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Abstract

Quantitative force spectroscopy experiments require a comprehensive
knowledge of the frequency response characteristics of the micro-cantilever.
To establish a generic theoretical model an analytical mathematical
description of the cantilever dynamics in force spectroscopy was developed
using a transfer function approach. This study allows for quantitative
evaluation of force spectroscopy experiments and analysis of stability and
controllability of an atomic force microscope (AFM). The model accounts
for the dynamic characteristics of the extended cantilever beam and for
elastic sample properties. The system dynamics were investigated using an
exact system-theoretic approach. The step and frequency responses are given
for force spectroscopy experiments in different experimental configurations.
The transfer function approach used in this study allows us to investigate very
significant dynamic aspects that simple first mode approximations cannot
capture. Only extended beam models account for both poles and zeros of the
transfer function and can thus reproduce important features that are related to
the zero dynamics. These features include pole-zero cancellations or
non-minimum phase response. The possibility of non-minimum phase
response in AFM is highly important for the design of inverse filters. The
presence of zeros in the right half of the Laplace plane immediately implies

that the inverse system is unstable.

1. Introduction

For a quantitative analysis of force spectroscopy experiments
in atomic force microscopy (AFM) a full mathematical
description of the dynamic response is required. Such a
mathematical model has to account for the characteristics
of the extended cantilever beam together with the sample
properties. Two different experimental approaches are of
special interest: force pulling and small amplitude force
modulation.  Pulling experiments include molecular force
spectroscopy [1] or the molecular force clamp [2, 3]. The
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small signal response to a mechanical stimulus can be obtained
from noise analysis [4, 5] or by active g-spectroscopy [6]. In
the latter method viscoelastic properties are extracted from the
system response to a small external forcing at resonance. A
special feedback system (q-control) undamps the system and
helps to track the resonant frequency. The dynamic response
of the AFM cantilever in a pulling/pushing experiment can
be understood by analysing the step response of the system;
the response in a modulation experiment can be visualized in
a Bode plot [7] which depicts amplitude and phase response
as a function of the frequency. The dynamics observed in
both experimental configurations are intimately connected by
the transfer characteristics of the system. Additionally, a
theoretical description that includes a characterization of poles-
zeros dynamics enables us to analyse the regimes of system
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stability along with a determination of the non-minimum
phase character of the system. The non-minimum phase
character of the system is of critical importance for the
reconstruction of forces acting on the cantilever tip [8-10]
and the design of inverse filters necessary for model based
estimation of tip—sample interaction [11] and control of forces
in nanolithography [12].

Thus, modelling of the dynamics corresponding to an
AFM cantilever interacting with the sample is paramount for
dynamic AFM based methods. There are several approaches to
model the AFM cantilever. The simplest rely on modelling the
cantilever as a single-degree-of-freedom harmonic oscillator,
the so-called first mode approximation [13]. Although the
first mode approximation is very useful for special applications
such as simulation of phase imaging AFM [14] or state
estimation in amplitude modulation AFM [11], it does not
take into account that the cantilever is a distributed parameter
system with an infinite number of resonant frequencies. The
higher modes are of great importance for excitation of the
cantilever at frequencies above the first resonance [15]. The
use of a lumped-parameter model avoids the limitation of the
first mode approximation including a finite number of resonant
modes [16]. The Euler—Bernoulli beam equation provides
a complete infinite-dimensional description of the problem.
The infinite product expansion goes beyond lumped parameter
models as it allows us to obtain an exact expression for all
the poles and zeros of the system. This is an improvement
in comparison to the lumped-parameter model where the
numerical values of the system zeros only slowly converge to
the exact value with an increased number of poles included in
the analysis. However, if damping or tip—sample interaction
are included, the solution of the infinite dimensional problem
is not trivial [17-19].

Transfer function analysis is an approach to analyse dis-
tributed systems which easily delivers a complete description
of system dynamics. Additionally, it also represents a use-
ful tool to study the effects of system configuration (place-
ment of inputs and outputs) in modelling and control design
of flexible systems by pole and zero analysis [20]. The trans-
fer functions of distributed systems consist in transcendental
functions; therefore, in order to obtain an analytical expression
of system poles and zeros, infinite product expansions must be
found [21]. Recently, we have applied the transfer function
approach to obtain a dynamic description of the free AFM can-
tilever without tip—sample interaction [22].

