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Abstract— In a previous work, we presented formulae for
boundary control laws which stabilized the parabolic profile of
an infinite channel flow, linearly unstable for high Reynolds
number. Also know as the Poiseuille flow, this problem is
frequently cited as a paradigm for transition to turbulence,
whose stabilization for arbitrary Reynolds number, without
using discretization, had so far been an open problem. L2

stability was proved for the closed loop system. In this work,
we extend the stability result to exponential stability in the H1

and H2 norms, and we state and prove some properties of the
stabilizing controller, guaranteeing that the control law is well
behaved.

I. INTRODUCTION

In [11], an explicit boundary control law which sta-
bilized a benchmark 2D linearized Navier-Stokes system
was presented. For the resulting infinite dimensional closed
loop system, a result guaranteeing L2 exponential stability
was proved. We complement this previous result by adding
statements and proofs of exponential H1 and H2 stability,
stronger forms of stability seldom found in flow control
designs. The explicitness of the design allows as well to
show some regularity results for the control laws, which are
proved to be well defined and behaved. We do not prove well-
posedness, however, with the high order Sobolev estimates
that we derive it is certainly possible, though lengthy and far
from trivial.

Most of the previous controllers for Navier-Stokes equa-
tions used their discretized version and employed high-
dimensional algebraic Riccati equations for computation of
gains [5]. This is the first result that provides an explicit con-
trol law (with symbolically computed gains) for stabilization
in L2, H1 and H2 norms, at an arbitrarily high Reynolds
number in non-discretized Navier-Stokes equations. The only
prior control design that was explicit, proved stability in the
same norms, and did not employ discretization, was restricted
to low Reynolds numbers [1], [2].

The results are applicable to both infinite and periodic
channel flow with arbitrary periodic box size, and also extend
to 3D [4]. Our control laws are written as state feedback,
however, we have developed a dual observer design method-
ology [8] which we used to design an observer [10].

We start the paper by stating, in Section II, the math-
ematical model of the problem, which are the linearized
Navier-Stokes equations for the velocity fluctuation around
the (Poisseuille) equilibrium profile. In Section III, we review
the control law that stabilizes the equilibrium profile, and
state the main results of the paper. Section IV briefly reviews

This work was supported by NSF grant number CMS-0329662.
Department of Mechanical and Aerospace Engineering, University of

California at San Diego, La Jolla, CA 92037-0411.

y = 0

y = 1

x

y
U(y)

Fig. 1. 2D channel flow and equilibrium profile. Actuation is on the top
wall.

the L2 proof of stability in [11], since it contains some in-
gredients required in subsequent sections. The proofs of H1

and H2 stability are presented, respectively, in Sections V,
and VI. Section VII is devoted to study and prove some
properties of the control laws.

II. MODEL

Consider a 2D incompressible channel flow evolving in
a semi-infinite rectangle (x, y) ∈ (−∞,∞) × [0, 1] as in
Fig. 1. The (linearized) plant equations written in fluctuation
variables are

ut =
1

Re
(uxx + uyy) + 4y(y − 1)ux

+4(2y − 1)V − px, (1)

Vt =
1

Re
(Vxx + Vyy) + 4y(y − 1)Vx − py, (2)

where V is the wall-normal velocity, and u and p are the
fluctuation streamwise velocity and pressure (see [11] for
derivations). The boundary conditions are

u(x, 0) = V (x, 0) = 0, (3)
u(x, 1) = Uc(x), (4)
V (x, 1) = Vc(x). (5)

The variables u and V also verify the continuity equation

ux + Vy = 0. (6)

Note the actuation variables Uc(x) and Vc(x) in (4) and (5),
resp. for streamwise and normal velocity boundary control.

