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Abstract— Current methods to study atomic force microscope
(AFM) cantilever dynamics use model simplification, or are
based on the non-trivial solutions of the equation of motion.
As an alternative method, transfer function analysis gives a
complete description of system dynamics. In this work, we
derive the exact, analytical expression for the multivariable
infinite dimensional transfer function of a surface coupled
cantilever system. The inputs of the system are punctual force
at the tip end and distributed force along the cantilever, whereas
the outputs are the position and slope at the tip end. A
linearization of the surface coupling force is considered. Free
cantilever and pinned end are considered as limit cases of the
surface coupling. Frequency response Bode plots are shown,
and transfer function infinite product expansion are obtained,
which allow to derive the exact location of poles and zeros
of the system, as a function of the level of surface coupling.
This is shown in a root locus kind of plot. Transfer function
analysis gives insight into optimal input/output configurations
of the system and enables the possibility of model-based AFM
operation.

I. INTRODUCTION

Since its invention in 1986 [2], the atomic force micro-
scope (AFM) has played an important role in many scientific
and technological applications. As a microscope, the AFM
is not only capable of high-resolution surface imaging, but
it can also obtain local quantitative material properties [4].
It can be used as well as a tool for manipulation at the
nanoscale [18]. Due to its versatility, the AFM offers many
different possibilities for surface modification [12].

Many efforts have been made to model the dynamics of
the AFM cantilever. The simplest one consists in modelling
the cantilever as a single degree of freedom harmonic os-
cillator [1], the so-called first mode approximation (FMA).
However, even though the FMA is an useful approximation
which can be used, for example, for state estimation [15], it
neglects the fact that the cantilever is a distributed parameter
system with an infinite number of resonant frequencies. This
can be taken into account, including more modes through the
use of a lumped-parameter model [17]. However, if damping
or tip-sample interaction are included, the solution of the
problem is not trivial [5], [9], [11]. A possible solution is
to consider the full infinite dimensional system. The transfer
functions of such systems consist in transcendental functions;
therefore, in order to obtain system poles and zeros, infinite
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product expansions must be used [7]. This kind of exact
analysis has been applied before to study implications in
modelling and control design of system configurations in
flexible systems [16]. In [13] we performed such an analysis
for the AFM without surface coupling.

We expand the analysis in [13] by considering a model
with (linearized) variable surface coupling, which includes
the free end as a limit case, as well as pinned end. This
approach has been taken before for an undamped model [11],
or lumped parameter model [17], but a complete system-
theoretic description of the infinite dimensional damped
model, including frequency responses and pole/zero location
analysis, has not yet been done, to the best of our knowledge.

The paper is organized as follows. In Section II we
present the input/output AFM system under consideration.
Section III describes the surface coupling model we employ.
In Section IV we introduce the AFM model and solve it
using Laplace transform methods. This allows us to derive
an analytic expression for the transfer function of the system,
which we discuss in Section V, where some Bode plots are
shown for a set of numerical values of the parameters. We
also discuss the limit cases of free end and pinned end. Then,
poles and zeros of the system are discussed in Sections VI
and VII, respectively, where we plot a root locus diagram,
showing how location of both poles and zeros change with
the level (and sign) of surface coupling. We finish the paper
with a discussion of the results in Section VIII.

II. AFM CANTILEVER SYSTEM

The AFM cantilever system under consideration has con-
stant section, so it can be considered one-dimensional. The
height of the cantilever will be described by the variable
z(t, x) defined positive for a displacement toward the sample,
where t is time, x ∈ [0, L] the position, and L is the length
of the cantilever. x = 0 is the fixed end of the cantilever,
and x = L the tip end. The inputs and outputs of the system
under consideration are the following:

• Input 1, q(t), is the force acting at the tip end of the
cantilever. This can be implemented by using a magnetic
particle attached at the tip end, which is then actuated
by generating a magnetic field [6].

• Input 2, u(t), is a distributed force per unit length acting
along the cantilever, which corresponds to the inertial
forces generated by a base driven cantilever [19] or to
an electrostatic force.

• Output 1, z(t, L), is the position of the tip end of
the cantilever, measurable by interferometric methods.
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Usually this measurement is not available in commonly
found AFM systems [14].

• Output 2, zx(t, L), is the slope at the tip end of the
cantilever, which is measured using the bouncing beam
detection method [10].