In the following analysis we consider a typical rectangular
AFM cantilever subject to a linearized variable interaction
corresponding either to a tethered molecule or a surface. This
analysis includes a free or a pinned end as limit cases. The
influence of different system configurations on the system
dynamics is highlighted by modelling the AFM cantilever as
a multiple-input—multiple-output (MIMO) system. The inputs
are point load and distributed force, while the outputs are
position and slope along the cantilever. From the resulting
transfer function matrix, the dynamics of the system are
discussed using Bode plot representation, poles and zero locus
plot, and transient response to a step force input. The influence
of the force gradient at the tip—sample contact on the frequency
response are discussed in detail. This analysis includes non-
minimum phase behaviour, stability and controllability of the
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Figure 1. Different inputs (blue) and outputs (red) of the mechanical
system as considered in the MIMO system.
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system. The consequences on AFM operation and force
spectroscopy measurements are discussed in detail.

2. Cantilever system description

We assume an AFM cantilever of length L, width w and
thickness d with a constant cross section. The transversal
displacement of the cantilever relative to its support is
described by the variable z(f,x) defined positive for a
displacement toward the sample, where ¢ is time, x € [0, L] the
position. x = 0 is the fixed end of the cantilever and x = L the
free end. The force gradient corresponding to surface bonding
of the AFM tip is considered in the boundary conditions. As
illustrated in figure 1 the inputs and outputs of the system under
consideration are the following:

e Input 1, ¢(¢), is an external force acting at the tip
end. Such a force can be generated, for example, by
conformational fluctuations of a molecule under test or
a magnetic particle attached at the tip end which is then
actuated by generating a magnetic field [23].

e Input 2, u(t), is a distributed force per unit length acting
along the cantilever, which corresponds to an inertial
force generated by a mechanical excitation produced by
a piezoelectric transducer [24], an electrostatic force or
thermal excitation [25].

e Output 1, z(¢, L), is the vertical deflection at the free end,
measurable by interferometric methods [26]. Although
this measurement is not usual in commercial AFM
systems, it plays an important role because it provides a
direct measurement of the tip deflection and the tip sample
forces.

e Output 2, z, (¢, L), is the deflection slope measured at the
free end of the cantilever, which is measured using the
bouncing beam detection method [27]. This represents an
idealized output in standard AFM systems based on the
light lever detection scheme.



Nanotechnology 18 (2007) 185504

R Viazquez et al

Considering the cantilever as a MIMO system, we can
write its (matrix) transfer function description as

Z(s, L) U(s)]
=G(s s 1
[z,xs,L)] ()[Q(S) M
where Z(s, L), Z,(s, L), U(s) and Q(s) stand, respectively,
for the Laplace transformed vertical deflection z(t, L), slope
7, (t, L), distributed force u(¢) and force at the tip g(¢), s is

the Laplace variable (with units of frequency) and G (s) is the
matrix transfer function of the system,

811 812
G(s) = . 2
(«) <821 gzz) @
Here, g;; (s) represents the transfer function of input i to output
J-

3. Tip-surface interaction

In this work we consider a linear approximation of the tip—
sample interaction modelled by an effective force constant.
From an experimental point of view this approximation is
justified in the case of a very small dithering of the tip position
or for the description of the thermo-mechanically oscillating
cantilever. For the case where the tip of the cantilever is
attached to a surface through a tethered molecule, the effective
force constant is given by the force constant of the molecule [1]
and the correspondent effective tip—sample stiffness by the
corresponding force gradient. If we consider the case where the
tip is directly interacting with a surface, then an elastic contact
model can be used to calculate the effective force constant.

For a rigid solid surface, the mechanical tip—sample
interaction can be modelled by a Derjaguin—-Mueller—Toporov
(DMT) model neglecting damping in the tip—sample contact.
The interaction force is a nonlinear function that depends
mainly on the proximity of the tip to the sample [28]. Calling
Zs(z) the distance from the sample to the free end of the
undeflected cantilever, the true tip—surface distance neglecting
sample deformation is given by z,(#) — z(¢, L). Denominating
f(¢) as the tip—surface interaction force and ay the interatomic
distance, one can characterize two regimes of behaviour. If
zs(t)—z(t, L) > ay, the force is attractive and can be described
by a van der Waals model,

HR

F = 6(zs(1) — 2(1, L)%

(3)
If z5(t) — z(¢, L) < ayp, the interaction is repulsive and can be
computed using a DMT model,

