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This work presents a robust Model Predictive Controller (MPC) to solve the problem of spacecraft 
rendezvous in the context of the restricted three-body problem (R3BP) as will be required to dock 
with space stations in cislunar space. The employed methodology is both valid for chemical and electric 
thrusters. By exploiting the state transition matrix and using a chance-constrained approach, the robust 
MPC assures constraints satisfaction under the presence of disturbances in a probabilistic sense. The 
perturbations parameters are computed on-line using a disturbance estimator. The robust controller is 
tested for a rendezvous scenario with a target placed in an Earth-Moon L2 Near-Rectilinear Halo Orbit. 
Numerical results are shown and discussed.
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1. Introduction

Demonstrating rendezvous capabilities in the context of multi-body environments is becoming a growing and active field of research 
as International Space Station (ISS) partners have interest in building a space station in the cislunar space, named as the Lunar Orbital 
Platform Gateway (LOP-G), see [1]. Moreover, this lunar space station will greatly enhance scientific opportunities by allowing to return 
samples from the Moon, see [2].

Several options have been studied to place the LOP-G, see [3], being the Near Rectilinear Halo Orbits (NRHOs), around the L2 Earth-
Moon point, the most attractive candidates. NRHOs are members of the broader set of L1 and L2 families of Halo orbits existing in the 
circular restricted three-body problem (CR3BP), see [4] for more details about CR3BP orbits. The NRHOs also persist in higher-fidelity 
models since they present favourable stability properties, see [5].

Typically, far-rendezvous operations, where fuel consumption is the key driver instead of safety considerations, have been extensively 
studied in the literature. Reference [6] exploits the method of invariant manifolds connections whereas surrogate models, to ease the 
computational burden of global optimization, have been proposed by [7]. Finally, [8] compared the fuel efficiency of classical phasing 
strategies with invariant manifolds connections.

On the other hand, close rendezvous operations (where safety is a main concern) are starting to gain more momentum. Reference 
[9] proposed a targeting law combined with a navigation filter for restricted three body problem (R3BP) rendezvous operations. Practical 
rendezvous scenarios for Earth-Moon Halo orbits were proposed in [10], whereas shooting methods to achieve rendezvous have been 
studied in [11]. The previous works have expressed the system dynamics in the Earth-Moon co-rotating reference frame. However, this 
frame is not very useful to describe state constraints attached to the target. This is the reason why local frames are widely preferred in 
close rendezvous operations, see [12]. In [13], a local frame of reference is proposed taking into account that the LOP-G will be orbiting 
the Moon in a practical sense.

The purpose of this work is to develop a robust rendezvous controller for R3BP scenarios. The key idea behind robust control is to 
explicitly take into account disturbances and uncertainties in the optimization problem. In the case of Keplerian rendezvous operations, 
several robust techniques have been explored. Reference [14] employed the chance-constrained approach to guarantee constraints satis-
faction probabilistically. A worst-case scenario methodology, to minimize the size of the terminal arrival set, was proposed by [15]. Finally, 
a tube-based method, guaranteeing constraint satisfaction for bounded disturbances, has been experimentally validated in [16].
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Fig. 1. Inertial, synodic and LVLH frames of reference for the Earth-Moon system.

The main contribution of this work is the extension of the chance-constrained approach, developed in [14], to R3BP rendezvous. The 
proposed method explicitly considers the disturbances, affecting the state constraints, in a probabilistic sense. Then, these probabilistic 
constraints are bounded at a certain probability, which allows to compute control signals in a deterministic way. Since a priori knowledge 
of the disturbances statistical properties is required, an on-line estimator of stochastic parameters is also employed. The robust program 
is embedded into a Model Predictive Control (MPC) scheme, see [17], so the robust program is updated after each sampling time.

Moreover, for this type of mission, the propulsive plant of the chaser can be either chemical or electrical. To extend the potential 
application of this work, both the impulsive and continuous thrust models are considered. For the continuous thrust case, it is assumed 
that the control signal can be linearly parameterized by some decision variables. As an additional contribution, basis splines (B-splines), 
typically employed for attitude control as in [18] and [19], are chosen to parameterize the control signal.

The structure of this work is as follows. Section 2 describes motion in the restricted three body problem and the linearized relative 
model. Section 3 follows describing the rendezvous problem. Section 4 formulates the chance-constrained based MPC and the on-line 
disturbance estimator. Section 5 shows numerical results through a Monte Carlo comparison of the robust and non-robust controllers. 
Section 6 closes the paper with some final remarks.

2. Relative motion in the restricted three body problem

This section studies the relative motion between two vehicles in the R3BP. Firstly, the motion of a particle, under R3BP assumptions, 
is described. Additionally, some facts about NRHOs are given. Then, the local-vertical local-horizontal (LVLH) frame is introduced and the 
R3BP relative dynamics deduced. Finally, the relative motion is linearized assuming that the vehicles are close enough.