III. CONTROLLER

The expressions for the control laws are

Uc(t, x) =
∫ 1

0

∫ ∞

−∞
Qu(x − ξ, η)u(t, ξ, η)dξdη, (7)

Vc(t, x) = h(t, x), (8)
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where h verifies the equation

ht = hxx + g(t, x), (9)

where

g =
∫ 1

0

∫ ∞

−∞
QV (x − ξ, η)V (t, ξ, η)dξdη

+
∫ ∞

−∞
Q0(x − ξ) (uy(t, ξ, 0) − uy(t, ξ, 1)) dξ,(10)

and the kernels Qu, QV and Q0 are defined as

Qu =
∫ ∞

−∞
χ(k)K(k, 1, η)e2πik(x−ξ)dk, (11)

QV =
∫ ∞

−∞
χ(k)16πki(2η − 1) cosh (2πk(1 − η))

×e2πik(x−ξ)dk, (12)

Q0 =
∫ ∞

−∞
χ(k)

2πki

Re
e2πik(x−ξ)dk. (13)

In expressions (11)–(13), χ(k) is a truncating function in the
wave number space whose definition is

χ(k) =
{

1, m < |k| < M
0, otherwise (14)

where m and M are respectively the low and high cut-
off wave numbers, two design parameters which can be
conservatively chosen as m ≤ 1

32πRe and M ≥ 1
π

√
Re
2 . The

function K(k, y, η) appearing in (11) is a (complex valued)
gain kernel defined as

K(k, y, η) = lim
n→∞

Kn(k, y, η), (15)

where Kn is recursively defined as 1

K0 = −Re

3
πikη

(
21y2 − 6y(3 + 4η) + η(12 + 7η)

)

−2πk
cosh (2πk(1 − y + η)) − cosh (2πk(y − η))

sinh (2πk)
+4iReη(η − 1) sinh (2πk(y − η))

−6ηi
Re

πk
(1 − cosh (2πk(y − η))), (16)

Kn = Kn−1

−4πkiRe

∫ y+η

y−η

∫ y−η

0

∫ δ

−δ

{
sinh (πk(ξ + δ))

πk

−(2ξ − 1) + 2(γ − δ − 1) cosh (πk(ξ + δ))
}

×Kn−1

(
k,

γ + δ

2
,
γ + ξ

2

)
dξdδdγ

+
Re

2
πik

∫ y+η

y−η

∫ y−η

0
(γ − δ)(γ − δ − 2)

×Kn−1

(
k,

γ + δ

2
,
γ − δ

2

)
dδdγ

+2πk

∫ y−η

0

cosh (2πk(1 − δ)) − cosh (2πkδ)
sinh (2πk)

×Kn−1 (k, y − η, δ) dδ. (17)

1This infinite sequence is convergent, smooth, and uniformly bounded
over (y, η) ∈ [0, 1]2, and analytic in k, see [11].

Remark 3.1: Control kernels (12) and (13) can be explic-
itly expressed as

QV (ξ, η) = 8(2η − 1)
RV (ξ, η, M) − RV (ξ, η, m)

ξ2 + (1 − η)2
, (18)

Q0(ξ, η) =
R0(ξ, η, M) − R0(ξ, η, m)

Re ξ
, (19)

where

RV (ξ, η, k) =
(
(1 − η)2− ξ2

)
sin(2πkξ)cosh(2πk(1 − η))

2π(ξ2 + (1 − η)2)

−ξ(1 − η) cos (2πkξ) sinh (2πk(1 − η))
π(ξ2 + (1 − η)2)

−k(1 − η) sin(2πkξ) sinh(2πk(1 − η))
+kξ cos (2πkξ) cosh (2πk(1 − η)) , (20)

R0(ξ, η, k) = k cos (2πkξ) − sin (2πkξ)
2πξ

. (21)

Control laws (7)–(17) guarantee the following results.
Theorem 3.1: The equilibrium u(x, y) ≡ V (x, y) ≡ 0 of

system (1)–(5), (7)–(17) is exponentially stable in the L2,
H1 and H2 norms.