HR

2
6a;

f)=- + %E*«/E(Zs(t) —z(t, L) +a)? (4

In (3) and (4), H represents the Hamaker constant, R the tip
radius and E* the effective contact stiffness, which can be
derived from the elastic moduli of tip and sample (respectively
E and E;) and their Poisson ratios (resp. v; and vy), using the
following expression: E* = [(1 — v})/E, + (1 — v2)/E]"".
For the transfer function analysis, we will consider the case
in which the system stays in the close neighbourhood of an
equilibrium set point zy, which can be adjusted by moving the

sample relative to the cantilever mount [29]. Linearizing the
force around the set point, we obtain

where 35 (0)
13
5= Taa D) . (6)

represents the effective force constant. Inserting (3) and (4)
into (5), we find

ki
—HR/3(z,(t) — 20)°,
R(zs(t) — 20 + ao),

if z5(t) — z(¢t, L) > ao,
if zs(t) — z(t, L) < ay.
(7N

Note that the sign of ks depends on the regime of the force. For
the attractive regime one, the constant is negative, while for the
repulsive regime the constant is positive. We consider

— ks, (®)

where E is the Young modulus and 7 = wd?/12 is the
area moment of inertia. The quantity 3E1/L? corresponds
to the cantilever spring constant. Then I%S is the parameter
that determines the magnitude and regime of the force. In
this work we shall consider all possible values of ks including
zero (free end) and infinity (pinned end). In order to focus the
discussion on the cantilever dynamics we will only consider
elastic interaction and neglect damping in the tip and sample
contact.

4. Dynamic model of the cantilever interacting with a
surface

The dynamics of the surface-coupled AFM cantilever can be
derived from the classical Euler—Bernoulli beam equation,
in which we neglect rotary inertia, axial effects, shear
deformation and tip mass, but include damping effects,
4 2

EI% +c%+m%=—u(t), )
where m corresponds to the mass per unit length. The damping
factor c is due to both the internal cantilever friction and the
surrounding media. If there is no base motion of the cantilever,
then both effects are included in ¢. However, if the cantilever
base is moved in order to induce an inertial force on the
cantilever, then a first order approach must be used to model
the damping factor in (9):

9%z 0z  9zp
EIZZ 9z, %
oxt +Ce<3t o >+

3%z
m—Z = —u(t),

a2 (10)

where ¢, corresponds to an effective damping constant and
Zp (1) to the position of the cantilever base.

The boundary conditions at the fixed end are zero
deflection and zero slope:

0z

t,0) =0, —
z(t,0) ™

=0.
x=0

(11
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At the free end no torque is assumed,

3%z
=0, El
I ox

9%z
0x2

+ /@) =—-q@). (12
L

X= X=

We have included both the interaction force f(¢) and the input
q(t). Introducing the linearized force (5)—(8) in (12) yields

83
oy f e
ax3
Following [22], we take the Laplace transform, disregarding
initial conditions and seek a solution of the form

Z(s,x) = cosh (A(s)x) [Acos (A(s)x) + Bsin (A(s)x)]
+ sinh (A(s)x) [C cos (A(s)x) + D sin (A(s)x)]

(13)

L3

x=L

3
- z(z,L)) = —q(0).

U
i, (14)
4EIX(s)*
where s is the Laplace variable (frequency), and
cs + ms?
A(s) = o 15
(s) AE] 15)

The constants A, B, C, and D can be found by substitution
in the boundary conditions (11) and (12). Once the solution
Z (s, x) is found, the slope is obtained as Z, (s, x) = dZ/dx.
We skip the long analytic expression for the solutions for
Z(s,x) and Z,(s,x), which can be found by using any
commercial symbolic calculation package.

For numerical calculations and plots, we have employed
the following numerical data unless otherwise explicitly
indicated: £ = 169 GPa, m = 3.72 x 107" kgm™!, L =
232 um, w = 40 um, d = 4 um and ¢ = 0.01 kg ms~'. For
the discussion of the transfer characteristics as a function of
the effective tip—sample stiffness the parameter range is —1 <
l%ls < o0. For further numerical simulations of the nonlinear
system one can use the Hamaker constant H = 6.4 x 1072 J
and the distance ap = 0.166 nm.

In the following, we do not write the dependence on the
Laplace variable s explicitly.