2.1. Restricted three body problem and NRHOs

Under R3BP assumptions, where μ1 ≥ μ2 � μ, being μ1 and μ2 the gravitational parameters of the two primaries and μ that of the 
vehicle, the spacecraft dynamics are conveniently expressed in the synodic frame, see [20]. Denote the inertial frame by I : {O, iI , jI , kI }
where O is the position of the system barycentre. Denote the synodic frame by S : {O, iS , jS , kS }, with iS coincident with the line uniting 
the two primaries and positive in the direction of the second primary, kS parallel to the system kinetic momentum and jS completing a 
right-handed system, see Fig. 1. The R3BP equations in the S frame are

r̈|S = − μ1(r − r1)

‖r − r1‖3
2

− μ2(r − r2)

‖r − r2‖3
2

− 2ωωωS/I × ṙ|S − ω̇̇ω̇ωS/I
∣∣

S × r −ωωωS/I × (ωωωS/I × r) + u, (1)

where r is the spacecraft position, r1 and r2 the primaries position, ωωωS/I the angular velocity of the synodic frame with respect to the 
inertial and u the control acceleration.

Eq. (1) allows primaries in elliptic orbits. To obtain the CR3BP equations (circular orbits), set ωωωS/I = nkS and ω̇̇ω̇ωS/I = 0 in Eq. (1), 
obtaining

r̈|S = − μ1(r − r1)

‖r − r1‖3
2

− μ2(r − r2)

‖r − r2‖3
2

− 2nkS × ṙ|S − nkS × (nkS × r) + u, (2)

where n = √
(μ1 + μ2)/D3 and D is the distance between the two primaries. The CR3BP system (2) has five libration points, named as 

Lagrange points (Li , i = 1 . . . 5), with associated families of periodic orbits around them, see [4]. Amongst these periodic orbits, the ones 
receiving more attention, for practical purposes, are the Halo orbits around collinear equilibria. Since these are unstable, the Halo orbits 
are in turn inherently unstable, requiring station-keeping to be maintained. Amongst each set of L1 and L2 Halo orbits, there exists a 
subset (NRHOs) with favourable stability properties. These properties have shown to persist in higher-fidelity models, and hence these 
orbits may support long-term missions near the Moon. Regarding scientific opportunities, the preferred Earth-Moon NRHOs are the ones 
associated to the Southern L2 family. This family allows great coverage for both the lunar South pole and far side of the Moon, see [21]. 
Covering these areas is of great scientific interest due to the existence of water ice in the South pole, see [22], and the impossibility to 
observe the far side of the Moon from Earth. The Southern L2 Halo family and their subset of NRHOs for the Earth-Moon system are 
shown in Fig. 2 in a non-dimensional synodic frame. Note that they can be practically seen as lunar orbits, with the perilune at the North 
pole.

To evaluate the stability properties of CR3BP periodic orbits, [23] proposed the stability index parameter ν

ν = 1
(

λmax + 1
)

, (3)

2 λmax
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Fig. 2. Green: Southern L2 Halo family; blue: Southern L2 NRHOs; black: Sec. V NRHO. Parameter a is the Earth-Moon semimajor axis. (For interpretation of the colours in 
the figures, the reader is referred to the web version of this article.)

Fig. 3. Stability indexes and periods for Southern L2 NRHOs.

which is a function of λmax , the absolute value of the monodromy matrix (state transition matrix after one orbital period) maximum 
real eigenvalue (in absolute value). The monodromy matrix of an autonomous Hamiltonian system is symplectic, hence each eigenvalue 
λ has an opposite one λ−1, see [24] for the details. Since the orbit is periodic, two monodromy matrix eigenvalues are always equal to 
the unity. As a consequence ν ≥ 1 and the periodic orbit is marginally stable if ν = 1 and unstable if ν > 1. Both the stability indexes 
and orbital periods for the Southern L2 NRHOs are shown in Fig. 3. It can be seen that at very close distances from the Moon surface, 
the NRHOs are almost marginally stable. As distance from the Moon increases, the stability indexes rise and decrease until they become 
almost marginally stable for altitudes ranging from 11500 km to 16750 km. Afterwards the stability indexes begin to increase quickly 
becoming highly unstable. Additionally, Fig. 3 shows the period increases monotonically with respect to the perilune radius. As remarked 
by [23], some practical orbits exist within the Earth-Moon NRHOs. A 9:2 resonance with the Moon synodic period (∼29.5 days) can be 
found at an altitude of ∼1500 km, whereas another 4:1 resonance arises at ∼4150 km, which are useful to avoid Earth eclipses at all 
times.