Theorem 3.2: Control laws Uc, Vc and kernels Qu, QV ,
Q0, as defined by (7)–(17), have the following properties:

i) Uc and Vc are spatially invariant in x.
ii)

∫ ∞
−∞ Vc(t, ξ)dξ = 0 (zero net flux).

iii) |Q| ≤ C/|x − ξ|, for Q = Qu, QV , Q0.
iv) Uc and Vc are smooth functions of x.
v) Qu, QV , Q0 are real valued.

vi) Qu, QV , Q0 are smooth in their arguments.
vii) Uc and Vc are L2 functions of x.

viii) All spatial derivatives of Uc and Vc are L2 function of
x.

Remark 3.2: Theorem 3.1, stated for the linearized equa-
tions (1)–(2), is valid for the nonlinear Navier-Stokes equa-
tions in a local sense, i.e., provided that the initial data are
sufficiently close (in the appropiate norm) to the equilibrium.

Remark 3.3: H2 stability suffices to establish continuity
of the velocity field for a bounded domain, by Sobolev’s
Embedding Theorem [9]. The argument is not applicable to
the infinite channel, but it holds if the channel is periodic, a
setting for which our results extend trivially.

Remark 3.4: Theorem 3.2 ensures that the control laws
are well behaved. Property i, spatial invariance, means that
the feedback operators commute with translations in the x
direction [3], which is crucial for implementation. Property ii
ensures that we do not violate the physical restriction of
zero net flux, which is derived from mass conservation.
Property iii allows to truncate the integrals with respect
to ξ to the vicinity of x, allowing sensing to be restricted
just to a neighborhood (in the x direction) of the actuator.
Properties iv to vi ensure that the control laws are well
defined. Properties vii and viii prove finiteness of energy
of the controllers and their spatial derivatives.

In the next sections we present a sketch of the proof
of the theorems. We skip some intermediate steps due to
space limitation; full details will be provided in a future
publication. We begin by reviewing some results in [11].
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IV. L2 STABILITY

As common for infinite channels, we use a Fourier trans-
form in x. The transform pair (direct and inverse transform)
has the following definition:

f(k, y) =
∫ ∞

−∞
f(x, y)e−2πikxdx, (22)

f(x, y) =
∫ ∞

−∞
f(k, y)e2πikxdx. (23)

Note that we use the same symbol f for both the original
f(x, y) and the image f(k, y). In hydrodynamics, k is
referred to as the “wave number.”

One property of Fourier transform is Parseval’s formula

||f ||2L2=
∫ 1

0

∫ ∞

−∞
f2(k, y)dkdy =

∫ 1

0

∫ ∞

−∞
f2(x, y)dxdy, (24)

which allows to derive L2 exponential stability in physical
space from the same property in Fourier space.

We define the L2 norm of f(k, y) with respect to y:

||f(k)||2
L̂2 =

∫ 1

0
|f(k, y)|2dy. (25)

The L̂2 norm as a function of k is related to the L2 norm as

||f ||2L2 =
∫ ∞

−∞
||f(k)||2

L̂2dk. (26)

Equations (1)–(2) written in the Fourier domain are

ut =
−4π2k2u + uyy

Re
+ 8kπiy(y − 1)u

+4(2y − 1)V − 2πikp, (27)

Vt =
−4π2k2V + Vyy

Re
+ 8πkiy(y − 1)V − py, (28)

and we can write a Poisson equation for the pressure [11],

−4π2k2p + pyy = 16πki(2y − 1)V. (29)

The boundary conditions of (27)–(29) are

u(k, 0) = V (k, 0) = 0, (30)
u(k, 1) = Uc(k), (31)
V (k, 1) = Vc(k), (32)

py(k, 0) =
Vyy(k, 0)

Re
, (33)

py(k, 1) =
Vyy(k, 1) − 4π2k2Vc(k)

Re
− (Vc)t(k).(34)

The continuity equation (6) expressed in Fourier space is

2πkiu(k, y) + Vy(k, y) = 0. (35)

Thanks to linearity and spatial invariance, there is no
coupling between different wave numbers in (27)–(35). This
allows us to consider these equations for each wave number
independently. The main idea behind the design of the
controller is to consider two different cases depending on
the wave number k. For wave numbers m < |k| < M ,
which we refer to as controlled wave numbers, we design a
backstepping controller that achieves stabilization, whereas
for wave numbers in the range |k| ≥ M or in the range
|k| ≤ m, which we call uncontrolled wave numbers, the
system is left without control but is exponentially stable [6].

