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Abstract: This paper introduces an explicit full-state boundary feedback law that stabilizes
an unstable linear constant-coefficient reaction-diffusion equation on a disk. The backstepping
method is used to design the control law. To apply backstepping the system is reduced to an
infinite sequence of 1-D systems using Fourier series. H2 well-posedness and stability are proved,
which implies that the solution is at least continuous on the disk.

1. INTRODUCTION

In this paper we introduce an explicit full-state bound-
ary feedback law to stabilize an unstable linear constant-
coefficient reaction-diffusion equation on a disk-shaped
domain. Based on the domain shape we use polar coor-
dinates, and then transform the system into an infinite
sequence of 1-D systems using Fourier series, each of which
can be independently controlled. For each harmonic we de-
sign a feedback law using the backstepping method [8]. The
backstepping method has proved itself to be an ubiquitous
method for PDE control, with many other applications
including, among others, flow control [15, 19], nonlinear
PDEs [16], hyperbolic 1-D systems [5, 6, 10], adaptive
control [13], wave equations [12], and delays [9].

Backstepping was previously used to design an output
feedback law for a convection problem on an annular do-
main [18], but including the origin makes more difficult the
design, as (apparent) singularities appear on the equations
and have to be dealt with. Despite this complication, we
are able to explicitly find the backstepping kernels and
subsequently reconstruct our control law back in physical
space, showing that the closed-loop system is well-posed
and exponentially stable in the H2 norm.

Other design methods could have been applied (see for
instace [14] or [3]). Also, there have been specific results on
disk- or spherical-shaped domains, such as [17] and [11],
however these works assume perfect symmetry of initial
conditions which allows to consider only radial variations,
thus simplifying the problem considerably.

The structure of the problem is as follows. In Section 2
we introduce the problem and state our main result. We
explain our design method and explicitly find the control
kernels in Section 3. Next, we prove the stability result in
Section 4. We conclude the paper with some remarks in
Section 5.

2. 2-D REACTION-DIFFUSION SYSTEM ON A DISK

Consider the following reaction-diffusion system on a disk,
written in polar coordinates (r, θ):

ut =
ε

r
(rur)r +

ε

r2
uθθ + λu, (1)

evolving in the disk DR = {(r, θ) : r ∈ [0, R], θ ∈ [0, 2π)},
for t > 0, with boundary conditions

u(t, R, θ) =U(t, θ), (2)

where U(t) is the actuation (we assume we can control
all the boundary). Note that the system will be unstable
for large values of λ. Denote by H2(DR) the space of H2

functions on the disk. The following result holds.
Theorem 1. Consider (1)–(2) with initial conditions u0(x)
and the following (explicit) full-state feedback law for U :

U(t, θ) =F [u] = − 1

2π

λ

ε

∫ R

0

ρ

I1

[√
λ
ε (R2 − ρ2)

]
√

λ
ε (R2 − ρ2)

×
∫ π

−π

(R2 − ρ2)u(t, ρ, ψ)

R2 + ρ2 − 2Rρ cos (θ − ψ)
dψdρ, (3)

where I1 is the first-order modified Bessel function of the
first kind, and assume in addition that u0 ∈ H2(DR) and
verifies the compatibility condition u0(R) = F [u0]. Then
system (1)–(2) has a unique H2(DR) solution, and the
equilibrium profile u ≡ 0 is exponentially stable in the
H2(DR) norm, i.e., there exists c1, c2 > 0 such that

‖u(t, ·)‖H2(DR) ≤ c1e−c2t‖u0‖H2(DR). (4)

In the next sections we sketch the proof of the result. First
(Section 3) we explain the rationale behind the method
used for reaching (3), and next (Section 4) we show the
stability result for the closed loop system.

3. CONTROL LAW DESIGN

In this section we explain how the feedback law (3) has
been constructed. Given that the angular coordinate is
periodic and the system is linear we expand the system
by using its Fourier series representation. We stabilize
each harmonic independently by using the backstepping
method. Finally, we put together all the harmonics recon-
structing the feedback law in physical space.