2.2. Relative motion in the R3BP

For relative dynamics, following [13], a local frame (LVLH) is employed. The frame is denoted by L : {rt , iL, jL, kL}, where rt is the target 
position, kL is pointing towards the second primary, jL is in the opposite direction to the target kinetic momentum as view from the S
frame with respect to the second primary and iL completes the right-handed frame. Fig. 1 shows the L frame as well as the target position 
rt , the chaser position r and the relative position ρρρ = r − rt . The relative dynamics in the L frame is given by ρ̈̈ρ̈ρ|L = r̈|L − r̈t |L , which can 
be further developed by using Eq. (1), reaching

ρ̈̈ρ̈ρ|L = − 2ωωωL/I × ρ̇̇ρ̇ρ|L −ωωωL/I × (ωωωL/I ×ρρρ)

− ω̇̇ω̇ωL/I
∣∣

L ×ρρρ − μ1

(
ρρρ + r1t

‖ρρρ + r1t‖3
2

− r1t

‖r1t‖3
2

)

− μ2

(
ρρρ + r2t

‖ρρρ + r2t‖3
2

− r2t

‖r2t‖3
2

)
+ u,

(4)

where r1t = rt − r1 and r2t = rt − r2 denote the relative position of the target with respect to the primaries. Note

ωωωL/I =ωωωL/S +ωωωS/I , (5)

ω̇̇ω̇ωL/I
∣∣

L = ω̇̇ω̇ωL/S
∣∣

L + ω̇̇ω̇ωS/I
∣∣

S −ωωωL/S ×ωωωS/I , (6)

hence, rt , ωωωL/S and ω̇̇ω̇ωL/S
∣∣

L depend on the target motion with respect to the synodic frame whereas r1, r2, ωωωS/I and ω̇̇ω̇ωS/I
∣∣

S depend on 
the primaries motion (Eq. (4) is still valid if the primaries evolve in elliptic orbits).
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2.3. Linearized relative motion in the R3BP

Considering close-range rendezvous operations, that is, ‖r1t‖2, ‖r2t‖2 � ‖ρρρ‖2, one has

r

‖r‖3
2

≈ r0

‖r0‖3
2

− 1

‖r0‖3
2

(
I − 3

r0rT
0

‖r0‖2
2

)
(r − r0), (7)

being r0 the linearization point. Introducing the linearization of Eq. (7) into Eq. (4), one obtains

ρ̈̈ρ̈ρ = −
(
�̇̇�̇�L/I +���2

L/I − μ1

r3
1t

(
I − 3

r1trT
1t

r2
1t

)
−μ2

r3
2t

(
I − 3

r2trT
2t

r2
2t

))
ρρρ − 2���L/I ρ̇̇ρ̇ρ + u, (8)

where ���L/I and �̇̇�̇�L/I are the cross-product matrices associated to ωωωL/I and ω̇ωωL/I respectively, see [25]. This can be written as a linear 
time-varying (LTV) system:

d

dt

[
ρρρ
ρ̇̇ρ̇ρ

]
=

[
0 I

Aρ̇̇ρ̇ρρρρ −2���L/I

][
ρρρ
ρ̇̇ρ̇ρ

]
+

[
0
I

]
u, (9)

where

Aρ̇̇ρ̇ρρρρ = −
(
�̇̇�̇�L/I +���2

L/I − μ1

r3
1t

(
I − 3

r1trT
1t

r2
1t

)
−μ2

r3
2t

(
I − 3

r2trT
2t

r2
2t

))
. (10)

Defining x = [ρρρT , ρ̇̇ρ̇ρT ]T , Eq. (9) is of the form ẋ(t) = A(t)x(t) + Bu(t), which has as general solution, see [26],

x(t) =φφφ(t, t0)x0 +
t∫

t0

φφφ(t, τ )Bu(τ )dτ , (11)

with φφφ(t, t0) the state transition matrix, verifying

φ̇̇φ̇φ(t, t0) = A(t)φφφ(t, t0), φφφ(t0, t0) = I. (12)

3. Rendezvous planning problem

Next, the control inputs are described and parameterized; then, the objective function and the constraints are described. Finally, the 
rendezvous problem is stated.

