orbital 𝑂. Description of the sailing 𝛼, and precession 𝛿, angles, established between the vector 𝑋𝐸 and the solar
rays. Description of the propulsive force resultant, given by its module, 𝐹𝑐 , and its orientation respect to the solar rays,
Γ𝑐 . Definition of the decomposition of the propulsive force into the longitudinal 𝐹𝑐𝑎𝑥 and transversal 𝐹𝑐𝑡𝑟 contributions; and
(c) Description of the auxiliary E-sail coordinate system 𝐸, established by the mean plane of the remote units Π, and the
location of the first remote unit 𝑢1.

can be written as 𝒞𝒞𝒞 (𝐪). Consequently, both 𝒞𝒞𝒞 ,𝑡𝑡 and 𝒞𝒞𝒞 ,𝐪𝑡 terms are null and Eq. (1) reduces to

𝒬𝒬𝒬𝜆 = −
(

𝒞𝒞𝒞 ,𝐪�̇�
)

,𝐪 �̇�. (2)

Taking into consideration the previous definitions, the dynamic equations of the system can be written as the following
index-3 DAE system in matrix form

[

ℳℳℳ 𝒞𝒞𝒞 𝑇
,𝐪

𝒞𝒞𝒞 ,𝐪 𝟎

] [

�̈�
𝜆𝜆𝜆

]

=
[

𝒬𝒬𝒬𝑎
𝒬𝒬𝒬𝜆

]

. (3)

Concerning the vector of generalized forces of the system 𝒬𝒬𝒬𝑎, it comprises the following contributions: the Coulomb
force 𝒬𝒬𝒬𝑐 , induced on the charged tethers by the solar wind, the elastic forces 𝒬𝒬𝒬𝑒, obtained from the elastic energy
stored on flexible bodies and finally the damping forces 𝒬𝒬𝒬𝑑 , derived from the internal energy dissipation occurring on
flexible bodies. Going deeper into the structure of 𝐪, it consists on the union of the generalized coordinates of the rigid
element, 𝐝, and the generalized coordinates associated to the flexible parts. Consequently, it can be written as

𝐪 =
[

𝐝𝑇1 𝐝𝑇2 𝐝𝑇3 𝐝𝑇4 | �̂�𝑇11 �̂�
𝑇
12 ... �̂�

𝑇
1𝑗 �̂�

𝑇
1𝑛 | ... | �̂�

𝑇
𝑖1 �̂�

𝑇
𝑖2 ... �̂�

𝑇
𝑖𝑗 ... �̂�

𝑇
𝑖𝑛 | ... | �̂�

𝑇
𝑝1 �̂�

𝑇
𝑝2 ... �̂�

𝑇
𝑝𝑗 ... �̂�

𝑇
𝑝𝑛

]𝑇
, (4)

where 𝐝𝑘 represent the generalized coordinates of the node 𝑘 considered for the formulation of the rigid body. As
explained in Sect. 2.3, four basic points are considered, 𝑘 = 1, ..., 4, and the nodal coordinates include just the
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nodal position expressed in an absolute frame. Consequently the dimensions of 𝐝𝑘 are 3 × 1, and the total number
of generalized coordinates associated to the rigid definition, 𝐝, is equal to twelve. In relation to the definition of
flexible elements, described in more detail in Sect. 2.2, �̂�𝑖𝑗 represent the nodal coordinates of the 𝑗th node of tether 𝑖.
In the present case, given the gradient deficient definition chosen for the cable elements, the generalized coordinates
include the nodal position and the longitudinal slope, being the dimensions of each set of nodal coordinates equal
to 6 × 1. For an E-sail formed by 𝑝 tethers, in which each tether is divided by 𝑛 nodes into 𝑞 finite elements, being
𝑞 = 𝑛−1, the dimensions of the generalized coordinates associated to the flexible cables are (6𝑛 𝑝) × 1. It is concluded
that the number of generalized coordinates of the system, contained in vector 𝐪 and referred from now on as 𝑚, is
𝑚 = (6𝑛 𝑝 + 12). Given the formulation of the rigid body, Sect. 2.3 introduces six internal constraints, and keeping in
mind that each of the spherical joint at tethers root, formulated in Sect. 2.4, is equivalent to three constraints equations,
the total number of constraints of the system is 𝑐 = 6 + 3𝑝. Consequently, the number of degrees of freedom of the
system is 𝑠 = 𝑚 − 𝑐 = 6 + 3(2𝑛 − 1)𝑝.

Assembly of the system generalized matrices/vectors from the elemental results
This paragraph introduces the assembly process of the system generalized vectors and matrices from the

contribution of the rigid body and flexible elements making use of the Boolean matrices presented subsequently. The
base of this process is the extraction from vector 𝐪 of the coordinates �̂�𝑖𝑗 associated to an specific node 𝑗 of a given
tether 𝑖, which can be easily carried out using the following matrix product

�̂�𝑖𝑗 = �̂�𝑒𝑖𝑗𝐪, (5)

where �̂�𝑒𝑖𝑗 is the Boolean matrix of dimensions 6 × 𝑚 for flexible components

�̂�𝑒𝑖𝑗 =
[

𝟎6×12 | 𝟎6×6𝑛(𝑖−1) | 𝟎6×6(𝑗−1) | 𝐈6×6 | 𝟎6×6(𝑛−𝑗) | 𝟎6×6𝑛(𝑝−𝑖)
]

, (6)

in which the dimensions of each of the blocks can be explained as it follows: the first null sub matrix corresponds to the
coordinates of the 4 basic points used for the definition of the rigid body. The second, with dimensions 6×6𝑛(𝑖−1), is
associated to the (𝑖−1) previous tethers. The element 𝟎6×6(𝑗−1) corresponds to the coordinates associated to the initial
(𝑗 − 1) nodes of tether 𝑖. The identity matrix of size 6 allows the extraction of the coordinates of interest �̂�𝑖𝑗 , while
the following element 𝟎6×6(𝑛−𝑗), completes the coordinates of the remaining (𝑛 − 𝑗) nodes of tether 𝑖. To conclude,
𝟎6×6𝑛(𝑝−𝑖) corresponds to the coordinates appertaining to the subsequent (𝑝 − 𝑖) tethers. Analogously, the Boolean
matrix 𝐁𝑟𝑘, 3 × 𝑚, that allows the extraction of the nodal coordinates associated to basic point 𝑘 of the rigid body, can
be formulated as

𝐁𝑟𝑘 =
[

𝟎3×3(𝑘−1) | 𝐈3×3 | 𝟎3×3(4−𝑘) | 𝟎3×6𝑛⋅𝑝
]

. (7)

The assembly of the generalized forces vector 𝒬𝒬𝒬𝑘, with dimensions 𝑚 × 1, can be achieved by making use of
the previous Boolean matrices to integrate the contributions of the flexible elements and the rigid body conforming
the E-sail. For the sake of brevity, the assembly process, applicable to any of the contributions to generalized forces
previously mentioned, is described considering a non-specific generalized force 𝒬𝒬𝒬. The elemental coordinate vector
associated to the 𝑗th flexible finite element of tether 𝑖, 𝐞𝑖𝑗 is formed by the vertical concatenation of nodal coordinate
vectors associated to the 𝑗th and (𝑗 + 1)th nodes of tether 𝑖, of size 12 × 1. Elemental coordinates could be simply
extracted from 𝐪, making used of the Boolean matrices associated to the nodal contributions

𝐞𝑖𝑗 =
[

�̂�𝑖𝑗
�̂�𝑖(𝑗+1)

]

=

[

�̂�𝑒𝑖𝑗
�̂�𝑒𝑖(𝑗+1)

]

𝐪 = 𝐁𝑒𝑖𝑗𝐪, (8)

and the transposes of the elemental Boolean matrix 𝐁𝑒𝑖𝑗 for flexible elements and for the rigid body 𝐁𝑟𝑘, allow to write

𝒬𝒬𝒬 =
𝑝
∑

𝑖=1

𝑛−1
∑

𝑗=1

(

𝐁𝑒𝑖𝑗
)𝑇

𝐐𝑒
𝑖𝑗 + (𝐁𝑟)𝑇 𝐐𝑟, (9)

where the initial double summation in 𝑖 and 𝑗, computes the contribution of flexible elements, being 𝐐𝑒
𝑖𝑗 the elemental

generalized forced vector, of dimensions 12 × 1, of the 𝑗th flexible element of tether 𝑖. In the second summand, related
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to the rigid body, 𝐐𝑟 is the generalized forced associated to the rigid body with dimensions 12× 1 and 𝐁𝑟 is defined as
the Boolean matrix that extracts from 𝐪 the rigid body coordinates 𝐝, given by

𝐁𝑟 =
[

(𝐁𝑟1)
𝑇
| (𝐁𝑟2)

𝑇
| (𝐁𝑟3)

𝑇
| (𝐁𝑟4)

𝑇 ]𝑇 . (10)

Similarly, the assembly of the mass matrix of the full system, ℳℳℳ, can be accomplished considering

ℳℳℳ =
𝑝
∑

𝑖=1

𝑛−1
∑

𝑗=1

(

𝐁𝑒𝑖𝑗
)𝑇

𝐌𝑒
𝑖𝑗𝐁

𝑒
𝑖𝑗 + (𝐁𝑟)𝑇 𝐌𝑟𝐁𝑟, (11)

where 𝐌𝑒
𝑖𝑗 correspond to the elemental mass matrix of the 𝑗𝑡ℎ flexible finite element of tether 𝑖, and 𝐌𝑟 is the mass

matrix of the central rigid body. The exposed rationale, with slight adaptations, is used to carry out the assembly of
the Jacobian matrix of the system constraints 𝒞𝒞𝒞 ,𝑞 and the associated force 𝒬𝒬𝒬𝜆, however in the interest of concision the
details are omitted here.

DAE integration
This section describes the basic aspects of generalized-𝛼 method considered for the numerical integration of the

DAE system.
Once the different contributions to the system dynamics are computed and assembled into the matrix form presented

in Eq. (3), the integration of the DAE system is carried out based on a generalized-𝛼 scheme in which the dynamic
equilibrium is enforced at every step [68]. This implicit strategy, based on the Newmark method, offers a good accuracy
at low frequencies and the possibility of regulating numerical damping for high frequencies by adjusting the value of
the parameters. Although the algorithm’s details can be consulted in [68], it is remarked that its implementation is
simple but requires the calculation of the Jacobian of the generalized forces. The direct integration of the index-3 DAE
system requires that, at each time step, the dynamic equilibrium is enforced by the fulfilment of Eq. (3); consequently,
the position constraint equations are directly satisfied and the accelerations are computed with second-order accuracy
[68]. The correction of the generalized coordinates 𝚫𝑞 , and the Lagrange multipliers 𝚫𝜆, are given by the solution of
the linear system

𝐒𝑡
[

𝚫𝑞
𝚫𝜆

]

= −
[

𝐫𝑞
𝐫𝜆

]

, (12)

where 𝐫𝑞 and 𝐫𝜆 correspond to the residuals associated to the dynamic and constraints equations, respectively, evaluated
considering the current estimation of the generalized coordinates and Lagrange multipliers. Considering that all the
dynamical and constraint equations are expressed in SI units, a residuals’ tolerance equal to 10−5 is demanded to
conclude the iterative solution. Additionally, the iteration matrix 𝐒𝑡 is written as

𝐒𝑡 =
[

(ℳℳℳ𝜈′ + 𝐂𝑡𝜇′ +𝐊𝑡) 𝒞𝒞𝒞 𝑇
,𝐪

𝒞𝒞𝒞 ,𝐪 0

]

, (13)

where are 𝜈′ and 𝜇′ are the step correction parameters associated to acceleration and velocity. In addition, given the
absolute formulation used for the dynamics and the forces considered, the damping tangent matrix 𝐂𝑡 is defined as

𝐂𝑡 = −
𝜕𝒬𝒬𝒬𝑎
𝜕�̇�

= −
𝜕𝒬𝒬𝒬𝑑
𝜕�̇�

, (14)

and the stiffness tangent matrix 𝐊𝑡 as

𝐊𝑡 = −
𝜕(ℳℳℳ�̈� −𝒬𝒬𝒬𝑎 +𝒞𝒞𝒞 𝑇

,𝑞𝜆𝜆𝜆)

𝜕𝐪
= −

𝜕𝒬𝒬𝒬𝑒
𝜕𝐪

−
𝜕𝒬𝒬𝒬𝑐
𝜕𝐪

−
𝜕𝒬𝒬𝒬𝑑
𝜕𝐪

+
𝜕(𝒞𝒞𝒞 𝑇

,𝑞𝜆𝜆𝜆)

𝜕𝐪
. (15)

In order to enable the implementation, the Jacobians of all the terms involved are provided at Sect. 2.2 for flexible
cables, Sect. 2.3 for rigid body and Sect. 2.4 for constraints.

To complete the description of the DAE integration, the definition of the algorithm parameters considered is pro-
vided hereafter. In accordance with [68], the step correction parameter are established as 𝜈′ =

(

1 − 𝛼𝑚
)

∕
(

ℎ2𝜈
(

1 − 𝛼𝑓
))
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and 𝜇′ = 𝜇∕ (ℎ𝜈), being ℎ the time step and set equal to 0.1 seconds. The rest of the numerical parameters are selected
to ensure accuracy and stability properties as: 𝛼𝑚 =

(

2𝜌∞ − 1
)

∕
(

𝜌∞ + 1
)

, 𝛼𝑓 = 𝜌∞∕
(

𝜌∞ + 1
)

, 𝜇 = 1∕2 + 𝛼𝑓 − 𝛼𝑚
and 𝜈 = 1∕4 (𝜇 + 1∕2)2, where 𝜌∞ is the spectral radius controlling the numerical damping and which is defined as
𝜌∞ = 0.25 for all the simulations.

2.1. Reference frames
This section defines the coordinate systems used in the formulation of the dynamical problem.
The four coordinate systems depicted in Fig. 1(b) are the main frames considered for the formulation of the

dynamic problem: the heliocentric ecliptic inertial (𝐻) coordinate system 𝑂𝐻𝑋𝐻𝑌𝐻𝑍𝐻 , the body (𝐵) coordinate
system, 𝑂𝐵𝑋𝐵𝑌𝐵𝑍𝐵 , the orbit (𝑂) frame established by 𝑂𝑂𝑋𝑂𝑌𝑂𝑍𝑂 and the inertial (𝐼) coordinate system defined
by 𝑂𝐼𝑋𝐼𝑌𝐼𝑍𝐼 . The unitary vectors associated to the axes 𝑋𝐾 , 𝑌𝐾 and 𝑍𝐾 are defined as 𝐢𝐾 , 𝐣𝐾 and 𝐤𝐾 , respectively,
for 𝐾 = 𝐻,𝐵,𝑂, 𝐼 . The origin of the H frame, 𝑂𝐻 is located at the center of mass of the Sun, the axis 𝑋𝐻 points
in the Vernal Equinox direction, axis 𝑍𝐻 follows the normal to the ecliptic plane and 𝑌𝐻 completes the right-hand
coordinate system. This frame is considered an inertial frame. The body frame, has its origin 𝑂𝐵 , at the geometric
center of the main spacecraft, which is assumed to be a cylinder, the axes 𝑋𝐵 , 𝑌𝐵 and 𝑍𝐵 follows the orientations
defined for the local coordinate system of the rigid body defined in Sect. 2.3. The origin of the orbit coordinate system,
𝑂𝑂, coincides with 𝑂𝐵 , the axis 𝑍𝑂 follows the radial direction respect to the Sun, while the orientation of 𝑋𝑂 is
given by 𝐢𝑂 = (𝐤𝐻 × 𝐤𝑂)∕ ∥ 𝐤𝐻 × 𝐤𝑂 ∥ and 𝑌𝑂 completes the right-hand frame. Finally the origin 𝑂𝐼 of inertial
coordinate system (𝐼), is coincident to the position of 𝑂𝐵 for the initial time 𝑡0 and is given by the position vector 𝐑0.
Moreover, the 𝐼 frame is parallel to the 𝐻 frame, and is the inertial frame used for the formulation of the problem.
Consequently, the position of any point of the flexible or rigid bodies 𝐫, is referenced to it and is related to the position
respect 𝐻 frame by 𝐑 = 𝐑0 + 𝐫. The introduction and use of the 𝐼 frame is justified due to the significant differences
in the order of magnitude of the dimensions involved in the dynamical problem and the finite precision limitation
associated to numerical methods. For the short term dynamical analyses carried out in the present work, the definition
of the 𝐼 frame allows to reduce the order of magnitude of the positions by the use of 𝑟 instead of 𝑅, which for 1 AU
is of the order of 1012 m at the initial instant, notably large in comparison to the dimensions of the central vehicle
of the order of 1 m. This disparity on the order of magnitude in addition to the finite precision associated to double
precision arithmetic, which provides sixteen significance figures, leads to the abatement of the precision limit during
the integration and can be partially avoided for short term simulations by the introduction of the 𝐼 frame.

Additionally, the E-sail coordinate system 𝐸 is introduced in Fig.1(c). This auxiliary frame defines the orientation
of the plane Π, which is established as the mean plane of the remote units. The frame origin 𝑂𝐸 is located at the
projection of the center of mass of the remote units on the plane Π, the orientation of the 𝑋𝐸 axis is given by the
normal vector �̃�, and 𝑌𝐸 is given by the position of the remote mass of the first tether 𝑢1. 𝑍𝐸 completes the right-hand
frame.

For the sake of understanding, the superscript is used to indicate the frame in which a variable is expressed, e.g. 𝐫𝑂
indicates position given in orbital frame𝑂. When omitted, the variable is given in 𝐼 frame. Additionally, the orientation
of frame 𝐽 respect to frame 𝐾 is defined by the director cosines matrix 𝐶𝐾𝐽 , for 𝐽 ,𝐾 = 𝐻,𝐵,𝑂, 𝐼, 𝐸, for example
𝐫𝐼 = 𝐶𝐼𝑂𝐫

𝑂.

