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a b s t r a c t

A robust Model Predictive Controller (MPC) is used to solve the problem of spacecraft rendezvous, using

the Hill–Clohessy–Wiltshire model with additive disturbances and line-of-sight constraints. Since a

standard (non-robust) MPC is not able to cope with disturbances, a robust MPC is designed using a

chance-constrained approach for robust satisfaction of constraints in a probabilistic sense. Disturbances

are modeled as Gaussian allowing for an explicit transformation of the probabilistic constraints into

simple algebraic constraints. To estimate the distribution parameters a predictor of disturbances is

proposed. Both robust and non-robust MPC control laws are compared using the Monte Carlo method,

which shows the superiority of the robust MPC.

& 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Technology enabling simple autonomous spacecraft rendezvous
and docking is becoming a growing field as access to space
continues to increase. After decades of development, many
approaches have been proposed and there have been many experi-
ences, positive and negative; see Woffinden and Geller (2008) for an
historical account or Fehse (2003) for the basics. For instance, one of
the most recent developments in the field is ESA’s Automated
Transfer Vehicle (ATV), mainly developed by EADS Astrium, an
expendable unmanned spacecraft designed to resupply the Interna-
tional Space Station. ATV has automatic rendezvous capabilities, as
demonstrated in its first successful flight in 2008.

The field has become very active in recent years, with an
increasingly growing literature; for instance, among many, one
can cite Richards, Schouwenaars, How, and Feron (2002), where
fuel-optimal trajectories with avoidance constraints are designed
using mixed-integer linear programming, Wang, Mokuno, and
Hadaegh (2003), which includes autonomous rendezvous and
docking capabilities into formation flying satellites, Geller
(2006), which uses a linear covariance analysis method to design
impulsive maneuvers, or Breger and How (2008), where safe, fail-
tolerant rendezvous trajectories are planned.

This work approaches the problem of rendezvous of spacecraft
using a chance-constrained Model Predictive Control (MPC) with
on-line prediction of disturbance statistical properties.

MPC (Camacho & Bordons, 2004) originated in the late seven-
ties and has developed considerably since then. There are many
applications of predictive control successfully in use at the
current time, not only in the process industry but also in other
applications ranging from solar technology (Camacho, Berenguel,
& Bordons, 1994) to flight control (Breger & How, 2006). Model
Predictive Control is considered to be a mature technique for
linear and rather slow systems like the ones usually encountered
in the process industry.

The term Model Predictive Control does not designate a
specific control strategy but rather an ample range of control
methods which make explicit use of a model of the process to
obtain the control signal by minimizing an objective function over
a finite receding horizon. In MPC the process model is used to
predict the future plant outputs, based on past and current values
and on the proposed optimal future control actions. These actions
are calculated by the optimizer taking into account the cost
function (where the fuel cost and the future tracking error are
considered) as well as the constraints.

One of the advantages of MPC is that robust control methods can
be easily incorporated. In space vehicles, one can find multiple
sources of disturbances, such as position or velocity measuring errors,
thruster misalignments, or even atmospheric drag; so there is a need
to design robust control schemes to deal with these disturbances.

Thus, MPC is very suitable to deal with the problem of space-
craft rendezvous, which is inherently slow and can be very
precisely modeled by linear equations (shown in Section 2). The
use of robust MPC for rendezvous of spacecraft is not new; for
instance Richards and How (2003) analyzes the advantages of
robust and non-robust MPC for rendezvous compared with other
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methods. In the work of How and Tillerson (2001) the effect of
velocity measurements error during formation flight is taken into
account. Sensor errors are modeled, and a robust MPC scheme is
proposed that satisfies the constraints for the worst case dis-
turbance, recalculating the trajectory only when the spacecraft
get out of a desired error box.

In these works, the key idea is to explicitly take into account
system disturbances and uncertainties and to optimize the
objective function for the worst case scenario (Camacho &
Bordons, 2004). However, for these methods it is necessary to
obtain an estimate on the bound of the disturbances. In Richards
(2004), several methods for estimation of uncertainty properties
are proposed.

This work proposes the use of the so called chance-constrained
model predictive control as an alternative to design robust control-
lers for spacecraft. In this approach, disturbances are incorporated
into the problem constraints using a probabilistic formulation. A
procedure to transform these probabilistic constraints into algebraic
equations is given, and control signals are computed so the con-
straints are satisfied with a desired probability. Chance-constrained
MPC can be found in previous works (mainly for chemical engineer-
ing applications), for instance, in Li, Wendt, and Wozny (2000) and
Schwarm and Nikolaou (1999) where methods are proposed to
deal with linear systems in which uncertainties are present in the
step response coefficients of the systems. These authors consider
that statistical properties of unknown parameters are acquired
off-line.