3.1. Control input

In this work, both chemical and electric thrusters are considered; thus, u = uC + uE , where uC and uE denote the chemical and 
electric accelerations respectively. For the chemical thrusters, the control signal can be described by impulses (i.e. instantaneous changes 
of velocity)

lim
	t→0

tk+	t∫
tk

uC (t)dt = 	V(tk)δ(t − tk), (13)

where tk is the impulse application time. On the other hand, electric thrusters provide continuous thrust and are assumed to depend 
linearly on some parameters ξξξ ∈R3nξ

uE(t) = Bξ (t)ξξξ, ξξξ = [ξξξ T
1 ,ξξξ T

2 . . .ξξξ T
nξ

]T , (14)

where the matrix Bξ ∈R3×3nξ , following [19], is described by B-splines, (see [27] for more details about them). Thus

uE(t) =
nc∑

j=1

B j,q(t)ξξξ j, (15)

where B j,q are qth order B-splines built on the knots sequence tknots ∈Rnknots while ξξξ j ∈R3 are the control points. If none of the internal 
knots is repeated, the B-splines intrinsically assure continuity up to Cq . Given the order q and the number of coefficients nc , the number 
of knots must satisfy nknots = nc + q + 1.

3.2. Objective function

The chosen objective function seeks to minimize the control effort of both the chemical and electric thrusters

J = β

N∑
k=0

‖	V(tk)‖2
2 + (1 − β)‖ξξξ‖2

2, (16)

where N + 1 is the number of impulses along the manoeuvre and β is a weight parameter.
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Fig. 4. LOS region.

3.3. Constraints

Three types of constraints are considered in this paper. Firstly, path constraints on the relative state; secondly the control signals are 
bounded; and finally, initial and terminal states values are prescribed.

3.3.1. Path constraints
For sensing purposes, it is required that the chaser is at all time visible from the docking port, see [28]. This constitutes the line-of-

sight (LOS) constraint. The LOS region can be defined by the equations x ≥ c y(y − y0), x ≥ −c y(y + y0), x ≥ cz(z − z0), x ≥ −cz(z + z0) and 
x ≥ 0; these equations limit the relative translational state space by five planes as shown in Fig. 4. One can define the LOS algebraically, 
at any instant t as ALx(t) ≤ bL , where

AL =

⎡
⎢⎢⎢⎣

−1 c y 0 0 0 0
−1 −c y 0 0 0 0
−1 0 cz 0 0 0
−1 0 −cz 0 0 0
−1 0 0 0 0 0

⎤
⎥⎥⎥⎦ , bL =

⎡
⎢⎢⎢⎣

c y y0
c y y0
cz z0
cz z0

0

⎤
⎥⎥⎥⎦ . (17)

3.3.2. Control bounds
For each type of thruster and each direction, it is assumed that its control action is bounded above and below in the same way

−	Vmax ≤ 	V(t) ≤ 	Vmax, (18)

−umax ≤ Bξ (t)ξξξ ≤ umax. (19)

3.3.3. Boundary constraints
The chaser departs from a given location and velocity at the initial time t0 and has to meet the target at the end of the manoeuvre t f

x(t0) = x0, x(t f ) = 0. (20)

3.4. Rendezvous problem

Putting together the objective function given by Eq. (16), the constraints of Eq. (17)-(20) and inserting the control inputs expressions 
of Eq. (13)-(14) into Eq. (11), one obtains the planning rendezvous problem

min
	V,ξξξ

β

N∑
k=0

‖	V(tk)‖2
2 + (1 − β)‖ξξξ‖2

2,

s.t. x(t) =φφφ(t, t0)x0 +
t∫

t0

φφφ(t, τ )BBξ (τ )ξξξdτ +
N∑

k=1

φφφ(t, tk)B	V(tk)δ(t − tk),

ALx(t) ≤ bL,

− 	Vmax ≤ 	V(t) ≤ 	Vmax,

− umax ≤ Bξ (t)ξξξ ≤ umax,

x(t0) = x0,

x(t f ) = 0.

(21)

Note that the optimization problem (21) has a quadratic objective function and linear constraints.



6 J.C. Sanchez et al. / Aerospace Science and Technology 100 (2020) 105827
4. Robust MPC formulation

In this section, a robust MPC scheme, in the spirit of the chance constrained approach (see [14]), is formulated; firstly the problem is 
discretized and disturbances are included into the model. Secondly, it is shown how to robustify the controller to tackle these disturbances 
in a probabilistic way. Finally, a disturbance estimator, to compute on-line the perturbations statistical properties, is developed.

4.1. Discretized prediction of the state

To transform the rendezvous problem (21) into a finite tractable program, the relative dynamics is discretized with respect to time. In 
particular, the manoeuvre duration is divided into N equally distributed sampling times 	T = (t f − t0)/N resulting into N + 1 time nodes. 
Denote by xk+ j the state at the instant tk+ j when an impulse 	Vk+ j is applied. The discrete propagation from the instant tk to tk+ j is 
given by

xk+ j =φφφ(tk+ j, tk)xk +
j∑

i=0

φφφ(tk+ j, tk+i)B	Vk+i +
j−1∑
i=0

φφφ(tk+ j, tk+i)