2.2. Formulation of cable element based on ANCF
The definition of the cable element selected for the modelling of the E-sail’s tethers is presented in the current

section. The expressions of generalized forces and Jacobian matrices of the contribution are introduced.
The absolute nodal coordinate formulation considered, is a non-incremental nonlinear finite element procedure

proposed in [41, 42], and extensively used for analysing the dynamics of flexible bodies that experience large rotations
and deformations. It should be remarked, that, with the aim of simplifying the expressions, the sub-indexes indicating
the number of FE and tether have been omitted. Similarly, the super-index 𝑒, used in Sect. 2 to identify the flexible
character of the contributions on the assembly of the system matrices or vectors, is also excluded, e.g. the denomination
of the mass matrix of the 𝑗𝑡ℎ finite element of tether 𝑖, defined as 𝐌𝑒

𝑖𝑗 in Sect. 2, is simply referred to as 𝐌. Moreover,
to facilitate the understanding, part of the expressions are provided in the Appendix A. It should be mentioned that the
evaluations of the final expressions containing integral terms, presented in the current Section and in the Appendix A,
are carried out by means of Gaussian integration.
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Figure 2: Description of the generalized nodal coordinates for cable element and rigid body: (a) Tether modelling based
on a gradient-deficient cable element defined on ANCF, where nodal positions and longitudinal slopes are considered as
nodal coordinates. Reference and deformed configurations are displayed; and (b) Base points and body frame considered
for the rigid body NC formulation used to model the central spacecraft.

At a given instant, the position of any point of the volume of any finite element of a given tether can be interpolated
by

𝐫(𝑥, 𝑡) = 𝐒(𝑥) 𝐞(𝑡) , (16)

being 𝐫(𝑥) the coordinate of the point defined in the inertial global coordinate system 𝐼 , 𝐒(𝑥) is the 3×12matrix of shape
functions defined in Eq. (17) and 𝐞 the vector of nodal coordinates of the flexible cable element, whose dimensions are
12× 1. According to the formulation for gradient deficient cable elements proposed in [46] and illustrated in Fig. 2(a),
one has

𝐒(𝑥) =
[

𝑠1𝐈 𝑠2𝐈 𝑠3𝐈 𝑠4𝐈
]

, (17)

where 𝐈 is the 3x3 identity matrix and 𝑙 is the length of the element, which is used to define the normalized position
𝜉 = 𝑥∕𝑙, that allows to write the shape functions

𝑠1 = 1 − 3𝜉2 + 2𝜉3, 𝑠2 = 𝑙(𝜉 − 2𝜉2 + 𝜉3), 𝑠3 = 3𝜉2 − 2𝜉3, 𝑠4 = 𝑙(−𝜉2 + 𝜉3). (18)

The set of generalized nodal coordinates for each element, includes the position and the longitudinal slope defined in
𝐼 frame, at both the initial and end nodes, being

𝐞(𝑡) =
[

𝐫𝑖(𝑡)𝑇 𝐫𝑖,𝑥(𝑡)𝑇 𝐫𝑗(𝑡)𝑇 𝐫𝑗,𝑥(𝑡)𝑇
]𝑇 , (19)

where 𝐫𝑖(𝑡) represents the position and 𝐫𝑖,𝑥(𝑡) =
𝜕𝐫(𝑡)
𝜕𝑥

|

|

|𝑖
is the longitudinal slope at initial node 𝑖. The same definition

applies to the final node 𝑗. As already mentioned, this formulation of the cable element is gradient deficient, given
that only the slope respect to the local 𝑥 axis is considered. This selection of nodal coordinates and shape functions
removes the shear terms, avoiding the related inefficiencies and locking issues, and allows to account for the nonlinear
bending effects which have been found to be crucial for the analysis of low tension or rotating beams [74]. An additional
consequence is that torsion can’t be modelled with the use of this formulation [46].

2.2.1. Kinetic energy and inertial forces
The velocity of any point of the element, calculated as the time derivative of Eq. (16), can be written as

�̇�(𝑥, 𝑡) = 𝐒 �̇�, (20)
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where for simplicity, the spatial and time dependence is omitted from this point onward. Assuming that the cable is
straight in the reference configuration, the elemental kinetic energy 𝑇 is expressed as

𝑇 = 1
2
�̇�𝑇 𝐌�̇�, (21)

where 𝐌 is the constant generalized element mass matrix, calculated as

𝐌 = ∫𝑉
𝜌𝑡 𝐒𝑇 𝐒 d𝑉 = 𝜌𝑡 𝐴𝑡 ∫

𝑙

0
𝐒𝑇 𝐒 d𝑥, (22)

where the elemental length have been defined as 𝑙 = 𝐿0∕(𝑛− 1), being 𝐿0 the undeformed length of a tether and 𝑛 the
number of nodes per tether.

2.2.2. Strain energy and elastic forces
The elastic forces associated to the selected ANCF cable element are described in the current section. It should be

noted that, in addition to the axial stiffness, the cable element also accounts for the bending stiffness, and it is selected
in the current work in order to improve the level of accuracy of the E-sail model. If only the axial contributions are
considered, the formulation presented in this section leads to the formulation of a truss element, in line with previous
works [28–30, 32], in which truss elements in NPFEM are used.

In opposition to the direct and simple calculation previously presented for the elemental mass matrix, the use of
absolute nodal coordinates leads to a more complex formulation of the strain energy and the elastic forces, as it is
shown in this Section. The calculation of the energy, the generalized forces and the Jacobian matrices is introduced
here, but the final expressions are presented in Appendix A.1, for the sake of brevity. It should be noted that, to ensure
the best computing performance, when possible, the generalized forces and Jacobian matrices are expressed in terms
of invariant matrices to avoid the computation of integrals for each element in every step. In the practice, the use of
invariant terms is feasible only for axial contributions but not for nonlinear bending members.

The elastic energy for a cable element, denoted 𝑈𝑒, can be formulated based on the Euler-Bernoulli beam [46],
comprising the axial 𝑈𝑒𝑥 , and the bending 𝑈𝑒𝑏 contributions

𝑈𝑒 = 𝑈𝑒𝑥 + 𝑈𝑒𝑏 =
1
2 ∫

𝑙

0
𝐸𝑡𝐴𝑡 𝜖

2
𝑥𝑥 d𝑥 +

1
2 ∫

𝑙

0
𝐸𝑡𝐼𝑡𝜅

2 d𝑥, (23)

being dependant of the material modulus of elasticity 𝐸𝑡, the cross-section area 𝐴𝑡 and the cross section moment of
inertia 𝐼𝑡, which are considered constant along the element. Additionally, the longitudinal axial strain 𝜖𝑥𝑥, and the
curvature 𝜅, are defined as

𝜖𝑥𝑥 =
1
2
(𝐫𝑇,𝑥𝐫,𝑥 − 1) , 𝜅 =

∥ 𝐫,𝑥 × 𝐫,𝑥𝑥 ∥
∥ 𝐫,𝑥 ∥3

, (24)

where 𝐫,𝑥 and 𝐫,𝑥𝑥 are the first and second partial derivative of the position respect to 𝑥, respectively. The generalized
elastic forces 𝐐𝑒 are defined by the derivation of the elastic energy function established in Eq. (23), respect to the
elemental generalized coordinates 𝐞, as:

𝐐𝑒 = −
(

𝜕𝐔𝑒
𝜕𝐞

)𝑇
= 𝐐𝑒𝑥 +𝐐𝑒𝑏 , (25)

where the axial and bending contributions are established as 𝐐𝑒𝑥 = −
(

𝜕𝐔𝑒𝑥∕𝜕𝐞
)𝑇

and 𝐐𝑒𝑏 = −
(

𝜕𝐔𝑒𝑏∕𝜕𝐞
)𝑇

. And
finally, the Jacobian of the elastic forces 𝜕𝐐𝑒∕𝜕𝐞 can be written in terms of the axial 𝜕𝐐𝑒𝑥∕𝜕𝐞, and bending contributions
𝜕𝐐𝑒𝑏∕𝜕𝐞 as:

𝜕𝐐𝑒
𝜕𝐞

=
𝜕𝐐𝑒𝑥
𝜕𝐞

+
𝜕𝐐𝑒𝑏
𝜕𝐞

. (26)
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2.2.3. Coulomb forces
The formulation of the Coulomb forces, exerted by the solar wind on the tethered under a difference of electric

power respect to the solar wind, is described in this section.
The estimation of the thrust generated on a charged wire under the influence of the solar wind, has been investigated

considering different approaches and leading to definition of various thrust models for the prediction of the propulsive
force [3–7]. Although the predictions of the induced forces, calculated using the previous mentioned models, lead
to notable quantitative differences, it has been shown that the impact of the thrust model considered on the E-sail
dynamics is negligible [30]. The approximation proposed in [16], valid for a tether exposed to the solar wind at 1U
from the Sun, is considered in the current work. Under these conditions, the magnitude of the thrust force per unit of
length of a single tether can be estimated as:

𝜎 ≈ 0.18max (0, 𝑉0 − 𝑉1)
√

𝜖0𝑃𝑑𝑦𝑛, (27)

where 𝑉0 is the tether voltage (typically between 15-40 kV), 𝑉1 represents the voltage corresponding to the bulk kinetic
energy of a solar wind proton and 𝜖0 stands for the vacuum permittivity, equal to 8.854 × 10−12 Fm−1. Additionally,
𝑃𝑑𝑦𝑛 is the solar wind dynamic pressure defined as

𝑃𝑑𝑦𝑛 = 𝑚𝑖𝑛0𝑢
2, (28)

being 𝑚𝑖 the solar wind proton mass, 𝑛0 the solar wind plasma density and 𝑢 the magnitude of the bulk solar wind
speed. At 1 AU, the average values for solar wind parameters are 𝑉1 = 1 kV, 𝑢 = 400 km∕s, 𝑛0 = 7.3 cm−3 and
𝑚𝑖 = 1.67 × 10−27 kg. Keeping in mind that the effective force per unit of length is exclusively due to the component
of the solar wind perpendicular to the tether, the resultant force vector per unit of length 𝐟𝑐 , expressed in N/m, can be
written as [34]

𝐟𝑐 = 0.18max(0, 𝑉0 − 𝑉1)
√

𝜖0𝑚𝑖𝑛0 𝐮⊥, (29)

where 𝐮⊥ is the aforementioned component of the solar wind perpendicular to the tether, which can be calculated as

𝐮⊥ = 𝐮 − (𝐢𝑇𝑡 𝐮)𝐢𝑡 =
(

𝐈 − 𝐢𝑡𝐢𝑇𝑡
)

𝐮 = �̃�𝐮, (30)

being u the solar wind velocity vector, and 𝐢𝑖 the tether tangent vector, defined as 𝐢𝑡 = 𝐫,𝑥∕ ∥ 𝐫,𝑥 ∥. The matrix �̃� can
be written in terms of the component of the slope 𝐫,𝑥 as

�̃� = 1
𝐫𝑇,𝑥𝐫,𝑥

⎡

⎢

⎢

⎢

⎣

𝐫22,𝑥 + 𝐫23,𝑥 −𝐫1,𝑥𝐫2,𝑥 −𝐫1,𝑥𝐫3,𝑥
−𝐫1,𝑥𝐫2,𝑥 𝐫21,𝑥 + 𝐫23,𝑥 −𝐫2,𝑥𝐫3,𝑥
−𝐫1,𝑥𝐫3,𝑥 −𝐫2,𝑥𝐫3,𝑥 𝐫21,𝑥 + 𝐫22,𝑥

⎤

⎥

⎥

⎥

⎦

. (31)

Under the assumption of radial evolution of the solar wind, the velocity vector 𝐮, expressed in terms of the heliocentric
unitary position vector 𝐢𝑅, becomes 𝐮 = 𝑢 𝐢𝑅. Where for every point, the unitary vector 𝐢𝑅 can be expressed as

𝐢𝑅 = 𝐑
∥ 𝐑 ∥

=
𝐑0 + 𝐒𝐞

∥ 𝐑0 + 𝐒𝐞 ∥
, (32)

being 𝐑 the position of the point of the tether respect to the origin of frame 𝐻 and which is equal to the sum of 𝐑0,
which represents position of the origin of the inertial frame 𝐼 respect to the 𝐻 system, and the absolute coordinates of
the tether point, 𝐫, respect to the 𝐼 frame.

The virtual work of the generalized Coulomb force over an element 𝛿𝑊𝑓𝑐 , can be established as

𝛿𝑊𝑓𝑐 = ∫

𝑙

0
𝛿𝐞𝑇 𝐒𝑇 𝐟𝑐 d𝑥, (33)

and the generalized Coulomb forces on an element 𝐐𝑐 , is obtained from the virtual work as

𝐐𝑐 =
𝛿𝑊𝑓𝑐

𝛿𝐞
= ∫

𝑙

0
𝐒𝑇 𝐟𝑐 d𝑥. (34)
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To conclude the formulation of the Coulomb forces, the Jacobian matrix of the generalized forces can be calculated
by the derivation of 𝐐𝑐 respect to generalized coordinates 𝐞. Considering the dependence of the term 𝜕𝐮⊥∕𝜕𝐞 respect
to 𝐞, the following integral expression is obtained

𝜕𝐐𝑐
𝜕𝐞

= 0.18max(0, 𝑉0 − 𝑉1)
√

𝜖0𝑚𝑖𝑛0 ∫

𝑙

0
𝐒𝑇
𝜕𝐮⊥
𝜕𝐞

d𝑥. (35)

2.2.4. Damping energy and forces
The dissipation effects associated to the structural damping are included in the formulation of the cable elements as

described in the current Section. The consideration of this term is significant with respect to the ANCF cable elements
previously proposed for the E-sail dynamics [34, 62].

Based on the Rayleigh dissipation function presented in [75], the power dissipated by the internal damping on an
Euler-Bernoulli beam, 𝑃𝑑 is established as

𝑃𝑑 = 𝑃𝑑𝑥 + 𝑃𝑑𝑏 =
1
2 ∫

𝑙

0
𝑁𝑥𝑣 �̇�𝑥𝑥 d𝑥 +

1
2 ∫

𝑙

0
𝑀𝑏𝑣 �̇� d𝑥, (36)

where 𝑁𝑥𝑣 = 𝐸𝑡𝐴𝑡 𝛾𝑥�̇�𝑥𝑥 and 𝑀𝑏𝑣 = 𝛾𝑏𝐸𝑡𝐼𝑡�̇� are the viscous components of the internal forces, assuming that the
viscoelastic effects can be included in the definition of internal axial force as 𝑁𝑥 = 𝐸𝑡𝐴𝑡

(

𝜖𝑥𝑥 + 𝛾𝑥�̇�𝑥𝑥
)

and similarly
in the bending moment as 𝑀𝑏 = 𝐸𝑡𝐼𝑡

(

𝜅 + 𝛾𝑏�̇�
)

. Where 𝛾𝑥 and 𝛾𝑏 are the damping coefficients associated to axial and
bending components, respectively. Both coefficients are defined equal to 1.00, corresponding to a damping factor of
2.30% for the configuration considered. Subsequently, the damping forces are calculated by derivation of the dissipation
function respect to the generalized velocities

𝐐𝑑 = −
(

𝜕𝑃𝑑
𝜕�̇�

)𝑇
= −

(𝜕𝑃𝑑𝑥
𝜕�̇�

)𝑇

−
(𝜕𝑃𝑑𝑏

𝜕�̇�

)𝑇

, (37)

and finally, the Jacobian matrix of the generalized damping forces is defined as

𝜕𝐐𝑑
𝜕𝐞

=
𝜕𝐐𝑑𝑥
𝜕𝐞

+
𝜕𝐐𝑑𝑏
𝜕𝐞

. (38)

For the sake of comprehension, the extended formulation of the damping terms is provided in Appendix A.2.

2.3. Formulation of rigid element in NC
The dynamics of the central rigid body is established in the present section. The vector of generalized coordinates

associated to the rigid body is established, the formulation of the internal constraints is exposed, and the definitions of
the inertial generalized forces and Jacobian matrices are provided.

The formulation is carried out considering a set of natural coordinates formed by the positions of four non co-
planary base points 𝐴, 𝐵, 𝐶 and 𝐷 depicted in Fig. 2(b). Consequently, a total of 12 generalized coordinates are
needed. This selection of the natural coordinates enables a constant mass matrix [76] and enforces the formulation of 6
internal constraint equations. For the sake of readiness, the super-index 𝑟, used in the introduction of Sect. 2 to identify
the contributions of the rigid body to the system matrices or vectors, is excluded, e.g. the denomination of the mass
matrix of the rigid body, defined as 𝐌𝑟 in Eq. (11), is simply referred to as 𝐌 in this section.