This work employs an on-line estimator of statistical properties
of disturbances together with the chance-constrained formulation of
the problem. The advantage of the chance-constrained formulation
is that it does not need to know a priori bounds on the size of the
disturbances. However, it needs a distribution model for them; a
Gaussian model is used which allows for an explicit solution of the
probabilistic constraints into algebraic constraints, thus allowing
for fast computation of a solution. The parameters of the Gaussian
model are inferred from past disturbances using the on-line
estimator. To the best of our knowledge, these methods have
not been proposed before to solve the problem of spacecraft
rendezvous.

The structure of this work is as follows. Section 2 describes the
mathematical model for rendezvous spacecraft used for MPC and
the constraints of the rendezvous problem. Next, Section 3 follows
with a formulation of standard (non-robust) Model Predictive
Control suitable for the rendezvous maneuver with continuous
thrust. Then the robust chance-constrained MPC is formulated with
estimation of disturbance properties. Section 4 shows a Monte Carlo
comparison of the robust and non-robust methods. The comparison
is also shown for elliptical target orbits, with the discrepancies due
to eccentricity considered as a disturbance. Section 5 closes the
work with some final remarks.

2. Model of spacecraft rendezvous

There are numerous mathematical models for spacecraft
rendezvous; which one should be used depends on the para-
meters of the scenario. In Carter (1998) a survey of numerous
mathematical models for spacecraft rendezvous can be found.

For instance, if the target is orbiting in a circular Keplerian
orbit, the general equations of the relative movement between
an active chaser spacecraft and a passive target vehicle are
(see Wie, 1998)

€x ¼ 2n _yþn2ðRþxÞ�m Rþx

½ðRþxÞ2þy2þz2�3=2
þux,

€y ¼�2n _xþn2y�m y

½ðRþxÞ2þy2þz2�3=2
þuy,

€z ¼�m z

½ðRþxÞ2þy2þz2�3=2
þuz, ð1Þ

where x, y, and z denote the position of the chaser in a local-
vertical/local-horizontal (LVLH) frame of reference fixed on the
center of gravity of the target vehicle (see Fig. 1), in which x refers
to the radial position, y to the in-track position, and z to the cross-
track position. The velocity of the chaser in the LVLH frame is

given by _x, _y, and _z; and the variables ux, uy, and uz are the inputs
(thrust actuation) acting on the chaser vehicle. R is the target orbit

radius and n¼
ffiffiffiffiffiffiffiffiffiffiffi
m=R3

q
is the angular speed of the target through

its orbit (where m is the gravitation parameter of the Earth,

m¼ 398600:4 km3=s2).
Moreover, if the approaching vehicle is close to the target,

Eq. (1) can be linearized around the rendezvous position, leading
to the linear Hill–Clohessy–Wiltshire (HCW) equations (intro-
duced in Hill, 1878 and Clohessy & Wiltshire, 1960) which
describe with adequate precision the relative position of the
spacecraft. The HCW model is the one used throughout this
paper, including the possibility of disturbances to allow for
unmodeled effects, and the rotation of the target vehicle.

It must be noted that, in many situations, the HCW equations
are not accurate. For instance, if the target vehicle is moving in
a Keplerian eccentric orbit (see Inalhan, Tillerson, & How, 2002)
or if some orbital perturbations are taken into account (see for
example Humi & Carter, 2008). Section 4 considers simulations
with the target orbiting in an eccentric Keplerian trajectory and
shows that the control design (based on the HCW equations)
still works.

Considering that the control inputs are constant for each
sample time interval of duration T, it is possible to derive the
following discrete time version of the HCW equations:

xkþ1 ¼AxkþBukþdk, ð2Þ

where an unknown vector dk has been added to take into account
possible additive disturbances.

In (2), xk, uk and dk denote, respectively, the state, input, and
disturbance at time k, where

x¼ ½x y z _x _y _z�T , u¼ ½ux uy uz�
T , ð3Þ

d¼ ½dx dy dz d _x d _y d_z �T , ð4Þ

where dx, dy, dz, d _x , d _y , and d _z represent the disturbances entering
the system. Both are referred to the LVLH axes as indicated by
their respective subscripts.

Fig. 1. LVLH frame.
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The system (2) will be used for predicting the spacecraft
position in the predictive controller formulation (Section 3).