×
⎛
⎜⎝

tk+ j+1∫
tk+ j

φφφ(t, tk+ j)BBξ (t)dt

⎞
⎟⎠ξξξ +

j∑
i=0

φφφ(tk+ j, tk+i)δδδk+i, tk+ j = (k + j)	T ,

(22)

where an additive disturbance to the state, denoted by δδδ, is added at each node tk+ j , j = 0 . . . N . The term δδδ could model navigation 
errors, as a position disturbance, and perturbation forces, as a velocity disturbance. Note that N + 1 impulses are considered to be applied 
at the nodes tk+ j along the manoeuvre. To ease the notation, following [29], a compact formulation is developed. Defining the following 
stack vectors, xS ∈R6(N+1) , 	VS ∈R3(N+1) , ξξξ S ∈R3nξ and δδδS ∈R3(N+1) ,

xS(k) = [
xT

k , xT
k+1 . . . xT

k+N

]T
,

	VS(k) = [
	VT

k , 	VT
k+1 . . . 	VT

k+N

]T
,

ξξξ S(k) =
[
ξξξ T

k+1, ξξξ T
k+2 . . . ξξξ T

k+nξ

]T
,

δδδS(k) = [
δδδT

k , δδδT
k+1 . . . δδδT

k+N

]T
,

and the stack matrices F, G	V , Gξ and Gδ

Fk = [
I, φφφT (tk+1, tk) . . . φφφT (tk+N , tk)

]T
,

Gk,δ =

⎡
⎢⎢⎢⎣

I 06×6 . . . 06×6
φφφ(tk+1, tk) I . . . 06×6

...
...

. . .
...

φφφ(tk+N , tk) φφφ(tk+N−1, tk) . . . I

⎤
⎥⎥⎥⎦ ,

Gk,	V =

⎡
⎢⎢⎢⎣

B 06×3 . . . 06×3
φφφ(tk+1, tk)B B . . . 06×3

...
...

. . .
...

φφφ(tk+N , tk)B φφφ(tk+N−1, tk)B . . . B

⎤
⎥⎥⎥⎦ ,

Gk,ξ =

⎡
⎢⎢⎢⎢⎣

06×3 . . . 06×3
Buk+1(tk+1) . . . Buk+nξ

(tk+1)

...
. . .

...∑N
i=1 φφφ(tk+N , tk+i)Buk+1(tk+i) . . .

∑N
i=1 φφφ(tk+N , tk+i)Buk+nξ

(tk+i)

⎤
⎥⎥⎥⎥⎦ ,

where 0 denotes a matrix full of zeros and

Buk+l (tk+ j) =
tk+ j∫

tk+ j−1

φφφ(t, tk+ j−1)BBk+l,ξ (t)dt, (23)

being Bl,ξ ∈R3×3 the diagonal submatrices of Bξ . Then,

xS(k) = Fkxk + Gk,	V 	VS(k) + Gk,ξξξξ S(k) + Gk,δδδδS(k). (24)
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4.2. Objective function and constraints

For the robust controller, a terminal penalty term is added instead of the terminal constraint (20), which is removed. This constraint 
relaxation prevents the optimization to become infeasible, see [30], and can potentially improve asymptotic stability properties, see [31]. 
Due to the disturbance terms added to the state propagation, see Eq. (24), the state x evolves stochastically. Therefore, mathematical 
expectation of the state can be taken as x̂k+ j|k = E[xk+ j], given xk and x̂S (k + j|k) = E[xS(k + j)].

The robust objective function becomes

J (k) =
N∑

j=0

x̂T
k+ j|kR(k + j)x̂k+ j|k + β

N∑
j=0

	VT
k+ jI	Vk+ j + (1 − β)

nξ∑
l=0

ξξξ T
k+lIξξξk+l, (25)

where the terminal weight matrix R is defined as in [14]

R(k + j) = γ h(k + j − ka)

[
I 03×3

03×3 03×3

]
, (26)

being h the step function, ka the desired arrival time and γ a large positive number. The instants k + j > ka are weighted because it is 
desired to arrive at the target at the instant tka and remain there. Defining E[δδδS (k + j)] = δ̄̄δ̄δS , the robust objective function of Eq. (25) is 
expressed compactly as

J (k) =x̂T
S (k)RS x̂S(k) + 	VT

S (k)Q	V 	VS(k) + ξξξ T
S (k)Qξξξξ S(k). (27)

On the other hand, Q	V = βI, Qξ = (1 − β)I and the matrix RS is

RS =
⎡
⎢⎣

R(k) . . . 06×6
...

. . .
...

