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Abstract

This work outlines and assesses several methods for the detection of manoeuvres in Low Earth Orbit (LEO) from surveillance radar data. To be
able to detect manoeuvres, the main starting assumption is that the object under analysis has an orbit known with a sufficient degree of precision.
Based on the precise (a posteriori) orbit and radar data, several manoeuvre detection methods are presented; one is based on unscented Kalman
filtering, whereas two others algorithms are based on reachability analysis of the state, which correlates its prediction set with the next track from
the radar. The filtering algorithm can be extended for several radar tracks, whereas the reachability-based methods are more precise in detecting
manoeuvres. Then, to inherit the best properties of both classes of algorithms, a manoeuvre detection filter that combines both concepts is finally
presented. Manoeuvre detection results are analysed first for simulated scenarios—for validation and calibration purposes—and later for real data.
Radar information comes from the Spanish Space Surveillance Radar (S3TSR), with real manoeuvre information and high-quality ephemerides.
The results show promise, taking into account that a single surveillance radar is the only source of data, obtaining manoeuvre detection rates of
more than 50% and false positive rates of less than 10%.

c© 2022 COSPAR. Published by Elsevier Ltd All rights reserved.

1. Introduction 1

In the field of Space Surveillance and Tracking (SST), accurate orbital determination and manoeuvre detection is of upmost 2

importance to infer object’s orbital information and their future behaviour, as well as to be able to carry out tasks such as pre- 3

diction of potential conjunctions with operating satellites, taking avoidance orbital corrections, predicting re-entries, identifying 4

fragmentations or updating orbital elements of known satellites, among others. 5

Satellites performing unknown manoeuvres pose a challenge when trying to associate the new collected observations (obtained 6

by laser, radar, or by any other means from the SST infrastructure) with the previously known reference orbits (which are stored 7

in SST catalogues). Indeed, one of the main motivations of manoeuvre detection is that it can significantly reduce the number of 8

uncorrelated targets detected by the SST sensors infrastructure. Most of these uncorrelated objects are known satellites, which have 9

performed unpublished manoeuvres, in such a way that their new orbits do not match with the predictions. 10
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This work develops several methods for the detection of manoeuvres in Low Earth Orbit (LEO) from radar data, providing11

first some preliminary numerical initial results obtained from simulated orbits and radar data. Since the final aim is to integrate12

these algorithms in the S3T (Spanish Space Surveillance Tracking) Cataloguing System in order to provide routine automatic13

manoeuvre detection capabilities to the system in the future, a validation of all the algorithms is carried out with real tracks from14

S3TSR (Gomez et al., 2019), the Spanish surveillance radar developed, installed and validated by Indra with the funding of the15

Spanish Government under the technical and contractual management of ESA on behalf of Centro de Desarrollo Tecnológico e16

Industrial (CDTI). Manoeuvre information and ephemerides are obtained from ESA/ESOC and DLR/GSOC to assess the results,17

for several scenarios. The methods were implemented by making use of the space-dynamics library OREKIT (see Mainsonobe18

et al. (2012)).19

Maneuver detection has received increased attention in recent times and, correspondingly, diverse results have already appeared20

in the literature. For instance, Jaunzemis et al. (2016) consider Gaussian-mixture models and binary hypothesis testing; manoeuvre21

detection is developed using Mahalanobis distance and control distance metrics, and tested for geostationary satellites with optical22

measurements. In Wang et al. (2021), using an in-house simulated space catalog environment, the Gaussian Binary Classification23

method is used to detect several types of maneuvers; results are validated only by simulation. In Escribano et al. (2022), a Markov24

Chain Monte Carlo sampling scheme is used to test the post-maneuver observation in terms of control distance metric, the result25

is tested for geostationary satellites with optical measurements. Both Yu et al. (2021) and Clark & Lee (2020) use TLE analysis;26

the first work employs a dynamical model of the manoeuvre (considering intense manoeuvres), whereas the second uses parallel27

processing to analyze TLE historical data. Finally, in Serra et al. (2021), an approach combining optimal control theory and28

admissible regions is developed and tested for geostationary satellites with optical measurements.29

The contribution of this paper, compared with other existing works in the literature, is the development of algorithms and metrics30

that can work with a single surveillance radar, a situation rarely considered in the previous literature; having a single radar, one has31

a rather small number of measurements (tracks are usually 5-20 plots) and large gaps in between tracks (1 to 3 days). In addition,32

the considered set of satellites are in Low Earth Orbit (thus subject to considerable perturbations), and perform moderately small33

manoeuvres, compared with most analysis. Based on previous works, we use two manoeuvre detection metrics and formulate two34

orbit determination filters with manoeuvre detection capabilities; additionally, we develop a novel method to interpret the control35

distance metric based on percentiles. The algorithms are tested not only in simulation, but also against real data for several LEO36

satellites. Part of these results were already presented in conference form in Vazquez et al. (2021a,b).37

The structure of this paper is as follows. After this brief introduction, a literature review is performed for the two main families38

of methods that can be used to detect manoeuvres, namely: Kalman filters (based on orbit determination approaches) in Section39

2, and reachability analysis-based methods (which compare reachable predicted sets with obtained measurements) in Section 3.40

The particular implementations selected for this work are presented in Sections 4 and 5, respectively for each family, together with41

some preliminary proof-of-concept results. Then, in Section 6 a manoeuvre detection filter based on a combination of filtering and42

reachability is developed. Next validation results are presented for simulated (Section 7) and real scenarios (Section 8). The paper43

is concluded in Section 9 with some final remarks and future work.44

2. Manoeuvre detection filters45

Manoeuvre detection filters (MDFs) employ orbit determination in the process of detecting if some manoeuvre has been per-46

formed; they are quite useful, since they are able to correlate new (post-manoeuvre) orbits with previous (pre-manoeuvre) known47
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orbits, thus paving the way to perform orbit determination using quite fewer measures (as compared to a conventional orbit de- 48

termination problem). This fact is shown, for instance, in Goff (2015) where the author compares the accuracy and cost of orbit 49

determination using a manoeuvre detection filter on known flying objects, versus a conventional (cold-started) orbit determination 50

procedure. At its simplest, a manoeuvre detection algorithm relies on Statistical Orbit Determination (SOD) methods (see Schutz 51

et al. (2004) for a general overview). Much has been written about the estimation and tracking of spacecraft using radar (or laser) 52

measures, and classical methods like the Batch Least Squares (BLS) method, Extended Kalman Filter (EKF), and the Unscented 53

Kalman Filter (UKF)—and even non-gaussian techniques like the Particle Filter—are well known in the literature. See Vetter 54

(2007) for a brief revision on the historical and contemporary methods for orbit determination. 55

The problem with traditional methods arises when the target performs unknown manoeuvres in-between the measurements 56

windows. Then, the propagated orbit in which the estimation methods are based may become too inaccurate (since they do not take 57

into account the manoeuvres) as they have become “overconfident” due to their covariance becoming too small (a filter exhibiting 58

such behaviour is known as a “smug” filter). Thus, a manoeuvring scenario may lead to severe outliers and convergence problems in 59

conventional filtering techniques; there exist methods to handle these issues and enhance the robustness of these classical algorithms, 60

to avoid divergence problems. For instance, some possible techniques are covariance inflation or fading memory (Goff, 2015), 61

among others (Jiang et al., 2019). These mechanisms would be activated if a manoeuvre is detected; using the filter residuals, a 62

decision logic can be put in place (Goff, 2015; Guang et al., 2018) to estimate when a manoeuvre has been performed. 63

Although not considered for this work there exist solutions with extra layers of complexity for problems with highly unstructured 64

uncertainty. These are the Multiple Model filters, suited for tracking problems and based on a family of elemental filters which 65

can be designed to model different aspects of the system behaviour, together with a probabilistic mixing logic to select the best 66

estimation combining all the outputs of the elemental filters (Li & Jilkov, 2005). 67

2.1. State of the art on manoeuvre detection filters 68

Next, a representative sample of MDFs from the literature are analysed. 69

Woodburn et al. (2003) presents a fixed interval smoother for manoeuvre reconstruction; this algorithm gives a simple approach 70

that consists of a sequential filter used to move forward across the manoeuvre and a fixed interval smoother to move backwards 71

across the manoeuvre. The sequential filter serves to process all the tracking data prior to the manoeuvre to provide an optimal 72

pre-manoeuvre state estimate and covariance. Radar data is processed after the time of the manoeuvre until the uncertainty in 73

the state estimate returns to a normal non-manoeuvre condition. The difference between the post-manoeuvre and pre-manoeuvre 74

smoothed states may now be extracted as the estimate of the impulse (with covariance information used to characterize manoeuvre 75

uncertainty). A drawback of this method is that it is assumed, without guarantees, that the filter will quickly converge on a good 76

state estimate after a manoeuvre has passed. 77

A variable structure estimator is proposed in Guang et al. (2018), where a manoeuvre detection metric is used to design an 78

estimator with an additional manoeuvre observer module. In this scheme an EKF is used together with a manoeuvre observer 79