The matrices A and B appearing in (2) are given by

A¼

4�3C 0 0 S
n

2ð1�CÞ
n 0

6ðS�nTÞ 1 0 �
2ð1�CÞ

n
4S�3nT

n 0

0 0 C 0 0 S
n

3nS 0 0 C 2S 0

�6nð1�CÞ 0 0 �2S 4C�3 0

0 0 �nS 0 0 C

2
6666666664

3
7777777775

, ð5Þ

B¼

1�C
n2

2nT�2S
n2 0

2ðS�nTÞ
n2 � 3T2

2 þ4 1�C
n2 0

0 0 1�C
n2

S
n 2 1�C

n 0
2ðC�1Þ

n �3Tþ4 S
n 0

0 0 S
n

2
666666666664

3
777777777775

, ð6Þ

where S¼ sin nT and C ¼ cos nT. The disturbances are unknown, so
it is assumed that dk is a random vector, with known distribution
but unknown distribution parameters mean d and covariance R,
respectively. These disturbances might arise from errors in the input
signals (as thrusters are typically subject to command uncertainties
and are never perfectly aligned), or they could also be thought of as
unmodeled dynamics (in this case they are not random; however,
the randomness assumption is kept for convenience). In Section 4.3
the disturbance model used in simulations is described.

Even though the disturbances are modeled as additive, in
Section 4.3 it is shown that the control scheme works for other
kind of disturbances such as multiplicative disturbance or mod-
eling errors.

2.1. Constraints on the problem

Two set of constraints are considered in this paper. First, for
sensing purposes (see Breger & How, 2008) it is required that the

chaser vehicle remains inside a line of sight (LOS) area from the
docking point; and second, the amount of thrust that can produce
the actuators is bounded.

The LOS area is a region defined to guarantee that the chaser
spacecraft is all time visible from the docking point. Thus this area
must be defined using a new body fixed frame, since the target
can rotate respect to the LVLH axes used in (2), which are fixed to
the orbit. Then, once the LOS region is formulated in body axes, a
transformation must be used to include these constraints into the
rendezvous problem, which is formulated in the LVLH frame.

The target body fixed reference frame is shown in Fig. 2. In this
reference system, one can define the LOS region by the equations
yBZcxðxB�x0Þ, yBZ�cxðxBþx0Þ, yBZczðzB�z0Þ, yBZ�czðzBþz0Þ

and yBZ0 (where xB, yB and zB denote the coordinates in the
body fixed frame); as shown in Fig. 2.

The LOS constraint is formulated as ALxBkrbL , where

AL ¼

0 �1 0 0 0 0

cx �1 0 0 0 0

�cx �1 0 0 0 0

0 �1 cz 0 0 0

0 �1 �cz 0 0 0

2
6666664

3
7777775, ð7Þ

bL ¼ ½0 cxx0 cxx0 czz0 czz0�
T ð8Þ

and xBk denotes the state in the body fixed reference frame.
Since these constraints are not defined using the same refer-

ence frame than the equation of motion used by the controller (2),
a transformation of LOS constraints from body axes to LVLH frame
must be done. The transformation of these matrices can be easily
computed using projective geometry (see Hartley & Zisserman,
2003).

Using homogeneous coordinates, one can write the equations
of a set of n planes as

pðn�4Þ ~x ¼ 0, ð9Þ

Fig. 2. Line of sight region.
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where each row of p, namely pi, defines one plane; and ~x is the
vector of homogeneous coordinates, that is

~x ¼ ½x y z 1�T : ð10Þ

It can be proven that under a projective transformation
~x ¼H ~x 0, a plane transforms as

p0i ¼ piH, ð11Þ

where H is a transformation matrix in homogeneous coordinates.
In this case, the LOS planes in body axes introduced in (7) and

(8) can be defined as:

0 �1 0 0

cx �1 0 �cxx0

�cx �1 0 �cxx0

0 �1 cz �czz0

0 �1 �cz �czz0

2
6666664

3
7777775

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
pB

xB

yB

zB

1

2
6664

3
7775

|fflfflffl{zfflfflffl}
~xB

¼ 0: ð12Þ

The projective transformation between body axes and LVLH
frame can be defined as

~xB ¼
R3�3 t3�1

01�3 1

 !
|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}

H

~xLVLH, ð13Þ

where R is a rotation matrix from LVLH frame to body axes, and t
is a translation vector which contains the coordinates of center of
the LVLH frame respect to the center of the body axes.

Thus, the set of constraint planes in the LVLH frame can be
computed as:

pLVLH ¼ pBH ð14Þ

For instance, if the target spacecraft is rotating around the
zLVLH axis with angular velocity O, the transformation matrix H is
defined as

H¼

CO SO 0 0

�SO CO 0 0

0 0 1 0

0 0 0 1

2
6664

3
7775, ð15Þ

where CO ¼ cos ðOtÞ and SO ¼ sin ðOtÞ. Thus, the transformed LOS
lines are computed as follows:

�SO �CO 0 0

cxCO�SO �cxSO�CO 0 �cxx0

�cxCO�SO cxSO�CO 0 �cxx0

�SO �CO cx �cxz0

�SO �CO cz �czz0

2
6666664

3
7777775

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
pLVLH

x

y

z

1

2
6664

3
7775¼ 0, ð16Þ

where now x, y and z are the coordinates of the chaser spacecraft
in the LVLH frame.

