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Abstract- The observer design for non-discretized Navier-
Stokes partial differential equations has so far been an open
problem. We present a nonlinear PDE observer that estimates
the velocity and pressure fields for an infinite channel flow. Also
know as the Poisseuille flow, this problem is frequently cited as
a paradigm for transition to turbulence, and is a benchmark for
flow control and turbulence estimation. Our observer consists
of a copy of the nonlinear Navier-Stokes equations, combined
with linear injection of output estimation error, with observer
gains designed in closed form using backstepping. Pressure and
skin friction at one of the walls are the only quantities needed
for measurement. For a fully developed channel flow (whether
laminar or turbulent), with a Reynolds number possibly above
the critical value, but not too far above it, the observer is
guaranteed to be convergent to the actual velocity and pressure
field, provided its initial estimates are not too far from the actual
initial profile. An output feedback result for the linearized
infinite channel flow is also presented, combining the observer in
this paper with a controller presented in a companion CDC'05
paper. Both results are presented for the 2D case for clarity of
exposition, however an extension to 3D is straightforward.

I. INTRODUCTION

The absence of effective state estimators for Navier-Stokes
equations modeling turbulent fluid flows is considered one of
the key obstacles to reliable, model-based weather forecast-
ing. We present a nonlinear observer for the channel flow
benchmark problem. The observer measures only pressure
and skin friction at one of the walls of the channel and
estimates velocities and pressure throughout the channel.
Previous observer designs for the channel flow were in
the form of an Extended Kalman Filter for the spatially
discretized Navier-Stokes equations and employed high-
dimensional algebraic Riccati equations for computation of
observer gains [2]. The structure of our observer is similar
to an Extended Kalman Filter, however it is designed for
the continuum Navier-Stokes model and the output injection
gains are are given explicitly, by a symbolically computable
formula.

For notational clarity the result is presented in 2D. It
extends to 3D in a straightforward way due to spatial
invariance in the spanwise direction.
We start the paper stating the mathematical model of

the problem, which is the fully nonlinear incompressible
Navier-Stokes PDE (Section II). In Section III we introduce
the nonlinear observer for estimation of the velocity and
pressure fields, with explicit expressions for the output
injection gains. Section IV deals with the proof of local
convergence for the observer error system. Fourier transform
allows separate analysis for different wave numbers. For
some wave numbers, a combination of output injection and a
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Fig. 1. 2D Channel Flow and equilibrium profile

stabilizing term found through a backstepping transformation
guarantee observer convergence. Finding the kernel of the
transformation is the design task. We derive an integral
equation which is used to symbolically compute the observer
gains. For the very large and the very small wave numbers
the system is known to be exponentially stable, and simply
a copy of the plant is used. These two results are combined
to prove observer error convergence for all wave numbers.
Section V presents a complete output feedback design com-
bining the results of the present paper with control results in
a companion paper [7].

II. MODEL
Consider a 2D incompressible channel flow evolving in a

semi-infinite rectangle (x, y) C (- oc, oc) x [O, 1] like shown
in Figure 1. The dimensionless velocity field is governed by
the Navier-Stokes equations

ut =
I

(UXX + UYY)-UUx-VUY-PxR
vt =

I (Vxx + V11)Re
and the continuity equation

(1)

UVx-VVy -Py, (2)

Ux+V =0, (3)
where U denotes the streamwise velocity, V the wall-normal
velocity, P the pressure, and Re is the Reynolds number.
Instead of using (3) we can derive a Poisson equation that
P verifies, just combining (1), (2) and (3)

Pxx + Pyy =-2(Vy)2 -2VxUy. (4)
The boundary conditions verified by (1), (2) and (4) are

U(t, ,0)
V(t, ,0)

Py(t, x, 0)

U(t,X,1) = 0,
V(t,X,1) = 0,

RIUxy(t, x, O),

(5)
(6)
(7)

(8)Py (t,x, 1) = 1 uxy(t, : I),
where (7)-(8) are deduced from (2) and (3).