5. Transfer functions of the system

The matrix transfer function of the system, G, as defined in (1)
and (2) can be found by evaluating the solutions Z(x) and
Z.(x) atx = L. Its expression is

1
G=—<n” n12>’ (16)
D \ nay nxn
where the common denominator D is
D = EI{2[2 + cos(2AL) + cosh(2AL)]
3k .
+ L3)t\3 [sinh(2AL) — sin(2AL)]}, (17)
and the numerator values are:
1
ny = F[Sinh (2AL) — sin (2AL)], (18)
1
np = F[cosh(ZAL) —cos(2AL)], (19)
-1
Ny = W[COS()\L) — cosh(AL)T?, (20)

Ig,,| (dB)

o (deg)
I
g 8 o

0 0.5 1
log,(;)

Figure 2. Bode plots of g (top) and g, (bottom) for
ks = —1,0, 10, 100 (respectively dotted, solid, dashed and
dashed—dotted lines).

ny = ;—32[cosh(AL) sin(AL) — cos(AL) sinh(AL)]

3kis . ‘ )
+ ———[sin(AL) — sinh(AL)]".

21
2L3\0 1)

Note that the only expressions depending on lgts are D and ny;.

5.1. Frequency response

We study each subsystem g;; separately. From the expressions
of the different transfer functions it is straightforward to obtain
the frequency response of the system using the Bode plot
representation [7]. The response amplitude at a given angular
frequency w is given by the module of the complex valued
transfer function |g;; (j)|, while the phase shift ¢ corresponds
to the angle /g;;(jw). Bode plots are shown in figures 2 and 3
for values lgts = —1,0, 10, 100. We do not show the frequency
response for lgls < —1, since that range of values is shown in
section 6 to lead to an instable system.

The great influence of the I/O configuration and the
magnitude of the contact stiffness on the frequency response
of the system is manifested in the Bode plots. The most
interesting qualitative feature of the plots is the attenuation and
displacement of resonant modes to the right, as Igts increases.
It is also worth noting that, for all the subsystems considered
except the one corresponding to gz, the phase shift is finite
(even though there is an infinite number of zeros, their location
is such that their respective phase contribution compensates).
For any finite value of I%S, the phase shift for g, is always
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Figure 3. Bode plots of g, (top) and g, (bottom) for

ks = —1,0, 10, 100 (respectively dotted, solid, dashed and

dashed—dotted lines). The sharp edges in the phase shift of g,, are
due to the continuity from —180° to 180°.

increasing and tends to infinity when the frequency grows. In
section 7, it will be shown that this increase in phase is due
to an infinite number of right-half plane zeros (non-minimum
phase zeros).

In some cases there are modes of resonance that get
strongly attenuated, almost disappearing or exchanging its
position with one antiresonance. This is the effect of an
(stable) pole-zero cancellation that happens for a close value of
kis. The cancellation may change dramatically the behaviour
of the system in the frequency range of the disappearing
resonance mode. Figure 4 shows the first resonance peak for
different values of Igts in the point load configuration. For
both outputs, the resonance peak is shifted for increasing
contact stiffness, in a similar way as predicted by the simple
harmonic oscillator model. However, the response for the
slope output is dramatically changed. The cancellation of the
system resonance is due to the antiresonance at the frequency
f = 287 kHz. Note that the position of the antiresonances
depends only on the used cantilever and not on the interaction
with the surface for all system configurations except for the
subsystem with distributed force and slope output (g2).

The force modulation spectroscopy has been developed
to perform direct measurement of single-molecule stiffness
and viscoelasticity with the AFM [5]. In this measurement a
stochastic distributed force due to the thermal excitation acts
on the cantilever while the tethered molecule generates the
interaction force at the cantilever end. Figure 5 shows the shift
of the first resonant peak for both outputs of the distributed

240 260 280 300 320
f (kHz)

Figure 4. Shift of the resonance curve for both outputs of the system
due to different values of 12“ for the point load input. The values of
l@ls for the different resonance curves from left to right are 6.1, 7.0,
7.8,8.7,9.5, 10.4 and 11.2. For the slope output, the resonance
vanishes due to a system antiresonance located at f = 287 kHz
(marked with a line in the graph).

x10~°

25

1.5

Ig, | (M*/N)

0.5

0.20

Ig,,| (1IN)

0.05

60 100 140 180
f (kHz)
Figure 5. Shift of the resonance curve for both outputs of the system
due to different values of ki for the distributed force input. The

values of IQIS for the different resonance curves from left to right span
from O (free oscillations) to 2.4 with increments of 0.4.

force input with ks ranging from O to 2.4. The damping was
set to ¢ = 0.04 to account for a stronger damping. The
position output suffers a higher magnitude decrease than the
slope output due to the reduction of the cantilever amplitudes
of vibration with higher stiffness.