3.1 Expansion in Fourier series

To handle the θ dependency, we expand both the state u
and the control U using a Fourier series:

u(t, r, θ) =

n=∞∑
n=−∞

un(t, r)einθ, (5)

U(t, θ) =

n=∞∑
n=−∞

Un(t)einθ, (6)

for n ∈ Z, where the coefficients are defined as

un(t, r) =
1

2π

∫ π

−π
u(t, r, ψ)e−inψdψ, (7)

Un(t) =
1

2π

∫ π

−π
U(t, ψ)e−inψdψ. (8)

From (1), each coefficient un verifies the following equa-
tion:

unt =
ε

r
(runr)r − n

2 ε

r2
un + λun, (9)

evolving in r ∈ [0, R], t > 0, with boundary conditions

un(t, R) =Un(t). (10)

Thanks to the fact that (1) is linear and the coefficients do
not depend on θ, the equations are not coupled and thus
we can independently design each Un and later re-assemble
all of the harmonics to find U .

3.2 Backstepping transformation

Our approach to design Un(t) will be to seek a mapping
that transforms (9) into the following target system

wnt =
ε

r
(rwnr)r − n

2 ε

r2
wn, (11)

a stable heat equation (a negative reaction coefficient could
also be added if desired), with boundary conditions

wn(t, R) = 0. (12)

The transformation is defined as follows:

wn(t, r) = un(t, r)−
∫ r

0

Kn(r, ρ)un(t, ρ)dρ, (13)

and then Un(t) will be found from (13) at r = R.

To find the kernel equations we proceed, as usual in the
backstepping method [8], by substituting both the original
and target systems in the transformation and integrating
by parts when possible. We skip the details for lack of
space. We obtain the following PDE that the kernel must
verify:

(rKnr)r
r

−

(
ρ

(
Kn

ρ

)
ρ

)
ρ

− n2
(

1

r2
− 1

ρ2

)
Kn =

λ

ε
Kn.

(14)
Also, the following boundary conditions have to be verified

0 = λ+ 2ε
d

dr
(Kn(r, r)) , (15)

0 =Kn(r, 0), (16)

0 = lim
ρ→0

((
Kn(r, ρ)

ρ

)
ρ

ρ

)
. (17)

Boundary condition (15) integrates to

Kn(r, r) =−
∫ r

0

λ

2ε
dρ = −λr

2ε
, (18)

where we have used (15) at r = 0 (i.e., Kn(0, 0) = 0).
Finally (15) can be written as

0 =Knρ(r, 0)− lim
ρ→0

Kn(r, ρ)

ρ
. (19)

However, from the second boundary condition Kn(r, 0) =
0. Assuming Kn(r, ρ) is differentiable in ρ, then one has

Knρ(r, 0) = limρ→0
Kn(r,ρ)

ρ and (17) is automatically

verified. Thus the only boundary conditions that have to
be considered are (18) and (16).

3.3 Explicitly solving the kernel equations

To solve (14) with boundary conditions (18) and (16), let

us make the change K(r, ρ) = G(r, ρ)ρ
(
ρ
r

)|n|
. We end up

with

Gnrr+(1−2|n|)Gnr
r
−Gnρρ−(1+2|n|)Gnρ

ρ
=
λ

ε
Gn, (20)

with only one boundary condition (since (16) is automat-
ically verified):

Gn(r, r) =− λ
2ε
. (21)

Now assume a solution Gn(r, ρ) of the form Gn(r, ρ) =

Φ
((

λ
ε (r2 − ρ2)

)1/2)
. Notice it is independent of n. Ex-

pressing the derivatives of Gn in terms of Φ and replacing
them in (20) we find

λ

ε
Φ′′ + 3

λ

ε

(
λ

ε
(r2 − ρ2)