06×6 . . . R(k + N)

⎤
⎥⎦ . (28)

The LOS constraint, given by Eq. (17), is expressed as

AL S xS(k) ≤ bL S , (29)

where AL S ∈ R5N×6(N+1) and bL S ∈ R5N stack the LOS constraint matrix and vector of Eq. (17) respectively. Similarly, the chemical 
thrusters bounds can be written as

−	VS,max ≤ 	VS(k) ≤ 	VS,max. (30)

The electric thrusters constraint is tackled discretely:

−uS,max ≤ Bk,Sξ
ξξξ S(k) ≤ uS,max, (31)

where

Bk,Sξ
=

[
BT

ξ (tk), BT
ξ (tk+1) . . . BT

ξ (tk+nu )
]T

, (32)

with nu + 1 instants equispaced by 	Tnu = (tk+N − tk)/nu .

4.3. Robust satisfaction of constraints

Assuming that δδδS is a random term with unknown bounds, the LOS inequality of Eq. (29) is made to be satisfied with a certain 
probability (chance-constrained). Introducing the bounding term bδ(k) into Eq. (29)

AL S(Gk,	V 	VS(k) + Gk,ξξξξ S(k)) ≤ bL S − AL S Fkxk + bδ(k)

≤ bL S − AL S(Fkxk + Gk,δδδδS(k)).
(33)

The probability of constraint satisfaction, by adding the bounding term bδ , should be near one. This guarantees that the chaser remains 
within the LOS region for almost all perturbations. Considering that the disturbances are normally distributed, δδδ ∼ N6(δ̄̄δ̄δ, ���δ), with known 
mean, δ̄̄δ̄δ, and covariance matrix, ���δ =���T

δ � 0, the following relation holds (see [32] for more details)

δδδ ∼ N6(δ̄̄δ̄δ,���δ) −→ (δδδ − δ̄̄δ̄δ)T���−1
δ (δδδ − δ̄̄δ̄δ) ∼ χ2(6), (34)

where χ2(6) is a chi-square probability distribution with six degrees of freedom. Making the hypothesis that the statistical properties of 
the disturbances are time-invariant (quasi-steady approach), Eq. (34) is valid at all times

(δδδk+ j − δ̄̄δ̄δ)T���−1
δ (δδδk+ j − δ̄̄δ̄δ) ∼ χ2(6), j = 0 . . . N, (35)

hence the following probabilistic relations hold

P(χ2(6) ≤ α) = p −→ (δδδk+ j − δ̄̄δ̄δ)T���−1(δδδk+ j − δ̄̄δ̄δ) ≤ α,
δ
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where finding α from a given p, the right side inequality is guaranteed with probability p. Then, the parameter p is the probability 
of constraint satisfaction and should be as close to unity as possible. The bounding term bδ (k) can be found by solving the following 
minimization problem for each row i of −AL S Gk,δ denoted as ai(k)

min
δδδS

(bδ(k))i = ai(k)δδδS ,

s.t. (δδδk+ j − δ̄̄δ̄δ)T (α���δ)
−1(δδδk+ j − δ̄̄δ̄δ) ≤ 1.

(36)

It can be proved, see [14], that the rows of bδ(k) are

(bδ(k))i =
N∑

j=0

(
−

√
ai jH−1ai j + ai jδ̄̄δ̄δ

)
. (37)

Once the vector bδ(k) is computed through Eq. (37), the control input at time tk is obtained by solving the following robust program

min
	VS (k),ξξξ S (k)

J (xk,	VS(k),ξξξ S(k), δ̄̄δ̄δS(k)),

s.t. AL S(Gk,	V 	VS(k) + Gk,ξξξξ S(k)) ≤ bL S − AL S Fkxk + bδ(k),

− 	VS,max ≤ 	VS(k) ≤ 	VS,max,

− uS,max ≤ Bk,Sξ
ξξξ S(k) ≤ uS,max,

(38)

which is a quadratic programming (QP) problem.

4.4. Disturbance estimator

The robust satisfaction of constraints, presented in the section 4.3, requires a priori knowledge of the perturbations statistical properties, 
δ̄̄δ̄δ and ���δ . However, such properties are typically unknown and they have to be estimated on-line. Since the disturbances have been 
assumed as normally distributed such that δδδ ∼ N6(δ̄̄δ̄δ, ���δ), the normal distribution parameters δ̄̄δ̄δ and ���δ are estimated a posteriori at each 
time k by taking into account all past disturbances

δδδi = xi+1 −φφφ(ti+1, ti)xi −
ti+1∫
ti

φφφ(ti+1, τ )Bu(τ )dτ , (39)

with i = 1 . . .k − 1. The estimates of δ̄̄δ̄δ and ���δ at time k, based on disturbances up to k − 1, are named as δ̂̂δ̂δk and �̂̂�̂�k,δ , and following [14]
one can use recursive formulas for their estimation as follows

δ̂̂δ̂δk = e−λ

γk
(γk−1δ̂̂δ̂δk−1 + δδδk−1),

�̂̂�̂�k,δ = e−λ

γk

(
γk−1�̂̂�̂�k−1 + (δδδk−1 − δ̂̂δ̂δk)(δδδk−1 − δ̂̂δ̂δk)

T
)

,

with δ̂̂δ̂δ0 = 0 and �̂̂�̂�0,δ = 0.