The position of any point of the solid can be written as

𝐫(𝐱, 𝑡) = 𝐆(𝐱)𝐝(𝐭), (39)

where 𝐝 is the generalized coordinates vector formed by the concatenation of the coordinates of the four base points

𝐝 =
[

𝐫𝑇1 𝐫𝑇2 𝐫𝑇3 𝐫𝑇4
]𝑇 , (40)

and 𝐆 is a constant matrix that can be computed from the local coordinates of the base points, as described in Appendix
B. Given the vector of generalized coordinates of the rigid body, 𝐝, the rotation matrix 𝐂𝐼𝐵 , associated with the
transformation from the local frame, parallel to 𝐵, to the global frame 𝐼 , can be computed as:

𝐶𝐼𝐵 =
[

𝐫𝐴𝐵 𝐫𝐴𝐶 𝐫𝐴𝐷
] [

𝜶 𝜷 𝜸
]

. (41)
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where the auxiliary vectors 𝐫𝐴𝐵 , 𝐫𝐴𝐶 and 𝐫𝐴𝐷 are calculated based on the positions of the basic points 𝐴-𝐷 defined in
Fig. 2(b) as

𝐫𝐴𝐵 = 𝐫2 − 𝐫1, 𝐫𝐴𝐶 = 𝐫3 − 𝐫1, 𝐫𝐴𝐷 = 𝐫4 − 𝐫1, (42)

and the constant vectors 𝜶, 𝜷 and 𝜸 can be computed in base of the local position of the base nodes as described in
Appendix B. Additionally, the position of the origin of frames 𝐵 and 𝑂, which are coincident, can be computed from
the coordinates of points 𝐴 and 𝐵 of the rigid body as

𝐫𝑂𝐵 ≡ 𝐫𝑂𝑂 = 1∕2 (𝐫1 + 𝐫2) = 1∕2 (𝐁𝑟1 + 𝐁𝑟2)𝐪, (43)

where 𝐁𝑟1 and 𝐁𝑟2 are the Boolean matrices that extract the basic points’ coordinates of the rigid body defined as per
Eq. (10). Once the position of the origin 𝐫𝑂𝑂 is known, the orientation of the 𝑍𝑂 axis is calculated as

𝐤𝑂 =
𝐑0 + 𝐫𝑂𝐵

∥ 𝐑0 + 𝐫𝑂𝐵 ∥
. (44)

2.3.1. Rigid body constraints
This section contains the definition of the six internal constraint necessary for the rigid body formulation.
The NC formulation considered for the rigid body contains twelve generalized coordinates, hence six constraint

are needed. Two types of constrains are introduced: three equations to impose that the distances between pairs of base
points remain constant, and three additional equations to enforce that the angles formed between the auxiliary vectors
𝐫𝐴𝐾 are invariable, for 𝐾 = 𝐵,𝐶,𝐷. The set of internal constraints 𝐂𝑟, can be written as

𝐂𝑟 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝐫𝑇𝐴𝐵𝐫𝐴𝐵 − 𝐿2
𝐴𝐵

𝐫𝑇𝐴𝐶𝐫𝐴𝐶 − 𝐿2
𝐴𝐶

𝐫𝑇𝐴𝐷𝐫𝐴𝐷 − 𝐿2
𝐴𝐷

𝐫𝑇𝐴𝐶𝐫𝐴𝐵 − cos(𝐵𝐴𝐶)𝐿𝐴𝐵𝐿𝐴𝐶
𝐫𝑇𝐴𝐷𝐫𝐴𝐵 − cos(𝐵𝐴𝐷)𝐿𝐴𝐵𝐿𝐴𝐷
𝐫𝑇𝐴𝐷𝐫𝐴𝐶 − cos(𝐷𝐴𝐶)𝐿𝐴𝐷𝐿𝐴𝐶

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0
0
0
0
0
0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, (45)

being 𝐿𝐴𝐵 the distance between the points 𝐴 and 𝐵, and 𝐵𝐴𝐶 the angle formed by the vectors 𝐫𝐴𝐵 and 𝐫𝐴𝐶 , which
are defined going from point 𝐴 to point 𝐵, and from point 𝐴 to 𝐶 respectively. The rest of the parameters involved are
comparatively defined, being all of them constant and equal to their initial values.

Based on the strict dependence of 𝐂𝑟 on rigid body natural coordinates 𝐝, the Jacobian matrix of the rigid constraint
vector 𝐂𝑟 can be expressed as

𝐂𝑟,𝑑 =
𝜕𝐂𝑟
𝜕𝐝

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

−2𝐫𝑇𝐴𝐵 2𝐫𝑇𝐴𝐵 𝟎1𝑥3 𝟎1𝑥3
− 2𝐫𝑇𝐴𝐶 𝟎1𝑥3 2𝐫𝑇𝐴𝐶 𝟎1𝑥3
− 2𝐫𝑇𝐴𝐷 𝟎1𝑥3 𝟎1𝑥3 2𝐫𝑇𝐴𝐷

−𝐫𝐴𝐵 − 𝐫𝐴𝐶 𝐫𝐴𝐶 𝐫𝐴𝐵 𝟎1𝑥3
−𝐫𝐴𝐵 − 𝐫𝐴𝐷 𝐫𝐴𝐷 𝟎1𝑥3 𝐫𝐴𝐵
−𝐫𝐴𝐶 − 𝐫𝐴𝐷 𝟎1𝑥3 𝐫𝐴𝐷 𝐫𝐴𝐶

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, (46)

which can be straightaway expressed in terms of system generalized coordinates 𝐪, as 𝐂𝑟,𝑞 = 𝐂𝑟,𝑑𝐁𝑟. Furthermore, the
contribution of the internal constraints to the term 𝜕

(

𝒞𝒞𝒞 𝑇
,𝑞𝜆𝜆𝜆

)

∕𝜕𝐪 of the tangent matrix 𝐒𝑡, established by Eq. (13), is
presented next. Keeping into consideration, the definition of the auxiliary vector 𝐃 = 𝐂𝑇𝑟,𝑞𝜆𝜆𝜆𝑟, where 𝜆𝜆𝜆𝑟 is the Lagrange
multipliers vector associated to rigid body constraints, its components can be expressed as

𝐃𝑖 =
6
∑

𝑗=1
𝐂𝑟,𝑑𝑗𝑖𝜆𝜆𝜆𝑟𝑗 , (47)
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and subsequently, the component in row 𝑖 and column 𝑘 of the matrix 𝜕
(

𝐂𝑇𝑟,𝑑𝜆𝜆𝜆𝑟
)

∕𝜕𝐝 can be established as:

𝜕
(

𝐂𝑇𝑟,𝑑𝜆𝜆𝜆𝑟
)

𝑖
𝜕𝐝𝑘

=
𝜕
∑6
𝑗=1 𝐂𝑟,𝑑𝑗𝑖𝜆𝜆𝜆𝑟𝑗
𝜕𝐝𝑘

=
6
∑

𝑗=1

𝜕𝐂𝑟,𝑑𝑗𝑖
𝜕𝐝𝑘

𝜆𝜆𝜆𝑟𝑗 .
(48)

Finally and as in the previous case, the Jacobian in terms of 𝐪 can be easily calculated by

𝜕(𝐂𝑇𝑟,𝑞𝜆𝜆𝜆𝑟)
𝜕𝐪

=
𝜕(𝐂𝑇𝑟,𝑑𝜆𝜆𝜆𝑟)

𝜕𝐝
𝐁𝑟. (49)

2.3.2. Kinetic energy and inertial forces
The inertial terms of the rigid body are described in the current section.
The velocity of any point of the solid can be calculated by differentiation of the position respect to the inertial

frame 𝐼 , given by Eq. (39), respect to the time as

�̇� = 𝐆�̇�, (50)

that allows to define the kinetic energy of the solid by the integral

𝑇 = 1
2 ∫𝑉

𝜌𝑟 �̇�2 d𝑉 = 1
2
�̇�𝑇𝐌�̇�, (51)

where 𝐌 is the rigid body generalized constant mass matrix defined as

𝑀 = 𝜌𝑟 ∫𝑉
𝐆𝑇 𝐆 d𝑉 . (52)

2.4. Formulation of spherical joints
The coupling condition between the rigid body and the flexible cables representing the tethers is described in this

section.
The joint between the tethers and the central vehicle is applied by imposing that the positions of the points at the

anchor points, in both the rigid and the flexible parts, remain coincident. The joint is referred to as spherical joint given
that the coupling is limited to the displacements. This condition can be formulated considering the definition of the
position of an arbitrary point established for the cable elements in Eq. (16) and for the rigid body as per Eq. (39). The
vector of constraints equations 𝐂𝑎 =

[

�̂�𝑎(1)𝑇 �̂�𝑎(2)𝑇 ...�̂�𝑎(𝑝)𝑇
]𝑇 , of dimensions 3𝑝 × 1, is the vertical concatenation

of the unitary spherical joint equations �̂�𝑎(𝑖), for the constrains equation matrices associated to the anchor points
𝑖 = 1, 2, ...𝑝. For an arbitrary tether 𝑖, the joint equations can be written as

�̂�𝑎(𝑖) = 𝐆(𝐱𝑖)𝐝 − 𝐒(0) 𝐞𝑖1 = 𝐆(𝐱𝑖)𝐁𝑟𝐪 − 𝐒(0)𝐁𝑒𝑖1𝐪 = 0 (53)

where 𝐞𝑖1 are the generalized coordinates of the first element of the tether 𝑖, 𝐒 is the shape function matrix, evaluated
at 𝑥 = 0, that corresponds to the local coordinate of the anchor point expressed in the cable frame. Furthermore, 𝐝
is the generalized coordinate vector of the rigid body and the matrix 𝐆, defined in Eq. (131), is evaluated in 𝐱𝑖, that
corresponds to the local coordinate vector of the anchor point 𝑖, expressed in the local frame of the rigid body, and,
according to Fig. 2(b), is equal to:

𝐱𝑖 =
[

ℎ𝑟∕2 |𝑅𝑟 cos(2𝜋 𝑖∕𝑝) |𝑅𝑟 sin(2𝜋 𝑖∕𝑝)
]𝑇 , (54)

where 𝑅𝑟 and ℎ𝑟 are the central body external radius and height. The Jacobian of the constraint equations with respect
to the vector of generalized coordinates 𝐪, can be written as

𝜕�̂�𝑎(𝑖)
𝜕𝐪

= 𝐆(𝐱𝑖)𝐁𝑟 − 𝐒(0)𝐁𝑒𝑖1, (55)

which is independent of the generalized coordinates of the system 𝐪.
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3. Definition of auxiliary variables
In order to facilitate the understanding of the E-sail motion and attitude evolution, which may not be direct for the

generalized coordinates used in the formulation presented in Sect. 2, a set of auxiliary dynamic and attitude variables
are defined in this Section and used subsequently in Sect. 4 to present the analyses results.

(a) (b)

XB

YB
OB

YZi

XZi

ZZiρi
τi

ZB

γ’i
γitetheri

YB

ZB

ζi

YZi tetheri

τi

ρi

β’i 

βi

ZZi

Figure 3: Description of the angular magnitudes establishing the relative position of the remote unit and the tether slope
at the root, expressed in the local coordinate system 𝑍𝑖: (a) Definition of the coning angle 𝛾𝑖, establishing the vertical
position of the remote unit, and the root coning angle 𝛾 ′𝑖 , describing the vertical component of the longitudinal slope of
the tether at the root; and (b) Definition of the lagging angle 𝛽𝑖, establishing the azimuthal position of the remote unit,
and the root lagging angle 𝛽′𝑖 , describing the horizontal component of the longitudinal slope of the tether at the root.

3.1. Coning and lagging angles
The relative motion of the remote unit with respect to the anchor point, is established by the coning angle, 𝛾𝑖, and

lagging angle, 𝛽𝑖, defined in Figs. 3(a) and (b), respectively.
The relative position of the remote unit 𝑖 respect to the corresponding anchor point, expressed in the 𝐼 frame, 𝝆𝐼𝑖 ,

is given by

𝝆𝐼𝑖 = �̂�𝑝
(

�̂�𝑒𝑖𝑛 − �̂�𝑒𝑖1
)

𝐪, (56)

where the Boolean matrices �̂�𝑒𝑖1 and �̂�𝑒𝑖𝑛 for initial and final node of tether 𝑖 are defined in Sect. 2 and the definition
of �̂�𝑝 =

[

𝐈3×3 𝟎3×3
]

allows the extraction of the position coordinates from the nodal generalized coordinates vector.
Bearing in mind Fig. 3, a local frame 𝑍 is defined for tether 𝑖. Its origin 𝑂𝑍 , is located at the corresponding anchor
point, and its axes are the result of transforming the body frame 𝐵 by the matrix

𝐂𝑍𝐵 (𝜁𝑖) =
⎡

⎢

⎢

⎣

1 0 0
0 cos 𝜁𝑖 sin 𝜁𝑖
0 −sin 𝜁𝑖 cos 𝜁𝑖]

⎤

⎥

⎥

⎦

, (57)

which corresponds to a rotation of angle 𝜁𝑖 along the 𝑋𝐵 axis. For the tether 𝑖, the angular position respect to the 𝑌𝐵
axis is given by 𝜁𝑖 = 2𝜋(𝑖 − 1)∕𝑝, and the vector 𝝆𝐼𝑖 can be transformed to the local 𝑍 frame by the expression

𝝆𝑍𝑖 = 𝐂𝑍𝐵
(

𝐂𝐼𝐵
)𝑇 𝝆𝐼𝑖 , (58)

where 𝐂𝐼𝐵 establishes the orientation of the body frame respect to the inertia frame and is calculated as per Eq. (41).
Based on the previous definition, the angles 𝛾𝑖 and 𝛽𝑖 are defined in terms of the component of the relative position
vector 𝝆𝑍𝑖 , as

𝛾𝑖 = tan−1
⎛

⎜

⎜

⎜

⎝

𝝆𝑍𝑖1
(

𝝆𝑍𝑖2
2 + 𝝆𝑍𝑖3

2
)1∕2

⎞

⎟

⎟

⎟

⎠

, 𝛽𝑖 = tan−1
(

𝝆𝑍𝑖3
𝝆𝑍𝑖2

)

(59)
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where it has been considered that 𝝆𝑍𝑖 =
[

𝜌𝑍𝑖1 𝜌
𝑍
𝑖2
𝜌𝑍𝑖3

]𝑇
.

It can be verified that the same procedure is valid to obtain the expression of the angular variables 𝛾 ′ and 𝛽′ defining
the orientation of the longitudinal slope of the cable at the root and referred to as root coning and root lagging angles,
respectively. Both magnitudes are depicted in Figs. 3(a) and (b). Instead of 𝝆𝐼𝑖 , the generalized coordinates defining
the cable tangent at the anchor point 𝝉 𝑖𝐼 , should be used

𝝉 𝑖𝐼 = �̂�𝑠�̂�𝑒𝑖1 𝐪, (60)

where the slope coordinates can be extracted by the use of the matrix �̂�𝑠, defined as �̂�𝑠 =
[

𝟎3×3 𝐈3×3
]

. The previous
definitions allow to write the following expression for 𝛾 ′𝑖 and 𝛽′𝑖 :

𝛾 ′𝑖 = tan−1
⎛

⎜

⎜

⎜

⎝

𝜏𝑍𝑖1
(

𝜏𝑍𝑖2
2 + 𝜏𝑍𝑖3

2
)1∕2

⎞

⎟

⎟

⎟

⎠

, 𝛽′𝑖 = tan−1
(

𝜏𝑍𝑖3
𝜏𝑍𝑖2

)

, (61)

where the definition 𝝉𝑍𝑖 =
[

𝜏𝑍𝑖1 𝜏
𝑍
𝑖2
𝜏𝑍𝑖3

]𝑇
has been considered.

3.2. Main spacecraft angular rates
The angular motion of the central vehicle is defined in this section by the establishment of the angular velocity

vector 𝝎𝑩 = [𝜔1 𝜔2 𝜔3]𝑇 , representing the absolute angular velocity of the 𝐵 frame with respect to the 𝐼 coordinate
system, and expressed in the 𝐵 frame.

Consider the position of a point in the rigid body, given by Eq. (128), and whose time derivative can be written as

�̇� = �̇�1 + 𝐂𝐼𝐵 �̃�𝐵 𝐱, (62)

where �̃�𝐵 is the skew matrix defined for 𝝎𝐵 and 𝐱 are the local coordinates of a point on the rigid expressed in the
body frame. Given the location selected for the base points used to formulate the rigid body, and presented in Sect.
2.3, their local coordinates are 𝐱𝐵 =

[

ℎ𝑟 0 0
]𝑇 , 𝐱𝐶 =

[

0 𝑅𝑟 0
]𝑇 and 𝐱𝐷 =

[

0 0 𝑅𝑟
]𝑇 , and since Eq. (62) should be

satisfied for the three of them, the following expression are fulfilled

�̇�𝐴𝐵 = �̇�2 − �̇�1 = 𝐂𝐼𝐵 �̃�𝐵𝐱𝐵 ,

�̇�𝐴𝐶 = �̇�3 − �̇�1 = 𝐂𝐼𝐵 �̃�𝐵𝐱𝐶 ,

�̇�𝐴𝐷 = �̇�4 − �̇�1 = 𝐂𝐼𝐵 �̃�𝐵𝐱𝐷.

(63)

Knowning the generalized coordinates of the solid rigid and their velocities, �̃�𝐵 can be calculated by just concatenating
the left and right term of the vector equations in Eq. (63) as

�̃�𝐵 = 𝐂𝐵𝐼
[

�̇�𝐴𝐵 �̇�𝐴𝐶 �̇�𝐴𝐷
] [

𝐱𝐵 𝐱𝐶 𝐱𝐷
]−1 , (64)

from which, the absolute angular rate components can be obtained.

3.3. Main spacecraft orientation
The orientation of the main spacecraft body frame 𝐵 respect to the orbital frame 𝑂, is established by the Euler

angles 𝜓 , 𝜃 and 𝜙, which are defined according to the classical sequence

𝑂
𝜓

←←←←←←←←←←←←←←→
𝑍𝑂

𝑆
𝜃

←←←←←←←←←←←←←→
𝑌 𝑆

𝑆′ 𝜙
←←←←←←←←←←←←←←←←←→
𝑍𝑆′

𝐵. (65)

Their values are obtained from the Director Cosines Matrix (DCM) 𝐂𝐵𝑂, which can be expressed as 𝐂𝐵𝑂 = 𝐂𝐵𝐼 𝐂
𝐼
𝑂,

where the matrix 𝐂𝐵𝐼 can be computed from the nodal position of rigid body nodes as indicated in Eq. (41), and 𝐂𝐼𝑂 is
defined as

𝐂𝐼𝑂 =
[

𝐗𝑂 𝐘𝑂 𝐙𝑂
]

, (66)

being 𝐗𝑂, 𝐘𝑂, 𝐙𝑂 the axes of the orbital𝑂 frame described in Sect. 2.1. Consequently, known 𝐂𝐵𝑂, the angles 𝜓 , 𝜃 and
𝜙 can be computed following the classical definition and considering the angle 𝜃 restricted to the range [−𝜋∕2, 𝜋∕2]
[77].
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3.4. E-sail orientation
The current paragraph presents the evaluation of the attitude of the E-sail, expressed in terms of the Euler angles

𝛹 , 𝛩 and 𝛷, which generally differs from the attitude of the main spacecraft described in previous Sect. 3.3.
The orientation of the E-sail respect to the orbital frame𝑂, is determined considering the orientation of the auxiliary

E-sail frame 𝐸, depicted in Fig. 1(c) and defined taking into account the normal vector of plane Π and the location of
an arbitrary remote unit. In the formulation exposed, the remote unit associated to tether 1 is considered. The plane Π is
defined as the mean plane formed by the position of the remote units, and its normal orientation vector �̃�, is computed
as the least square solution of the subsequent linear system of dimensions 𝑝 × 3

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

𝐫𝑇𝑢1 − 𝐫𝑇𝑢
𝐫𝑇𝑢2 − 𝐫𝑇𝑢

...
𝐫𝑇𝑢𝑖 − 𝐫𝑇𝑢
...