0-7803-9568-9/05/$20.00 ©2005 IEEE 5959



III. OBSERVER
The observer consists on a copy of (1)-(2), to which we

add output injection of the pressure P and the streamwise
velocity gradient Uy (proportional to friction) at the wall

(it=R(uI x + u)yy fPluu - vuy

-4elc/jQ1 (x y)(Uy (&,O)- (y O))d

+ J Q2(X y) (P(, 0) -P(t, 0)) d, (9)

=R (vxx + vy) -Py -uvx-v

-R~ 08 )J X(k)l(k, y, 0)e27ik(x-4)dk<tRe _, 00

+ e/ Q2(X-(,y) (Uy((, O)-(Uy((,O)) <t

+ J Qi(x - , y) (P( ),O)-P(, 0)) d, (10)

where as usual the observer (estimated) variables are denoted
by a hat. The pressure P is governed by a copy of (4)

Pxx + Pyy -2(VY)2 -2VxUY, (1 1)

Qj(x,y)
500-

O-

0-500
5

0 0~~~~~~.5
x y

-5 1

Fig. 2. Q1(x,y)

Re f`c% X(k)l(k, y, O)e2ik(x dk. The purpose of this gain
is stabilization of the observer error equation and it is also
a form of output injection, because by continuity VY(x, 0) is
known to be zero. Therefore, the value of Vy(x. 0), which
should be zero if the observer has converged to the real value,
measures a discrepancy between the observer and the real
system, which is fed back. For this term,

and the boundary conditions for the observer are

U(t, ,0)
V(t, , 0)

Py(t, x, 0)

Py(t, x, 1)

U(t,x, 1) = O,
V(t,X,1) = ,

Re Uxy(t, x, 0)
1 U

(12)
(13)

X(k) { 1, m<Ik <M

where m = 32Re and M
(14)

(15) is recursively defined as

The observer employs two output injection kernels defined

Ri (x, y, M)
R2(X, y, M)

Ri(x, y, m), (16)
R2(X, y, m), (17)

2x 2)2 [y cosh (27ky) sin (2wkx)
-x sinh (27ky) cos (27kx)]

2k ~~[y cosh (2wky) cos (2wkx)(x +y2)

10 = -
R ik(l -y) ((1 _ y)2 + 3q2 3)3

+4iRey(y -1) sinh (27k(y rj))

+2(1 -y)i
e (1 -cosh (27k(y i-)))=k

in in- 1

+x sinh (2wky) sin (2wkx)]
sinh (2wky) cos (2wkx)

+ 1r(X2 2 )

R2(X, y, k)

(18)

(2+2 2 [x cosh (27ky) sin (2wkx)
+y sinh (27ky) cos (27kx)]

2k

-( 2+y2) [x cosh (2wky) cos (2wkx)
-y sinh (2wky) sin (27kx)]
cosh (2wky) sin (2wkx)

(X2 2Y)(19)
Q, is shown in Fig. 2, and Q2 has a very similar
shape. In equation (10) there is also an additional term,

e
2 (y n y- yn

Re ik / / (-y + - 2)22

X(-~+ 6jl- k 6d (23)

The terms of this recursion can be computed symbolically as
they only involve integration of polynomials and exponen-
tials. In implementation, only a few steps will be sufficient to
obtain a highly accurate approximation because the recursion
is rapidly convergent [5]. The first order approximation

(24)

1This recursion is proved convergent, smooth, and uniformly bounded
over (y, r) [0, 1]2, with a bound continuously dependent on k.
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(20)

Qi (X, Y)
Q2(X, Y)

1 R, and2'

where

R, (x, y, k)

(21)

(22)

2- (y+n) r8-7 Fd
+8Re7ki cosh (7k(t, + 6))

x(r)/0-l)n-1 k,^ 2 ' 2 ( fdr

I (k, y, TI) = lim 1, (k, y, TI)
n--.oc

Oc

10 (X, Y, 0) = X(k)lo(k, y. O)e2-Fik (`.)dk,
-C)c



defined in (16) and (17) written in Fourier space are

Q1 (k, y)
Q2(k, y)

X(k)27k sinh (2wky),
X(k)27ki cosh (2wky),

-40 0.5
-5 055

0 Ny
x 5 0

where we have used the truncating function x(k). The
truncation for large wave numbers doesn't imply a loss of
smoothness in physical space, as evident from the smooth
expressions (16)-(19).