(which is in turn triggered when the manoeuvre detection metric reaches a certain threshold). Then, the manoeuvre observer 80

estimates the manoeuvre acceleration, and sends that information to the EKF, which takes into account the estimated acceleration to 81

improve the orbit propagation in its algorithm. The “manoeuvre observer” is based on a simple first-order observer, which produces 82

an estimation of the acceleration to be fed back to the EKF. The method is simple, but assumes that radar measurements are always 83

available (with a frequency of 5 Hz) so that manoeuvres are always observed; that would require having data from a very large 84

radar network. 85
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A joint kinematic/dynamic filter is proposed in Ye et al. (2021) (with simulations of three radars and a satellite in a Medium86

Earth Orbit) and consists of two filters running in parallel. The first and main filter is a traditional orbit determination Kalman87

filter whereas the second filter is a kinematic filter and utilizes some representative random processes (with design parameters) to88

describe the orbital motion. While the detailed motion is not captured at all, the changes caused by orbital manoeuvres can be89

captured by those flexible random processes, although it requires a complex tuning.90

In Goff et al. (2015b) (see also Goff et al. (2015a)) the results show that a filter-through Interacting Multiple Model orbit91

determination filter (EKF or UKF) can converge on a post-manoeuvre orbit with similar performance to Initial Orbit Determination92

(IOD) approaches, based on multiple filters running with different levels of covariance inflation. Once the post-manoeuvre orbit is93

known with a certain degree of accuracy, to reconstruct a single manoeuvre, one determines the time when the orbits intersected or94

became very close.95

3. Reachability analysis96

In this section the idea of Reachable Sets (RS) and their analysis (Reachability Analysis, RA) is introduced, as well as their97

relationship with control and estimation of systems. The technique has been used, for instance, in the context of rendezvous of98

spacecraft (Sanchez et al., 2019), and has many applications in the area of safety for trajectories of vehicles (Xu et al., 2019). This99

background material constitutes the foundational framework for Section 5.100

Citing Holzinger & Scheeres (2009), “the concept of reachability is central to Space Situational Awareness (SSA)”, which101

underscores the interest of this concept for the present work. Reachability Analysis deals with the study and applications of102

Reachable Sets, which are defined as follows: given a system that evolves from an initial condition (or set of initial conditions),103

and possibly has some control inputs, the reachable set is the set of states at which the system can arrive (i.e., the states that can be104

reached) at a given time.105

To more formally define a RS, let us consider the system governed by the differential equation ẋ = f (t, x, u) (where x is the state,106

t the time and u a possible control input), which for a given initial condition and control spawns a trajectory x(t). This solution,107

if the dependencies are explicit, defines the state trajectories flow x(t) = ϕt,t0 (x0, u). Consider an initial set (instead of a point) of108

initial conditions at t0, and denote it by Ω0. Consider the set of all possible actuations U. Then, the RS from Ω0 at time t, denoted109

as Ω(t), is defined (assuming there are no collisions or singularities for the flow) as110

Ω(t) = {x ∈ Rn : x = ϕt,t0 (x0, u), x0 ∈ Ω0, u ∈ U}. (1)

Even in the linear case, the dependence on the control and initial conditions can make the computation of these sets quite difficult.111

If the dynamics are non-linear (as in orbital mechanics), a state transition matrix is not available, and therefore the computation112

of reachable sets becomes highly intensive (Kurzhanski & Varaiya, 2000). Our approach interprets the differential equation in a113

stochastic sense (Jain et al., 2019), with initial conditions given as a certain initial probability distribution, so that one can consider114

the starting set Ω0 a confidence region of that probability distribution, and the RS its evolution, Ω(t). In principle, with six states115

(three pertaining to position and three to velocity) that may have some degree of uncertainty, one would require to propagate the116

boundary of a six-dimensional closed manifold, as well as the probability distribution function inside of it.117

Thus, in this project a particle-based approach is applied instead (very much in the spirit of the Montecarlo method), in which118

one samples the initial confidence region, to then propagate those sample points. Since a large number of particles (trajectories)119

need to be propagated, the use of differential algebra techniques such as Taylor expansion over an initial condition can be employed120



Given-name Surname etal / Advances in Space Research xx (2022) xxx-xxx 5

in order to obtain Ω(t) in a reasonable amount of time (see Armellin et al. (2010) and Pérez et al. (2013)). Notice that this in 121

fact represents a higher-order approach than the classical propagation of covariances (linear approach), that relies on Jacobians 122

and the assumption that Gaussian distributions keep being Gaussian, which does not hold true here since the non-linearity of the 123

propagation “distorts” the distribution, making it lose its Gaussian shape (Holzinger & Scheeres, 2009). 124

In addition, one of the most interesting applications to SST of reachability analysis is the problem of object correlation. Looking 125

at the literature, this problem has indeed received considerable attention in the last years. There are a number of metrics that can be 126

used such as the Mahalanobis distance (Hall & Singla, 2019) and techniques that can help when several measurements are present, 127

such as the use of attributables (Vananti et al., 2017; Reihs et al., 2021), but these do not explicitly take into account the possibility 128

of manoeuvring objects, which is critical since small orbital corrections can produce outsized state discrepancies at the long term. 129

This problem is tackled in Singh et al. (2012); Holzinger et al. (2012) computing (by means of optimal control) the minimum 130

possible manoeuvre that connects the previous orbit with the new measurements. In Siminski et al. (2017) this optimal control 131

approach is compared with the use of historical data, which is found more accurate when available (at least for the GEO example 132

considered in that paper) and if the manoeuvres are predictable. These ideas are used in this work to develop manoeuvre detectors. 133

4. An orbit determination filter with basic manoeuvre detection capabilities 134

To decide which filter to develop for this work, it is important to take into account that the the Spanish survey radar S3TSR 135

(Gomez et al., 2019) is the only source of measurement data considered for this project. Being a single radar, this implies that 136

objects will have long windows without observation in-between, from about half a day up to 3 days, and then a radar track, 137

typically with 5-20 individual plots, will become available. Therefore, designs relying on a large number of measurements and/or 138

frequent measurements are not implementable. The scheme of Guang et al. (2018) is adapted, with manoeuvre detection based on 139

residue analysis. As for the choice of the filter type itself, the UKF seems to be the superior choice. The rationale of this choice is as 140

follows. Since an EKF relies on linearisation to obtain the evolution of the state error covariance, scenarios with long propagation 141

times such as the ones considered in this work may degrade its accuracy, depending on the starting covariance. To overcome 142

this drawback, an UKF is considered instead, since it provides a higher-order approximation for covariance evolution which can 143

withstand longer propagations. The UKF is based on the “unscented transformation” first proposed by Julier & Uhlmann (1997) 144

and later improved by Wan & Van Der Merwe (2000) to compute the first two moments of the probability density distribution of a 145

random variable given by some transformation y = h(x), assuming that the mean and the covariance of the variable x are known. 146

The idea behind the unscented transformation is to use a set of points xi (sigma-points) in such a way that their mapping yi = h(xi) 147

can be used to accurately approximate the exact mean and covariance of y (by using a predefined set of weights). 148

4.1. UKF algorithm 149

Considering a system with n states, given by the following process and observation equations

ẋ = f (x, t) , (2)

y = h (x, t) , (3)

and a set of weights to estimate the mean and the covariance (denoted by w( j)
m and w( j)

c respectively, for j = 1, . . . , 2n + 1), together 150

with a tuning parameter κ (see Goff (2015) for a description of the weights and the tuning parameter values), the UKF algorithm is 151

(obtained from Goff (2015)): 152
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1. Start from the previous estimate of the state and the covariance of its error (x̂0 and P̂0 at first).153

2. Read the next observation and its covariance: ti, yi,Ri.154

3. Perform the decomposition Pi−1 = AT A, and denote a( j) as the j-th column of A.155

4. Calculate the sigma points:

x̃( j)
i−1 = x̂i−1 + x̆( j), for j = 0, . . . , 2n, and x̆(0) = 0,

x̆( j) = a( j) √n + κ, for j = 1, . . . , n,

x̆(n+ j) = −a( j) √n + κ, for j = 1, . . . , n.

5. Propagate all the sigma points using numerical integration: Initial conditions x̃( j)
i−1, differential equation ẋ = f (x, t), integra-156

tion results x̃( j)
i .157

6. Calculate the propagated a priori state and covariance (adding the process noise as in Section 4.3):

x̄i = Σ2n
j=0w( j)

m x̃( j)
i , P̄i = Σ2n

j=0w( j)
c

(
x̃( j)

i − x̄i

) (
x̃( j)

i − x̄i

)T
+ Qi.

7. Transform the sigma-points and calculate the predicted observation:

ỹ( j)
i = h(x̃( j)

i , ti), ȳi = Σ2n
j=0w( j)

m ỹ( j)
i .

8. Calculate the predicted observation covariance and results:

Si = Σ2n
j=0w( j)

c

(
ỹ( j)

i − ȳi

) (
ỹ( j)

i − ȳi

)T
+ Ri, νi = yi − ȳi.

9. Compute the Kalman gain and update the estimate of the state and its covariance:

Vi = Σ2n
j=0w( j)

c

(
x̃( j)

i − x̄i

) (
ỹ( j)

i − ȳi

)T
, Ki = Vi(Si)−1,

x̂i = x̄i + Kiνi, P̂i = P̄i −KiSiKT
i .