𝐫𝑇𝑢𝑝 − 𝐫𝑇𝑢

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

�̃� =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0
0
...
0
...
0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

, (67)

where 𝐫𝑢 represents the position of the center of gravity of the particle system formed by the remote units, and which
can be calculated as

𝐫𝑢 =
1
𝑝

𝑝
∑

𝑖=1
𝐫𝑢𝑖 , (68)

and 𝐫𝑢𝑖 is the position vector of the remote unit associated to the tether 𝑖which, taking into account the Boolean matrices
defined in Sect. 2, can be extracted from 𝐪 as

𝐫𝑢𝑖 = �̂�𝑝 �̂�𝑒𝑖𝑛𝐪. (69)

Additionally, the origin of the 𝐸 frame is located at 𝐫𝑢, and together with the normal vector �̃� and the relative location
of the remote unit 1, the orientations of the frame axes are computed as it follows

𝐢𝐸 = �̃�
∥ �̃� ∥

, 𝐤𝐸 =
𝐢𝐸 ×

(

𝐫𝑇𝑢1 − 𝐫𝑢
)

‖

‖

‖

‖

𝐢𝐸 ×
(

𝐫𝑇𝑢1 − 𝐫𝑢
)

‖

‖

‖

‖

, 𝐣𝐸 = 𝐤𝐸 × 𝐢𝐸 . (70)

In line with Sect. 3.3, the rotation sequence for the E-sail is established as

𝑂
𝛹

←←←←←←←←←←←←←←→
𝑍𝑂

𝑃
𝛩
←←←←←←←←←←←←←→
𝑌 𝑃

𝑃 ′ 𝛷
←←←←←←←←←←←←←←←←←→
𝑍𝑃 ′

𝐸, (71)

being 𝑃 and 𝑃 ′ the intermediate frames. Similarly, the expression 𝐂𝐸𝑂 = 𝐂𝐸𝐼 𝐂𝐼𝑂 allows to compute 𝐂𝐸𝑂 , given that 𝐂𝐸𝐼
is the DCM defining the orientation of frame 𝐸 respect to the inertial frame 𝐼 , which can be written in term of the axis
orientations as 𝐂𝐸𝐼 = [𝐢𝐸 𝐣𝐸 𝐤𝐸], and the matrix 𝐂𝐼𝑂 is computed as per Eq. (66). Once 𝐂𝐸𝑂 is known, the angles 𝛹 , 𝛩
and 𝛷 can be calculated following the procedure indicated in [77].

Moreover, the definition of the sailing and precession angles, depicted in Fig. 1(b), is of interest to expressly
define the orientation of 𝑋𝐸 . On one hand, the sailing angle 𝛼 is established by the orientation of the 𝑋𝐵 axis respect
to the solar wind direction, which is assumed to be radial and then parallel to 𝑍𝑂 axis, and can be computed as
𝛼 = cos−1

(

𝐢𝑇𝐵𝐤𝑂
)

. On the other hand, the precession angle 𝛿, is measured from 𝑋𝑂 to the projection of 𝑋𝐸 on the
plane 𝑋𝑂𝑌𝑂, and can be calculated as 𝛿 = cos−1

(

𝑖𝑂𝐸1

)

, where the expression of the unitary orientation vector 𝐢𝐸 , on
the 𝑂 frame is obtained as 𝐢𝑂𝐸 = 𝐂𝑂𝐼 𝐢𝐸 .

3.5. Total forces and moments
To conclude the definition of the auxiliary variables, the calculation of several auxiliary forces and moments

magnitudes are presented at this point. It should be noted that some magnitudes provide information related to a single
tether and others contain global results referred to the E-sail system.
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In relation to the propulsive force extracted from the solar wind by the E-sail system, 𝐅𝑐 , it can be calculated as the
sum of the contributions of each tether as

𝐅𝑐 =
𝑝
∑

𝑖=1
𝐅𝑐𝑖, (72)

where 𝑝 is the total number of tethers, and 𝐅𝑐𝑖 is the resultant of the Coulomb forces over the tether 𝑖. Analogously,
𝐅𝑐𝑖 can be computed as the sum of the contribution at each node given by

𝐅𝑐𝑖 =
[

�̂�𝑝 | 𝟎3×6
]

𝐐𝑒
𝑐𝑖1

+
𝑛−1
∑

𝑗=1

[

𝟎3×6 | �̂�𝑝
]

𝐐𝑒
𝑐𝑖𝑗
, (73)

where 𝐐𝑒
𝑐𝑖𝑗

is the generalized Coulomb force at element 𝑗 of tether 𝑖, computed as per Eq. (34), and 𝑛 represents the
total number of nodes of a tether. This thrust resultant, expressed in the solution system frame 𝐼 , can be transformed
to the orbital frame as

𝐅𝑂𝑐 = 𝐂𝑂𝐼 𝐅𝑐 , (74)

allowing the definition of the axial trust component 𝐹𝑐𝑎𝑥 = 𝐹𝑂𝑐3 , parallel to the Sun rays and the specification of the

transversal component 𝐹𝑐𝑡𝑟 =
√

(

𝐹𝑂𝑐1

)2
+
(

𝐹𝑂𝑐2

)2
. Both contributions can be combined to define the thrust angle

𝛤𝑐 = tan−1
(

𝐹𝑐𝑎𝑥∕𝐹𝑐𝑡𝑟
)

, that represents the angle formed by 𝐅𝑐 and the axis 𝑍𝑂 and is described in Fig. 1(b).
Additionally, the moment 𝐌𝑐𝑖, generated by the distribution of the Coulomb forces along the tether 𝑖, and

considered respect to the anchor point, is written as

𝐌𝑐𝑖 =
𝑛−1
∑

𝑗=1
�̂�𝑝

(

�̂�𝑒𝑖(𝑗+1) − �̂�𝑒𝑖1
)

𝐪 ×
[

𝟎3×6 | �̂�𝑝
]

𝐐𝑒
𝑐𝑖𝑗
, (75)

where the first factor of the cross product represents the position vector of the node 𝑗 + 1 respect to the anchor node,
and the second is the Coulomb force at the second node of the 𝑗𝑡ℎ element of tether 𝑖. Moreover, and based on the
previous expression, the resultant of the Coulomb moment 𝐌𝑐 , can be calculated as

𝐌𝑐 =
𝑝
∑

𝑖=1
𝐌𝑐𝑖, (76)

where it should be noted that this torque is not applied to the central vehicle, given that the tethers are pinned at the
root, but it contributes to the evolution of the mean plane Π, defined in Fig. 1(c).

Similarly, the constraints at the tethers’ root, associated to the Lagrange multipliers vectors, are also characterized
by the introduction of the following variables. The total force applied to the central vehicle can be computed from the
sum of the contributions of the Lagrange multipliers at every anchor point 𝜆𝜆𝜆𝑖 as

𝐅𝜆 =
𝑝
∑

𝑖=1
𝜆𝜆𝜆𝑖, (77)

where the Lagrange multipliers vectors 𝜆𝜆𝜆𝑖, are directly obtained from the solution of the DAE system at each time step.
Similarly to the thrust force, the applied force can be transformed into the orbital frame by 𝐅𝑂𝜆 = 𝐂𝑂𝐼 𝐅𝜆 and the orien-

tation angle of the multipliers resultant 𝛤𝜆 respect to 𝐙𝑂, can be defined as 𝛤𝜆 = tan−1
(

𝐹𝑂𝜆3∕
√

(

𝐹𝑂𝜆1

)2
+
(

𝐹𝑂𝜆2

)2
)

.

To conclude, the resulting torque acting on the main spacecraft 𝐌𝜆, and computed from the constraints reactions,
can be established as

𝐌𝜆 =
𝑝
∑

𝑖=1

(

�̂�𝑝 �̂�𝑒𝑖1 −
1
2
(

𝐁𝑟1 + 𝐁𝑟2
)

)

𝐪 × 𝜆𝜆𝜆𝑖, (78)

where the cross product definition considers that the moment is computed at the origin of the body frame 𝑂𝐵 .
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4. Analysis cases and results
This section describes the analyses performed and presents the corresponding results. Firstly, the baseline

configuration considered in the current work is described. Secondly, the convergence analysis results are presented
comparing the use of truss and cable elements. Thirdly the influence of the sailing angle is investigated by considering
two operating configurations: one, the Sun facing case, in which 𝛼 = 0 deg, and two, a non-null sailing angle scenario
given by 𝛼 = 10 deg. For both cases, the results for a single tether and for the E-sail are provided separately.

It should be noted that all the aforementioned analyses disregard the gravitational forces, and consequently the
coupling of orbital and attitude effects are neglected in coherence with the low impact for short term dynamics identified
in previous contributions [28].

The simulations are implemented in Matlab R2021b and executed on a Microsoft Windows 10 Pro OS, running on
a 11th Gen Intel Core i7-11700 @ 2.5 GHz processor.

4.1. Definition of baseline configuration
The E-sail baseline configuration considered for the numerical simulations, as well as the initial values for position,

attitude and angular velocity, are established in this section.
The main dimensions and properties of the central spacecraft, tethers and remote units, are given in Table 1 and

correspond to the ones considered in [32]. However, it should be noted that the architecture assessed in the present work
does not consider secondary tethers in opposition to [32]. The position of the origin of inertial frame𝑂𝐼 , respect to𝑂𝐻
frame is set to 𝐑𝑂 =

[
√

2∕2,
√

2∕2, 0.0
]𝑇

AU. Additionally, the location of 𝑂𝑂 (corresponding to 𝑂𝐵) coincides with
𝑂𝐼 at the initial instant of the simulations. Regarding the initial orientation of the body frame respect to the orbital
frame, it is given by the Euler angles: 𝜓0 = 0 deg, 𝜃0 = 𝛼 − 90 deg, and 𝜙0 = 0 deg. Analogously, the starting
E-sail attitude defined by 𝛹0, 𝛩0, and 𝛷0 angles, is assumed to be equal to the 𝐵 frame orientation. The angular rate
vector is initiated as 𝝎𝐵(0) =

[

4.0 ⋅ 10−3, 0.0, 0.0
]𝑇 rad/s, its initial module, referred to as nominal spin, is computed

as 𝜔0 =∥ 𝝎(0) ∥ and leads to the definition of the nominal spin period 𝑇𝑠 = 2𝜋∕𝜔0. With reference to the initial nodal
positions, on one hand, the nodes of the rigid body are defined accordingly to the dimensions specified in Table 1
and the initial Euler angles previously mentioned, being 𝐝(0)𝐵 =

[

−ℎ𝑟∕2, 0, 0, ℎ𝑟∕2, 0, 0, 0, 𝑅𝑟, 0, 0, 0, 𝑅𝑟
]𝑇 and

𝐝(0) = 𝐂𝐼𝐵𝐝(0)
𝐵 . On the other hand, all the tether nodes are contained in the𝐘𝐵𝐙𝐵 plane, following their corresponding

radial directions. The cable elongation is considered conforming to the analytical steady solution for a rotating cable
with a tip mass. Therefore, the centrifugal acceleration caused by 𝝎𝐵(0) leads to the initial generalized coordinates for
node 𝑗 of tether 𝑖 given by the expression

�̂�𝐵𝑖𝑗(0) =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0
(

1 +
𝜌𝑡𝜔2

0
6𝐸𝑡

(

3𝐿2
0 − �̂�𝑖𝑗(0)

2) +
𝑚𝑡𝜔2

0𝐿0

𝐸𝑡𝐴𝑡

)

�̂�𝑖𝑗(0) cos(𝜁𝑖)
(

1 +
𝜌𝑡𝜔2

0
6𝐸𝑡

(

3𝐿2
0 − �̂�𝑖𝑗(0)

2) +
𝑚𝑡𝜔2

0𝐿0

𝐸𝑡𝐴𝑡

)

�̂�𝑖𝑗(0) sin(𝜁𝑖)

0
(

1 +
𝜌𝑡𝜔2

0
2𝐸𝑡

(

𝐿2
0 − �̂�𝑖𝑗(0)

2) +
𝑚𝑡𝜔2

0𝐿0

𝐸𝑡𝐴𝑡

)

cos(𝜁𝑖)
(

1 +
𝜌𝑡𝜔2

0
2𝐸𝑡

(

𝐿2
0 − �̂�𝑖𝑗(0)

2) +
𝑚𝑡𝜔2

0𝐿0

𝐸𝑡𝐴𝑡

)

sin(𝜁𝑖)

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, (79)

where �̂�𝑖𝑗(0) corresponds to the distance of the node to the spin axis (𝐗𝐵), calculated as

�̂�𝑖𝑗(0) =∥ �̂�𝑖𝑗(0) ∥= 𝑅 +
𝐿0(𝑗 − 1)
𝑛 − 1

, (80)

and which can be transformed to the 𝐼 frame by �̂�𝑖𝑗(0) = 𝐂𝐼𝐵(0) �̂�
𝐵
𝑖𝑗(0). In regard to the initiation of the velocity of the

generalized coordinates, the nodal components can be calculated by the cross product of the initial angular rate and
the nodal generalized coordinates. The velocities of the rigid body nodes can be written as

�̇�(0) = 𝐂𝐼𝐵(0)𝝎
𝐵(0)𝐝(0), (81)
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Table 1
Description of the main parameters considered for the definition of the E-sail baseline configuration.

Body Dimension Value

Main spacecraft
height, ℎ𝑟 [m] 2

outer radius, 𝑅𝑟 [m] 1
density, 𝜌𝑟 [kg/m3] 884

Tethers

number of tethers, 𝑛𝑡[-] 12
nominal length, 𝐿0 [km] 10
section area, 𝐴𝑡 [mm2] 4.28 ⋅ 10−3

section inertia, 𝐼𝑡 [mm4] 1.47 ⋅ 10−6
density, 𝜌𝑡 [kg/m3] 7653

Young modulus, 𝐸𝑡 [GPa] 70
Voltage, 𝑉0 [kV] 20

Remote unit mass, 𝑚𝑢 [kg] 1.5

and in the case of cable elements, the composition of the angular speed with both the positions and gradients generalized
coordinates should be vertically concatenated leading to

̇̂𝐞𝑖𝑗(0) =
[

𝐂𝐼𝐵(0)𝝎
𝐵(0) × �̂�𝑝 �̂�𝑖𝑗(0)

𝐂𝐼𝐵(0)𝝎
𝐵(0) × �̂�𝑠 �̂�𝑖𝑗(0)

]

. (82)

4.2. Convergence analysis and cable/truss comparison
The impact of the number and type of finite elements considered for the modelling of the tethers is analyzed in

this section. Moreover, to validate the effect of considering the bending stiffness with respect to tether’s modelling
approach considering only axial stiffness [28–30, 32], simulation results are provided for both cable FE and truss FE
idealizations. For the former type, non linear axial and bending stiffness and internal damping are considered as per the
ANCF introduced in Sect. 2.2. For the latter case, the same formulation is implemented but only the axial contribution
is considered.

The E-sail configuration and initial states are established following the baseline configuration described in Sect.
4.1, and the value of sailing angle at the initial time 𝑡 = 0, is set to 𝛼0 = 10 deg. The resulting DAE systems, considering
different number of FEs per tether, are integrated up to 𝑡𝑓 = 3𝑇𝑠, and the evolution of the most relevant magnitudes
are depicted in Fig. 4. For a straightforward comparison, normalized variables, defined as 𝑦𝑛 = 𝑦𝑛∕𝑦1, are established,
being 𝑦𝑛 the value of magnitude for a given FE type (cable or truss) considering 𝑛 finite elements per tether, and 𝑦1 is
the case in which one cable finite element per tether is used.

In accordance to Figs. 4(a) and (b), representing the error for thrust magnitude ∥ �̃�𝑐 ∥, thrust angle (𝛤𝑐),
respectively, the tether discretization is demonstrated to have a very low impact on the predicted values of the thrust, and
the use of just one element per tether is sufficient to estimate the thrust with an error below 1%. This fact can be justified
given the reduced values of the tethers oscillation amplitudes, which do not modify notably the orientation of the tether
with respect to the solar rays, which drives the generation of the Coulomb forces. In relation to the maximum strain
along the tether, 𝜖𝑚𝑎𝑥, presented in Fig. 4(c), a moderate but non-negligible impact of the idealization is observed. This
point is linked to the closer dependence of strains to the tether dynamics. In agreement with the previous discussion,
the convergence of cable elements is judged to be achieved for five FEs, whereas for truss elements nine elements per
tether seem to be necessary.

According to Fig. 4(d), a notably higher computing time is required to consider cable elements instead of truss
elements. Nevertheless, the values of normalized computing times associated to the use of idealizations ensuring
the convergence are: 5.64 for five cable elements per tether and 2.15 for nine truss elements per tether, and remain
comparable. Furthermore, even if the current work is not oriented on the performance for real-time implementation, it
can also be appreciated that, only in the case of considering one finite element per tether the computation time of the
current Matlab implementation is close to the real-time computing threshold (RTCT).

Moreover, the comparison of the time histories for angular velocities shown in Figs. 5(a1) to (b3) for cable elements
and Figs. 5(c1) to (d3) for truss components, allows to conclude that a higher convergence ratio is observed in the case
of considering bending stiffness and its associated vibration modes. In the case of 𝜔𝐵1 , depicted in detail in Fig. 5(b1),
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it is observed that for five elements, the inclusion of additional elements does not affect at all the evolution of the
magnitude. It should be noted, that the frequency of the oscillations is captured with just three elements per tether. In
the case of 𝜔𝐵2 and 𝜔𝐵3 , which are several order of magnitudes lower than 𝜔𝐵1 , 5(b2) and (b3) allow to appreciate that
the convergence is achieved for three FEs, and the inclusion of additional elements and modes affects the evolution
very locally. A different conclusion is reached from the observation of results for truss elements, illustrated in Figs.
5(c1) to (d3). According to Figs. 5(c1) and (d1), an extremely large impact of the discretization is observed when truss
elements are considered. It is remarkable that for a single element per tether model, the spin oscillations are not even
captured. For an increasing number of elements, the frequency of the oscillations notably evolves, and convergence is
not reached until increasing the number of elements to nine. With regards to the amplitude of the oscillation, a moderate
lack of convergence is observed. The same behaviour is observed for the non-principal axes and its associated angular
velocities 𝜔𝐵2 , presented in Figs. 5(c2) and (d2), and 𝜔𝐵3 , depicted in Figs. 5(c3) and (d3).