5.2. Limit cases

There are two limit cases corresponding to a freely oscillating
cantilever and to a cantilever pinned at its end:

G’ = lim G, (22)
IQ[,\%O
G* = lim G. (23)
]213*)00
The transfer functions for these limit cases are
0 I (nn np
G'= — 2. (24)
D% \ ny s
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—200F pinned-end case

¢ (deg.)
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Iog(mn)

Figure 6. Bode plot of g5, (top) for the special case where the end of
the cantilever is pinned to the surface (ki = 00).

and

1 0 0
OO_
= 5= (0 ) =

DY =2E] (24 cos (2AL) + cosh (2AL)),

where

(26)

ng2 = ;—3 (cosh (AL) sin (AL) — sinh (AL) cos (AL)), (27)

~ 2EI . .
D= = BE (sinh 2AL) —sin (21L)), (28)
-1 .
ng = e (sin (AL) — sinh (AL))*. (29)

A detailed analysis of the freely vibrating cantilever (24) has
already been presented elsewhere, see [22] and references
therein. In the pinned cantilever case, all the components of
the transfer function matrix (25) are zero except the component
corresponding to the distributed force input with slope output
case. The Bode plot corresponding to this nonzero component
is shown in figure 6. The most remarkable characteristic of
the Bode plot figure is the appearance of antiresonances. The
phase at the antiresonance is incremented by 360° and the
phase shift remains limited, as the system is no more non-
minimum in phase.

6. System poles

The poles of the system correspond to the complex roots of
the denominator D in (17). The denominator is common to all
the studied subsystems, due to the fact that the system poles
are not affected by the selection of inputs and outputs. As our
model is infinite-dimensional, to obtain an exact expression of
system poles the denominator has to be written in form of an
infinite product expansion [21]. One must distinguish three
cases depending on k.

(i) If ks > —1, then

> 4L44
D=CH[1+ = }

(30)

(i) If Igts = —1, then a root at zero must be added to (30),

88 > 41404
D=_—L** 1 . 31
st [ g } Gh
(ii1) If Igts < —1, the expression for the denominator is
1614247 5 41404
p=Cl1-—G U +—= 62

In 30)—(32), C = 8EI(1 + Igts), d, is the infinite
sequence of increasingly ordered real positive solutions of the
transcendental equation

3k
d; [sinhd,, cosd, — coshd, sind,]

n

=1+ cosd, coshd,,

(33)

and d, is the only real, positive solution of the following
equation:

12y
<~ (sinhdy — sindy).

0

2 + cosdy + coshdy = — (34)

Note that C, d,, and d, are all parametrized by Igts.

Substituting now the value of A(s) from (15) in
expressions (30)—(32), it is possible to find the location of the
poles for all three cases. For all values of Igts, there are poles
verifying

SSpotes + MSpoes (35)
El L*
and solving for spojes.
c c? Eld;‘
Spoles = _% m - Wa (36)

which, for ¢ smaller than d,, yields a pair of complex
conjugated roots.

For case ii, in addition to the poles given by (36), there
is one additional pole at the origin and another pole located at
—c/m.

In case iii, in addition to the poles in (36), there are two
real poles, one with negative real part and another with positive
real part (instable pole),

c c? Eld;

2m N a2 T it

Spoles = — (37
It is also interesting to obtain the poles for the limit cases.
If kx = 0, one gets the well known expression of the freely
oscillating cantilever poles

< 4L40%
0 _
D_SEIH[H > }
n=1 n

(3%)

where now the b, are the positive solutions of the equation

1 + cos b, coshb, =0, 39)
and the exact value of the poles is
0 c ¢ EIb!
o = o N G T e @
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Table 1. Resonant frequencies of the first five modes of resonance
for different values of the effective contact stiffness k.

Mode 1 Mode 2 Mode 3 Mode 4 Mode 5

ks f1® (kHz) f;* (kHz) f;* (kHz) f;* (kHz) f:* (kHz)
—-0.5 72.8 636.8 1792.7 3515.0 5811.3
0.0 102.2 640.7 1794.1 3515.7 5811.7
1.0 1425 648.8 1796.9 3517.1 5812.6
10.0 291.8 727.3 1823.5 3530.4 5820.5
100.0 426.5 1192.6 21444 3684.2 5906.7
[ee) 448.3 1452.9 3031.4 5183.9 7910.4

which yields pairs of (stable) complex conjugate poles. For lgts
tending to infinity, the denominator (28) can be expanded into

w 16EI = 4L

D® = —— 1+ ; (41)

3040 Cn

where ¢, are the positive real solutions of

tanc, = tanhc,, (42)

and the exact value of the poles is given by

c 2 Elct

oo = " EV G2 Tt @

which yields pairs of complex conjugate poles in the left half
plane (LHP) of the Laplace plane.