10. Return to step 1 and process the next observation.158

4.2. Smoothing159

In the simulated scenario considered in this work, measurements from the radar come in tracks of 5-20 plots, with long intervals160

in-between them (hours). While the BLS approach is simultaneous in nature, the KF approaches (EKF/UKF) process the measure-161

ments sequentially, in the order they were obtained; thus, the output of the filter can be improved via a backwards smoother. This162

additional algorithm propagates the filter backwards in time, starting from the last plot in a track, up to the first one (or even to163

previous tracks), modifying estimates accordingly (Goff, 2015). It is well-known that smoothers provide considerable improvement164

for orbit determination.165

4.3. UKF process noise estimation166

The UKF algorithm requires the process noise covariance as an input. This quantifies mismatches with respect to the real process.167

Consequently, it is a key factor in the filter as it will balance the credibility of the process with respect to the measurements. In168

any case, the process covariance is unknown, as its exact knowledge would imply perfect modelling, and has to be tuned. Initial169

covariance needs also to be estimated to be as realistic as possible (Poore et al., 2016). In Carpenter & D’Souza (2018), the state170

noise compensation technique described next is recommended as a good practice for navigation filters and has been adopted.171
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Denote by LVLH a Local-Vertical, Local-Horizontal frame. Assuming LVLH acceleration error as Gaussian white noise with

covariance

SLVLH =

 qx 0 0
0 qy 0
0 0 qz

 , (4)

then, the transformation to inertial coordinates can be made using the rotation matrix RLVLH which transforms LVLH coordinates

to the inertial frame

Sk = RLVLHSLVLHRT
LVLH . (5)

Dividing the elapsed time between radar tracks in increments ∆t, where the inertial orientation of the LVLH frame is assumed

constant, the full state inertial covariance grows during an interval k as the equivalent discrete-time model of the corresponding

Wiener process (Särkkä & Solin (2019), p.82):

Mk =

[
Sk∆t3/3 Sk∆t2/2
Sk∆t2/2 Sk∆t

]
, (6)

and then process noise covariance estimation at the time instant i of the UKF algorithm is 172

Qi =

{ ∑N
k=1 Mk, for filter calls between tracks,

06×6, for filter calls within a track.

Where N is the number of time increments in-between filter calls. Within a track and between plots, where measurements are 173

obtained every few seconds, the process mismatch is negligible. 174

4.4. UKF measurements and radar characterization 175

As a first step, the UKF must be tuned to work correctly in the absence of manoeuvres. The radar measurements (range, range

rate, azimuth and elevation) are simulated as a noisy process following a gaussian distribution, with the mean on the true state,

and power given by a fixed covariance. The complete characterization of the S3TSR is confidential, as it has numerous modes of

operation with different capabilities, but for our testing purposes a single diagonal covariance matrix has been used in the (simulated)

results and examples that are presented here and onward:

σρ = 7 m, σEl,Az = 0.3◦ − 0.5◦, σρ̇ = 0.4 m/s (7)

The radar accuracy on range is in the order of metres, whereas one gets errors under a metre per second for range rate, but the 176

angular error translates into position errors of kilometres for a LEO satellite, as expected for a surveillance radar of this size. An 177

intense tangential manoeuvre (0.1 m/s for our scenarios) at 600Km altitude would cause (under assumption of quasi-circular orbit) 178

an angular phase difference of about 0.014◦ per revolution, or 150 m, way under the possible mismatch that angular measurements 179

can suggest given it’s inaccuracy. Thus, only range and range rate measurements are considered as the filter’s inputs. 180

4.5. UKF preliminary testing results 181

Numerical results are shown in order to justify the chosen implementation. The considered scenario is the LEO satellite Sentinel- 182

1A (with initial orbital elements taken from public TLEs and assumed precise, propagated with second-order gravity harmonics 183

and drag using OREKIT) between 16:00:00 08/07/2015 to 16:00:00 12/07/2015. The following results assume a model mismatch 184

in drag, with CD = 2.2, S = 10 m2 the “real” drag coefficient and exposed surface, and CD = 2, S = 9.5 m2 the assumed ones. The 185

LVLH acceleration errors in Eq. (4) are 186

qx = 10−9 m2s−3, qy = qz = 5 · 10−10 m2s−3,
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Fig. 1. Position error without process noise (top) and estimating process noise (bottom). Red dots indicate the UKF error at each plot (measurement points).

where more process noise has been assumed in the tangential direction (due to the drag modelling uncertainty being dominant in187

LEO). The discretization time period is taken as ∆t = 10 min. A comparison with a simulation assuming a null process covariance188

noise is shown in Figure 1 (red dots indicate the mismatch between measurements and the predicted state after the filter update). It189

can be seen how the inclusion of some process noise greatly improves the filter’s convergence.190

In the results, the initial covariance is assumed small and with a realistic shape (obtained from running the filter for a few days);191

using a diagonal shape resulted in a much poorer performance of the filter.192

4.6. Manoeuvre detection193

The filter is adapted to estimate the presence of manoeuvres. Thus, in the 8th step of the UKF’s algorithm, a manoeuvre

prediction metric can be included, which reads:

Ψi =

√
νT

i S−1
i νi, (8)

with νi being the residuals and Si the observation covariance, for i ∈ {1, . . . , n}, n being the number of plots of a given track. This194

term can be used to estimate model mismatches (due to manoeuvres), and then trigger other manoeuvre detection algorithms, every195

time a radar track is processed.196

For manoeuvre detection, three metrics based on Eq. (8) were proposed; either Ψ1 (with the logic that the first plot may show
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Fig. 2. UKF position error, on order of 10 metres, with manoeuvre (top) and detection metrics comparison (bottom). The vertical dashed line represents the
manoeuvre

the largest impact from a previous manoeuvre), maxi{Ψi} or

Ψ =
1
n

√√ n∑
i=1

Ψi, (9)

As the detection method is based on finding significant discrepancies between the predicted orbit and the actual one, the residuals are 197

computed prior to smoothing. A proof of concept is shown for the same scenario with a manoeuvre. The manoeuvre start is 00:34:58 198

11/07/2015 and ends at 00:35:24 11/07/2015 with a constant acceleration of u =
[
0.31 · 10−2,−0.35 · 10−3, 0.37 · 10−5

]
m/s2 in the 199

LVLH frame. In Figure 2, the UKF demonstrates its capability to recover the orbit after the manoeuvre is applied, even without 200

any particular mechanism for covariance inflation. Moreover, a comparison of the possible detection metrics is also shown, with Ψ 201

seemingly being the metric with a better trade-off between detection and false positives. 202

5. Reachability-based manoeuvre detection algorithms 203

In this section, RA as outlined in Section 3 is applied to the specific problem of manoeuvre detection. Thus, the starting inputs 204

are the precise orbit of the objects (pre-manoeuvre) and a radar track (possible, post-manoeuvre), and the output is a metric that 205

establishes a confidence in the detection of a manoeuvre. 206

As a first step, the theory of attributables (Vananti et al., 2017; Reihs et al., 2021) is introduced; it allows to “compress” several 207

plots into a single, higher-quality measurement, fitting a full track into a single polynomial expression whose order needs to be 208

determined. 209
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Next, two algorithms are explained; the first is based on comparing the range and range rate attributables (ρ, ρ̇) obtained from210

measurements with the one obtained from the initial uncertain orbit, by means of confidence regions and the Mahalanobis distance,211

which is a measure of the distance between a point and a distribution (Hall & Singla, 2019).212

The second algorithm is based on the use of optimal control theory. Following the ideas of Singh et al. (2012) and Holzinger213

et al. (2012) one can compute by means of stochastic optimal control a distribution of the ∆V that connects the uncertain orbit with214

the measurement. This distribution can then be used to obtain the likelihood of a manoeuvre having been performed.215

5.1. Attributables216

We use attributables to condense the information of all plots in each track (Reihs et al., 2021). A radar provides range ρ, range

rate ρ̇, elevation El and azimuth Az, that, coupled with the chosen reference epoch tre f , form the attributable

A =
{
tre f , ρ,El,Az, ρ̇

}
. (10)

Elevation and Azimuth, as mentioned before, are not used here (save when explicitly said), but are included nonetheless for217

completeness. Fitting the information of the observables independently is one option, but it is possible to reduce the uncertainty of218

the resulting virtual measurement if one incorporates the definition of range-rate into the modelling, so that it shares the parameters219

with the range, as follows:220

ρ (t) = ρ0 + ρ1∆t + ρ2
∆t2

2!
+ · · · + ρn

∆tn

n!
, (11)

221

El (t) = El0 + El1∆t + El2
∆t2

2!
+ · · · + Eln

∆tn

n!
, (12)

222

Az (t) = Az0 + Az1∆t + Az2
∆t2

2!
+ · · · + Azn

∆tn

n!
, (13)

223

ρ̇ (t) =
dρ (t)

dt
= ρ1 + ρ2

2∆t
2!