)−1/2
Φ′ =

λ

ε
Φ (22)

with boundary condition Φ(0) = − λ
2ε . Denoting x =(

λ
ε (r2 − ρ2)

)1/2
and the derivatives with respect to x with

a dot, we can write (22) as

Φ̈(x) +
3

x
Φ̇(x)− Φ(x) = 0, (23)

and finally calling Ψ(x) = xΦ(x), we obtain(
Ψ̈

x
− 2

Ψ̇

x2
+ 2

Ψ

x3

)
+

3

x

(
Ψ̇

x
− Ψ

x2

)
− Ψ

x
= 0, (24)

which cross-multiplied by x3 gives

x2Ψ̈ + xΨ̇− (1 + x2)Ψ = 0, (25)

which is Bessel’s modified differential equation of order 1
(see [1], p. 374, Sec. 9.6.1). The (bounded) solution is

Ψ(x) = C1I1(x), (26)



and going backwards we obtain

Φ(x) = C1
I1(x)

x
. (27)

Noticing that limx→0
I1(x)
x = 1/2, we get C1 = −λε (from

the boundary condition at x = 0). Therefore, we obtain,
by undoing the change of variables to recover Gn,

Gn(r, ρ) = −λ
ε

I1

[√
λ
ε (r2 − ρ2)

]
√

λ
ε (r2 − ρ2)

, (28)

and therefore

Kn(r, ρ) = −ρ
(ρ
r

)|n| λ
ε

I1

[√
λ
ε (r2 − ρ2)

]
√

λ
ε (r2 − ρ2)

. (29)

3.4 Finding the 2-D backstepping kernel

The backstepping transformation, written in real space, is

w(t, r, θ) = u(t, r, θ)−
∫ r

0

∫ π

−π
K(r, ρ, θ, ψ)u(t, ρ, ψ)dψdρ,

(30)
where K is recovered from its harmonics Kn as

K(r, ρ, θ, ψ) =

n=∞∑
n=−∞

Kn(r, ρ)

2π
eni(θ−ψ). (31)

Using (14), we compute K as

K = −ρ λ

2πε

I1

[√
λ
ε (r2 − ρ2)

]
√

λ
ε (r2 − ρ2)

n=∞∑
n=−∞

(ρ
r

)|n|
eni(θ−ψ),

(32)
and since ρ ≤ r, this can be summed (except at ρ = r)

n=∞∑
n=−∞

(ρ
r

)|n|
eni(θ−ψ)

=

n=∞∑
n=0

(ρ
r

)n
eni(θ−ψ) +

n=0∑
n=−∞

(ρ
r

)−n
eni(θ−ψ) − 1

=

n=∞∑
n=0

(ρ
r

ei(θ−ψ)
)n

+

n=∞∑
n=0

(ρ
r

e−i(θ−ψ)
)n
− 1

=
1

1−
(
ρ
r ei(θ−ψ)

) +
1

1−
(
ρ
r e−i(θ−ψ)

) − 1

=
1− ρ2

r2

1 + ρ2

r2 − 2ρr cos (θ − ψ)
(33)

which is the Poisson kernel (see [7],p.41, a function that
tends to a Dirac delta δ(θ − ψ) when r goes to ρ). Thus
the function (by itself) is unbounded at r = ρ but valid as
an integral kernel; finally

K(r, ρ, θ, ψ) =− λρ

2πε

I1

[√
λ
ε (r2 − ρ2)

]
√

λ
ε (r2 − ρ2)

× r2 − ρ2

r2 + ρ2 − 2rρ cos (θ − ψ)
, (34)

and the control law (3) is found by setting r = R in (30).