Substracting the observer equations from the plant equa-
tions we obtain the error equations, with states U = U-
U,V V V-,P = P- P. Note that from continuity,
VY (x, O) = 0 and therefore VY (x, 0) Vy (x, 0).

First we eliminate the pressure error, whose equation in
Fourier space is

Fig. 3. lo(x,y,0)

is plotted in Fig. 3. Comparing this gain with the previously
defined Qi and Q2 gains, it can be seen that the output
injections of P(x, 0) and Uy(x, 0) are important away from
the measurements and near the y = 1 boundary, while the
term that accounts for the discrepancy in Vy(x, 0) is bigger
near the y = 0 boundary.
Remark 1: The output injection operators in the observer

are spatially invariant in the x direction in the sense of [1].2
This is due to the fact that the plant itself is invariant in the
x direction. This is very significant since it allows an easier
design by exploiting the structure of the plant. It also makes
possible a straightforward extension to a 3D result, for the
case of a channel infinite in two directions, with the new
direction z being also of spatial invariance.
Remark 2: It should be noted that the observer estimated

"velocity field" (U, V) is not required to verify the incom-
pressibility condition (3). In fact, it can be shown from
equations (9)-(15) that as the estimated velocity field evolves
in time, its divergence will also verify an evolution equation
which will make it change, even if the initial condition for
the observer is a divergence-free velocity field. This is not
really a problem, since the proof shows that the observer
error converges to zero and therefore the observer converges
to the real, divergence-free velocity field. The transient value
of the estimated field is allowed to have nonzero divergence
as an extra degree of freedom.

IV. OBSERVER CONVERGENCE PROOF

As common for infinite channels, we use a Fourier trans-
form in x. The transform pair (direct and inverse transform)
has the following definition

00

f (k,y) = {f(x,y)} / f(x,y)e- 27ikxdx, (25)

f (x y) = 1 {f (k y)} f (k, y)e27ikx dx. (26)
-00

Note that we use the same symbol f for both the original
f(x, y) and the image f(k, y). In hydrodynamics k is re-
ferred to as the "wave number." The output injection kernels

2The feedback operator commutes with the translation in the x direction.

-4w2k P + Pyy

Py(k, 0)

Py(k, 1)

2¶{ (Vv)2 (V)2

+VxUy VXUy },

27kiy
Re

2wki Cy( )
Re

The solution to this equation is
Y sinh (27k(y -))¶{(V)2

+VfxyUy-VxUy} (k, r)dr1

cosh (27ky) f1 cosh (27k(1 -

sinh (27k) Jo7k

2(VY)2 + vxuy

(29)

(30)

(31)

_ (Vy)2

l) F {(,8)2

VU}Uy (k, j)dr

iLcosh 2k)Uy(kl) + (sinh(27ky)
Re sinh (2wk)

(32)-cosh (27ky) iosh(2 k)) Uy(k:0)],
and noting that

P(k, 0) = sinh (2lFk) ( k

-2(Vy)2 + VxUy-VxUy} (k, Tj)dTj

iUv(k, 1)-cosh (27k) Uy(k,O ), (33)

we can write the pressure error as

Y sinh (27F (y -)){(V)2

+VxUy- V Uy (k, r)dri
+ cosh (2wky) P(k, 0)
- sinh (27ky) Uy (k, 0).
Re

(Vy)2

(34)

We define the fluctuation variable

u(t, x, y) = U(t, x, y) - U(y), (35)

where U(y) = 4y( -y) is the parabolic equilibrium profile
of the channel flow, shown in Fig. 1.
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Using (34) for eliminating the pressure, and the Fourier
transforms for the output injection kernels (27)-(28), the
velocity error equations expressed in Fourier space are