+ · · · + ρn
n∆tn−1

n!
. (14)

In the expressions above ∆t = t− tre f . This method manages to average out noise and reduce the standard deviation of the virtual224

measurement. Following the nomenclature in Reihs et al. (2021), the set of equations that allows to solve the parameters in the225

sense of least-squares is:226

m =


ρ
El
Az
ρ̇

 = AS YS p + υ =


A 0 0
0 A 0
0 0 A
Aρ̇ 0 0

 p + υ, (15)

where m contains the measurements of all observables in the track, p collects the parameters ρi, Azi, and Eli that one wants to

calculate, and the matrices A and Aρ̇ have the coefficients in the formulas (11)–(13) and (14), respectively, evaluated at the times

of the corresponding plots. The error υ is assumed to follow a Gaussian distribution. Then the problem to solve is posed using

weighted least-squares:

min
p
υT Wυ = min

p
(m− AS YS p)T W(m− AS YS p), (16)

whose solution is well-known:

p = (AT
S YS WAS YS )−1AT

S YS Wm. (17)
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Fig. 3. Range attributable and reduction of error in a simulated radar track of 15 plots. Radar characterization is as in all simulated scenarios (see defined standard
deviations in Eq. (7)), and “Real” value is that of the simulated low earth orbit at that instant.

The weighting matrix W is chosen to be the inverse of the covariance matrix of the measurements, Συ, thus the attributable errors

covariance matrix is:

Σp =
(
AT

S YS Σ−1
υ AS YS

)−1
. (18)

This allows to estimate how good a virtual measurement α (t) is expected to be at any point of the fit, by computing

Var [α (t)] =
∑
i, j

σi j
∆ti∆t j

i! j!
, (19)

where σi j are the coefficients of Σp corresponding to the sub-matrix of each observable; these are sufficient to provide the covariance 227

matrix of the complete attributable (ΣA) at the epoch without further processing. 228

A test track shown in Figure 3, with standard deviation that of our simulated radar (See Eq. (7)), has been used as an example 229

of range attributable. The uncertainty is mitigated with a noticeable reduction of 50% in the standard deviation (in the case of the 230

range rate, the reduction is of 60%), a consequence of the methodology used for the definition of the range-rate attributable. 231

In addition, one could even try to estimate the azimuth and elevation rates and use it for Initial Orbit Determination (IOD), but 232

as one cannot expect to perform well as a good IOD with such a short observation arc, this method is not pursed in this work. 233

5.2. Algorithm 1: Comparison of real and projected attributable through Mahalanobis distance 234

Applying the nomenclature of Section 5.1, from all the plots of a track one can obtain the virtual values of range, range-rate, 235

azimuth and elevation at the middle of a track (tre f ), namelyA = (tre f , ρ0,Az0,El0, ρ1), as well as the associated uncertainty in the 236

form of a covariance matrix ΣA. 237

The following algorithm is used to obtain a “projected” (or predicted) measurement from the initial value of the reference orbit, 238

which is assumed to follow a certain known distribution: 239

1. Sample the PDE of the initial condition obtaining m sample points. Denote these as x0 j for j = 1, . . . ,m. The set of initial 240

conditions Ω0 is then approximated by these points. 241
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2. Propagate the sampled points using an OREKIT propagator up to time ti (next radar attributable epoch). Taylor differential242

algebra methods can be used to greatly speed up this computation, at the price of a lengthy initial calculation (Andrea &243

Maisonobe, 2016). Thus, one obtains m trajectories x j (t).244

3. Projected values at the attributable time ti (middle of the track) are obtained as a cloud of points x j(ti), with the density of245

points giving an approximate measure of the probability associated to the real trajectory.246

4. Now for each sampled orbit, one can compute the corresponding radar measurements at ti, obtaining a “cloud” of measure-247

ments, from which one can obtain its mean (ρ̂0, Âz0, Êl0, ρ̂1) as well as the associated uncertainty (assumed Gaussian) in the248

form of a covariance matrix Σ̂. This is denoted as the projected measurement (in the sense that it is the attributable value one249

would expect given the distribution of the initial condition).250

5. Finally, the attributables and projected measurements can be compared. If no manoeuvre has been performed, one would251

expect that both values should somewhat agree. To formulate this more precisely, define:252 
∆ρ0
∆El0
∆Az0
∆ρ1

 =


ρ0
El0
Az0
ρ1

 −

ρ̂0

Êl0
Âz0
ρ̂1

 ,∆Σ = ΣA + Σ̂. (20)

6. Then, if there is no manoeuvre, one would expect that, under an assumption of normality,
(
∆ρ0,∆Az0,∆El0,∆ρ1

)
should253

belong to a normal distribution of zero mean and covariance ∆Σ. This can be checked either by computing confidence254

regions or equivalently through the Mahalanobis distance, as briefly explained next.255

5.2.1. Use of confidence regions and Mahalanobis distance256

For a n-dimensional multivariate normal distribution with mean m and covariance matrix Σ, the p − level confidence ellipsoid257

(this is, the ellipsoid containing with probability p samples from the distribution) is given by258 {
x ∈ Rn : (x − m)T Σ−1 (x − m) ≤ χ2

n (p)
}
, (21)

where χ2
n(p) is the inverse cumulative distribution function of the Chi-square distribution with n degrees of freedom (the dimension259

of the vector x), evaluated at the probability value p. Similarly, the Mahalanobis distance is a measure of the distance of a point260

x from a distribution. It is unitless, scale-invariant and takes into account the correlations of the distribution. Concretely, if the261

distribution has mean m and covariance matrix Σ the Mahalanobis distance (MD) of a point x is computed as262

MD(x) =

√
(x − m)T Σ−1 (x − m) . (22)

In particular if the distribution is a multivariate normal, then the MD2 has a chi-square distribution with n degrees of freedom;263

thus, it is equivalent to the use of confidence ellipsoids. This property can be used to compute probabilities of manoeuvre. Next,264

an example is shown where the comparison of real and projected attributables is carried out for two cases: one example with265

manoeuvre and one without. Figure 4 shows that the confidence intervals and MD are able to discriminate the manoeuvred case266

from the non-manoeuvred one, at least for a simple basic simulation, using range and range-rate.267

A manoeuvre detection metric has been computed based on the MD being distributed as a χ2 distribution function with as many

degrees of freedom (n) as variables, by fixing a threshold of being outside the 50% ellipsoid. Thus, a number PRMD (which is a

manoeuvre detection confidence) is computed as follows:

PRMD = max
{
0, 2(χ2

(
MD2; n

)
− 0.5)

}
. (23)
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Fig. 4. Confidence intervals (90%) and Mahalanobis distance, considering only range and range-rate, without manoeuvre (blue circle) and with manoeuvre (red
circle). The green ellipse represents the measurement uncertainty (radar, as characterized by Eq. (7)), the blue one the orbit uncertainty, and the red one the total
uncertainty.

This way, if the MD has a probability of 50% or less of occurring, it is assumed that there is no manoeuvre, to reduce false positives. 268

If the MD has a probability of more than 50% of happening, then one subtracts 50% and multiplies it by two; if one gets, e.g., a 269

probability of a certain MD of 80%, then PRMD = 60%. 270

5.3. Algorithm 2: use of optimal control to compute a ∆V bounded measurement of distance 271

As a more sophisticated alternative to the Mahalanobis distance (Singh et al., 2012; Holzinger et al., 2012) one can compute by 272

means of stochastic optimal control a distribution of the minimum ∆V that connects the uncertain orbit around it. This distribution 273

can then be used as a metric to obtain the likelihood of a manoeuvre having been performed. The optimal control problem is posed 274

as follows: 275

J = min
∆Vi

N∑
i=1

∆V2
i , (24)

s.t. x′ (t) = f (x (t) , u (t) , t),

x (t0) = x0,

h
(
x
(
t f

))
=

[
ρ ρ̇

]T .

In the above optimal control problem, the initial point is known from the precise orbit whereas the function h at the final point 276

represents the function relating position and velocity with range and range-rate (the most precise measurements) which should take 277

the value obtained with attributables as explained in Section 5.1. The function f represents the orbital dynamics, including any 278

desired perturbation. The selected functional would represent the specific energy of the manoeuvre. 279



14 Given-name Surname etal / Advances in Space Research xx (2022) xxx-xxx

2 4 6 8

10
-3

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Empirical CDF

No manoeuvre

No manoeuvre + 2

With manoeuvre

Fig. 5. Empirical distribution of manoeuvre energy J computed from the stochastic optimal control problem (1000 samples). The dark blue line represents the
mean CDF of the non-manoeuvred case, and the light blue is the mean plus 2-sigma distribution, whereas the red plot represents a manoeuvred cases.