4. PROOF OF CLOSED-LOOP STABILITY

4.1 Definition of Sobolev norms

To proceed with the proof of closed-loop stability, we first
need to define the appropriate norms. Since all the norms
will be defined on the disk of radius R we will omit the
symbol DR in the norm. Define the L2 norm in the disk as

‖f‖L2 =

(∫ R

0

∫ π

−π
|f |2(r, θ)rdθdr

)1/2

. (35)

The Sobolev norm ‖ · ‖H2 is defined as [2]

‖f‖H2 = ‖f‖L2+

∥∥∥∥∂2f∂x2

∥∥∥∥
L2

+

∥∥∥∥∂2f∂y2

∥∥∥∥
L2

+2

∥∥∥∥ ∂2f∂x∂y

∥∥∥∥
L2

, (36)

however we will compute the derivatives in the H2 norm
in polar coordinates, as follows
∂f

∂x
= cos θ

∂f

∂r
− sin θ

r

∂f

∂θ
,
∂f

∂y
= sin θ

∂f

∂r
+

cos θ

r

∂f

∂θ
. (37)

4.2 Stability of the target system

To prove well-possedness and stability of (1)–(2) with
feedback law (3), we first remark that the closed-loop is
equivalent (by using transformation (30)) to the target
system (11)–(12), which written back in physical space is

wt =
ε

r
(rwr)r +

ε

r2
wθθ, (38)

w(t, R, θ) = 0. (39)

We next state a result about (38)–(39).

Proposition 2. Consider the system (38)–(39) with initial
conditions w0(r, θ). Then, if w0 ∈ H2 and w0(R, θ) = 0,
then w ∈ C

[
[0,∞), H2

]
and also

‖w(t, ·)‖H2 ≤ De−αt‖w0‖H2 . (40)

where D and α are positive constants.

The well-posedness part of the result is standard (see for
instance [4], pages 326 and 328). The stability estimate is
easy to obtain using a Lyapunov argument, which we skip
due to lack of space.

4.3 Inverse transformation

Using standard arguments (see for instance [19]) one can
show that (30) is invertible. It is also possible to show that
if we write the inverse as

u(t, r, θ) = w(t, r, θ) +

∫ r

0

∫ π

−π
L(r, ρ, θ, ψ)w(t, ρ, ψ)dψdρ,

(41)
then, breaking down the kernel L in its Fourier components
Ln and computing the partial differential equation verified
by each Ln, one finds that it has a very similar structure
to the Kn kernel equations, and solving it, L is thus found
to have a very similar structure to (34), as follows

L(r, ρ, θ, ψ) =− λρ

2πε

J1

[√
λ
ε (r2 − ρ2)

]
√

λ
ε (r2 − ρ2)

× r2 − ρ2

r2 + ρ2 − 2rρ cos (θ − ψ)
, (42)

where J1 is the first order Bessel function of the first kind.



4.4 Proof of Theorem 1

Since the transformation is invertible, and the compati-
bility condition w0(R, θ) = 0 is translated in the original
system to the condition u0(R, θ) = F [u], Proposition 2 can
be applied to directly prove Theorem 1, if we can show
that both the direct and inverse transformation transform
H2 functions back into H2 functions. The next proposition
gives this result, applied to the functional structure shared
by both transformations.

Proposition 3. Assume that the function g(r, θ) is related
to the function f(r, θ) by means of the transformation

g(r, θ) = f(r, θ)+

∫ r

0

∫ π

−π
ρF (r, ρ)P (r, ρ, θ−ψ)f(ρ, ψ)dψdρ,

(43)
where F (r, ρ) ∈ C2(T ), where T = {(r, ρ) : 0 ≤ ρ ≤ r ≤
R} and where P (r, ρ, θ − ψ) is the Poisson kernel, i.e.,

P (r, ρ, θ − ψ) =
1

2π

r2 − ρ2

r2 + ρ2 − 2rρ cos(θ − ψ)
. (44)

Then:

‖g‖L2 ≤ C0‖f‖L2 , ‖g‖H2 ≤ C2‖f‖H2 , (45)

where the constants Ci depend only on R and F (r, ρ).