A. Controlled wave numbers
In what follows, let the letters D and d with subscript

denote some positive constant.
Control laws (7)–(17) in Fourier space are

Uc =
∫ 1

0
K(k, 1, η)u(t, k, η)dη, (36)

(Vc)t =
2πki (uy(k, 0) − uy(k, 1)) − 4π2k2Vc

Re

−16πki

∫ 1

0
(2η − 1)

×V (k, η) cosh (2πk(1 − η)) dη. (37)

In [11] we showed that, with control laws (36)–(37), (27)–
(28) are mapped into the family of heat equations

αt =
1

Re

(
−4π2k2α + αyy

)
, (38)

α(k, 0) = α(k, 1) = 0 , (39)

where

α = u −
∫ y

0
K(k, y, η)u(t, k, η)dη , (40)

u = α +
∫ y

0
L(k, y, η)α(t, k, η)dη , (41)

α = i
Vy −

∫ y
0 K(k, y, η)Vy(t, k, η)dη

2πk
(42)

V = −2πki

∫ y

0

[
1 +

∫ y

η
L(k, η,σ)dσ

]

×α(t, k, η)dη . (43)

are respectively the direct and inverse transformation [7] for
u and V , with K defined in (16)–(17) and L similarly. Using
(38)–(39) and (40)–(43) the following results holds.

Proposition 4.1: For any k in the range m < |k| < M ,
the equilibrium u(t, k, y) ≡ V (t, k, y) ≡ 0 of (27)–(34) with
control laws (37), (36) is exp. stable in the L2 sense, i.e.,

||V (t, k)||2
L̂2 + ||u(t, k)||2

L̂2

≤ D0e
− 1
2Re t

(
||V (0, k)||2

L̂2 + ||u(0, k)||2
L̂2

)
. (44)

Defining then

V ∗(t, x, y) =
∫ ∞

−∞
χ(k)V (t, k, y)e2πikxdk, (45)

u∗(t, x, y) =
∫ ∞

−∞
χ(k)u(t, k, y)e2πikxdk, (46)

the following result holds.
Proposition 4.2: Consider equations (1)–(5) with control

laws (7)–(8). Then u∗ and V ∗ decay exponentially:

||V ∗(t)||2L2 + ||u∗(t)||2L2

≤ D0e
− 1
2Re t

(
||V ∗(0)||2L2 + ||u∗(0)||2L2

)
. (47)

B. Uncontrolled wave number analysis
In [11] we proved the following result.
Proposition 4.3: If m = 1

32πRe and M = 1
π

√
Re
2 , then

for both |k| ≤ m and |k| ≥ M the equilibrium u(t, k, y) ≡
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V (t, k, y) ≡ 0 of the uncontrolled system (27)–(34) is
exponentially stable in the L2 sense:

||V (t, k)||2
L̂2 + ||u(t, k)||2

L̂2

≤ e
− 1
4Re t

(
||V (0, k)||2

L̂2 + ||u(0, k)||2
L̂2

)
. (48)

In the proof, we defined

Λ(k, t) =
1
2

(
||V (t, k)||2

L̂2 + ||u(t, k)||2
L̂2

)
, (49)

and showed that, for |k| < m and |k| > M ,

Λ̇ ≤ − 1
4Re

Λ. (50)

Using Proposition 4.3, the following result holds.
Proposition 4.4: The variables εu and εV defined as

εu(t, x, y) =
∫ ∞

−∞
(1 − χ(k)) u(t, k, y)e2πikxdk, (51)