If the damping of each pole, i.e. its negative real part, is
very small compared to the modulus of the pole, the resonant
frequency f,°* corresponding to each pair of conjugated poles
can be approximated using the imaginary part of the poles,

Im(s,)

res __
I = 2

(44)
This approximation is not valid in case i for the first pair of
poles, calculated with d; from (33), if Igts is close to —1. In
that situation d; approaches zero and will be of the order of c.
Table 1 shows the resonant frequency values for the first five
resonant modes of vibration calculated using different contact
stiffness.

For the numerical values given at the end of section 4, we
represent the poles in figure 7, a root locus type of plot where
we show how the position of the poles is altered by changing
k. The poles for the limit cases alternate on a line parallel
to the imaginary axis, located on the LHP. When lgts increases
from zero to infinity, the poles of the case /EIS = 0 (circles in
the diagram) increase their imaginary part, reaching in the limit
the values of the case I%S — 00 (crosses in the diagram).

Analogously, for decreasing Igts from zero to —oo, the
imaginary part of the poles decreases as well. Poles of the
case I%S = 0 move toward poles of the pinned end limit
case, always staying in the LHP. The only exception is the
first pair of poles of the case lgls = 0, whose imaginary part
decrease till they become real (for kis approaching —1). At
ks = —1 one of them is located in the origin. Decreasing
lgls beyond —1 moves the pole further into the right half plane
(RHP), making the system instable. This instable behaviour
for the range ks € (—o0,—1) (strongly attractive regime
of the surface coupling force) corresponds to the physical

Im(s) (rad/s)
(=3

=15
—15000

b e e mmmeaaaa o

-5000
Re(s) (rad/s)

10000 5000
Figure 7. Location of poles with Igls. Circles mark poles at 12“ =0,
crosses at ki, — 00. Solid lines and dotted lines describe,

respectively, the movement of poles for positive and negative 12“. The
dashed line is the imaginary axis.

phenomenon known as ‘snap-in’ [30]. When approaching
the surface closely the cantilever can, suddenly, bend toward
the surface due to the attractive van der Waals forces. This
instability is stopped in the real nonlinear system by a change
of regime to the repulsive zone of the coupling force.

7. System zeros

The zeros of the system correspond to the roots of the
numerators (18)—(21). As the numerators n;;, nj; and ny;
do not depend on the contact stiffness, the value of lgts does
not change the location of zeros for these subsystems and
correspond to the free vibrating limit case. We refer to [22]
for a detailed study. The only subsystem in which zeros are
affected by changes in the contact stiffness corresponds to the
numerator n,,. Here, two cases must be considered:

i) If Igts # 8, nyy can be expanded as

L} P L*a*
nz2=——<8—kts)1"[[1— . } (45)
6 n=1 Zn
(i) If Igts = 8, then a root at zero must be added, so
—L7\* 5 L4
= 1 - . 46
n» 105 ,1;[] [ Zﬁ } (46)

In expressions (45) and (46), z, is the infinite sequence of
nonzero complex solutions, located in the first quadrant of the
imaginary plane (positive real and imaginary part) and ordered
by increasing absolute value, of the complex equation:

473 [cosh (z,) sin (z,) — sinh (z,,) cos (z,)]
= 3k, [sin (z,) — sinh (z,)]* . 47)
Substituting (15) in (45) and (46), we find that the zeros are

located at
c . c? n 4E17:
2m 4m? mL* "’

(48)

Szeros =
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and one can obtain, for small ¢ and when the values of z,
from (47) are real or close to the real axis (this situation
happens for ks large, positive or negative), approximate values
of the zeros. The absolute value gives a good approximation
for the location of antiresonances:

2lz* [EL
Szeros A i L2 7

In the special case I%S = —8&, in addition to the zeros in (48),
there is one additional pair of real zeros, one at the origin and
the other at s = —c/m.

The limit cases can be treated analogously. If I%S = 0, then

—413 & L4*
0
= 1— N
TS H[ ]

n=1

(49)

(50)

where the ¢, are the solutions of (42). One has then alternating
zeros in the positive and negative real axis,

0 c

zeros _2711

c? Elct
4m? - mL*

N

(D

Note that in this case, subsystem 22 is non-minimum phase.
If kix, — o0, then

L3 00 L4)\4 2
nsy =—— [1—1— ] ,

6 c 6

n=1 n
where the ¢, are defined in (42). The zeros have then
multiplicity two, and are given by the expression

o € 4 ¢ Ele
2m 4m?  mL*

The zeros appear in complex conjugate pairs, of multiplicity
two, with negative real part, so the subsystem is minimum
phase in this case.