Considering the cantilever as a MIMO system, we can write
its (matrix) transfer function description as

[
Z(s, L)
Zx(s, L)

]
= G(s)

[
U(s)
Q(s)

]
, (1)

where the capital letters refer to Laplace transformed vari-
ables, s is the Laplace variable, and G(s) is the matrix
transfer function of the system,

G(s) =
(

g11 g12

g21 g22

)
. (2)

Here, gij(s) is the transfer function of input i to output j.

III. TIP-SURFACE INTERACTION

The surface interaction force acting on the tip of the
cantilever is a nonlinear function that depends mainly on the
proximity of the tip to the sample [3]. Calling zs the distance
from the sample to the tip of the undeflected cantilever,
f(t) the force, and a0 the interatomic distance, one can
characterize two regimes . If zs − z(t, L) ≥ a0, the force is
attractive and can be described by a Van der Waals model,

f(t) = − HR

6(zs − z(L, t))2
. (3)

If zs − z(t, L) ≤ a0, the interaction is repulsive and can be
computed using a Derjaguin-Muller-Toporov (DMT) model,

f(t) = −HR

6a2
0

+
4
3
E∗√R(zs − z(L, t) + a0)3/2. (4)

In expressions (3)–(4), H represents the Hamaker constant,
R the tip radius, and E∗ the effective constant stiffness,
which can be derived from the elastic moduli of tip and
sample (respectively Et and Es) and their Poisson ratios
(resp. νt and νs), using the following expression: E∗ =
[(1 − ν2

t )/Et + (1 − ν2
s )/Es]−1.

We consider that the system stays in a small enough
neighborhood of the equilibrium set point z0, which can
be adjusted moving the sample relative to the cantilever
mount [11]. Linearizing the force around z0, we obtain

f(t) = −ktsz(t, L), (5)

where kts represents the “contact stiffness”, an effective
spring contact defined as

kts = − ∂f(t)
∂z(t, L)

∣∣∣∣
z0

. (6)

Plugging (3)–(4) into (5),

kts =

{
− HR

3(zs−z0)3
, if zs − z(t, L) ≥ a0,

2E∗
√

R(zs − z0 + a0), if zs − z(t, L) ≤ a0.
(7)

Note that the sign of kts depends on the regime of the force.
For the attractive regime one has a negative constant, while
for the repulsive regime the constant is positive. We write

kts =
3EI

L3
k̂ts, (8)

where EI is the flexural stiffness and the quantity 3EI/L3

represents the cantilever spring constant. Then, k̂ts is the
parameter that determines the magnitude and regime of the
force. In this work we consider all possible values of k̂ts

including zero (free end) and infinity (pinned end).

IV. DYNAMIC MODEL OF THE COUPLED SYSTEM

A mathematical model of the AFM system including the
interaction force can be derived from the classical Euler-
Bernouilli beam equation, in which we neglect rotary inertia,
axial effects, shear deformation and tip mass, but include
damping effects,

EI
∂4z

∂x4
+ c

∂z

∂t
+ m

∂2z

∂t2
= −u(t), (9)

where EI corresponds to the flexural stiffness, c to the
damping due to viscous friction, and m to the mass per unit
length. The boundary conditions at the fixed end are

z(t, 0) = 0,
∂z

∂x

∣∣∣∣
x=0

= 0, (10)

and at the tip end
∂2z

∂x2

∣∣∣∣
x=L

= 0, EI
∂3z

∂x3

∣∣∣∣
x=L

+ f(t) = −q(t). (11)

We have included the interaction force f(t) and the input
q(t). Introducing the linearized force (5)–(8) in (11) yields

EI

(
∂3z

∂x3

∣∣∣∣
x=L

− k̂ts

3L3
z(L, t)

)
= −q(t). (12)

Following [13], we take Laplace transform and seek a
solution1

Z(s, x) = cosh (λ(s)x) [A cos (λ(s)x) + B sin (λ(s)x)]
+ sinh (λ(s)x) [C cos (λ(s)x) + D sin (λ(s)x)]

+
U(s)

4EIλ(s)4
, (13)

where

λ(s) = 4

√
cs + ms2

4EI
. (14)

The constants A, B, C, and D can be found by substitution
in (10)–(11). Once the solution Z(s, x) is found, the slope
is obtained as Zx(s, x) = ∂Z/∂x. We skip the long analytic
expression for the solution for the sake of clarity.