1 /
ut 4Re(-472k2u + uCY) + 8iwky(y -1)U

+4(2y- l)V
Y

+16wk j sinh (2wk(y r-)) (2r1- 1)fV(k, r)dr1

-(1 -X(k))2iwk cosh (27ky) P(k, 0)
-(1 -X(k)) Re sinh (2wky) Uy (k, 0)
+Ar4u f, (I ,UV , (36)

=R (-4w2k2V+V) + 8iwky(y -1)V
-16wki j cosh (2wk(y r-)) (2r -1)V(k, j)drj

-(1 -X(k))2wk sinh (27ky) P(k, 0)
+(1 -X(k)) R cosh (2wky) Uy(k, 0)Re

-X(k) Re (k, y, 0)VyV(k 0)

+./v f,U,cu,VU ,
where

_inh(Fkjetcosh (27k(1

x (2r -1)V(k,r1)dr1
+JVP (f,,U, ,V)

with boundary conditions
U(t, ,0)
V(t, ,0)

and higher order terms

'1))

U(t,x, 1) = O,
V(t,X,I) = 0,

FiUUx-Uux- uX+VUyVUy -VUy

+2ij sinh(2k(1rT)) F{2Vfy(x,rT)Vy(x,T1)

-(Vy)2( X, rT) + Vx(X, rT)uy(X, T1)

+Vx(x, T1)Uy(x, TI) - x(x, rq) vy(x, q) }dr1 (41)

which are quadratic in V, U, u, V.
When the observer state (U, V) is close to the actual state

(U, V), and when the fluctuation (u, V) around the equilib-
rium state is small, then JVu(U, V, , V), JVv(U, V, a, V)
and JVP (U, V, u, V) are small and dominated by the linear
terms in the equations. The linearization of the subsystem
(with J\Vu, JVv, and J\Vp neglected) is uncoupled for each
wave number, and therefore can be studied separately for
m < k < M, which we will refer as the observed wave
number range, and k > M, k < m, the unobserved wave
number range, where m and M are parameters that will be
defined to ensure stability for the unobserved wave number
equations.

A. Observed wave number analysis
For m < Ikl < M, the output injection kernels eliminate

the presence of P(k, 0) and Uy(k, 0). The linearized plant is

(it = ((-472kU + uCY) + 8iwky(y -1)U

+(2y- 1)V + 16wk / sinh (2wk(y- q))
x (2rj -1)V(k,rT)drT,

(37) V = 14 (-4wr2k2V + V ) + 8iwky(y
-16wki j cosh (2wk(y r-)) (2r-

1

(44)
1)V

1)V(k, j)drj

(45)

with boundary conditions (39)-(40). Equation (44) is expo-
(38) nentially stable when V = 0. Thus for U(t) to be locally

convergent, it is enough to ensure that V goes to zero.
Therefore we have to stabilize the V subsystem. For this

(39) we use the gain l (k, y, 0), which is designed using the
(40) backstepping observer design technique [6] by transforming

V equation for m < k < M into the family of heat
equations (parametrized by k)

at =Re (-4w2k2a+a0)
a(k, 0)
a(k, 1)

0

0,

(46)

(47)
(48)

where

A/v I{UV - UV, - uVf +VVy - VVy - VVy

+2 cosh (2wk(1rj)) F {2Vl(x, jT)1v(x, T)

-(Vy)2( X, rT) + Vx(X, rT)uy(X, T1)

+Vx(x, T1)Uy(x, TI) - x(x, rq) vy(x, q), dr1, (42)
1

.VP = / cosh (27k(1r-))7k sinh (27k)
x F {2Vy (x, r1)V (x, rj) (V )2 (x, rj)

+Vx(x, rI)uy(X, ,j) + Vx(X, r1)Uy(x, r)

-VG (x, q) Uy(x, rq) dr (43)

Jy~~~~~V= a- II(k, y, q1)a(t, k, r1)dr1
0

(49)

is the backstepping transformation as defined in [6]. The
kernel I is found to verify the following equation

Re ' RIYY + 87iky(y -1)1
-16wki(2r1 -1) cosh (2wk(y r-))
+16wki (2 -1) cosh (2wk(y -))

(50)

a hyperbolic partial integro-differential equation in the region
7T {(y,rT): 0 < y < 1,0 < r1 < y} with boundary
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P(k, 0)

J\vU =

x l(k, (, T1)<(:



conditions
2Re 2l(y, y) = - ~7wiky2(2y -3), (51)

1(I, T) =0. (52)

This equation can be transformed into an integral equation
from which the explicit solution given in (22)-(23) is ob-
tained, following the steps outlined in [6]. Estimating the
solution of the integral equation one gets the following result.