The problem is solved with CasADi (Andersson et al., 2019), an open-source solver for MATLAB, with a multiple shooting280

method discretizing the orbital dynamics in N time intervals; for each of these, since manoeuvres are small, the orbital dynamics281

is replaced with a linearized model obtained from OREKIT (computing the State Transition Matrix, or STM), with discrete ∆V’s282

applied at the beginning.283

As a first step, the problem has been solved in a deterministic way. Since, once the STM is computed, the solution is fast (seconds284

or less), to incorporate the stochasticity of the problem (both in initial orbit and measurements), a Monte Carlo algorithm has been285

implemented as a simple solution, albeit rather time-consuming. Figure 5 shows the obtained cumulative empirical distribution of286

J (from 1000 samples) for two cases (with and without manoeuvre).287

In addition, a novel method to discriminate potential manoeuvres is now described. Qualitatively, it is clear that the distribution288

without manoeuvre is “smaller” than the one with manoeuvre. In the case without manoevre, we can derive a “mean distribution”289

as well as a distribution at a 2-sigma distance from the mean, which is helpful to avoid false positives. From these distributions290

some metrics have been defined, by using its 10%, 50% and 80% percentiles.291

The metrics are exemplified in Fig. 5. As shown, take the 80% percentile of the estimated mean non-manoeuvred distribution,292

J0.8M , and compare with the probability p0.8M = Pr (J ≤ J0.8M) of the (potentially manoeuvred) distribution to be below that293

energy value, as graphically shown in Fig. 5. The higher that probability, the less likely of a manoeuvre to have happened according294

to that particular percentile (as there would be more cases that require the same or less energy than the non-manoeuvred case to295

connect the initial orbit and the measurement). In the figure it can be seen how using the 2-σ non-manoeuvred distribution (thus296

using J0.8D instead, leading to p0.8D) is more conservative. To use this idea to establish a metric for manoeuvre detection from a297

given percentile d the following scaling is used:298

Pd = max
{

0,
(d − Pr (J ≤ Jd))

d

}
. (25)

For instance, for d = 0.1 and calling p0.1 = Pr (J ≤ J0.1), if p0.1 is above 10% the metric becomes zero, and if not, the difference299

is multiplied by 10, which means that p0.1 = 0 would indicate total confidence of manoeuvre, for that metric (as shown in Fig. 5).300
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When using the mean distribution we will refer to this metric as P1M, with P1D reserved for the 2-sigma metric. Other metrics we 301

use employ the 50% and 80% percentiles and are denoted as P5M, P5D, P8M and P8D. 302

6. A manoeuvre detection filter using reachability analysis 303

The results of sections (8.4)-(8.6) suggest the need of a combined manoeuvre detection tool-filter, that is able both to predict an 304

orbit and detect and take into account manoeuvres. This section presents our work on such a filter, which we call the Manoeuvre 305

Detection Filter (MDF). The idea is to follow the scheme of the UKF of Section (4), combined with the Algorithm 1 of Section 306

(5.2), to detect manoeuvres. Once a manoeuvre is detected, the idea of covariance inflation is followed (see Section 3.10.7 of (Goff, 307

2015) and (Chul Ko & Scheeres, 2016)); thus, the state covariance is increased up to the point where a manoeuvre is no longer 308

detected, which would imply that the uncertainty of the state is able to include the possibility of such a manoeuvre having been 309

performed. The reasons to choose Algorithm 1 instead of 2 are that it performs better for scenarios 1 to 13, which are the ones best 310

suited to the filter. It is hopeless to expect the filter to perform well in scenarios with too many manoeuvres and few radar tracks. 311

In addition, Algorithm 1 fits quite well with the philosophy of the filter: the unscented transform can be used to estimate the state 312

covariance by using the attributable as a “virtual measurement” used only for purposes of manoeuvre detection, but not for updating 313

the state. This considerably reduces the computational burden. Also Algorithm 1 gave less false positives in the real testing. 314

To be more precise, using the UKF notation of Section 4.1 and skipping the unchanged steps, the MDF algorithm is: 315

1. Start from the previous estimate of the state and the covariance of its error (x̂0 and P̂0 at first). 316

2. Compute the attributable time tAi , the values of the next track yAi and its covariance ΣAi . 317

3. Compute the sigma-points of the unscented transform. 318

4. Propagate all the sigma points using numerical integration until the attributable time x̃( j)
i . 319

5. Compute the weighted mean and the covariance matrix of the transformed sigma-points: x̄i and P̄i. 320

6. Compute the manoeuvre detection metric pi by transforming the sigma-points (using the observation equation) to get the

predicted observation ŷi, the residuals νi = yAi − ŷi, and the observation covariance Si to compute the MDi and the associated

metric pi (using Eq. (23)):

Si = Σ2n
j=0w( j)

c

(
ỹ( j)

i − ŷi

) (
ỹ( j)

i − ŷi

)T
+ ΣAi

MDi =

√
νT

i S−1
i νi.

7. If pi ≥ 0, 5, multiply the covariance of the predicted state P̄i by 2 and return to Point 6; otherwise, continue. 321

8. Transform the sigma-points (using the observation equation) and calculate the predicted observation, the residuals, and the 322

observation covariance. 323

9. Calculate the predicted observation covariance and the residuals. 324

10. Compute the Kalman gain and update the state estimate. 325

11. Return to step 1 and continue propagating. 326

In addition, a “long smoothing” is implemented: if no manoeuvre is detected, a smoothing is performed backwards until the 327

previous radar track, and again forwards. 328
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Fig. 6. Position error for Sentinel-1A with respect to reference orbit without manoeuvre. Red dots indicate the mismatch (which becomes of the order of 10 metres)
between measurements and the predicted state after the filter update.

7. Results for simulated scenarios329

An OREKIT-based simulator, both for the manoeuvres and for the radar observations, has been developed. They provide realistic330

(though not accurate) testing examples. They are very useful to tune and validate the different algorithms and filters. Starting points331

are generated from public TLEs which are used to define reference orbits with propagators including J2 and aerodynamic drag, as332

explained in Section 4.5.333

The algorithms, besides the model mismatches explained in that section, start from initial conditions within the expected limits334

of error of the real precise orbits (metres). Two main scenarios, respectively based on the satellites Sentinel-1A and Swarm-C, are335

considered. A manoeuvre either tangential (T), out-of-plane (OOP) or hybrid (with components both tangential and out of plane)336

is simulated, maintaining a constant acceleration of 10−3 m/s2 and characterized by the following fields:337

1. Manoeuvre intensity (regulated through the duration): low (5 seg→ 5 · 10−3 m/s) / medium (30 seg→ 3 · 10−2 m/s) / high338

(120 seg→ 1.2 · 10−1 m/s).339

2. Manoeuvre location with respect to a radar track: 2 h, 6 h or 12 h before radar.340

3. The Sentinel-1A scenario spans from 00:00:00 18/08/2020 to 00:00:00 22/08/2020. The manoeuvre starts at 18:25:00341

20/08/2020.342

4. The Swarm C scenario spans from 00:00:00 14/07/2020 to 00:00:00 20/07/2020. The manoeuvre starts at 12:30:00 17/07/2020.343

Thus, combining all these factors, one gets 18 simulation scenarios per satellite to analyse the influence of these factors for the344

algorithms. Due to space limitations, only selected results are shown, with general conclusions drawn from the complete set.345

7.1. UKF simulated results346

The result without manoeuvre for Sentinel-1A is presented in Figure 6, whereas the manoeuvred case (tangential) is shown in347

Figure 7. The value of Ψ, which should be useful for detecting manoeuvres, is given for some Sentinel-1A cases in Table 1.348

It can be observed e.g. in Fig. 6 that the filter takes some time to stabilize. This is probably due to the incorrect initial covariance.349

Since in real scenarios the covariance will not be perfectly known this can be expected. On the other hand, it is clear that the filter is350
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Fig. 7. Position error with respect to reference orbit for Sentinel-1A manoeuvred scenarios. Red dots indicate the mismatch (which becomes of the order of 10
metres) between measurements and the predicted state after the filter update.

Case/Ψ Pre − man.Max. Post − man.Max.
No manoeuvre 4.435 2.341*
low − 2h 4.435 2.386*
low − 6h 4.435 2.411*
low − 12h 4.435 2.335*
medium− 2h 4.435 3.478*
medium− 6h 4.435 10.33*
medium− 12h 4.435 6.260
high − 2h 4.435 34.39*
high − 6h 4.435 132.0*
high − 12h 4.435 75.89

Table 1. Maximum value of filter detection metric before and after Sentinel-1A tangential manoeuvre, simulated results. The asterisk indicates that the maximum
arises after the first post-manoeuvre track (i.e., at a later track). This metric only uses range and range rate.

working correctly in all cases; since the measurements are scarce it is unavoidable that the position errors grow, however, they are 351

clearly mitigated at each measurement. It can be seen in Fig. 7 that manoeuvres induce large errors after they happen, since they 352

are unaccounted for in the process covariance. The largest the manoeuvre the larger the error and the more it takes to recover from 353

it. From Table 1, one can observe that the value of Ψ is indicative of the presence of a manoeuvre only in medium and specially 354

in high-intensity cases. Low-intensity manoeuvres are indistinguishable from process noise. In addition, the distance to the radar 355

measurement does not seem to have much influence in the value of Ψ 356
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In the Swarm C case (not shown), the value of Ψ was indicative of the presence of a manoeuvre only in high-intensity cases.357

For low- and medium-intensity manoeuvres, they were, in principle, indistinguishable from process noise, unless the manoeuvre358

happened at a long enough distance from the first radar measurement. The main cause of this was, besides the long gap without359

measurement, having less radar measurements; in the case of Sentinel-1A, nine values were obtained at the pass after the manoeuvre,360

whereas in the case of Swarm-C, only five values are obtained.361

7.2. Algorithm 1 simulated results362
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Fig. 8. Reachability results (Algorithm 1) for Sentinel-1A manoeuvre, Range vs Range-rate.