Using these terms, the LOS constraint matrices become:

A0L ¼

�SO �CO 0

cxCO�SO �cxSO�CO 0

�cxCO�SO cxSO�CO 0 H5�3

�SO �CO cz

�SO �CO cz

2
6666664

3
7777775,

b0L ¼ ½0 cxx0 cxx0 czz0 czz0�
T , ð17Þ

where H5�3 is a matrix full of zeros, with dimensions 5�3. Notice
that in this situation A0L and b0L become time dependent.

Then the LOS constraint in the LVLH frame can be rewritten as:

A0Lxrb0L: ð18Þ

Dealing with the control inputs constraints, it is assumed that
they are bounded above and below

uminrukrumax, ð19Þ

and that uk can take any value in the interval, i.e., it is assumed
that thruster valves can be opened partially to produce the exact
amount of force.

3. Robust MPC formulation

Next a robust MPC scheme is formulated; first some notation
is developed to formulate the general problem, and afterwards it
is explained how to tackle the disturbances appearing in (2).

3.1. Prediction of the state

The state at time kþ j, given the state at time k, and the input
signals and disturbances from time k to time kþ j�1, is computed
by applying recursively Eq. (2):

xkþ j ¼Ajxkþ
Xj�1

i ¼ 0

Aj�i�1Bukþ iþ
Xj�1

i ¼ 0

Aj�i�1dkþ i: ð20Þ

Define now xSðkÞ, uSðkÞ, dSðkÞ as a stack of Np � nx states, Np � nu

input signals, and Np � nx disturbances beginning at time k, where
Np is the prediction horizon, nx is the number of state variables
and nu is the number of control inputs:

xSðkÞ ¼

xkþ1

xkþ2

^

xkþNp

2
66664

3
77775, uSðkÞ ¼

uk

ukþ1

^

ukþNp�1

2
66664

3
77775,

dSðkÞ ¼

dk

dkþ1

^

dkþNp�1

2
66664

3
77775: ð21Þ

Then,

xSðkÞ ¼

AxkþBukþdk

A2xkþ
X1

i ¼ 0

A1�i Bukþ iþdkþ i

� �
^

ANp xkþ
XNp�1

i ¼ 0

ANp�1�i
ðBukþ idkþ iÞ

2
66666666664

3
77777777775

, ð22Þ

which can be written as

xSðkÞ ¼ FxkþGuuSðkÞþGddS, ð23Þ

where Gu and Gd are block lower triangular matrix with its non-
null elements defined by ðGuÞij ¼Ai�jB and ðGdÞij ¼Ai�j (with iZ j),
and the matrix F is defined as:

F¼

A

A2

^

ANp

2
6664

3
7775: ð24Þ

Note that it is assumed that the control logic has perfect
knowledge of the state vector xk.

3.2. Objective function

Taking mathematical expectation, define x̂kþ j9k ¼ E½xkþ j�, the
expected value of xkþ j given xk. Similarly define x̂Sðkþ j9kÞ ¼
E½xSðkþ jÞ�. For the MPC formulation the following cost function

F. Gavilan et al. / Control Engineering Practice 20 (2012) 111–122114
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is used:

JðkÞ ¼
XNp

i ¼ 1

½x̂
T
kþ i9kRðkþ iÞx̂kþ i9k�þ

XNp

i ¼ 1

½uT
kþ i�1Id3�3ukþ i�1�, ð25Þ

where the matrix RðkÞ is defined as

RðkÞ ¼ ghðk�kaÞ
Id3�3 H3�3

H3�3 H3�3

" #
: ð26Þ

In (26), h is the step function, ka is the desired arrival time for
docking, g a large positive number, and Id3�3, H3�3 are, respec-
tively, the identity matrix and a matrix full of zeros, both of
order 3 by 3.

The reason for choosing (26) is that it is desired to arrive at
the origin at time ka (and remain there) and at the same time
minimize the control effort.

Remark 1. The relative position during the maneuver is not impor-
tant as long as constraints are satisfied and docking is reached
on time.