Theorem 1: The equation (50) with boundary conditions
(51)-(52) has a unique C2(7-) solution analytic on k, ex-
pressed by series (22)-(23).

The proof uses the same argument as in [5], slightly
modified to account for a complex-valued kernel and using
the fact that the terms are analytic in k. See [7] for an
extended explanation.
Once the kernel I is found, the gain that appears in (45) is

explicitly known and guarantees exponential stability of V,
and therefore of U, for all m < k < M.

B. Unobserved wave number analysis
When k > M or k K< m, the observer error linearization

verifies the following equations

1Y /Re (\4w2k2u +uYY + 8iwky(y l)UI

+166k j sinh (2uk(y ri)) (2r,- 1)fV(k, r,1)dr
+(2y -1)V -2iwk cosh (2wky) P(k, 0)

2- k
Re~ sinh (2wky) Uly(k, 0), (53)

t = 12Re2(4k +Vyy) + 8iwky(y -1)VRe

-16wki j cosh (2wk(y rj)) (2r -1)V(k, j)drj

-2wk sinh (27ky) P(k, 0)

+ R cosh (2wky) Uy(k, 0), (54)Re
where

P(k 0) sinh(2kj (2lk(1 ]))
x (2r -1)V(k,r)drj (55)

with boundary conditions (39)-(40). These are just the lin-
earized Navier-Stokes equations. Then, following exactly the
same arguments as in [7] for the uncontrolled Navier-Stokes
equations, choosing m = 1 and M 1 R stability32orRe r 2 it
of the unobserved wave number range is guaranteed.

C2 such that, if the L2 norms of the initial conditions for U
and V are less than C1, i.e.

j1 J/ U2(0 z y) +V2(0,x,y)) dxdy < Cl, (56)

and if the turbulent kinetic energy of U and V (defined as the
L2 norm of the fluctuation with respect to the Pouisseuille
equilibrium profile) is less than C2 for all time, i.e. Vt > 0,

r1 C)jJX (u2(t,x y) + V2(t,X,y))dxdy<C2, (57)
o 00

then the L2 norms of U, V converge to zero:
1 00c

lim u(2(t, x, y) +v2(t,x,y)) dxdy = 0. (58)
The meaning of this theorem is that, for a fully developed

channel flow (whether laminar or turbulent), with a Reynolds
number possibly above the critical value (the boundary of
linear stability) but not too far above it, the observer is
guaranteed to be convergent to the real velocity and pressure
field, provided its initial estimates are not too far from the
actual initial profile.

V. AN OUTPUT FEEDBACK DESIGN
In a companion paper [7] a state feedback control law is

presented for the Navier-Stokes 2D channel flow linearized
around the Poisseuille equilibrium profile

1
Ut = Re (Uxx + U,,) + 4Y(Y

+4(2y - 1)V - px,
vt =

I (Vxx + Vyy) + 4y(yRe
with boundary conditions

u(t, x 0)
V(t, ,0)
u(t, x 1)
V(t, , 1)

0O
0,

Uc(t, x),
Vc(t, x),

1)ux

(59)
1 )V -p,, (60)

(61)
(62)
(63)
(64)

where Uc, V, are the actuation variables for tangential and
normal velocity. In this section we complete the result
presenting an output feedback law, which employs the same
actuators but assume that the state is unknown except at
the uncontrolled wall, where measurements of VY(x, 0) and
P(x, 0) are available.
The dynamic controller that stabilizes plant (59)-(64) is

Uc(t, x)