For these reasons, it can be determined that cable elements present a notable higher convergence rate and thus are
more adequate than truss elements to capture the dynamics of E-sail tethers with a higher accuracy. For the sake of
briefness, additional simulation results comparing the tether idealization considering five cable elements and nine truss
elements are provided in Figs. 11 and 12 included in Appendix C.

(a) (b)

(c) (d)

Figure 4: Comparison of the results for the convergence analysis considering the number of elements and the finite element
formulation used to idealize the tethers. The E-sail baseline configuration described in Table 1 and a sailing angle 𝛼 = 10 deg
are considered. Cable formulation includes axial and bending stiffness while truss approach neglects the bending term. The
evolution of the magnitudes, normalized with the results for the case of one cable finite element per tether, are presented:
(a) Normalized thrust module, ∥ 𝐹𝑐 ∥; (b) Normalized thrust angle, 𝛤𝑐 ; (c) Normalized maximum strain at tether 1, 𝜖𝑚𝑎𝑥;
and (d) Normalized integration time, �̃�𝑖𝑛𝑡. Real-Time Computation Threshold (RTCT) is also displayed for reference.

4.3. Baseline configuration analysis
The current section presents the results for the analyses of an E-sail established following the baseline parameters

and initial conditions defined at the Sect. 4.1. The results for the variables of interest in relation to the behaviour of a
single tether are presented in Sect. 4.3.1, and the results for the E-sail dynamics are provided in Sect. 4.3.2.

In line with the conclusions achieved in Sect. 4.2, the results correspond to a tethers modelling considering five
cable finite elements. Two operating configurations are considered regarding the value of the sailing angle: Sun facing,
thus 𝛼 = 0 deg and non-symmetrical operation, given by 𝛼 = 10 deg. Finally, it is remarked that the voltage modulation
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(a1) (a2) (a3)

(b1) (b2) (b3)

nFE = 1[−] nFE = 2[−] nFE = 3[−]

nFE = 5[−] nFE = 7[−] nFE = 9[−]
(c1) (c2) (c3)

(d1) (d2) (d3)

nFE = 1[−] nFE = 2[−] nFE = 3[−]

nFE = 7[−] nFE = 9[−] nFE = 11[−]

Figure 5: Time histories of absolute angular velocities of the central body obtained for the convergence analysis, which
evaluates the effect of the discretization and the element formulation used for tethers modelling. Baseline configuration
and 𝛼 = 10 deg are considered. Results for cable element are: (a1) to (a3) expose the evolution along the whole time span
3𝑇𝑠; and (b1) to (b3) provide a detailed view for the period 2.5𝑇𝑠 ≤ 𝑡 ≤ 3𝑇𝑠. The results for truss elements are: (c1) to (c3)
display the evolution along the whole time span 3𝑇𝑠; and (d1) to (d3) provide a detailed view for the period 2.5𝑇𝑠 ≤ 𝑡 ≤ 3𝑇𝑠.
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Table 2
First natural frequencies for a pinned rotating beam with a tip mass considering the baseline tether’s parameters.

Frequencies [Hz]
Spin 1𝑠𝑡 Bending 1𝑠𝑡 Axial

6.37 ⋅ 10−4 7.34 ⋅ 10−3 2.17 ⋅ 10−2

of the tether is constant and equal to 20 kV (Table 1) for all the analyses, with exception to the null voltage case provided
in Sect. 4.3.2, which validates that no energy drift is taking place with the selected integration approach.

In order to better understand the active and dominant dynamic modes, not only time histories are systematically
presented, but also the Power Spectral Density (PSD) distributions are provided when considered valuable. For
PSD charts, the three main analytical frequencies, corresponding to: rigid, bending and longitudinal modes, are also
represented by vertical dashed lines. These modal frequencies, are computed for a pinned rotating beam with a tip mass
according to [78], and their values, considering the E-sail baseline configuration, are provided in Table 2.

Finally, apart from the figures and graphics provided in next sections, the animation sequence for the baseline
configuration operating with a reduced sailing angle (𝛼 = 0.01 deg) is provided in Appendix D as a supplementary
file, allowing to appreciate in a more explicit manner the harmonious dynamics of the system.

4.3.1. Single tether results
This section contains the results associated with the tether 1 of the baseline E-sail. The time histories and PSD

of the magnitudes defining the tether motion are provided, namely: the coning and lagging angles establishing the
evolution of the remote unit, and the root coning and lagging angles, describing the orientation of the tether’s slope
at the root. The simulation results are compared and validated against the analytical solution for a rotating rigid cable
with a tip mass. In addition, the time evolution of the resultant of the Coulomb force distribution along the tether is
presented and compared to the reactions at the tether root defined by the evolution of Lagrange multipliers.

Simulation results are depicted in Fig. 6 for the following magnitudes associated with tether 1: coning angle 𝛾1 and
lagging angle 𝛽1 at the tip, coning angle 𝛾 ′1, and lagging angles 𝛽′1 at the root, and normalized tether’s length 𝐿∕𝐿0.
Both the power spectral density distributions and the time histories are furnished. The time normalized with reference
to the spin period 𝑇𝑠 is considered for a better identification of periodic behaviours. For the sake of readability, the
sub-index indicating that the magnitudes correspond to tether 1 is omitted, but it should be remarked that all the results
in this Section correspond to single tether results.

The time evolution of the angle 𝛾 , is depicted in Fig. 6(a1), allowing to clearly identify the separation and approach
phases, occurring at the first and second half of the spin period 𝑇𝑠, respectively. Moreover it is observed that the overall
evolution of 𝛾 is ruled by the period 𝑇𝑠 associated to the spin rate, as confirmed by Fig. 6(a2). This behaviour is in
accordance with the results and the description of the coning motion presented in [25, 30, 34]. It is notable that, even
if the E-sail baseline parameters selected, shown in Table 1, correspond to the configuration analyzed in [32], there
exists a non-negligible difference in the maximum value of coning angle predicted in [32] and in the current work.
This fact is in coherence with the presence of the auxiliary tethers in the configuration studied in [32], which reduce
the amplitude of the coning oscillation. For the current configuration, described in Fig. 3, in which only the main tether
exist, under the assumption of rigid tether and assuming small angle 𝛾 , the dynamic equation describing the coning
angle motion [79], can be simplified to:

�̈� + 𝛾
(

𝜔𝐵1
)2 (1 + 𝜀) =

−𝑀𝐵
𝑐13

(𝑚𝑢 + 1∕3𝑚𝑡)𝐿2
0

, (83)

where 𝑚𝑢 is the mass of the remote unit, 𝑚𝑡 represents the mass of the tether and 𝐿0 is the nominal tether length.
Additionally 𝑀𝐵

𝑐13
is the z component of the moment associated to the Coulomb forces respect to the anchor point,

computed for the tether 1 and expressed in the body frame, which is depicted in Fig. 7(b3) and is subsequently described
in detail. Moreover, the term 𝜀 represents the contribution of the centrifugal restoring moment, and is given by

𝜀 =
3𝑅𝑟
2𝐿0

2𝑚𝑢 + 𝑚𝑡
3𝑚𝑢 + 𝑚𝑡

, (84)
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where𝑅𝑟 is the radius of the main vehicle. The analysis of the order of magnitudes of the terms in Eq. (83), shows that
the term associated to 𝛾 has an order of magnitude

(

𝛾
(

𝜔𝐵1
)2 (1 + 𝜀)

)

= 10−8, while
(

𝑀𝐵
𝑐13

∕
(

𝑚𝑢 + 1∕3𝑚𝑡
)

𝐿2
0

)

=

10−4, being this last dominant. Given the structure of Eq. (83) and the evolution of the Coulomb moment described
in Fig. 7(b3), 𝛾 oscillates with the spin frequency, being the amplitude modulated by the Coulomb moment applied,
which remains notably stable. The reduced impact of sailing angle on𝑀𝐵

𝑐13
explains the slight alteration observed also

for 𝛾 . This effects are confirmed by the representation of the solution of Eq. (83) in Fig. 6(a1) for both the Sun facing
(label "Rigid 𝛼 = 0") and non-symmetrical operation (label "Rigid 𝛼 = 10").

On the contrary to the coning motion, which is well known and understood thanks to previous contributions on the
matter [25, 30], the motion of tether within plane 𝑌𝐵𝑍𝐵 has not been studied nor explained for E-sails, even when an
extensive literature exists in other rotating applications, namely, helicopter rotors [80]. Consequently, it is necessary to
investigate the in-plane dynamics of E-sail’s tethers under the effect on non-symmetrical Coulomb forces. This effort
is particularly interesting for the current configuration in which the secondary tethers are omitted. The evolution of
𝛽 is represented in Fig. 6(b1), where it can be observed that, for the case of null sailing angle, the motion is driven
by a single high frequency oscillation presenting an increasing amplitude. Moreover, under this operation condition,
the mean value of the lagging angle 𝛽 is initially null, although, a moderate growing tendency is recognized. On the
contrary, in the case of non-null sailing angle, the behaviour is notably modified and a superposition of two oscillation
of different frequencies is observed. The representation of the corresponding power spectral density depicted in Fig.
6(b2), allows to identify, firstly, a frequency around 6 ⋅ 10−2 Hz associated to the bending mode and acting with a
similar amplitude for both Sun facing and non-symmetrical operating conditions. Secondly, and exclusively in the case
of non-null sailing angle, it can be observed that the spin frequency 1∕𝑇𝑠 = 6.37 ⋅10−3 Hz, associated to the rigid body
mode, is activated. Both behaviours, can be explained by the Euler dynamic equations for tether lagging in terms of
the angle 𝛽, under the hypothesis of small angles and rigid cable adapted from [79]

𝛽 + 𝛽
(

𝜔𝐵1
)2 𝜀 = −

−𝑀𝐵
𝑐11

(𝑚𝑢 + 1∕3𝑚𝑡)𝐿2
0

+ 𝜔𝐵1 𝛾�̇�, (85)

where 𝑀𝐵
𝑐11

is the x component of the moment associated to Coulomb forces respect to the tether root for tether 1

expressed in body frame and represented in Fig. 7(b1). The term 𝛽
(

𝜔𝐵1
)2 𝜀 represents the restoring force associated

to centrifugal forces and 𝜔𝐵1 𝛾�̇� is the coupling with the out of plane motion. For the current E-sail description and

under the baseline analysis configuration, it can be proven that 
(

𝛽
(

𝜔𝐵1
)2 𝜀

)

= 10−12 and 
(

𝜔𝐵1 𝛾�̇�
)

= 10−8. In the
case of symmetric operation (𝛼 = 0), the moment associated to Coulomb forces is negligible and the term associated
to �̇� is dominant and responsible for the moderate increase of the mean value observed. It should be noted that the
higher frequency oscillations are associated to the bending flexibility of the tether and are not captured under the rigid
pendulum approach, also represented in Fig. 6 (b1). For non-null sailing angle scenario, the order of magnitude of the
term affected by 𝑀𝐵

𝑐11
grows, being 

(

𝑀𝐵
𝑐11

∕
(

𝑚𝑟 + 1∕3𝑚𝑡
)

𝐿2
0

)

= 10−8 for 𝛼=10 degrees, and adds an oscillation
of the frequency of the main spin. The power spectral density for 𝛽 in Fig. 6(b2), evidence the participation of the
bending modes. This last consideration proves the inadequate performance of the rigid pendulum model for a precise
analysis of the in-plane motion in the scenarios where the transversal effects need to be contemplated.

The representation of tether length results, provided in Figs. 6(c1) and (c2), completes the description of the relative
motion of the remote unit for tether 1. Both, the time evolution in Fig. 6(c1) and power spectral density distribution
in Fig. 6(c2), allows to observe the participation of a more diverse set of frequencies than in the case of the angles
𝛾 and 𝛽. Moreover, Fig. 6(c2) allows to notice that the dominant frequency is positioned between the frequencies
associated to the analytical pure bending and the pure longitudinal modes for a pinned rotating slender beam with a
tip mass, presented in Table. 2. The reduced oscillation on the normalized length, allows to conclude that it is driven
by the centrifugal forces, which remain remarkably steady according to the angular velocity evolution, in Fig. 10(a1),
subsequently described in detail. Consequently, the tensile load in the cable is also expected to remain constant.

Furthermore, given that the direction of the reactions exerted on the central spacecraft at the anchor point depend
on the orientation of the longitudinal slope of the tether at the root, the analysis of the root coning angle, 𝛾 ′, and the root
lagging angle, 𝛽′, is of interest to understand the associated perturbation torques. The time evolution of the orientation
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Figure 6: Description of the relative motion of tether 1 under different sailing angles (𝛼 = 0, 10 deg) and comparison
to analytical solution under the assumption of rigid rotating pendulum. All the results correspond to the E-sail baseline
configuration described in Table 1: (a1) Time evolution of the coning angle, 𝛾, and the solution of Eq.(83), valid for a
rigid cable; (a2) PSD of the coning angle 𝛾; (b1) Time evolution of the lagging angle, 𝛽, and the solution of Eq.(85),
valid for a rigid cable; (b2) PSD of the lagging angle, 𝛽; (c1) Time evolution of normalized length, 𝐿∕𝐿0; (c2) PSD of
normalized length, 𝐿∕𝐿0; (d1) Time evolution of the root coning angle, 𝛾 ′; (d2) PSD of the root coning angle, 𝛾 ′; (e1)
Time evolution of the root lagging angle, 𝛽′; and (e2) PSD of the root lagging angle, 𝛽′.

of the longitudinal slope of the tether at the root is defined by the root coning angle, 𝛾 ′, and the root lagging angle, 𝛽′,
and presented in Figs. 6 (d1) and (e1), respectively. The PSDs associated to the previous variables are also provided at
Figs. 6 (d2) and (e2).
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The comparison of the power spectral density representations in Figs. 6(d2) and (e2), allows to identify the active
modes for each magnitude and unveils a more complex dynamics of the internal angles 𝛾 ′ and 𝛽′ in comparison to the
evolution of the analogous magnitudes at the tip (Fig. 6(a2) for 𝛾 and Fig. 6(b2) for 𝛽). In reference to 𝛾 ′, Fig. 6(d1)
allows to verify its independence respect to the sailing angle 𝛼, previously observed and explained for 𝛾 . Furthermore,
the activation of the flexural mode in addition to the dominant rigid mode associated to the spin frequency is clearly
observed at both Figs. 6(d1) and (d2). Concerning the in-plane orientation of the slope given by 𝛽′, Fig. 6(e1) reveals
a remarkable influence of the sailing angle on its dynamics, similarly to the results for 𝛽. However, the effects of the
sailing angle on the participating frequencies observed for 𝛽′, are notably different from those previously described for
𝛽, being remarkable: the lack of contribution of the rigid mode, the offset of the active modes to higher frequencies
and the appearance of a low frequency oscillation.

(a1) (a2) (a3)

(b1) (b2) (b3)

(c1) (c2) (c3)

𝛼 = 0[deg] 𝛼 = 10[deg]

Figure 7: Time histories of simulation results for tether 1 forces and moments, expressed in body frame, considering the
baseline configuration and under Sun facing (𝛼 = 0 deg), and non-symmetrical (𝛼 = 10 deg) operating conditions: (a1) to
(a3) Resultant force components of the Coulomb force distribution along the tether 𝐅𝐵𝑐1 ; (b1) to (b3) Moment components
of Coulomb force distribution along the tether, computed at the root 𝐌𝐵

𝑐1 ; and (c1) to (c3) Lagrange multipliers at the
tether root 𝜆𝜆𝜆𝐵1 .

.

To complete the study of the dynamics of an E-sail’s tether, the propulsive force resultant 𝐅𝐵𝑐1, and its associated
torque respect to the anchor point 𝐌𝐵

𝑐1, are presented and analyzed for tether 1. As it can be observed in Fig. 7(a1),
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the resultant of the Coulomb force distribution along 𝑋𝐵 , namely 𝐹𝐵𝑐11 , presents an average value clearly affected by
the sailing angle 𝛼. Negligible oscillations associated to the coning motion can be spotted for 𝛼 = 0 deg, being more
accentuated in the case of 𝛼 = 10 deg, due to the additional fluctuations on the angle between the solar wind and the
tethers occurring during a spin period. The contribution along 𝑌𝐵 , depicted in Fig. 7(a2), is insignificant, given that
for tether 1, the 𝑌𝐵 axis corresponds to the tether radial direction. The propulsive force along it is due exclusively to
the bending deformation during the coning motion. Concerning the 𝐹𝐵𝑐13 component, it presents a clear dependence on
sailing angle, as illustrated in Fig. 7(a3), and evolves cyclically following the fluctuation of the tether-Sun wind angle
previously mentioned. Similarly, the torque at the anchor point 𝐌𝐵

𝑐1, associated to the distribution of the Coulomb
force along the tether, is represented in Figs. 7(b1) to (b3). The time histories for each component are coherent to the
force evolution previously discussed, besides, their order of magnitude is to be considered to asses the dominant terms
on Eq. (83) and (85).

Finally, Figs. 7 (c1) to (c3), present the evolution of the Lagrange multipliers 𝜆𝜆𝜆𝐵1 , corresponding to the reaction at
the anchor point of tether 1 expressed on the 𝐵 frame. The comparison of the results for the Coulomb forces, presented
in Figs. 7(a1) to (a3), and for the multipliers, shown in Figs. 7(c1) to (c3), allows to observe how the tether dynamics
transforms the smooth propulsive force extracted from the solar wind, into a much more faster and complex load
distribution applied to the central vehicle. The existing correlation between 𝜆𝜆𝜆𝐵1 x and z components, presented in Figs.
7(c1) and (c3), and the tether slope angles 𝛾 ′ and 𝛽′, represented in Figs. 6(d1) and (e1), respectively, demonstrate the
necessity of capturing the motion at the tether root to estimate the dynamics of the forces applied to the main vehicle.