For numerical calculations and plots, we have employed
the following numerical data extracted from [13]: E =
179 GPa, I = 3.64 × 10−22 m4, m = 4.08 × 10−7 kg/m,
L = 225 µm, and c = 0.01 kg/ms. In the sequel, we omit
the dependence on the Laplace variable s for clarity.

1The standard Euler-Bernouilli equations has a unique and regular solu-
tion. As it seems reasonable both mathematically and physically, we assume
uniqueness also holds when adding the linearized interaction force. This
could be false for the nonlinear model of the force.
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V. TRANSFER FUNCTIONS

The matrix transfer function of the system, G, as defined
in (1)–(2) can be found by evaluating the solutions Z(x) and
Zx(x) at x = L. Its expression is

G =
1
D

(
n11 n12

n21 n22

)
, (15)

where the common denominator D is

D = EI(2[2 + cos(2λL) + cosh(2λL)]

+
3k̂ts

L3λ3
[sinh(2λL) − sin(2λL)]), (16)

and the value of the numerators is

n11 =
1
λ3

[sinh (2λL) − sin (2λL)], (17)

n12 =
1
λ2

[cosh(2λL) − cos(2λL)], (18)

n21 =
−1
2λ4

[cos(λL) − cosh(λL)]2, (19)

n22 =
−2
λ3

[cosh(λL) sin(λL) − cos(λL) sinh(λL)]

+
3k̂ts

2L3λ6
[sin(λL) − sinh(λL)]2. (20)

Note that only D and n22 depend on k̂ts.
We study each subsystem gij separately. Bode plots are

shown in Fig. 1 for values k̂ts = −1, 0, 10, 100. The most
interesting qualitative feature of the plots is the attenuation
and displacement of resonant modes to the right, as k̂ts

increases, except in the most complex case of g22, which we
study in more detail in Sections VI and VII by characterizing
the location of its poles and zeros. Also, in some cases
there are modes of resonance that get strongly attenuated,
almost disappearing or exchanging its position with one
anti-resonance. This is the effect of an (stable) pole-zero
cancellation that happens for a close value of k̂ts, and may
change dramatically the behavior of the system in some
frequency ranges. In the Bode plots, we do not show the
frequency response for k̂ts < −1, since that range of values
is shown in Section VI to lead to an unstable system.

A. Limit cases

There are two limit cases, when k̂ts = 0 and k̂ts → ∞; the
first case corresponds to a freely oscillating cantilever, and
the second corresponds to a cantilever whose tip is “glued”
to the surface (pinned), so the cantilever end x = L is fixed.
The expressions for these special cases are

G0 = lim
k̂ts→0

G =
1

D0

(
n11 n12

n21 n0
22

)
, (21)

and

G∞ = lim
k̂ts→∞

G =
1

D∞

(
0 0
0 n∞

22

)
, (22)

where

D0 = 2EI (2 + cos (2λL) + cosh (2λL)) , (23)

n0
22 =

−2
λ3

(cosh (λL) sin (λL)− sinh (λL)cos (λL)) ,(24)

D∞ =
2EI

L3λ3
(sinh (2λL) − sin (2λL)) , (25)

n∞
22 =

1
L3λ6

(sin (λL) − sinh (λL))2 . (26)

The freely vibrating cantilever (21) has been profusely stud-
ied, see [13] and references therein. We included it for the
sake of completeness. The Bode plot of the second case is
shown for the only nonzero component of G∞ in (22), i.e.,
g∞22 = n∞

22/D∞, in Fig. 2.

VI. POLES

The poles, common to all subsystems, are the roots of the
denominator D in (16). It is possible to explicitly find these
roots by expressing the denominator as an infinite product.
One must distinguish three cases depending on k̂ts.