5. Results

In this section, an application case of rendezvous with a target located in an Earth-Moon NRHO is considered. A comparison between 
the proposed chance-constrained MPC algorithm against a non-robust MPC is carried out.

5.1. Simulation model

The non-linear R3BP relative dynamics given by Eq. (4) are used to obtain the numerical results of this section. As reported in [13], the 
position error between the linear and non-linear models increases faster at the NRHO perilune (∼ 40 m in 1 h) compared to its apolune 
(∼ 2 m in 1 h). The minimum and maximum distance between Earth and Moon are taken as ‖r12‖ = 363104 km and ‖r12‖ = 405696 km, 
whereas the primaries gravitational parameters are μ1 = 398600.4 km3/s2 and μ2 = 4904.869 km3/s2. The manoeuvre is considered to 
take place when the distance between Moon and Earth is minimal.

Apart from model mismatch, numerical integration is required to obtain the LTV transition matrix with Eq. (12), hence cumulative 
integration errors are expected to arise. Another source of disturbances is the computation of the target NRHO which is done with the 
continuation software AUTO (see [33]), using the CR3BP model, see Eq. (2). The target L2 Southern NRHO is taken as the one with 
ν = 1.0120, T = 10.35 days and closest distance to the Moon surface of 15674 km, see Fig. 3.

Regarding the thrusters performance, in the same sense as [14], the real control inputs 	Vreal = [	V x, 	V y, 	V z]T and ureal =
[ux, u y, uz]T do not match the computed control signals 	V and uE

	Vreal = R(δθδθδθ)(	V + δδδV), (40)

ureal = R(δθδθδθ)(uE + δδδuE), (41)
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Table 1
Global simulation conditions.

t0 1 d 7 h 9 m 10 s t f 1 d 19 h 9 m 10 s
c y 1/tan(π/6) cz 1/tan(π/6)

y0 5 m z0 5 m
δδδθ̄̄θ̄θ [2.5◦,2.5◦,2.5◦]T ���δθ (2.5◦)2I

Table 2
Impulsive scenario conditions.

r0 [400,200,−200]T m
v0 [0.1,−0.1,0.1]T m/s
	Vmax [0.1,0.1,0.1]T m/s
umax [0,0,0]T m/s2

max(δδδV̄) 5 · 10−4 · [1,1,1]T m/s
���δV (5 · 10−4)2I m2/s2

Fig. 5. Chaser 3D trajectory for the first random realization using the robust controller.

where R is a rotation matrix and δθδθδθ ∼ N3(δδδθ̄̄θ̄θ, ���δθ ) is a vector of small random angles modelling imperfect alignment of thrusters, whereas 
δδδV ∼ N3(δδδV̄, ���δV ) and δδδuE ∼ N3(δδδūE , ���δuE ) are additive random noises to the impulse or electric thrust amplitude respectively. Note that 
Nn denotes a n-dimensional gaussian distribution.

5.2. Simulation results

In this section, the previously designed robust controller performance is evaluated for each one of the thrusters configurations. The 
initial manoeuvre time is chosen at the instant when the target is closest to the Moon (perilune), thus potentially representing a lunar 
sample return scenario, see [2].

The simulations are done in MATLAB with Gurobi as the QP solver (see [34]). The state transition matrices are computed numerically 
by solving the ODE system (12) with the ode45 routine of MATLAB which implements a 4th order Runge-Kutta method with a variable 
time step. For the continuous thrust case, the second term of the right-hand side of Eq. (11) is computed with a trapezoidal method 
integration. Although numerical integrations augments the computational burden, especially the one concerning the transition matrix, in 
practice these matrices can be computed on ground and uplinked to the probe before starting the manoeuvre. The common conditions for 
both scenarios are shown in Table 1. Note that a docking sensor has a cone half-angle of 30◦ . The controller tuning parameters are taken, 
for both scenarios, as N = 40, γ = 106, α = 0.95 and λ = 0.25. On the other hand, the specific continuous thrust parameters are chosen as 
nu = 400, q = 4 and nc = 44, hence assuring C4 continuity. Since the disturbances evolve stochastically, 100 random realizations of them, 
see Eq. (40)-(41), are simulated. By doing this, the proposed robust controller can be effectively compared with a non-robust one (δδδS = 0).