The use of F (r, ρ) in Proposition 3 allows to apply it
to both the direct and inverse transformation (which
would have a similar, but different, F , containing the
Bessel functions I1 and J1, respectively). To prove the
proposition, we state and prove a number of technical
lemmas. First we take care of the L2 norm.

Lemma 4.∫ π

−π

∣∣∣∣∫ π

−π
P (r, ρ, θ − ψ)f(ρ, ψ)dψ

∣∣∣∣2 dθ ≤ ∫ π

−π
|f(ρ, θ)|2dθ,

(46)
and also, defining H(n1, n2, φ) = cosn1(φ) sinn2(φ) for
positive n1, n2, we have∫ π

−π

∣∣∣∣∫ π

−π
P (r, ρ, θ − ψ)H(n1, n2, θ − ψ)f(ρ, ψ)dψ

∣∣∣∣2 dθ
≤
∫ π

−π
|f(ρ, θ)|2dθ. (47)

Proof Using Fourier series, if fn(ρ) are the coefficients of
f(ρ, θ) and noting that

P (r, ρ, θ) =
1

2π

n=∞∑
n=−∞

(ρ
r

)|n|
einθ, (48)

then,∫ π

−π
P (r, ρ, θ − ψ)f(ρ, ψ)dψ

=
1

2π

n=∞∑
n=−∞

m=∞∑
m=−∞

(ρ
r

)|n|
fm(ρ)

∫ π

−π
ein(θ−ψ)eimψdψ

=

n=∞∑
n=−∞

(ρ
r

)|n|
fn(ρ)einθ. (49)

Here, we have used the orthogonality property of Fourier
series (the same conclusion can be reached using the
convolution theorem). Now, by Parseval’s theorem

∫ π

−π

∣∣∣∣∫ π

−π
P (r, ρ, θ − ψ)f(ρ, ψ)dψ

∣∣∣∣2 dθ
= 2π

n=∞∑
n=−∞

∣∣∣∣(ρr)|n| fn(ρ)

∣∣∣∣2 ≤ 2π

n=∞∑
n=−∞

|fn(ρ)|2

=

∫ π

−π
|f(ρ, θ)|2dθ. (50)

To obtain the result for (47) we can mimic the proof
but we would need to show that the Fourier coefficients
of P (r, ρ, θ) cosn1(θ) sinn2(θ) are less or equal than one.
We will just show it by induction on n1 for n2 = 0,
since the proof would be the same for n2. For n1 = 0
it is obvious. Assuming that the Fourier coefficients of
P (r, ρ, θ) cosn1(θ), denoted as an, are such that |an| ≤ 1,
we have for n1 + 1 that

P (r, ρ, θ) cosn1+1(θ) =

n=∞∑
n=−∞

aneinθ cos θ

=

n=∞∑
n=−∞

aneinθ
eiθ + e−iθ

2

=
n=∞∑
n=−∞

an−1
2

einθ +

n=∞∑
n=−∞

an+1

2
einθ

=

n=∞∑
n=−∞

an−1 + an+1

2
einθ, (51)

and obviously the new coefficients bn = an−1+an+1

2 verify
|bn| ≤ 1. Thus the result follows. 2

Lemma 5. If

g(r, θ) = f(r, θ)+

∫ r

0

∫ π

−π
ρF (r, ρ)P (r, ρ, θ−ψ)f(ρ, ψ)dψdρ,

(52)
where F (r, ρ) ∈ C(T ), then

‖g‖L2 ≤ C0‖f‖L2 (53)

Proof First, since F (r, ρ) ∈ C(T ), we can bound F :

∀(r, ρ) ∈ T |F (r, ρ)| ≤M (54)

In the proof we skip the function dependencies for lack of
space. We find

‖g‖2L2 =

∫ R

0

∫ π

−π

∣∣∣∣f +

∫ r

0

∫ π

−π
FPfdψρdρ

∣∣∣∣2 rdθdr
≤ 2‖f‖2L2 +M2

∫ R

0

r3
∫ r

0

∫ π

−π

∣∣∣∣∫ π

−π
Pfdψ

∣∣∣∣2 dθρdρdr
≤ 2‖f‖2L2 +M2

∫ R

0

r3
∫ r

0

∫ π

−π
|f(ρ, θ)|2 ρdθdρdr

≤ 2(1 +
M2R4

8
)‖f‖2L2 , (55)

thus by setting C0 = 2(1 + M2R4

8 ) we have proven the
lemma. 2

Thus we obtain the L2 bound of Proposition 3. To compute
higher norms we use the next lemma.