Using (23), and since E½dðkþ iÞ� ¼ d, Eq. (25) can be rewritten as:

JðkÞ ¼ ðGuuSðkÞþFxkþGddSÞ
T RSðGuuSðkÞþFxkþGddSÞþuT

S Q SuS,

ð27Þ

where dS is a stack vector with d repeated Np times, Q S ¼ Id3Np�3Np

and RS is a block diagonal matrix defined by:

RS ¼

Rðkþ1Þ

&

RðkþNpÞ

2
64

3
75: ð28Þ

Using the notation above developed with the LOS constraints
formulated in Section 2.1, the constraints equations for the state
can be rewritten as:

AcxSrbc, ð29Þ

where Ac and bc are given by:

Ac ¼

A0Lðkþ1Þ

&

A0LðkþNpÞ

2
64

3
75,

bc ¼ ½b
0
Lðkþ1Þ � � � b0LðkþNpÞ�

T : ð30Þ

Using Eq. (23), one can reformulate the LOS constraints as
constraints for the control signals in the following way:

AcGuuSrbc�AcFxk�AcGddS , ð31Þ

and similarly it is possible to write (19) as:

~uminruSr ~umax, ð32Þ

being ~umin and ~umax stacks of Np � nu minimum and maximum
bounds of the control input.

3.3. Computation of control input

To compute the control input at time k, one seeks the control
signal that minimizes the cost function over the prediction
horizon, satisfying at the same time the constraints:

min
uS

Jðxk,uS,dSÞ,

s:t: AcGuuSrbc�AcFxk�AcGddS 8dS,

~uminruSr ~umax: ð33Þ

Since the cost function is quadratic and the constraints are
linear, if the future disturbance d is perfectly known (for example,
in the undisturbed case) then (33) can be solved; the control uk is

set to the first three components of uS, and the computation is
repeated for every time step.

However, if the disturbances are not known but rather their
mean and variance are known, it is necessary to modify (33), as it
is explained next.

3.4. Robust satisfaction of constraints

To eliminate the disturbances from (31), a bound of the term
�AcGddS must be found to enforce the satisfaction of constraints
in presence of disturbances. Two procedures are given, depending
on which disturbance properties are available.

Assume first that some bounds for the disturbances are known,
i.e., d has the property that ðdxÞminrdxrðdxÞmax and similarly for
the rest of the components of d. Those bounds are summarized as
AddSrcd. Hence, it is assumed that the region defined by this
constraint is enclosed by a polytope. Then, it is possible to eliminate
the disturbances from (31) by bounding the term �AcGddS. This
would give

AcGuuSrbc�AcFxk�AcGddSrbc�AcFxkþbdðkÞ, ð34Þ

where bdðkÞ is column vector, whose i-th term ðbdðkÞÞi is given by

ðbdðkÞÞi ¼min
dS

aidS,

s:t: AddSrcd, ð35Þ

where ai is the i-th row of the matrix �AcGd. Since the function
to minimize is linear and the feasible region is enclosed by a
polytope, this minimization can be rapidly solved.

Eq. (34) represents the constraints computed for the worst-

case disturbances. Hence, enforcing (34) the constraints (29) are
robustly satisfied, i.e., satisfied for any possible disturbance.

However, if the disturbance bounds are not precisely known,
but the disturbance is modeled as a random vector, the inequality
bdðkÞr�AcGddS is made to be satisfied with a certain probability.
This probability should be near one, thus guaranteeing that the
inequality is satisfied for almost all disturbances.

Assuming that the disturbances are normally distributed

(d�N6ðd,RÞ), and that their mean (d) and covariance matrix

(R¼RT 40) are known, it is possible to write (see Rencher, 1998)

d�N6ðd,RÞ ) ðd�dÞTR�1
ðd�dÞ � w2ð6Þ, ð36Þ

where w2ð6Þ is a chi-square probability distribution with six
degrees of freedom.

Assuming that the statistical properties of the disturbances are
time-invariant, Eq. (36) is valid for the disturbances at all times
kþ j for j¼ 0, . . . ,Np�1:

ðdkþ j�dÞTR�1
ðdkþ j�dÞ � w2ð6Þ,

j¼ 0, . . . ,Np�1: ð37Þ

Hence, finding a from the equation:

Pðw2ð6ÞraÞ ¼ p, ð38Þ

it is guaranteed with probability p that

ðdkþ j�dÞTR�1
ðdkþ j�dÞra: ð39Þ

Thus, p is a parameter of the control design and should be close
to unity.

Then, dividing the inequality by a, bdðkÞ can be found by solving
the following minimization problem for each row i of AcGd.

ðbdðkÞÞi ¼min
dS

aidS,

s:t: ðdkþ j�dÞT ðaRÞ�1
ðdkþ j�dÞr1,

j¼ 0, . . . ,Np�1, ð40Þ

F. Gavilan et al. / Control Engineering Practice 20 (2012) 111–122 115
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where ai and ðbdðkÞÞi are the i-th row of the matrix �AcGd and the
vector bdðkÞ, respectively.