εV (t, x, y) =
∫ ∞

−∞
(1 − χ(k)) V (t, k, y)e2πikxdk, (52)

decay exponentially

||εV (t)||2L2 + ||εu(t)||2L2

≤ e
− 1
4Re t

(
||εV (0)||2L2 + ||εu(0)||2L2

)
. (53)

C. Analysis for the entire wave number range
Since

u(t, x, y) = u∗(t, x, y) + εu(t, x, y), (54)
V (t, x, y) = V ∗(t, x, y) + εV (t, x, y), (55)

and since the L2 norm of V is the sum of the L2 norms of
V ∗(t, k, y) and εV (t, k, y) (and similarly for u), the L2 part
of Theorem 3.1 follows from Propositions 4.2 and 4.4.

V. H1 STABILITY

We define the H1 norm of f(x, y) as

||f ||2H1 = ||f ||2L2 + ||fx||2L2 + ||fy||2L2 . (56)

We also define the H1 norm of f(k, y) with respect to y

||f(k)||2
Ĥ1 = (1 + 4π2k2)||f(k)||2

L̂2 + ||fy(k)||2
L̂2 . (57)

The Ĥ1 norm as a function of k is related to the H1 norm

||f ||2H1 =
∫ ∞

−∞
||f(k)||2

Ĥ1dk. (58)

A. H1 stability for controlled wave numbers
For each k, one has that

||f(k)||2
Ĥ1 ≤ (5 + 16π2M2)||fy(k)||2

Ĥ1 , (59)

where we have used (57) and Poincare’s inequality. This
proves the equivalence, for any k, of the Ĥ1 norm of f(k, y)
and the L̂2 norm of just fy(k, y). Therefore, we only have
to show exponential decay for uy and Vy .

Due to the backstepping transformations (40), (41) and
(42), (43), the following bounds are derived from simple
estimates on α and αy from (38)

||uy(t, k)||2
L̂2 ≤ D1e−

2
5Re t||uy(0, k)||2

L̂2 , (60)

||Vy(t, k)||2
L̂2 ≤ D0e−

1
2Re t||Vy(0, k)||2

L̂2 , (61)

Using estimates (60)–(61) the following proposition can be
stated at each k in the controlled range.

Proposition 5.1: For any k in the range m < |k| < M , the
equilibrium u(t, k, y) ≡ V (t, k, y) ≡ 0 of the system (27)–
(34) with feedback control laws (37), (36) is exponentially
stable in the H1 sense

||V (t, k)||2
Ĥ1 + ||u(t, k)||2

Ĥ1

≤ D2e
− 2
5Re t

(
||V (0, k)||2

Ĥ1 + ||u(0, k)||2
Ĥ1

)
. (62)

Integrating (62) in the controlled wave number range m <
|k| < M , and using (58), the following result holds.

Proposition 5.2: Consider equations (1)–(5) with control
laws (7)–(8). Then the variables u∗(t, x, y) and V ∗(t, x, y)
defined in (45)–(46) decay exponentially in the H1 norm:

||u∗(t)||2H1 + ||V ∗(t)||2H1

≤ D2e
− 2
5Re t

(
||u∗(0)||2H1 + ||V ∗(0)||2H1

)
. (63)

B. H1 stability for uncontrolled wave numbers
Following the same argument [11], that produced (49)–

(50), the following bound holds

Λ̇ ≤ − Λ
8Re

− ΛH

2Re
, (64)

where

ΛH(k, t) =
1
2

(
||uy(t, k)||2

L̂2 + ||Vy(t, k)||2
L̂2

)
. (65)

The time derivative of ΛH can be bounded as

dΛH

dt
= − 1

Re

(
||uyy||2L̂2 + ||Vyy||2L̂2

)

+4k2π2

∫ 1

0

uyyū + ūyyu + V̄yyV + VyyV̄

2Re
dy

+2πki

∫ 1

0

uyy p̄ − ūyyp

2
dy

−
∫ 1

0

V̄yypy + Vyy p̄y

2
dy

+8πki

∫ 1

0
y(y − 1)