Lemma 6. Call P̂ (r, ρ, θ−ψ) = P (r, ρ, θ−ψ)
(
ρ
r

)n1
cos(θ−

ψ)n2 sin(θ − ψ)n3 for any integer n1, n2, n3 ≥ 0. Then, if

g(r, θ) =

∫ r

0

∫ π

−π
F̂ (r, ρ, θ)P̂ (r, ρ, θ−ψ)f(ρ, ψ)dψdρ, (56)



where F̂ (r, ρ, θ) ∈ C1(T ) × C1([−π, π]) and F̂ (r, 0, θ) = 0,
then

gx =

∫ r

0

∫ π

−π

(
rF̂r + ρF̂ρ + F̂

r

)
P̂ cos θf(ρ, ψ)dψdρ

−
∫ r

0

∫ π

−π

1

r

∂F̂ (r, ρ, θ)

∂θ
P̂ (r, ρ, θ − ψ) sin θf(ρ, ψ)dψdρ

+

∫ r

0

∫ π

−π
F̂
ρ

r
P̂ (r, ρ, θ − ψ) [cos(θ − ψ)fx(ρ, ψ)

− sin(θ − ψ)fy(ρ, ψ)] dψdρ, (57)
and

gy =

∫ r

0

∫ π

−π

(
rF̂r + ρF̂ρ + F̂

r

)
P̂ sin θf(ρ, ψ)dψdρ

+

∫ r

0

∫ π

−π

1

r

∂F̂ (r, ρ, θ)

∂θ
P̂ (r, ρ, θ − ψ) cos θf(ρ, ψ)dψdρ

+

∫ r

0

∫ π

−π
F̂
ρ

r
P̂ (r, ρ, θ − ψ) [cos(θ − ψ)fy(ρ, ψ)

+ sin(θ − ψ)fx(ρ, ψ)] dψdρ. (58)

Proof By direct differentiation, we find that

gx = cos θ
∂g

∂r
− sin θ

r

∂g

∂θ

= cos θF̂ (r, r, θ)f(r, θ)χ(n3)

+

∫ r

0

∫ π

−π
F̂r(r, ρ, θ) cos θP̂ (r, ρ, θ − ψ)f(ρ, ψ)dψdρ

−
∫ r

0

∫ π

−π

1

r

∂F̂ (r, ρ, θ)

∂θ
P̂ (r, ρ, θ − ψ) sin θf(ρ, ψ)dψdρ

+

∫ r

0

∫ π

−π
F̂ (r, ρ, θ) cos θ

∂

∂r
P̂ (r, ρ, θ − ψ)f(ρ, ψ)dψdρ

−
∫ r

0

∫ π

−π
F̂ (r, ρ, θ)

sin θ

r

∂

∂θ
P̂ (r, ρ, θ − ψ)f(ρ, ψ)dψdρ,

where χ(n3) = 1 if n3 = 0, and zero otherwise. Noticing

that P̂ (r, ρ, θ−ψ) = Φ
(
ρ
r , θ − ψ

)
, we can see by the chain

rule that

∂

∂r
P̂ (r, ρ, θ − ψ) =− ρ

r2
Φ1

(ρ
r
, θ − ψ

)
, (59)

∂

∂ρ
P̂ (r, ρ, θ − ψ) =

1

r
Φ1

(ρ
r
, θ − ψ

)
, (60)

where Φ1 is the derivative of Φ with respect to its first
argument, and therefore we can derive the identity