Vc(t, x)
Qul (x - :, TI) ii(t, (, Tj)<dTr, (65)

h(t, x), (66)
where h verifies the equation

ht= hxx +g(t: X):C. Analysis for the entire wave number range
The analysis sketched in the previous section can be

combined for all wave numbers, to prove the following result.
Theorem 2: Consider the system (1), (2) and (4), with

boundary conditions (5)-(8), and the system (9)-(15), and
suppose that both have classical solutions. Consider now the
observer error system. There exists positive constants C1 and

(67)
where

1/01
g = Q/ Q(x-(, 1)V(t, (, r1) dqdr

+ / Qo(x - : (uy(t, (, O) -iiy(t, (, 1)) d<,(68)
-00

5963



and where V and i are obtained from

it
I

Re(uxx + uy) -Px
+4y(y - l)iix + 4(2y - 1)V

I Oc

i4eI00Ql(x y)(Uy(& O) i(&O)
r00

+ Q2(X y) (p(, 0) -p(&, 0)) d,

1 i \ rRe 'x'y -Py+4y(y-1)Vx
14eJ0 (v( o)J X(k)l(k,y O)e27i(Re _c Oo

+ 4eI00Q2(X( Y) (Uy(&,O) -uiy(&CO
+ QQi(x- , y) (p(,4O) -p(, O))d&

the pressure p is governed by

pxx +Pyy 8(2y -)Vf,
and the boundary conditions for the observer are

(t,x 0) = V(t,x, 0) = 0,
(t, x, 1) = uc,

V(t, , 1) = Vc,

Py(t,x,0)

Py(t, x, 1)

-1 ^
Re Uxy(t, ,0),

Re (UXY(t, , 1)
-(VC)t (t, X)

and

Kn Kn-1
-Y±r/ Y/ / sinh (7k(t + d))-4wkiRe]

-(2( -1) + 2( -d- 1) cosh (7k(t + ))}

xKn-1 (k, a 2a)dd6d(69)

Re py±r Y-
+ 2 wik f/ - 6)(j-}
xKn-1 (k '2 )d6da

(`)dkdk
2)

fY 17 cosh (2wk(1- ()) -cosh (2wk()+2wk1 sinh (2yk)
(70)

The closed loop system verifies the following result.
Theorem 3: Suppose the system (59)-(64), (65)-(82),

(71) with gains 1, Qi and Q2 defined by (16)-(23) has a classical
solution. Then, the equilibrium w(x, y) _ V(x, y) _ 0 is
exponentially stable.

(72) This Theorem follows from [7] where the state feedback
result is presented, combined with the method for observer

(73) design explained in the previous sections.
(74)

The kernels Q, Qv and Qo are defined as

Qu= (k)K(k, 1, 1)e2,ik(,-()dk: (77)

Qv = x(k)l67ki(2T -1) cosh (2uk(1 -r))

xe2wik(x`)dk (78)

Qo = / X(k)e2<e ik(x -) dk (79)

The function K(k, y, rq) appearing in (77) is a (complex
valued) gain kernel defined as

K(k,y,ry)= lim Kn(k,Y,rT), (80)

where Kn is recursively defined as 3

Re 2Ko = - w7ikrT (21y2 -6y(3 + 4rT) + TI(12 + 7TI))
cosh (2k(1 -y + rj)) -cosh (2wk(y r-))

sinh (2wk)
+4iRerq(r -1) sinh (27k(y rj))

-6rji'R (1 -cosh (27k(y -r))), (81)

3This infinite sequence is convergent, smooth, and uniformly bounded
over (y, r) c [0, 1]2, and analytic in k.

VI. DISCUSSION
The result was presented in 2D for ease of notation.

Since 3D channels are spatially invariant in both streamwise
and spanwise direction, it is straightforward to extend the
design to 3D, just by applying the Fourier transform in both
invariant directions. For the nonlinear observer, additional
measurements of wy(x, 0) are required. The output feedback
result can be extended to a 3D setting as well, with additional
actuation in the spanwise direction. The result can be also
be extended to periodic channel flow, 2D or 3D, substituting
the Fourier transform with Fourier series, with all other
expressions still holding.
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