×uyyū − ūyyu − V̄yyV + VyyV̄

2
dy

−4
∫ 1

0
(2y − 1)

uyyV̄ + ūyyV

2
dy, (66)

where we have used integration by parts and the Dirichlet
boundary conditions of the uncontrolled wave number range.
Doing further integration by parts and using (35), we obtain

dΛH

dt
= − 1

Re

(
||uyy||2L̂2 + ||Vyy||2L̂2

)
− 8k2π2

Re
Λh

−16π2k2

∫ 1

0
(2y − 1)

ūV − uV̄

2
dy

− V̄yyp + Vyy p̄

2

∣∣∣∣
1

0

. (67)

Only the last term remains to be estimated. Using (33)–(34)
with Vc being zero for uncontrolled wave number range, the
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last term in (67) can be expresssed as

V̄yyp + Vyy p̄

2

∣∣∣∣
1

0

= Re
p̄yp + pyp̄

2

∣∣∣∣
1

0

. (68)

This quantity can be estimated using the following lemma.
Lemma 5.1: If the pressure p verifies the Poisson equation

(29) with boundary conditions (33)–(34), then

− p̄yp + pyp̄

2

∣∣∣∣
1

0

≤ 16||V (t, k)||2
L̂2 . (69)

Using the lemma, the time derivative of ΛH can be
estimated as follows:

dΛH

dt
≤ −8k2π2

Re
ΛH + 16π2k2Λ + 16ReΛ. (70)

We take the following Lyapunov functional

ΛT = ΛH + (1 + 64Re2 + 4π2k2 + 64Reπ2k2)Λ, (71)

which is equivalent to the H1 norm,

||u(t, k)||2
Ĥ1 + ||V (t, k)||2

Ĥ1 = 2(1 + 4π2k2)Λ
+2ΛH . (72)

Computing the derivative of (71)
dΛT

dt
≤ − ΛH

2Re
− 1 + 4π2k2

8Re
Λ ≤ −d1ΛT . (73)

Deriving an estimate of the H1 norm from this estimate for
ΛT , one reaches the following result.

Proposition 5.3: If m = 1
32πRe and M = 1

π

√
Re
2 , then

for both |k| ≤ m and |k| ≥ M the equilibrium u(t, k, y) ≡
V (t, k, y) ≡ 0 of the uncontrolled system (27)–(34) is
exponentially stable in the H1 sense:

||V (t, k)||2
Ĥ1 + ||u(t, k)||2

Ĥ1

≤ D3e−d1t
(
||V (0, k)||2

Ĥ1 + ||u(0, k)||2
Ĥ1

)
. (74)

Since the decay rate in (74) is independent of k, integrating
(74) and using (58) the following result holds.

Proposition 5.4: The variables εu(t, x, y) and εV (t, x, y)
defined in (51)–(52) decay exponentially in the H1 norm as

||εu(t)||2H1 + ||εV (t)||2H1

≤ D3e−d1t
(
||εu(0)||2H1 + ||εV (0)||2H1

)
. (75)

C. Analysis for all wave numbers
From Propositions 5.2 and 5.4, as in Section IV-C, H1

stability is proved.

||u(t)||2H1 + ||V (t)||2H1

≤ D4e−d1t
(
||u(0)||2H1 + ||V (0)||2H1

)
. (76)

VI. H2 STABILITY

The H2 norm of f(x, y) is defined as

||f ||2H2 = ||f ||2H1 + ||fxx||2L2 + ||fxy||2L2 + ||fyy||2L2 . (77)

We also define the H2 norm of f(k, y) with respect to y as

||f(k)||2
Ĥ2 = ||f(k)||2

Ĥ1 + 16π4k4||f(k)||2
L̂2

+4π2k2||fy(k)||2
L̂2 + ||fyy(k)||2

L̂2 . (78)