Now, breaking down the stack vector dS into each of its
components dk up to dkþNp�1, it is possible to write aidS ¼PNp�1

j ¼ 0 aijdkþ j. Thus, the minimization problem can be written as:

ðbdðkÞÞi ¼min
dkþ j

XNp�1

j ¼ 0

aijdkþ j,

s:t: ðdkþ j�dÞT ðaRÞ�1
ðdkþ j�dÞr1,

j¼ 0, . . . ,Np�1: ð41Þ

Defining zðjÞ ¼H
1
2ðdkþ j�dÞ, where H¼ ðaRÞ�1 (being

H¼HT 40), it is possible to write (41) as:

ðbdÞi ¼min
zðjÞ

XNp�1

j ¼ 0

ðaijH
�1=2zðjÞþaijdÞ,

s:t: zðjÞT zðjÞr1, j¼ 0, . . . ,Np�1, ð42Þ

which can be rewritten as

ðbdÞi ¼
XNp�1

j ¼ 0

min
zðjÞ
ðaijH

�1=2zðjÞÞþaijd

� �
,

s:t: zðjÞT zðjÞr1,

j¼ 0, . . . ,Np�1: ð43Þ

Problem (43) can be explicitly solved independently for each j

via the Lagrange formalism, yielding the minimum at

znðjÞ ¼ �
H�1=2aT

ijffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aijH

�1aT
ij

q : ð44Þ

Substituting into (43) the rows of the vector bdðkÞ are

ðbdðkÞÞi ¼
XNp�1

j ¼ 0

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aijH

�1aT
ij

q
þaijd

� �
: ð45Þ

Once the vector bdðkÞ is calculated (using Eq. (35) or (45)), the
control input at time k is now computed from

min
uS

Jðxk,uS,dSÞ,

s:t: AcGuuSrbc�AcFxkþbdðkÞ,

~uminruSr ~umax, ð46Þ

where now everything is known except for the control inputs to
be computed.

In simulations, the probabilistic method is used to compute
the robust MPC control.

3.5. Disturbance estimation algorithm

The robust satisfaction of constraints presented in Section 3.4
requires knowledge of disturbance statistical properties. How-
ever, it is often the case that such properties are completely
unknown and have to be obtained on-line.

To do so, it is assumed that the disturbances are normally
distributed with mean d and covariance matrix R, i.e., d�N6ðd,RÞ.

At each time k, d and R are estimated taking into account all
past disturbances, which can be computed a posteriori as

di ¼ xiþ1�Axi�Bui, ð47Þ

for i¼ 1, . . . ,k�1.
Then d̂k and R̂k, the estimates of d and variance R at time k,

based on disturbances up to time k�1, are given by

d̂k ¼

Pk�1
i ¼ 0 e�lðk�iÞdiPk�1

i ¼ 0 e�lðk�iÞ
, ð48Þ

R̂k ¼

Pk�1
i ¼ 0 e�lðk�iÞðdi�d̂kÞðdi�d̂kÞ

TPk�1
i ¼ 0 e�lðk�iÞ

, ð49Þ

where l40 is a forgetting factor. Even though it has been assumed
that the disturbances are just a random variable, this would help
accommodate the case in which they are a random process, i.e.,
their statistical properties change with time.

Define gk ¼
Pk�1

i ¼ 0 e�lðk�iÞ. Using the sum of a geometric pro-
gression,

gk ¼
e�lð1�e�lkÞ

1�e�l
: ð50Þ

Then, it is possible to define recursive formulas for (48) and (49)
as follows:

d̂k ¼
e�l

gk

ðgk�1d̂k�1þdk�1Þ, ð51Þ

R̂k ¼
e�l

gk

ðgk�1R̂k�1þðdk�1�d̂kÞðdk�1�d̂kÞ
T
Þ, ð52Þ

with d̂0 ¼ 0, R̂0 ¼ 0.
These formulas allow to save memory, only needing to store

the last estimate of the mean and covariance.
Once the mean and covariance are estimated, the procedure

outlined in Section 3.4 can be used.

4. Simulation results

4.1. Rendezvous model

It is important to remark that although the controller shown in
Section 3 is designed using the linear HCW model (2), in simula-
tions the general nonlinear model of spacecraft rendezvous (1)
has been considered.

Dealing with the model parameters, it has been considered that
the case of a target spacecraft flying in a circular orbit at 500 km
of altitude, which means that R0 ¼ 6878 km and n¼ 1:1068�
10�3 rad=s.

Concerning the constraints, the maximum and minimum
amount of acceleration that can provide the chaser’s actuators
are umax ¼ 10�3 m=s2 and umin ¼�10�3 m=s2, respectively (all the
actuators have the same values). The LOS area is estated with the
parameters: x0 ¼ z0 ¼ 1:5 m and cx ¼ cz ¼ 1 (see Fig. 2).
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Fig. 3. Non-robust MPC without disturbances (solid line) and with disturbances

(dashed line). For clarity, only the XY plane is shown.
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In addition, in some simulations it has been considered that
the target vehicle has an eccentric orbit. In these cases, the
motion of each vehicle is simulated separately using the general
equation for a Keplerian orbit (which can be found in Wie, 1998),
and then differentiating both trajectories to obtain the relative
position.