In figure 8 we represent the location of the zeros of
subsystem 22 when lgts changes. The diagram shows the rather
complex zero dynamics for different values of k.

The most interesting qualitative feature of figure 8 is how
subsystem 22 changes from pairs of zeros in the real axis
(alternating positive and negative) at lgts = 0 (circles in the
diagram) to a situation in which there are pairs of complex
conjugate zeros located in the LHP, for Igts — +00 (crosses
in the diagram). Numerically studying this behaviour for
intermediate values of lgts, we found that for any finite value
of I%S there are an infinite number of RHP zeros, i.e. the
subsystem 22 (base excitation to slope measurement) is non-
minimum phase. For increasing |l€ls|, an increasing number of
low frequency zeros move into the LHP (the first cross being
at l%ls = 8), but still an infinity of (high frequency) zeros can be
found in the RHP. Only in the limit case IQIS — 400 all zeros
are in the LHP, i.e. the subsystem is minimum phase. Note that
this behaviour is only possible with an infinite number of zeros
and could not be accurately captured by any finite-dimensional
approximation of the system. RHP zeros impose limitations in
system performance and makes difficult the implementation of
model-based control [20].

(53)

x 10

Im(s) (rad/s)

3t

-6

~6 6 x 107

0
Re(s) (rad/s)

Figure 8. Location of zeros with Igls. Circles mark zeros at 12“ =0
and crosses at l@ls — 00. Solid lines and dotted lines describe,
respectively, the movement of zeros for positive and negative IQIS.
dashed line is the imaginary axis.

The

8. Step response

The step response of the subsystem ij in the time domain
yij(t) is obtained applying the inverse Laplace transform to
the product of the subsystems and unit step (1/s) transfer
functions [7]:

(54)
N

I [ (G(s)
() = — e .
yij (1) = 5— /Hoo
An exact solution to this integral is found by direct application
of the residue theorem [31],

yij (1) = ZRGS [eStG(S)] .
k=0 S ds=x

where s; are the singular points, i.e. the poles, of G(s)/s.
Since (36) is an exact expression for all the poles of the
transfer function G(s), the problem is reduced to calculate
the residues. As the contribution of high order poles rapidly
diminishes, i.e. the series (29) converges very fast, only
the first n poles contributing to the system response will be
considered in the sum. This truncation can be considered a very
accurate estimation of the sum. All the subsystems considered
above have no poles at zero, except when lgls = —1 (which
leads to an instable system and hence its step response is of
no interest). Thus, the integrand in (54), where the residues
are evaluated, have a single pole at s = 0, corresponding to
the step response transfer function 1/s. The infinite product
expansion of the denominator obtained in section 6 gives the
remaining poles. Therefore, the step response is given by

(55)

W =GO+ %Res GOy . (56)
k=1

G(0) is evaluated using the expressions for numerators and
common denominator given in sections 6 and 7. The residues
of the transfer function can be evaluated by application of the
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Figure 9. Response to a unit force step input of the different subsystems considered with varying contact stiffness (ks = —1, 0, 1 and 10).

The damping factor considered was of ¢ = 0.3 kg ms™'. The response amplitude decreases with increasing contact stiffness.

L’Hospital rule [32]

— N(sp) lim % = N6
V5w D) Disp)

Res [G(s)], (57)

=5t
where N (s;) and D(sy) are the numerator and denominator of
the transfer function evaluated at sy, respectively, and D’(sy)
denotes the derivative of the denominator with respect to s.
Introducing (57) in (56) and applying the chain rule, the step
response to a unit force is given as

n Sy
e’

N (A
yij(t) = G(0) + Z c (A(sx))

_ (58)
£ D'(M(se)X (5p)

Figure 9 shows the response to a unit force step of the
different system configurations with varying contact stiffness
lgls = —1,0,1,10. The damping factor used was of ¢ =
0.3 kg ms™! (corresponding to a liquid environment) to better
show the dynamics of the system. The response amplitude
decreases with increasing contact stiffness and increases
cantilever oscillations before the steady state is reached.

The non-minimum phase behaviour in a certain range of
lgls for the subsystem corresponding to g, is observed in the
transient response of the cantilever. To clearly illustrate this
effect figure 10 shows the normalized force step response of g2
with varying contact stiffness close to zero, I%S =-0.5,0,1,3
(normalization to a unit maximum response). The system
reacts at the very beginning against the input, corresponding
to its non-minimum phase character. The amplitude of the
reaction at the beginning increases with increasing I%S. Note
that, due to the normalization, the characteristic reaction
appears more pronounced compared to the plots in figure 9.