The Ĥ2 norm as a k function is related to the H2 norm as

||f ||2H2 =
∫ ∞

−∞
||f(k)||2

Ĥ2dk. (79)

A. H2 stability for controlled wave numbers
Thanks to the backstepping transformations (40), (41) and

(42), (43), we can write the following estimates, which are
derived from simple estimates on α, αy and αyy from (38):

||u(t, k)||2
Ĥ2 ≤ D5e−

2
5Re t||u(0, k)||2

Ĥ2 , (80)

||V (t, k)||2
Ĥ2 ≤ D6e−

2
5Re t||V (0, k)||2

Ĥ2 . (81)

Using estimates (80)–(81) the following proposition holds
at each k in the controlled range.

Proposition 6.1: For any k in the range m < |k| < M ,
the equilibrium u(t, k, y) ≡ V (t, k, y) ≡ 0 of (27)–(34) with
feedback laws (37), (36) is exp. stable in the H2 sense

||V (t, k)||2
Ĥ2 + ||u(t, k)||2

Ĥ2

≤ D7e
− 2
5Re t

(
||V (0, k)||2

Ĥ2 + ||u(0, k)||2
Ĥ2

)
. (82)

Integrating (82) in the controlled wave number range m <
|k| < M , and using (79), the following result holds.

Proposition 6.2: Consider equations (1)–(5) with control
laws (8)–(7). Then the variables u∗(t, x, y) and V ∗(t, x, y)
defined in (45)–(46) decay exponentially in the H2 norm:

||u∗(t)||2H2 + ||V ∗(t)||2H2

≤ D8e
− 2
5Re t

(
||u∗(0)||2H2 + ||V ∗(0)||2H2

)
. (83)

B. H2 stability for uncontrolled wave numbers
For the uncontrolled range, thanks to boundary conditions,

the Ĥ2 norm ||u(t, k)||Ĥ2 is equivalent to the norm

||u(t, k)||2
Ĥ1 +

∫ 1

0

∣∣uyy(t, k, y) − 4π2k2u(t, k, y)
∣∣2dy, (84)

i.e., to the Ĥ1 norm plus the L̂2 norm of the Laplacian,
denoted ||(ku(k)||2

L̂2 . This can be shown integrating (84)
by parts. We state another norm equivalence as a lemma.

Lemma 6.1: Consider u and V verifying equations (27)–
(28). Then, for the uncontrolled wave number range, the
norm ||u||2

Ĥ2 + ||V ||2
Ĥ2 is equivalent to the norm

||u||2
Ĥ1 + ||V ||2

Ĥ1 + ||ut||2L̂2 + ||Vt||2L̂2 . (85)
This means that the Laplacian operator in norm (84) can

be replaced by a time derivative, when considering the joint
H2 norms of u and V .

From Lemma 6.1 one gets Ĥ2 stability for the uncon-
trolled wave numbers. This is obtained by considering the
norm ||ut||2L̂2 + ||Vt||2L̂2 as a Lyapunov functional whose
derivative can be bounded as

d

dt

||ut||2L̂2 + ||Vt||2L̂2

2
≤ − 1

4Re

(
||ut||2L̂2 + ||Vt||2L̂2

)
, (86)

which follows by taking the time derivative of (27)–(28) and
applying the same argument as for L2 stability. Thus,

||ut(t, k)||2
L̂2 + ||Vt(t, k)||2

L̂2

≤ e−
1

2Re t
(
||ut(0, k)||2

L̂2 + ||Vt(0, k)||2
L̂2

)
. (87)

Using (87), (74), and Lemma 6.1, the following result holds.
Proposition 6.3: If m = 1

32πRe and M = 1
π

√
Re
2 , then

for both |k| ≤ m and |k| ≥ M the equilibrium u(t, k, y) ≡
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V (t, k, y) ≡ 0 of the uncontrolled system (27)–(34) is
exponentially stable in the H2 sense:

||V (t, k)||2
Ĥ2 + ||u(t, k)||2

Ĥ2

≤ D2
8D3e−d1t

(
||V (0, k)||2

Ĥ2 + ||u(0, k)||2
Ĥ2

)
. (88)

Since the decay rate in (88) is independent of k, using (79)
we can integrate (88) for all uncontrolled wave numbers.