5.2.1. Impulsive scenario
Consider the impulsive scenario defined by Table 2. The thrust level bias could potentially influence the results. As a consequence, it is 

considered to be in the interval δδδV̄ ∈ [−max(δδδV̄), max(δδδV̄)] with constant probability. Note that the continuous thrusters are not operative 
since their bounds are null.

The robust controller simulation results are shown in Fig. 5-7. For the sake of clarity, only the trajectory on the X Z plane is shown, 
since that projection depicts the most critical LOS constraints. Although, a close range rendezvous scenario is considered, the trajectory 
start diverging from the target up to 1.5 km approximately, (see Fig. 5-6), which highlights the capability of the linear model to provide 
fair accuracy at distances above the typical rendezvous ones (< 1 km). The final in-track impulses 	V x , see Fig. 7, are positive to brake 
the chaser and avoid collision with the target. Two critical moments happen along the manoeuvre, the first one taking place just after the 
departure and the other one at the end of the rendezvous operation, see the zoomed areas of Fig. 6 and Fig. 8. Note that the non-robust 
controller is not capable of guaranteeing LOS constraint satisfaction in any case, see Fig. 8, whereas the robust controller avoid the two 
arising conflicts for the 93% of the cases, see Fig. 6. However, in exchange for the safeness increment, the mission cost also increases when 
comparing the robust approach with the non-robust one, see Fig. 9. The computation times, for a i7-860 CPU at 2.80 GHz, are of 2.3451 s
to compute the stack matrices whereas each MPC step requires 0.4606 s in average requiring the worst case 0.6911 s.
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Fig. 6. XZ plane trajectories for all the random realizations using the robust controller.

Fig. 7. Impulses for the first random realization using the robust controller. Blue: computed impulses; red: applied impulses.

Fig. 8. XZ plane trajectories for all the random realizations using the non-robust controller.

Table 3
Continuous thrust scenario conditions.

r0 [600,300,−200]T m
v0 [0.1,−0.1,0]T m/s
	Vmax [0,0,0]T m/s
umax [10−4,10−4,10−4]T m/s2

max(ūE ) 5 · 10−7[1,1,1]T m/s2

���δuE (5 · 10−7)2I m2/s4

5.2.2. Continuous thrust scenario
Consider the continuous thrust scenario characterized by Table 3. Again, the thrust level bias has been considered to vary with constant 

probability within the interval ūE ∈ [−max(ūE ), max(ūE )].
The robust controller simulation results are shown in Fig. 10-12. Again, the final control in the in-track direction, ux , is positive to avoid 

collision with the target, see Fig. 12. Comparing the robust against the non-robust controller yields again the conclusion that the non-
robust one shows worst performance in terms of constraints satisfaction when compared to the chance-constrained method, see Fig. 11. 
As a matter of fact LOS constraint satisfaction is of 76% (appearing most of the violations at high bias levels, see Fig. 13) for the robust 
controller whereas the non-robust controller achieves a LOS constraint satisfaction of 1%. Moreover, in this case, the chance-constrained 
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Fig. 9. Mission cost against the thrust level bias for all the random realizations. Blue: LOS satisfaction; red: LOS violation.

Fig. 10. Chaser 3D trajectory for the first random realization using the robust controller.

Fig. 11. XZ plane trajectories for all the random realizations using the robust controller.

Fig. 12. Thrust acceleration for the first random realization using the robust controller. Solid: computed thrust; dotted: applied thrust.
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Fig. 13. Mission cost against the thrust level bias for all the random realizations. Blue: LOS satisfaction; red: LOS violation.

method consumes less, in general, than the non-robust method, see Fig. 13. Regarding computation times, 6.3504 s are required to 
compute the stack matrices at the beginning whereas in average each robust MPC step takes 2.0369 s with the most severe computation 
requiring 3.5514 s.

6. Conclusions

In this work, a chance-constrained MPC with disturbance estimation, for restricted three body problem rendezvous, is presented. 
Moreover, this robust controller is formulated to consider both chemical and electric thrusters, thus increasing the flexibility of the method. 
The chemical thrusters are modelled as impulses and the electric ones are parameterized in terms of B-splines. The controller is limited 
to close rendezvous operations where the system dynamics can be linearized. The simulations have shown a great increase of mission 
success, sometimes at the expense of the cost, for the robust controller when compared to the non-robust one.

The main drawback of the algorithm is the numerical integration of the state transition matrices since the dynamics is LTV. However 
these matrices can be computed by the ground control segment and loaded via uplink to the spacecraft. It is left as future work to evaluate 
the performance of this algorithm against other robust techniques such as worst-case methodologies, see [15], and tube-based MPC, see 
[16]. In conclusion, the presented chance-constrained model predictive controller describes an implementable, flexible and relatively fuel 
efficient algorithm for spacecraft close rendezvous operations in a complex dynamical system under the presence of disturbances.
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