4.2. Disturbances model

When designing the control laws, it was considered that the
commanded forces were equal to ureal ¼ ½ux uy uz�

T , which are the
real forces applied to the spacecraft. To include disturbances, ureal

is modeled not as being the exact control signal commanded by

the controller, but rather as

ureal ¼ TðdhÞðuþd1Þ, ð53Þ

where u is the commanded output computed by the control laws,
d1 is a random variables, and TðdhÞ is a rotation matrix where dh is
a vector of small, random angles modeling imperfect alignment.

Hence in this case the disturbance d¼ BððTðdhÞ�IdÞuþTðdhÞd1Þ,
which is not strictly an additive disturbance. The matrix B is
defined in Eq. (6).

These disturbances model several physical aspects. First, the
attitude control of the chaser is not perfect, so one can expect
some alignment errors; those are modeled by TðdhÞ. It can be
noted that the disturbance attitude angles may not have zero
mean value, since some bias in the sensors or actuators can exist
and lead to a steady state error. On the other hand, with d1 one
can model thrust disturbances. Notice that it might have nonzero
mean value, introducing some bias in the thrust level.

Finally, it must be noted that in several simulations, an
eccentric orbit of the target spacecraft have been considered, so
equations (1) are no longer valid. The new equations of move-
ment are given in reference Inalhan et al. (2002). Since the
circular equations (1) are similar to the eccentric equations (at
least for moderate values of eccentricity) the difference between
the models can be thought of as unmodeled dynamics.

4.3. Simulation results

4.3.1. Robust vs non-robust controller

Next the results obtained by the non-robust controller (33) are
shown, where the disturbances are just ignored. In Fig. 3, two
scenarios are considered: one ideal case in which disturbances do
not exist (solid line) and another more realistic situation in which
thrusters disturbances and misalignments errors are present. The
non-robust controller achieves perfect rendezvous for the nom-
inal case satisfying the constraints, whereas in the perturbed case
the controller violates the constraints and is not able to reach the
target.
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Introducing now the robust MPC controller designed in
Section 3.4, a rendezvous maneuver in a disturbed environment
is shown in Fig. 4, where, it can be seen that now the chaser
spacecraft’s path is maintained inside the safe zone. In Fig. 5,
the control signals computed by the robust MPC controller
(solid lines) and the real forces applied to the spacecraft (dotted
lines) are presented. Notice the disturbances in the real control
signals applied, which have severe bias and large typical
deviation.

The trajectory followed by the chaser spacecraft is also shown
in Fig. 6. It can be seen that the controller is not only able to make
the spacecraft follow a safe path, but also guarantees that the
target is reached on time.

Since the disturbances introduced in the model are random
variables with normal distribution of probability (see Section 4.2),
a Monte Carlo analysis is conducted to get more confidence on
the controller design. A number of 1220 simulations have been
done for both robust and non-robust controllers, using same
the parameters and disturbance distribution for both cases. The
selected parameters were Np¼60, g¼ 1000, ka¼60, p¼0.975,
l¼ 0:1 and T ¼ 40 s. Regarding the disturbances, since the mean
of the bias in the thrust force (d1) has a strong influence in the
simulation result, its value was selected for each simulation in the
interval diA ½�0:05umax, 0:05umax�m=s, with constant probability.
The standard deviation for d1 was

ffiffiffiffiffiffi
Sii

p
¼ 0:01umax. The statistical

properties of the misalignment disturbance vector dh were set to
the same values as shown in Fig. 5.

The result of the analysis is summarized in Table 1, where the
advantages of the robust MPC can be seen. In 100% of the
scenarios simulated, the robust controller was able to achieve
rendezvous, guiding the chaser spacecraft to a docking position
less than 20 cm (d denotes the distance to the target at the arrival
time). The non-robust controller only could achieve the rendez-
vous in the 40.9% of the cases, reaching docking positions farther
than the robust one.

In addition, it can be seen that the robust controller is not only
able to achieve the rendezvous with more guarantees but it also
can do the maneuver with less cost. Fig. 7 plots the mission cost
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Fig. 6. Time evolution of the system states (d1 : d ¼ ½0:2592 0:8065 �0:0533� � 10�4 ,
ffiffiffiffiffiffi
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p
¼ 0:5� 10�5; dh : d i ¼ 0:0436,
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Sii

p
¼ 0:0436). Controller parameters are

Np¼60, g¼ 1000, ka¼60, p¼0.95, l¼ 0:23.

Table 1
Results of a simulation batch of 1220 cases for both robust and non-robust

controllers. d is the distance the relative distance at the desired arrival time.