4.3.2. E-sail motion and attitude
This section provides the results for the E-sail dynamics. The evolution and composition of the system energy is

presented and assessed. Given that the considered generalized-𝛼 algorithm is not a symplectic integrator, in order to
demonstrate the nonexistence of energy drift, the evolution of the E-sail energy considering null voltage at the tethers is
also provided. In addition, the total thrust force extracted from the solar wind is examined, and its transfer to the central
vehicle is investigated. To conclude, the attitude and angular rates of the E-sail and the central vehicle are presented
and explained.

The evolution of the system total energy 𝐸𝑇 is presented in Fig. 8(a). On the one hand, for the null voltage case
(E-sail off) the constant value of the total energy allows to conclude the negligible loss of energy associated with the
numerical damping of the generalized-alpha implementation or its non-symplectic condition. On the other hand, the
sustained thrusting of the system under the operating conditions 𝛼 = 0, 10 deg, is reflected on the increase of 𝐸𝑇
depicted in Fig. 8(a). Additionally, the presence of the spin and the first bending frequencies can be clearly appreciated
in the evolution of the magnitude. This behaviour can be explained, considering that according to Fig. 8(b) the kinetic
energy is the main contribution to the total energy, and it is determined by the variation of the kinetic energy associated
to the remote masses and central vehicle which is driven mainly by both modes. A slight influence of sailing angle can be
observed for the approximation phase (second half of the cycle) in which the Sun facing configuration reveals to be more
efficient. The energy accumulated by the E-sail under elastic deformations, provided in Fig. 8(c), is observed to remain
independent of the sailing angle and to oscillate around an stable value. Moreover, the frequency of the oscillations
reveals that the main contribution to the elastic energy fluctuation is associated to the longitudinal deformation. To
conclude the discussion of the energy system, the analysis of the dissipated energy associated to internal damping,
plotted in Fig. 8(d), reveals a marginal contribution, presenting a decreasing trend with time. It should be remarked
that 𝐸𝑑 is calculated as the time-averaged dissipated power.

Concerning the evolution of the forces acting on the E-sail, the evolution of the norm of the Coulomb force ∥ 𝐅𝑐 ∥,
also referred to as thrust force, is represented in Fig. 9(a1), the norm of the moment associated to the thrust ∥ 𝐌𝑐 ∥,
can be observed in Fig. 9(a2), and the thrust angle 𝛤𝑐 , formed by the thrust resultant and the Sun rays (coincident
with the 𝑍𝑂 axis) is provided in Fig. 9(a3). The effect of the sailing angle can be appreciated in the average value of
the thrust module, ∥ 𝐅𝑐 ∥, and the thrust angle, 𝛤𝑐 , which remain almost constant along the period studied. A greater
sailing angle implies a reduction of the perpendicular component of the relative velocity of the solar wind, and also
the apparition of an in-plane thrust contribution. Consequently, the norm of the thrust decreases with 𝛼, whereas the
thrust angle grows up to approximately 𝛼∕2, being both effect in line with results provided in [28, 32]. Additionally, a
reduced oscillation of the amplitude is observed in the thrust norm, which is explained by the evolution of the coning
angle 𝛾 presented in Fig. 6(a1), thus the minimum is reached at the half of the spin period where the coning angle
is maximum and the overall perpendicular component of the relative velocity of the solar wind is minimum. On the
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(a) (b)

(c) (d)

𝛼 = 0[deg] 𝛼 = 10[deg] Off [−]

Figure 8: Comparison of E-sail simulation results for energy evolution of baseline configuration under symmetrical (𝛼 = 0
deg) and non-symmetrical (𝛼 = 10 deg) operation: (a) Total energy 𝐸𝑇 ; (b) Kinetic energy 𝐸𝑘; (c) Elastic energy 𝐸𝑒 and
(d) Damping energy 𝐸𝑑 , computed as the time-averaged dissipated power.

contrary, the norm of the thrust moment ∥ 𝐌𝑐 ∥ for the 𝛼 = 10 deg case, oscillates following the spin frequency but
shows a clear growing tendency.

The equivalent magnitudes for the Lagrange multipliers, are represented in Figs. 9(b1) to (b3) with the aim of
outlining the forces and moments applied to the main vehicle. In line with the results presented in Fig. 6 for the slope
of the tethers at the root, a faster dynamics is observed. It is remarked that the lower limit of the force module ∥ 𝐅𝜆 ∥,
depicted in 9(b1), increases with the time for the non-null sailing angle case, which indicates that the mean multipliers
force per cycle increases. This effect can be explained based on the detailed component representation for Coulomb and
constraint forces provided in Figs. 9(c1) to (d3), expressed in orbit frame for a better understanding. The axial force 𝐅𝑂𝜆𝑧 ,
Fig. 9(d3), is transmitted along 𝑍𝑂 with a continuous negative sign, which means positive force applied to the central
vehicle, according to the coning motion mechanism previously mentioned. The impact of the tether dynamics is clearly
revealed by the comparison of the low oscillation of the axial thrust, Fig. 9(c3), and the evolution of axial force applied
to the central spacecraft, Fig. 9(d3). At each instant, the difference between the 𝐅𝑂𝜆𝑧 and 𝐅𝑂𝑐𝑧 represents the resultant
of the Coulomb, inertial, elastic and damping forces acting along the tether and the remote units. It can be observed
that the value of the thrust, given by 𝐅𝑂𝑐𝑧 in the case of sun facing configuration, agrees with the predictions in [32].
In the case of the transversal component 𝐅𝑂𝜆𝑥 , displayed in Fig. 9(d1), a complex and unstable behaviour is observed
for non-null sailing angle. It can be verified that its resultant per cycle is negative, hence a positive force along 𝑋𝑂
axis is applied to the main spacecraft, in line with the corresponding component of Coulomb force, presented in 9(c1).
However, the oscillations of 𝐅𝑂𝜆𝑥 , in contrast to the smooth character of the thrust component 𝐅𝑂𝑐𝑥 , force the existence
of a negative torque along 𝑌𝑂 axis acting of the center of gravity of the system and that generates a negative yawing,
represented in Fig. 10(b1), that takes the angular momentum out of the orbital plane. To end this discussion, the
multipliers component 𝐅𝑂𝜆𝑦 , as observed in Fig.9(d2), for the case of non-null sailing angle, also follows an oscillation
of increasing amplitude but resulting on a very low net resultant per cycle, in line with the results for 𝐅𝑂𝑐𝑦 , represented
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(a1) (a2) (a3)

(b1) (b2) (b3)

(c1) (c2) (c3)

(d1) (d2) (d3)

𝛼 = 0[deg] 𝛼 = 10[deg]

Figure 9: Comparison of simulation results for E-sail’s thrust force and Lagrange multipliers, considering the baseline
configuration, under symmetrical (𝛼 = 0 deg) and non-symmetrical (𝛼 = 10 deg) operation: (a1) Thrust force module,
∥ 𝐅𝑐 ∥; (a2) Thrust moment module, ∥ 𝐌𝑐 ∥; (a3) Thrust angle, 𝛤𝑐 ; (b1) Total Lagrange multiplier force module, ∥ 𝐅𝜆 ∥;
(b2) Total Lagrange multiplier moment module, ∥ 𝐌𝜆 ∥; (b3) Total Lagrange multiplier orientation angle, 𝛤𝜆; (c1) to (c3)
Thrust force in orbit frame; and (d1) to (d3) Total Lagrange multiplier in orbit frame.

in 9(c2), and where the effect of the out of plane yaw is reflected on the increase of the magnitude of Coulomb force
along 𝑌𝑂.
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In reference to the evolution of the perturbation torque transmitted to the central body and defined by ∥ 𝐌𝑐 ∥, Fig.
9(b2) allows to observe a sustained rise. According to the evolution of the angular rates provided in Figs. 10 (a1) to
(a3), for null sailing angle, the origin of the norm growth is due exclusively to the spin, while in the case of non-null
sailing angle the three component contribute. This behaviour may indicate the instability of the system or the presence
of a low frequency mode, and has to be investigated in further works.

(a1) (a2) (a3)

(b1) (b2) (b3)

𝛼 = 0[deg] 𝛼 = 10[deg]

(c1) (c2) (c3)

𝜓[deg] 𝛹[deg] 𝜃[deg] 𝛩[deg] 𝜙[deg] 𝛷[deg]

Figure 10: Simulation results for angular rates and orientation for baseline configuration: (a1) to (a3) Comparison of central
vehicle absolute angular rates 𝝎𝐵 considering Sun facing (𝛼=0 deg) and non-symmetrical (𝛼=10 deg) operation; (b1) to
(b3) Comparison of central vehicle Euler angles 𝜓 , 𝜃 and 𝜙 considering Sun facing (𝛼=0 deg) and non-symmetrical (𝛼=10
deg) operation; and (c1) to (c3) Comparison of the attitude of the central vehicle given by the 𝐵 frame (𝜓 , 𝜃, 𝜙), and the
attitude of the mean plane of the remote units (Π plane), given by the 𝐸 frame (𝛹 , 𝛩, 𝛷), for non-symmetrical (𝛼=10
deg) operation.

To conclude the presentation of results, the absolute body angular rates 𝝎𝐵 , and Euler angles defining the
orientation of the main vehicle (𝜓 , 𝜃, 𝜙), and of the E-sail (𝛹 ,𝛩,𝛷), are represented for different sailing angles in Fig.
10. In relation to the angular rates, the presence of high frequency oscillations, associated to the bending and the axial
modes, can be corroborated accordingly to the behaviours already mentioned for the driving magnitudes, namely, the
tether length and the slope at the tether’s root. The spin velocity, depicted in Fig.10(a1), describes an oscillation of
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increasing amplitude but presents a steady mean value. A very reduced impact of the sailing angle is revealed for the
spin oscillation. However, the other two components are notable impacted, as seen in Figs.10(a2) and (a3). For non-null
sailing angles, the sustained rise of the oscillations amplitude can be observed for the three components in Figs. 10(a1)
to (a3), being more accentuated for 𝜔1. This evolution is in line with the increase of the perturbation torque associated
to the Lagrangian forces depicted in Fig. 9(b2), and may indicate the instability of the system but could also be due to
lower frequency modes, not captured for the considered simulation time. This fact needs to be assessed in subsequent
work. The sailing angle growth generates the apparition of an increasing oscillation of components 𝜔2 and 𝜔3, plotted
in Figs. 10(a2) and (a3), respectively. However, Fig. 10(a1) reveals a very reduced effect of sailing angle on the first
component 𝜔1, where only a slight spin acceleration is appreciated and should be further investigated.

Regarding the orientation of the central vehicle, a reduced influence of the sailing angle is confirmed according
to the evolution of yaw (𝜓), pitch (𝜃) and roll (𝜙) angles, provided in Figs. 10(b1) to (b3). Apart from the offset of
the mean value of 𝜃, a slight increase of the oscillations can be observed for the pitch angle 𝜃 for the case of non null
sailing angle. To complete the assessment of the system attitude, Figs. 10(c1) to (c3), compares the orientation of the
central vehicle and the orientation of the E-sail, being the latest established as per Sect. 3.4. It is noted that the attitude
dynamics of Π plane, in contrast to the main vehicle’s, is slower, which is in line with the results discussed in previous
paragraphs and can be observed at the evolution of 𝜓 and 𝛹 depicted in Fig. 10(c1) and analogously in Fig. 10(c2) for
𝜃 and 𝛩. It is remarkable the evolution of the yaw angle 𝛹 , revealing a tendency of the normal vector of the Π planes
to move out of the orbital plane when operating with a positive sailing angle. As previously exposed, it is justified by
the torque associated to the transference of the 𝑋𝑂 component of the Coulomb force to the main vehicle and to the
tethers and remote masses.

5. Conclusions
This section contains the conclusions extracted from the results of Sect. 4 and outlines future lines of investigation.
A rigid-flexible multibody model for the E-sail dynamics has been presented and validated. The formulation,

considering ACNF for flexible tethers and NC for the center body, is clearly established and described. The expressions
of the Jacobian matrices and additional terms, necessary to perform the integration considering the generalized-𝛼
algorithm, are provided. In relation to the proposed cable ANCF, the inclusion of internal damping as well as the
nonlinear curvature for bending, allows to achieve a better description of the tethers’ dynamics and the comparison
against formulations considering only axial stiffness. Additionally, a set of auxiliary variables are introduced for a better
understanding of the simulation results. The simulation results obtained for the baseline configuration established,
allow to settle the following conclusions.

The validity of the proposed model is demonstrated. The evolution of the obtained magnitudes, notably the coning
motion mechanism and the thrust force, are in coherence with the results in previous publications. Moreover, the coning
and lagging motion of the remote units is validated using analytical formulations.

The accuracy of the generalized-𝛼 implementation used to solve the index-3 DAE system is established and the
lack of energy drifts associated to numerical damping or other aspect is demonstrated.

The convenience of using cable elements, considering bending stiffness, to accurately capture the dynamic
behaviour of the tethers under the effect of the Coulomb forces, is proven. The effectiveness and efficiency of using
the existing cable ANCF elements is corroborated. The convergence analysis of truss formulations confirms its high
dependency on the discretization and a lower rate of convergence respect to cable elements.

Moreover, thanks to the use of cable elements, the root coning angle 𝛾 ′ and the root lagging angle 𝛽′ are investigated,
and a more complex and faster dynamics is observed in comparison to the magnitudes associated with the remote
masses (𝛾 and 𝛽). It should be remarked that the time histories of the lagging angles, 𝛽 and 𝛽′, manifest a growing
tendency, notably dependant of the sailing angle, which needs to be further investigated. Consequently, the interest of
analysing the evolution of the in-plane angular magnitudes is demonstrated.

The vibration modes with a more relevant participation on the E-sail dynamics are established; the rigid body mode,
associated to the spin frequency and already observed in previous works, and the first bending and axial vibration modes
of a rotating cable with a tip mass. This identification is significant for the design of E-sails with appropriate dynamical
characteristics.

It is remarkable that for non-null sailing angles, the existence of a torque in the 𝑌𝑂 axis has been found. Results prove
that it is associated to the way in which the system dynamics transmits the transverse component of the thrust force to

Guillermo Pacheco-Ramos: Preprint submitted to Elsevier Page 31 of 43



Formulation of a multibody dynamical model for an E-sail

the main vehicle. As a consequence, an out of plane yawing occurs as well as an increase of the thrust component on
the 𝑌𝑂 direction and moves the angular momentum out of the orbital plane.

Further investigations have to be carried out in order to explore the sensitivity of the behaviour exposed to the main
parameters of the system, namely, angular velocity, tether length and remote unit mass. Moreover, the effectiveness
of auxiliary tethers to prevent tether collision need to be assessed considering cable elements. Additionally, a deeper
analysis of the stability and controllability of the system is required to enable the development and application of
control strategies. Last but not least, the multi-physics capabilities of the model have to be improved. Namely, the
inclusion of thermal aspects is crucial to consider the effect of extreme temperatures or its fluctuations under events
such as eclipses and to assess their impact on the dynamics and stability of the system.

A. Cable element formulation
A.1. Elastic contributions
The expressions of the elastic energy, the generalized elastic forces and their Jacobian matrices are derived in detail in
this appendix.

In order to achieve an implementation with the best computing performance, the use of invariant matrices is applied
when possible to avoid the computation of integrals for each element in every step. In the practice, the use of invariant
terms is applicable just for axial contributions but not for nonlinear bending members. In this latter case, the objective
is to reach expressions of the integrals in terms of the generalized coordinates (varying with time) and the shape
function matrices (just depending on the position and which are evaluated just once for each element) to alleviate the
computation effort of the necessary numerical integration for each element at every step. According to the formulation
presented in Sect. 2.2.2, the contributions of axial and bending deformation are provided separately.

Axial contribution
Under the assumption of constant properties, the axial contribution of the generalized elastic force defined in Eq. (25)
is expressed as

𝐐𝑒𝑥 = −
𝐸𝑡𝐴𝑡
2

(

∫

𝑙

0

𝜕𝜖2𝑥𝑥
𝜕𝐞

d𝑥

)𝑇

= −𝐸𝑡𝐴𝑡 ∫

𝑙

0
𝜖𝑥𝑥

(

𝜕𝜖𝑥𝑥
𝜕𝐞

)𝑇
d𝑥. (86)

Considering the expression of the first partial derivatives of the position with respect to 𝑥 is given by

𝐫,𝑥 =
𝜕𝐒
𝜕𝑥

𝐞 = 𝐒,𝑥 𝐞, (87)

and that the partial derivative of the axial strain 𝜖𝑥𝑥, defined in Eq. (24), with respect to the generalized coordinates is
given by

𝜕𝜖𝑥𝑥
𝜕𝐞

= 𝐞𝑇 𝐒𝑇,𝑥𝐒,𝑥, (88)

and the expression of the axial elastic force provided in Eq. (86) becomes

𝐐𝑒𝑥 = −
𝐸𝑡𝐴𝑡
2 ∫

𝑙

0

(

𝐞𝑇 𝐒𝑇,𝑥𝐒,𝑥𝐞 − 1
)(

𝐞𝑇 𝐒𝑇,𝑥𝐒,𝑥
)𝑇

d𝑥

= −
𝐸𝑡𝐴𝑡
2 ∫

𝑙

0
𝐒𝑇,𝑥𝐒,𝑥𝐞 𝐞

𝑇 𝐒𝑇,𝑥𝐒,𝑥𝐞 d𝑥 +
𝐸𝑡𝐴𝑡
2 ∫

𝑙

0
𝐒𝑇,𝑥𝐒,𝑥𝐞 d𝑥.