1) If k̂ts > −1, then

D = C
∞∏

n=1

[
1 +

4L4λ4

d4
n

]
. (27)

2) If k̂ts = −1, then a root at zero must be added to (27),

D =
88
35

L4λ4
∞∏

n=1

[
1 +

4L4λ4

d4
n

]
. (28)

3) If k̂ts < −1, the expression for the denominator is

D = C

[
1 − 16

4L4λ4

d4
0

] ∞∏

n=1

[
1 +

L4λ4

d4
n

]
. (29)

In (27), (28) and (29), C = 8EI(1+k̂ts), dn is the infinite
sequence of increasingly ordered real positive solutions of
the transcendental equation

3k̂ts

d3
n

[sinh dn cos dn − cosh dn sin dn]

= 1 + cos dn cosh dn, (30)

and d0 is the only positive real solution of the equation

2 + cos d0 + cosh d0 = −12k̂ts

d3
0

[sinh d0 − sin d0] . (31)

Note that C, dn and d0 are all parameterized by k̂ts.
Substituting λ(s) from (14) in expressions (27)–(29), it is

possible to find the location of the poles for all three cases.
For all values of k̂ts, there are poles verifying

cspoles + ms2
poles

EI
= −d4

n

L4
, (32)

and solving for spoles,

spoles =
−c ±

√
c2 − 4mEId4

n
L4

2m
, (33)
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Fig. 1. Bode plots of g11(a), g12(b), g21(c) and g22(d) for k̂ts = −1, 0, 10, 100 (respectively dotted, solid, dashed and dash-dotted lines).

which, for c smaller than dn, yields a pair of complex
conjugated roots. Neglecting c, one has

spoles ≈ ±i
d2

n

L2

√
EI

m
, (34)

whose modulus is a good approximation2 to resonant fre-
quencies.

For Case 2, in addition to the poles given by (33), there
is one additional pole at the origin, and another at −c/m.

In Case 3, in addition to the poles in (33), there are
two real poles, one with negative real part and another with
positive real part (unstable pole), which are give by

spoles =
−c ±

√
c2 + mEId4

0
L4

2m
. (35)

For the limit cases, the expressions are the following:

2This approximation is not valid in Case 1 for the first pair of poles, if
k̂ts is close to −1. Then d1 approaches zero and is of the order of c, so
(33) must be used.

• If k̂ts = 0, one gets the well known expression of the
freely oscillating cantilever poles

D0 = 8EI
∞∏

n=1

[
1 +

4L4λ4

b4
n

]
, (36)

where bn are the positive solutions of the equation

1 + cos bn cosh bn = 0, (37)

and the exact value of the poles is

s0
poles =

−c ±
√

c2 − 4mEIb4n
L4

2m
, (38)

which yields pairs of (stable) complex conjugate poles.
• For k̂ts → ∞, the denominator (25) simplifies to

D∞ =
16EI

3

∞∏

n=1

[
1 +

4L4λ4

cn

]
, (39)

where cn are the positive real solutions of

tan cn = tanh cn, (40)
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and the exact value of the poles is

s∞poles =
−c ±

√
c2 − 4mEIc4

n
L4

2m
, (41)

which yields pairs of LHP complex conjugate poles.
Using the numerical values given at the end of Section IV,

we plot the poles in Fig. 3 showing how the location of the
poles is altered by changing k̂ts.

The poles for the limit cases alternate on a line parallel to
the imaginary axis, located on the LHP. When k̂ts increases
from zero to infinity, the poles for k̂ts = 0 (circles in the
diagram) increase their imaginary part, reaching in the limit
the values of the case k̂ts → ∞ (crosses).

Analogously, for decreasing k̂ts from zero to −∞, the
imaginary part of the poles decreases as well. Poles for
k̂ts = 0 move towards poles of the pinned end limit case,
always staying in the LHP. The only exception is the first
pair of poles, whose imaginary part decrease till they become
real (for k̂ts approaching −1). At k̂ts = −1 one of them is
located in the origin. Decreasing k̂ts beyond −1 moves the
pole further into the RHP, making the system unstable. This
unstable behavior for the range k̂ts ∈ (−∞,−1) (strongly
attractive regime of the surface coupling force) corresponds
to the physical phenomena known as “snap-in” [8]. When
approaching the surface closely the cantilever can, suddenly,
bend towards the surface due to the attractive van der Waals
forces. The instability is stopped in the real nonlinear system,
since the coupling force changes sign and becomes repulsive.

VII. ZEROS

The zeros are the roots of the numerators (17)–(20). For
the numerators n11, n12, and n12, the value of k̂ts does not
change the location of zeros. We refer to [13] for a detailed
study. Here, we consider only n22. There are two cases.