0 5 10 15 20
time (us)

Figure 10. Response to a unit force step input of the normalized step
response yj, with varying contact stiffness close to zero. The used
contact stiffness are I%S = —0.5,0, 1, 2 and 3. The normalized steady
state response increments with increasing contact stiffness Igls. The
damping factor considered was of ¢ = 0.3 kg ms™'. The insert shows
a zoom of the response at the very beginning where the
non-minimum phase character of the system produces an initial
response of the system against the given force input.

This example illustrates that the properties of the system
transfer function gives direct insight in cantilever transient
response. Other models using simplified AFM dynamical
models or considering a finite number of modes will not
describe accurately the dynamics of the system, unless they
include the zero dynamics, which plays an important role
as seen in (58). It is also worth noting that the impulse
response of the system can be easily found using the previous
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derivation. The transfer function of the impulse is the unit
function, without any pole at s = 0. Thus, it is only necessary
to eliminate the term corresponding to the pole at s 0
in (58). One direct application of the transient response of the
considered system is the analysis of force spectroscopy curves
obtained by the AFM [28].

9. Conclusions

In this work the dynamics of an AFM cantilever involved
in force spectroscopy has been investigated using an exact
system-theoretic approach based on the infinite dimensional
transfer function of a rectangular AFM cantilever. The transfer
functions obtained for different input/output configurations
indicate different behaviours of the system, especially in the
system zeros which greatly affects the frequency and transient
response. From the transfer functions, the dynamics of the
system were analysed using the Bode plot, poles and zeros
locus plot, and transient response to a force step input. The
frequency responses of the different system configurations
verify that the dynamics are greatly affected by varying force
gradients. Poles are common to all system configurations
and are obtained using the infinite product expansions of the
system. The analysis of the system poles allows us to detect
an instable system behaviour for the range I%S € (—oo, —1).
The infinite product expansion of transfer function numerator
for the different system configurations yields the system zeros.
For the case where the cantilever is actuated by a distributed
force and the cantilever slope is used as output the zeros are
additionally affected by the contact stiffness. For this case
the system is non-minimum in phase for any finite value of
lgls and only in the limit case (pinned cantilever) the system
is minimum phase. The non-minimum phase behaviour is
manifest in the phase shift of the Bode plot and in the initial
transient response to a step force input.

Therefore, our study demonstrates that a detailed theoret-
ical analysis is important because the transfer characteristics
critically depends on the system configuration and must be
considered in the quantitative analysis of AFM experiments,
especially those related to force spectroscopy. The inputs and
outputs of the AFM model have to be carefully selected to
match experimental conditions.

The description of the dynamic behaviour has direct
applications to the analysis of force spectroscopy experiments:

e the frequency shift and variations of the amplitude
response due to varying contact stiffness can be used in
dynamic experiments to quantify viscoelastic properties of
tethered molecules;

the force step response can be analysed to study the
deformation and adhesion properties of the tethered
molecules in single-molecule AFM force spectroscopy in
detail;

considering fluctuations of the specimen itself, for
example by fluctuations in the molecular structure, the
cantilever acts as a mechanical filter which exhibits band
pass characteristics even at high frequencies (close to
higher eigenmode resonances) and a band stop character
at frequencies close to the transmission minima.

10

Additionally, only extended beam models can capture
important features such as pole-zero cancellations or non-
minimum phase response. The possibility of non-minimum
phase response in AFM is highly important for the design of
inverse filters as they are required, for example, in the inversion
of the signal path or for certain control applications. The
presence of zeros in the right half plane of the dynamic system
immediately implies that the inverse system is instable. Thus,
for control application and advanced signal processing the
location of the zeros in the Laplace plane has to be evaluated
very carefully considering the actual loading conditions as well
as actuation and detection.

In conclusion, the example of an idealized rectangular
beam revealed general properties of the cantilever dynamics
in AFM. In order to analyse experimental configurations
of course further aspects such as the finite spot size of
the detection laser or the actual geometry of the cantilever
have to be considered. Here, a similar analysis based
on an accurate finite element model might be necessary.
Additionally, an experimental identification of the system’s
poles and zeros [33] might be required. To this end the
properties of an idealized beam as discussed here can serve
as a starting point for a customized analysis. Moreover, a
precise knowledge of the transfer characteristics of the force
sensor expands the possibilities for model-based control and
observer design to improve state-of-the-art performance in
spectroscopy, microscopy and nanomanipulation.
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