(89)

Eq. (89) can be further simplified making use of the invariant matrices proposed in [81] and applied to cable elements
in [34] as follows. Define the square matrix 𝐀 = 𝐒𝑇,𝑥𝐒,𝑥, where 𝐀𝑖𝑗 represents the element 𝑖 and 𝑗 of the matrix

𝐐𝑒𝑥 = −𝐊1𝑖𝑗𝑘𝑛𝐞𝑗𝐞𝑘𝐞𝑛 +𝐊2𝑖𝑛𝐞𝑛, (90)

where the following definitions are used:

𝐊1𝑖𝑗𝑘𝑛 =
𝐸𝑡𝐴𝑇
2 ∫

𝑙

0
𝐀𝑖𝑗𝐀𝑘𝑛 d𝑥, (91)
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and

𝐊2𝑖𝑗 =
𝐸𝑡𝐴𝑡
2 ∫

𝑙

0
𝐀𝑖𝑗 d𝑥. (92)

Similarly, the Jacobian of generalized forces associated to axial strains con be simplified by the consideration of the
invariant terms 𝐊1 and 𝐊2, allowing to express

𝜕𝐐𝑒𝑥
𝜕𝐞

= −
𝜕𝐸𝑡𝐴𝑡2 ∫ 𝑙0 𝐒𝑇𝑥 𝐒𝑥𝐞 𝐞

𝑇 𝐒𝑇𝑥 𝐒𝑥𝐞 d𝑥
𝜕𝐞

+
𝜕𝐸𝑡𝐴𝑡2 ∫ 𝑙0 𝐒𝑇𝑥 𝐒𝑥𝐞 d𝑥

𝜕𝐞

= −
𝐸𝑡𝐴𝑡
2 ∫

𝑙

0
2𝐒𝑇𝑥 𝐒𝑥𝐞 𝐞

𝑇 𝐒𝑇𝑥 𝐒𝑥 d𝑥 −
𝐸𝑡𝐴𝑡
2 ∫

𝑙

0
(𝐞𝑇 𝐒𝑇𝑥 𝐒𝑥𝐞)𝐒

𝑇
𝑥 𝐒𝑥 d𝑥 +

𝐸𝑡𝐴𝑡
2 ∫

𝑙

0
𝐒𝑇𝑥 𝐒𝑥 d𝑥

= −2𝐊1𝑖𝑗𝑘𝑛𝐞𝑗𝐞𝑘 −𝐊1𝑖𝑗𝑘𝑛𝐞𝑘𝐞𝑛 +𝐊2.

(93)

To conclude the formulation of the elastic cable element, the axial contribution of the elastic energy, established
as per Eq. (23), can also be expressed considering the invariant matrices 𝐊1 and 𝐊2 as

𝑈𝑒𝑥 =
𝐸𝑡𝐴𝑡𝑙
8

+ 1
4
𝐊1𝑖𝑗𝑘𝑛𝐞𝑖𝐞𝑗𝐞𝑘𝐞𝑛 −

1
2
𝐊2𝑖𝑛𝐞𝑖𝐞𝑛. (94)

Nonlinear bending contribution
Regarding the bending contribution, due to the nonlinear character of the curvature 𝜅 defined in Eq. (24), it cannot be
expressed in terms of the previous invariant matrices, and its integral expression

𝐐𝑒𝑏 = −𝐸𝑡𝐼𝑡 ∫

𝑙

0
𝜅
(𝜕𝜅
𝜕𝐞

)𝑇
d𝑥, (95)

is evaluated numerically. On one hand, given expression of the second partial derivative of the position with respect
to 𝑥

𝐫,𝑥𝑥 =
𝜕2𝐒
𝜕𝑥2

𝐞 = 𝐒,𝑥𝑥 𝐞, (96)

the curvature 𝜅 formulated in Eq. (24) can be expressed as

𝜅 =
(

𝐫𝑇,𝑥𝑥𝐑
𝑇
,𝑥𝐑,𝑥𝐫,𝑥𝑥

)

1
2
(

𝐫𝑇,𝑥𝐫,𝑥
)− 3

2 = 𝚽
1
2
1 𝚽

− 3
2

2 , (97)

where the definitions of the functions 𝚽1(𝐞, 𝑥) = 𝐫𝑇,𝑥𝑥𝐑
𝑇
,𝑥𝐑,𝑥𝐫,𝑥𝑥 and 𝚽2(𝐞, 𝑥) = 𝐫𝑇,𝑥𝐫,𝑥 are considered to simplify the

expressions. The skew matrix 𝐑𝑥, based on the components of slope vector 𝐫,𝑥, is defined as

𝐑𝑥 =
⎡

⎢

⎢

⎣

0 −𝐫3,𝑥 𝐫2,𝑥
𝐫3,𝑥 0 −𝐫1,𝑥
−𝐫2,𝑥 𝐫1,𝑥 0

⎤

⎥

⎥

⎦

. (98)

On the other hand, the derivative of 𝜅 with respect to 𝐞 can be expressed as

𝜕𝜅
𝜕𝐞

=
𝜕
(

𝚽
1
2
1 𝚽

− 3
2

2

)

𝜕𝐞
= 1

2
𝚽

− 1
2

1 𝚽
− 3

2
2
𝜕𝚽1
𝜕𝐞

− 3
2
𝚽

1
2
1 𝚽

− 5
2

2
𝜕𝚽2
𝜕𝐞

.
(99)

All terms in both equations (97) and (99) can be written as a function of the first and second derivatives of the form
functions matrix, 𝐒,𝑥, and 𝐒,𝑥𝑥, and the generalized coordinate vector 𝐞, considering the expressions presented in Eq.
(100) to Eq. (103)

𝐑
𝑇
,𝑥𝐑,𝑥 =

⎡

⎢

⎢

⎢

⎣

𝐫22,𝑥 + 𝐫23,𝑥 −𝐫1,𝑥𝐫2,𝑥 −𝐫1,𝑥𝐫3,𝑥
−𝐫1,𝑥𝐫2,𝑥 𝐫21,𝑥 + 𝐫23,𝑥 −𝐫2,𝑥𝐫3,𝑥
−𝐫1,𝑥𝐫3,𝑥 −𝐫2,𝑥𝐫3,𝑥 𝐫21,𝑥 + 𝐫22,𝑥

⎤

⎥

⎥

⎥

⎦

= 𝐫𝑇,𝑥𝐫,𝑥𝐈3𝑥3 − 𝐫,𝑥𝐫𝑇,𝑥 = 𝐞𝑇 𝐒𝑇,𝑥𝐒,𝑥𝐞 𝐈3𝑥3 − 𝐒,𝑥𝐞 𝐞𝑇 𝐒𝑇,𝑥, (100)
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𝚽1 = 𝐫𝑇,𝑥𝑥𝐑
𝑇
,𝑥𝐑,𝑥𝐫,𝑥𝑥 = (𝐫𝑇,𝑥𝐫,𝑥)(𝐫

𝑇
,𝑥𝑥𝐫,𝑥𝑥) − (𝐫𝑇,𝑥𝑥𝐫,𝑥)(𝐫

𝑇
,𝑥𝐫,𝑥𝑥)

= (𝐞𝑇 𝐒𝑇,𝑥𝐒,𝑥𝐞)(𝐞
𝑇 𝐒𝑇,𝑥𝑥𝐒,𝑥𝑥𝐞) − (𝐞𝑇 𝐒𝑇,𝑥𝑥𝐒,𝑥𝐞)(𝐞

𝑇 𝐒𝑇,𝑥𝐒,𝑥𝑥𝐞),
(101)

𝜕𝚽𝟏
𝜕𝐞

=
𝜕
(

𝐫𝑇,𝑥𝑥𝐑
𝑇
,𝑥𝐑,𝑥𝐫,𝑥𝑥

)

𝜕𝐞
=2𝐞𝑇 𝐒𝑇,𝑥𝐒,𝑥(𝐞

𝑇 𝐒𝑇,𝑥𝑥𝐒,𝑥𝑥𝐞) + 2(𝐞𝑇 𝐒𝑇,𝑥𝐒,𝑥𝐞)𝐞
𝑇 𝐒𝑇,𝑥𝑥𝐒,𝑥𝑥

− 2(𝐞𝑇 𝐒𝑇,𝑥𝑥𝐒,𝑥 + 𝐞𝑇 𝐒𝑇,𝑥𝐒,𝑥𝑥)(𝐞
𝑇 𝐒𝑇,𝑥𝑥𝐒,𝑥𝑥𝐞),

(102)

𝚽2
𝜕𝐞

=
𝜕
(

𝐫𝑇,𝑥𝐫,𝑥
)

𝜕𝐞
= 2𝐞𝑇 𝐒𝑇,𝑥𝐒,𝑥.

(103)

A similar procedure is followed for the formulation of the Jacobian of the bending forces

𝜕𝐐𝑒𝑏
𝜕𝐞

= −𝐸𝑡𝐼𝑡 ∫

𝑙

0

𝜕𝜅
𝜕𝐞

(𝜕𝜅
𝜕𝐞

)𝑇
d𝑥 − 𝐸𝑡𝐼𝑡 ∫

𝑙

0
𝜅
𝜕
(

𝜕𝜅
𝜕𝐞

)𝑇

𝜕𝐞
d𝑥. (104)

For the first summand, it is sufficient to consider Eq. (99), whereas for the second summand, the second derivative of
𝜅 respect to 𝐞, can be written as:

𝜕
(

𝜕𝜅
𝜕𝐞

)𝑇

𝜕𝐞
= 𝜕
𝜕𝐞

⎛

⎜

⎜

⎜

⎝

1
2

𝜕𝚽1
𝜕𝐞

𝚽
1
2
1 𝚽

3
2
2

−3
2

𝚽
1
2
1
𝜕𝚽2
𝜕𝐞

𝚽
5
2
2

⎞

⎟

⎟

⎟

⎠

= − 1
4

𝜕𝚽1
𝜕𝐞

(

𝜕𝚽1
𝜕𝐞

)𝑇

𝚽
3
2
1 𝚽

3
2
2

− 3
4

𝜕𝚽2
𝜕𝐞

(

𝜕𝚽1
𝜕𝐞

)𝑇

𝚽
1
2
1 𝚽

5
2
2

+ 1
2

𝜕
𝜕𝐞

(

𝜕𝚽1
𝜕𝐞

)𝑇

𝚽
1
2
1 𝚽

3
2
2

− 3
4

𝜕𝚽1
𝜕𝐞

(

𝜕𝚽2
𝜕𝐞

)𝑇

𝚽
1
2
1 𝚽

5
2
2

+ 15
4

𝜕𝚽2
𝜕𝐞

(

𝜕𝚽2
𝜕𝐞

)𝑇

𝚽
1
2
1 𝚽

7
2
2

− 3
2

𝜕
𝜕𝐞

(

𝜕𝚽2
𝜕𝐞

)𝑇

𝚽
1
2
1 𝚽

5
2
2

,

(105)

where all the terms can be expressed as a function of 𝐒,𝑥,𝐒,𝑥𝑥 and 𝐞 considering the expressions obtained in Eq. (101)
to Eq. (103), with exception to the second derivative terms, which are specified in Eq. (106)

𝜕
𝜕𝐞

(

𝜕𝚽2
𝜕𝐞

)𝑇
= 2 𝐒𝑇,𝑥𝐒,𝑥, (106)

and Eq. (107)

𝜕
𝜕𝐞

(

𝜕𝚽2
𝜕𝐞

)𝑇
=2 𝐒𝑇,𝑥𝐒,𝑥

(

𝐞𝑇 𝐒𝑇,𝑥𝑥𝐒,𝑥𝑥𝐞
)

+ 4 𝐒𝑇,𝑥𝐒,𝑥𝐞 𝐞
𝑇 𝐒𝑇,𝑥𝑥𝐒,𝑥𝑥 + 2 𝐒𝑇,𝑥𝑥𝐒,𝑥𝑥

(

𝐞𝑇 𝐒𝑇,𝑥𝐒,𝑥𝐞
)

+ 4𝐒𝑇,𝑥𝑥𝐒,𝑥𝑥𝐞 𝐞
𝑇 𝐒𝑇,𝑥𝐒,𝑥

− 2
(

𝐒𝑇,𝑥𝐒,𝑥𝑥 + 𝐒𝑇,𝑥𝑥𝐒,𝑥
)(

𝐞𝑇 𝐒𝑇,𝑥𝑥𝐒,𝑥𝐞
)

− 2
(

𝐒𝑇,𝑥𝐒,𝑥𝑥𝐞 + 𝐒𝑇,𝑥𝑥𝐒,𝑥𝐞
)(

𝐞𝑇 𝐒𝑇,𝑥𝑥𝐒,𝑥 + 𝐞𝑇 𝐒𝑇,𝑥𝐒,𝑥𝑥
)

.

(107)

Finally, the elastic energy due to nonlinear bending 𝑈𝑒𝑏 , is calculated by integration of the corresponding term in Eq.
(23), by substituting Eq. (101) and Eq. (87) into curvature definition in 𝜅 definition presented in Eq. (97).

A.2. Damping contributions
The expressions of the damping energy, the generalized dissipation forces and their Jacobian matrices are derived

in detail in this appendix.
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Axial contribution
The time derivative of the axial strain �̇�𝑥𝑥, can be computed from Eq. (24), and written in term of generalized
coordinates position 𝐞 and velocity �̇�, and shape function matrix derivative 𝐒,𝑥, as

�̇�𝑥𝑥 = 𝐞𝑇 𝐒𝑇,𝑥𝐒,𝑥�̇�, (108)

which substituted into the definition of 𝑁𝑋𝑣 allows to write the power dissipated due to axial strains 𝑃𝑑𝑥 , as

𝑃𝑑𝑥 =
𝛾𝑥𝐸𝑡𝐴𝑡

2 ∫

𝑙

0
�̇�2𝑥𝑥 d𝑥 =

𝛾𝑥𝐸𝑡𝐴𝑡
2 ∫

𝑙

0
�̇�𝑇 𝐒𝑇𝑥 𝐒𝑥𝐞 𝐞

𝑇 𝐒𝑇𝑥 𝐒𝑥�̇� d𝑥, (109)

which can be expressed in terms of the invariant defined in Eq. (91) as

𝑃𝑑𝑥 =
𝛾𝑥𝐸𝑡𝐴𝑡

2 ∫

𝑙

0
�̇�2𝑥𝑥 d𝑥 = 𝛾𝑥𝐊1𝑖𝑗𝑘𝑛 �̇�𝑖𝐞𝑗𝐞𝑘�̇�𝑛. (110)

The generalized force associated to axial damping 𝐐𝑑𝑥 , is obtained by derivation respect to generalized coordinates
velocity (�̇�) of Eq. 109

𝐐𝑑𝑥 = −
(𝜕𝑃𝑑𝑥

𝜕�̇�

)𝑇

= −
𝐸𝑡𝐴𝑡𝛾𝑥

2 ∫

𝑙

0

(

𝜕(�̇�𝑇 𝐒𝑇𝑥 𝐒𝑥𝐞 𝐞
𝑇 𝐒𝑇𝑥 𝐒𝑥�̇�)

𝜕�̇�

)𝑇

d𝑥

= −𝐸𝑡𝐴𝑡𝛾𝑥 ∫

𝑙

0
𝐒𝑇𝑥 𝐒𝑥𝐞𝐞

𝑇 𝐒𝑇𝑥 𝐒𝑥�̇� d𝑥 = −2𝛾𝑥𝐊1𝑖𝑗𝑘𝑛𝐞𝑗𝐞𝑘�̇�𝑛,

(111)

also expressed considering the invariant 𝐊1𝑖𝑗𝑘𝑛 to avoid the computational overload associated to quadrature calculation
at each step. To conclude, the Jacobian matrix of the axial damping forces is derived and written

𝜕𝐐𝑑𝑥
𝜕𝐞

= −𝐸𝑡𝐴𝑡𝛾𝑥
𝜕
(

∫ 𝑙0 𝐒𝑇𝑥 𝐒𝑥𝐞 𝐞
𝑇 𝐒𝑇𝑥 𝐒𝑥�̇� d𝑥

)

𝜕𝐞

= −𝛾𝑥𝐸𝑡𝐴𝑡 ∫

𝑙

0

(

𝐒𝑇𝑥 𝐒𝑥𝐞
𝜕(𝐞𝑇 𝐒𝑇𝑥 𝐒𝑥�̇�)

𝜕𝐞

)

d𝑥 − 𝛾𝑥𝐸𝑡𝐴𝑡 ∫

𝑙

0

(

𝐞𝑇 𝐒𝑇𝑥 𝐒𝑥�̇�
𝜕(𝐞𝑇 𝐒𝑇𝑥 𝐒𝑥)

𝜕𝐞

)

d𝑥

= −𝛾𝑥𝐸𝑡𝐴𝑡 ∫

𝑙

0

(

𝐒𝑇𝑥 𝐒𝑥𝐞�̇�
𝑇 𝐒𝑇𝑥 𝐒𝑥

)

d𝑥 − 𝛾𝑥𝐸𝑡𝐴𝑡 ∫

𝑙

0

(

(�̇�𝑇 𝐒𝑇𝑥 𝐒𝑥𝐞)𝐒
𝑇
𝑥 𝐒𝑥

)

d𝑥

= −2𝛾𝑥𝐊1𝑖𝑗𝑘𝑛𝐞𝑗𝐞𝑘 − 𝛾𝑥𝐸𝑡𝐴𝑡 ∫
𝑙

0
(�̇�𝑇 𝐒𝑇𝑥 𝐒𝑥𝐞)𝐒

𝑇
𝑥 𝐒𝑥 d𝑥,

(112)

where it is not possible to elude the existence of an integral term that needs to be computed at every time step and
element.
Nonlinear bending contribution
In the case of bending damping, the use of invariant matrices to simplify the calculation and reduce computation time is
not possible and all the expressions need to be calculated by numerical integration, for which six integration points are
used. However, a compact formulation in terms of the shape functions matrix 𝐒 and it first 𝐒,𝑥 and second derivative
𝐒,𝑥𝑥 is presented. Given that the form matrices are function of 𝑥 and all the elements are created owning the same
length, a single evaluation of the shape functions matrices can be used for the quadrature of all the elements at all the
steps, and the use of computing resources is partially alleviated.