∂

∂r
P̂ (r, ρ, θ − ψ) = −ρ

r

∂

∂ρ
P̂ (r, ρ, θ − ψ). (61)

Similarly,
∂

∂θ
P̂ (r, ρ, θ − ψ) = − ∂

∂ψ
P̂ (r, ρ, θ − ψ). (62)

Thus, if we integrate by parts in the last two lines of (59)
and expand cos θ = cos(θ − ψ + ψ) = cos(θ − ψ) cos(ψ)−
sin(θ − ψ) sinψ and sin θ = sin(θ − ψ + ψ) = sin(θ −
ψ) cos(ψ)+cos(θ−ψ) sinψ, we reach the result. The proof
for gy is carried exactly in the same fashion. 2

Applying the previous lemma we can obtain expressions
for gx, gy, gxx, gxy and gyy. Due to lack of space we only
show gx and gxx (other derivatives are similar).

Lemma 7. If

g(r, θ)=f(r, θ) +

∫ r

0

∫ π

−π
ρF (r, ρ)P (r, ρ, θ − ψ)f(ρ, ψ)dψdρ,

(63)
where F (r, ρ) ∈ C1(T ), then

gx=fx +

∫ r

0

∫ π

−π

(
2F (r, ρ)

ρ

r
+ ρFρ(r, ρ)

ρ

r
+ ρFr(r, ρ)

)
×P (r, ρ, θ − ψ) cos θf(ρ, ψ)dψdρ

+

∫ r

0

∫ π

−π
ρF (r, ρ)

ρ

r
P (r, ρ, θ − ψ) [cos(θ − ψ)fx(ρ, ψ)

− sin(θ − ψ)fy(ρ, ψ)] dψdρ. (64)

Using these expressions we can bound the first derivatives:

Lemma 8. If

g(r, θ) = f(r, θ)+

∫ r

0

∫ π

−π
ρF (r, ρ)P (r, ρ, θ−ψ)f(ρ, ψ)dψdρ,

(65)
where F (r, ρ) ∈ C1(T ), then

‖gx‖L2 ≤C3‖f‖L2 + C4 (‖fx‖L2 + ‖fy‖L2) , (66)

‖gy‖L2 ≤C3‖f‖L2 + C4 (‖fx‖L2 + ‖fy‖L2) . (67)

Proof First, since F (r, ρ) ∈ C1(T ):

∀(r, ρ) ∈ T |Fr(r, ρ)| ≤Mr, |Fρ(r, ρ)| ≤Mρ (68)

Then

|gx|2 ≤ 4|fx|2 + 4

∣∣∣∣cos θ

∫ r

0

(
2F

ρ

r
+ ρFρ

ρ

r
+ ρFr

)
×
∫ π

−π
Pfdψdρ

∣∣∣∣2
+4

∣∣∣∣∫ r

0

ρF
ρ

r

∫ π

−π
P cos(θ − ψ)fxdψdρ

∣∣∣∣2
+4

∣∣∣∣∫ r

0

ρF
ρ

r

∫ π

−π
P sin(θ − ψ)fydψdρ

∣∣∣∣2
≤ 4|fx|2 + 12

(
2M2 +

r2

4
M2
ρ +

r2

2
M2
r

)
×
∫ r

0

∣∣∣∣∫ π

−π
Pfdψ

∣∣∣∣2 ρdρ
+r2M2

∫ r

0

∣∣∣∣∫ π

−π
P cos(θ − ψ)fxdψ

∣∣∣∣2 ρdρ
+r2M2

∫ r

0

∣∣∣∣∫ π

−π
P sin(θ − ψ)fydψ

∣∣∣∣2 ρdρ.
Thus,

‖gx‖2L2 = 4‖fx‖2L2 + 3

(
M2R2 +

R4

4
M2
ρ +

R4

2
M2
r

)
‖f‖2L2

+
R4

4
M2

(
‖fx‖2L2 + ‖fy‖2L2

)
. (69)

Proceeding similarly for gy we prove the lemma. 2

To obtain H2 norm bounds we only two additional results.
In the first one we only show the expression of gxx (gxy
and gyy share a similar functional structure).