In Table 2, the Mahalanobis distance (MD) has been computed considering only range-range rate (column 2), El-Az (column363

4) and all four measurements (column 6). As seen in the table, in general, using only range and range-rate is more sensitive in364

more cases; using elevation and azimuth can induce false positives. All high- and medium-intensity manoeuvres are detected, but365

low-intensity manoeuvres are usually not detected. In addition, the distance to the radar track does not seem to affect these results.366

The results can be inspected visually in Figure 8. Note that due to the propagation “stretching” the orbit uncertainty in the367

range-range rate plane, it is hard to verify if measurements belong to the confidence region, except in high-intensity cases. In the368

Swarm C case (not shown), only high-intensity manoeuvres are detected, with varying success for medium-intensity manoeuvres.369

7.3. Algorithm 2 simulated results370

The results are presented in Table 3. The metrics computed from Algorithm 2 detect all high- and (except P8M and P8D)371

medium-intensity manoeuvres. P1M is the most sensitive algorithm being able to detect even some low-intensity manoeuvres.372
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Case / Metrics MD (ρ, ρ̇) PRMD (%) MD (El,Az) PRMD (%) MD (All) PRMD (%)

WoM 0.29 0 2.18 33 2.60 0
L − 12h 1.54 8 1.66 13 2.22 0
L − 6h 1.16 0 1.52 7 1.96 0
L − 2h 1.35 0 2.10 30 2.16 0
M − 12h 3.17 59 2.15 32 3.97 18
M − 6h 4.66 81 0.97 0 4.81 39
M − 2h 4.32 77 2.29 36 4.80 38
H − 12h 23.48 100 3.61 67 23.53 100
H − 6h 30.37 100 4.44 78 30.38 100
H − 2h 12.27 100 1.23 0 12.44 97

Table 2. Sentinel-1A reachability analysis with Algorithm 1 and detection metric from MD. WoM=without manoeuvre, L=low, M=medium, H=high. Tangential
case.

Case / Metrics P1M (%) P5M (%) P8M (%) P1D (%) P5D (%) P8D (%)

FP 10 1 0 3 0 0
L − 12h 100 72 0 70 40 0
L − 6h 100 42 0 50 0 0
L − 2h 0 0 0 0 0 0
M − 12h 100 96 0 100 84 0
M − 6h 100 100 95 100 100 95
M − 2h 100 98 0 100 96 0
H − 12h 100 100 100 100 100 100
H − 6h 100 100 100 100 100 100
H − 2h 100 100 100 100 100 100

Table 3. Sentinel-1A reachability analysis with Algorithm 2 and detection metric from optimal control approach. FP=false positives, L=low, M=medium, H=high.
Tangential case. This metric only uses range and range rate.

However, it has a non-negligible rate of false positives (a false positive is defined as a non-manoeuvred case from the Monte Carlo 373

simulation being detected with p ≥ 50%). P1D is only slightly less sensitive and reduces the number of false positives. Other 374

metrics seen to perform worse than P1M and P1D. In the Swarm-C case (not shown), only high-intensity manoeuvres are detected, 375

with varying success for medium-intensity ones. As in Section 7.1, main causes are long gaps without measurement and having 376

less radar measurements right after the manoeuvre. 377

8. Results for real scenarios 378

Given the algorithms already presented and validated through simulated scenarios on previous sections, this section presents the 379

results obtained when they were tested on real-world data, for satellites of the Sentinel and Swarm family, and also for TerraSAR- 380

X and TanDEM-X satellites. The data used and the sources were, for the satellites’ orbits, OEM data, this is, accurate position 381

and velocity information of the satellites under study (with precisions one order of magnitude better than the radar data, i.e., with 382

position error of about 1 metre), provided by ESA/ESOC and DLR/GSOC. For radar data, real tracks from the Spanish survey radar 383

S3TSR were used, with the necessary uncertainty information for the algorithms. Finally, for testing purposes, manoeuvre data, 384

providing accelerations in a local reference frame as well as the duration, were provided by ESA/ESOC and DLR/GSOC. 385

First, the selected scenarios are presented and briefly described in Section 8.1. In Section 8.2 the particularities of the dynamical 386

modelling are detailed, followed by a brief comment on the data consistency check (Section 8.3). The last subsections (8.4)–(8.5) 387

contain the numerical results of UKF and reachability analysis using the real data. 388
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Scenario
Epoch of most
intense man. Initial epoch Final epoch # of segments # seg. with man.

1 14-Aug-2019 23:11:03 06-Aug-2019 06:52:43 16-Aug-2019 18:09:54 12 2
2 29-Jan-2020 23:11:08 23-Jan-2020 06:36:14 31-Jan-2020 07:09:05 8 1
3 21-May-2020 01:06:08 17-May-2020 06:27:59 25-May-2020 18:01:43 10 1
4 19-Aug-2020 22:29:28 19-Aug-2020 17:45:21 27-Aug-2020 18:18:18 9 2
5 14-Aug-2019 23:59:53 05-Aug-2019 07:00:17 17-Aug-2019 07:00:15 13 2
6 19-Sep-2019 00:57:21 10-Sep-2019 18:00:59 22-Sep-2019 07:00:19 12 1
7 20-May-2020 22:37:36 12-May-2020 18:09:12 28-May-2020 17:36:30 17 1
8 17-Jun-2020 22:05:17 09-Jun-2020 17:36:29 24-Jun-2020 18:00:59 18 1
9 05-Feb-2020 16:09:00 03-Feb-2020 22:25:25 13-Feb-2020 22:25:22 8 1
10 10-Sep-2020 17:10:27 03-Sep-2020 11:22:01 10-Sep-2020 22:25:35 6 1
11 18-Sep-2019 16:59:55 11-Sep-2019 11:01:44 21-Sep-2019 22:25:30 5 1
12 17-Sep-2020 16:10:04 08-Sep-2020 11:22:02 19-Sep-2020 10:51:42 9 1
13 15-Jul-2020 17:02:15 06-Jul-2020 01:47:22 20-Jul-2020 00:05:35 12 1
14 22-Aug-2020 00:24:06 17-Aug-2020 17:49:25 24-Aug-2020 06:48:33 4 4
15 22-Aug-2020 00:24:07 16-Aug-2020 18:06:50 22-Aug-2020 17:58:07 4 4

Table 4. List of real testing scenarios. A segment is defined as the elapsed time between a radar track and the next.

8.1. Real testing scenarios389

The list of scenarios is in Table 4 with the corresponding epochs. The satellites used to create these scenarios are: Sentinel-1A,390

Sentinel-1B, Sentinel-2A, Sentinel-2B, Swarm-C, TanDEM-X and TerraSAR-X, but the relation between satellite and scenario has391

been omitted here. Scenarios are divided in a number of segments, which start and end at consecutive radar tracks. For the purposes392

of testing the RA algorithms, these segments are considered and processed individually (using the precise orbits to determine the393

starting point for each segment), whereas the filter runs for a full scenario, processing each segment consecutively.394

A Gantt-like representation was produced to exemplify how the scenarios are generally distributed, see Figure 9 for Scenario 1,395

with the radar observation (red) and manoeuvres (blue). For completeness, the plots include the simulated radar observation (black396

circles), which in some cases reveal missing radar tracks from the real data.397
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Radar observation
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Manoeuvre

Fig. 9. Gantt chart for one real scenario. This is representative of the frequency of radar tracks for the orbits under study.

The simulations studied in Section 7 were carried out for a single type manoeuvres only, namely a uniform acceleration in a398

single time segment, either IP, OOP or hybrid. However, real operation of satellites show that orbit corrections are generally a399

combination of more than one type, in consecutive and close time segments (usually low impulse IP and medium impulse OOP).400

These consecutive manoeuvres may have a bigger impact on the orbit by increasing its detectability.401
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8.2. Dynamical modelling 402

Since real orbits are subject to multiple complex perturbations, an important initial step is to determine the dynamical model 403

for each satellite. In order to use the dataset provided for the real testing scenarios several improvements had to be made to the 404

modelling of the dynamics with respect to the one used in Section 7. The most important ones are the changes of the Earth gravity 405

and atmosphere models. For one, the degree and order of the harmonics for the earth gravity field has been considerably increased. 406

Testing has been done to discern the relation between the computational costs of increasing this parameter against the changes in 407

the simulation error (measured with respect OEM data). 408

Given the uncertainty of the data, values of the harmonic’s degree/order above 40 have a negligible effect and can be discarded, 409

as it would significantly slow down the computation without any relevant benefit. To justify this, a comparison has been made 410

with increasing degree/order of the harmonics, see Figure 10 for a representation of the position error evolution (against OEM data 411

points) along a 24-hour simulation for Sentinel-1A. The time required to simulate is in the legend, where up to degree/order 40 it is 412

affected very little when considering the great reduction in prediction error. Going above this value has a measurable effect in the 413

time required, but with almost no impact on the error (there is even some small random increase possibly due to other perturbations 414

and misfits). This result supports the decision to keep the harmonics only up to degree/order 40. Just to make sure that these results 415

hold for lower orbits, a similar test has been done for a 1-day simulation interval with the OEM data of Swarm-C, which despite 416

not being shown here points to the same conclusions. 417
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Fig. 10. Position error (m) for Sentinel-1A in a 24-hour segment, comparing the effect of increasing the Earth harmonics.