Performance indicator Non-robust

MPC (%)

Robust

MPC (%)

Constraint violations 59 0

dr0:2 m 19 100

0:2 mrdr0:5 m 22 0

0:5 mrd 0 0

Mean cost (m/s) of successful missions 0.2444 0.2039
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obtained for each simulation, against the L1-norm of the mean
disturbance vector d1. Notice that only successful missions are
depicted in the figure and that the number of points corresponding
to the non-robust MPC is significantly smaller than the number
corresponding to the robust MPC, where all missions were success-
ful. For both controllers, the cost seems to increase with 9d191, but in
most cases, the robust controller can achieve the rendezvous with
less cost than the non-robust one.

This fact is appreciated in Fig. 8 where is plotted the increment in
the mission cost of the non-robust controller respect to the robust
one, in the cases when both controllers can achieve rendezvous
without constraints violations. It can be found that using the non-
robust controller implies a 15% of cost increment.

4.3.2. Eccentric orbit

Unmodeled dynamics due by eccentricity (e) in the target orbit
are considered next. Several values of the target eccentricity are
tested for both robust and non-robust controllers, without con-
sidering thruster and misalignments disturbances.

The controller parameters are set to the same values as in
the Monte Carlo analysis. The results obtained can be seen in
Figs. 9 and 10 (notice that only the XY-plane is represented for
more simplicity). It is shown that even in the absence of thruster
or misalignments disturbances, the presence of an eccentric orbit
causes the non-robust controller to violate the constraints (see
Fig. 9), while the robust controller is able to achieve the rendezvous
without constraint violations (Fig. 10).

4.3.3. Rotating target

In the previous simulations, the target spacecraft has a fixed
attitude in the LVLH frame (this means that the target spacecraft
has a rotation respect to an inertial reference system with orbital
frequency n), however, it might be possible to find situations in
which the target spacecrafts is not fixed to this frame.

For instance, let consider the case in which it is desired that
the target spacecraft is pointing to a fixed direction (for example,
to a fixed star). Then it must have some angular velocity respect
to the LVLH frame, since these axes are rotating with angular
velocity OLVLH ¼ nkLVLH respect to an inertial reference frame.

Then, to maintain the target attitude fixed to an inertial frame,
it must have an angular velocity Otarget ¼�nkLVLH . Thus, the LOS
constraint (which are defined in a body fixed reference frame)
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must be transformed into the LVLH frame using the procedure
given in Section 2.1, being the transformation matrix:

H¼

cosðntÞ �sinðntÞ 0 0

sinðntÞ cosðntÞ 0 0

0 0 1 0

0 0 0 1

2
6664

3
7775: ð54Þ

Notice that these constraints are time dependent.
In Fig. 11 is shown the rendezvous maneuver with the target

spacecraft rotating at Otarget ¼�1:1068� 10�3kLVLH . It can be seen

that the chaser is able to follow the LOS-zone movement, and as
shown in Fig. 13 (which depicts the time evolution of the system
states) it achieves rendezvous at the desired time. Additionally,
the applied control signals during the maneuver are shown
in Fig. 12.

5. Concluding remarks

Autonomous rendezvous and proximity operations are a vital
element to enable a more operationally responsive space. These
procedures are rather complex and technologically demanding; in
particular, increasing autonomy presents a serious challenge from
the point of view of control theory. Thus, there is an emerging
necessity to develop easy-to-implement rendezvous control laws
able to comply with severe safety restrictions and cope with
disturbances and unmodeled dynamics, while at the same time
optimizing fuel consumption. This work described a robust Model
Predictive Controller that solves the rendezvous problem using
the Hill–Clohessy–Wiltshire model with disturbances and line-of-
sight constraints. The performance of the controller is demon-
strated in simulations. It is first shown that standard Model
Predictive Control is not able to cope with disturbances, justifying
the necessity to formulate a robust controller. It is shown that
using a Gaussian probabilistic model for the disturbances and a
disturbance estimator to compute the estimated disturbance
mean and covariance, it is possible to formulate a robust Model
Predictive Control that robustly satisfies the problem constraint
without significantly increasing the control law computation
time. Even though simple models (Hill–Clohessy–Wiltshire ren-
dezvous model, additive Gaussian disturbances, thrusters capable
of a continuous range of thrust) were used in the control law
formulation, simulation results demonstrate the controller effec-
tiveness for more complex situations, such as multiplicative
disturbances or unmodeled dynamics (due to eccentricity of the
orbit of the target spacecraft). In conclusion, the robust model
predictive controller described provides an implementable, fuel-
efficient, and computationally feasible control algorithm for
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spacecraft rendezvous procedures in the presence of model uncer-
tainties and disturbances.
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