Lemma 9. If

g(r, θ) = f(r, θ)+

∫ r

0

∫ π

−π
ρF (r, ρ)P (r, ρ, θ−ψ)f(ρ, ψ)dψdρ,

(70)
where F (r, ρ) ∈ C2(T ), then

gxx = fxx +

∫ r

0

∫ π

−π

[
H2 cos2 θ +

H1

r
sin2 θ

]
Pfdψdρ

+

∫ r

0

∫ π

−π
2H1

ρ

r
P cos(θ) [cos(θ − ψ)fx − sin(θ − ψ)

×fy] dψdρ+

∫ r

0

∫ π

−π
ρF

ρ2

r2
P
[
cos2(θ − ψ)fxx

−2 sin(θ − ψ) cos(θ − ψ)fxy + sin2(θ − ψ)fyy
]
dψdρ,

where

H1(r, ρ) = 2F (r, ρ)
ρ

r
+ ρFρ(r, ρ)

ρ

r
+ ρFr(r, ρ), (71)

H2(r, ρ) =

(
∂r +

ρ

r
∂ρ +

1

r

)
H1(r, ρ). (72)

Proof It is proven by applying Lemma 6 to Lemma 7. 2

Next lemma bounds the norm of the second derivatives.

Lemma 10. If

g(r, θ) = f(r, θ)+

∫ r

0

∫ π

−π
ρF (r, ρ)P (r, ρ, θ−ψ)f(ρ, ψ)dψdρ,

(73)
where F (r, ρ) ∈ C2(T ), then

‖gxx‖L2 ≤C5‖f‖H1 + C6 (‖fxx‖L2 + ‖fxy‖L2 + ‖fyy‖L2) ,

‖gxy‖L2 ≤C5‖f‖H1 + C6 (‖fxx‖L2 + ‖fxy‖L2 + ‖fyy‖L2) ,

‖gyy‖L2 ≤C5‖f‖H1 + C6 (‖fxx‖L2 + ‖fxy‖L2 + ‖fyy‖L2) .

Proof The proof is carried out as the proof of Lemma 8.
The only difference is the integral with the term ρ

r2 which
has to be treated with care to avoid a singularity,as follows.∫ R

0

∫ π

−π

∣∣∣∣∫ r

0

ρ

r2

∫ π

−π
Pfdψdρ

∣∣∣∣2 dθrdr
=

∫ R

0

∫ π

−π

∣∣∣∣∫ r

0

ρ

r3/2

∫ π

−π
Pfdψdρ

∣∣∣∣2 dθdr
≤
∫ R

0

1

r2

∫ r

0

ρ2
∫ π

−π

∣∣∣∣∫ π

−π
Pfdψ

∣∣∣∣2 dθdρdr
≤
∫ R

0

ρ2
∫ R

ρ

1

r2

∫ π

−π
|f |2 dθdrdρ

=

∫ R

0

ρ2
(

1

ρ
− 1

R

)∫ π

−π
|f |2 dθdρ

≤
∫ R

0

∫ π

−π
|f |2 dθρdρ. (74)

Proceeding similarly for gyy and gxy, whose expressions
are very similar to gxx, we prove the lemma. 2

Thus we have proved the last part of Proposition 3.

5. CONCLUSION

We have shown an explicit design to stabilize a constant-
coefficient reaction-diffusion equation on a disk using

boundary control. The resulting control law uses full state
feedback, but following similar ideas it is possible to design
an observer and an output-feedback law. The method can
be extended to 3 (or higher) dimensions by using spherical
harmonics, obtaining similar results in terms of Bessel
functions and Poisson kernels, however higher Sobolev
spaces are needed to obtain continuity of solutions.
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