8.2.1. Atmosphere model and other orbital perturbations 418

The atmosphere model has been changed from a Modified Harris Priester model (static atmosphere) on the simulated scenarios 419

to the 2001 Naval Research Laboratory Mass Spectrometer and Incoherent Scatter Radar Exosphere of the MSIS model (Picone 420

et al., 2002), or NRLMSISE-00 model (also used by ESA for prediction and orbit determination). This last model is empirical and 421

needs real weather data to compute the neutral atmosphere from the surface to the lower exosphere. The model feeds from the 422
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MSAFE (Marshal Solar Activity Future Estimation) data implemented inside OREKIT, which provides the mean and daily solar423

flux and geomagnetic indices. From the carried out testing, see Figure 11, the MSAFE atmosphere provides a much better prediction424

(against OEM data), but is considerably more expensive to compute, as it requires to perform interpolations from the empirical data425

to compute density values. These tests show us that, once the Earth shape has been modelled accurately (degree/order of 40), the426

gain from a more advanced atmosphere model is also very significant, even close to one order of magnitude. Another comparison427

has been made to measure the relative importance of the solar radiation pressure in simulations of these periods (the order of days)428

when the other forces are modelled with as much precision as possible, to conclude that this perturbation’s relative significance is429

minimal, see Figure 12 (the effect is masked by other modelling errors for the length of these simulations).430
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Fig. 11. Position error (m) for Sentinel-1A in a 24-hour segment, comparing the effect of two atmosphere models. The Harris Priester is only used in the simulated
scenarios, while the NRLMSISE-00 model is used for the real scenarios to maximize fidelity. No other perturbations have been added for this plot (aside from earth
shape with order/degree 40).
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Fig. 12. Position error (m) for Sentinel-1A in a 72-hour segment, comparing the effect of the solar radiation pressure. This simulation includes luni-solar perturba-
tions, NRLMSISE-00 atmosphere and earth shape with order/degree 40.

8.2.2. Satellite parameters431

The last consideration has been the model of the satellite itself, which is defined by the drag coefficient (CD), the frontal area for432

the drag force (S ) and the area affected by the solar radiation pressure (S S RP). The mass of the satellite is considered different for433
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each case and has been chosen to be the mean value between the wet and dry mass of each satellite. Simple as the model is, the 3 434

parameters are adjusted to get a good fit with the real data provided. In order to do this, an iterative optimization process has been 435

performed, with enough iterations so that the changes at the end are sufficiently small to consider that it has reached a minimum 436

(normally at around 4-5 iterations). The algorithm is quite expensive computationally speaking, as for each of the optimization 437

steps the orbit must be simulated several times for it to find a solution. This method has another drawback, and it is that depending 438

on the chosen segment the final values may vary slightly. Although marginal, this effect can be palliated if the final values are 439

averaged between different segments. 440

8.3. Data consistency check 441

Several sanity checks were performed to ensure the consistency of the different data sources and with the propagators, namely, 442

verifying: that the precise orbit replicate, approximately, the radar measurements (to measurement and orbit error); that the prop- 443

agators do not have much error with respect to the precise orbits and the measurement in the absence of manoeuvres; that the 444

manoeuvre file was consistent with the OEMs, which can be verified by the error of the propagators growing rapidly in the presence 445

of manoeuvres. 446

These checks are essential to ensure that false positives or false negatives are not in fact detecting inconsistencies in the data 447

sets, and although very extensive, only general results will be mentioned here. 448

The first check (consistency between OEM files and radar data) shows that the range differences are in the order of the combined 449

error of the radar measurements and the OEMs themselves. The second check, consistency between our propagator and the OEM 450

data, shows that in general the propagation performs well (errors about 60 metres maximum for a 24-hour period of propagation, 451

as found when adjusting the values of the dynamics model), but as expected in the presence of manoeuvres errors grow rapidly, so 452

that the last check is confirmed as well (see Figure 13 for an example). 453

8.4. UKF real results 454

This section tests the developed UKF against real radar data of manoeuvring satellites. The filter was improved, including also 455

the ballistic coefficient in the estimation. In addition, since the metric Ψ has a close relation to the Mahalanobis distance, Equation 456

(23) was directly used to derive a manoeuvre detection metric. 457

The smoothed prediction errors with respect to OEMs, the smoothed range residuals as well as the detection metric derived from 458

Ψ are shown for one scenario of Sentinel-1A in Figure 14. The filter error increases slightly at the beginning and then the filter 459

converges; later, after the manoeuvre, errors start to increase considerably. In any case, the steep increment in the residuals allows 460

the detection of this manoeuvre by the filter metric. 461

Space restrictions do not allow for a more comprehensive revision of the results, but the following conclusions were derived. 462

The estimation of the ballistic coefficient does not vary much and does not seem to have significant impact. It was observed that 463

the filter was, in general, well-behaved even in the presence of manoeuvres. When there are no manoeuvres, it tends to converge, 464

albeit sometimes slowly, to errors of the order of just a few hundred metres compatible with the errors of the propagator (for long 465

propagations). However, there were some instances of rapid increase of errors due to the presence of manoeuvres. The manoeuvre 466

detection metric Ψ∗ allowed for the computation of a confidence in detection but was not very sensitive. Occasionally it detected 467

a manoeuvre after one or two radar tracks have passed. The need of a combined manoeuvre detection tool integrated in the filter 468

became clear: then, the filter can react to a manoeuvre by increasing the process noise (covariance inflation) and thus take into 469

account the presence of the unknown manoeuvre. In addition, it would allow for longer smoothings reducing the risk of using a 470

segment with a manoeuvre for a long smoothing. This filter is shown in Section 6. 471
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Fig. 13. Examples of how manoeuvres make prediction errors (with respect to OEMs) grow large.

8.5. Algorithm 1 real results472

For each segment of the real scenarios, Algorithm 1 of Section 5.1 was implemented. Initialization of the predicted orbit is done473

using the precise orbit information at the closest OEM point right after a radar track, and it is stopped at the attributable epoch of474

the next track (the middle of it). Each of these simulations is done using Taylor differential algebra and an assumed covariance475

matrix ΣOEM for initialization (see Equation 26, obtained by scaling the output of the filter of Section 4), where the coefficient block476

matrices in Eq. 26 are in Eq. 27. This, combined with the confidence of the radar attributable can be used to compute a cloud of477

points and from that, the PRMD metric defined in Equation (23); here MD is calculated from range and range-rate only.478

ΣOEM =

[
ΣP/P ΣP/V

ΣT
P/V ΣV/V

]
(26)

ΣP/P =

 2.094 −1.684 −2.281
−1.684 2.686 0.673
−2.281 0.673 6.733

 m2

ΣV/V = 10−4

 4.096 0.1959 4.097
0.1959 3.710 0.9932
4.097 0.9932 5.27

 m2/s2

ΣP/V = 10−2

−2.025 −0.7215 −1.646
1.110 −0.1791 0.7416
4.250 1.982 5.580

 m2/s

(27)

The results are summarized and analysed, with each satellite being grouped in Table 5. The results of group 1-4, are quite479

positive, as there is only one false negative and no false positives, out of 33 cases. Thus, out of 6 manoeuvres, 5 were detected480
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Fig. 14. UKF results for one scenario of Sentinel-1A

and with high confidence value in general. This is a rather satisfactory result, as the only manoeuvre that was not detected is also 481

the smallest. Group 5-8 cases contain 5 manoeuvres, but only 1 is detected (another one results in a non-zero value but with low 482

confidence). There are also 3 false negatives, from 55 total cases. Group 9-10 results are not very reassuring as no manoeuvres are 483

detected; and with one false positive (from 22 cases). The 2 manoeuvres present in the 11-12 scenario are detected, with no false 484

negatives (from 13 cases). Group 13 presents no detected manoeuvres (out of one) but no false negatives. For group 14-15 (which 485

is a high-manoeuvring case) only 25% of manoeuvres are detected. 486

In global, the results are in need of improvement, as only about 40% of manoeuvres are detected, even with some of them being 487

rather intense. The rate of false positives is quite good on the other hand. Analysing the results, the causes of errors were as follows; 488

from a total of 5 false positives, all except one present less than 10 plots in the track following the manoeuvre. Thus, the main 489

cause of false positives is tracks with fewer plots. From a total of 14 false negatives, all except one were segments of length equal 490

to or larger than one day. Thus, the main cause of false negatives is longer propagations accumulating additional propagation error. 491

Sometimes these longer propagation periods are due to missed radar observations right after the manoeuvre. The most challenging 492

scenarios were those with TanDEM-X/TerraSAR-X due to the abundance of manoeuvres and the scarcity of data. This algorithm 493

performed poorly in those scenarios compared with the others. 494

8.6. Algorithm 2 real results 495

The summarized results can be seen in Table 6 (results have to consider there are 134 segments without manoeuvres). 496
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Scenario # man.
% man.
detected

% false
positives

% false
negatives

1 2 100 0 0
2 1 100 0 0
3 1 100 0 0
4 2 50 0 50
1-4 6 83.3 0 16.7
5 2 50 0 50
6 1 0 0 100
7 1 0 6.25 100
8 1 0 11.76 100
5-8 5 20 5.45 80
9 1 0 9.09 100
10 1 0 0 100
9-10 2 0 4.55 100
11 1 100 0 0
12 1 100 0 0
11-12 2 100 0 0
13 1 0 0 100
14 4 25 N/A 75
15 4 25 N/A 75
14-15 8 25 N/A 75
All 16 41.66 2.98 58.34

Table 5. Algorithm 1 summarized results.