Keeping previous comments in mind, the time derivative of the curvature �̇�, needed for the dissipation power
associated to bending 𝑃𝑑𝑏 , can be written considering the definition of 𝚽1 and 𝚽2 presented in Sect. A.1 as

�̇� = 𝜕𝜅
𝜕𝑡

= 1
2
𝚽

− 1
2

1 𝚽
− 3

2
2

𝜕𝚽1
𝜕𝑡

− 3
2
𝚽

1
2
1 𝚽

− 5
2

2
𝜕𝚽2
𝜕𝑡

, (113)
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where all the terms can be written as a function of the first and second derivatives of the form functions matrix
(𝐒,𝑥,𝐒,𝑥𝑥), and the generalized coordinate vector (𝐞), considering Eq. (87), Eq. (101) and its time derivative

𝜕𝚽1
𝜕𝑡

=2 𝐞𝑇 𝐒𝑇,𝑥𝐒,𝑥�̇� 𝐞
𝑇 𝐒𝑇,𝑥𝑥𝐒,𝑥𝑥𝐞 + 2 𝐞𝑇 𝐒𝑇,𝑥𝐒,𝑥𝐞 𝐞

𝑇 𝐒𝑇,𝑥𝑥𝐒,𝑥𝑥�̇� − 2
(

𝐞𝑇 𝐒𝑇,𝑥𝑥𝐒,𝑥�̇� + 𝐞𝑇 𝐒𝑇,𝑥𝐒,𝑥𝑥�̇�
)(

𝐞𝑇 𝐒𝑇,𝑥𝐒,𝑥𝑥𝐞
)

. (114)

and the time derivative of Eq. (103), which can be written as

𝜕𝚽2
𝜕𝑡

= 2𝐞𝑇 𝐒𝑇,𝑥𝐒,𝑥�̇�. (115)

The generalized damping force associated to bending deformation is obtained by derivation with respect to
generalized coordinates time derivative (�̇�) of corresponding power 𝑃𝑑𝑏

𝐐𝑑𝑏 = −
(𝜕𝑃𝑑𝑏

𝜕�̇�

)𝑇

= −𝛾𝑏𝐸𝑡𝐼𝑡 ∫

𝑙

0
�̇�
(𝜕�̇�
𝜕�̇�

)𝑇
d𝑥, (116)

where the term 𝜕�̇�∕𝜕�̇� is defined as

𝜕�̇�
𝜕�̇�

=1
2
𝚽

− 1
2

1 𝚽
− 3

2
2

𝜕
𝜕�̇�

(

𝜕𝚽1
𝜕𝑡

)

− 3
2
𝚽

1
2
1 𝚽

− 5
2

2
𝜕
𝜕�̇�

(

𝜕𝚽2
𝜕𝑡

)

, (117)

and the derivation respect to �̇� of Eq. (115) and Eq. (119) results in

𝜕
𝜕�̇�

(

𝜕𝚽2
𝜕𝑡

)

= 2𝐞𝑇 𝐒𝑇,𝑥𝐒,𝑥, (118)

and

𝜕
𝜕�̇�

(

𝜕𝚽2
𝜕𝑡

)

=2𝐞𝑇 𝐒𝑇,𝑥𝑥𝐒,𝑥𝑥𝐞 𝐞
𝑇 𝐒𝑇,𝑥𝐒,𝑥 + 2 𝐞𝑇 𝐒𝑇,𝑥𝐒,𝑥𝐞 𝐞

𝑇 𝐒𝑇,𝑥𝑥𝐒,𝑥𝑥 − 2
(

𝐞𝑇 𝐒𝑇,𝑥𝑥𝐒,𝑥 + 𝐞𝑇 𝐒𝑇,𝑥𝐒,𝑥𝑥
)(

𝐞𝑇 𝐒𝑇,𝑥𝐒,𝑥𝑥𝐞
)

,

(119)

which allow to complete the force formulation. The Jacobian of the bending damping force respect to the generalized
coordinates 𝐞 is expressed as

𝜕𝐐𝑑𝑏
𝜕𝐞

= − 𝜕
𝜕𝐞

(

(𝜕𝑃𝑑𝑏𝑑
𝜕�̇�

)𝑇)

= −𝛾𝑏𝐸𝑡𝐼𝑡 ∫

𝑙

0

𝜕
𝜕𝐞

(

�̇�
(𝜕�̇�
𝜕�̇�

)𝑇)

d𝑥

= −𝛾𝑏𝐸𝑡𝐼𝑡 ∫

𝑙

0

(𝜕�̇�
𝜕�̇�

)𝑇 𝜕�̇�
𝜕𝐞

d𝑥 − 𝛾𝑏𝐸𝑡𝐼𝑡 ∫

𝑙

0
�̇� 𝜕
𝜕𝐞

(

(𝜕�̇�
𝜕�̇�

)𝑇)

d𝑥.

(120)

Where the term 𝜕�̇�∕𝜕�̇� is defined by Eq. (117) to Eq. (119), the expression 𝜕�̇�∕𝜕𝐞 can be written as

𝜕�̇�
𝜕𝐞

=1
2
𝜕𝚽1
𝜕𝑡

(

−1
2
𝚽

− 3
2

1 𝚽
− 3

2
2
𝜕𝚽1
𝜕𝐞

− 3
2
𝚽

− 1
2

1 𝚽
− 5

2
2
𝜕𝚽2
𝜕𝐞

)

+ 1
2
𝚽

− 1
2

1 𝚽
− 3

2
2

𝜕
𝜕𝐞

(

𝜕𝚽1
𝜕𝑡

)

− 3
2
𝜕𝚽2
𝜕𝑡

(

1
2
𝚽

− 1
2

1 𝚽
− 5

2
2
𝜕𝚽1
𝜕𝐞

− 5
2
𝚽

1
2
1𝚽

− 7
2

2
𝜕𝚽2
𝜕𝐞

)

− 3
2
𝚽

1
2
1𝚽

− 5
2

2
𝜕
𝜕𝐞

(

𝜕𝚽2
𝜕𝑡

)

,
(121)

being possible to calculate the terms 𝜕
(

𝜕𝚽1∕𝜕𝑡
)

∕𝜕𝐞 and 𝜕
(

𝜕𝚽2∕𝜕𝑡
)

∕𝜕𝐞, by derivation of Eq. (114) and Eq. (115)
respectively

𝜕
𝜕𝐞

(

𝜕𝚽1
𝜕𝑡

)

=2
(

𝐞𝑇 𝐒𝑇,𝑥𝑥𝐒,𝑥𝑥𝐞
)

�̇�𝑇 𝐒𝑇,𝑥𝐒,𝑥 + 4
(

𝐞𝑇 𝐒𝑇,𝑥𝐒,𝑥�̇�
)

𝐞𝑇 𝐒𝑇,𝑥𝑥𝐒,𝑥𝑥 + 4
(

𝐞𝑇 𝐒𝑇,𝑥𝑥𝐒,𝑥𝑥�̇�
)

𝐞𝑇 𝐒𝑇,𝑥𝐒,𝑥

+ 2
(

𝐞𝑇 𝐒𝑇,𝑥𝐒,𝑥𝐞
)

�̇�𝑇 𝐒𝑇,𝑥𝑥𝐒,𝑥𝑥 − 2
(

𝐞𝑇 𝐒𝑇,𝑥𝐒,𝑥𝑥𝐞
)(

�̇�𝑇 𝐒𝑇,𝑥𝐒,𝑥𝑥 + �̇�𝑇 𝐒𝑇,𝑥𝑥𝐒,𝑥
)

− 2
(

𝐞𝑇 𝐒𝑇,𝑥𝑥𝐒,𝑥�̇� + 𝐞𝑇 𝐒𝑇,𝑥𝐒,𝑥𝑥�̇�
)(

𝐞𝑇 𝐒𝑇,𝑥𝐒,𝑥𝑥 + 𝐞𝑇 𝐒𝑇,𝑥𝑥𝐒,𝑥
)

,

(122)
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and

𝜕
𝜕𝐞

(

𝜕𝚽2
𝜕𝑡

)

= 2�̇�𝑇 𝐒𝑇,𝑥𝐒,𝑥. (123)

Finally, the term 𝜕
(

(𝜕�̇�∕𝜕�̇�)𝑇
)

∕𝜕𝐞, can be expressed as

𝜕
𝜕𝐞

(

(𝜕�̇�
𝜕�̇�

)𝑇)

=1
2

(

𝜕
𝜕�̇�

(

𝜕𝚽1
𝜕𝑡

))𝑇 (

−1
2
𝚽

− 3
2

1 𝚽
− 3

2
2
𝜕𝚽1
𝜕𝐞

− 3
2
𝚽

− 1
2

1 𝚽
− 5

2
2
𝜕𝚽2
𝜕𝐞

)

+
(

−3
4
𝚽

− 1
2

1 𝚽
− 5

2
2
𝜕𝚽1
𝜕𝐞

+ 15
4
𝚽

1
2
1𝚽

− 7
2

2
𝜕𝚽2
𝜕𝐞

)(

𝜕
𝜕�̇�

(

𝜕𝚽2
𝜕𝑡

))𝑇

− 3
2
𝚽

1
2
1𝚽

− 5
2

2
𝜕
𝜕𝐞

(

(

𝜕
𝜕�̇�

(

𝜕𝚽2
𝜕𝑡

))𝑇
)

+ 1
2
𝚽

− 1
2

1 𝚽
− 3

2
2

𝜕
𝜕𝐞

(

(

𝜕
𝜕�̇�

(

𝜕𝚽1
𝜕𝑡

))𝑇
)

,

(124)

being

𝜕
𝜕𝐞

(

(

𝜕
𝜕�̇�

(

𝜕𝚽1
𝜕𝑡

))𝑇
)

=4𝐒𝑇,𝑥𝐒,𝑥𝐞 𝐞
𝑇 𝐒𝑇,𝑥𝑥𝐒,𝑥𝑥 + 2

(

𝐞𝑇 𝐒𝑇,𝑥𝑥𝐒,𝑥𝑥𝐞
)

𝐒𝑇,𝑥𝐒,𝑥 + 4𝐒𝑇,𝑥𝑥𝐒,𝑥𝑥𝐞 𝐞
𝑇 𝐒𝑇,𝑥𝐒,𝑥

+ 2
(

𝐞𝑇 𝐒𝑇,𝑥𝐒,𝑥𝐞
)

𝐒𝑇,𝑥𝑥𝐒,𝑥𝑥 − 2
(

𝐒𝑇,𝑥𝐒,𝑥𝑥 + 𝐒𝑇,𝑥𝑥𝐒,𝑥
)(

𝐞𝑇 𝐒𝑇,𝑥𝐒,𝑥𝑥𝐞
)

− 2
(

𝐒𝑇,𝑥𝐒,𝑥𝑥𝐞 + 𝐒𝑇,𝑥𝑥𝐒,𝑥𝐞
)(

𝐞𝑇 𝐒𝑇,𝑥𝐒,𝑥𝑥 + 𝐞𝑇 𝐒𝑇,𝑥𝑥𝐒,𝑥
)

,

(125)

and

𝜕
𝜕𝐞

(

(

𝜕
𝜕�̇�

(

𝜕𝚽2
𝜕𝑡

))𝑇
)

= 2𝐒𝑇,𝑥𝐒,𝑥. (126)

Last but not least, the Jacobian respect to the generalized velocity �̇�, also used for the integration using generalized-𝛼
algorithm is written as

𝜕𝐐𝑑𝑏
𝜕�̇�

= − 𝜕
𝜕�̇�

(

(𝜕𝑃𝑑𝑏𝑑
𝜕�̇�

)𝑇)

= −𝛾𝑏𝐸𝑡𝐼𝑡 ∫

𝑙

0

𝜕
𝜕�̇�

(

�̇�
(𝜕�̇�
𝜕�̇�

)𝑇)

d𝑥 = −𝛾𝑏𝐸𝑡𝐼𝑡 ∫

𝑙

0

(𝜕�̇�
𝜕�̇�

)𝑇 (𝜕�̇�
𝜕�̇�

)

d𝑥, (127)

where the expression for all the intervening terms are known.

B. Rigid body formulation
This appendix contains the detailed description of the NC formulation of the rigid body.
The position of any point of the solid can be expressed as the position of the origin of the local coordinate system

𝐫1, plus the rotation matrix 𝐂𝐼𝐵 , associated to the transformation from the local frame, which is parallel to 𝐵, to the
global frame 𝐼 , multiplied by the point coordinates respect to the local frame 𝐱 =

[

𝑥 𝑦 𝑧
]𝑇 , resulting

𝐫 = 𝐫1 + 𝐂𝐼𝐵 𝐱. (128)

The matrix 𝐂𝐼𝐵 is formed by three orthonormal vectors 𝐢𝐵 , 𝐣𝐵 and 𝐳𝐵 , thus 𝐂𝐼𝐵 =
[

𝐢𝐵 𝐣𝐵 𝐤𝐵
]

, conforming a base of
the ℝ3 space. Given the non co-planar condition imposed to the selection of the four points of the solid used for the
solid formulation, the origin of the local frame is set at 𝐫1 and the frame unitary vector are calculated as

𝐢𝐵 =
𝐫𝐴𝐵

∥ 𝐫𝐴𝐵 ∥
, 𝐤𝐵 =

𝐮 × 𝐫𝐴𝐶
∥ 𝐮 × 𝐫𝐴𝐶 ∥

, 𝐣𝐵 = 𝐤𝐵 × 𝐢𝐵 . (129)
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Given the restriction previously exposed for the selection of the base points, the vectors conforming the local base can
be expressed as a linear combination of the form:

𝐢𝐵 = 𝛼1 𝐫𝐴𝐵 + 𝛼2 𝐫𝐴𝐶 + 𝛼3 𝐫𝐴𝐷,
𝐣𝐵 = 𝛽1 𝐫𝐴𝐵 + 𝛽2 𝐫𝐴𝐶 + 𝛽3 𝐫𝐴𝐷,
𝐤𝐵 = 𝛾1 𝐫𝐴𝐵 + 𝛾2 𝐫𝐴𝐶 + 𝛾3 𝐫𝐴𝐷.

(130)

It can be verified that substituting Eq.(130) into Eq.(129) and operating, the position of any point of the solid can be
written as expressed by Eq. (39). Being the definition of the matrix 𝐆

𝐆 =
[

𝑔1𝐈 𝑔2𝐈 𝑔3𝐈 𝑔4𝐈
]

, (131)

where the coefficients 𝑔1 to 𝑔4 depends of the local point coordinates 𝐱 and have the following expressions

𝑔1 = 1 − 𝑥
3
∑

𝑗=1
𝜶(𝑗) − 𝑦

3
∑

𝑗=1
𝜷(𝑗) − 𝑧

3
∑

𝑗=1
𝜸(𝑗), 𝑔2 = 𝑥 ⋅ 𝛼1 + 𝑦 ⋅ 𝛽1 + 𝑧 ⋅ 𝛾1,

𝑔3 = 𝑥 ⋅ 𝛼2 + 𝑦 ⋅ 𝛽2 + 𝑧 ⋅ 𝛾2, 𝑔4 = 𝑥 ⋅ 𝛼3 + 𝑦 ⋅ 𝛽3 + 𝑧 ⋅ 𝛾3.

(132)

It should be noted that vectors 𝜶, 𝜷 and 𝜸 are constant, given the rigid body assumption. Considering Eq. (130) and
(134) the mentioned vector variables, 𝜶, 𝜷 and 𝜸, can be calculated by solving, just once, the linear systems

𝐁𝜶 = 𝐢𝐵 , 𝐁𝜷 = 𝐣𝐵 , 𝐁𝜸 = 𝐤𝐵 , (133)

where the matrix 𝐁 is defined as:

𝐁 =
[

𝐫𝐴𝐵 𝐫𝐴𝐶 𝐫𝐴𝐷
]

. (134)

C. Comparison of cable and truss
This appendix presents additional information allowing the comparison of simulation results under the use of cable

elements, considering axial and bending stiffness, and truss elements, accounting exclusively for axial contribution.
The results correspond to the baseline configuration, presented in Table 1, and a 𝛼 = 10deg.

The times histories for simulation results considering five cable elements and nine truss elements for tethers
idealization are provided. The coning angle, 𝛾 , root coning angle, 𝛾 ′, lagging angle, 𝛽, and root lagging angle, 𝛽′,
for tether 1 are described in Figs. 11 (a1) to (b3), respectively. The Figs. 11 (c1) to (c3), contains the evolution of the
central vehicle absolute angular rates, 𝝎𝐵 . Finally, the central vehicle Euler angles, 𝜓 , 𝜃 and 𝜙, are provided in Figs.
11 (d1) to (d3).

The total thrust is described in Figs. 12 (a1) to (a3), while the total Lagrange multiplier are represented in Figs. 12
(b1) to (b3). In addition, the total thrust moments is presented in Figs. 12 (c1) to (c3) and the total Lagrange multiplier
moment is presented in Figs. 12 (d1) to (d3).
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(a1) (a2)

(b1) (b2)

(c1) (c2) (c3)

(d1) (d2) (d3)

cable nFE=5[−] truss nFE=11[−]

Figure 11: Comparison of simulation results obtained for the E-sail baseline configuration under non-symmetrical (𝛼=10
deg) operation, considering different idealizations for the flexible tethers: (a1) Coning angle 𝛾 for tether 1; (a2) Root coning
angle 𝛾 ′ for tether 1; (b1) Lagging angle 𝛽 for tether 1; (b2) Root lagging angle 𝛽′ for tether 1; (c1) to (c3) Central vehicle
absolute angular rates 𝝎𝐵; and (d1) to (d3) Central vehicle Euler angles 𝜓 , 𝜃 and 𝜙.
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(a1) (a2) (a3)

(b1) (b2) (b3)

(c1) (c2) (c3)

(d1) (d2) (d3)

cable nFE=5[−] truss nFE=11[−]

Figure 12: Comparison of simulation results obtained for the E-sail baseline configuration under non-symmetrical (𝛼=10
deg) operation, considering different idealizations for the flexible tethers: (a1) to (a3) Thrust force components in orbit
frame; (b1) to (b3) Total Lagrange multiplier components in orbit frame; (c1) to (c3) Thrust Moment components in
orbit frame; and (d1) to (d3) Total Lagrange multiplier Moment components in orbit frame.
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D. Supplementary data
The following is the Supplementary material related to this article.
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