Proposition 6.4: The variables εu(t, x, y) and εV (t, x, y)
defined as in (51)–(52) decay exponentially in the H2 norm

||εu(t)||2H2 + ||εV (t)||2H2

≤ D2
8D3e−d1t

(
||εu(0)||2H2 + ||εV (0)||2H2

)
. (89)

C. Analysis for all wave numbers
From Propositions 6.2 and 6.4, as in Section IV-C, H2

stability is proved. One gets that

||u(t)||2H2 + ||V (t)||2H2

≤ D9e−d1t
(
||u(0)||2H2 + ||V (0)||2H2

)
. (90)

VII. PROOF OF THEOREM 3.2

Consider expressions (7)–(17).
Points i and iv are deduced trivially from the fact that (7)

and (10) are defined as convolutions, and properties of the
heat equation (9).

Points ii and iii were proved in the Appendix of [11].
From the definition of the inverse Fourier transform (23),

it is straightforward to show that if the real part of f(k, y)
is even and the imaginary part of f(k, y) is odd, then the
resulting f(x, y) will always be real. Then, Point v can
be proved showing that the functions under the integrals in
(11)–(13) have this property. This is immediate for (12) and
(13). For (11), the property must be shown for the kernel
K, defined by the sequence (16)–(17). This can be proved
by induction. For K0, the property is evident. For Kn, if
the property is assumed for Kn−1, then from (17) and since
even times even or odd times odd is even, and the product
of odd times even is odd, Kn has the property. Hence the
limit K has a real inverse transform, and kernel Qu is real.

Point vi is deduced from the definition of the kernels (11)–
(13) as Fourier inverse integrals.

For Point vii, consider expression (7) and (11). Then,

||Uc||2L2 =
∫ ∞

−∞
Uc(t, x)2dx

=
∫ ∞

−∞
χ(k)

∣∣∣∣
∫ 1

0
K(k, 1, η)u(t, y, k)dη

∣∣∣∣
2

dk

≤ 2(M − m) max
m≤|k|≤M

{||K||∞}||u(t)||2L2 , (91)

and the result follows from Theorem 3.1.
On the other hand, for Vc one has to use its dynamic

equation (9)–(10), and a Lyapunov functional consisting in
half its L2 norm. One then has, using Young’s inequality

d

dt

|Vc(k)|2

2
≤ −π2k2

Re
|Vc(k)|2

+
|uy|2(t, k, 0) + |uy|2(t, k, 1)

Re
+64 cosh (2πM) ||V (t, k)||2

L̂2 , (92)

and supposing the control law is initialized at zero , and
using the Ĥ2 norm to bound the second line of (92),

|Vc(t, k)|2 ≤
∫ t

0
e−

π2m2
Re (t−τ)

[
10

||u(τ, k)||2
Ĥ2

Re

+64 cosh (2πM) ||V (τ, k)||2
L̂2

]
dτ. (93)

Integrating in k

||Vc(t)||2L2 ≤
∫ t

0
e−

π2m2
Re (t−τ)

[
10

||u(τ)||2H2

Re

+64 cosh (2πM) ||V (τ)||2L2

]
dτ, (94)

and then the result follows from Theorem 3.1.
For Point viii, consider the jth spatial derivative of Uc and

calculate its L2 spatial norm
∣∣∣∣

∣∣∣∣
dj

dxj
Uc

∣∣∣∣

∣∣∣∣
2

L2

=
∫ ∞

−∞

(
dj

dxj
Uc(t, x)

)2

dx

≤ (2πM)2j ||Uc||2L2 , (95)

so the result for Uc follows from Point vii. We proceed
similarly for Vc, thus proving Point viii.
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