1) If k̂ts *= −8, n22 can be expanded as

n22 = −L3

6
(8 − k̂ts)

∞∏

n=1

[
1 − L4λ4

z4
n

]
. (42)

10000 5000 0 5000
2
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0.5
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0.5
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2 x 107

/0(s)

4m (s)

Fig. 3. Location of poles with k̂ts. Circles mark poles at k̂ts = 0, crosses at
k̂ts → ∞. Solid lines and dotted lines describe, respectively, the movement
of poles for positive and negative k̂ts. The dashed line is the imaginary axis.

2) If k̂ts = −8, then a root at zero must be added, so

n22(s) =
−L7λ4

105

∞∏

n=1

[
1 − L4λ4

z4
n

]
. (43)

In expressions (42) and (43), zn is the infinite sequence of
nonzero complex solutions in the first quadrant of the imagi-
nary plane (nonnegative real part and positive imaginary part)
of the complex equation

4z3
n (cosh (zn) sin (zn) − sinh (zn) cos (zn))

= 3k̂ts (sin (zn) − sinh (zn))2 . (44)

Substituting (14) in (42) and (43), the zeros are located at

szeros =
−c ±

√
c2 + 16mEIz4

n
L4

2m
, (45)

and one can obtain, for small c and when the values of zn

from (44) are real or close to the real axis3, approximate
value of the zeros whose absolute value gives a good
approximation for the location of antiresonances:

szeros ≈ ±i
2|zn|2

L2

√
EI

m
. (46)

In the special case k̂ts = −8, in addition to the zeros in (45),
there is one additional pair of real zeros, one at the origin
and the other at s = −c/m.

The limit cases can be treated analogously.
• If k̂ts = 0, then

n0
22 =

−4L3

3

∞∏

n=1

[
1 − L4λ4

c4
n

]
, (47)

where the cn are the solutions of (40). One has then
alternating zeros in the positive and negative real axis,

s0
zeros =

−c ±
√

c2 + 16mEIc4
n

L4

2m
. (48)

3This situation happens for k̂ts large, positive or negative.
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Fig. 4. Location of zeros with k̂ts. Circles mark zeros at k̂ts = 0, crosses at
k̂ts → ∞. Solid lines and dotted lines describe, respectively, the movement
of zeros for positive and negative k̂ts. The dashed line is the imaginary axis.

In this case, subsystem 22 is non-minimum phase.
• If k̂ts → ∞, then

n∞
22 = −L3

6

∞∏

n=1

[
1 +

L4λ4

c4
n

]2

, (49)

where the cn are defined in (40). The zeros have then
multiplicity two, and are given by the expression

s∞zeros =
−c ±

√
c2 − 16mEIc4

n
L4

2m
. (50)

The zeros appear in complex conjugate pairs, of multi-
plicity two, with negative real part, so the subsystem is
minimum phase in this case.

In Fig. 4 we represent the location of the zeros of subsytem
22 when k̂ts changes. The diagram shows the rather complex
zero dynamics for different values of k̂ts.

The most interesting qualitative feature of Fig. 4 is how
subsystem 22 changes from pairs of zeros in the real axis
(alternatingly positive and negative) at k̂ts = 0 (circles in
the diagram), to a situation in which there are pairs of
complex conjugate zeros located in the LHP, for k̂ts → ±∞
(crosses in the diagram). Numerically studying this behavior
for intermediate values of k̂ts, we found that the approximate
range k̂ts ∈ [−14, 17] produces at least some RHP zeros, i.e.
the subsystem 22 (distributed force to slope measurement) is
non-minimum phase. Otherwise all zeros lie in the LHP, i.e.,
the subsystem is minimum phase.

VIII. CONCLUSIONS

In this work we have presented a systems-theoretic exact
approach to study the dynamics of a surface coupled vi-
brating AFM cantilever, which does not neglect the infinite
dimensional character of the system. Various possible inputs
and outputs were simultaneously considered, and Bode plots
and “root locus”-type diagrams shown. Our approach shows
significant effects that simpler models cannot capture, like

non-minimum phase behavior, unstable dynamics, or vari-
ations in frequency response due to shifts of the resonant
frequencies and pole-zero cancellations.

Our work opens the possibility of accurate model-based
control and observer design for AFM cantilevers, to improve
state-of-the-art performance in microscopy and nanomanip-
ulation.
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