Scenario # man.

P1M %
man.

detected

P1M %
false

positives

P1M %
false

negatives

P1D %
man.

detected

P1D %
false

positives

P1D %
false

negatives

1 2 100 0 0 100 0 0
2 1 100 14.29 0 100 14.29 0
3 1 100 0 0 100 0 0
4 2 50 0 50 50 0 50
1-4 6 83.3 3.03 16.7 83.3 3.03 16.7
5 2 50 0 50 50 27.3 50
6 1 0 0 100 0 9.1 100
7 1 0 12.50 100 0 12.50 100
8 1 0 11.76 100 0 11.76 100
5-8 5 20 7.27 80 20 5.45 80
9 1 0 20 100 0 20 100
10 1 0 25 100 0 25 100
9-10 2 0 22.73 100 0 22.73 100
11 1 100 0 0 100 0 0
12 1 0 10 100 0 10 100
11-12 2 50 7.69 50 50 7.69 50
13 1 0 0 100 0 0 100
14 4 50 N/A 50 25 N/A 75
15 4 100 N/A 0 100 N/A 0
14-15 8 75 N/A 25 62.5 N/A 37.5
All 24 54.16 45.84 8.21 50 7.46 50

Table 6. Algorithm 2 summarized results.
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The results of group 1-4 are quite positive for both P1M and P1D, as there is only one false negative and few false positives, 497

out of 33 cases. Thus, out of 6 manoeuvres, 5 were detected. Only the smallest manoeuvre was not detected (similarly to the 498

Algorithm 1 results). Group 5-8 cases contain 5 manoeuvres, but only 1 is detected for both P1M and P1D (another one is felt but 499

with low confidence). There are also some false positives, from 55 total cases, with P1M obtaining a slightly higher rate of false 500

positives. Group 9-10 results are quite bad for both metrics as no manoeuvres are detected; and with a rather high rate of false 501

positive (from 22 cases). One of the 2 manoeuvres present in group 11-12 scenarios is detected, with some false negatives (from 502

13 cases). Results are the same for both metrics. Group 13 presents no detected manoeuvres (out of one) but no false negatives, 503

for both metrics. Finally, group 14-15 gives 8 segments, all of them with manoeuvres; out of these, 5 are detected for P1D and 6 504

for P1M. In global, the results can be considered positive, as more than half the manoeuvres are detected with a low rate of false 505

negatives for both metrics, but in need of improvement. P1M seemed to perform better than P1D, with a minimal increase in false 506

negatives. Analysing the results, the causes of errors are similar as for Algorithm 1: From a total of 11 (10) false positives for P1M 507

(resp., P1D), all except two (resp., one) present less than 10 plots in the track following the manoeuvre. Thus, the main cause of 508

false positives is tracks with fewer plots. From a total of 11 (12) false negatives for P1M (resp. P1D), all except one were segments 509

of length equal to or larger than one day. Thus, the main cause of false negatives is longer propagations accumulating additional 510

propagation error. Sometimes these longer propagation periods are due to missed radar observations right after the manoeuvre. The 511

most challenging scenarios are those with TanDEM-X/TerraSAR-X due to the abundance of manoeuvres and the scarcity of data. 512

As opposed to Algorithm 1, this algorithm performs excellently in those scenarios compared with the other. 513

8.7. MDF real results 514

Figure 15 has one example of the MDF results. In this case, the filter performs initially quite well thanks to the long smoothing, 515

and the manoeuvre is detected. Even though the initial spike after the manoeuvre is quite large, the filter recovers quickly thanks 516

to the inflation mechanism; comparing with the UKF of Figure 14 the behaviour is much improved. However, a false positive also 517

happens before the end, but it does not impact the filter’s performance. Note that the UKF metric did not detect manoeuvres in this 518

segment. 519

The following conclusions can be derived from the results obtained from the MDF, which cannot be shown here due to lack of 520

space. It can be observed that the filter is, in general, well-behaved even in the presence of manoeuvres and detects many of them. 521

When there are no manoeuvres, it tends to converge, quicker than the UKF without long smoothing, to errors of the order of just a 522

few hundred metres compatible with the errors of the propagator. As in the UKF, there are some instances of rapid increase of errors 523

due to the presence of manoeuvres, particularly when undetected. The MD metric allows for detection of many manoeuvres but 524

also produces a considerable number of false positives. It is not as straightforward as for the RA algorithms to obtain fair statistics, 525

since it is unclear if a detection after one or two tracks should be considered a true or false positive; this is due to the sequential 526

nature of this algorithm, which considers scenarios as a whole, instead of processing segments separately. Thus, the history of each 527

scenario influences the results in several ways. Covariance inflation works well in most cases but in some instances, it might be 528

excessive, inducing large errors in the state. 529

9. Conclusions and future work 530

Several methods for the detection of manoeuvres in LEO from radar data have been presented, based on UKF, attributable theory 531

and reachability analysis. Initial simulation results showed that the filter did not detect manoeuvres unless they are rather intense, 532
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Fig. 15. MDF results for one scenario of Sentinel-1A.

whereas the reachability approach was more sensitive at the price of longer computation times. When tested with real data, the533

results, while not bad, are in need of improvement. Since the quality of the data was verified, the main identified difficulty was534

the scarcity of measurements (low number of tracks resulting in long propagation times without information and/or low number of535

plots in some cases), due to the fact of having a single surveillance radar, the Spanish survey radar S3TSR, as the source of data.536

Sometimes, more than 24 hours or more went without a measurement and the manoeuvres were not very intense. Future ideas to537

address this challenge include improvements in the propagator, in the description of uncertainty (e.g. the use of Gaussian mixtures538

to better describe the error distribution after long propagations), and the use of the intensive surveillance mode of the radar, which539

can provide hundreds of plots for a single track.540

From an innovation point of view, the results can be considered of interest, since most of the results in the literature depend541

on having numerous measurements (oftentimes, almost continuous data is assumed, which is only realistic in GEO with optical542

sensors), which was not the case here. The final aim is to have these algorithms integrated in the S3T Cataloguing System in order543

to provide routine automatic manoeuvre detection capabilities, but all methods presented here can be refined and extended in many544

directions. Beyond obvious extensions or refinement of the algorithms, there is much to be gained from additional measurements545

(additional stations, more regular radar tracks, SLR measurements, etc.) as it was shown that RA algorithms under-perform when546

the number of radar plots are lower. It would be of great interest to draw a set of minimum measurement requirements for the547

successful application of the manoeuvre detection algorithms.548
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Jain, A., Guého, D., Singla, P. et al. (2019). Stochastic reachability analysis for the hypersonic re-entry problem. In 29th AAS/AIAA Space Flight Mechanics Meeting, 585

2019 (pp. 2455–2476). Univelt Inc. 586

Jaunzemis, A. D., Mathew, M. V., & Holzinger, M. J. (2016). Control cost and Mahalanobis distance binary hypothesis testing for spacecraft maneuver detection. 587

Journal of Guidance, Control, and Dynamics, 39(9), 2058–2072. 588

Jiang, Y., Yang, H., Baoyin, H., & Ma, P. (2019). Extended Kalman filter with input detection and estimation for tracking manoeuvring satellites. The Journal of 589

Navigation, 72(3), 628–648. 590

Julier, S. J., & Uhlmann, J. K. (1997). New extension of the Kalman filter to nonlinear systems. In Signal processing, sensor fusion, and target recognition VI (pp. 591

182–193). International Society for Optics and Photonics volume 3068. 592

Kurzhanski, A. B., & Varaiya, P. (2000). Ellipsoidal techniques for reachability analysis: internal approximation. Systems & control letters, 41(3), 201–211. 593

Li, X. R., & Jilkov, V. P. (2005). Survey of maneuvering target tracking. part v. multiple-model methods. IEEE Transactions on Aerospace and Electronic Systems, 594

41(4), 1255–1321. 595

Mainsonobe, L., Cefola, P., Frouvelle, N. et al. (2012). Open governance of the Orekit space flight dynamics library. In Proceedings of the International Conference 596

on Astrodynamic Tools and Techniques (ICATT) (pp. 327–343). ESA/ESTEC volume 29. 597
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